CHAPTER 2

File Manager

This chapter describes how your application can use the File Manager to store and access
data in files or to manipulate files, directories, and volumes. It also provides a complete
description of all File Manager routines, data types, and constants.

You need to read the information in this chapter if you wish to use File Manager routines
other than those described in the chapter “Introduction to File Management” earlier in
this book. That chapter shows how to use the File Manager, the Standard File Package,
and other system software components to handle the typical File menu commands and
perform other common file-manipulation operations. This chapter addresses a number
of other important file-related issues, including

= using the low-level File Manager routines
= locking and unlocking byte ranges in shared files

» searching a volume for files or directories satisfying certain criteria

Jabeue a4
n

= obtaining information about files, directories, and volumes

This chapter also addresses some advanced topics of interest primarily to designers
of very specialized applications or file-system utility programs. These advanced
topics include

s how the File Manager organizes file and directory data on disk
» how the File Manager organizes information in memory

To use this chapter, you should already be familiar with the information presented in the
chapter “Introduction to File Management” earlier in this book.

This chapter begins with a general introduction to the File Manager and the services it
provides. Then it describes

= ways of identifying files, directories, and volumes
» file access permissions
= directory access privileges

= running in a shared environment

About the File Manager

The File Manager is the part of the Macintosh Operating System that manages the
organization, reading, and writing of data located on physical data storage devices
such as disk drives. This data includes the data in documents as well as other
collections of data used to maintain the hierarchical file system (HFS) and other system
software services. To accomplish these tasks, the File Manager interacts with many
other components of the system software. For example, the Resource Manager uses
File Manager routines when it needs to read and write resource data. Similarly, the File
Manager calls the Device Manager to perform the actual reading and writing of data
on a physical data storage device. In general, you'll use the Resource Manager to read
and write data in a file’s resource fork and the File Manager to read and write data in
a file’s data fork. You'll also use the File Manager to perform operations on directories
and volumes.

About the File Manager 2-5

2-6

CHAPTER 2

File Manager

The File Manager provides a large number of routines for performing various operations
on files, directories, and volumes. The requirements of your application will dictate
which of these routines you will need to use. Many applications simply need to open
files, read and write the data in those files, and then close the files. Other applications
might provide more capabilities, such as the ability to copy a file or move a file to
another directory. A few file-system utilities perform even more extensive file operations
and hence need to use some of the advanced routines provided by the File Manager. For
example, a disk scavenger might need to make a byte-by-byte search through a volume
to find pieces of a deleted file.

You can often use one of several File Manager routines to accomplish a particular task.
This is because many of the File Manager routines are provided in two different forms:
high level and low level. The low-level routines generally provide the greatest control
over the requested task; they are identified by the prefixes PB and PBH, indicating that
they take the address of a parameter block as a parameter. The high-level routines are
always defined in terms of low-level routines; they are identified by prefixes such as FSp
or H, indicating how you identify files or directories using those routines, or by no
special prefix at all.

You pass information to a high-level routine using the routine’s parameters. A high-level
routine has as many parameters as are necessary to pass the information it requires.

You pass information to a low-level routine by filling in fields in a parameter block and
then passing the address of the parameter block to the routine. In all cases, a low-level
routine uses more fields in the parameter block than there are parameters in the
corresponding high-level routine. As a result, you can use those low-level routines to
perform more advanced operations or to provide more extensive information than you
can with the corresponding high-level routines. This is the principal reason you might
choose to use a low-level routine instead of its corresponding high-level routine.

IMPORTANT

If you use the low-level File Manager routines, be sure to clear all
unused fields of the parameter block. a

Low-level routines also accept a parameter indicating whether you want the routine to
be executed synchronously or asynchronously. If you request synchronous execution,
control does not return to your application until the routine has been executed. This
allows you to inspect the routine’s result code to see whether the routine was
successfully completed. If so, your application can continue by performing other
operations that depend on the successful completion of that routine.

If you request asynchronous execution, an I/O request is put into the file I/O queue and
control returns to your application immediately—possibly even before the actual I/ O
operation is completed. The File Manager takes requests from the queue one at a time
and processes them; meanwhile, your application is free to work on other things.
Routines that are executed asynchronously return control to your application with the
result code NOEr r as soon as the call is placed in the file I/ O queue. Return of control
does not signal successful completion of the call, but simply successful queuing of the
request. To determine when the call is actually completed, you can poll the i oResul t
field of the parameter block. This field is set to a positive number when the call is made

About the File Manager

CHAPTER 2

File Manager

and set to the actual result code when the call is completed. If necessary, you can also
install a completion routine that is executed when the asynchronous call is completed.
See “Completion Routines” on page 2-240 for details about completion routines.

Note

Although you can request asynchronous execution for most low-level
routines, the device driver for the device on which the target file,
directory, or volume resides might not support asynchronous
operations. For example, the current implementation of the SCSI
Manager allows synchronous execution only. The Sony disk driver and
AppleShare server software do, however, support asynchronous
operation. O

The following sections describe the various capabilities of the File Manager. For full
details on any of the routines mentioned in these sections, see the descriptions given in
“File Manager Reference” beginning on page 2-87.

Jabeue a4
n

File Manipulation

The File Manager provides a number of routines that allow you to manipulate files. You
can open a file fork, read and write the data in it, adjust its logical end-of-file, set the file
mark, allocate blocks to a file, and close a file.

To manipulate the data in a file, you first need to open the file. You can open a file using
one of several routines, depending on whether you want to use low-level or high-level
routines and how you identify the file to open. Table 2-1 lists the file-opening routines.

Table 2-1 Routines for opening file forks

FSSpec HFS High-Level HFS Low-Level Description

FSpOpenDF HOpenDF PBHOpenDF Open a file’s data fork.

FSpOpenRF HOpenRF PBHOpenRF Open a file’s resource fork.
HOpen PBHOpen Open a driver or file data fork.

All the high-level FSSpec routines require you to specify a file using a file system
specification record. All the HFS routines, whether high or low level, require you to
specify a file by its volume, directory, and name.

No matter which routine you use to open a file, you need to specify a file permission
that governs the kind of access your application can have to that file. You can specify one
of these constants:

CONST
f sCur Perm = 0 {what ever permi ssion is all owed}
f sRdPer m = 1; {read perni ssion}

About the File Manager 2-7

2-8

CHAPTER 2

File Manager
fsW Perm = 2 {write perm ssion}
f SRAW Per m = 3 {exclusive read/wite perm ssion}
f SRAW ShPerm = 4; {shared read/wite permn ssion}

Use the constant f sCur Per mto request whatever permission is currently allowed. If
write access is unavailable (because the file is locked or because the file is already open
with write access), then read permission is granted. Otherwise, read / write permission
is granted.

Use the constant f sRdPer mto request permission to read the file. Similarly, use the
constant f sSW Per mto request permission to write to the file. If write permission is
granted, no other access paths are granted write permission. Note, however, that the File
Manager does not support write-only access to a file. As a result, f SW Per mis
synonymous with f sSRAW Per m

There are two types of read / write permission—exclusive and shared. Often you want
exclusive read / write permission, so that users can safely read and alter portions of a file.
If your application requests and is granted exclusive read / write permission, no users are
granted permission to write to the file; other users may, however, be granted permission
to read the file.

Shared read / write permission allows multiple access paths for writing and reading. It is
safe to have multiple read / write paths open to a file only if there is some way of locking
a portion of the file before writing to that portion of the file. You can use the File
Manager functions PBLockRange and PBUnl ockRange to lock and unlock ranges of
bytes in a file. These functions, however, are supported only on remotely mounted
volumes or on local volumes that are sharable on the network. As a result, you should
request shared read /write permission only if range locking is available. See “Shared File
Access Permissions” on page 2-15 for details on permissions in shared environments.

Note

Don’t assume that successfully opening a file for writing ensures that
you can actually write data to the file. The File Manager allows you to
open with write permission a file located on a locked volume, and you
won't receive an error until you first try to write data to the file. To be
safe, you can call the PBHCet VI nf 0 function to make sure that the
volume is writable. O

When you successfully open a file fork, you receive a file reference number that
uniquely identifies the open file. You can pass that number to the File Manager routines
that allow you to manipulate open files. Table 2-2 lists the routines that operate on
open files.

The File Manager provides a number of routines that allow you to operate on files that
are closed. You can create, delete, get and set information, and lock and unlock files.
You can also move files within a volume and exchange data in two files. Table 2-2 lists
these routines.

About the File Manager

CHAPTER 2

File Manager
Table 2-2 Routines for operating on open file forks
High-Level Low-Level Description
FSRead PBRead Read bytes from an open file fork.
FSWite PBWite Write bytes to an open file fork.
FSO ose PBC ose Close an open file fork.
Get FPos PBGet FPos Get the position of the file mark.
Set FPos PBSet FPos Set the position of the file mark.
Get ECF PBGet ECF Get the current logical end-of-file. :—.T-'-
Set ECF PBSet ECF Set the current logical end-of-file. gsz)
Al l ocate PBAl | ocat e Add allocation blocks to a file fork. ‘%
Al'l ocContig PBAl | ocConti g Add contiguous allocation blocks to a file fork.)
PBFl ushFi | e Update the disk contents of a file fork.

Get VRef Num Get volume reference number of an open file.
Table 2-3 Routines for operating on closed files
FSSpec HFS High-Level HFS Low-Level Description
FSpCreate HCr eat e PBHCr eat e Create both forks of a

new file.
FSpDel et e HDel et e PBHDel et e Delete both forks of a file.
FSpGet FI nf o HCet FI nf o PBHCet FI nf o Get a file’s Finder

information.
FSpSet FI nf o HSet FI nfo PBHSet FI nf o Set a file’s Finder information.
FSpSet FLock HSet FLock PBHSet FLock Lock a file.
FSpRst FLock HRst FLock PBHRst FLock Unlock a file.
FSpCat Move Cat Move PBCat Move Move a file or directory

within a volume.
FSpRenane HRenane PBHRenane Rename a file or directory.

PBGCet Cat I nfo Get information about a file
or directory.
PBSet Cat | nf o Set information about a file

or directory.

Note

You can use the functions listed in Table 2-2 on open files as well, except
for those functions that create or delete file forks. O

About the File Manager

2-9

2-10

CHAPTER 2

File Manager

You can exchange the data in two files using the FSpExchangeFi | es and
PBExchangeFi | es functions. If you need to create a file system specification record,
you can use the FSMakeFSSpec or PBMakeFSSpec function.

Directory Manipulation

The File Manager provides a number of routines that allow you to manipulate
directories. For example, you can create and delete directories, get information about a
directory, and move and rename directories. The directory manipulation routines are

listed in Table 2-2.

Table 2-4 Routines for operating on directories

FSSpec HFS High-Level HFS Low-Level Description

FSpDirCreate DirCreate PBDi r Creat e Create a directory.

FSpDel et e HDel et e PBHDel et e Delete a directory.

FSpGet FI nf o HGet FI nfo PBHGet FI nf o Get Finder information for
a directory.

FSpSet FI nf o HSet FI nf o PBHSet FI nf o Set Finder information for
a directory.

FSpSet FLock HSet FLock PBHSet FLock Lock a directory.

FSpRst FLock HRst FLock PBHRst FLock Unlock a directory.

FSpCat Move Cat Move PBCat Move Move a file or directory within
a volume.

FSpRenane HRenane PBHRename Rename a file or directory.

PBGet Cat | nfo

PBSet Cat | nf o

Get information about a file
or directory.

Set information about a file
or directory.

The File Manager includes a number of routines that allow you to manipulate working
directories. See Table 2-2. Most applications do not need to use working directories.

About the File Manager

CHAPTER 2

File Manager

Table 2-5 Routines for manipulating working directories

High-Level Low-Level Description

OpenV\D PBOpen\V\D Open a working directory.

Cl oseVD PBC oseVWD Close a working directory.

Get WDI nf o PBGet WDI nf o Get information about a working directory.

Volume Manipulation

The File Manager provides a number of routines that allow you to manipulate volumes.
For example, you can obtain information about a mounted volume, update the
information on a volume, unmount a mounted volume or place it offline, and so forth.
Most applications don’t need explicit access to volumes. The Standard File Package and
the Finder handle most events related to the insertion and ejection of disks.

When the Event Manager function Wai t Next Event (or Get Next Event) receives a
disk-inserted event, it calls the Desk Manager function Syst enmEvent . The Desk
Manager in turn calls the File Manager function PBMbunt Vol , which attempts to mount
the volume on the disk. The result of the PBMbunt Vol call is put into the high-order
word of the event message, and the drive number is put into its low-order word. If the
result code indicates that an error occurred, you need to call the Disk Initialization
Manager routine DI BadMount to allow the user to initialize or eject the volume. For
details, see the chapter “Disk Initialization Manager” in this book.

After a volume has been mounted, your application can call Get VI nf o, which returns
the name, the amount of unused space, and the volume reference number. Given a file
reference number, you can get the volume reference number of the volume containing
that file by calling either Get VRef Numor Get FCBI nf o.

You can unmount or place offline any volumes that aren’t currently being used. To
unmount a volume, call Unmount Vol , which flushes a volume (by calling Fl ushVol)
and releases all of the memory it uses. To place a volume offline, call PBX f Li ne, which
flushes a volume and releases all of the memory used for it except for the volume control
block. The File Manager places offline volumes online as needed, but your application
must remount any unmounted volumes it wants to access. The File Manager itself may
place volumes offline during its normal operation.

Note

If you make a call to an offline volume, the File Manager displays the
disk switch dialog box and waits for the user to reinsert the disk
containing the volume. When the user inserts the required disk, the File
Manager mounts the volume and then reissues your original call. To
avoid presenting the user with numerous disk switch dialog boxes, you
might need to check that a volume is online before attempting to access
dataonit. O

About the File Manager 2-11

Jabeue a4
n

CHAPTER 2

File Manager

To protect against data loss due to power interruption or unexpected disk ejection, you
should periodically call Fl ushVol (probably after each time you close a file), which
writes the contents of the volume buffer and all access path buffers (if any) to the volume
and updates the descriptive information contained on the volume.

Whenever your application is finished with a disk, or when the user chooses Eject from a
menu, call the Ej ect function. This function calls FI ushVol , places the volume offline,
and then physically ejects the volume from its drive.

If you would like all File Manager calls to apply to a particular volume, specify it as the
default volume. You can use the HGet Vol (or Get Vol) function to determine the name
and volume reference number of the default volume, and the Set Vol function to make
any mounted volume the default.

Normally, volume initialization and naming are handled by the Disk Initialization
Manager. If you want to initialize a volume explicitly or erase all files from a volume,
you can call the Disk Initialization Manager directly. When you want to change the name
of a volume, call the HRenanme function.

Table 2-6 summarizes the volume-manipulation routines. Most of these routines require

you to specify a volume either by name or by volume reference number.

Table 2-6 Routines for operating on volumes
High-Level Low-Level Description
PBMount Vol Mount a volume.
Unnount Vol PBUnnmount Vol Unmount a volume.
Ej ect PBEj ect Eject a volume.
PBOF f Li ne Place a volume offline.
FI ushVvol PBFI ushVol Update a volume.
Get Vol PBGet Vol Get the default volume.
HGCet Vol PBHGet Vol Get the default volume.
Set Vol PBSet Vol Set the default volume.
HSet Vol PBHSet Vol Set the default volume.
GetVinfo PBHCet VI nf o Get information about a volume.
PBSet VI nf o Set information about a volume.

PBHGet Vol Par ns
PBCat Sear ch

About the File Manager

Determine capabilities of a volume.

Search a volume for files or directories
satisfying certain criteria.

CHAPTER 2

File Manager

Volume Searching

The File Manager provides several routines that you can use to search a volume for files
or directories having specific characteristics. For example, you can search for all files
with modification dates of two days ago or less or all directories with the string “Temp”
in their names.

In general, you should avoid searching entire volumes, because a search of large
volumes can consume significant amounts of time. Suppose you are looking for a
particular file (for example, a dictionary file against which your application needs to
check the spelling of a document). In this case, you can save time and increase the
chances of finding the correct file by storing and later resolving an alias record that
describes the desired file. See the chapter “Alias Manager” in this book for details on
using alias records.

Alternatively, suppose you need to find the location of a standard system directory, such
as the Preferences folder or the Temporary Items folder. To perform this search most
efficiently, you should use the Fi ndFol der function. See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details.

In some cases, however, you do need to search volumes. For instance, a backup utility
needs to search an entire volume to find which files and directories, if any, might need to
be backed up. In these cases, you can choose either of two general search strategies: you
can search the volume’s catalog by calling the PBCat Sear ch function, or you can use a
recursive, indexed search by calling the PBGet Cat | nf o function (see Table 2-2).

Table 2-7 Routines for manipulating working directories

Routine Description

PBCat Sear ch Search a volume’s catalog file for files or directories.
PBCet Cat | nf o Get information about a single catalog file entry.

Using the PBCat Sear ch function is the fastest and most reliable way to search the
catalog file of an HFS volume for files and directories satisfying certain criteria. The
PBCat Sear ch function returns a list of FSSpec records describing the files or
directories that match the criteria specified by your application.

However, PBCat Sear ch is not available on all volumes or in all versions of the
File Manager. See “Determining the Features of the File Manager” on page 2-33
for instructions on how to determine whether the system software and the target
volume both support the PBCat Sear ch function.

Note

The PBCat Sear ch function is available on all volumes that support the
AppleTalk Filing Protocol (AFP) version 2.1. This includes volumes and
directories shared using the file sharing software introduced in system
software version 7.0 and using the AppleShare 3.0 file server software. O

About the File Manager 2-13

Jabeue a4
n

2-14

CHAPTER 2

File Manager

In environments where PBCat Sear ch is not available, you'll need to do a search that
recursively descends the directory hierarchy and reads through the catalog entries of all
files and directories located in each directory in that hierarchy. You can do this by making
indexed calls to the PBGet Cat | nf o function, which is supported by all system software
versions and by all volumes. However, using this recursive, indexed search method is
usually significantly slower than using the PBCat Sear ch function. (For example, a
recursive, indexed search that takes over 6 minutes might take about 20 seconds using
PBCat Sear ch.)

See “Searching a Volume” beginning on page 2-39 for examples of using both
PBCat Sear ch and PBCet Cat | nf 0 to search a volume for files and directories.

Shared Environments

Any operating environment that supports multiple users and multiple access to data or
applications is known as a shared environment. A shared environment can be a number
of workstations attached to a network as well as a single workstation executing a
multi-user operating system such as A/UX.

The File Manager supports access both to locally mounted volumes and to volumes
located on devices attached to remote machines on a network. For example, AppleShare,
Apple’s file-server application, allows users to share data, applications, and disk storage
over a network. System software version 7.0 introduced File Sharing, a local version of
AppleShare that allows users to make some or all of the files on a volume available over
the network. To do so, a user establishes a volume or directory as a share point, making
it available for use by registered users or guests on the network.

It is a virtual certainty that some users will run your application in a shared environment.
The File Manager, Chooser, and other system software components cooperate to make
access to remote volumes largely transparent to your application. As a result, most
applications do not need to accommodate shared environments explicitly. You can read
and write files, for instance, regardless of whether they are located on a local or a remote
volume.

If your application performs certain operations on files, however, you might be able to
save considerable time by using special shared environment routines. Suppose, for
example, that you want to copy a file to another directory on a volume. In the general
case, you handle this by reading a buffer of data from the source file and then writing it to
the destination file. If the source and destination volumes are remote, however, this
technique might involve the copying of a lot of data over the network. To optimize remote
file copying, the File Manager provides the PBHCopyFi | e function, which copies a
remote file without sending the data across the network. Similarly, the PBHVbveRenarne
function allows you to move and optionally rename a file located on a remote volume.

The File Manager provides routines that allow you to control other aspects of a shared
environment, including

» providing multiple users with shared read / write access to files

» locking and unlocking byte ranges within a file to ensure exclusive access to data
during updates

About the File Manager

CHAPTER 2

File Manager

= enabling and disabling sharing on local volumes and directories

= getting and setting access privileges for directories

= determining volume mounting and login information so that any volume can be
unmounted and remounted easily

Table 2-8 lists the File Manager routines that you can use in a shared environment. Note
that all of these are low-level routines.

Jabeue a4
n

Table 2-8 Shared environment routines

Routine Description

PBHOpenDeny Open a file’s data fork using the access deny modes.
PBHOpenRFDeny Open a file’s resource fork using the access deny modes.
PBLockRange Lock a portion of a shared file.

PBUnl ockRange Unlock a previously locked portion of a shared file.
PBShar e Establish a volume or directory as a share point.
PBUnshar e Remove a share point from a shared environment.

PBGet UGEnt ry
PBHCet Di r Access
PBHSet Di r Access
PBCet Vol Mount | nf 0Si ze
PBCet Vol Mount | nf o
PBVol umreMount
PBHGet Logl nl nf o
PBHVaEp! D
PBHVEpName
PBHCopyFi | e
PBHMoveRenane

Get a list of users and groups on the local file server.
Get the access control information for a directory.

Set the access control information for a directory.

Get the size of a volume mounting information record.
Get volume mounting information.

Mount a volume.

Get the method used to log on to a shared volume.
Get the name of a user or group from its ID.

Get the ID of a user or group from its name.

Copy a file on a remote volume.

Move (and perhaps rename) a file on a remote volume.

The following sections describe the capabilities provided by these routines.

Shared File Access Permissions

In a shared environment, files can be shared at a file or subfile level. At a file level, a

project schedule could be read by many users simultaneously but updated by only one
user at a time. At a subfile level, different records of a data base file could be updated by
several users at the same time.

About the File Manager 2-15

CHAPTER 2

File Manager

The access modes provided by the standard file-opening routines prove insufficient for
shared files. Two additional open functions, PBHOpenDeny and PBHOpenRFDeny, allow
the ability to deny access as well. These deny modes are cumulative, combining to
determine the current access permissions for a file. For instance, if the first opening
routine denies reading to others and the second denies writing, both reading and writing
are then denied for the file.

Figure 2-1 shows how new access and deny modes are granted or refused according to a
file’s current access and deny modes. An unshaded square indicates that a new open call
with the listed permissions would succeed; otherwise, the new open call would fail.

Figure 2-1 Access and deny mode synchronization

2-16

New open attempt deny mode and new
open attempt access mode

Deny Mode Deny

Read/Write Deny Write | Deny Read | Deny None

Access
Mode

Read/Write

Write
None
Read/Write

Write
None
Read/Write

Write

Read/Write

Write

None
Read
Read
Read
None
Read

Deny None
Read/Write | Raad
Read/Write
Write
Deny Write | None
Read
Read/Write
Write
Deny Read | None
Read
Read/Write
Write
Deny None | None
Read
Read/Write
Write

Current deny and current access mode

You specify deny modes by setting bits in the i oDenyMbdes field of the parameter
block passed to PBHOpenDeny or PBHOpenRFDeny. Currently four bits of this field
are meaningful:

Bit Meaning

0 If set, request read permission

1 If set, request write permission

4 If set, deny other users read permission to this file
5 If set, deny other users write permission to this file

About the File Manager

CHAPTER 2

File Manager

The combination of access and deny requests allows four common opening possibilities:

= Browsing access. You request browsing access by specifying both read and
deny-write modes (i oDenyMdes set to $0021). Browsing access is traditional
read-only access; it permits multiple readers but no writers. This access mode is useful
for shared files that do not change often, such as help files, configuration files, and
dictionaries.

= Exclusive access. You request exclusive access by specifying both read and write
access and both deny-read and deny-write access (i oDenyMbdes set to $0033). Most
applications that are not specifically designed to share file data use this permission
setting. An exclusive access opening call succeeds only if there are no existing paths to
the file. After a successful opening call, all future attempts to establish access paths to
the file are denied until the exclusive-access path is closed.

= Access as a single writer with multiple readers. You request access as the single
writer with multiple readers by specifying both read and write access and deny-write
access (i oDenyModes set to $0023). This access method allows additional users to
gain read-only access to browse a document being modified by the initial writer. The
writer’s application is responsible for range locking the file (by calling PBLockRange)
before writing to it, to prevent reading when the file is inconsistent.

Jabeue a4
n

= Shared access. You request shared access by specifying both read and write access
(i oDenyModes set to $0003). Shared access should be used by applications that
support full multi-user access to its documents. Range locking is needed to prevent
other users from accessing information undergoing change. Each user must also check
for and handle any errors that result from access by other users. You might prefer to
use a semaphore to flag records in the document as they are checked out, rather than
use range locking exclusively.

You can open a shared file using either the deny modes described here or the file access
permissions described in “File Manipulation” on page 2-7. If you use the original
permissions when you open a file located in a shared directory, the File Manager
translates those permissions into the corresponding access and deny modes. The basic
rule followed in this translation is to allow a single writer or multiple readers, but not
both. The translation from the original permissions to the deny-mode permissions is
shown in Table 2-9.

Table 2-9 Access mode translation

HFS permissions Deny-mode permissions

f sCur Per m Exclusive access, or browsing access if exclusive access
is unavailable.

f sRdPer m Browsing access.

f sSW Perm Exclusive access.

f SRAW Per m Exclusive access, or browsing access if exclusive access

is unavailable.

f sSRAW ShPer m Shared access.

About the File Manager 2-17

2-18

CHAPTER 2

File Manager

Notice that f sCur Per mand f SRAW Per mare retried as read-only (browsing access) if
exclusive access is not available. In addition, whenever browsing access is requested
(that is, when you directly request f sSRdPer m or when a request for f sCur Per mor

f sSRAW Per mis retried because exclusive access is not available) and cannot be granted,
the AppleShare external file system searches through the open file control blocks (FCBs)
for another AFP access path to the file. If an AFP access path to that file is found, a
read-only access path is returned that shares the AFP access path.

Directory Access Privileges

AppleShare allows users to assign directory access privileges to individual directories,
controlling who has access to the files and folders in the directory. A directory may

be kept private, shared by a group of registered users, or shared with all users on

the network.

Users are organized into groups. Users can belong to more than one group. Information
about users and their privileges is maintained by AppleShare. Each directory has access
privileges assigned for each of these three classifications of users: owner, group, and
everyone. The following privileges can be assigned:

= See Folders. A user with this access privilege (also called search privilege) can see
other directories in the specified directory.

= See Files. A user with this access privilege (also called read privilege) can see the
icons and open documents or applications in that directory as well.

= Make Changes. A user with this access privilege (also called write privilege) can
create, modify, rename, or delete any file or directory contained in the specified
directory. Directory deletion requires additional privileges. It is possible to have Make
Changes privileges without also having See Folders or See Files privileges; this would
allow users to put items into a directory but not view the contents of that directory.

For instance, a user might assign privileges to a particular directory allowing the owner
to read, write, and search the directory, and allowing everyone else (whether in the
group or not) only to search the directory.

On directories shared using File Sharing, you can also assign blank access privileges. In
this case, the File Manager ignores any other access privileges and uses the access
privileges of the directory’s parent. On the local machine, directories in a shared area
have blank access privileges, until set otherwise.

Note
You cannot assign blank access privileges to a volume’s root directory. O

You can use the PBHGet Di r Access and PBHSet Di r Access functions to determine
and change the access privileges for a directory. The access privileges are passed in the
4-byte i 0ACAccess field of the accessPar amvariant of the HFS parameter block
passed to these two functions. The 4 bytes are interpreted separately; byte 0 is the
high-order byte.

About the File Manager

CHAPTER 2

File Manager

Byte Meaning

0 User’s access privileges

1 Everyone’s access privileges
2 Group’s access privileges

3 Owner’s access privileges

The bits in each byte encode access privilege information, as illustrated in Figure 2-2.
(The high-order byte is on top, and the high-order bit is on the left.) Note that the user’s
privileges byte also indicates whether the user owns the directory and whether the
directory has blank access privileges.

Jabeue a4
!

Figure 2-2 Access privileges information in the i 0ACAccess field

Directory owner
Blank access privileges

|
31|30 | 29| 28 | 27 | 26 | 25 | 24 |— User's privileges

23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |— Everyone's privileges

15 | 14 | 13 | 12 | 11 | 10 | 9 8 |— Group's privileges

7 6 5 4 3 2 1 0 |— Owner's privileges

|

‘ Search
Read

Write

If bit 31 is set, then the user is the owner of the specified directory. If bit 28 is set, the
specified directory has blank access privileges. If bit 28 is clear, the 3 low-order bits of
each byte encode the write, read, and search privileges, respectively. If one of these bits
is set, the directory privileges permit the indicated access to the specified individual.

The 3 low-order bits of the byte encoding the user’s access privilege information are
the logical OR of the corresponding bits in whichever of the other 3 bytes apply to the
user. For example, if the user is the owner of a directory and is in the directory’s group,
then the 3 low-order bits of the user byte are the logical OR of the corresponding bits in
the other 3 bytes. If, however, the user is not the owner and is not in the directory’s
group, the user privilege bits have the same values as the corresponding ones in the
everyone byte.

About the File Manager 2-19

2-20

CHAPTER 2

File Manager

You can use PBHSet Di r Access to set the low-order 3 bits of all the privileges bytes
except the user’s privileges byte. In the user’s privileges byte, you can set only the blank
access privileges bit (bit 28).

Note

Not all volumes support blank access privileges. You can call the
PBHGet Vol Par s function to determine whether a particular volume
supports blank access privileges. O

Remote Volume Mounting

Typically, the user mounts remote shared volumes through the Chooser or by opening an
alias file. The File Manager in system software version 7.0 and later provides a set of calls
for collecting the mounting information from a mounted volume and then using that
information to mount the volume again later, without going through the Chooser.

Ordinarily, before you can mount a volume programmatically, you must record its
mounting information while it's mounted. Because the size of the mounting information
can vary, you first call the PBGet Vol Mount | nf 0Si ze function, which returns the

size of the record you’ll need to allocate to hold the mounting information. You then
allocate the record and call PBGet Vol Mount | nf o, passing a pointer to the record.
When you want to mount the volume later, you can pass the record directly to the

PBVol uneMount function.

Note

The functions for mounting volumes programmatically are low-level
functions designed for specialized applications. Even if your application
needs to track and access volumes automatically, it can ordinarily use
the Alias Manager, described in the chapter “Alias Manager” in this
book. The Alias Manager can record mounting information and later
remount most volumes, even those that do not support the
programmatic mounting functions. O

The programmatic mounting functions can now be used to mount AppleShare volumes.
The functions have been designed so that they can eventually be used to mount local
Macintosh volumes, such as partitions on devices that support partitioning, and local or
remote volumes managed by non-Macintosh file systems.

Privilege Information in Foreign File Systems

Virtually every file system has its own privilege model, that is, conventions for
controlling access to stored files and directories. A number of non-Macintosh file systems
support access from a Macintosh computer by mapping their native privilege models
onto the model defined by the AppleTalk Filing Protocol (AFP). Most applications that
manipulate files in foreign file systems can rely on the intervening software to translate
AFP privileges into whatever is required by the remote system.

About the File Manager

CHAPTER 2

File Manager

The correlation is not always simple, however, and some applications require more
control over the files stored on the foreign system. The A /UX privilege model, for
example, recognizes four kinds of access: read, write, execute, and search. The AFP
model recognizes read, write, deny-read, and deny-write access. If a shell program
running on the Macintosh Operating System wants to allow the user to set native A/UX
privileges on a remote file, it has to communicate with the A /UX file system using the
A/UX privilege model.

System software version 7.0 provides two new functions, PBGet For ei gnPri vs and
PBSet For ei gnPri vs, for manipulating privileges in a non-Macintosh file system.
These access-control functions were designed for use by shell programs, such as the
Finder, that need to use the native privilege model of the foreign file system. Most
applications can rely on using shared environment functions, which are recognized by
file systems that support the Macintosh privilege model. The new access-control
functions do not relieve a foreign file system of the need to map its own privilege model
onto the shared environment functions.

Like all other low-level File Manager functions, the access-control functions exchange
information with your application through parameter blocks. The meanings of some
fields vary according to the foreign file system used. These fields are currently defined
for A/UX, and you can define them for other file systems.

You can identify the foreign file system through the PBHGet Vol Par s function. The
attributes buffer introduced in system software version 7.0 for the PBHGet Vol Par ns
function contains a field for the foreign privilege model, vMFor ei gnPri vI D.

Note

The value of vMFor ei gnPri vl Ddoes not specify whether the remote
volume supports the AFP access-control functions. You can determine
whether the volume supports the AFP access-control functions by
checking the bAccessCnt | bitin the vMAttri b field. O

A value of 0 for vMFor ei gnPr i vl Dsignifies an HFS volume that supports no foreign

privilege models. The field currently has one other defined value.

CONST
fsUni xPriv = 1; {A/UX privil ege nodel }

For an updated list of supported models and their constants and fields, contact
Macintosh Developer Technical Support.
A volume can support no more than one foreign privilege model.

The access-control functions store information in an HFS parameter block of type
f or ei gnPri vPar am The parameter block can store access-control information in one
or both of

= a buffer of any length, whose location and size are stored in the parameter block

= 4long words of data stored in the parameter block itself

About the File Manager 2-21

Jabeue a4
n

2-22

CHAPTER 2

File Manager

The meanings of the fields in the parameter block depend on the definitions established
by the foreign file system. For example, the A /UX operating system uses the

i oFor ei gnPri vBuf f er field to point to a 16-byte buffer that describes the access
rights for the specified file or directory. The buffer is divided into four fields, as follows:

Bytes
0-3
4-7
8-11

12-15

Description
The user ID of the owner of the file or directory.
The group ID of the owner of the file or directory.

Mode bits specifying the type of access available to the owner of the file or
directory, the group of the file or directory, and to everyone else. The value in
this field is a logical OR of some of the following octal values:

Value Meaning

0001 Executable by others.
0002 Writable by others.

0004 Readable by others.

0010 Executable by the group.
0020 Writable by the group.
0040 Readable by the group.
0100 Executable by the owner.
0200 Writable by the owner.
0400 Readable by the owner.
2000 Set group ID on execution.
4000 Set user ID on execution.

(Execute privileges on a directory mean that the directory is searchable.) You
can also use these octal masks to test or set common acess rights:

Mask Meaning

0007 Executable, writable, and readable by others.
0070 Executable, writable, and readable by the group.
0700 Executable, writable, and readable by the owner.

The active user’s access rights. The value in this field is a logical OR of some
of the following octal values:

Value Meaning

0001 Executable by user.

0002 Writable by user.

0004 Readable by user.

0010 Set if user owns this file or directory.

Note that you cannot change the owner of a file or directory using
PBSet For ei gnPri vs. Accordingly, the value 0010 is meaningful for
PBGet For ei gnPri vs only.

About the File Manager

CHAPTER 2

File Manager

File ID Reference Routines

The File Manager provides a set of three low-level functions for creating, resolving, and
deleting file ID references. These functions were developed for use by the Alias Manager
in tracking files that have been moved within a volume or renamed. In most cases, you
should use the Alias Manager, not file IDs, to track files. See the chapter “Alias Manager”
in this book.

You establish a file ID reference when you need to identify a file using a file number (see
“File IDs” on page 2-24). You create a file ID reference with the PBCr eat eFi | el DRef
function. Because the File Manager assigns file numbers independently on each volume,
file IDs are not unique across volumes.

You can resolve a file ID reference by calling the PBResol veFi | el DRef function,
which determines the name and parent directory ID of the file with a given ID. If you no
longer need a file ID, remove its record from the directory by calling the

PBDel et eFi | el DRef function.

Note
Removing a file ID is seldom appropriate, but the function is provided
for completeness. O

Identifying Files, Directories, and Volumes

Whenever you want to perform some operation on a file, directory, or volume, you need
to identify the target item to the File Manager. Exactly how you specify these items in the
file system depends on several factors, including which version of system software is
currently running and, if the target item is a file, whether it is open or closed. For
example, once you have opened a file, you subsequently identify that file to the File
Manager by providing its file reference number, a unique number returned to your
application when you open the file.

In all other cases, you can identify files, directories, and volumes to the File Manager
by using a variety of methods. In addition to file reference numbers, the File
Manager recognizes

= file system specifications

s file ID references

s directory ID numbers

= volume reference numbers

= working directory reference numbers
= names and full or partial pathnames

This section describes each of these ways to identify items in the file system. Note,
however, that some of these methods are of historical or theoretical interest only.
Working directory reference numbers exist solely to provide compatibility with the

Identifying Files, Directories, and Volumes 2-23

Jabeue a4
n

2-24

CHAPTER 2

File Manager

now-obsolete Macintosh file system (MFS), and their use is no longer recommended.
Similarly, the use of full pathnames to specify volumes, directories, or files is not
generally recommended.

Whenever possible, you should use file system specifications to identify files and
directories because they provide the simplest method of identification and are
recognized by the Finder, the Standard File Package, and other system software
components beginning with system software version 7.0. If your application is intended
to run in system software versions in which the routines that accept file system
specification records are not available, you should use the volume reference number,
parent directory ID, and name of the item you wish to identify.

File System Specifications

Conventions for identifying files, directories, and volumes have evolved as the File
Manager has matured. System software version 7.0 introduced a simple, standard form
for identifying a file or directory, called a file system specification. You can use a file
system specification whenever you must identify a file or directory for the File Manager.

A file system specification contains

= the volume reference number of the volume on which the file or directory resides
s the directory ID of the parent directory

= the name of the file or directory

For a complete description of the file system specification (FSSpec) record, see “File
System Specification Record” on page 2-87.

The Standard File Package in system software version 7.0 uses FSSpec records to
identify files to be saved or opened. The File Manager provides a new set of high-level
routines that accept FSSpec records as input, so that your application can pass the data
directly from the Standard File Package to the File Manager. The Alias Manager and the
Edition Manager accept file specifications only in the form of FSSpec records.

The Finder introduced in version 7.0 uses alias records, which are resolved into FSSpec
records, to identify files to be opened or printed.

Version 7.0 also introduced the FSMakeFSSpec function, which initializes an FSSpec
record for a particular file or directory. For a description of FSMakeFSSpec, see
“Creating File System Specification Records” on page 2-35.

File IDs

A file ID is a unique number that the File Manager assigns to a file at the time it is
created. The File Manager uses file IDs to distinguish one file from another on the same
volume. In fact, a file ID is simply the catalog node ID of a file. As a result, file IDs are
functionally analogous to directory IDs (described in the next section), and both kinds of
IDs are assigned from the same set of numbers.

Identifying Files, Directories, and Volumes

CHAPTER 2

File Manager

The File Manager can set up an internal record in the volume’s catalog that specifies
the filename and parent directory ID of the file with a given file ID, allowing you to
reference the file by that number. (For more information about the volume’s catalog,
see “Catalog Files” on page 2-71.) This internal record in the volume catalog is a file ID
reference (or file ID thread record).

It is important to distinguish file IDs from file ID references. File IDs exist on all HFS
volumes, but file ID references might or might not exist on a particular HFS volume.
Even if file ID references do exist on a volume, they might not exist for all the files on
that volume. In addition, you can track files by their file IDs only on systems capable of
creating and resolving file ID references. See “File ID Reference Routines” on page 2-23
for a description of the File Manager functions that allow you to manipulate file IDs.

Note

The file ID is a low-level tool and is unique only on one HFS volume. In
most cases, your application should track files using the Alias Manager,
described in the chapter “Alias Manager” in this book. The Alias
Manager can track files across volumes. It creates a detailed record
describing a file that you want to track, and, when you need to resolve
the record later, it performs a sophisticated search. The Alias Manager
uses file IDs internally. O

A file ID is analogous to a directory ID. A file ID is unique only within a volume and
remains constant even when the file is moved or renamed. When a file is copied or
restored from backup, however, the file ID changes. File IDs are unique over time—that
is, once an ID has been assigned to a file, that number is not reused even after the file has
been deleted.

The file ID is a permanent file reference, one that a user cannot change. After storing a
file ID, your application can locate a specific file quickly and automatically, even if the
user has moved or renamed it on the same volume.

File IDs are intended only as a tool for tracking files, not as a new element in file
specification conventions. Neither high-level nor low-level File Manager functions
accept file IDs as parameters.

Directory IDs

A directory ID is a unique number that the File Manager uses to distinguish one
directory from another on the same volume. Assigned by the File Manager when the
directory is created, a directory ID is simply the catalog node ID of a directory. As a
result, directory IDs are functionally equivalent to file IDs, and both kinds of IDs are
assigned from the same set of numbers.

Directory IDs are long integers. The File Manager defines several constants to refer to
special directory IDs that exist on every volume.

CONST
fsRtParID = 1, {directory ID of root directory's parent}
fsRRDirID = 2; {directory ID of volune's root directory}

Identifying Files, Directories, and Volumes 2-25

Jabeue a4
n

2-26

CHAPTER 2

File Manager

The root directory of every volume has a directory ID of 2. In addition, the root directory
of every volume has a parent directory ID of 1. There is, however, no such parent
directory; the constant f sRt Par | Dis provided solely for use by applications and File
Manager routines that need to specify a parent ID when referring to the volume’s root
directory. For example, if you call the PBGet Cat | nf o function when the i oDi r | Dfield
issettof sRt Di r | D, the value f SRt Par | Dis returned in the i oDr Par | Dfield.

Volume Reference Numbers

A volume reference number is a unique number assigned to a volume at the time it is
mounted. Unlike the volume name (which the user can change at any time and hence
may not be unique), the volume reference number is both unique and unchangeable by
the user, and so is a reliable way to refer to a volume for as long as it is mounted.

Volume reference numbers are small negative integers. They are valid only until the
volume is unmounted. For example, if you place a volume offline and then bring it back
online, that volume retains the same volume reference number it was originally
assigned. However, if you unmount a volume and then remount it at some later time, its
volume reference number might not be the same during both mounts.

Note

A volume reference number refers to a volume only as long as the
volume is mounted. To create a volume reference that remains valid
across subsequent boots, use alias records. See the chapter “Alias
Manager” in this book for details. O

Working Directory Reference Numbers

The File Manager provides a method of identifying directories known as working
directory reference numbers. A working directory is a temporary directory reference
that the File Manager uses to specify both a directory and the volume on which it
resides. Each working directory is assigned a working directory reference number at
the time it is created. You can use this number in place of a volume reference number in
all File Manager routines.

Note

Working directories were developed to allow applications written for
the now-obsolete Macintosh file system to execute correctly when
accessing volumes using the hierarchical file system. In general, your
application should not create working directories and, in the few
instances a working directory reference number is returned to your
application, it should immediately convert that number to a volume
reference number and directory ID. O

The first file system available on Macintosh computers was the Macintosh file system
(MFS), a “flat” file system in which all files are stored in a single directory. The
hierarchical organization of folders within folders is an illusion maintained by the
system software. As a result, you can identify a file under MFS simply by specifying its
name and its volume. Typically, MFS routines require a volume reference number and a
filename to specify a file.

Identifying Files, Directories, and Volumes

CHAPTER 2

File Manager

To improve performance, especially with larger volumes, Apple Computer, Inc., intro-
duced the hierarchical file system (HFS) on the Macintosh Plus computer and later
models. In HFS, a volume can be divided into smaller units known as directories, which
can themselves contain files or other directories. This hierarchical relationship of folders
corresponds to an actual hierarchical directory structure maintained on disk. (See “Data
Organization on Volumes” beginning on page 2-53 for the precise details of this hierarchi-
cal directory structure.)

Each file on an HFS volume is stored in a directory, called the file’s parent directory. To
identify a file in HFS, you must specify its volume, its parent directory, and its name. The
File Manager assigns each directory a directory ID, and the user or the system software
assigns each directory a name. The HFS File Manager routines include an additional
parameter to handle the directory specification.

To keep existing applications running smoothly, Apple Computer, Inc. introduced the
concept of working directories. A working directory is a combined directory and volume
specification. To make a directory into a working directory, the File Manager establishes
a working directory control block that contains both the volume and the directory ID of
the target directory. The File Manager returns a unique working directory reference
number, which you can use instead of the volume reference number in all routines.

Note

If your application provides both a directory ID and a working directory
reference number, the directory ID is used to specify the directory
(overriding the working directory specified by the working directory
reference number). The working directory reference number is used to
specify the volume (unless a volume name, which overrides all other
forms of volume specification, is also provided). O

The best course of action is to avoid using working directories altogether. In the few
cases where system software returns a working directory reference number to your
application, the recommended practice is to immediately convert that working directory
reference number into its corresponding directory ID and volume reference number
(using PBGet VDI nf o or its high-level equivalent, Get WDI nf o).

In system software versions 7.0 and later, the Process Manager closes all working
directories opened on behalf of your application when it terminates (quits or crashes).
If your application might also run under earlier system software versions, you need to
be careful to close any such working directories before you quit (using PBCl oseWD or
its high-level equivalent, Cl oseW\D).

Names and Pathnames

Volumes, directories, and files all have names. A volume name is any sequence of 1

to 27 characters, excluding colons (:), that is assigned to a volume. File and directory
names consist of any sequence of 1 to 31 characters, excluding colons. You can use
uppercase and lowercase letters in names, but the File Manager ignores case when
comparing names. The File Manager does not, however, ignore diacritical marks when
comparing names.

Identifying Files, Directories, and Volumes 2-27

Jabeue a4
n

2-28

CHAPTER 2

File Manager

Note

Although it is legal to use any character other than the colon in file,
directory, and volume names, you should avoid using nonprinting
characters in such names, even for temporary files that do not appear on
the desktop or in the Standard File Package dialog boxes. A program
written in C interprets a null character (ASCII code $00) as the end of a
name; as a result, embedding the null character in a filename is likely to
cause problems. In addition, file, directory, or volume names with null
characters are not usable by AFP file servers (such as computers running
Macintosh File Sharing or AppleShare software). In general, you should
ensure that you use only printing characters in names of objects that you
create in the file system. O

Files and directories located in the same directory must all have unique names.
However, there is no requirement that volumes have unique names. It is perfectly
acceptable for two mounted volumes to have the same name. This is one reason why
your application should use volume reference numbers rather than volume names to
specify volumes.

You can also specify files and directories using pathnames, although this method is
discouraged. There are two kinds of pathnames, full and partial. A full pathname is a
sequence of directory names, separated by colons, starting from the root directory (or
volume) and leading down to the file. A full pathname to the file “Bananas,” for instance,
might be something like this:

MyVol une: Frui ts: Tropi cal : Bananas

A partial pathname is a pathname that begins in some directory other than the root
directory. A particular directory is specified by volume reference number (in the case of
the root directory), working directory reference number, or directory ID, and the
pathname begins relative to that directory. If the directory “Fruits” were specified, for
instance, the partial pathname to the “Bananas” file would be

: Tr opi cal : Bananas

The use of pathnames, however, is highly discouraged. If the user changes names or
moves things around, they are worthless. It's best to stay with simple file or directory
names and specify the directory containing the file or directory by its directory ID.

HFS Specifications

The simplest way to identify a mounted volume is by giving its volume reference
number. The simplest way to identify a file or directory located on a mounted volume is
by providing a file system specification. In some cases, however, you might not be able
to use file system specifications.

For example, the low-level File Manager routines do not accept file system specifications,
and so you must specify files and directories by some other method. You must also use
another file-identification method when you use the high-level HFS routines that existed
prior to the introduction of the routines that accept FSSpec records as file or directory

Identifying Files, Directories, and Volumes

CHAPTER 2

File Manager

specifications. This section summarizes the conventions the File Manager uses to
interpret the various volume, directory, and file specifications that are available even
when file system specifications are not.

The File Manager recognizes three kinds of file system objects: files, directories, and
volumes. You can identify them using various methods.

Object Method of identification

File Filename

Directory Directory name
Directory ID

Working directory reference number,
which also implies a volume

Volume Volume name
Volume reference number

Working directory reference number,
which also implies a directory

In HFS, you can pass a complete file specification in any of several ways:
» full pathname

» volume reference number and partial pathname

» working directory reference number and partial pathname

» volume reference number, directory ID, and partial pathname

A full pathname consists of the name of the volume, the names of all directories between
the root directory and the target, and the name of the target. A full pathname starts with
a character other than a colon and contains at least one colon. If the first character is a
colon, or if the pathname contains no colons, it is a partial pathname. If a partial
pathname starts with the name of a parent directory, the first character in the pathname
must be a colon. If a partial pathname contains only the name of the target file or
directory, the leading colon is optional.

You can identify a volume in the vRef Numparameter by volume reference number or
drive number, but volume reference number is preferred. A value of 0 represents the
default volume. A volume name in the pathname overrides any other volume
specification. Unlike a volume name, a volume reference number is guaranteed to be
unique. It changes, however, each time a volume is mounted.

A working directory reference number represents both the directory ID and the volume
reference number. If you specify any value other than 0 for the di r | D parameter, that
value overrides the directory ID implied by a working directory reference number in the
volume parameter. The volume specification remains valid.

Figure 2-3 illustrates the standard ways to identify a file in HFS.

Identifying Files, Directories, and Volumes 2-29

Jabeue a4
n

CHAPTER 2

File Manager
Figure 2-3 Identifying a file in HFS
Full pathname
—
= vRefNum Ignored
Loma Prieta
dirlD Ignored
Art
— fileName Full pathname
_ Lonma Prieta: Art:Lines
Lines
Volume and partial pathname
—
I— vRefNum Volume reference number or O for
=) default volume
Loma Prieta dirld 0
—
Art
— fileName Partial pathname
) :Art: Lines
Lines
Working directory and partial pathname
—
=)
Loma Prieta — vRefNum Working directory reference number
_/
Art dirlD 0
™
— fileName Partial pathname
_ Li nes
Lines
Volume, directory ID, and partial pathname
—
o — vRefNum Volume reference number, 0 for default
), volume, or working directory reference
Loma Prieta number
R
— dirlD Directory ID (a nonzero value here
) overrides directory implied by working
Art directory reference number in vRefNum)
™
— fileName Partial pathname
_ Li nes
Lines

2-30 Identifying Files, Directories, and Volumes

CHAPTER 2

File Manager

Search Paths

Whenever you specify a value of 0 for the directory ID in an HFS specification, the File
Manager first looks for the desired file in the directory indicated by the two other
relevant HFS parameters or fields—namely, the pathname and the volume specification.
If the specified file is not found in that directory, the File Manager continues searching
for the file along a path known as the poor man’s search path. You need to be aware of
this behavior so that you do not accidentally open, delete, or otherwise manipulate the
wrong file.

Note

The File Manager uses the poor man’s search path only when the

directory ID parameter or field has the value 0. You can avoid the

consequences of accidentally opening or deleting the wrong file by

specifying a directory explicitly with its directory ID. O

If the volume specification is a working directory reference number, the File Manager
searches in the directory whose directory ID is encoded in that working directory
reference number. If the volume specification is a volume reference number or 0, the File
Manager searches in the default directory on the indicated volume. (See “Manipulating
the Default Volume and Directory” on page 2-36 for information about default
directories.) If you provide a full pathname, the File Manager searches in the directory
whose name is contained in the pathname.

If the File Manager cannot find the specified file in the first directory it searches, it next
searches the root directory of the boot volume, but only if the first directory searched is
located on the boot volume. If the specified file is still not found, or if the first directory
searched is not located on the boot volume, the File Manager next searches the System
Folder, if one exists, on the volume containing the first directory searched. If the file still
cannot be found, the File Manager gives up and returns the result code f nf Er r (file not
found) to your application.

As you can see, the use of the poor man’s search path might lead to unexpected results.
Suppose, for example, that you call the HOpenDF function like this:

nyErr := HOpenDF(0, O, ':Ackees', fsRdWPerm nyRefNun;

The values of 0 for the first two parameters (the volume specification and directory ID)
indicate that you want the File Manager to look for the named file in the default
directory. If, however, there is no such file in that directory, the File Manager continues
looking along the poor man’s search path for a file with the specified name. The result
might be that you open the wrong file. (Worse yet, if you had called HDel et e instead of
HOpenDF, you might have deleted the wrong file!)

The File Manager uses the poor man’s search path for all routines that can return the

f nf Err result code and to which you passed a directory ID of zero. It does not use the
poor man’s search path when you specify a nonzero directory ID or when you call an
indexed routine (that is, when the i oFDi r | ndex field of the parameter block has a
nonzero value). The File Manager also does not use the poor man’s search path when
you create a file (perhaps by calling PBHCr eat e) or move a file between directories (by
calling PBCat Move).

Identifying Files, Directories, and Volumes 2-31

Jabeue a4
n

CHAPTER 2

File Manager

Note

The poor man’s search path might not be supported in future versions of
system software. You should not depend on its availability. O

Using the File Manager

You can use the File Manager to manipulate files, directories, and volumes. The chapter
“Introduction to File Management” in this book shows how to use the File Manager and
other system software services to accomplish the most common file-related operations
(that is, handling the typical File menu commands). This section shows how to accomplish
a variety of other operations on files, directories, and volumes. In particular, this section
shows how to

» determine the available features of the File Manager

» determine the characteristics of a particular mounted volume

= create file system specification records

» manipulate the default volume and directory

= delete files and file forks

s search a volume for files or directories matching various criteria
» construct the full pathname of a file

» determine the amount of free space on a volume

» lock and unlock byte ranges in shared files

Altogether, the code listings given in this section provide a rich source of information
about using the many File Manager routines and data structures.

Determining the Features of the File Manager

Some of the capabilities provided by the File Manager depend on the version of system
software that is running, and some others depend on the characteristics of the target
volume. For example, the routines that accept FSSpec records as file or directory
specifications were introduced in system software version 7.0 and are unavailable in
earlier system software versions—unless your software development system provides
“glue” that allows you to call those routines when running in earlier system software
versions (or unless some system extension provides those routines). Similarly, some
volumes support features that other volumes do not; a volume that has local file
sharing enabled, for instance, allows you to lock byte ranges in any files on a volume
that is sharable.

Before using any of the File Manager features that are not universally available in all
system software versions and on all volumes, you should check for that feature’s
availability by calling either the Gest al t function or the PBHGet Vol Par s function,
according to whether the feature’s presence depends on the system software or the
characteristics of the volume.

2-32 Using the File Manager

CONST

gest al t Ful | Ext FSDi spat chi ng
gest al t HasFSSpecCal | s

CHAPTER 2

File Manager

You can use Gest al t to determine whether or not you can call the functions that accept
and support FSSpec records. Call Gest al t with the gest al t FSAt t r selector to check
for File Manager features. The r esponse parameter currently has two relevant bits:

0; {exports HFSDi spatch traps}
1; {supports FSSpec records}

Constant descriptions

gest al t Ful | Ext FSDi spat chi ng
If set, all of the routines selected through the _HFSDi spat ch trap
are available to external file systems. If this bit is clear, the File
Manager checks the selector passed to _HFSDi spat ch and ensures
that it is valid; if the selector is invalid, the result code par antr r is
returned to the caller. If this bit is set, no such validity checking is
performed.

gest al t HasFSSpecCal | s
If set, the operating environment provides the file system
specification versions of the basic file-manipulation functions, plus
the FSMakeFSSpec function.

The chapter “Introduction to File Management” in this book illustrates how to use the
Gest al t function to determine whether the operating environment supports the
routines that accept FSSpec records. For a complete description of the Gest al t
function, see the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

To test for the availability of the features that depend on the volume, you can call the
low-level function PBHGet Vol Par is. Listing 2-1 illustrates how you can determine
whether the PBCat Sear ch function is available before using it to search a volume’s
catalog. Note that the Suppor t sCat Sear ch function defined in Listing 2-1 first calls
CGest al t to determine whether the File Manager supports PBCat Sear ch. If it does, the
Suppor t sCat Sear ch function calls PBHGet Vol Par ns to see if the indicated volume
also supports PBCat Sear ch.

Listing 2-1 Testing for PBCat Sear ch

FUNCTI ON SupportsCat Search (vRef Num | nteger): Bool ean;
VAR

ny HPB: HPar anBl ockRec;
i nfoBuffer: Get Vol Par sl nf oBuf f er;
attrib: Longl nt;
BEG N
Support sCat Search : = FALSE; {assume no PBCat Search support}
| F gHasGestalt THEN {set this somewhere el se}

|F Gestalt(gestalt FSAttr, attrib) = noErr THEN
| F BTst(attrib, gestaltFull Ext FSDi spat chi ng) THEN

Using the File Manager 2-33

Jabeue a4
n

2-34

CHAPTER 2

File Manager
BEA N {this File Myr has PBCat Sear ch}
W TH nyHPB DO
BEG N
i oNanmePtr := NL;
i oVRef Num : = vRef Num
i oBuf fer := @nfoBuffer;
i oReqCount : = SI ZEO-(i nfoBuffer);
END;
| F PBHGet Vol Par ms(@ryHPB, FALSE) = noErr THEN
| F BTST(infoBuffer.vMAttri b, bHasCat Search) THEN
SupportsCat Search : = TRUE;
END;
END;

The Suppor t sCat Sear ch function calls PBHGet Vol Par ns for the volume whose
reference number is passed as a parameter to Suppor t sCat Sear ch. The

PBHCet Vol Par ns function returns information about a volume in a record of type

Cet Vol Par msl nf oBuf f er. The vMAt t ri b field of that record contains a number of
bits that encode information about the capabilities of the target volume. In particular, the
bit bHasCat Sear ch is set if the specified volume supports the PBCat Sear ch function.

Note

Some features of volumes might change dynamically during the
execution of your application. For example, the user can turn File
Sharing on and off, thereby changing the capabilities of volumes. See
“Locking and Unlocking File Ranges” on page 2-51 for more details. O

Creating File System Specification Records

Sometimes it is useful for your application to create a file system specification record. For
example, your application might be running in an environment where the enhanced
Standard File Package routines (which return FSSpec records) are unavailable but the
File Manager routines that accept FSSpec records are available (perhaps as glue code in
your development system). You can call the FSMakeFSSpec function (or its low-level
equivalent PBMakeFSSpec) to initialize a file system specification record.

Three of the parameters to FSMakeFSSpec represent the volume, parent directory, and
file specifications of the target object. You can provide this information in any of the four
combinations described in “HFS Specifications” beginning on page 2-28. Table 2-10
details the ways your application can identify the name and location of a file or directory
in a call to FSMakeFSSpec.

The fourth parameter to FSMakeFSSpec is a pointer to the FSSpec record.

Using the File Manager

CHAPTER 2

File Manager
Table 2-10 How FSMakeFSSpec interprets its parameters
vRef Num dirlD fileNane Interpretation
Ignored Ignored Full pathname Full pathname overrides any other information
Volume reference Directory ID Partial pathname Partial pathname starts in the directory whose
number or drive parent is specified in the di r | D parameter
number
Working directory Directory ID Partial pathname Directory specification in the di r | D parameter
reference number overrides the directory implied by the
reference number
Partial pathname starts in the directory whose
parent is specified indi r | D
Volume reference 0 Partial pathname Partial pathname starts in the root directory of
number or drive the volume in vRef Num
number
Working directory 0 Partial pathname Partial pathname starts in the directory
reference number specified by the working directory
reference number
Volume reference Directory ID Empty string The target object is the directory specified by
number of drive or NI L the directory ID indi r 1 D
Working directory 0 Empty string The target object is the directory specified by
reference number or NI L the working directory reference number
in vRef Num
Volume reference 0 Empty string The target object is the volume specified
number or drive or NI L in vRef Num
number
0 Directory ID Empty string The target object is the directory specified in
or NI L di r | Don the default volume
0 Directory ID Partial pathname Partial pathname starts in the directory
specified in di r | Don the default volume
0 0 Empty string The target object is the default directory on the
or NI L default volume
0 0 Partial pathname Partial pathname starts in the default directory

on the default volume

Manipulating the Default Volume and Directory

When your application is running, the File Manager maintains a default volume and a
default directory for it. The default directory is used in File Manager routines whenever
you don’t explicitly specify some directory. The default volume is the volume containing
the default directory.

If you pass 0 as the volume specification with routines that operate on a volume (such as
mounting or ejecting routines), the File Manager assumes that you want to perform the
operation on the default volume. Initially, the volume used to start up the application is
set as the default volume, but your application can designate any mounted volume as
the default volume.

Using the File Manager 2-35

Jabeue a4
n

2-36

CHAPTER 2

File Manager

With routines that access files or directories, if you don’t specify a directory and you pass
a volume specification of 0, the File Manager assumes that the file or directory is located
in the default directory. Initially, the default directory is set to the root directory of the
default volume, but your application can designate any directory as the default directory.

Note

Don’t confuse the default directory and volume maintained by the

File Manager with the current directory and volume maintained by

the Standard File Package. Although the default volume and current
volume are initially the same, they can differ whenever your application
resets one of them. See the chapter “Standard File Package” in this book
for more information about the current directory and volume. O

The provision of a default volume was originally intended as a convenient way for

you to limit all File Manager calls to a particular volume. The default directory was
introduced along with HFS as an analog to the default volume. In general, however, it
is safest to specify both a volume and a directory explicitly in all File Manager calls. In
particular, the introduction of file system specification records has rendered default
volumes and directories largely obsolete. As a result, you should avoid relying on them.

In some cases, however, you might want to set the default volume or directory explicitly.
You can determine the default volume and directory by calling the Get Vol or HGet Vol
function. You can explicitly set the default directory and volume by calling the Set Vol
or HSet Vol function. For reasons explained later, however, the use of HSet Vol and its
low-level equivalent PBHSet Vol is discouraged.

To set the default volume only, you can call Set Vol , passing it the volume reference
number of the volume you want to establish as the default volume, as in this example:

nyErr := SetVol (NIL, nmyVRefNum;

You can instead specify the volume by name, but because volume names might not be
unique, it is best to use the volume reference number.

To set both the default directory and the default volume, you could call HSet Vol ,
passing it the appropriate volume reference number and directory ID, as in this example:

myErr := HSetVol (NIL, nyVRef Num nyDirlD);

However, using HSet Vol can lead to problems in certain circumstances. When you call
HSet Vol (or its low-level version PBHSet Vol) and pass a working directory reference
number in the vRef Numparameter, the File Manager stores the encoded volume
reference number and directory ID separately. If you later call Get Vol (or its low-level
version PBGet Vol), the File Manager returns that volume reference number, not the
working directory reference number you passed to HSet Vol . The net result is that any
code using the results of the Get Vol call will access the root directory of the default
volume, not the actual default directory.

Using the File Manager

CHAPTER 2

File Manager

It is important to realize that calling HSet Vol is perfectly safe if all the code executing in
your application’s partition always calls HGet Vol instead of Get Vol . This is because
HGet Vol returns a working directory reference number whenever the previous call to
HSet Vol passed one in. Calling HSet Vol can create problems only if your application is
running under a system software version prior to version 7.0. In that case, a desk accesso-
ry might be opened in your application’s partition, thereby inheriting your application’s
default volume and directory. If that desk accessory calls Get Vol instead of HGet Vol , it
might receive a volume reference number when it expects a working directory reference
number, as described in the previous paragraph. To avoid this problem, you can simply
use Set Vol (or PBSet Vol) instead of HSet Vol , as in this example:

myErr := SetVol (NIL, myVRef Num ;

Jabeue a4
n

In this case, the myVRef Numparameter should contain a working directory
reference number.

Deleting Files and File Forks

You can delete a file by calling FSpDel et e, HDel et e, or PBHDel et e. These functions
delete both forks of a file by removing the catalog entry for the file and adjusting the
volume information block and volume bitmap accordingly. These functions do not
actually erase the disk areas occupied by the file, so there is a reasonable chance that a
good disk utility might be able to salvage a deleted file if the user hasn’t allocated any
new file blocks in the meantime.

Sometimes you might want to truncate just one fork of a file. Listing 2-2 illustrates how
you can truncate a file’s resource fork while preserving the data fork.

Listing 2-2 Deleting a file's resource fork

FUNCTI ON Truncat eRF (nyFi | eSpec: FSSpec): OSErr;

VAR

nyErr: CSErr; {result code}

myFile: Integer; {file reference nunber}
BEG N

nyErr := FSpOpenRF(nyFi |l eSpec, fsRAWPerm nyFile);
IF nyErr = noErr THEN
nyErr := Set EOF(myFile, 0);
IF nyErr = noErr THEN
myErr := FSC ose(nyFile);
I F nyErr = noErr THEN
nyErr := FlushVol (nyFil eSpec. vRef Num ;
TruncateRF : = nyErr,;
END;

Using the File Manager 2-37

2-38

CHAPTER 2

File Manager

The function Tr uncat eRF defined in Listing 2-2 opens the file’s resource fork with
exclusive read / write permission and sets its logical end-of-file to 0. This effectively
releases all the space occupied by the resource fork on the volume. Then Tr uncat eRF
closes the file and updates the volume.

Searching a Volume

To search a volume efficiently, you can use the PBCat Sear ch function. The

PBCat Sear ch function looks at all entries in the volume’s catalog file and returns a list
of all files or directories that match the criteria you specify. You can ask PBCat Sear ch to
match files or directories using many types of criteria, including

= names or partial names

= file and directory attributes

= Finder information

» physical and logical file length

= creation, modification, and backup dates
= parent directory ID

Like all low-level File Manager functions, PBCat Sear ch exchanges information with
your application through a parameter block. The PBCat Sear ch function uses the
csPar amvariant of the basic parameter block defined by the HPar anBl ockRec data
type. That variant includes two fields, i 0Sear chl nf o1 and i 0Sear chl nf 02, that
contain the addresses of two catalog information records (of type Cl nf oPBRec). You
specify which kinds of files or directories you want to search for by filling in the fields of
those two records.

The fields ini 0Sear chl nf o1 and i oSear chl nf 02 have different uses:

s Thei oNamePt r field ini oSear chl nf 01 holds a pointer to the target string; the
i oNanePt r field ini oSear chl nf 02 must be NI L. (If you're not searching for the
name, the i oNanmePt r field ini oSear chl nf o1 must alsobe NI L.)

s The date and length fields in i 0Sear chl nf 01 hold the lowest values in the target
range, and the date and length fields in i 0Sear chl nf 02 hold the highest values in
the target range. The PBCat Sear ch function looks for values greater than or equal to
the field values ini oSear chl nf 01 and less than or equal to the values in
i oSear chl nf 02.

s TheioFl Attribandi oFl Fndrl nf o fields ini oSear chl nf 01 hold the target
values, and the same fields in i 0Sear chl nf 02 hold masks that specify which bits
are relevant.

Some fields in the catalog information records apply only to files, some only to
directories, and some to both. Some of the fields that apply to both have different names,
depending on whether the target of the record is a file or a directory. The PBCat Sear ch
function uses only some fields in the catalog information record. Table 2-11 lists the fields
used for files.

Table 2-12 lists the fields in catalog information records used for directories.

Using the File Manager

CHAPTER 2

File Manager

Table 2-11 Fields ini oSear chl nf o1 and i oSear chl nf 02 used for a file

Field Meaning in i oSear chl nf ol Meaning in i oSear chl nf 02
i oNamePt r Pointer to filename Reserved (must be NI L)
i OFl Attrib Desired file attributes Mask for file attributes
i oFl Endr 1 nfo Desired Finder information Mask for Finder information
i oFl LgLen Smallest logical size of data fork Largest logical size
i oFl PyLen Smallest physical size of data fork Largest physical size
i oFl RLgLen Smallest logical size of resource fork Largest logical size :—.T-'-
i oFl RPyLen Smallest physical size of resource fork Largest physical size gsz)
i oFl Cr Dat Earliest file creation date Latest file creation date ‘%
i oFl MdDat Earliest file modification date Latest file modification date)
i oFl BkDat Earliest file backup date Latest file backup date
i oFl XEndr | nf o Desired extended Finder information Mask for Finder information
i oFl Par| D Smallest directory ID of file’s parent Largest parent directory ID
Table 2-12 Fieldsini oSear chl nf 01 and i oSear chl nf 02 used for a directory
Field Meaning in i oSear chl nf ol Meaning in i oSear chl nf 02
i oNanePt r Pointer to directory name Reserved (must be NI L)
ioFl Attrib Desired directory attributes Mask for directory attributes
i oDr Usr Wis Desired Finder information Mask for Finder information
i oDr NnFl s Smallest number of files in directory Largest number of files
i oDr Cr Dat Earliest directory creation date Latest creation date
i oDr MdDat Earliest directory modification date Latest modification date
i oDr BkDat Earliest directory backup date Latest backup date
i oDr Fndrinfo Desired extended Finder information Mask for Finder information
i oDrParl D Smallest directory ID of directory’s parent Largest parent directory ID

The PBCat Sear ch function searches only on bits 0 and 4 in the file attributes
field (i oFl Attri b).

Bit Meaning

0 Set if the file or directory is locked.
4 Set if the item is a directory.

Note

The PBCat Sear ch function cannot use the additional bits returned in
thei oFl Attri b field by the PBGet Cat | nf o function. O

Using the File Manager 2-39

2-40

CHAPTER 2

File Manager

To give PBCat Sear ch a full description of the search criteria, you pass it a pair of
catalog information records that determine the limits of the search and a mask that
identifies the relevant fields within the records. You pass the mask in the

i oSear chBi t s field in the PBCat Sear ch parameter block. To determine the value of
i oSear chBi t s, add the appropriate constants. To match all files and directories on a
volume (including the volume’s root directory), seti oSear chBi t s to 0.

CONST
fsSBParti al Nane
f sSBFul | Nane =
fsSBFI Attrib =
f sSBNegat e =
{for files only}

f sSBFI Fndr I nfo =
f sSBFI LgLen =
f sSBFI PyLen =
f sSBFI RLgLen =
f sSBFI RPyLen =
f sSBFI Cr Dat =
f sSBFI MdDat =
f sSBFI BkDat

f sSBFI XFndr I nf o
f sSBFI Par | D =
{for directories on
f sSBDr Usr Wis =
f sSBDr Nl s =
f sSBDx Cr Dat =
f s SBDr MdDat =
f sSBDr Bk Dat =
f sSBDr Fndr | nf o
f sSBDr Par | D

1;
2;
4;

{substring of nane}
{full nane}
{directory flag; software lock flag}

16384; {reverse nmatch status}

8;
32;
64;
128;
256;
512;
1024,
2048;
4096;
8192;
Iy}
8;
16;
512;
1024;
2048;
4096;
8192;

{Finder file info}

{logical length of data fork}
{physi cal |ength of data fork}
{logical Iength of resource fork}
{physical length of resource fork}
{file creation date}

{file nodification date}

{file backup date}

{more Finder file info}

{file's parent |D}

{Finder directory info}
{nunmber of files in directory}
{directory creation date}
{directory nodification date}
{directory backup date}

{nore Finder directory info}
{directory's parent 1D}

For example, to search for a file that was created between two specified dates and whose
name contains a specified string, seti 0Sear chBi t s to 517 (thatis, tof SSBFI Attrib
+ f sSBFI Cr Dat +fsSBParti al Nane).

A catalog entry must meet all of the specified criteria to be placed in the list of matches.
After PBCat Sear ch has completed its scan of each entry, it checks the f sSBNegat e bit.
If that bit is set, PBCat Sear ch reverses the entry’s match status (that is, if the entry is a
match but the f sSBNegat e bit is set, the entry is not put in the list of matches; if it is not

a match, it is put in the list).

Note

The f sSBNegat e bit is ignored during searches of remote volumes that

support AFP version 2.1. O

Using the File Manager

CHAPTER 2

File Manager

Although using PBCat Sear ch is significantly more efficient than searching the
directories recursively, searching a large volume can still take long enough to affect user
response time. You can break a search into several shorter searches by specifying a
maximum length of time in the i oSear chTi ne field of the parameter block and
keeping an index in the i oCat Posi t i on field. The PBCat Sear ch function stores its
directory-location index in a catalog position record, which is defined by the

Cat Posi t i onRec data type.

TYPE Cat PositionRec = {catal og position record}
RECORD

initialize: Longlnt; {starting point}

priv: ARRAY[1..6] OF Integer; {private data}
END;

To start a search at the beginning of the catalog, set the i ni ti al i ze field to 0. When
PBCat Sear ch exits because of a timeout, it updates the record so that it describes the
next entry to be searched. When you call PBCat Sear ch to resume the search after a
timeout, pass the entire record that was returned by the last call. PBCat Sear ch returns a
list of the names and parent directories of all files and directories that match the criteria
you specify. It places the list in an array pointed to by the i oMat chPt r field.

Note

The i oSear chTi ne field is not used by AFP volumes. To break up a
potentially lengthy search into smaller searches on AFP volumes, use
the i oReqMat chCount field to specify the maximum number of
matches to return. O

Listing 2-3 illustrates how to use PBCat Sear ch to find all files (not directories) whose
names contain the string “Temp” and that were created within the past two days.

Listing 2-3 Searching a volume with PBCat Sear ch

CONST
kMaxMat ches = 30; {find up to 30 matches i n one pass}
kOpt Buf f er Si ze = $4000; {use a 16K search cache for speed}
VAR
nyErr: CSErr; {result code of function calls}
nmyCount : I nt eger; {l oop control vari abl e}
nyFNamne: Str255; {name of string to | ook for}
nyVRef Num | nteger; {vol urme to search}
nyDirl D: Longl nt ; {ignored directory ID for HGet Vol }
nyCurrDat e: Longlnt; {current date, in seconds}
t woDaysAgo: Longlnt; {date two days ago, in seconds}
nmy PB: HPar anBl ockRec; {paraneter bl ock for PBCat Search}

nmyMat ches: PACKED ARRAY][1.. kMaxMat ches] OF FSSpec;

{put mat ches here}

Using the File Manager 2-41

Jabeue a4
n

CHAPTER 2

File Manager

nmySpecl: Cl nf oPBRec; {search criteria, part 1}

my Spec2: Cl nf oPBRec; {search criteria, part 2}

nyBuf f er: PACKED ARRAY[1. . kOptBufferSize] OF Char;

{search cache}

done: Bool ean; {have all natches been found?}
PROCEDURE Set upFor Fi r st Ti ne;
BEG N

myErr := HGetVol (NIL, nmyVRef Num nyDirlD);

{search on the default vol une}

nyFNane : = 'Tenp'; {search for "Tenmp"}
Cet Dat eTi me(nmyCurr Dat e) ; {get current tinme in seconds}
twoDaysAgo : = nyCurrDate - (2 * 24 * 60 * 60);
W TH nyPB DO
BEG N
i oConpl eti on = NL; {no conpl etion routine}
i oNamePt r = NL; {no vol ume nane; use vRef Nun}
i oVRef Num : = nmyVRef Num {volune to search}
i oMat chPt r : = FSSpecArrayPtr (@ryMat ches);

oRegMat chCount : = kMaxMat ches;

oSearchBits .= fsSBParti al Nane
+ fsSBFI Attrib
+ fsSBFI Cr Dat ;

i oSear chl nfol = @rySpecl,;
i oSear chl nf 02 = @rySpecz2;
i oSear chTi ne = 0;
i oCatPosition.initialize := 0;
i oOpt Buf fer := @ryBuffer;
i oOpt Buf Si ze : = kOpt Buf fer Si ze;
END;
W TH nySpecl DO
BEG N
i oNarmePtr : = @ryFNane;
i oFl Attrib := $00;
i OFl CrDat : = twoDaysAgo;
END;
W TH nySpec2 DO
BEG N
i oNamePtr := NL;
i oFl Attrib := $10;
i OFl CrDat := nyCurrDate;
END;
END;

2-42 Using the File Manager

{points to results buffer}
{nunber of matches}

{search on partial nane}
{search on file attributes}
{search on creation date}
{points to first criteria set}
{points to second criteria set}
{no tineout on searches}

{set hint to 0}

{point to search cache}

{size of search cache}

{point to string to find}
{clear bit 4 to ask for files}
{I ower bound of creation date}

{set to NIL}
{set mask for bit 4}
{upper bound of creation date}

CHAPTER 2

File Manager

BEG N
Set upFor Fi r st Ti mre; {initialize data records}
REPEAT
nyErr : = PBCat SearchSync(@ryPB); {get sone files}
done := (myErr = eofErr); {eof Err returned when all done}
IF ((nyErr = noErr) | done) & (nyPB.ioActMatchCount > 0) THEN
FOR nmyCount := 1 TO nyPB.i oAct Mat chCount DO
Wi tel n(myMat ches[myCount]. nane) ;
{report all matches found}
UNTI L done;
END;

When PBCat Sear ch is not available in the current operating environment or is not
supported by the volume you wish to search, you’ll need to use PBGet Cat | nf 0 to
perform a recursive, indexed search through the volume’s directory hierarchy. This
kind of search is usually much slower than a search with PBCat Sear ch, and you

can encounter problems you avoid by using PBCat Sear ch. For example, a

recursive, indexed search can require a large amount of stack space. The procedure
Enumner at eShel | defined in Listing 2-4 is designed to minimize the amount of stack
space used. As a result, it should execute even in environments with very limited
stack space.

Jabeue a4
n

Listing 2-4 Searching a volume using a recursive, indexed search

PROCEDURE EnunerateShel|l (vRefNum Integer; dirlD: Longlnt);
VAR
my Nane: Str63;
my CPB: Cl nf oPBRec;
nmyErr: CSErr;
PROCEDURE EnunerateCatal og (dirlD: Longlnt);
CONST
kFol derBit = 4;
VAR
i ndex: I nt eger;
BEG N
i ndex := 1;
REPEAT
W TH nyCBP DO
BEG N
i oFDi rl ndex : = index;
ioDrDirID := dirlD {reset dirlD;, PBGCetCatlnfo nay change it}
i OACUser : = 0;
END;
nyErr := PBGCet Cat | nf o(@yCPB, FALSE);
| F nyErr = noErr THEN

Using the File Manager 2-43

CHAPTER 2

File Manager

| F BTst (nyCPB. i oFl Attrib, kFolderBit) THEN
BEA N {we have a directory}
{Do sonething useful with the dir. information in nyCPB.}
Enurmer at eCat al og(nmyCPB. i oDrDirl D) ;
nyErr := noErr; {clear error return on way back}
END
ELSE
BEGA N {we have a file}
{Do sonething useful with the file information in nyCPB.}
END;

index := index + 1;
UNTIL (nmyErr <> noErr);
END; {Enuner at eCat al og}

BEGA N { Enuner at eShel | }
W TH nmyCPB DO

BEG N
i oNamePtr : = @ryNane;
i oVRef Num : = vRef Num

Enuner at eCat al og(dirID);

END; {EnunerateShel |}

2-44

The Enuner at eShel | procedure sets up a catalog information parameter block with a
pointer to a string variable and the volume reference number passed to it. It then calls
the Enuner at eDi r procedure, which uses indexed calls to PBGet Cat | nf o to read the
catalog information about all items in the specified directory. If an item is a directory (as
indicated by the kFol der Bi t bit of the i oFl Attri b field of the parameter block),
Enumrer at eDi r calls itself recursively to enumerate the contents of that directory. If an
item is a file, Enuner at eDi r performs whatever processing is appropriate.

Note that Enuner at eDi r resets the i oDr Di r | Dfield before calling PBCet Cat | nf o.
This is necessary because PBGet Cat | nf o0 returns a file ID number in that field if the
item is a file. The Enuner at eDi r procedure also clears the i 0ACUser field. You need to
do this if your search depends on the value in that field after the call to PBGet Cat | nf o,
because the value returned in that field for local volumes is meaningless.

To search an entire volume, call the Enuner at eShel | procedure with the vRef Num
parameter set to the volume reference number of the volume you want to search and the
di r | Dparameter set to f SRt Di r | D. You can also do a partial search of a volume by
specifying a different directory ID in the di r | D parameter.

Constructing Full Pathnames

As indicated in “Names and Pathnames” on page 2-27, the use of full or partial
pathnames is strongly discouraged. Full pathnames are particularly unreliable as a
means of identifying files or directories within your application, largely because the user
can change the name of any element in the path at virtually any time. In general, you
should use a file’s name, parent directory ID, and volume reference number to identify a
file you want to open, delete, or otherwise manipulate.

Using the File Manager

CHAPTER 2

File Manager

If you need to remember the location of a particular file across subsequent system boots,
use the Alias Manager to create an alias record describing the file. If the Alias Manager is
not available, you can save the file’s name, its parent directory ID, and the name of the
volume on which it’s located. Although none of these methods is foolproof, they are
much more reliable than using full pathnames to identify files.

Nonetheless, it is sometimes useful to display a file’s full pathname to the user. For
example, a backup utility might display a list of full pathnames of files as it copies them
onto the backup medium. Or, a utility might want to display a dialog box showing the
full pathname of a file when it needs the user’s confirmation to delete the file. No matter
how unreliable full pathnames may be from a file-specification viewpoint, users
understand them more readily than volume reference numbers or directory IDs.

Note

The following technique for constructing the full pathname of a file is
intended for display purposes only. Applications that depend on any
particular structure of a full pathname are likely to fail on alternate
foreign file systems or under future system software versions. O

Listing 2-5 shows one way to define a function, Get Ful | Pat h, that accepts a directory
ID and a filename as parameters and returns the full pathname of the corresponding file
(if any). The Get Ful | Pat h function calls the low-level function PBCet Cat | nf o for the
specified directory to determine the name and directory ID of that directory’s parent
directory. It then performs the same operation on the parent directory’s parent,
continuing until it finds a parent directory with ID f sRt Di r | D. Under HFS, this is
always the ID of a volume’s root directory.

Listing 2-5 Constructing the full pathname of a file

FUNCTION GetFull Path (DirID: Longlnt; vRefnum Integer): Str255;
VAR

nmy PB: Cl nf oPBRec; {paraneter block for PBGet Catl nf o}
di r Nare: Str 255; {a directory nane}
ful |l Pat h: Str 255; {full pathname bei ng constructed}
myErr: OSErr;

BEG N
fullPath :=""; {initialize full pathnane}
nyPB. i oNanmePtr : = @li r Name;
nyPB. i oVRef Num : = vRef Num {indicate target vol une}
nyPB.ioDrParlD := Dirld; {initialize parent directory |ID}
nyPB. i oFDi r | ndex := -1; {get info about a directory}

{Get nane of each parent directory, up to root directory.}
REPEAT

nyPB.ioDrDirID := nyPB.ioDrParl D

nyErr := PBCet Catl nfo(@wyPB, FALSE);

| F gHaveAUX THEN

Using the File Manager 2-45

Jabeue a4
n

2-46

CHAPTER 2

File Manager
BEG N
IF dirName[1] <> '/' THEN
di rNane := concat (dirName, '/');
END
ELSE
di rName : = concat (dirNane, ':');

full Path := concat (di rNane, full Path);
UNTIL nyPB.ioDrDirID = fsRtDirlD;
CetFull Path : = full Pat h; {return full pathnane}
END;

Note that Get Ful | Pat h uses either a slash (/) or a colon (:) to separate names in the full
path, depending on whether A /UX is running or not. The Get Ful | Pat h function reads
the value of the global variable gHaveAUX to determine whether A /UX is running; your
application must initialize this variable (preferably by calling the Gest al t function)
before it calls Get Ful | Pat h.

The Get Ful | Pat h function defined in Listing 2-5 returns a result of type St r 255,
which limits the full pathname to 255 characters. An actual full pathname, however,
might exceed 255 characters. A volume name can be up to 27 characters, and each
directory name can be up to 31 characters. If the average volume and directory name is
about 20 characters long, Get Ful | Pat h can handle files located only about 12 levels
deep. If the length of the average directory name is closer to the maximum,

Cet Ful | Pat h provides a full pathname for files located only about 8 levels deep. If
necessary, you can overcome this limitation by rewriting Get Ful | Pat h to return a
handle to the full pathname; the algorithm for ascending the directory hierarchy using
PBGet Cat | nf o will still work, however.

Determining the Amount of Free Space on a Volume

You can determine how much space is free on a particular volume by calling the
low-level function PBHGet VI nf 0. This function returns, in the i oVFr Bl k field of the
parameter block passed to it, the number of free allocation blocks on a volume. It also
returns, in the i oVAI Bl kSi z field, the number of bytes in the allocation blocks on that
volume. By multiplying those two values, you can determine how many bytes are free
on a particular volume.

There is, however, one complication in this process. The i oVFr Bl k field of the
parameter block is actually an unsigned integer and can contain values from 0 to 65,535.
However, because Pascal does not support unsigned integers, it interprets the values in
the i oVFr Bl k field as lying in the range —32,768 to 32,767. (Integers are stored as 16-bit
quantities where the high-order bit indicates whether the value is true binary or a
negated value in its two’s complement positive form.) If, for example, a volume has
40,000 allocation blocks free and your application blindly returned the value in the

i oVFr Bl k field, it would erroneously report that the volume had -25,536 allocation
blocks available.

You can circumvent this problem by forcing Pascal to interpret the high-order bit as
part of the number of free blocks. For example, if you install the value returned in the

Using the File Manager

CHAPTER 2

File Manager

i oVFr Bl k field as the low-order word of a long integer, the high-order bit of that
word is no longer the high-order bit of that long integer and hence is not interpreted
as a sign indication. The data type Twol nt sMakeALong provides a convenient way
to accomplish this.

TYPE
Twol nt sMakeALong = {two integers nake a |long integer}
RECORD
CASE | nteger OF
1: (long: Longlnt);
2: (ints: ARRAY[O..1] OF Integer);
END;

Listing 2-6 illustrates how to use this technique to determine the amount of free space on
a volume (specified by its volume reference number).

Listing 2-6 Determining the amount of free space on a volume

FUNCTI ON Get Vol uneFr eeSpace (nmyVol : Integer): Longlnt;
VAR

nmy HPB: HPar anBl ockRec; {paraneter bl ock for PBHGCet VI nf o}
nyErr: OSErr; {result code from PBHCet VI nf 0}
nmyRec: Twol nt sMakeALong; {easy way to get an unsigned int}
BEG N
W TH nmyHPB DO
BEG N

i oNamePtr := NL;
i oVRef Num : = myVol ;
i oVol I ndex : = 0;
END;
nyErr : = PBHGet VI nf o(@rwHPB, FALSE);
I F nyErr = noErr THEN

BEG N
nmyRec.ints[0] := O;
nyRec.ints[1] := nyHPB.ioVFrBIlKk;
CGet Vol uneFr eeSpace : = nyRec.long * nyHPB. i oVAI Bl kSi z;
END
ELSE

CGet Vol uneFr eeSpace : = 0;
END;

If the value passed to Get Vol uneFr eeSpace is a valid volume reference number,
then this function reads the number of free allocation blocks on the volume, installs
that number as the low-order word of a long integer, and performs the necessary
multiplication to determine how many bytes are free on the volume.

Using the File Manager 2-47

Jabeue a4
n

CHAPTER 2

File Manager

Note

You could avoid these complications with unsigned integers by calling
PBHGet VI nf 0 as illustrated and then passing the value returned in the
i oVDr vl nf o field to the high-level function Get VI nf 0. The technique
using the Twol nt sMakeALong data type to convert unsigned integers
to long integers is illustrated here because it is useful when reading the
fields of many other File Manager data structures from Pascal. For
example, the vcbFr eeBks field of a volume control block contains an
unsigned integer that you can interpret in this way. O

Sharing Volumes and Directories

The File Manager includes several functions that allow you to manipulate share points
on local volumes that have file sharing enabled and to obtain a list of user and group
names and IDs recognized by the local file server. These functions are especially useful
if you need to implement a dialog box that allows the user to designate a volume or
directory as a share point or to set the owner, user, and group of a shared folder.

The PBShar e function makes a volume or directory a share point, hence available on the
network. The PBUnshar e function undoes the effects of PBShar e: it makes an existing
share point unavailable on the network. The PBGet UGEnt r y function lets you create a
list of user and group names and IDs on the local server.

Before calling any of these functions, you should check whether file sharing is
enabled on the local machine and, if so, whether the desired local volume is sharable.
You can determine whether a particular volume is sharable by using the function

Vol | sShar abl e defined in Listing 2-7.

Listing 2-7 Determining whether a volume is sharable

FUNCTI ON Vol | sSharabl e (vRef Num [|nteger): Bool ean;

VAR
nmy HPB: HPar anBl ockRec;
nyl nf oBuffer: Get Vol Par nsl nf oBuffer;
nmyErr: CSErr;
BEG N
W TH nyHPB DO
BEGA N
i oNanmePtr := NL;
i oVRef Num : = vRef Num

i oBuf fer := @yl nfoBuffer;
i oOReqCount : = SizeO (nylnfoBuffer);
END;
nyErr : = PBHGet Vol Par ms(@ryHPB, FALSE);
IF nyErr = noErr THEN
| F BTst (nyl nfoBuffer.vMAttrib, bHasPersonal AccessPrivil eges) THEN

2-48 Using the File Manager

Vol | sShar abl e :

ELSE

Vol | sShar abl e :

ELSE

CHAPTER 2

File Manager

TRUE

FALSE

Vol | sShar abl e : = FALSE;

END;

The Vol | sShar abl e function inspects the bHasPer sonal AccessPri vi | eges
bit returned in the vMAt t r i b field of the volume attributes buffer it passed to
PBHGet Vol Par ns. If this bit is set, local file sharing is enabled on the specified volume.

You can use the function Shar i ngl sOn defined in Listing 2-8 to determine whether file
sharing is enabled on the local machine.

Listing 2-8 Determining whether file sharing is enabled

FUNCTI ON Shari ngl sOn: Bool ean;

VAR
my HPB: HPar anBl ockRec;
myErr: CSErr;
vol | ndex: I nt eger;
shari ng: Bool ean;
BEG N
sharing : = FALSE; {assune file sharing is off}
vol I ndex := 1;
REPEAT
W TH nyHPB DO
BEG N
i oNamePtr := NL;
i oVol I ndex : = vol | ndex;
END;

nyErr := PBHGet VI nf o(@yHPB, FALSE);
IF nyErr = noErr THEN
sharing : = Vol | sShar abl e(nyHPB. i oVRef Nunj ;
vol I ndex := vol Il ndex + 1;
UNTIL (nyErr <> noErr) OR sharing;
Shari ngl sOn : = shari ng;
END;

The Shar i ngl sOn function simply calls the Vol | sShar abl e function for each local
volume (or until a sharable volume is found). It uses indexed calls to PBHGet VI nf o to
obtain the volume reference number of each mounted volume.

Using the File Manager 2-49

Jabeue a4
n

CHAPTER 2

File Manager

Locking and Unlocking File Ranges

A file can be opened with shared read / write permission to allow several users to share
the data in the file. When a user needs to modify a portion of a file that has been opened
with shared read / write permission, it is usually desirable to make that portion of the file
unavailable to other users while the changes are made. You can call the PBLockRange
function to lock a range of bytes before modifying the file and then PBUnl ockRange to
unlock that range after your changes are safely recorded in the file.

Locking a range of bytes in a file gives the user exclusive read / write access to that range
and makes it inaccessible to other users. Other users can neither write nor read the bytes
in that range until you unlock it. If other users attempt to read data from a portion of a
file that you have locked, they receive the f LCKdEr r result code.

The functions PBLockRange and PBUnl ockRange are effective only on files that are
located on volumes that are sharable. If you call PBLockRange on a file that is not
located on a remote server volume or that is not currently being shared, no range locking
occurs. Moreover, PBLockRange does not return a result code indicating that no range
locking has occurred. As a result, you should usually check whether range locking will
be effective on a file before attempting to lock the desired range.

Listing 2-9 illustrates how you can check to make sure that calling PBLockRange will
have the desired effect.

Listing 2-9 Determining whether a file can have ranges locked

FUNCTI ON RangesCanBelLocked (fRef Num |nteger): Bool ean;

VAR
nyPar nBl k: Par anBl ockRec; {basi ¢ paraneter bl ock}
myErr: OSErr;
BEG N
W TH nyPar nBl k DO
BEG N
i oRef Num : = f Ref Num
i oReqCount : = 1; {lock a single byte}
i oPosMbde : = fsFronStart; {at the beginning of the file}
i oPosO fset := 0;
END;
nyErr : = PBLockRange(@ryPar nBl k, FALSE); {l ock the byte; ignore result}
nyErr := PBLockRange(@ryParnBl k, FALSE); {l ock the byte agai n}

CASE nyErr OF

f LckdErr, {byte was | ocked by another user}
af pRangeQver | ap, {byte was | ocked by this user}
af pNoMor eLocks: {max nunber of | ocks al ready used}

2-50

Using the File Manager

CHAPTER 2

File Manager

BEG N
RangesCanBelLocked : = TRUE; {range | ocking is supported}
| F nyErr = af pRangeCverlap THEN {unlock the byte we | ocked}
nyErr : = PBUnl ockRange(@ryPar nBl k, FALSE);

END;
OTHERW SE
RangesCanBelLocked : = FALSE; {range | ocking is not supported}
END; {of CASE}

END;

The function RangesCanBeLocked takes a file reference number of an open file as

a parameter; this is the reference number of the file in which a range of bytes is to

be locked. The function attempts to locks the first byte in the file and immediately
attempts to lock it again. If the second range locking fails with the result code

af pRangeOver | ap, the first call to PBLockRange was successful. If the second call to
PBLockRange fails with the result code f LckdEr r, the byte was already locked by
another user. Similarly, if the second call to PBLockRange fails with the result code

af pNoMor eLocks, the maximum number of range locks has been reached. In these
three cases, range locking is supported by the volume containing the specified file. If any
other result code (including noEr r) is returned, range locking is not supported by that
volume or for some reason the capabilities of the volume cannot be determined.

Jabeue a4
n

Note

Local file sharing can be started or stopped (via the Sharing Setup
control panel) while your application is running. For this reason, each
time you want to lock a range, it’s best to check that byte ranges in that
file can be locked. O

You can unlock a locked range of bytes by calling PBUnl ockRange. Note that the range
to be unlocked must be the exact same range of bytes that was previously locked using
PBLockRange. (You can lock and unlock different byte ranges in any order, however.) If
for some reason you need to unlock a range of bytes and do not know where the range
started or how long the range is, you must close the file to unlock the range. When a file
is closed, all locked ranges held by a user are unlocked.

If you want to append data to a shared file, you can use PBLockRange to lock the range
of bytes from the file’s current logical end-of-file to the last possible addressable byte of
the file. Once you have locked that range, you can write data into it. Listing 2-10 shows
how to determine the current logical end-of-file and lock the appropriate range.

Listing 2-10 Locking a file range to append data to the file

FUNCTI ON LockRangeFor Appendi ng (f Ref Num |Integer; VAR EOF: Longlint): OSErr;
VAR

nyPar nBl k: Par anBl ockRec; {basi c paraneter bl ock}
myErr: OSErr;
my ECF: Longl nt ; {current EOF}

Using the File Manager 2-51

BEG N

CHAPTER 2

File Manager

nmyPar nBl k. i oConpl etion := NL;
nmyPar nBl k. i oRef Num : = f Ref Num

nyErr : = PBGet EOF(@ryPar mBl k, FALSE); {get the current EOF}
IF nyErr <> noErr THEN
BEG N
LockRangeFor Appendi ng : = nyErr;
Exi t (LockRangeFor Appendi ng) ; {troubl e readi ng ECF}
END;
nyEOF : = Longl nt (myPar nBl k. i oM sc) ; {save the current EOCF}
W TH nyPar nBl k DO
BEG N
i oReqCount := -1; {all addressabl e byt es}
i oPosMbde := fsFronStart; {start range...}
i oPosO fset : = nyEOCF; {...at the current end-of-file}
END;
nyErr : = PBLockRange(@ryPar nBl k, FALSE);{l ock the specified range}

ECF

.= nyEOF; {return current EOF to caller}

LockRangeFor Appendi ng : = nyErr;

END;

The function LockRangeFor Appendi ng first determines the current logical end-of-file.
It is important to get this value immediately before you attempt to lock a range that
depends on it because another user of the shared file might have changed the end-of-file
since you last read it. Then LockRangeFor Appendi ng locks the range beginning at the
current end-of-file and extending for the maximum number of bytes (specified using the
special value -1).

In effect, this technique locks a range where data does not yet exist. Practically speaking,
locking the entire addressable range of a file prevents another user from appending data
to the file until you unlock that range. Note that LockRangeFor Appendi ng returns the
current logical end-of-file to the caller so that the caller can unlock the correct range of
bytes after appending the data.

You can also call PBLockRange to lock a range of bytes when you want to truncate a
file. Locking the end portion of a file to be deleted prevents another user from using that
portion during the truncation. Instead of setting the i 0Posf f set field of the
parameter block to the logical end-of-file (as in Listing 2-10), simply set it to what will be
the last byte after the file is truncated. Similarly, you can lock an entire file fork by setting
thei oPosOf f set field to 0.

Data Organization on Volumes

2-52

This section describes how data is organized on HFS volumes. In general, an application
that simply manipulates data stored in files does not need to know how that data is
organized on a volume or on the physical storage medium containing that volume. The

Data Organization on Volumes

CHAPTER 2

File Manager

organization described in this section is maintained by the File Manager for its own uses.
Some specialized applications and file-system utilities, however, do need to know
exactly how file data is stored on a disk.

WARNING

This section is provided primarily for informational purposes. The
organization of data on volumes is subject to change. Before you use this
information to read or modify the data stored on a volume, be sure to
check that the dr Si gWor d field in the master directory block (described
in “Master Directory Blocks” beginning on page 2-60) identifies that
volume as an HFS volume. a

Much of the information describing the files and directories on an HFS volume is read
into memory when the volume is mounted. (For example, most of the volume’s master
directory block is read into memory as a volume control block.) For a description of how
that data is organized in memory, see “Data Organization in Memory” beginning on
page 2-77.

The File Manager uses a number of interrelated structures to manage the organization of
data on disk and in memory. For this reason, it is easy to lose sight of the simple and
elegant scheme that underlies these structures. As you read through this section and the
next, you should keep these points in mind:

» The File Manager keeps track of which blocks on a disk are allocated to files and
which are not by storing a volume bitmap on disk and in memory. If a bit in the map is
set, the corresponding block is allocated to some file; otherwise, the corresponding
block is free for allocation.

» The File Manager always allocates logical disk blocks to a file in groups called
allocation blocks; an allocation block is simply a group of consecutive logical blocks.
The size of a volume’s allocation blocks depends on the capacity of the volume; there
can be at most 65,535 allocation blocks on a volume.

s The File Manager keeps track of the directory hierarchy on a volume by maintaining a
file called the catalog file; the catalog file lists all the files and directories on a volume,
as well as some of the attributes of those files and directories. A catalog file is
organized as a B*-tree (or “balanced tree”) to allow quick and efficient searches
through a directory hierarchy that is typically quite large.

» The File Manager keeps track of which allocation blocks belong to a file by
maintaining a list of the file’s extents; an extent is a contiguous range of allocation
blocks allocated to some file, which can be represented by a pair of numbers: the start
of the range and the length of the range. The first three extents of most files are stored
in the volume’s catalog file. All remaining file extents are stored in the extents overflow
file, which is also organized as a B*-tree.

» The first three extents of the catalog file and the extents overflow file are stored in the
master directory block (on disk) and the volume control buffer (in memory); a master
directory block is always located at a fixed offset from the beginning of a volume, and
a volume control block is stored in the VCB queue.

Data Organization on Volumes 2-53

Jabeue a4
n

2-54

CHAPTER 2

File Manager

Disk and Volume Organization

A disk is a physical medium capable of storing information. Examples of disks include
3.5-inch floppy disks, SCSI hard disks and CD-ROM discs, and even RAM disks. A SCSI
disk may be divided into one or more partitions. A partition is simply part of a disk that
has been allocated to a particular operating system, file system, or device driver. For
example, you can partition a single SCSI disk into both Macintosh partitions and A /UX
partitions. The Macintosh partitions are typically used to hold Macintosh volumes. An
A /UX partition can contain an A /UX file system, but it can also be used as a paging area
for virtual memory or as a storage area for autorecovery files.

The information describing the division of a SCSI disk into partitions is contained in the
disk’s partition map, which is always located in the first physical block (512 bytes) on a
disk. The partition map specifies the first and last physical blocks in each partition, as
well as additional information about the partition (such as its type). The exact structure
of a partition map is described in the chapter “SCSI Manager” in Inside Macintosh: Devices.

Often the first partition on a SCSI disk, following the partition map, is the driver
partition that contains the actual device driver used to communicate with the disk.
(There is, however, no requirement that the driver partition be the first partition on a
disk.) Figure 2-4 illustrates a typical organization of partitions on a disk.

A partition can contain at most one volume. A volume is a single disk partition that
contains both file data and the file and directory information necessary to maintain the
appropriate data organization or file system. For example, a volume can contain a
Macintosh, ProDOS, MS-DOS, or A /UX file system structure. Notice in Figure 2-4 that a
Macintosh volume occupies only part of the entire physical disk, and that there can be
multiple partitions (both Macintosh volumes or other types of partitions) on a given disk.

Note

The disk organization illustrated in Figure 2-4 does not apply to
Macintosh 3.5-inch floppy disks. Because each floppy disk is one
volume, there is no need for a disk partition map. Also, there is no
device driver partition on a floppy disk. O

The remainder of this section describes only HFS volumes, that is, Macintosh file
systems organized using the hierarchical file system (HFS) implemented on the
Macintosh Plus and later models.

Each HFS volume begins with two boot blocks. The boot blocks on the startup volume
are read at system startup time and contain booting instructions and other important
information such as the name of the System file and the Finder. Following the boot
blocks are two additional structures, the master directory block and the volume bitmap.

The master directory block contains information about the volume, such as the date and
time of the volume’s creation and the number of files on the volume. The volume bitmap
contains a record of which blocks in the volume are currently in use.

Data Organization on Volumes

CHAPTER 2

File Manager
Figure 2-4 Organization of partitions on a disk
Block Contents
0 Partition information
—
1

Z / |- Diskdriver

partition
n-1
—y
B
n
— Boot blocks —
n+l
n+2 Master directory block
— Macintosh
partition

n+m

N

../ / — Other

partitions

The largest portion of a volume consists of four types of information or areas:
= applications and data files

» the catalog file

= the extents overflow file

= unused space

The general structure of an HFS volume is illustrated in Figure 2-5.

Data Organization on Volumes 2-55

Jabeue a4
H

CHAPTER 2

2-56

File Manager
Figure 2-5 Organization of a volume
Logical Contents Allocation
block block
0
| System startup N
information
1
2 Master directory block (MDB)
3
Z Volume bitmap /

Z Catalog file /

n+m m
m+1
Z Extents overflow /
file
n+m-+| m-+l
m++1

/ Other files and /
free space

n+m+l+k m+l+k
p-1 Alternate MDB
p Not used

All the areas on a volume are of fixed size and location, except for the catalog file and the
extents overflow file. These two files can appear anywhere between the volume bitmap
and the alternate master directory block (MDB). They can appear in any order and are
not necessarily contiguous.

The information on all block-formatted volumes is organized in logical blocks and
allocation blocks. Logical blocks contain a number of bytes of standard information (512
bytes on Macintosh-initialized volumes). Allocation blocks are composed of any integral
number of logical blocks and are simply a means of grouping logical blocks in more
convenient parcels. The allocation block size is a volume parameter whose value is set
when the volume is initialized; it cannot be changed unless the volume is reinitialized.

To promote file contiguity and avoid fragmentation, space is allocated to files in groups
of allocation blocks, or clumps. The clump size is always a multiple of the allocation

Data Organization on Volumes

CHAPTER 2

File Manager

block size, and it’s the minimum number of bytes to allocate each time the Al | ocat e
function is called or the physical end-of-file is reached during a write operation. The
clump size is specified in the catalog information for a file; you can determine the clump
size using the PBGet Cat | nf o function.

The rest of this section describes in detail the structure of the boot blocks, the master
directory block, and the catalog and extents overflow files. It also describes the general
structure of a B*-tree, because the catalog and extents overflow files are both organized
as B*-trees.

Boot Blocks

The first two logical blocks on every Macintosh volume are boot blocks. These blocks
contain system startup information: instructions and information necessary to start up
(or “boot”) a Macintosh computer. This information consists of certain configurable
system parameters (such as the capacity of the event queue, the number of open files
allowed, and so forth) and is contained in a boot block header. The system startup
information also includes actual machine-language instructions that could be used to
load and execute the System file. Usually these instructions follow immediately after the
boot block header. Generally, however, the boot code stored on disk is ignored in favor of
boot code stored in a resource in the System file.

The structure of the boot block header can be described by the Pascal Boot Bl kHdr
data type.

WARNING

The format of the boot block header is subject to change. If your
application relies on the information presented here, it should check the
boot block header version number and react gracefully if that number is
greater than that documented here. a

Note that there are two boot block header formats. The current format includes two
fields at the end that are not contained in the older format. These fields allow the
Operating System to size the System heap relative to the amount of available physical
RAM. A boot block header that conforms to the older format sets the size of the System
heap absolutely, using values specified in the header itself. You can determine whether a
boot block header uses the current or the older format by inspecting a bit in the
high-order byte of the bbVer si on field, as explained in its field description.

TYPE Boot Bl kHdr = {boot bl ock header}

RECORD
bbl D: I nteger; {boot blocks signature}
bbEntry: Longlint; {entry point to boot code}
bbVer si on: I nteger; {boot blocks version nunber}
bbPageFl ags: Integer; {used internally}
bbSysNane: Str15; {System fil enane}
bbShel | Nare: Str15; {Fi nder filenane}
bbDbglNane: Str15; {debugger fil enane}

Data Organization on Volumes 2-57

Jabeue a4
n

2-58

CHAPTER 2

File Manager
bbDbg2Nane: Str15; {debugger fil enane}
bbScr eenNare: Str15; {nanme of startup screen}
bbHel | oNane: Str15; {name of startup progrant
bbScr apNane: Str15; {nane of systemscrap file}
bbCnt FCBs: I nteger; {nunmber of FCBs to allocate}
bbCnt Evt s: I nteger; {nunber of event queue el ements}
bb128KSHeap: Longl nt; {system heap size on 128K Mac}
bb256KSHeap: Longl nt; {used internally}
bbSysHeapSi ze: Longlnt; {system heap size on all mnachi nes}
filler: I nteger; {reserved}
bbSysHeapExt r a: Longl nt; {additional system heap space}
bbSysHeapFr act : Longlnt; {fraction of RAMfor system heap}
END;

Field descriptions
bbl D

bbEntry

bbVer si on

A signature word. For HFS volumes, this field always contains the
value $4C4B.

The entry point to the boot code stored in the boot blocks. This
field contains machine-language instructions that translate to

BRA. S *+$90 (or BRA. S *+$88, if the older block header format
is used), which jumps to the main boot code following the boot
block header. This field is ignored, however, if bit 6 is clear in the
high-order byte of the bbVer si on field or if the low-order byte in
that field contains $D.

A flag byte and boot block version number. The high-order byte of
this field is a flag byte whose bits have the following meanings:

Bit Meaning

04 Reserved; must be 0

5 Set if relative system heap sizing is to be used

6 Set if the boot code in boot blocks is to be executed
7 Set if new boot block header format is used

If bit 7 is clear, then bits 5 and 6 are ignored and the version number
is found in the low-order byte of this field. If that byte contains a
value that is less than $15, the Operating System ignores any values
in the bb128KSHeap and bb256KSHeap fields and configures the
System heap to the default value contained in the bbSysHeapSi ze
field. If that byte contains a value that is greater than or equal to
$15, the Operating System sets the System heap to the value in
bbSysHeapsSi ze. In addition, the Operating System executes

the boot code in the bbEnt ry field only if the low-order byte
contains $D.

If bit 7 is set, the Operating System inspects bit 6 to determine
whether to execute the boot code contained in the bbEnt r y field
and bit 5 to determine whether to use relative System heap sizing. If
bit 5 is clear, the Operating System sets the System heap to the value

Data Organization on Volumes

CHAPTER 2

File Manager

bbPageFl ags
bbSysNane

bbShel | Nare
bbDbglNane

bbDbg2Nane
bbScr eenNane

bbHel | oNare
bbScr apNane
bbCnt FCBs

bbCnt Evt s

bb128KSHeap

bb256KSHeap

bbSysHeapSi ze

filler

bbSysHeapExtra

bbSysHeapFr act

in bbSysHeapSi ze. If bit 5 is set, the System heap is extended by
the value in bbSysHeapExt r a plus the fraction of available RAM
specified in bbSysHeapFr act .

Used internally.

The name of the System file.

The name of the shell file. Usually, the system shell is the Finder.

The name of the first debugger installed during the boot process.
Typically this is Macsbug.

The name of the second debugger installed during the boot process.
Typically this is Disassembler.

The name of the file containing the startup screen. Usually this is
StartUpScreen.

The name of the startup program. Usually this is Finder.
The name of the system scrap file. Usually this is Clipboard.

The number of file control blocks (FCBs) to put in the FCB buffer. In
system software version 7.0 and later, this field specifies only the
initial number of FCBs in the FCB buffer, because the Operating
System can usually resize the FCB buffer if necessary. See “File
Control Blocks” on page 2-82 for details on the FCB bulffer.

The number of event queue elements to allocate. This number
determines the maximum number of events that the Event Manager
can store at any one time. Usually this field contains the value 20.

The size of the System heap on a Macintosh computer having
128 KB of RAM.
Reserved.

The size of the System heap on a Macintosh computer having
512 KB or more of RAM. This field might be ignored, as explained
in the description of the bbVer si on field.

Reserved.

The minimum amount of additional System heap space required. If
bit 5 of the high-order word of the bbVer si on field is set, this
value is added to bbSysHeapSi ze.

The fraction of RAM available to be used for the System heap. If
bit 5 of the high-order word of the bbVer si on field is set, this
fraction of available RAM is added to bbSysHeapSi ze.

Master Directory Blocks

A master directory block (MDB)—also sometimes known as a volume information
block (VIB)—contains information about the rest of the volume. This information is
written into the MDB when the volume is initialized. Thereafter, whenever the volume is
mounted, the File Manager reads the information in the MDB and copies some of that
information into a volume control block (VCB). A VCB is a private data structure
maintained in memory by the File Manager (in the VCB queue). The structure of a VCB
is described in “Volume Control Blocks,” later in this chapter.

Data Organization on Volumes

2-59

Jabeue a4
n

CHAPTER 2

File Manager

Note in Figure 2-5 (page 2-57) that a copy of the MDB is located in the next-to-last block
in the volume. This copy is updated only when the extents overflow file or the catalog
file grows larger. This alternate MBD is intended for use solely by disk utilities.

The MDB data type defines a master directory block record.

TYPE MDB = {master directory bl ock}
RECORD
dr Si g\Wor d: I nt eger; {vol urmre si gnat ur e}
dr Cr Dat e: Longl nt; {date and time of volune creation}
dr LsMbd: Longl nt ; {date and time of last nodification}
dr Atrb: I nt eger; {vol ume attributes}
dr NFl s: I nt eger; {nunber of files in root directory}
dr VBVS : I nt eger; {first block of volume bitmp}
drAl |l ochtr: I nt eger; {start of next allocation search}
dr NmAl Bl ks: I nt eger; {nunber of allocation blocks in vol une}
dr Al Bl kSi z: Longl nt ; {size (in bytes) of allocation blocks}
drd pSi z: Longl nt; {default clunp size}
dr Al Bl St : I nt eger; {first allocation block in vol une}
dr Nxt CNI D: Longl nt ; {next unused catal og node | D}
dr Fr eeBks: I nt eger; {nunber of unused allocation bl ocks}
dr VN String[27]; {volune nane}
dr Vol BkUp: Longl nt ; {date and time of |ast backup}
dr VSegNum I nt eger; {vol ume backup sequence numnber}
dr WCnt : Longl nt; {volume wite count}
dr XTd pSi z: Longl nt ; {clump size for extents overflow fil e}
dr CTd pSi z: Longl nt; {clunmp size for catalog file}
drNmRt Di r s: I nt eger; {nunber of directories in root directory}
drFil Cnt: Longl nt ; {nunber of files in vol une}
drDirCnt: Longl nt; {nunmber of directories in volune}
dr Fndr | nf o: ARRAY[1..8] OF Longlnt;
{information used by the Finder}
dr VCSi ze: I nt eger; {size (in blocks) of volune cache}
dr VBMCSi ze: I nt eger; {size (in blocks) of volune bitmap cache}
drCt| CSi ze: I nt eger; {size (in blocks) of common vol une cache}
dr XTFI Si ze: Longl nt ; {size of extents overflow file}
dr XTExt Rec: Ext Dat aRec; {extent record for extents overflow file}
dr CTFI Si ze: Longl nt ; {size of catalog file}
dr CTExt Rec: Ext Dat aRec; {extent record for catalog file}
END;

Field descriptions

dr Si gWord The volume signature. For HFS volumes, this field contains $4244;
for the obsolete flat MFS volumes, this field contains $D2D7.
dr CrDate The date and time of volume creation (initialization).

2-60 Data Organization on Volumes

CHAPTER 2

File Manager

dr LsMod

drAtrb

dr NnFl s
dr VBMSt

drAl'l ocPtr

dr NmAl Bl ks

dr Al Bl kSi z

drC pSi z
dr Al Bl St
dr Nxt CNI D
dr FreeBks
dr VN

dr Vol BkUp
dr VSegNum
dr W Cnt

dr XTd pSi ze
dr CTd pSi ze
drNmRtDirs
dr Fi | Cnt
drDi r Cnt
drFndrinfo

dr VCSi ze
dr VBMCSi ze

drCt | CSi ze

Data Organization on Volumes

The date and time the volume was last modified. This is not
necessarily when the volume was last flushed.

Volume attributes. Currently the following bits are defined:

Bit Meaning

Set if the volume is locked by hardware

Set if the volume was successfully unmounted
9 Set if the volume has had its bad blocks spared
15 Set if the volume is locked by software
The number of files in the root directory.

The first block of the volume bitmap. This field always contains 3 in
the current implementation.

The number of the allocation block at which the next allocation
search will begin. Used internally.

The number of allocation blocks in the volume. Because the value in
this field is an integer, a volume can contain at most 65,535
allocation blocks.

The allocation block size (in bytes). This value must always be a
multiple of 512 bytes.

The default clump size.

The location of the first allocation block in the volume.
The next unused catalog node ID (directory ID or file ID).
The number of unused allocation blocks on the volume.

The volume name. This field consists of a length byte followed
by 27 bytes. Note that the volume name can occupy at most

27 characters; this is an exception to the normal file and directory
name limit of 31 characters.

The date and time of the last volume backup.
Volume backup sequence number. Used internally.

The volume write count (that is, the number of times the volume
has been written to).

The clump size for the extents overflow file.
The clump size for the catalog file.

The number of directories in the root directory.
The number of files on the volume.

The number of directories on the volume.

Information used by the Finder. See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details on
Finder information.

The size (in allocation blocks) of the volume cache. Used internally.

The size (in allocation blocks) of the volume bitmap cache.
Used internally.

The size (in allocation blocks) of the common volume cache.
Used internally.

2-61

Jabeue a4
n

2-62

CHAPTER 2

File Manager

dr XTFI Si ze The size (in allocation blocks) of the extents overflow file.

dr XTExt Rec First extent record for the extents overflow file. An extent record is
an array of three extents. See “Extents Overflow Files” on page 2-75
for a description of extents and extent records.

dr CTFI Si ze The size (in allocation blocks) of the catalog file.

dr CTExt Rec First extent record for the catalog file.

Note

The values in the dr NmAl Bl ks and dr Fr eeBks fields should be
interpreted as unsigned integers (that is, they can range from 0 to 65,535,
not from -32,768 to 32,767). Pascal does not support unsigned data
types, and so you need to use the technique illustrated in “Determining
the Amount of Free Space on a Volume” on page 2-47 to read the values
in these fields correctly. O

Volume Bitmaps

The File Manager uses a volume bitmap to keep track of whether each block in a volume
is currently allocated to some file or not. The bitmap contains one bit for each allocation
block in the volume. If a bit is set, the corresponding allocation block is currently in use
by some file. If a bit is clear, the corresponding allocation block is not currently in use by
any file and is available for allocation.

Note

The volume bitmap indicates which blocks on a volume are currently in
use, but it does not indicate which files occupy which blocks. The File
Manager maintains file-mapping information in two locations: in each
file’s catalog entry and in the extents overflow file. O

The size of the volume bitmap depends on the number of allocation blocks in the
volume, which in turn depends both on the number of physical blocks in the volume
and on the size of the volume’s allocation blocks (the number of physical blocks per
allocation block). For example, a floppy disk that can hold 800 KB of data and has an
allocation block size of one physical block has a volume bitmap size of 1600 bits (200
bytes). A volume containing 32 MB of data and having an allocation block size of one
physical block has a volume bitmap size of 65,536 bits (8192 bytes). However, the size of
the volume bitmap is rounded up, if necessary, so that the volume bitmap occupies an
integral number of physical blocks.

Because the dr NmAl Bl ks field in the MDB occupies only 2 bytes, the File Manager can
address at most 65,535 allocation blocks. Thus, the volume bitmap is never larger than
8192 bytes (or 16 physical blocks). For volumes containing more than 32 MB of space, the
allocation block size must be increased. For example, a volume containing 40 MB of
space must have an allocation block size that is at least 2 physical blocks; a volume
containing 80 MB of space must have an allocation block size that is at least 3 physical
blocks; and so forth.

Data Organization on Volumes

CHAPTER 2

File Manager

B*-Trees

The File Manager maintains information about a volume’s directory hierarchy and file
block mapping in two files that are organized as B*-trees to allow quick and efficient
retrieval of that information. In a B*-tree, all the information that needs to be stored is
intelligently classified and sorted into objects called nodes. Figure 2-6 illustrates the
general structure of a B*-tree file.

Figure 2-6 The structure of a B*-tree file
Byte Data fork
0
Header
Node 0 node
512
Node 1
1024
Node 2

Node n/512

Note that each B*-tree file used by the File Manager makes use of the data fork only; the
resource fork of a B*-tree file is unused. The length of a B*-tree file varies according to the

number of nodes it contains.

A node in turn contains records, which can be used for a variety of purposes. Some

records contain the actual data that is to be retrieved and possibly updated; these records
occupy nodes called leaf nodes. Other records contain information about the structure of
the B*-tree. The File Manager uses these records to find the information it needs quickly.

There are three types of these “bookkeeping” nodes: header nodes, index nodes, and

map nodes.

Data Organization on Volumes

2-63

Jabeue a4
!

CHAPTER 2

File Manager

Nodes

A B*-tree file consists entirely of objects called nodes, each of which is 512 bytes long.
Figure 2-7 illustrates the structure of a node.

Each node has the same general structure and consists of three main parts: a node
descriptor that starts at the beginning of the node, a group of record offsets that starts
at the end of the node, and a group of records.

The node descriptor contains information about the node, as well as forward and
backward links to other nodes. You can use the NodeDescr i pt or data type to display
the structure of a node descriptor.

TYPE NodeDescri pt or
RECORD

{node descriptor}

{nunber of records in node}

ndFLi nk: Longl nt; {forward I|ink}
ndBLi nk: Longl nt; {backward Ii nk}
ndType: Si gnedByt e; {node type}
ndNHei ght : Si gnedByt e; {node | evel}
ndNRecs: I nt eger;
ndResv2: I nt eger; {reserved}
END;
Figure 2-7 The structure of a node
Byte Contents
0
Node descriptor
—$E -
Record O
Records — -
Record 1
Z Free space /
Offset to free space —
Record Offset to record 1
offsets
Offset to record O

Data Organization on Volumes

2-65

1abeuepn a4 -

CHAPTER 2

File Manager

Field descriptions

ndFLi nk Alink to the next node of this type. If this node is the last node, this
field contains NI L.

ndBLi nk Alink to the previous node of this type. If this node is the first node,
this field contains NI L.

ndType The type of this node. Currently four types of nodes are recognized,
defined by the constants listed in this section.

ndNHei ght The level or “depth” of this node in the B*-tree hierarchy. The

top-level node (a header node, described in “Header Nodes” on
page 2-68) always has a level of 0; all other nodes have a level that is
one greater than their parent node. Currently, the maximum depth
of anode is 8.

ndNRecs The number of records contained in this node.

ndResv?2 Reserved. This field should always be 0.

A node descriptor is always $0E bytes in length, and so the records contained in the
node always begin at offset $0E from the beginning of the node. The size of a record can
vary, depending on its type and on the amount of information it contains; as a result, the
File Manager accesses a record by storing the offset from the beginning of the node to
that record in the list of offsets found at the end of the node. Each offset occupies a word,
and (as you might have guessed) the last word in a node always contains the value $0E,
pointing to the first record in the node. The offsets to subsequent records are stored in
order starting from the end of the node, as illustrated in Figure 2-7.

Jabeue a4
n

Note that there is always one more offset than the number of records contained in a
node; this is an offset to the beginning of any unused space in the node. If there is no free
space in the node, then that offset contains its own byte offset within the node.

The ndType field of the node descriptor indicates the type of a node. In essence, the type
of a node indicates what kinds of records it contains and hence what its function in the
B*-tree hierarchy is. The File Manager maintains four kinds of nodes in a B*-tree,
indicated by constants:

CONST {node types}
ndl ndxNode = $00; {i ndex node}
ndHdr Node = $01; {header node}
ndvapNode = $02; {map node}
ndLeaf Node = $FF; {l eaf node}

These node types are described in the four sections immediately after the next one.

Data Organization on Volumes 2-65

CHAPTER 2

File Manager

Node Records

A record in a B*-tree node contains either data or a pointer to some other node in the
tree. Figure 2-8 shows the general structure of a record in a leaf or index node.

Figure 2-8 Structure of a B*-tree node record

2-66

Key length (1 byte)

Record key

(Up to 255 bytes) Record data or pointer

Byte 0 n

Note

The three records in a B*-tree header node do not have the structure
depicted in Figure 2-8. They consist solely of data, as described in the
next section, “Header Nodes.” Similarly, the single record in a map node
consists solely of data; see “Map Nodes” on page 2-70 for details. O

Each record contains a search key, which the File Manager uses to search through the
B*-tree to locate the information it needs. The key can contain any information at all that
is deemed useful in finding the data contained in the leaf nodes. In a catalog file, which
maintains information about the hierarchy of files and directories on a volume, the
search key is a combination of the file or directory name and the parent directory ID of
that file or directory. In an extents overflow file, which maintains information about the
extra extents belonging to a file, the search key is a combination of that file’s type, its file
ID, and the index of the first allocation block in the extent.

In a B*-tree, the records in each node are always grouped so that their keys are in
ascending order. Moreover, the nodes on any given level are linked (through the

ndFLi nk and ndBLi nk fields of their node descriptors) in such a way as to preserve the
ascending order of record keys throughout that level. This is the essential ordering
principle that allows the File Manager to search quickly through a tree. To illustrate this
ordering scheme, Figure 2-9 shows a sample B*-tree containing hypothetical search keys
(in this case, the keys are simply integers).

When the File Manager needs to find a data record, it begins searching at the root node
(which is an index node, unless the tree has only one level), moving from one record to
the next until it finds the record with the highest key that is less than or equal to the
search key. The pointer of that record leads to another node, one level down in the tree.
This process continues until the File Manager reaches a leaf node; then the records of
that leaf node are examined until the desired key is found. At that point, the desired data
has also been found.

Data Organization on Volumes

CHAPTER 2

File Manager

Figure 2-9 A sample B*-tree

Header node | pointer | pointer | pointer |

Index nodes

Leaf nodes

Root node | 8] pointer [16] pointer |

[8] pointer 13| pointer | [16] pointer [20] pointer [23] pointer |

\d
[8] data [10| data | [13] data [15] data | [16] data | [20] data [22] data | [23] data |

There is of course no guarantee that a record having the desired key will always be
found in a search through a B*-tree. In this case, the search stops when a key larger
than the search key is reached. (This is most likely to happen in a search through the
catalog file.)

Header Nodes

The first node (that is, node 0) in every B*-tree file is a header node, which contains
essential information about the entire B*-tree file. The File Manager stores the location of
the header node of the catalog file in the first 2 bytes of the dr CTExt Rec field of the
MDB; the value in those 2 bytes indicates the allocation block number on which the
catalog file (and hence the header node) begins. Similarly, the File Manager stores the
location of the header node of the extents overflow file in the first 2 bytes of the

dr XTExt Rec field of the MDB.

Note

When a volume is mounted, the File Manager reads the header node
and copies some of the information it contains into a B*-tree control
block in memory. See “B*-Tree Control Blocks” on page 2-84 for a
description of this control block. O

A header node contains three records, the second of which occupies 128 bytes and is
reserved for use by the File Manager. The other two records are called the B*-tree header
record and the B*-tree map record; they occupy the first and third record positions,
respectively. Hence, a header node has the structure illustrated in Figure 2-10.

Data Organization on Volumes 2-67

Jabeue a4
!

CHAPTER 2

File Manager

Figure 2-10 Header node structure

2-68

Byte Contents

Node descriptor

$E

$78

Z B*-tree header record /

Z Unused record /

$F8

Z B*-tree map record /

$1F8
Offset to unused space
Offset to record 2
Offset to record 1
Offset to record 0
$200
Note

The three records contained in the header node do not contain keys. O

The map record is a bitmap that indicates which nodes in the B*-tree file are used and
which are not. The bits are interpreted in exactly the same way as the bits in the volume
bitmap: if a bit in the map record is set, then the corresponding node in the B*-tree file is
being used. This bitmap occupies 256 bytes and can therefore encode information about
2048 nodes at most. If more nodes are needed to contain all the data that is to be stored
in the B*-tree, the File Manager uses a map node to store additional mapping informa-
tion. See the next section, “Map Nodes,” for a description of the structure of a map node.

The B*-tree header record, a data structure of type BTHdr Rec, contains information
about the beginning of the tree, as well as the size of the tree.

TYPE BTHdr Rec =

RECORD
bt hDept h: I nt eger;
bt hRoot : Longl nt;
bt hNRecs: Longl nt ;
bt hFNode: Longl nt;
bt hLNode: Longl nt;
bt hNodeSi ze: I nt eger
bt hKeyLen: I nt eger;

Data Organization on Volumes

{B*-tree header}

{current depth of tree}

{nunber of root node}

{nunber of |eaf records in tree}
{nunmber of first |eaf node}
{nunber of l|ast |eaf node}

{size of a node}

{maxi mum | engt h of a key}

CHAPTER 2

File Manager
bt hNNodes: Longl nt; {total nunber of nodes in tree}
bt hFr ee: Longl nt ; {nunber of free nodes}
bt hResv: ARRAY[1. .76] OF Si gnedByte; {reserved}
END;

Field descriptions
bt hDept h The current depth of the B*-tree.
bt hRoot The node number of the root node. The root node is the start of the

B*-tree structure; usually the root node is first index node, but it
might be a leaf node if there are no index nodes.

bt hNRecs The number of data records (records contained in leaf nodes).
bt hFNode The node number of the first leaf node.

bt hLNode The node number of the last leaf node.

bt hNodeSi ze The size (in bytes) of a node. Currently, this is always 512.

bt hKeyLen The maximum length of the key records in each node.

bt hNNodes The total number of nodes in the B*-tree.

bt hFr ee The total number of free nodes in the B*-tree.

bt hResv Reserved.

Map Nodes

As indicated in the previous section, the File Manager maintains a bitmap of the tree
nodes in the map record of the B*-tree header node. If a B*-tree file contains more than
2048 nodes (enough for about 8000 files), the File Manager uses a map node to store
additional node-mapping information. It stores the node number of the new map node
in the ndFLi nk field of the node descriptor of the header node.

A map node consists of a node descriptor and a single map record. The map record is a
continuation of the map record contained in the header node and occupies 494 bytes
(512 bytes in the node, less 14 bytes for the node descriptor and 2 bytes for each of the
two record offsets at the end of the node). A map node can therefore contain mapping
information for an additional 3952 nodes.

If a B*-tree contains more than 6000 nodes (that is, 2048 + 3952, enough for about 25,000
files), the File Manager uses a second map node, the node number of which is stored in
the ndFLi nk field of the node descriptor of the first map node. If more map nodes are
required, each additional map node is similarly linked to the previous one.

Index Nodes

An index node contains records that point to other nodes in the B*-tree hierarchy. The
File Manager uses index nodes to navigate the tree structure quickly when it wants to
find some data (which is always stored in leaf nodes). Index nodes speed a tree search by
dividing the tree into smaller pieces, as illustrated in Figure 2-9 (page 2-68).

The records stored in an index node are called pointer records. A pointer record consists
of a key followed by the node number of the corresponding node. The structure of the
key varies according to the type of B*-tree file that contains the index node. For a catalog

Data Organization on Volumes 2-69

Jabeue a4
n

2-70

CHAPTER 2

File Manager

file, the search key is a combination of the file or directory name and the parent directory
ID of that file or directory. In an extents overflow file, the search key is a combination of
that file's type, its file ID, and the index of the first allocation block in the extent. See the
sections “Catalog File Keys” on page 2-72 and “Extents Overflow Files” on page 2-75 for
more details on the structure of index node search keys.

The immediate descendants of an index node are called the children of the index node.
An index node can have from 1 to 15 children, depending on the size of the pointer
records that the index node contains. Typically the File Manager selects one of the node’s
children and continues the search at that node; the File Manager may stop the search,
however, if the index node does not contain a pointer record with the appropriate key.

The first index node in a B*-tree is called the root node. Recall that the B*-tree
header node contains the node number of the root node in the bt hRoot field of
the header record.

Leaf Nodes

The bottom level of a B*-tree structure is occupied exclusively by leaf nodes, which
contain data records (not pointer records). The structure of the leaf node data records
varies according to the type of B*-tree under consideration. In an extents overflow file,
the leaf node data records consist of a key and an extent record. In a catalog file
(described in the next section), the leaf node data records can be any one of four kinds
of records.

Catalog Files

The File Manager uses a file called the catalog file to maintain information about the
hierarchy of files and directories on a volume. A catalog file is organized as a B*-tree file
and hence consists of a header node, index nodes, leaf nodes, and (if necessary) map
nodes. The allocation block number of the first file extent of the catalog file (and hence of
the file’s header node) is stored in the MDB; when the volume is mounted, that
information is copied into that volume’s volume control block. From the header node,
the File Manager can obtain the node number of the catalog file’s root node; from the
root node, the File Manager can find the entire catalog file.

Each node of the catalog file is assigned a unique catalog node ID (CNID). For directo-
ries, the CNID is the directory ID; for files, it’s the file ID. For any given file or directory,
the parent ID is the CNID of the parent directory. The first 16 CNIDs are reserved for use
by Apple Computer, Inc., and include the following standard assignments:

CNID Assignment

1 Parent ID of the root directory

2 Directory ID of the root directory

3 File number of the extents file

4 File number of the catalog file

5 File number of the bad allocation block file

Data Organization on Volumes

CHAPTER 2

File Manager

You need to know only two things about a catalog file in addition to the information
given earlier in this chapter in “B*-Trees”:

» the format of the catalog key used in index and leaf nodes

» the format of the leaf node data records

These formats are described in the following two sections.

Catalog File Keys

The key that the File Manager uses to navigate the catalog file is simple: for a given file
or directory, the key consists principally of the name of that file or directory and its
parent directory ID. With the exception of a volume reference number (which is not
needed here), this mirrors the standard way to specify a file or directory with the
high-level HFS routines. You can describe a catalog file key using a record of the

Cat KeyRec data type.

TYPE Cat KeyRec = {catal og key record}
RECORD

ckr KeyLen: Si gnedByt e; {key | engt h}

ckr Resrvil: Si gnedByt e; {reserved}

ckrParl D Longl nt ; {parent directory |D}

ckr CNarre: Str31; {cat al og node nane}
END;

Field descriptions

ckr KeyLen The length (in bytes) of the rest of the key. The value in this field
does not include the byte occupied by the field itself. If this field
contains 0, the key indicates a deleted record.

ckrResrvl Reserved.
ckrParl D The catalog node ID of the parent directory.
ckr CNane The name of the file or directory whose catalog entry is to be found.

This field is padded with null characters if necessary to have the
next record data or pointer begin on a word boundary.

You should pay special attention to the fact that the catalog key differs slightly
depending on whether it occurs in a record in an index node or a leaf node. If the key
occurs in a pointer record (hence in an index node), the ckr CNane field always occupies
a full 32 bytes and the ckr KeyLen field always contains the value $25.

If, however, the catalog file key occurs in a data record (hence in a leaf node), then the
ckr CNane field varies in length; it occupies only the number of bytes required to hold
the file or directory name, suitably padded so that the data following it begins on a word
boundary. In that case, the ckr KeyLen field varies as well and may contain values from
$7 to $25.

Data Organization on Volumes 2-71

Jabeue a4
n

2-72

CHAPTER 2

File Manager

Catalog File Data Records

A catalog file leaf node can contain four different types of records:

Directory records. A directory record contains information about a single directory.

File records. A file record contains information about a single file.

Directory thread records. A directory thread record provides a link between a
directory and its parent directory. It allows the File Manager to find the name and
directory ID of the parent of a given directory.

File thread records. A file thread record provides a link between a file and its parent
directory. It allows the File Manager to find the name and directory ID of the parent of

a given file.

Each record is defined by a variant of the Cat Dat aType data type.

TYPE Cat Dat aType

TYPE Cat Dat aRec

RECORD

cdr Type:
cdr Resrv2:

= (cdrDirRec, cdrFilRec, cdrThdRec,
cdr FThdRec) ;

Si gnedByt e
Si gnedByt e

CASE Cat Dat aType OF
cdr Di r Rec:

(dirFl ags:
di rVval :
dirDirlD:
di r CrDat :
di r MdDat :
di r BkDat :

q
q
q

rResrv:

cdr Fi | Rec:

(fil Fl ags:
fil Typ:
fil UsrWis:
filFl Num
fil StBlk:
fil LgLen:
filPyLen:
fil RSt Bl k:
fil RLgLen:
fil RPyLen:
fil CrDat:

rUsrl nfo:
r Fndr | nf o:

I nt eger;

I nt eger;
Longl nt;
Longl nt ;
Longl nt;
Longl nt;
Dl nf o;
DXI nf o;
ARRAY[1. . 4]

Si gnedByt e
Si gnedByt e
FI nf o;
Longl nt;

| nt eger;
Longl nt;
Longl nt;

| nt eger;
Longl nt;
Longl nt;
Longl nt ;

Data Organization on Volumes

{catal og data records}

{record type}
{reserved}

{directory record}

{directory flags}

{directory val ence}

{directory |ID}

{date and tinme of creation}
{date and tinme of last nodification}
{date and tinme of |ast backup}
{Fi nder information}

{addi tional Finder information}
OF Longlnt);

{reserved}

{file record}

{file flags}

{file type}

{Fi nder information}
{file I D}

{first alloc. blk. of data fork}

{l ogi cal ECF of data fork}

{physi cal EOF of data fork}

{first alloc. blk. of resource fork}
{logi cal ECF of resource fork}
{physi cal EOF of resource fork}
{date and tinme of creation}

CHAPTER 2

File Manager
filMwDat: Longl nt; {date and tinme of last nodification}
fil BkDat : Longl nt ; {date and tine of |ast backup}
fil Fndrl nfo: FXI nf o; {addi tional Finder information}
fild pSize: I nt eger; {file clunp size}
fil Ext Rec: Ext Dat aRec; {first data fork extent record}
fil RExt Rec: Ext Dat aRec; {first resource fork extent record}
filResrv: Longl nt); {reserved}
cdr ThdRec: {directory thread record}
(t hdResrv: ARRAY[1..2] OF Longlnt;
{reserved}
t hdPar | D: Longl nt ; {parent ID for this directory}
t hdCNane: Str31); {name of this directory}
cdr FThdRec: {file thread record}
(fthdResrv: ARRAY[1..2] OF Longlnt;
{reserved}
ft hdPar | D: Longl nt; {parent ID for this file}
ft hdCNarre: Str31); {name of this file}
END;

The first two fields of a catalog data record are common to all four variants. Each variant
also includes its own unique fields.

Field descriptions common to all variants

cdr Type The type of catalog data record. This field can contain one of four
values:
Value Meaning
1 Directory record
2 File record
3 Directory thread record
4 File thread record
cdrResrv2 Reserved.

Field descriptions for the cdr Di r Rec variant

di r Fl ags Directory flags.

di r val The directory valence (the number of files in this directory).
dirDirlD The directory ID.

di r Cr Dat The date and time this directory was created.

di r MiDat The date and time this directory was last modified.

di r BkDat The date and time this directory was last backed up.
dirUsrinfo Information used by the Finder.

dirFndrinfo Additional information used by the Finder.

di rResrv Reserved.

Data Organization on Volumes 2-73

Jabeue a4
n

CHAPTER 2

File Manager

Field descriptions for the cdr Fi | Rec variant

filFlags File flags. This is interpreted as a bitmap; currently the following
bits are defined:

Bit Meaning
0 If set, file is locked and cannot be written to.
1 If set, a file thread record exists for this file.
7 If set, the file record is used.
filTyp The file type. This field should always contain 0.
filUsrWis The file’s Finder information.
fil Fl Num The file ID.
filStBlk The first allocation block of the data fork.
fillLglLen The logical EOF of the data fork.
filPyLen The physical EOF of the data fork.
filRStBIk The first allocation block of the resource fork.
filRLgLen The logical EOF of the resource fork.
fil RPyLen The physical EOF of the resource fork.
fil CrDat The date and time this file was created.
fil MdDat The date and time this file was last modified.
fil BkDat The date and time this file was last backed up.
fil Fndrinfo Additional information used by the Finder.
fildpSize The file clump size.
fil Ext Rec The first extent record of the file’s data fork.
fil RExt Rec The first extent record of the file’s resource fork.
fil Resrv Reserved.

Field descriptions for the cdr ThdRec variant

t hdResrv Reserved.

t hdPar I D The directory ID of the parent of the associated directory.
t hdCNane The name of this directory.

Field descriptions for the cdr FThdRec variant

fthdResrv Reserved.

fthdPar| D The directory ID of the parent of the associated file.

ft hdCNane The name of this file.

As you can see, a file thread record is exactly the same as a directory thread record
except that the associated object is a file, not a directory.

Extents Overflow Files

The File Manager keeps track of which allocation blocks belong to a file by maintaining a
list of contiguous disk segments that belong to that file, in the appropriate order. When
the list of disk segments gets too large, some of those segments (or extents) are stored on
disk in a file called the extents overflow file.

2-74 Data Organization on Volumes

CHAPTER 2

File Manager

The structure of an extents overflow file is relatively simple compared to that of a catalog
file. The function of the extents overflow file is to store those file extents that are not
contained in the MDB or VCB (in the case of the catalog and extents overflow files
themselves) or in an FCB (in the case of all other files). Because the first three file extents
are always maintained in memory (in a VCB or an FCB), the File Manager needs to read
the extents overflow file only to retrieve any file extents beyond the first three; if a file
has at most three extents, the File Manager never needs to read the disk to find the
locations of the file’s blocks. (This is one good reason to promote file block contiguity.)

An extent is a contiguous range of allocation blocks that have been allocated to some file.
You can represent the structure of an extent using an extent descriptor, defined by the
Ext Descri pt or data type.

Jabeue a4
n

TYPE Ext Descri ptor = {extent descriptor}
RECORD

xdr St ABN: I nt eger; {first allocation block}

xdr NumABI ks: I nt eger; {nunber of allocation bl ocks}
END;

An extent descriptor record consists of the first allocation block of the extent, followed by
the number of allocation blocks in that extent. The File Manager prefers to access extent
descriptors in groups of three; to do so, it uses the extent data record, defined by the

Ext Dat aRec data type.

TYPE
Ext Dat aRec: ARRAY[1..3] OF ExtDescriptor;{extent data record}

Recall that the dr CTEXxt Rec and dr XTExt Rec fields of the MDB are of type

Ext Dat aRec (see “Master Directory Blocks,” earlier in this chapter), as is the

f cbExt Rec field of an FCB (see “File Control Blocks” beginning on page 2-82). Also,
the records in the leaf nodes of the extents overflow file are extent data records. For
this reason, the extents overflow file is much simpler than the catalog file: the data in
a leaf node of an extents overflow file always consists of a single kind of record,
instead of the four kinds of records found in a catalog file.

The other main difference between a catalog B*-tree and an extents overflow B*-tree
concerns the format of the key. You can describe an extent record key with the
Ext KeyRec data type.

TYPE Ext KeyRec = {extent key record}
RECORD

xkr KeyLen: Si gnedByt €; {key | ength}

xkr FkType: Si gnedByt e; {fork type}

xkr FNum Longl nt; {file nunber}

xkr FABN: I nt eger; {starting file allocation block}
END;

Data Organization on Volumes 2-75

CHAPTER 2

File Manager

Field descriptions

xkr KeyLen The length (in bytes) of the rest of the key. In the current
implementation, this field always contains the value 7.

xkr FkType The type of file fork. This field contains $00 if the file is a data fork
and $FF if the file is a resource fork.

xkr FNum The file ID of the file.

xkr FABN The starting file allocation block number. In the list of the allocation

blocks belonging to this file, this number is the index of the first
allocation block of the first extent descriptor of the extent record.

Note

Disks initialized using the enhanced Disk Initialization Manager
introduced in system software version 7.0 might contain extent records
for some blocks that do not belong to any actual file in the file system.
These extent records have a file ID set to 5, indicating that the extent
contains a bad block. See the chapter “Disk Initialization Manager” in
this book for details on bad block sparing. O

Data Organization in Memory

2-76

This section describes the data structures used internally by the File Manager and any
external file system that accesses files on Macintosh-initialized volumes. As described in
“Data Organization on Volumes,” which begins on page 2-53, most applications do not
need to access these internal data structures directly. In general, you need to know about
these data structures only if you are writing an external file system or a disk utility.

WARNING

This section is provided primarily for informational purposes. The
organization of data in memory is subject to change. If you want your
application to be compatible with future versions of Macintosh system
software, you should not access these internal data structures directly. a

The data structures maintained in memory by the File Manager and external file
systems include

s the file I/O queue
= the volume control block queue, listing information about each mounted volume
= the file control block buffer, listing information about each access path to a fork

= a B*-tree control block for the catalog file and the extents overflow file for each
mounted volume

= the drive queue, listing information about each drive connected to the Macintosh

Data Organization in Memory

CHAPTER 2

File Manager

The File I/0O Queue

The file I/ O queue is a standard Operating System queue (described in the chapter
“Queue Utilities” in Inside Macintosh: Operating System Utilities) that contains parameter
blocks for all asynchronous routines awaiting execution.

Each entry in the file I/ O queue consists of a parameter block for the routine that was
called. The File Manager uses the first four fields of each parameter block in processing
the I/O requests in the queue.

TYPE Par anBl ockRec =

RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCrdAddr : Ptr; {routine address}
{rest of bl ock}
END;

Field descriptions

gLi nk A pointer to the next entry in the file I/ O queue.

qType The queue type. This field must always contain ORD(i oQType) .
i oTrap The trap word of the routine that was called.

i oCndAddr The address of the routine that was called.

You can get a pointer to the header of the file I/O queue by calling the File Manager
utility function Get FSQHdr .

Assembly-Language Note
The global variable FSQHdr contains the header of the file I/O queue. O

Volume Control Blocks

Each time a volume is mounted, the File Manager reads its volume information from the
master directory block and uses the information to build a new volume control block
(VCB) in the volume control block queue (unless an ejected or offline volume is being
remounted). The File Manager also creates a volume buffer in the system heap. When a
volume is placed offline, its buffer is released. When a volume is unmounted, its VCB is
removed from the VCB queue as well.

Assembly-Language Note

The global variable VCBQHdr contains the header of the VCB queue. The
global variable Def VCBPt r points to the VCB of the default volume. O

Data Organization in Memory 2-77

Jabeue a4
n

CHAPTER 2

File Manager

A WARNING

The size and structure of a VCB may be different in future versions of
Macintosh system software. To ensure that you are reading the correct
version of a VCB, check the vcbSi gWor d field; it should contain the
value $4244. a

The volume control block queue is a standard Operating System queue that’s
maintained in the system heap. It contains a volume control block for each mounted
volume. A volume control block is a nonrelocatable block that contains volume-specific
information. The structure of a volume control block is defined by the VCB data type.

TYPE VCB = {volume control bl ock}

RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
vcbFl ags: I nt eger; {volune fl ags}
vchSi g\Wor d: I nt eger; {vol ume si gnat ur e}
vchCr Dat e: Longl nt; {date and time of volune creation}
vcbLsMod: Longl nt; {date and tinme of last nodification}
VCbAt r b: I nt eger; {volunme attributes}
VvCcbNH s: I nt eger; {nunber of files in root directory}
vcbVBMSt : I nt eger; {first block of volunme bitmp}
vcbAl | ocPtr: I nt eger; {start of next allocation search}
vcbNmAl Bl ks: I nt eger; {nunber of allocation blocks in vol une}
vcbAl Bl kSi z: Longl nt ; {size (in bytes) of allocation blocks}
vchd pSi z: Longl nt; {default clunp size}
vcbAl Bl St : I nt eger; {first allocation block in vol une}
vcbNxt CNI D: Longl nt ; {next unused catal og node |D}
vchbFreeBks: I nt eger; {nunber of unused allocation bl ocks}
VCbVN: String[27]; {volunme nane}
vchbDr vNum I nt eger; {drive nunber}
vcbDRef Num I nt eger; {driver reference nunber}
vcbFSI D I nt eger; {file-systemidentifier}
vcbVRef Num I nt eger; {vol urmre reference nunber}
vchMAdr : Ptr; {used internally}
vcbBuf Adr : Ptr; {used internally}
vcbM.en: I nt eger; {used internally}
vchDirl ndex: I nt eger; {used internally}
vcbDir Bl k: I nt eger; {used internally}
vcbVol BkUp: Longl nt ; {date and tine of |ast backup}
vchVSegNum I nt eger; {vol ume backup sequence numnber}
vcbW Cnt : Longl nt; {volume wite count}
vcbXTd pSi z: Longl nt; {clunmp size for extents overflow fil e}
vcbCTd pSi z: Longl nt ; {clunp size for catalog file}
VCbNMRt Di r s: I nt eger; {nunber of directories in root dir.}
vcbFi |l Cnt: Longl nt ; {nunber of files in vol une}

2-78 Data Organization in Memory

CHAPTER 2

File Manager
vchbDirCnt: Longl nt; {nunber of directories in volune}
vcbFndr | nf o: ARRAY[1..8] OF Longlnt;

{information used by the Finder}
vcbhVCSi ze: I nt eger; {used internally}
vcbVBMCSI z: I nt eger; {used internally}
vchCt | CSi z: I nt eger; {used internally}
vCbhXTAl Bks: I nt eger; {size of extents overflow file}
vcbhCTAl Bks: I nt eger; {size of catalog file}
vcbXTRef : I nt eger; {ref. num for extents overflow file}
vcbhCTRef : I nt eger; {ref. num for catalog file}
vchCt | Buf: Ptr; {ptr. to extents and catal og caches}
vchbDi r | DM Longl nt; {directory | ast searched}
vebhO f sM I nt eger; {offspring index at |ast search}
END;
Note

The values in the vcbNmAI Bl ks and vcbFr eeBks fields are unsigned
integers (that is, they can range from 0 to 65,535, not from —32,768 to
32,767). Because Pascal does not support unsigned data types, you need
to use the technique illustrated in “Determining the Amount of Free
Space on a Volume” on page 2-47 to read the values in these fields

correctly. O

Field descriptions

gLi nk

qType

vchFl ags

vchSi g\Wrd
vchCr Dat e
vcbLsMod

VCcbAtrb

vcbNnFl s

A pointer to the next entry in the VCB queue. You can get a pointer
to the header of the VCB queue by calling the File Manager utility
function Get VCBQHdr .

The queue type. When the volume is mounted and the VCB is
created, this field is cleared. Thereafter, bit 7 of this field is set
whenever a file on that volume is opened.

Volume flags. Bit 15 is set if the volume information has been
changed by a File Manager call since the volume was last affected
by a Fl ushVol call.

The volume signature. For HFS volumes, this field contains $4244.
The date and time of volume creation (initialization).

The date and time of last modification. This is not necessarily when
the volume was last flushed.

Volume attributes. The bits have these meanings:

Bit Meaning

0-5 Reserved

6 Set if the volume is busy (one or more files are open)
7 Set if the volume is locked by hardware

8-14 Reserved

15 Set if the volume is locked by software

The number of files in the root directory.

Data Organization in Memory 2-79

Jabeue a4
n

2-80

CHAPTER 2

File Manager

vchbVBMSt

VCbAI | ocPtr
vcbNmAl Bl ks
vcbAl Bl kSi z

vchd pSi z
vcbAl Bl St
vcbNxt CNI D
vcbFr eeBks
vcbVN

vcbDr vNum

vcbDRef Num

VCbFSI D

vcbVRef Num
vcbMAdr
vchbBuf Adr
vcbM.en
vchDi r | ndex
vcbDi rBl k
vcbVol BkUp
vchVSegNum
vcbhbW Cnt
vchXTd pSi z
vcbhCTd pSi z
vCbNnRt Di rs
vchFi | Cnt
vcbDi r Cnt
vcbFndr | nfo
vcbVCSi ze
vcbVBMCSI z
vchCQt I CSi z

The first block of the volume bitmap.
The start block of the next allocation search. Used internally.
The number of allocation blocks in the volume.

The allocation block size (in bytes). This value must always be a
multiple of 512 bytes.

The default clump size.

The first allocation block in the volume.

The next unused catalog node ID (directory ID or file ID).
The number of unused allocation blocks on the volume.

The volume name. This field consists of a length byte followed
by 27 bytes. Note that the volume name can occupy at most

27 characters; this is an exception to the normal file and directory
name limit of 31 characters.

The drive number of the drive on which the volume is located.
When a mounted volume is placed offline or ejected, vcbDr vNumis
set to 0.

The driver reference number of the driver used to access the
volume. When a volume is ejected, vcbDRef Numis set to the
previous value of vcbDr vNum(and hence is a positive number).
When a volume is placed offline, vcbDRef Numis set to the
negative of the previous value of vcbDr vNum(and hence is

a negative number).

An identifier for the file system handling the volume; it’s zero for
volumes handled by the File Manager and nonzero for volumes
handled by other file systems.

The volume reference number.

Used internally.

Used internally.

Used internally.

Used internally.

Used internally.

The date and time of the last volume backup.
Used internally.

The volume write count.

The clump size of the extents overflow file.
The clump size of the catalog file.

The number of directories in the root directory.
The number of files on the volume.

The number of directories on the volume.
Information used by the Finder.

Used internally.

Used internally.

Used internally.

Data Organization in Memory

CHAPTER 2

File Manager

vcbXTAIl Bks The size (in blocks) of the extents overflow file.
vcbhCTAI Bks The size (in blocks) of the catalog file.

vchbXTRef The path reference number for the extents overflow file.
vchCTRef The path reference number for the catalog file.

vebCt | Buf A pointer to the extents and catalog caches.

vcbhDi r 1 DM The directory last searched.

vchOf f sM The offspring index at the last search.

File Control Blocks

Each time a file is opened, the File Manager reads that file’s catalog entry and builds a
file control block (FCB) in the FCB buffer, which contains information about all access
paths. The FCB bulffer is a block in the system heap; the first word contains the length

of the buffer, and the remainder of the buffer is used to hold FCBs for open files.

Jabeue a4
n

The initial size of the FCB bulffer is determined by the system startup information stored
on a volume. Beginning in system software version 7.0, the File Manager attempts to
resize the FCB buffer whenever the existing buffer is filled.

You can find the beginning of any particular FCB by adding the size of all preceding
FCBs to the size of the FCB buffer length word (that is, 2). This offset from the head of
the FCB bulffer is used as the file reference number of the corresponding open file.
Because the current size of an FCB is 94 bytes, the first few valid file reference numbers
are 2, 96, 190, 284, 378, 472, and so on. The maximum size of an expandable FCB buffer is
32,535 bytes, so there is an absolute limit of 342 FCBs in the FCB buffer.

Note

The size and structure of an FCB will be different in future versions of
Macintosh system software. To be safe, you should get information from
the FCB allocated for an open file by calling the File Manager function
PBGet FCBI nf 0. O

When you close a file (for example, by calling FSCl ose), the FCB for that file is cleared,
and the File Manager may use that space to hold the FCB for a file that is opened at a
later time. Consequently, it is important that you do not attempt to close a file more
than once; you may inadvertently close a file that was opened by the system or by
another application.

WARNING

Closing a volume’s catalog file (perhaps by inadvertently calling
FSCl ose or PBCl ose twice with the same file reference number) may
result in damage to the volume’s file system and loss of data. a

The structure of a file control block is defined by the FCB data type.

TYPE FCB = {file control bl ock}
RECORD

f cbFl Num Longl nt ; {file ID}

f cbFl ags: I nt eger; {file flags}

Data Organization in Memory 2-81

2-82

CHAPTER 2

File Manager

fcbSBI k:

f cbECF:

f cbPLen:
fchCrPs:
fcbVPtr:

f cbBf Adr:

f cbFl Pos:
fcbd mpSi ze:
fcbBTCBPtr:
f cbExt Rec:
f cbFType:

f cbCat Pos:
fcbDirlD:

f cbCNane:

END;

Field descriptions
f cbFI Num

f cbFl ags

fcbSBI k
f cbEOF
fcbPLen
fcbCr Ps
fcbVvPtr

f cbBf Adr

f cbFI Pos
fcbd nmpSi ze
f cbBTCBPt r
f cbExt Rec

I nt eger; {reserved}

Longl nt ; {l ogical end-of-file}

Longl nt; {physi cal end-of-file}

Longl nt; {current file mark position}

Ptr; {pointer to volune control bl ock}
Ptr; {pointer to access path buffer}

I nt eger; {reserved}

Longl nt ; {file clunmp size}

Ptr; {pointer to B*-tree control bl ock}
Ext Dat aRec; {first three file extents}

Longl nt ; {file's four Finder type bytes}
Longl nt; {catal og hint for use on cl ose}
Longl nt; {file's parent directory |D}

String[31]; {name of file}

The file ID of this file.

Flags describing the status of the file. Currently the following bits
are defined:

Bit Meaning

0-7 Reserved

8 Set if data can be written to the file

9 Set if this FCB describes a resource fork

10 Set if the file has a locked byte range

11 Reserved

12 Set if the file has shared write permissions

13 Set if the file is locked (write-protected)

14 Set if the file’s clump size is specified in the FCB
15 Set if the file has changed since it was last flushed
Reserved.

The logical end-of-file of the file.
The physical end-of-file of the file.
The position of the mark.

A pointer to the volume control block of the volume containing
the file.

A pointer to the file’s access path buffer.
Reserved.

The clump size of the file.

A pointer to the file’s B*-tree control block.

An extent record (12 bytes) containing the first three extents of
the file.

Data Organization in Memory

CHAPTER 2

File Manager

f cbFType The file’s Finder type.

f cbCat Pos A catalog hint, used when you close the file.

fcbDirl D The file’s parent directory ID.

f cbCNane The file’s name (as contained in the volume catalog file).

B*-Tree Control Blocks

When the File Manager mounts a volume, it reads the B*-tree header node for both the
catalog file and the extents overflow file found on that volume and, for each file, creates
a B*-tree control block in memory. (See the section “Header Nodes” on page 2-68 for a
description of B*-tree header nodes.) The structure of a B*-tree control block is defined by

the BTCB data type.

TYPE BTCB =

RECORD
bt cFl ags: Si gnedByt e;
bt cResv: Si gnedByt €;
bt cRef Num I nt eger;
bt cKeyCr: ProcPtr:
bt cCQPt r: Longl nt;
bt cVar Ptr: Longl nt ;
btcLevel : I nt eger
bt cNodeM Longl nt;
bt cl ndexM I nt eger;
bt cDept h: I nt eger;
bt cRoot : Longl nt;
bt cNRecs: Longl nt ;
bt cFNode: Longl nt;
bt cLNode: Longl nt;
bt cNodeSi ze: I nt eger
bt cKeyLen: I nt eger
bt cNNodes: Longl nt;
bt cFree: Longl nt ;

END;

Field descriptions

{B*-tree control bl ock}

{flag byte}

{reserved}

{file reference nunber}

{pointer to key conparison routine}
{pointer to cache queue}
{pointer to B*-tree vari abl es}
{current |evel}

{current node nark}

{current index mark}

{current depth of tree}

{nunber of root node}

{nunber of leaf records in tree}
{nunber of first |eaf node}
{nunber of l|ast |eaf node}

{size of a node}

{maxi num | ength of a key}

{total nunber of nodes in tree}
{nunber of free nodes}

bt cFl ags A flag byte. Currently the following bits are defined:
Bit Meaning
4 Set if an existing index record must be deleted
5 Set if a new index record must be created
6 Set if the index key must be updated
7 Set if the block has changed since it was last flushed

Data Organization in Memory

2-83

Jabeue a4
n

2-84

CHAPTER 2

File Manager

bt cResv
bt cRef Num

bt cKeyCr
bt cCQPt r
bt cVar Ptr
bt cLevel
bt cNodeM
bt cl ndexM
bt hDept h
bt cRoot

bt cNRecs
bt cFNode
bt cLNode

bt cNodeSi ze

bt cKeyLen
bt cNNodes
bt cFr ee

Reserved.

The file reference number of the catalog or extents overflow file
corresponding to this control block.

A pointer to the routine used to compare keys.
A pointer to the cache queue.

A pointer to B*-tree variables.

The current level.

The current node mark.

The current index mark.

The current depth of the B*-tree.

The node number of the root node. The root node is the start of the
B*-tree structure; usually the root node is the first index node, but
it might be a leaf node if there are no index nodes.

The number of data records (records contained in leaf nodes).
The node number of the first leaf node.

The node number of the last leaf node.

The size (in bytes) of a node. Currently, this is always 512.
The length of the key records in each node.

The total number of nodes in the B*-tree.

The total number of free nodes in the B*-tree.

The Drive Queue

The File Manager maintains a list of all disk drives connected to the computer. It
maintains this list in the drive queue, which is a standard operating system queue. The
drive queue is initially created at system startup time. Elements are added to the queue
at system startup time or when you call the AddDr i ve procedure. The drive queue can
support any number of drives, limited only by memory space. Each element in the drive
queue contains information about the corresponding drive; the structure of a drive
queue element is defined by the Dr vQEI data type.

TYPE DrvCE
RECORD
gLi nk:
qType:
dQrive:

dQRref Num

dQFSslI D
dQrvSz:

dQDr vSz2:

END;

QEl enPtr; {next queue entry}

I nt eger; {flag for d@xrvSz and dQDrvSz2}

I nt eger; {drive nunber}

I nt eger; {driver reference nunber}

I nt eger; {file-systemidentifier}

I nt eger; {nunmber of | ogical blocks on drive}
I nt eger; {additional field for large drives}

Data Organization in Memory

CHAPTER 2

File Manager

Field descriptions
gLi nk A pointer to the next entry in the drive queue.
qType Used to specify the size of the drive. If the value of qType is 0,
the number of logical blocks on the drive is contained in the
dQDr vSz field alone. If the value of qType is 1, both dQDr vSz
and dQDr vSz 2 are used to store the number of blocks; in that case,
dQDr vSz2 contains the high-order word of this number
and dQDr vSz contains the low-order word.

dQDrive The drive number of the drive.

dQRef Num The driver reference number of the driver controlling the device on
which the volume is mounted.

dQFSI D An identifier for the file system handling the volume in the drive;

it's zero for volumes handled by the File Manager and nonzero for
volumes handled by other file systems.

dQDr vSz The number of logical blocks on the drive.
dQDrvSz2 An additional field to handle large drives. This field is used only if
the qType field contains 1.

The File Manager also maintains four flag bytes preceding each drive queue element.
These bytes contain the following information:

Byte Contents
0 Bit 7=1 if the volume on the drive is locked
1 0 if no disk in drive; 1 or 2 if disk in drive; 8 if nonejectable disk in drive;

$FC-$FF if disk was ejected within last 1.5 seconds; $48 if disk in drive is
nonejectable but driver wants a call

2 Used internally during system startup
3 Bit 7=0 if disk is single-sided

You can read these flags by subtracting 4 bytes from the beginning of a drive queue
element, as illustrated in Listing 2-11.

Listing 2-11 Reading a drive queue element’s flag bytes

FUNCTI ON Get Dri veFl ags (nyDCQEl enPtr: DrvQEIPtr): Longlnt;
TYPE
FlagPtr = “Longint; {pointer to the queue elenent flag bytes}
VAR
nyQFl agsPtr: Fl agPtr;
BEG N
{Just subtract 4 fromthe gueue el enent pointer.}
nyQFl agsPtr : = Fl agPtr (ORD4A(nyDQEl enPtr) - 4);
GetDriveFl ags := nyQFl agsPtr”;
END;

Data Organization in Memory 2-85

Jabeue a4
n

CHAPTER 2

File Manager

The Get Dri veFl ags function defined Listing 2-11 takes a pointer to a drive queue
element as a parameter. You can get a queue element pointer for a particular volume by
walking the drive queue until you find a queue element whose dQDr i ve field contains
the same value as the vcbDr vNumfield of that volume’s VCB. You can get a pointer to
the header of the drive queue by calling the File Manager function Get Dr vQHdr .

Note that the bit numbers given in this section use the standard MC68000 numbering
scheme; to access the correct bit using some Pascal routines, you must reverse that
numbering. For example, if you use the Toolbox Bi t Tst routine to determine whether a
particular disk is single-sided, you must test bit 24 (that is, 31 minus 7) of the returned
long integer. If you use the built-in Pascal function BTST, however, you can test the
indicated bit directly.

Assembly-Language Note
The global variable Dr vQHdr contains the header of the drive queue. O

File Manager Reference

This section describes the routines provided by the File Manager and the data structures
you must pass when calling those routines.

The “Data Structures” section shows the Pascal data structures for all the records and
parameter blocks that most applications are likely to use. If you need information about
data structures describing the structure of the information maintained on volumes or in
memory, see “Data Organization on Volumes” and “Data Organization in Memory”
earlier in this chapter.

The remaining sections describe the routines provided by the File Manager.

Data Structures

This section describes the data structures that your application uses to exchange
information with the File Manager.

File System Specification Record

2-86

The system software recognizes the file system specification record, which provides a
simple, standard way to specify the name and location of a file or directory. The file
system specification record is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD
vRef Num I nt eger; {vol urmre reference nunber}
par | D: Longl nt; {directory ID of parent directory}
nane: Str63; {filename or directory nane}

END;

File Manager Reference

CHAPTER 2

File Manager

Field descriptions

vRef Num

parl D

nanme

The volume reference number of the volume containing the specified

file or directory.

The directory ID of the directory containing the specified file or

directory.

The name of the specified file or directory.

The FSSpec record can describe only a file or a directory, not a volume. A volume can
be identified by its root directory, although the system software never uses an FSSpec
record to describe a volume. (The directory ID of the root’s parent directory is

f SRt Par | D, defined in the interface files. The name of the root directory is the same
as the name of the volume.)

If you need to convert a file specification into an FSSpec record, call the function
FSMakeFSSpec. Do not fill in the fields of an FSSpec record yourself.

Basic File Manager Parameter Block

Many of the low-level functions that manipulate files and volumes exchange information
with your application using the basic File Manager parameter block, defined by the
Par anBl ockRec data type.

Jabeue a4
n

TYPE Par anBl ockRec = {basic File Manager paraneter bl ock}
RECORD

gLi nk: CEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCndAddr : Ptr; {routine address}
i oConpl eti on: ProcPtr; {pointer to conpletion routine}
i oResul t: CSErr; {result code}
i ONamePtr: StringPtr; {poi nter to pathnane}
i oVRef Num I nt eger; {vol ume specification}

CASE Par anBl kType OF

i oPar am

(i oRef Num I nt eger; {file reference nunber}

i oVer sNum Si gnedByt e; {version nunber}
i oPer nesn: Si gnedByt e; {read/wite perm ssion}
i oM sc: Ptr; {m scel | aneous}
i oBuf fer: Ptr; {data buffer}
i oRegqCount : Longl nt ; {request ed nunber of bytes}
i 0Act Count : Longl nt ; {actual nunber of bytes}
i oPosMbde: I nt eger; {posi tioning nmode and newl i ne char.}
i oOPosOF f set : Longl nt); {positioning offset}

fil eParam

(i oFRef Num I nt eger; {file reference nunber}

i oFVer sNum Si gnedByt e; {file version nunber (unused)}

File Manager Reference 2-87

CHAPTER 2

File Manager

fillerl: Si gnedByt e; {reserved}

i oFDi r I ndex: I nt eger; {directory index}

i oFl Attrib: Si gnedByt e; {file attributes}

i oFl Ver sNum Si gnedByt e; {file version nunber (unused)}

i oFl Fndr | nf o: FI nf o; {informati on used by the Finder}

i oFl Num Longl nt ; {file 1D}

i oFl St Bl k: I nt eger; {first alloc. blk. of data fork}

i oFl LgLen: Longl nt ; {l ogi cal EOF of data fork}

i oFl PyLen: Longl nt; {physi cal EOF of data fork}

i oFl RSt Bl k: I nt eger; {first alloc. blk. of resource fork}
i oFl RLgLen: Longl nt ; {l ogi cal EOF of resource fork}

i oFl RPyLen: Longl nt; {physi cal EOF of resource fork}

i oFl Cr Dat : Longl nt; {date and tinme of creation}

i oFl MdDat : Longl nt); {date and tine of |ast nodification}

vol umePar am

(filler2: Longl nt; {reserved}

i oVol I ndex: I nt eger; {vol unme i ndex}

i oVCr Dat e: Longl nt; {date and tinme of initialization}

i oVLsBkUp: Longl nt; {date and tinme of last nodification}
i OVALr b: I nt eger; {volune attributes}

i OVNnFI s: I nt eger; {nunber of files in root directory}
ioVvDirSt: I nt eger; {first block of directory}

i oVBI Ln: I nt eger; {length of directory in bl ocks}

i OVNMAI BI ks: I nt eger; {nunmber of allocation bl ocks}

i oVAl Bl kSi z: Longl nt; {size of allocation bl ocks}

i oVd pSi z: Longl nt ; {default clunp size}

i Al Bl St : I nt eger; {first block in block map}

i 0VNxt FNum Longl nt; {next unused file |ID}

i oVFr Bl k: I nt eger); {nunmber of unused allocation bl ocks}

END;

The first eight fields are common to all three variants. Each variant also includes its own
unique fields.

Field descriptions for fields common to all variants

gLi nk A pointer to the next entry in the file I/ O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

ioTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

i oCndAddr The address of the routine that was called. (This field is used

internally by the File Manager.)

2-88 File Manager Reference

CHAPTER 2

File Manager

i oConpl etion

i oResul t

i oNanePt r

i oVRef Num

A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NI L for asynchronous calls with
no completion routine and is automatically set to NI L for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

A pointer to a pathname. Whenever a routine description specifies
thati oNanmePt r is used—whether for input, output, or both—

it's very important that you set this field to point to storage for a

St r 255 value (if you're using a pathname) or to NI L (if you're not).

A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

Field descriptions for the i oPar amvariant

i oRef Num
oVer sNum

oPer mssn
oM sc

oBuf f er

oReqCount
oAct Count
oPoshMbde

The file reference number of an open file.

A version number. This field is no longer used and you should
always set it to 0.

The access mode.

Depends on the routine called. This field contains either a new
logical end-of-file, a new version number, or a pointer to a new
pathname. Because i 0M sc is of type Pt r, you'll need to perform
type coercion to interpret the value of i OM sc correctly when it
contains an end-of-file (a Longl nt value) or version number (a

Si gnedByt e value).

A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _W i t e calls.

The requested number of bytes to be read, written, or allocated.
The number of bytes actually read, written, or allocated.

The positioning mode for setting the mark. Bits 0 and 1 of this field
indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST
f SAt Mar k = 0; {at current mark}
fsFrontt art = 1; {from beginning of file}
f sFronmlLEOF = 2; {fromlogical end-of-file}
f sFr omvar k = 3; {relative to current mark}

You can set bit 4 of the i oPosMbde field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately

File Manager Reference 2-89

Jabeue a4
n

2-90

CHAPTER 2

File Manager

i oPosOF f set

read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST
rdverify = 64, {use read-verify node}

You can set bit 7 to read a continuous stream of bytes, and place
the ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

The offset to be used in conjunction with the positioning mode.

Field descriptions for the fi | ePar amvariant

i oFRef Num
i oFVer sNum

fillerl
i oFDi r | ndex
i oFl Attrib

oFI Ver sNum

oFl Fndr I nfo

oFl Num
oFl St Bl k

oFl LgLen
oFl PyLen
oFl RSt Bl k

oFl RLgLen

oFl RPyLen
oFl Cr Dat

oFl MdDat

The file reference number of an open file.

A file version number. This field is no longer used and you should
always set it to 0.

Reserved.
An index for use with the PBHGet FI nf o function.
File attributes. The bits in this field have these meanings:

Bit Meaning

0 Set if file is locked

2 Set if resource fork is open
3 Set if data fork is open

4 Set if a directory

7 Set if file (either fork) is open

A file version number. This feature is no longer supported, and you
must always set this field to 0.

Information used by the Finder. (See the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials for details.)

A file ID.

The first allocation block of the data fork. This field contains 0 if the
file’s data fork is empty.

The logical end-of-file of the data fork.
The physical end-of-file of the data fork.

The first allocation block of the resource fork. This field contains 0 if
the file’s resource fork is empty.

The logical end-of-file of the resource fork.
The physical end-of-file of the resource fork.

The date and time of the file’s creation, specified in seconds since
midnight, January 1, 1904.

The date and time of the last modification to the file, specified in
seconds since midnight, January 1, 1904.

File Manager Reference

CHAPTER 2

File Manager

Field descriptions for the vol umePar amvariant

filler2

i oVol | ndex
i oVCr Dat e
oVLsBkUp

oVAtrb
OoVNnFl s
oVDi r St
oVBI Ln
oVNMAI Bl ks
oVAI Bl kSi z
oVd pSi z
oAl Bl St
OoVNxt FNum
oVFr Bl k

HFS Parameter Block

Reserved.

The volume index.

The date and time of volume initialization.

The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

The volume attributes.

The number of files in the root directory.
The first block of the volume directory.
Length of directory in blocks.

The number of allocation blocks.

The size of allocation blocks.

Jabeue a4
n

The volume clump size.

The first block in the volume map.

The next unused file number.

The number of unused allocation blocks.

Most of the low-level HFS functions exchange information with your application using
the HFS parameter block, defined by the HPar anBl ockRec data type.

TYPE HPar anBl ockRec

RECORD

gLi nk:

qType:

i oTr ap:

i oCndAddr :

i oConpl etion:
i oResul t:

i oNanePt r:

i oVRef Num

CASE Par anBl kType OF

i oPar am

(i oRef Num

oVer sNum
oPer nssn:
oM sc:

oBuffer:
oReqCount :
oAct Count :
oPosMbde:
oPosOf f set :

CEl enPtr;
I nt eger;
I nt eger;
Ptr;
ProchPtr;
OSErr;
StringPtr;
I nt eger;

I nt eger;

Si gnedByt e;
Si gnedByt e;
Ptr;

Ptr;

Longl nt ;
Longl nt;

I nt eger;
Longl nt);

File Manager Reference

{HFS paraneter bl ock}

{next queue entry}

{queue type}

{routine trap}

{routine address}

{pointer to conpletion routine}
{result code}

{poi nter to pathnane}

{vol ume specification}

{file reference nunber}

{version nunber}

{read/write permi ssion}

{m scel | aneous}

{data buffer}

{requested nunmber of bytes}

{actual nunber of bytes}

{posi tioning nmode and newl i ne char.}
{positioning offset}

2-91

CHAPTER 2

File Manager

fil eParam

2-92

(i oFRef Num

oFVer sNum

filler1l:

oFDi r | ndex:
oFl Attri b:
oFI Ver sNum

oFl Fndr | nf o:

oDirlD:

oFl St Bl k:
oFl LgLen:
oFl PyLen:
oFl RSt Bl k:
oFl RLgLen:
oFl RPyLen:
oFl Cr Dat :
oFl MiDat :

vol umePar am
(filler2:

oVol | ndex:
oVCr Dat e:
oVLsMod:
OoVAL r b:
OVNn¥l s:
oVBi t Map:
oAl | ocPtr:
oVNMAl Bl ks:
oVAI Bl kSi z:
oVd pSi z:
oAl Bl St
oVNxt CNI D:
oVFr Bl k:
oVSi g\Wr d
oVDr vl nf o:
oVDRef Num
oVFSI D
oVBKkUp:
oVSegNum
oVW Cnt :
oVFi | Cnt:
oVDi r Cnt :
oVFndr | nf o:

accessParam
(filler3:

I nt eger;

Si gnedByt e
Si gnedByt e
I nt eger;

Si gnedByt e
Si gnedByt e
FI nf o;
Longl nt;

I nt eger;
Longl nt ;
Longl nt ;

I nt eger;
Longl nt;
Longl nt ;
Longl nt ;
Longl nt);

Longl nt ;
I nt eger;
Longl nt;
Longl nt;
| nt eger;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
Longl nt ;
Longl nt;
I nt eger;
Longl nt ;
I nt eger;
I nt eger;
I nt eger;
| nt eger;
I nt eger;
Longl nt;
I nt eger;
Longl nt ;
Longl nt ;
Longl nt;

{file reference nunber}

{file version nunber (unused)}
{reserved}

{directory index}

{file attributes}

{file version nunber (unused)}
{information used by the Finder}
{directory IDor file ID}

{first alloc. blk. of data fork}

{l ogi cal ECF of data fork}

{physi cal EOF of data fork}

{first alloc. blk. of resource fork}
{l ogi cal ECF of resource fork}
{physi cal EOF of resource fork}
{date and time of creation}

{date and tinme of last nodification}

{reserved}

{vol une i ndex}

{date and time of initialization}
{date and tinme of last nodification}
{volume attributes}

{nunber of files in root directory}
{first block of volune bitmp}
{first block of next new file}
{nunber of allocation bl ocks}

{size of allocation blocks}
{default clunp size}

{first block in volunme nap}

{next unused node | D}

{nunmber of unused allocation bl ocks}
{vol urme si gnat ur e}

{drive nunber}

{driver reference numnber}
{file-systemidentifier}

{date and tinme of |ast backup}
{used internally}

{volume wite count}

{nunber of files on vol une}

{nunber of directories on vol une}

ARRAY[1..8] OF Longint);

I nt eger;

File Manager Reference

{information used by the Finder}

{reserved}

CHAPTER 2

File Manager

i oDenyModes:
filler4:
fillerb:

i OACUser :
filleré6:

i OACOmner | D
i 0ACGr oupl D
i OACAccess:

obj Par am

(filler7:

i 0Obj Type:

i 0Obj NanePtr:
i 0Obj I D

copyPar am

(i oDst VRef Num
filler8:
i oNewNane:
i 0CopyNane:
i oNewDi r| D

wdPar am

(filler9:

i oVDI ndex:

i oVWDPr ocl D
i oOVWDVRef Num
fillerl0:
fillerll:
fillerl2:
fillerl3:

i oVDDI r | D

fi dPar am

(filler14:

i oDest NanmePtr:
fillerls:
ioDestDirl D
fillerl6:
fillerl7:
ioSrcDirlD;
fillerl8:

i oFi |l el D

csPar am

(i oMat chPtr:

i oReqiat chCount :
i 0Act Mat chCount :

i oSearchBits
i oSear chl nfol:

I nt eger;
I nt eger;
Si gnedByt e
Si gnedByt e
Longl nt;
Longl nt;
Longl nt ;
Longlnt);

I nt eger;
| nt eger;
Ptr;

Longl nt);

I nt eger;
I nt eger;
Ptr;

Ptr;
Longl nt);

I nt eger;
I nt eger;
Longl nt ;
I nt eger;
I nt eger;
Longl nt;
Longl nt ;
Longl nt ;
Longl nt);

Longl nt ;
StringPtr;
Longl nt;
Longl nt;
Longl nt ;
Longl nt ;
Longl nt;
I nt eger;
Longl nt);

FSSpecArrayPtr;
Longl nt;
Longl nt ;
Longl nt ;

Cl nfoPBPt r;

File Manager Reference

{access node information}
{reserved}

{reserved}

{user access rights}
{reserved}

{owner | D}

{group | D}

{directory access rights}

{reserved}

{function code}

{ptr to returned creator/group nane}
{creator/group | D}

Jabeue a4
n

{destination volunme identifier}
{reserved}

{pointer to destination pathnane}
{pointer to optional nane}
{destination directory |D}

{reserved}

{working directory index}

{working directory user identifier}
{working directory's vol. ref. num}
{reserved}

{reserved}

{reserved}

{reserved}

{working directory's directory |D}

{reserved}

{pointer to destination fil enane}
{reserved}

{destination parent directory |D}
{reserved}

{reserved}

{source parent directory |D}
{reserved}

{file ID}

{pointer to array of matches}

{max. nunber of matches to return}
{actual nunber of matches}

{enable bits for matching rul es}
{pointer to val ues and | ower bounds}

2-93

2-94

CHAPTER 2

File Manager

i oSear chl nf 02: Cl nf oPBPt r; {pointer to masks and upper bounds}
i oSear chTi ne: Longl nt; {maxi mumtine to search}
i oCat Posi tion: Cat Posi tionRec; {current catal og position}
i oOpt Buf fer: Ptr; {pointer to optional read buffer}
i 0Opt Buf Si ze: Longlnt); {l'ength of optional read buffer}
forei gnPrivParam
(filler21l: Longl nt ; {reserved}
filler22: Longl nt; {reserved}
i oForei gnPri vBuffer: Ptr; {privileges data buffer}
i oForei gnPri vReqCount: Longlnt; {size of buffer}
i oForei gnPrivAct Count: Longlnt; {amount of buffer used}
filler23: Longl nt; {reserved}
i oForei gnPrivDirlD: Longl nt; {parent directory ID of }
{ foreign file or directory}
i oForei gnPrivlnfol: Longl nt ; {privileges data}
i oForei gnPri vl nfo2: Longl nt; {privileges data}
i oForei gnPri vl nfo3: Longl nt; {privileges data}
i oForei gnPri vl nfo4: Longlnt); {privileges data}

END;

The first eight fields are common to all ten variants. Each variant also includes its own

unique fields.

Field descriptions
gLi nk

qType
i oTrap
i oCndAddr

i oConpl etion

i oResul t

i oNanmePt r

common to all variants
A pointer to the next entry in the file I/ O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

The queue type. (This field is used internally by the File Manager.)

The trap number of the routine that was called. (This field is used
internally by the File Manager.)

The address of the routine that was called. (This field is used
internally by the File Manager.)

A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NI L for asynchronous calls with
no completion routine and is automatically set to NI L for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

A pointer to a pathname. Whenever a routine description specifies
that i oNanePt r is used—whether for input, output, or both—it’s
very important that you set this field to point to storage for a

St r 255 value (if you're using a pathname) or to NI L (if you're not).

File Manager Reference

CHAPTER 2

File Manager

i oVRef Num A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

Field descriptions for the i oPar amvariant

i oRef Num The file reference number of an open file.

i oVer sNum A version number. This field is no longer used and you should
always set it to 0.

i oPer mssn The access mode.

i oM sc Depends on the routine called. This field contains either a new

logical end-of-file, a new version number, a pointer to an access
path buffer, or a pointer to a new pathname. Because i oM sc is of
type Pt r, you'll need to perform type coercion to interpret the value
of i oM sc correctly when it contains an end-of-file (a Longl nt
value) or version number (a Si gnedByt e value).

i oBuf f er A pointer to a data buffer into which data is written by _Read calls
and from which data is read by _W i t e calls.

i oReqCount The requested number of bytes to be read, written, or allocated.
i 0Act Count The number of bytes actually read, written, or allocated.
i oPosMbde The positioning mode for setting the mark. Bits 0 and 1 of this field

indicate how to position the mark; you can use the following
predefined constants to set or test their value:

CONST
f sAt Mar k = 0; {at current mark}
fsFrontst art = 1; {frombeginning of file}
f sFr onLECF = 2; {fromlogical end-of-file}
f sFromvar k = 3; {relative to current mark}

You can set bit 4 of the i oPosMdde field to request that the data be
cached, and you can set bit 5 to request that the data not be cached.
You can set bit 6 to request that any data written be immediately
read; this ensures that the data written to a volume exactly matches
the data in memory. To request a read-verify operation, add the
following constant to the positioning mode:

CONST
rdverify = 64, {use read-verify node}

You can set bit 7 to read a continuous stream of bytes, and place the
ASCII code of a newline character in the high-order byte to
terminate a read operation at the end of a line.

i oOPosOX f set The offset to be used in conjunction with the positioning mode.

Field descriptions for the f i | ePar amvariant
i oFRef Num The file reference number of an open file.

i oFVer sNum A file version number. This field is no longer used and you should
always set it to 0.

File Manager Reference 2-95

Jabeue a4
n

2-96

CHAPTER 2

File Manager

fillerl
i oFDi r | ndex
i oFl Attrib

obDirlD
oFl St Bl k

oFl LgLen
oFl PyLen
oFl RSt Bl k
oFl RLgLen

oFl RPyLen
oFl Cr Dat

i oFl MdDat

oFl Ver sNum

oFl Fndr I nfo

Reserved.
An index for use with the PBHGet FI nf o function.
File attributes. The bits in this field have these meanings:

Bit Meaning

0 Set if file is locked

2 Set if resource fork is open
3 Set if data fork is open

4 Set if a directory

7 Set if file (either fork) is open

A file version number. This field is no longer used and you should
always set it to 0.

Information used by the Finder.
A directory ID.

The first allocation block of the data fork. This field contains 0 if the
file’s data fork is empty.

The logical end-of-file of the data fork.

The physical end-of-file of the data fork.

The first allocation block of the resource fork.
The logical end-of-file of the resource fork.
The physical end-of-file of the resource fork.

The date and time of the file’s creation, specified in seconds since
midnight, January 1, 1904.

The date and time of the last modification to the file, specified in
seconds since midnight, January 1, 1904.

Field descriptions for the vol umePar amvariant

filler2
oVol | ndex
oVCr Dat e
oVLsMod

oVAtrb
OoVNn+l s
0VBi t Map
OAl | ocPtr
oVNMAl Bl ks
oVAI Bl kSi z
oVd pSi z
oAl Bl St
oVNxt CNI D
oVFr Bl k

Reserved.
An index for use with the PBHGet VI nf o function.
The date and time of volume initialization.

The date and time the volume information was last modified. (This
field is not changed when information is written to a file and does
not necessarily indicate when the volume was flushed.)

The volume attributes.

The number of files in the root directory.

The first block of the volume bitmap.

The block at which the next new file starts. Used internally.
The number of allocation blocks.

The size of allocation blocks.

The clump size.

The first block in the volume map.

The next unused catalog node ID.

The number of unused allocation blocks.

File Manager Reference

CHAPTER 2

File Manager

i oVSi g\Word

oVDr vl nfo
oVDRef Num

oVFSI D

oVBkUp

oVSeqNum
oVW Cnt

oVFi | Cnt
oVDi r Cnt

oVFndr | nfo

A signature word identifying the type of volume; it's $D2D7 for
MFS volumes and $4244 for volumes that support HFS calls.

The drive number of the drive containing the volume.

For online volumes, the reference number of the I/O driver for the
drive identified by i oVDr vI nf 0.

The file-system identifier. It indicates which file system is servicing
the volume; it’s zero for File Manager volumes and nonzero for
volumes handled by an external file system.

The date and time the volume was last backed up (it’s 0 if never
backed up).

Used internally.
The volume write count.
The total number of files on the volume.

The total number of directories (not including the root directory) on
the volume.

Information used by the Finder.

Field descriptions for the accessPar amvariant
filler3

oDenyModes

filler4d
filler5

0ACUser

filler6

File Manager Reference

O0ACOmer | D
0ACG oupl D
0ACAccess

Reserved.

Access mode information. The bits in this field have these meanings:

Bit Meaning

0 If set, request read permission

1 If set, request write permission

2-3 Reserved; must be 0

4 If set, deny other readers access to this file
5 If set, deny other writers access to this file
6-15 Reserved; must be 0

Reserved.

Reserved.

The user’s access rights for the specified directory. The bits in this
field have the following meanings:

Bit Meaning

0 Set if user does not have See Folder privileges

1 Set if user does not have See Files privileges

2 Set if user does not have Make Changes privileges
3-6 Reserved; always set to 0

7 Set if user is not owner of the directory

Reserved.

The owner ID.

The group ID.

The directory access privileges. See the section “Directory Access
Privileges,” beginning on page 2-18, for a complete description of
this field.

2-97

Jabeue a4
n

2-98

CHAPTER 2

File Manager

Field descriptions for the obj Par amvariant
filler7 Reserved.

i oCbj Type A function code. The values passed in this field are determined by
the routine to which you pass this parameter block.

i oCbj NanePt r A pointer to the returned creator/group name.
ioQoj I D The creator/group ID.

Field descriptions for the copyPar amvariant
i oDst VRef Num A volume reference number for the destination volume.
filler8 Reserved.

i oNewNane A pointer to the destination pathname.
i 0CopyNane A pointer to an optional name.
i oONewDi r 1 D A destination directory ID.

Field descriptions for the wdPar amvariant

filler9 Reserved.

i oVDI ndex An index to working directories.

i oWDPr ocl D The working directory user identifier.

i oOWDVRef Num The volume reference number for the working directory.
filler10 Reserved.

fillerll Reserved.

fillerl2 Reserved.

fillerl3 Reserved.

i oVWDDi r I D The working directory’s directory ID.

Field descriptions for the f i dPar amvariant

fillerl4 Reserved.

i oDest NanePtr A pointer to the name of the destination file.
fillerl5 Reserved.

ioDestDirlD The parent directory ID of the destination file.
fillerl6 Reserved.

fillerl7 Reserved.

ioSrcDirlD The parent directory ID of the source file.
fillerl8 Reserved.

i oFil el D The file ID.

Field descriptions for the csPar amvariant

i oMat chPt r A pointer to an array of FSSpec records in which the file and
directory names that match the selection criteria are returned. The
array must be large enough to hold the largest possible number of
FSSpec records, as determined by the i oReqMat chCount field.

i oRegMat chCount
The maximum number of matches to return. This number should be
the number of FSSpec records that will fit in the memory pointed

File Manager Reference

CHAPTER 2

File Manager

i oAct Mat chCount

i oSearchBits

i oSear chl nfol

i oSear chl nf 02

i oSear chTi me

i oCat Position

i 0Opt Buf f er

i 00pt Buf Si ze

to by i oMat chPt r. You can use this field to avoid a possible excess
of matches for criteria that prove to be too general (or to limit the
length of a search if the i 0Sear chTi ne field isn’t used).

The number of actual matches found.

The fields of the parameter blocks i oSear chl nf 0ol and

i 0Sear chl nf 02 that are relevant to the search. See “Searching a
Volume” beginning on page 2-39 for constants you can add to
determine a value fori oSear chBi t s.

A pointer to a Cl nf oPBRec parameter block that contains values
and the lower bounds of ranges for the fields selected by
i oSearchBits.

A pointer to a second Cl nf oPBRec parameter block that contains
masks and upper bounds of ranges for the fields selected by
i oSear chBits.

A time limit on a search, in Time Manager format. Use this field to
limit the run time of a single call to PBCat Sear ch. A value of 0
imposes no time limit. If the value of this field is positive, it is
interpreted as milliseconds. If the value of this field is negative, it is
interpreted as negated microseconds.

A position in the catalog where searching should begin. Use this
field to keep an index into the catalog when breaking down the
PBCat Sear ch search into a number of smaller searches. This field
is valid whenever PBCat Sear ch exits because it either spends the
maximum time allowed by i 0Sear chTi e or finds the maximum
number of matches allowed by i oRegMat chCount .

To start at the beginning of the catalog, setthei ni ti al i ze
field of i oCat Posi ti on to 0. Before exiting after an interrupted
search, PBCat Sear ch sets that field to the next catalog entry to
be searched.

To resume where the previous call stopped, pass the entire

Cat Posi t i on record returned by the previous call as input

to the next.

A pointer to an optional read buffer. The i 0Opt Buf f er and

i oQpt Buf Si ze fields let you specify a part of memory as a read
buffer, increasing search speed.

The size of the buffer pointed to by i 0oOpt Buf f er. Buffer size
effectiveness varies with models and configurations, but a 16 KB
buffer is likely to be optimal. The size should be at least 1024 bytes
and should be an integral multiple of 512 bytes.

Field descriptions for the f or ei gnPri vPar amvariant

filler21l
filler22

Reserved.
Reserved.

i oFor ei gnPri vBuf f er

File Manager Reference

A pointer to a buffer containing access-control information about
the foreign file system.

2-99

Jabeue a4
n

CHAPTER 2

File Manager

i oForei gnPri vReqCount

The size of the buffer pointed to by the i oFor ei gnPri vBuf f er field.

i oFor ei gnPri vAct Count

The amount of the buffer pointed to by the i oFor ei gnPri vBuf f er
field that was actually used to hold data.

filler23 Reserved.
i oForei gnPrivDirlD

The parent directory ID of the foreign file or directory.

i oForei gnPrivlnfol

Along word that may contain privileges data.

i oForei gnPrivlnfo2

Along word that may contain privileges data.

i oForei gnPrivlnfo3

Along word that may contain privileges data.

i oForei gnPri vl nfo4

Along word that may contain privileges data.

Catalog Information Parameter Blocks

The low-level functions PBGet Cat | nf o, PBSet Cat | nf 0, and PBCat Sear ch exchange
information with your application using the catalog information parameter block, which is
defined by the Cl nf oPBRec data type. There are two variants of this record, hFi | el nf o
and di r | nf o, which describe files and directories, respectively.

TYPE Cl nf oPBRec = {catal og information paraneter bl ock}
RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCrdAddr : Ptr; {routine address}
i oConpl etion: ProcPtr; {pointer to conpletion routine}
i oResul t: OSErr; {result code}
i oNanmePtr: StringPtr; {poi nter to pathnane}
i oVRef Num I nt eger; {vol une specification}
i oFRef Num I nt eger; {file reference nunber}
i oFVer sNum Si gnedByt e; {version nunber}
fillerl: Si gnedByt e; {reserved}
i oFDi r 1 ndex: I nt eger; {directory index}
i oFl Attrib: Si gnedByt e; {file or directory attributes}
i 0ACUser : Si gnedByt €; {directory access rights}
CASE Cl nfoType OF
hFi | el nf o:
(i oFl Fndr I nf o: FI nf o; {information used by the Finder}
ioDirlD: Longl nt ; {directory ID or file ID}
i oFl St Bl k: I nt eger; {first alloc. blk. of data fork}
2-100 File Manager Reference

dirl
(i
[

[

CHAPTER 2

File Manager

oFl LgLen:
oFl PyLen:
oFl RSt BI k:
oFl RLgLen:
oFl RPyLen:
oFl Cr Dat :
oFl MiDat :
oFl| BkDat :
oFl XFndr | nf o:
oFl Par | D
oFl C pSi z:

oDr Usr Wis:
oDrDirl D
oDr NnFl s:

filler3:

END;

oDr Cr Dat :
i oDr MdDat :
oDr BkDat :
i oDr Fndr | nf o:
i oDr Par | D:

Longl nt; {l ogi cal ECF of data fork}

Longl nt ; {physi cal ECF of data fork}

I nt eger; {first alloc. blk. of resource fork}
Longl nt; {l ogi cal ECF of resource fork}

Longl nt ; {physi cal ECF of resource fork}
Longl nt; {date and time of creation}

Longl nt; {date and tinme of last nodification}
Longl nt ; {date and tine of |ast backup}

FXI nf o; {addi tional Finder infornation}
Longl nt; {file parent directory |D}

Longl nt); {file' s clunmp size}

Dl nf o; {information used by the Finder}
Longl nt ; {directory | D}

I nt eger; {nunmber of files in directory}
ARRAY[1..9] OF Integer

Longl nt ; {date and tine of creation}

Longl nt; {date and tinme of last nodification}
Longl nt; {date and tinme of |ast backup}

DXI nf o; {addi tional Finder information}
Longlnt); {directory's parent directory |D}

The first 14 fields are common to both variants. Each variant also includes its own

unique fields.

Field descriptions common to both variants

gLi nk

qType
i oTrap

i oCndAddr

i oConpl etion

i oResul t

A pointer to the next entry in the file I/ O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

The queue type. (This field is used internally by the File Manager.)

The trap number of the routine that was called. (This field is used
internally by the File Manager.)

The address of the routine that was called. (This field is used
internally by the File Manager.)

A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NI L for asynchronous calls with no
completion routine and is automatically set to NI L for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

File Manager Reference 2-101

Jabeue a4
n

2-102

CHAPTER 2

File Manager

i oNanmePt r

i oVRef Num

i oFRef Num
i oFVer sNum

fillerl
i oFDi r | ndex

i oFl Attrib

A pointer to a pathname. Whenever a routine description specifies
thati oNanePt r is used—whether for input, output, or both—

it's very important that you set this field to point to storage for a

St r 255 value (if you're using a pathname) or to NI L (if you're not).

A volume specification. You can specify a volume using a volume
reference number, a drive number, a working directory reference
number, or 0 for the default drive.

The file reference number of an open file.

A file version number. This field is no longer used and you should
always set it to 0.

Reserved.

A file and directory index. If this field contains a positive number,
PBGet Cat | nf 0 returns information about the file or directory
having that directory index in the directory specified by the

i oVRef Numfield. (If i oVRef Numcontains a volume reference
number, the specified directory is that volume’s root directory.)

If this field contains 0, PBGet Cat | nf o returns information about
the file or directory whose name is specified in the i oNamePt r field
and that is located in the directory specified by the i oVRef Num
field. (Once again, if i 0VRef Numcontains a volume reference
number, the specified directory is that volume’s root directory.)

If this field contains a negative number, PBGet Cat | nf o0 ignores the
i oNamePt r field and returns information about the directory
specified in the i oDi r | Dfield. If both i oDi r | Dand i oVRef Num
are set to 0, PBGet Cat | nf o returns information about the current
default directory.

File or directory attributes. For files, the bits in this field have the
following meanings:

Bit Meaning

0 Set if file is locked

1 Reserved

2 Set if resource fork is open

3 Set if data fork is open

4 Set if a directory

5-6 Reserved

7 Set if file (either fork) is open

For directories, the bits in this field have the following meanings:

Bit Meaning

0 Set if the directory is locked
Reserved

2 Set if the directory is within a shared area of the
directory hierarchy

3 Set if the directory is a share point that is mounted by
some user

File Manager Reference

CHAPTER 2

File Manager

i o0ACUser

Bit Meaning

4 Set if the item is a directory

5 Set if the directory is a share point
67 Reserved

The user’s access rights for the specified directory. The bits in this
field have the following meanings:

Bit Meaning
0 Set if user does not have See Folder privileges

Set if user does not have See Files privileges

2 Set if user does not have Make Changes privileges
3-6 Reserved; always set to 0
7 Set if user is not owner of the directory

For example, if you call PBGet Cat | nf o for a particular shared
volume and i 0ACUser returns 0, you know that the user is the
owner of the directory and has complete privileges to it.

Field descriptions for the hFi | el nf o variant

i oFl Fndr I nfo
ioDirID

oFl St Bl k

oFl LgLen
oFl PyLen
oFl RSt Bl k
oFl RLgLen

oFl RPyLen
oFl Cr Dat

oFl MdDat

oFl BkDat

oFl XFndr I nfo

oFl Par| D
oFl A pSi z

File Manager Reference

Information used by the Finder.

A directory ID or file ID. On input to PBGet Cat | nf o, this field
contains a directory ID (which is used only if the i oFDi r | ndex
field is negative). On output, this field contains the file ID of the
specified file.

The first allocation block of the data fork. This field contains 0 if the
file’s data fork is empty.

The logical end-of-file of the data fork.

The physical end-of-file of the data fork.

The first allocation block of the resource fork.

The logical end-of-file of the resource fork.

The physical end-of-file of the resource fork.

The date and time of the file’s creation, specified in seconds since
midnight, January 1, 1904.

The date and time of the last modification to the file, specified in
seconds since midnight, January 1, 1904.

The date and time of the last backup to the file, specified in seconds
since midnight, January 1, 1904.

Additional information used by the Finder. (See the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials
for details.)

The directory ID of the file’s parent.

The clump size to be used when writing the file; if it's 0, the
volume’s clump size is used when the file is opened.

2-103

Jabeue a4
n

CHAPTER 2

File Manager

Field descriptions for the di r | nf o variant

i oDr Usr Wis Information used by the Finder.

ioDrDirlD A directory ID. On input to PBGet Cat | nf o, this field contains a
directory ID (which is used only if the value of the i oFDi r | ndex
field is negative). On output, this field contains the directory ID of
the specified directory.

i oDr NnFl s The number of files in the directory.

filler3 Reserved.

i oDr Cr Dat The date and time of the directory’s creation, specified in seconds
since midnight, January 1, 1904.

i oDr MiDat The date and time of the last modification to the directory, specified
in seconds since midnight, January 1, 1904.

i oDr BkDat The date and time of the last backup to the directory, specified in

seconds since midnight, January 1, 1904.
i oDr Fndr I nfo Additional information used by the Finder.
i oDr Par 1 D The directory ID of the specified directory’s parent.

Catalog Position Records

When you call the PBCat Sear ch function to search a volume’s catalog file, you can
specify (in the i oCat Posi t i on field of the parameter block passed to PBCat Sear ch) a
catalog position record. If a catalog search consumes more time than is allowed by the

i oSear chTi ne field, PBCat Sear ch stores a directory-location index in that record;
when you call PBCat Sear ch again, it uses that record to resume searching where it left
off. A catalog position record is defined by the Cat Posi t i onRec data type.

TYPE CatPositionRec = {catalog position record}
RECORD
initialize: Longl nt ; {starting point}
priv: ARRAY[1..6] OF Integer; {private data}
END;

Field descriptions

initialize The starting point of the catalog search. To start searching at
the beginning of a catalog, specify 0 in this field. To resume a
previous search, pass the value returned by the previous call
to PBCat Sear ch.

priv An array of integers that is used internally by PBCat Sear ch.

Catalog Move Parameter Blocks

The low-level HFS function PBCat Move uses the catalog move parameter block defined
by the CMbvePBRec data type.

2-104 File Manager Reference

CHAPTER 2

File Manager

TYPE ChbvePBRec

RECORD
gLi nk:
qType:
i oTr ap:
i oCndAddr :

i oConpl etion:

i OResul t:

i oNanmePtr:
i oVRef Num
fillerl:

i oNewNane:
filler2:

i oNewDi r | D

filler3:
ioDirlD:
END;

Field descriptions

gLi nk
qType

i oTrap

i oCndAddr

i oConpl etion

i oResul t

i oNamePtr

i oVRef Num

fillerl

File Manager Reference

= {catal og nove paraneter bl ock}

QEl enPtr; {next queue entry}
I nt eger; {queue type}
I nt eger; {routine trap}

Ptr; {routine address}

ProcPtr; {pointer to conpletion routine}
OSErr; {result code}

StringPtr; {pointer to pathnane}

I nt eger; {vol une specification}

Longl nt ; {reserved}

StringPtr; {name of new directory}

Longl nt; {reserved}

Longl nt ; {directory I D of new directory}

ARRAY[1..2] OF Longlnt; {reserved}
Longl nt; {directory ID of current directory}

A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

The queue type. (This field is used internally by the File Manager.)

The trap number of the routine that was called. (This field is used
internally by the File Manager.)

The address of the routine that was called. (This field is used
internally by the File Manager.)

A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NI L for asynchronous calls with no
completion routine and is automatically set to NI L for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

The result code of the function. For synchronous calls, this field is the
same as the result code of the function call itself. To determine when
an asynchronous call has actually been completed, your application
can poll this field; it’s set to a positive number when the call is made
and receives the actual result code when the call is completed.

A pointer to a pathname. Whenever a routine description specifies
thati oNamePt r is used—whether for input, output, or both—it’s
very important that you set this field to point to storage for a St r 255
value (if you're using a pathname) or to NI L (if you're not).

A volume specification (volume reference number, working directory
reference number, drive number, or 0 for default volume).

Reserved.

2-105

Jabeue a4
n

CHAPTER 2

File Manager

i oNewNane

filler2
i oNewDi r|I D

filler3
ioDirlID

The name of the directory into which the specified file or directory
is to be moved.

Reserved.

The directory ID of the directory into which the specified file or
directory is to be moved.

Reserved.

The current directory ID of the file or directory to be moved (used
in conjunction with the i oVRef Numand i oNanePt r fields).

Working Directory Parameter Blocks

2-106

The low-level HFS functions PBOpenWD, PBCl oseWD, and PBGet VDI nf 0 use the
working directory parameter block defined by the WDPBRec data type.

TYPE WDPBRec

= {working directory paraneter bl ock}

RECORD

gLi nk: QEl enPtr; {next queue entry}

gType: I nt eger; {queue type}

i oTr ap: I nt eger; {routine trap}

i oCrdAddr : Ptr; {routine address}

i oConpl etion: ProcPtr; {pointer to conpletion routine}

i oResul t: CSErr; {result code}

i oNamePtr: StringPtr; {pointer to pathnane}

i oVRef Num I nt eger; {vol une specification}

fillerl: I nt eger; {reserved}

i oVWDI ndex: I nt eger; {working directory index}

i oVWDPr ocl D; Longl nt; {working directory user identifier}

i oOVWDVRef Num I nt eger; {working directory's vol. ref. num}

filler2: ARRAY[1..7] OF Integer; {reserved}

i oVWDDi r | D Longl nt; {working directory's directory |D}
END;

Field descriptions
gLi nk

qType
i oTrap
i oCndAddr

i oConpl eti on

A pointer to the next entry in the file I/ O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

The queue type. (This field is used internally by the File Manager.)

The trap number of the routine that was called. (This field is used
internally by the File Manager.)

The address of the routine that was called. (This field is used
internally by the File Manager.)

A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NI L for asynchronous calls with
no completion routine and is automatically set to NI L for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

File Manager Reference

CHAPTER 2

File Manager

i oResul t

i oNamePt r

i oVRef Num

fillerl
i oWDI ndex
i oWDPr ocl D

i oVWDVRef Num
filler2
i oWDDi r | D

The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call

is completed.

A pointer to a pathname. Whenever a routine description specifies
thati oNamePt r is used—whether for input, output, or both—

it's very important that you set this field to point to storage for a

St r 255 value (if you're using a pathname) or to NI L (if you're not).
A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

Reserved.
An index for use with the PBGet WDI nf o function.

An identifier that’s used to distinguish between working directories
set up by different users; you should set i 0OVWDPr ocl D to your
application’s signature.

Jabeue a4
n

The working directory’s volume reference number.
Reserved.
The working directory’s directory ID.

File Control Block Parameter Blocks

The low-level HFS function PBGet FCBI nf o uses the file control block parameter block
defined by the FCBPBRec data type.

TYPE FCBPBRec

= {file control block paraneter bl ock}

RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCrdAddr : Ptr; {routine address}
i oConpl etion: ProcPtr; {pointer to conpletion routine}
i oResul t: OSErr; {result code}
i oNanmePtr: StringPtr; {poi nter to pathnane}
i oVRef Num I nt eger; {vol une specification}
i oRef Num I nt eger; {file reference nunber}
filler: I nt eger; {reserved}
i oFCBI ndx: I nt eger; {FCB i ndex}
fillerl: I nt eger; {reserved}
i OFCBFI Nm Longl nt ; {file 1D}
i oOFCBFI ags: I nt eger; {flags}
i oOFCBSt Bl k: I nt eger; {first allocation block of file}
i oOFCBECF: Longl nt ; {l ogi cal end-of-file}
i oFCBPLenN: Longl nt; {physical end-of-file}

File Manager Reference 2-107

2-108

CHAPTER 2

File Manager
i oOFCBCr Ps: Longl nt; {position of the file nark}
i OFCBVRef Num | nt eger; {vol unme reference nunber}
i oOFCBQ pSi z: Longl nt; {file' s clunmp size}
i oFCBPar | D; Longl nt; {parent directory |D}
END;

Field descriptions

qLi nk A pointer to the next entry in the file I/O queue. (This field is used
internally by the File Manager to keep track of asynchronous calls
awaiting execution.)

qType The queue type. (This field is used internally by the File Manager.)

i oTrap The trap number of the routine that was called. (This field is used
internally by the File Manager.)

i oCndAddr The address of the routine that was called. (This field is used
internally by the File Manager.)

i oConpl etion A pointer to a completion routine to be executed at the end of an
asynchronous call. It should be NI L for asynchronous calls with
no completion routine and is automatically set to NI L for all
synchronous calls. See “Completion Routines” on page 2-240 for
information about completion routines.

i oOResul t The result code of the function. For synchronous calls, this field is
the same as the result code of the function call itself. To determine
when an asynchronous call has actually been completed, your
application can poll this field; it’s set to a positive number when
the call is made and receives the actual result code when the call
is completed.

i oNamePt r A pointer to a pathname. Whenever a routine description specifies
that i oNamePt r is used—whether for input, output, or both—
it’s very important that you set this field to point to storage for a
St r 255 value (if you're using a pathname) or to NI L (if you're not).

i oVRef Num A volume specification (volume reference number, working
directory reference number, drive number, or 0 for default volume).

i oRef Num The file reference number of an open file.

filler Reserved.

i oFCBI ndx An index for use with the PBGet FCBI nf o function.

fillerl Reserved.

i OFCBFI Nm The file ID.

i OFCBFI ags Flags describing the status of the file. The bits in this field that are

currently used have the following meanings:

Bit Meaning

8 Set if data can be written to the file

9 Set if this FCB describes a resource fork
10 Set if the file has a locked byte range

1 Reserved

File Manager Reference

CHAPTER 2

File Manager

oFCBSt Bl k
oFCBEOF
oFCBPLen
oFCBCr Ps
oFCBVRef Num
oFCBd pSi z
oFCBPar | D

Volume Attributes Buffer

Bit Meaning

12 Set if the file has shared write permissions

13 Set if the file is locked (write-protected)

14 Set if the file’s clump size is specified in the FCB
15 Set if the file has changed since it was last flushed

The number of the first allocation block of the file.
The logical end-of-file.

The physical end-of-file.

The position of the file mark.

The volume reference number.

The file clump size.

The file’s parent directory ID.

The low-level HFS function PBHGet Vol Par ns returns information in the volume
attributes buffer, defined by the Get Vol Par sl nf oBuf f er data type.

TYPE Get Vol Par nsl nf oBuf fer =

RECORD
vMVer si on: I nt eger; {version nunber}
VMAttri b: Longl nt; {vol urme attributes}
vM_ocal Hand: Handl e; {reserved}
vMSer ver Adr : Longl nt; {network server address}
vMol unmeGr ade: Longl nt; {rel ative speed rating}
vMForei gnPrivli D Integer; {foreign privilege nodel}
END;

Field descriptions
viWer si on

VMAttrib

vM_ocal Hand

vMSer ver Adr

The version of the attributes buffer structure. Currently this field
returns either 1 or 2.

A 32-bit quantity that encodes information about the volume
attributes. See the list of constants in the description of
PBHGet Vol Par s beginning on page 2-148 for details on the
meaning of each bit.

A handle to private data for shared volumes. On creation of the
VCB (right after mounting), this field is a handle to a 2-byte block
of memory. The Finder uses this for its local window list storage,
allocating and deallocating memory as needed. It is disposed of
when the volume is unmounted. Your application should treat this
field as reserved.

For AppleTalk server volumes, this field contains the internet
address of an AppleTalk server volume. Your application can

File Manager Reference 2-109

Jabeue a4
n

CHAPTER 2

File Manager

inspect this field to tell which volumes belong to which server; the
value of this field is 0 if the volume does not have a server.

vM/ol uneGr ade The relative speed rating of the volume. The scale used to
determine these values is currently uncalibrated. In general,
lower values indicate faster speeds. A value of 0 indicates that
the volume’s speed is unrated. The buffer version returned in
the viWer si on field must be greater than 1 for this field to
be meaningful.

vM~or ei gnPri vl D
An integer representing the privilege model supported by the
volume. Currently two values are defined for this field:
0 represents a standard HFS volume that might or might not
support the AFP privilege model; f sUni XPri v represents a
volume that supports the A /UX privilege model. The buffer
version returned in the vMVer si on field must be greater than 1
for this field to be meaningful.

Volume Mounting Information Records

2-110

The File Manager remote mounting functions store the mounting information in a
variable-sized structure called a volume mounting information record, defined by the
Vol Mount I nf oHeader data type.

TYPE Vol Mount | nf oHeader = {vol unme nounting infornmation}
RECORD
| engt h: I nt eger; {l'ength of nounting information}
medi a: Vol uneType; {type of vol une}

{vol une-specific, variable-length [ocation data}
END;

Field descriptions

| engt h The length of the Vol Mount | nf oHeader structure (that is,
the total length of the structure header described here plus the
variable-length location data). The length of the record is flexible
so that non-Macintosh file systems can store whatever information
they need for volume mounting.

medi a The volume type of the remote volume. The value
Appl eShar eMedi aType (a constant that translates to ' af pni)
represents an AppleShare volume. If you are adding support for
the programmatic mounting functions to a non-Macintosh file
system, you should register a four-character identifier for your
volumes with Macintosh Developer Technical Support at Apple
Computer, Inc.

The only volumes that currently support the programmatic mounting functions are
AppleShare servers, which use a volume mounting record of type AFPVol Mount | nf o.

File Manager Reference

CHAPTER 2

File Manager

TYPE AFPVol Mount | nfo =

RECORD
| engt h:
nedi a:
flags:

nbpl nt erval :
nbpCount :

uamlype

zoneNameOf f set :
server Namef f set: | nteger;
vol NameOf f set :
user NameOf f set :
user Passwor dOF f set :

{ AFP vol une nmounting information}

I nt eger; {length of mounting information}
Vol uneType; {type of vol une}

I nt eger; {reserved; nust be set to 0}

Si gnedByte; {NBP retry interval}

Si gnedByte; {NBP retry count}

I nt eger; {user authentication nethod}

I nt eger; {offset to zone nane}

{of fset server nane}

Jabeue a4
n

vol Passwor dCOf f set :

AFPDat a:

{optiona

END;

Field descriptions

[ength

nedi a

fl ags

nbpl nt er val
npbCount

uamlype

I nt eger; {of fset to vol ume nane}

I nt eger; {offset to user nane}

I nt eger; {of fset to user password}

I nt eger; {offset to vol une password}

PACKED ARRAY[1..144] OF CHAR
{standard AFP nounting i nfo}

vol unme-speci fic, variabl e-length data}

The length of the AFPVol Mount | nf o structure (that is, the total
length of the structure header described here plus the variable-
length location data).

The volume type of the remote volume. The value

Appl eShar eMedi aType (a constant that translates to * af pni)
represents an AppleShare volume.

Reserved; set this field to 0. If bit 0 is set, no greeting message from
the server is displayed.

The NBP retransmit interval, in units of 8 ticks.

The NBP retransmit count. This field specifies the total number of
times a packet should be transmitted, including the first
transmission.

The access-control method used by the remote volume. AppleShare
uses four methods, defined by constants:

CONST
kNoUser Aut hent i cati on = 1; {no password}
kPassword = 2; {8-byte password}
kEncr ypt Passwor d = 3

{encrypted 8-byte password}
kTwoWayEncrypt Password = 6
{two-way random encryption}

File Manager Reference 2-111

CHAPTER 2

File Manager

zoneNanmeOf f set The offset in bytes from the beginning of the record to the entry in
the AFPDat a field containing the name of the AppleShare zone.

server NameOf f set
The offset in bytes from the beginning of the record to the entry in
the AFPDat a field containing the name of the AppleShare server.

vol NaneCf f set The offset in bytes from the beginning of the record to the entry in
the AFPDat a field containing the name of the volume.

user NameOf f set The offset in bytes from the beginning of the record to the entry in
the AFPDat a field containing the name of the user.

user Passwor dOf f set
The offset in bytes from the beginning of the record to the entry in
the AFPDat a field containing the user’s password.

vol Passwor dOF f set
The offset in bytes from the beginning of the record to the entry
in the AFPDat a field containing the volume’s password. Some
versions of the AppleShare software do not pass the information
in this field to the server.

AFPDat a The actual volume mounting information, offsets to which are
contained in the preceding six fields. To mount an AFP volume, you
must fill in the record with at least the zone name, server name,
user name, user password, and volume password. You can lay out
the data in any order within this data field, as long as you specify
the correct offsets in the offset fields.

High-Level File Access Routines

This section describes the File Manager’s high-level file access routines. When you call
one of these routines, you specify a file by a file reference number (which the File
Manager returns to your application when the application opens a file). Unless your
application has very specialized needs, you should be able to manage all file access (for
example, writing data to the file) using the routines described in this section. Typically
you use these routines to operate on a file’s data fork, but in certain circumstances you
might want to use them on a file’s resource fork as well.

Reading, Writing, and Closing Files

2-112

You can use the functions FSRead, FSW i t e, and FSC ose to read data from a
file, write data to a file, and close an open file. All three of these functions operate

on open files. You can use any one of a variety of routines to open a file (for example,
FSpQpenDF).

File Manager Reference

FSRead

CHAPTER 2

File Manager

DESCRIPTION

RESULT CODES

You can use the FSRead function to read any number of bytes from an open file.

FUNCTI ON FSRead (ref Num
buffPtr:

I nteger; VAR count: Longlnt;

Ptr): OSErr;

ref Num The file reference number of an open file.

count On input, the number of bytes to read; on output, the number of bytes
actually read.

buf f Pt r A pointer to the data buffer into which the bytes are to be read.

The FSRead function attempts to read the requested number of bytes from the specified
file into the specified buffer. The buf f Pt r parameter points to that buffer; this buffer is
allocated by your application and must be at least as large as the count parameter.

Because the read operation begins at the current mark, you might want to set the mark
first by calling the Set FPos function. If you try to read past the logical end-of-file,
FSRead reads in all the data up to the end-of-file, moves the mark to the end-of-file, and

returns eof Er r as its function result. Otherwise, FSRead moves the file mark to the byte
following the last byte read and returns noErr.

Note

The low-level PBRead function lets you set the mark without having to
call Set FPos. Also, if you want to read data in newline mode, you must

use PBRead instead of FSRead. O

nokErr

i OErr

f nQonErr

eof Err

posErr

fLckdErr

par ankrr

rf Numerr

af pAccessDeni ed

File Manager Reference

-36
-38
-39
—40
-45
=50
-51
-5000

No error

I/0O error

File not open

Logical end-of-file reached

Attempt to position mark before start of file
File is locked

Negative count

Bad reference number

User does not have the correct access to the file

2-113

Jabeue a4
n

CHAPTER 2

File Manager

FSWrite
You can use the FSW i t e function to write any number of bytes to an open file.
FUNCTION FSWite (ref Num Integer; VAR count: Longlnt;
buffPtr: Ptr): OSErr;
ref Num The file reference number of an open file.
count On input, the number of bytes to write to the file; on output, the number
of bytes actually written.
buf f Pt r A pointer to the data buffer from which the bytes are to be written.
DESCRIPTION
The FSW i t e function takes the specified number of bytes from the specified data buffer
and attempts to write them to the specified file. Because the write operation begins at
the current mark, you might want to set the mark first by calling the Set FPos function.
If the write operation completes successfully, FSW i t e moves the file mark to the
byte following the last byte written and returns noEr r. If you try to write past the
logical end-of-file, FSW i t e moves the logical end-of-file. If you try to write past
the physical end-of-file, FSW i t e adds one or more clumps to the file and moves the
physical end-of-file accordingly.
Note
The low-level PBW i t e function lets you set the mark without having to
call Set FPos. O
RESULT CODES
noErr 0 No error
dskFul Err -34 Disk full
i OErr -36 I/Oerror
fnOpnErr -38 File not open
posErr 40 Attempt to position mark before start of file
wPr Er r —44 Hardware volume lock
f LckdErr —45 File is locked
vLckdErr —-46 Software volume lock
par antrr -50 Negative count
rf Numerr -51 Bad reference number
wr Per nEr r -61 Read /write permission doesn’t allow writing
FSClose
You can use the FSC ose function to close an open file.
FUNCTI ON FSC ose (ref Num Integer): OSErr;
2-114 File Manager Reference

DESCRIPTION

RESULT CODES

CHAPTER 2

File Manager

ref Num The file reference number of an open file.

The FSO ose function removes the access path for the specified file and writes the
contents of the volume buffer to the volume.

Note

The FSCl ose function calls PBFI ushFi | e internally to write the file’s
bytes onto the volume. To ensure that the file’s catalog entry is updated,
you should call FI ushVol after you call FSCl ose. O

WARNING

Make sure that you do not call FSCl ose with a file reference number of
a file that has already been closed. Attempting to close the same file
twice may result in loss of data on a volume. See “File Control Blocks”
on page 2-82 for a description of how this can happen. a

noErr 0 No error

i oErr -36 I/O error

f nOpnEr r -38 File not open

fnfErr —43 File not found

rf Nunerr -51 Bad reference number

Manipulating the File Mark

You can use the functions Get FPos and Set FPos to get or set the current position of the
file mark.

GetFPos
You can use the Get FPos function to determine the current position of the mark before
reading from or writing to an open file.
FUNCTI ON Get FPos (ref Num |Integer; VAR filePos: Longint): OSErr;
ref Num The file reference number of an open file.
filePos On output, the current position of the mark.

DESCRIPTION

The Get FPos function returns, in the f i | ePos parameter, the current position of the file
mark for the specified open file. The position value is zero-based; that is, the value of
fi | ePos is 0 if the file mark is positioned at the beginning of the file.

File Manager Reference 2-115

Jabeue a4
n

RESULT CODES

CHAPTER 2

File Manager

noErr 0 No error

i oErr -36 I/0O error

fnCpnErr -38 File not open

rf Nunerr -51 Bad reference number
of pErr -52 Error during Get FPos

SetFPos
You can use the Set FPos function to set the position of the file mark before reading
from or writing to an open file.
FUNCTI ON Set FPos (ref Num I nteger; posMde: Integer;
posOf: Longlnt): OSErr;
ref Num The file reference number of an open file.
poshMbde The positioning mode.
posCf f The positioning offset.
DESCRIPTION
The Set FPos function sets the file mark of the specified file. The posMbde parameter
indicates how to position the mark; it must contain one of the following values:
CONST
f SAt Mar k = 0; {at current mark}
fsFronStart = 1; {set mark relative to beginning of file}
fsFromLEOF = 2; {set mark relative to |ogical end-of-file}
fsFromvark = 3; {set mark relative to current nark}
If you specify f sAt Mar k, the mark is left wherever it’s currently positioned, and the
posCf f parameter is ignored. The next three constants let you position the mark relative
to either the beginning of the file, the logical end-of-file, or the current mark. If you
specify one of these three constants, you must also pass in posOf f a byte offset (either
positive or negative) from the specified point. If you specify f sFr onLECF, the value in
posCOF f must be less than or equal to 0.
RESULT CODES
nokErr 0 No error
i oErr -36 1/Oerror
f nOpnEr r -38 File not open
eof Err -39 Logical end-of-file reached
posErr —40 Attempt to position mark before start of file
rf Nunmerr -51 Bad reference number
2-116 File Manager Reference

CHAPTER 2

File Manager

Manipulating the End-of-File

You can use the functions Get EOF and Set ECF to get or set the logical end-of-file of an
open file.

GetEOF
You can use the Get ECF function to determine the current logical end-of-file of an
open file.
FUNCTI ON Get EOF (ref Num Integer; VAR | ogEOF: Longlnt): OSErr;
ref Num The file reference number of an open file.
| ogECF On output, the logical end-of-file.
DESCRIPTION
The Get ECF function returns, in the | 0gEOF parameter, the logical end-of-file of the
specified file.
RESULT CODES
noErr 0 No error
i oErr -36 1/Oerror
fnCpnErr -38 File not open
rf Nunrr -51 Bad reference number
af pAccessDeni ed -5000 User does not have the correct access to the file
SetEOF
You can use the Set ECF function to set the logical end-of-file of an open file.
FUNCTI ON Set EOF (ref Num |Integer; |ogECF: Longlnt): OSErr;
ref Num The file reference number of an open file.
| ogEOF The logical end-of-file.
DESCRIPTION

The Set ECF function sets the logical end-of-file of the specified file. If you attempt to set
the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set
1 byte beyond the end of the next free allocation block; if there isn't enough space on the
volume, no change is made, and Set EOF returns dskFul Err as its function result.

File Manager Reference 2-117

Jabeue a4
n

CHAPTER 2

File Manager

If you set the | 0gEOF parameter to 0, all space occupied by the file on the volume is
released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0 is
therefore not the same as deleting the file (which removes both file forks at once).

RESULT CODES
NoErr 0 No error
dskFul Err -34 Disk full
i OErr -36 I/Oerror
f nOpnEr r -38 File not open
WPr Er r —44 Hardware volume lock
fLckdErr —45 File is locked
vLckdErr —46 Software volume lock
rf Nunerr 51 Bad reference number
wr Per ner r -61 Read /write permission doesn’t allow writing
Allocating File Blocks
The File Manager provides two functions, Al | ocat e and Al | ocCont i g, that allow you
to allocate additional blocks to a file. The File Manager automatically allocates file blocks
if you move the logical end-of-file past the physical end-of-file, and it automatically
deallocates unneeded blocks from a file if you move the logical end-of-file to a position
more than one allocation block before the current physical end-of-file. Consequently,
you do not in general need to be concerned with allocating or deallocating file
blocks. However, you can improve file block contiguity if you use the Al | ocat e
or Al | ocCont i g function to preallocate file blocks. This is most useful if you know
in advance how big a file is likely to become.
Note
When the File Manager allocates (or deallocates) file blocks
automatically, it always adds (or removes) blocks in clumps. The
Al | ocat e and Al | ocCont i g functions allow you to add blocks
in allocation blocks, which may be smaller than clumps. O
The Al | ocat e and Al | ocCont i g functions are not supported by AppleShare volumes.
Instead, use Set ECF or PBSet ECF to extend a file by setting the end-of-file.
Allocate
You can use the Al | ocat e function to allocate additional blocks to an open file.
FUNCTI ON Al |l ocate (refNum |Integer; VAR count: Longlnt): OSErr;
ref Num The file reference number of an open file.
count On input, the number of additional bytes to allocate to the file; on output,
the number of bytes actually allocated, rounded up to the nearest
multiple of the allocation block size.
2-118 File Manager Reference

CHAPTER 2

File Manager

DESCRIPTION
The Al | ocat e function adds the specified number of bytes to the specified file and sets
the physical end-of-file to 1 byte beyond the last block allocated. If there isn’t enough
empty space on the volume to satisfy the allocation request, Al | ocat e allocates the rest
of the space on the volume and returns dskFul Er r as its function result.
The Al | ocat e function always attempts to allocate contiguous blocks. If the total
number of requested bytes is unavailable, Al | ocat e allocates whatever space,
contiguous or not, is available. To force the allocation of the entire requested space as a 2
contiguous piece, call Al | ocCont i g instead.
I
®
RESULT CODES §
noErr 0 No error é
dskFul Err -34 Disk full @
i oErr -36 I/Oerror
fnOpnErr -38 File not open
wWPr Err —44 Hardware volume lock
f LckdErr —45 File is locked
vLckdErr —-46 Software volume lock
rf Nunerr -51 Bad reference number
wr Per mer r -61 Read /write permission doesn’t allow writing
AllocContig
You can use the Al | ocCont i g function to allocate additional contiguous blocks to an
open file.
FUNCTI ON Al l ocContig (refNum Integer; VAR count: Longlint): OSErr;
ref Num The file reference number of an open file.
count On input, the number of additional bytes to allocate to the file; on output,
the number of bytes allocated, rounded up to the nearest multiple of the
allocation block size.
DESCRIPTION

The Al | ocCont i g function is identical to the Al | ocat e function except that if there
isn’t enough contiguous empty space on the volume to satisfy the allocation request,

Al | ocCont i g does nothing and returns dskFul Err as its function result. If you want
to allocate whatever space is available, even when the entire request cannot be filled by
the allocation of a contiguous piece, call Al | ocat e instead.

File Manager Reference 2-119

RESULT CODES

CHAPTER 2

File Manager

noErr 0 No error

dskFul Err -34 Disk full

i oErr -36 I/O error

fnOpnErr -38 File not open

wWPr Er r —44 Hardware volume lock

fLckdErr -45 File is locked

vLckdErr —46 Software volume lock

rf Nunerr -51 Bad reference number

wr Per mer r -61 Read /write permission doesn’t allow writing

Low-Level File Access Routines

2-120

This section describes the low-level file access routines. These low-level routines, whose
names begin with the letters PB, provide two advantages over the corresponding
high-level file access routines:

= These routines can be executed asynchronously, returning control to your application
before the operation is completed.

» In certain cases, these routines provide more extensive information or perform
advanced operations.

All of these routines exchange parameters with your application through a parameter
block of type Par anBl ock. When you call a low-level routine, you pass the address of
the parameter block to the routine.

Assembly-Language Note

When you call any of these low-level routines, register A0 must point to
a parameter block containing the parameters for the routine. If you want
the routine to be executed asynchronously, set bit 10 of the routine trap
word. You can do this by supplying the word ASYNC as the second
argument to the routine macro. Here’s an example:

_Read, ASYNC

You can set or test bit 10 of a trap word using the global constant
asyncTrpBit.

The hierarchical extensions of certain basic File Manager routines
actually are not new calls. For instance, _Open and _HQpen both trap to
the same routine. The trap word generated by the _HOpen macro is the
same as the trap word that would be generated by invoking the _QOpen
macro with bit 9 set. The setting of this bit tells the File Manager to
expect a larger parameter block containing the additional fields (such as
a directory ID) needed to handle a hierarchical directory volume. You
can set or test bit 9 of a trap word by using the global constant hf sBi t .

All File Manager routines return a result code in register D0. O

These low-level file access routines can run either synchronously or asynchronously.
There are three versions of each routine. The first takes two parameters: a pointer to the

File Manager Reference

CHAPTER 2

File Manager

parameter block and a Boolean parameter that specifies whether the routine is to run
asynchronously (TRUE) or synchronously (FALSE). For example, the first version of the
low-level routine to read bytes from a file has this declaration:

FUNCTI ON PBRead (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;

The second version does not take a second parameter; instead, it adds the suffix Async
to the name of the routine.

FUNCTI ON PBReadAsync (paranBl ock: ParnBl kPtr): OSErr;

Similarly, the third version of the routine does not take a second parameter; instead, it
adds the suffix Sync to the name of the routine.

Jabeue a4
n

FUNCTI ON PBReadSync (paranBl ock: ParnBl kPtr): OSErr;

Only the first version of each routine is documented in this section. (See “Summary of
the File Manager,” beginning on page 2-243, for a listing of all three versions of these
routines.) Note, however, that the second and third versions of these routines do not use
the glue code that the first version uses and are therefore more efficient.

Note

Although you can execute low-level file access routines asynchronously,
the underlying device driver may not support asynchronous operation.
The SCSI Manager, for example, currently supports only synchronous
data transfers. Data transfers to a floppy disk or to a network server,
however, can be made asynchronously. O

Reading, Writing, and Closing Files

PBRead

You can use the functions PBRead, PBW i t e, and PBCl ose to read data from a file,
write data to a file, and close an open file. All three of these functions operate on open
files. You can use any one of a variety of routines (for example, PBHOpenDF) to open
a file.

You can use the PBRead function to read any number of bytes from an open file.
FUNCTI ON PBRead (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference 2-121

DESCRIPTION

CHAPTER 2

File Manager

Parameter block
oConpl eti on ProcPtr A pointer to a completion routine.

[
- i oOResul t CSErr The result code of the function.
- i oRef Num I nt eger A file reference number.
- i oBuf f er Ptr A pointer to a data buffer.
- i oReqCount Longl nt The number of bytes requested.
- i 0Act Count Longl nt The number of bytes actually read.
- i oPosMbde | nt eger The positioning mode.
o i OPosOF f set Longl nt The positioning offset.

The PBRead function attempts to read i o0ReqCount bytes from the open file whose
access path is specified in the i oRef Numfield and transfer them to the data buffer
pointed to by the i oBuf f er field. The position of the mark is specified by i oPosMbde
and i oPosO f set . If your application tries to read past the logical end-of-file, PBRead
reads the data, moves the mark to the end-of-file, and returns eof Er r as its function
result. Otherwise, PBRead moves the file mark to the byte following the last byte read
and returns noEr r. After the read is completed, the mark is returned in i oPosf f set,
and the number of bytes actually read into the buffer is returned in i 0cAct Count .

You can specify that PBRead read the file data 1 byte at a time until the requested
number of bytes have been read or until the end-of-file is reached. To do so, set bit 7 of
the i oPosMode field. Similarly, you can specify that PBRead should stop reading data
when it reaches an application-defined newline character. To do so, place the ASCII code
of that character into the high-order byte of the i o0PosMde field; you must also set bit 7
of that field to enable newline mode.

Note

When reading data in newline mode, PBRead returns the newline
character as part of the data read and sets i 0Act Count to the actual
number of bytes placed into the buffer (which includes the newline
character). O

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-122

The trap macro for PBRead is _Read.

nokErr 0 No error

i oErr -36 I/0O error

fnCpnErr -38 File not open

eof Err -39 Logical end-of-file reached

posErr 40 Attempt to position mark before start of file

f LckdErr -45 File is locked

par ankrr =50 Negative i oReqCount

rf Nunerr 51 Bad reference number

af pAccessDeni ed -5000 User does not have the correct access to the file
File Manager Reference

CHAPTER 2

File Manager

PBWrite
You can use the PBW i t e function to write any number of bytes to an open file.
FUNCTI ON PBWite (paranBl ock: ParnmBl kPtr; async: Bool ean): OSErr;
par anBl ock A pointer to a basic File Manager parameter block.
async A Boolean value that specifies asynchronous (TRUE) or synchronous 2

(FALSE) execution.
I

Parameter block ®
- i oConpl etion ProcPtr A pointer to a completion routine. ﬂfk
- i oResul t CSEr r The result code of the function. 8
- i oRef Num I nt eger A file reference number. 2
- i oBuf fer Ptr A pointer to a data buffer.
- i oReqCount Longl nt The number of bytes requested.
- i 0Act Count Longl nt The number of bytes actually written.
- i oPosMbde | nt eger The positioning mode.
o i oPosCF f set Longl nt The positioning offset.

DESCRIPTION

The PBW i t e function takes i 0ReqCount bytes from the buffer pointed to by

i oBuf f er and attempts to write them to the open file whose access path is specified by
i oRef Num The position of the mark is specified by i oPosMbde and i oPosOf f set . If
the write operation completes successfully, PBW i t e moves the file mark to the byte
following the last byte written and returns noEr r. After the write operation is
completed, the mark is returned in i 0PosOf f set and the number of bytes actually
written is returned in i 0Act Count .

If you try to write past the logical end-of-file, PBW i t € moves the logical end-of-file. If
you try to write past the physical end-of-file, PBW i t e adds one or more clumps to the
file and moves the physical end-of-file accordingly.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBWiteis_Wite.

noErr 0 No error

dskFul Err -34 Disk full

i oErr -36 1/0 error

f nOpnEr r -38 File not open

posErr —40 Attempt to position mark before start of file
wWPr Er r —44 Hardware volume lock

f LckdErr -45 File is locked

vLckdErr -46 Software volume lock

File Manager Reference 2-123

CHAPTER 2

File Manager

par anerr -50 Negative i oReqCount

rf Numerr -51 Bad reference number

wr Per mer r -61 Read /write permission doesn’t allow writing

PBClose
You can use the PBCl ose function to close an open file.
FUNCTI ON PBC ose (paranBl ock: ParnmBl kPtr; async: Bool ean): OSErr;
par anmBl ock A pointer to a basic File Manager parameter block.
async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.
Parameter block
- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.
- i oRef Num I nt eger A file reference number.
DESCRIPTION
The PBCl ose function writes the contents of the access path buffer specified by the
i oRef Numfield to the volume and removes the access path.
A WARNING
Some information stored on the volume won’t be updated until
PBFI ushVol is called. a
A WARNING

Do not call PBO ose with a file reference number of a file that has
already been closed. Attempting to close the same file twice may result
in loss of data on a volume. See “File Control Blocks” on page 2-82 for a
description of how this can happen. a

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-124

The trap macro for PBCl ose is _C ose.

noErr 0 No error

i oErr -36 I/O error

fnCpnErr -38 File not open

fnfErr -43 File not found

rf Nunerr -51 Bad reference number
File Manager Reference

CHAPTER 2

File Manager

Manipulating the File Mark

PBGetFPos

You can use the functions PBGet FPos and PBSet FPos to get or set the current position

of the file mark.

DESCRIPTION

You can use the PBGet FPos function to determine the current position of the file mark
before reading from or writing to an open file.

FUNCTI ON PBGet FPos (paranBl ock: ParnmBl kPtr; async: Bool ean):
OSErr;

Jabeue a4
n

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous

(FALSE) execution.

Parameter block

oConpl eti on
oResul t

oRef Num
oReqCount
oAct Count
oPosMbode
oPosOf f set

1

ProcPtr A pointer to a completion routine.

OSEr r

The result code of the function.

I nt eger A file reference number.

Longl nt On output, set to 0.

Longl nt On output, set to 0.

I nt eger On output, set to 0.

Longl nt The current position of the mark.

The PBCet FPos function returns, in the i o0PosCf f set field, the mark of the specified
file. The value returned in i oPosCf f set is zero-based. Thus, a call to PBGet FPos
returns 0 if you call it when the file mark is positioned at the beginning of the file.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for PBGet FPos is _Get FPos.

RESULT CODES

noErr

i oErr

f nQpnErr
rf Nunerr
of pErr

File Manager Reference

-36
-38
-51
-52

No error

I/0O error

File not open

Bad reference number
Error during PBGet FPos

2-125

PBSetFPos

CHAPTER 2

File Manager

DECRIPTION

You can use the PBSet FPos function to position the file mark before reading from or
writing to an open file.

FUNCTI ON PBSet FPos (paranBl ock: ParnBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSErr The result code of the function.

> i oRef Num I nt eger A file reference number.

- i oPosMbde I nt eger The positioning mode.

o i oPosCOf f set Longl nt On input, the positioning offset. On

output, the position at which the mark
was actually set.

The PBSet FPos function sets the mark of the specified file to the position specified by
the i oPosMbde and i oPosOf f set fields. If you try to set the mark past the logical
end-of-file, PBSet FPos moves the mark to the end-of-file and returns eof Er r as its
function result.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBSet FPos is _Set FPos.

nokErr 0 No error

i oErr -36 1/Oerror

fnCpnErr -38 File not open

eof Err -39 Logical end-of-file reached

poSsErr —40 Attempt to position mark before start of file
rf Nuner r -51 Bad reference number

ext FSEr r -58 External file system

Manipulating the End-of-File

2-126

You can use the functions PBGet ECF and PBSet EOF to get or set the current end-of-file.

File Manager Reference

CHAPTER 2

File Manager

PBGetEOF
You can use the PBGet ECF function to determine the current logical end-of-file of an
open file.
FUNCTI ON PBGet EOF (par anBl ock: ParnBl kPtr; async: Bool ean): OSErr;
par anBl ock A pointer to a basic File Manager parameter block.
async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.
Parameter block
- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.
- i oRef Num I nt eger A file reference number.
- i oM sc Ptr The logical end-of-file.
DESCRIPTION

The PBGet EOF function returns, in the i oM sc field, the logical end-of-file of the
specified file. Because i OM sc is of type Pt r, you'll need to coerce the value to type
Longl nt to interpret the value correctly.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for PBGet ECF is _Get ECF.

RESULT CODES

nokErr 0 No error

i OErr -36 I/0 error

f nOpnEr r -38 File not open

rf Nunerr =51 Bad reference number

af pAccessDeni ed -5000 User does not have the correct access to the file
PBSetEOF

You can use the PBSet ECF function to set the logical end-of-file of an open file.
FUNCTI ON PBSet EOF (par anBl ock: ParnBl kPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference 2-127

Jabeue a4
n

DESCRIPTION

CHAPTER 2

File Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The result code of the function.

- i oRef Num I nt eger A file reference number.

- i oM sc Ptr The logical end-of-file.

The PBSet ECF function sets the logical end-of-file of the open file, whose access path is
specified by i oRef Num toi oM sc. Because the i oM sc field is of type Pt r, you must
coerce the desired value from type Longl nt to type Ptr.

If you attempt to set the logical end-of-file beyond the current physical end-of-file,
another allocation block is added to the file; if there isn’t enough space on the volume,
no change is made and PBSet ECF returns dskFul Err as its function result.

If the value of the i oM sc field is 0, all space occupied by the file on the volume is
released. The file still exists, but it contains 0 bytes. Setting a file fork’s end-of-file to 0
is therefore not the same as deleting the file (which removes both file forks at once).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSet ECF is _Set ECF.

RESULT CODES
noErr 0 No error
dskFul Err -34 Disk full
i oErr -36 1/Oerror
f nCpnErr -38 File not open
wWPr Err —44 Hardware volume lock
f LckdErr —45 File is locked
vLckdErr —46 Software volume lock
rf Nuner r -51 Bad reference number
wr Per mer r -61 Read /write permission doesn’t allow writing
Allocating File Blocks
The File Manager provides two low-level functions, PBAl | ocat e and PBAl | ocCont i g,
that allow you to allocate additional blocks to a file. The File Manager automatically
allocates file blocks if you move the logical end-of-file past the physical end-of-file, and it
automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file.
Consequently, you do not in general need to be concerned with allocating or deallocating
file blocks. However, you can improve file block contiguity if you use the PBAl | ocat e
or PBAI | ocCont i g function to preallocate file blocks. This is most useful if you know in
advance how big a file is likely to become.
PBAI | ocat e and PBAI | ocCont i g are not supported by AppleShare volumes. Instead,
use Set ECF or PBSet ECF to extend a file by setting the end-of-file.
2-128 File Manager Reference

CHAPTER 2

File Manager

PBAllocate
You can use the PBAI | ocat e function to allocate additional blocks to an open file.
FUNCTI ON PBAIl | ocat e (paranBl ock: ParnBl kPtr; async: Bool ean):
OSErr;
par anmBl ock A pointer to a basic File Manager parameter block.
async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.
Parameter block
- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSEr r The result code of the function.
- i oRef Num I nt eger A file reference number.
- i oRegqCount Longl nt The number of bytes requested.
- i 0Act Count Longl nt The number of bytes actually
allocated, rounded up to the nearest
multiple of the allocation block size.
DESCRIPTION

The PBAI | ocat e function adds i oReqCount bytes to the specified file and sets the
physical end-of-file to 1 byte beyond the last block allocated. If there isn’t enough empty
space on the volume to satisfy the allocation request, PBAI | ocat e allocates the rest of
the space on the volume and returns dskFul Err as its function result.

Note
If the total number of requested bytes is unavailable, PBAl | ocat e
allocates whatever space, contiguous or not, is available. To force the

allocation of the entire requested space as a contiguous piece, call
PBAI | ocCont i g instead. O

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBAl | ocat e is _Al | ocat e.

noErr 0 No error

dskFul Err -34 Disk full

i oErr -36 I/0O error

f nOpnEr r -38 File not open

wWPr Er r —44 Hardware volume lock

f LckdErr —45 File is locked

vLckdErr —46 Software volume lock

rf Nunerr -51 Bad reference number

wr Per ner r -61 Read /write permission doesn’t allow writing

File Manager Reference 2-129

Jabeue a4
n

CHAPTER 2

File Manager

PBAllocContig

DESCRIPTION

You can use the PBAI | ocCont i g function to allocate additional contiguous blocks to an
open file.

FUNCTI ON PBAl | ocConti g (paranBl ock: ParnBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSErr The result code of the function.

> i oRef Num I nt eger A file reference number.

- i oReqCount Longl nt The number of bytes requested.

- i oAct Count Longl nt The number of bytes allocated,

rounded up to the nearest multiple
of the allocation block size.

The PBAI | ocCont i g function is identical to the PBAI | ocat e function except that if
there isn’t enough contiguous empty space on the volume to satisfy the allocation
request, PBAl | ocCont i g does nothing and returns dskFul Er r as its function result. If
you want to allocate whatever space is available, even when the entire request cannot be
filled by the allocation of a contiguous piece, call PBAl | ocat e instead.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-130

The trap macro for PBAl | ocConti gis_Al | ocConti g.

noErr 0 No error

dskFul Err -34 Disk full

i oErr -36 I/O error

fnCpnErr -38 File not open

wWPr Er r -44 Hardware volume lock

f LckdErr -45 File is locked

vLckdErr —46 Software volume lock

rf Nunerr -51 Bad reference number

wr Per mEr r -61 Read /write permission doesn’t allow writing
File Manager Reference

CHAPTER 2

File Manager

Updating Files

You can use the PBFI ushFi | e function to ensure that the path access buffer of a file is
written to disk. There is no high-level equivalent of this function.

PBFlushFile

DESCRIPTION

You can use the PBFI ushFi | e function to write the contents of a file’s access path buffer.

FUNCTI ON PBFI ushFi |l e (paranmBl ock: ParnBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a basic Flle Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The result code of the function.
- i oRef Num I nt eger A file reference number.

The PBFI ushFi | e function writes the contents of the access path buffer indicated by
i oRef Numto the volume and then updates the file’s entry in the volume catalog.

WARNING

Some information stored on the volume won’t be correct until
PBFl ushVol is called. a

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBFI ushFi | e is _Fl ushFi | e.

noErr 0 No error

nsvErr -35 Volume not found

i oErr -36 I/0O error

fnCpnErr -38 File not open

fnfErr —43 File not found

rf Nunerr -51 Bad reference number
ext FSErr 58 External file system

File Manager Reference 2-131

Jabeue a4
n

CHAPTER 2

File Manager

High-Level Volume Access Routines

This section describes the File Manager’s high-level routines for accessing volumes.
Most applications are likely to need only the FI ushVol function described on
page 2-135.

When you call one of these routines, you specify a volume by a volume reference
number (which you can obtain, for example, by calling the Get VI nf o function, or from
the reply record returned by the Standard File Package). You can also specify a volume
by name, but this is generally discouraged, because there is no guarantee that volume
names will be unique.

Unmounting Volumes

The functions Unnount Vol and Ej ect allow you to unmount and eject volumes. Most
applications do not need to use these routines, because the user typically ejects (and
possibly also unmounts) a volume in the Finder.

UnmountVol

DESCRIPTION

2-132

You can use the Unmount Vol function to unmount a volume that isn’t currently
being used.

FUNCTI ON Unnount Vol (vol Name: StringPtr; vRefNum Integer): OSErr;

vol Name A pointer to the name of a mounted volume.

vRef Num A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.

The Unnount Vol function unmounts the specified volume. All files on the volume
(except those opened by the Operating System) must be closed before you call
Unrount Vol , which does not eject the volume.

WARNING

Don’t unmount the startup volume. Doing so will cause a
system crash. a

File Manager Reference

CHAPTER 2

File Manager

RESULT CODES

noErr
nsvErr

i oErr
bdNantr r
f BsyErr
par ankrr
nsDr vErr
ext FSErr

Eject

-35
-36
=37
—47
-50
-56
-58

No error

No such volume

I/O error

Bad volume name

One or more files are open
No default volume

No such drive

External file system

You can use the Ej ect function to place a volume offline and eject it.

FUNCTI ON Ej ect (vol Name: StringPtr; vRefNum |nteger):

vol Nare A pointer to the name of a volume.

vRef Num A volume reference number, a working directory reference number, a

drive number, or 0 for the default volume.

DESCRIPTION

The Ej ect function flushes the specified volume, places it offline, and then ejects

the volume.

RESULT CODES

noErr
nsvErr

i oErr
bdNantr r
par ankrr
nsDr vErr
ext FSErr

Updating Volumes

=35
-36
=37
-50
-56
-58

No error

No such volume
I/0O error

Bad volume name
No default volume
No such drive
External file system

When you close a file, you should call Fl ushVol to ensure that any changed contents of

the file are written to the volume.

File Manager Reference

2-133

Jabeue a4
n

CHAPTER 2

File Manager

Flush Vol
You can use the Fl ushVol function to write the contents of the volume buffer and
update information about the volume.
FUNCTI ON Fl ushVol (vol Name: StringPtr; vRefNum |nteger): OSErr;
vol Name A pointer to the name of a mounted volume.
vRef Num A volume reference number, a working directory reference number, a
drive number, or 0 for the default volume.
DESCRIPTION
On the specified volume, the Fl ushVol function writes the contents of the associated
volume buffer and descriptive information about the volume (if they’ve changed since
the last time Fl ushVol was called). This information is written to the volume.
RESULT CODES
noErr 0 No error
NSVErr -35 No such volume
i oErr -36 1/0 error
bdNantr r =37 Bad volume name
par anerr -50 No default volume
nsDrvErr -56 No such drive

Manipulating the Default Volume

The functions Get Vol , Set Vol , HGet Vol , and HSet Vol allow you to determine which
volume is the default volume and to set the default volume.

GetVol
You can use the Get Vol function to determine the current default volume and possibly
also the default directory.
FUNCTI ON Get Vol (vol Name: StringPtr; VAR vRef Num Integer): OSErr;
vol Nanme A pointer to the name of the default volume.
vRef Num A volume reference number or a working directory reference number.
2-134 File Manager Reference

DESCRIPTION

RESULT CODES

SetVol

CHAPTER 2

File Manager

The Get Vol function returns a pointer to the name of the default volume in the vol Nane
parameter and its volume reference number in the vRef Numparameter. If the default
directory has a working directory associated with it, the vRef Numparameter instead
contains a working directory reference number (which encodes both the volume reference
number and the default directory ID). However, if, in a previous call to HSet Vol (or
PBHSet Vol), a working directory reference number was passed in, Get Vol returns a
volume reference number in the vRef Numparameter.

noErr
nsvEerr

0
-35

No error
No such volume

DESCRIPTION

RESULT CODES

You can change the default volume and default directory using the Set Vol function.

FUNCTI ON Set Vol

(vol Name: StringPtr; vRefNum Integer): OSErr;

vol Nanme A pointer to the name of a mounted volume.

vRef Num A volume reference number or a working directory reference number.

The Set Vol function sets the default volume and directory to the values specified in the
vol Nare and vRef Numparameters. If you pass a volume reference number in vRef Num
or a pointer to a volume name in vol Nane, Set Vol makes the specified volume the
default volume and the root directory of that volume the default directory. If you pass a
working directory reference number in vRef Num Set Vol makes the specified directory
the default directory, and the volume containing that directory the default volume.

noErr
nsvErr
bdNantr r
parantrr

File Manager Reference

-35
=37
=50

No error

No such volume
Bad volume name
No default volume

2-135

Jabeue a4
n

HGetVol

CHAPTER 2

File Manager

DESCRIPTION

RESULT CODES

HSetVol

You can use the HGet Vol function to determine the current default volume and
default directory.

FUNCTI ON HGet Vol (vol Nane: StringPtr; VAR vRef Num I nteger;
VAR dirI D: Longlnt): OSErr;

vol Name A pointer to the name of the default volume.
vRef Num A volume reference number or a working directory reference number.
dirlD The directory ID of the default directory.

The HGet Vol function returns the name and reference number of the default volume, as
well as the directory ID of the default directory. A pointer to the name of the default
volume is returned in the vol Nane parameter, unless you set vol Nane to NI L before
calling HGet Vol .

The HGet Vol function returns a working directory reference number in the vRef Num
parameter if the previous call to HSet Vol (or PBHSet Vol) passed in a working
directory reference number. If, however, you have previously called HSet Vol (or
PBHSet Vol) specifying the target volume with a volume reference number, then
HGet Vol returns a volume reference number in the vRef Numparameter.

noErr 0 No error
nsvErr -35 No default volume

2-136

You can use the HSet Vol function to set both the default volume and the default
directory.

FUNCTI ON HSet Vol (vol Nanme: StringPtr; vRef Num I nteger;
dirlD: Longlnt): OSErr;

vol Nanme A pointer to the name of a mounted volume or the partial pathname
of a directory.

vRef Num A volume reference number or a working directory reference number.
dirlD A directory ID.

File Manager Reference

CHAPTER 2

File Manager

DESCRIPTION

The HSet Vol function lets you specify the default directory by volume reference
number, by directory ID, or by a combination of working directory reference number
and partial pathname (beginning from that working directory).

A WARNING
Use of the HSet Vol function is discouraged if your application may
execute in system software versions prior to version 7.0. Because the
specified directory might not itself be a working directory, HSet Vol
records the default volume and directory separately, using the volume
reference number of the volume and the actual directory ID of the
specified directory. Subsequent calls to Get Vol (or PBGet Vol) return
only the volume reference number, which will cause that volume’s root
directory (rather than the default directory, as expected) to be accessed. a

Note

Both the default volume and the default directory are used in calls made
with no volume name, a volume reference number of 0, and a directory

ID of 0. O
RESULT CODES
nokErr 0 No error
nsvErr -35 Nosuch volume
bdNantEr r -37 Bad volume name
fnfErr —43 Directory not found
par anerr =50 No default volume
af pAccessDeni ed -5000 User does not have access to the directory

Obtaining Volume Information

You can get information about a volume by calling the Get VI nf 0 or
Get VRef Numfunction.

GetVinfo

You can use the Get VI nf o function to get information about a mounted volume.

FUNCTI ON GetVInfo (drvNum Integer; vol Name: StringPtr;
VAR vRef Num | nt eger;
VAR freeBytes: Longlnt): OSErr;

dr vNum The drive number of the volume for which information is requested.
vol Narre On output, a pointer to the name of the specified volume.
vRef Num The volume reference number of the specified volume.

freeBytes The available space (in bytes) on the specified volume.

File Manager Reference 2-137

Jabeue a4
n

DESCRIPTION

CHAPTER 2

File Manager

The Get VI nf 0 function returns the name, volume reference number, and available
space (in bytes) for the specified volume. You specify a volume by providing its drive
number in the dr vNumparameter. You can pass 0 in the dr vNumparameter to get
information about the default volume.

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
par anerr -50 No default volume
GetVRefNum

DESCRIPTION

RESULT CODES

You can use the Get VRef Numfunction to get a volume reference number from a file
reference number.

FUNCTI ON Get VRef Num (ref Num |Integer; VAR vRef Num |Integer):

CSErr;
ref Num The file reference number of an open file.
vRef Num On exit, the volume reference number of the volume containing the file

specified by r ef Num

The Get VRef Numfunction returns the volume reference number of the volume
containing the specified file. If you also want to determine the directory ID of the
specified file’s parent directory, call the PBGet FCBI nf o function.

noErr 0 No error
rf Nunerr -51 Bad reference number

Low-Level Volume Access Routines

2-138

This section describes the low-level routines for accessing volumes. These routines
exchange parameters with your application through a parameter block of type

Par anBl ock, HPar anBl ock, or WDPBRec. When you call a low-level routine, you
pass the address of the appropriate parameter block to the routine.

Some low-level routines for accessing volumes can run either asynchronously or
synchronously. Each of these routines comes in three versions: one version requires the
async parameter and two have the suffix Async or Sync added to their names. For

File Manager Reference

CHAPTER 2

File Manager

more information about the differences between the three versions, see “Low-Level File
Access Routines” on page 2-121.

Only the first version of these routines is documented in this section. See “Summary of
the File Manager,” beginning on page 2-243, for a listing that includes all three versions.

Assembly-Language Note
See the assembly-language note on page 2-121 for details on calling
these routines from assembly language. O

Mounting and Unmounting Volumes

The File Manager provides several low-level routines that allow you to mount and
unmount Macintosh volumes, eject volumes, and place mounted volumes offline.

PBMountVol

DESCRIPTION

You can use the PBVbunt Vol function to mount a volume.
FUNCTI ON PBMount Vol (paranBl ock: ParnBl kPtr): OSErr;
par anBl ock A pointer to a basic Flle Manager parameter block.

Parameter block

- i oResul t OSErr The result code of the function.
o i oVRef Num | nt eger On input, a drive number. On output,
the volume reference number.

The PBMount Vol function mounts the volume in the specified drive. If there are no
volumes already mounted, this volume becomes the default volume.

Because you specify the volume to be mounted by providing a drive number, you can
use PBMbunt Vol to mount only one volume per disk.

The PBMbunt Vol function always executes synchronously.

Note

The PBMbunt Vol function opens two files needed for maintaining
file catalog and file mapping information. If no access paths are
available for these two files, PBMbunt Vol fails and returns t nf oEr r
as its function result. O

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBMount Vol is _Mount Vol .

File Manager Reference 2-139

Jabeue a4
n

RESULT CODES

CHAPTER 2

File Manager

noErr

i oErr

t nf oErr
parantrr
vol OnLi nErr
nsDr vErr
noMacDskEr r
ext FSErr
badMVDBEr r
menful | Err

PBUnmountVol

-36
—42
-50
-55
-56
=57
-58
—60
-108

No error

I/0O error

Too many files open

Bad drive number

Volume already online

No such drive

Not a Macintosh disk

External file system

Bad master directory block
Not enough room in heap zone

DESCRIPTION

ASSEMBLY-LANGUAGE INFORMATION

2-140

You can use the PBUnnount Vol function to unmount a volume.

FUNCTI ON PBUnnpunt Vol

(paranBl ock: ParnBl kPtr): OSErr;

par anBl ock A pointer to a basic File Manager parameter block.

Parameter block

- i oResul t
N i oNamePt r
N i oVRef Num

CSEr r The result code of the function.
StringPtr A pointer to a pathname.
I nt eger A volume reference number, a

working directory reference number,
or 0 for the default volume.

The PBUnmount Vol function unmounts the specified volume. All user files on the
volume must be closed. Then, PBUnnount Vol calls PBFI ushVol to flush the volume
and releases the memory used for the volume.

The PBUnmount Vol function always executes synchronously.

WARNING

Don’t unmount the startup volume. Doing so will cause a

system crash. a

Note

Unmounting a volume does not close working directories; to release the
memory allocated to a working directory, call PBCl oseWD. O

The trap macro for PBUnnmount Vol is _Unnount Vol .

File Manager Reference

CHAPTER 2

File Manager
RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i oErr -36 I/O error
bdNantr r -37 Bad volume name
f BsyErr —47 One or more files are open
par ankrr =50 No default volume
nsDrvErr -56 No such drive
ext FSEr r -58 External file system
PBEject

When your application is finished with a volume, you can use the PBEj ect function to
place the volume offline and eject it.

FUNCTI ON PBEj ect (paranBl ock: ParnmBl kPtr): OSErr;
par anBl ock A pointer to a basic File Manager parameter block.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion
routine.

- i oOResul t CSErr The result code of the function.

- i oNanePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

DESCRIPTION

The PBEj ect function flushes the specified volume, places it offline, and then ejects
the volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBEj ect is _Ej ect . You can invoke the _Ej ect macro asynchro-
nously; the first two parts of the call are executed synchronously, and the actual ejection
is executed asynchronously.

RESULT CODES
noErr 0 No error
nsvEerr -35 No such volume
i oErr -36 I/0O error
bdNantr r -37 Bad volume name
par anerr =50 No default volume
nsDrvErr -56 No such drive
ext FSEr r -58 External file system

File Manager Reference 2-141

Jabeue a4
n

CHAPTER 2

File Manager

PBOffLine

You can use the PBOF f Li ne function to place a volume offline. Most applications don’t
need to do this.

FUNCTI ON PBO f Li ne (paranBl ock: ParnmBl kPtr): OSErr;
par anBl ock A pointer to a basic File Manager parameter block.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSEr r The result code of the function.

- i oNanmePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

DESCRIPTION

The PBOF f Li ne function places the specified volume offline by calling PBFI ushVol to
flush the volume and releasing all the memory used for the volume except for the
volume control block.

The PBO f Li ne function always executes synchronously.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for PBO f Li ne is _Of f Li ne.

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i oErr -36 I/O error
bdNantr r -37 Bad volume name
par antrr =50 No default volume
nsDrvErr -56 No such drive
ext FSEr r -58 External file system
Updating Volumes

You can update a volume by calling the PBFI ushVol function.

2-142 File Manager Reference

PBFlushVol

CHAPTER 2

File Manager

DESCRIPTION

You can use the PBFI ushVol function to write the contents of the volume buffer and
update information about the volume.

FUNCTI ON PBFl ushVol (paranBl ock: ParnBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Jabeue a4
n

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

On the volume specified by i oNamePt r or i oVRef Num the PBFI ushVol function
writes descriptive information about the volume, the contents of the associated volume
buffer, and all access path buffers for the volume (if they’ve changed since the last time
PBFl ushVol was called).

Note

The date and time of the last modification to the volume are set when
the modification is made, not when the volume is flushed. O

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBFI ushVol is _Fl ushVol .

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNantr r -37 Bad volume name
par antrr -50 No default volume
nsDrvErr -56 No such drive

ext FSEr r -58 External file system

File Manager Reference 2-143

CHAPTER 2

File Manager

Obtaining Volume Information

The File Manager provides several routines that allow you to obtain and modify
information about a volume. For example, you can use the PBHGet VI nf o function
to determine the date and time that a volume was last modified. You can use the
PBHGet Vol Par ns function to determine other features of the volume, such as
whether it supports the PBHOpenDeny function.

PBHGetVInfo

You can use the PBHGet VI nf o function to get detailed information about a volume.

FUNCTI ON PBHGet VI nf o (paranBl ock: HParnmBl kPtr; async: Bool ean):
CSErr;

par anmBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t OSEr r The result code of the function.

o i oNamePt r StringPtr A pointer to the volume’s name.

- i oVRef Num | nt eger On input, a volume specification.
On output, the volume reference
number.

- i oVol | ndex | nt eger An index used for indexing through
all mounted volumes.

- i oVCr Dat e Longl nt The date and time of initialization.

- i oVLsMod Longl nt The date and time of last
modification.

- i OVAtrb | nt eger The volume attributes.

- i OVNnFl s | nt eger The number of files in the root
directory.

- i OVBi t Map I nt eger The first block of the volume bitmap.

- i oVAI | ocPtr | nt eger The block at which the next new
file starts.

- i oOVNMAI Bl ks I nt eger The number of allocation blocks.

- i oVAl Bl kSi z Longl nt The size of allocation blocks.

- i ovd pSi z Longl nt The default clump size.

- i 0Al Bl St I nt eger The first block in the volume
block map.

- i oVNxt CNI D Longl nt The next unused catalog node ID.

- i oVFr Bl k | nt eger The number of unused
allocation blocks.

- i oVSi gWord | nt eger The volume signature.

- i oVDrvlnfo | nt eger The drive number.

- i oVDRef Num I nt eger The driver reference number.

2-144 File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager
- i oVFSI D I nt eger The file system handling
this volume.
- i oVBkUp Longl nt The date and time of the last backup.
- i 0VSegNum I nt eger Used internally.
- i OVW Cnt Longl nt The volume write count.
- i oVFi | Cnt Longl nt The number of files on the volume.
- i oVDi r Cnt Longl nt The number of directories on
the volume.

i oVFndrInfo ARRAY[1..8] OF Longl nt
Information used by the Finder.

N

The PBHCet VI nf o function returns information about the specified volume. If the value
of i oVol | ndex is positive, the File Manager attempts to use it to find the volume; for
instance, if the value of i oVol | ndex is 2, the File Manager attempts to access the second
mounted volume in the VCB queue. If the value of i 0Vol | ndex is negative, the File
Manager uses i oNanePt r and i oVRef Numin the standard way to determine the
volume. If the value of i oVol | ndex is 0, the File Manager attempts to access the
volume by using i 0VRef Numonly. The volume reference number is returned in

i oVRef Num and the volume name is returned in the buffer whose address you passed
ini oNanePt r. You should pass a pointer to a St r 31 value if you want that name
returned. If you pass NI L in the i oNamePt r field, no volume name is returned.

If you pass a working directory reference number in i 0VRef Num(or if the default
directory is a subdirectory), the number of files and directories in the specified directory
(the directory’s valence) is returned in i OVNHl s.

You can read the i oVDr vl nf 0 and i oVDRef Numfields to determine whether the
specified volume is online, offline, or ejected. For online volumes, i oVDr vI nf o contains
the drive number of the drive containing the specified volume and hence is always
greater than 0. If the value returned in i oVDr vl nf 0 is 0, the volume is either offline or
ejected. You can determine whether the volume is offline or ejected by inspecting the
value of the i 0VDRef Numfield. For online volumes, i 0VDRef Numcontains a driver
reference number; these numbers are always less than 0. If the volume is not online, the
value of i 0VDRef Numis either the negative of the drive number (if the volume is offline)
or the drive number itself (if the volume is ejected).

You can get information about all the online volumes by making repeated calls to
PBHGCet VI nf o, starting with the value of i oVol | ndex set to 1 and incrementing that
value until PBHGet VI nf 0 returns nSvErr.

SPECIAL CONSIDERATIONS

The values returned in the i oVNMAI Bl ks and i oVFr Bl k fields are unsigned integers.
You need to exercise special care when reading those values from Pascal. See
“Determining the Amount of Free Space on a Volume” on page 2-47 for one technique
you can use to read those values.

File Manager Reference 2-145

Jabeue a4
n

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for PBHGet VI nf 0 is _HGet Vol | nf o.

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
par antrr -50 No default volume
PBSetVInfo

You can use the PBSet VI nf o function to change information about a volume.

FUNCTI ON PBSet VI nf o (paranBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The result code of the function.

. i oNamePt r StringPtr A pointer to the volume’s name.

. i oVRef Num I nt eger A volume specification.

- i oVCr Dat e Longl nt The date and time of initialization.

- i oVLsMod Longl nt The date and time of last
modification.

N i oOVAt rb I nt eger The volume attributes.

N i oVBkUp Longl nt The date and time of the last
backup.

- i oVSegNum I nt eger Used internally.

i oVFndrInfo ARRAY[1..8] OF Longl nt
Information used by the Finder.

!

DESCRIPTION
The PBSet VI nf o function lets you modify information about volumes. You can specify,
ini oNanmePt r, a pointer to a new name for the volume. Only bit 15 of i OVAt r b can be
changed; setting it locks the volume.

Note

You cannot specify the volume by name; you must use either the
volume reference number, the drive number, or a working directory
reference number. O

2-146 File Manager Reference

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBSet VI nf 0 is _Set Vol | nf o.

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
par antrr =50 No default volume
PBHGetVolParms

DESCRIPTION

You can use the PBHGet Vol Par nms function to determine the characteristics of a volume.

FUNCTI ON PBHGet Vol Par s (par anBl ock: HPar Bl kPtr; async: Bool ean):
OSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The result code of the function.

. i oNamePt r StringPtr A pointer to the volume’s name.

. i oVRef Num | nt eger A volume specification.

. i oBuf f er Ptr A pointer to a Get Vol Par nsl nf oBuf f er
record.

- i oReqCount Longl nt The size of the buffer area.

- i 0Act Count Longl nt The size of the data actually returned.

The PBHGet Vol Par s function returns information about the characteristics of a
volume. You specify a volume (either by name or by volume reference number) and a
buffer size, and PBHGet Vol Par ns fills in the volume attributes buffer, as described in
this section.

You can use a name (pointed to by the i oNamePt r field) or a volume specification
(contained in the i 0VRef Numfield) to specify the volume. A volume specification can be
a volume reference number, drive number, or working directory reference number. If
you use a volume specification to specify the volume, you should set the i oNamePt r
field to NI L.

You must allocate memory to hold the returned attributes and put a pointer to the buffer
in the i oBuf f er field. Specify the size of the buffer in the i oReqCount field. The
PBHGet Vol Par s function places the attributes information in the buffer pointed to by
the i oBuf f er field and specifies the actual length of the data in the i 0Act Count field.

File Manager Reference 2-147

Jabeue a4
n

CHAPTER 2

File Manager

The PBHCet Vol Par s function returns the bulk of its volume description in the
vMAt t ri b field of the attributes buffer. The vMAt t r i b field contains 32 bits of
attribute information about the volume. Bits 0-3 and 21-24 are reserved; all volumes
should return these bits clear. The bits currently used are defined by these constants:

CONST
bHasBl ankAccessPri vi |l eges
= 4 {vol ume supports inherited privil eges}
bHasBTr eeMyr = b5; {reserved}
bHasFi | el Ds = 6; {vol une supports file ID functions}
bHasCat Search = 7; {vol ume supports PBCat Sear ch}

bHasUser Gr oupLi st

= 8; {vol une supports AFP privil eges}
bHasPer sonal AccessPri vi |l eges

= 09 {local file sharing is enabl ed}
bHasFol der Lock = 10; {vol une supports |ocking of folders}
bHasShort Nane = 11; {vol ume supports AFP short nanes}
bHasDeskt opMyr = 12; {vol ume supports Desktop Manager}
bHasMoveRenanme = 13; {vol ume supports _MwveRenane}
bHasCopyFi | e = 14, {vol ume supports _CopyFil e}
bHasQpenDeny = 15; {vol unme supports shared access nodes}
bHasExt FSVol = 16; {volume is external file system vol une}
bNoSysDi r = 17; {vol ume has no system directory}
bAccessCnt | = 18; {vol unme supports AFP access control}
bNoBoot Bl ks = 19; {volume is not a startup vol une}
bNoDeskl t ens = 20; {do not place objects on the desktop}
bNoSwi t chTo = 25; {do not switch launch to applications}
bTrshOf f Li ne = 26; {zoom vol une when it is unnounted}
bNoLcl Sync = 27, {don't let Finder change nod. date}
bNoVNEdi t = 28; {l ock vol une nane}
bNoM ni Fndr = 29; {reserved; always 1}
bLocal W.i st = 30; {use shared vol une handl e for w ndow }

{ list}

bLi mi t FCBs = 31 {limt file control bl ocks}

These constants have the following meanings if set:

Constant descriptions

2-148

bHasBl ankAccessPri vi |l eges
This volume supports inherited access privileges for folders.

bHasBTr eeMyr Reserved for internal use.

bHasFi | el Ds This volume supports the file ID functions, including the
PBExchangeFi | es function.

bHasCat Sear ch This volume supports the PBCat Sear ch function.

File Manager Reference

CHAPTER 2

File Manager

bHasUser Gr oupLi st

This volume supports the Users and Groups file and thus the AFP
privilege functions.

bHasPer sonal AccessPri vil eges

bHasFol der Lock

bHas Shor t Namre
bHasDeskt opMyr

bHasMbveRenane

bHasCopyFi | e

bHasOpenDeny

bHasExt FSVol
bNoSysDi r

bAccessCnt |

bNoBoot Bl ks

bNoDeskl t ens
bNoSwi t chTo
bTrshOF f Li ne

bNoLcl Sync
bNoVNEdi t

bNoM ni Fndr
bLocal W.i st

bLi mi t FCBs

SPECIAL CONSIDERATIONS

This volume has local file sharing enabled.

Folders on the volume can be locked, and so they cannot be deleted
or renamed.

This volume supports AFP short names.

This volume supports all of the desktop functions (described in
the chapter “Desktop Manager” in Inside Macintosh: More
Macintosh Toolbox).

This volume supports the PBHVbveRenane function.

This volume supports the PBHCopyFi | e function, which is used in
copy and duplicate operations if both source and destination
volumes have the same server address.

This volume supports the PBHOpenDeny and PBHOpenRFDeny
functions.

This volume is an external file system volume.

This volume doesn’t support a system directory. Do not switch
launch to this volume.

This volume supports AppleTalk AFP access-control interfaces. The
PBHGet Logi nl nf o, PBHGet Di r Access, PBHSet Di r Access,
PBHMVapI D, and PBHVapNane functions are supported. Special
folder icons are used. The Access Privileges menu command is
enabled for disk and folder items. The i oFl Attri b field of

PBCet Cat | nf o calls is assumed to be valid.

This volume is not a startup volume. The Startup menu item is
disabled. Boot blocks are not copied during copy operations.

Don’t place objects in this volume on the Finder desktop.
The Finder will not switch launch to any application on this volume.

Any time this volume goes offline, it is zoomed to the Trash
and unmounted.

Don't let the Finder change the modification date.
This volume’s name cannot be edited.
Reserved; always set to 1.

The Finder uses the returned shared volume handle for its local
window list.

The Finder limits the number of file control blocks used during
copying to 8 instead of 16.

A volume’s characteristics can change when the user enables and disables file sharing.
You might have to make repeated calls to PBHGet Vol Par ns to ensure that you have the
current status of a volume.

File Manager Reference 2-149

Jabeue a4
n

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBHGet Vol Par ns are

Trap macro Selector

_HFSDi spat ch $0030

noErr 0 No error

nsSvErr -35 Volume not found

par ankrr -50 Volume doesn’t support the function

Manipulating the Default Volume

PBGetVol

The low-level functions PBGet Vol , PBSet Vol , PBHGet Vol , and PBHSet Vol allow you
to manipulate the default volume and directory.

DESCRIPTION

2-150

You can use the PBGet Vol function to determine the default volume and default
directory.

FUNCTI ON PBGet Vol (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume reference number

or a working directory
reference number.

The PBGet Vol function returns, ini oNanePt r, a pointer to the name of the default
volume (unless i oNamePt r is NI L) and, in i oVRef Num its volume reference number. If
a default directory was set with a previous call to PBSet Vol , a pointer to its name is
returned in i oNanmePt r and its working directory reference number is returned in

i oVRef Num However, if, in a previous call to HSet Vol (or PBHSet Vol), a working
directory reference number was passed in, PBGet Vol returns a volume reference
number in the i oVRef Numfield.

File Manager Reference

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

PBSetVol

The trap macro for PBGet Vol is _Get Vol .

noErr 0 No error
nsSvErr -35 No default volume

DESCRIPTION

You can change the default volume and default directory using the PBSet Vol function.
FUNCTI ON PBSet Vol (paranBl ock: ParnmBl kPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

> i oVRef Num I nt eger A volume reference number or a

working directory reference number.

If you pass a volume reference number in i 0VRef Num the PBSet Vol function makes
the specified volume the default volume and the root directory of that volume the
default directory. If you pass a working directory reference number, PBSet Vol makes
the specified directory the default directory, and the volume containing that directory
the default volume.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBSet Vol is _Set Vol .

noErr 0 No error

nsvErr -35 No such volume
bdNantr r -37 Bad volume name
par antrr -50 No default volume

File Manager Reference 2-151

Jabeue a4
n

PBHGetVol

CHAPTER 2

File Manager

DESCRIPTION

You can use the PBHGet Vol function to determine the default volume and default
directory.

FUNCTI ON PBHGet Vol (paranBl ock: WDPBPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSErr The result code of the function.

- i oNanePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume reference number or a working
directory reference number.

- i oVWDPr ocl D Longl nt The working directory user identifier.

- i oOVWDVRef Num | nt eger The volume reference number of the
default volume.

- i oWDDi r I D Longl nt The directory ID of the default directory.

The PBHCet Vol function returns the default volume and directory last set by a call
to either PBSet Vol or PBHSet Vol . The reference number of the default volume is
returned in i 0VRef Num The PBHGet Vol function returns a pointer to the volume’s
name in the i oNanmePt r field. You should pass a pointer to a St r 31 value if you
want that name returned. If you pass NI L in the i oNanePt r field, no volume name
is returned.

WARNING

On exit, the i oVRef Numfield contains a working directory reference
number (instead of the volume reference number) if, in the last call to
PBSet Vol or PBHSet Vol , a working directory reference number was
passed in this field. a

The volume reference number of the volume on which the default directory exists
is returned in i oWDVRef Num The directory ID of the default directory is returned
ini oWDDi r | D.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-152

The trap macro for PBHGet Vol is _HGet Vol .

nokErr 0 No error
nsvErr -35 No default volume
File Manager Reference

PBHSetVol

CHAPTER 2

File Manager

DESCRIPTION

The PBHSet Vol function sets both the default volume and the default directory.
FUNCTI ON PBHSet Vol (paranBl ock: WDPBPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Jabeue a4
n

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume reference number or a
working directory reference number.

- i oWDDi r I D Longl nt The directory ID.

The PBHSet Vol function sets the default volume and directory to the volume and
directory specified by the i oNanmePt r, i oVRef Num and i oWDDi r | Dfields.

The PBHSet Vol function sets the default volume to the volume specified by the

i oVRef Numfield, which can contain either a volume reference number or a working
directory reference number. If the i oNanePt r field specifies a full pathname, however,
the default volume is set to the volume whose name is contained in that pathname. (A
full pathname overrides the i 0VRef Numfield.)

The PBHSet Vol function also sets the default directory. If the i 0VRef Numfield contains
a volume reference number, then the default directory is set to the directory on that
volume having the partial pathname specified by i oNanmePt r in the directory specified
by i oVDDI r | D. If the value of i oNarmePt r is NI L, the default directory is simply the
directory whose directory ID is contained in i o\VDDi r | D.

If the i 0VRef Numfield contains a working directory reference number, then i oVWWDDi r | D
is ignored and the default directory is set to the directory on that volume having the
partial pathname specified by i oNanePt r in the directory specified by the working
directory reference number. If the value of i oNanePt r is NI L, the default directory is
simply the directory specified in i 0VRef Num

WARNING

Use of the PBHSet Vol function is discouraged if your application may
execute in system software versions prior to version 7.0. Because the
specified directory might not itself be a working directory, PBHSet Vol
records the default volume and directory separately, using the volume
reference number of the volume and the actual directory ID of the
specified directory. Subsequent calls to Get Vol (or PBGet Vol) return
only the volume reference number, which will cause that volume’s root
directory (rather than the default directory, as expected) to be accessed. a

File Manager Reference 2-153

CHAPTER 2

File Manager

Note

Both the default volume and the default directory are used in calls made
with no volume name, a volume reference number of 0, and a directory
ID of 0. O

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBSGet Vol is _HSet Vol .

noErr 0 No error

nsvErr -35 No such volume

bdNantEr r =37 Bad volume name

fnfErr —43 Directory not found

par antrr -50 No default volume

af pAccessDeni ed -5000 User does not have access to the directory

File System Specification Routines

The File Manager provides a set of file and directory manipulation routines that accept
file system specification records as parameters. Depending on the requirements of your
application and on the environment in which it is running, you may be able to
accomplish all your file and directory operations by using these routines.

Before calling any of these routines, however, you should call the Gest al t function to
ensure that they are available in the operating environment. If these routines are not
available, you can call the corresponding HFS routines. See “High-Level HFS Routines”
on page 2-170 for details.

Opening Files

There are two FSSpec functions that allow you to open files, FSpOpenDF and
FSpOpenRF. You can use them to open a file’s data fork and resource fork, respectively.

FSpOpenDF

2-154

You can use the FSpOpenDF function to open a file’s data fork.

FUNCTI ON FSpOpenDF (spec: FSSpec; permi ssion: SignhedByte;
VAR ref Num |nteger): OSErr;

spec An FSSpec record specifying the file whose data fork is to be opened.
per m ssi on A constant indicating the desired file access permissions.

ref Num A reference number of an access path to the file’s data fork.

File Manager Reference

DESCRIPTION

ASSEMBLY-LANGUAGE INFORMATION

CHAPTER 2

File Manager

The FSpOpenDF function opens the data fork of the file specified by the spec parameter
and returns a file reference number in the r ef Numparameter. You can pass that reference
number as a parameter to any of the low- or high-level file access routines.

The per mi ssi on parameter specifies the kind of access permission mode you want.
In most cases, you can simply set the per ni ssi on parameter to f sCur Per m Some
applications request f SRAW Per m to ensure that they can both read from and write

to a file. For more information about permissions, see “File Manipulation” on page 2-7.
In shared environments, permission requests are translated into the deny mode
permissions defined by AppleShare.

Jabeue a4
n

The trap macro and routine selector for FSpOpenDF are

Trap macro Selector
_Hi ghLevel HFSDi spat ch $0002

RESULT CODES

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNangr r =37 Bad filename

t nf oErr —42 Too many files open

fnfErr —43 File not found

OpW Err —49 File already open for writing

per nerr -54 Attempt to open locked file for writing

di r NFEr r -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access to the file
FSpOpenRF

DESCRIPTION

You can use the FSpOpenRF function to open a file’s resource fork.

FUNCTI ON FSpOpenRF (spec: FSSpec; perm ssion: SignhedByte;
VAR ref Num |nteger): OSErr;

spec An FSSpec record specifying the file whose resource fork is to be opened.
perm ssi on A constant indicating the desired file access permissions.

ref Num A reference number of an access path to the file’s resource fork.

The FSpOpenRF function creates an access path to the resource fork of a file and returns,
in the r ef Numparameter, an access path reference number to that fork. You can pass that

File Manager Reference 2-155

CHAPTER 2

File Manager

reference number as a parameter to any of the low- or high-level file access routines.
The per mi ssi on parameter should contain a constant indicating the desired file
access permissions.

SPECIAL CONSIDERATIONS

Generally, your application should use Resource Manager routines rather than File
Manager routines to access a file’s resource fork. The FSpOpenRF function does not read
the resource map into memory and is generally useful only for applications (such as
utilities that copy files) that need block-level access to a resource fork. In particular, you
should not use the resource fork of a file to hold nonresource data. Many parts of the
system software assume that a resource fork always contains resource data.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for FSpOpenRF are

Trap macro Selector
__Hi ghLevel HFSDi spat ch $0003

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNantEr r -37 Bad filename

t nf oErr —42 Too many files open

fnfErr —43 File not found

OpW Err —49 File already open for writing

per merr -54 Attempt to open locked file for writing

di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file

Creating and Deleting Files and Directories

You can create files and directories by calling FSpCr eat e and FSpDi r Cr eat e,
respectively. You can delete files and directories by calling the FSpDel et e function.

FSpCreate
You can use the FSpCr eat e function to create a new file.
FUNCTI ON FSpCreate (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
CSErr;
spec An FSSpec record specifying the file to be created.
2-156 File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager

creator
fileType

The creator of the new file.

The file type of the new file.

scriptTag The code of the script system in which the filename is to be displayed. If
you have established the name and location of the new file using either the
St andar dPut Fi | e or Cust onPut Fi | e procedure, specify the script

code returned in the reply record. (See the chapter “Standard File Package’
in this book for a description of St andar dPut Fi | e and

7

Cust onPut Fi | e.) Otherwise, specify the system script by setting the

scri pt Tag parameter to the value snSyst enScri pt .

The FSpCr eat e function creates a new file (both forks) with the specified type, creator,
and script code. The new file is unlocked and empty. The date and time of creation and
last modification are set to the current date and time.

See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for

information on file types and creators.

Files created using FSpCr eat e are not automatically opened. If you want to write data to
the new file, you must first open the file using a file access routine (such as FSpOpenDF).

Note

The resource fork of the new file exists but is empty. You'll need to

call one of the Resource Manager procedures Cr eat eResFi | e,

HCr eat eResFi | e, or FSpCr eat eResFi | e to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFi | e, HOpenResFi | e, or FSpOpenResFi | e). O

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for FSpCr eat e are

Trap macro

_Hi ghLevel HFSDi spat ch

noErr

dirFul Err

dskFul Err

nsvErr

i oErr

bdNantr r

fnfErr

wWPr Er r

vLckdErr
dupFNEr r

di r NFEr r

af pAccessDeni ed
af pQbj ect TypeErr

File Manager Reference

=33
-34
=35
-36
=37
—43
—44
—46
—48
-120
-5000
-5025

Selector
$0004

No error

File directory full
Disk is full

No such volume
I/O error

Bad filename

Directory not found or incomplete pathname

Hardware volume lock
Software volume lock

Duplicate filename and version

Directory not found or incomplete pathname
User does not have the correct access

A directory exists with that name

2-157

Jabeue a4
n

CHAPTER 2

File Manager

FSpDirCreate

DESCRIPTION

You can use the FSpDi r Cr eat e function to create a new directory.

FUNCTI ON FSpDi r Create (spec: FSSpec; scriptTag: ScriptCode;
VAR createdDirl D Longint): OSErr;

spec An FSSpec record specifying the directory to be created.

scriptTag The code of the script system in which the directory name is to be
displayed. If you have established the name and location of the new
directory using either the St andar dPut Fi | e or Cust onPut Fi | e
procedure, specify the script code returned in the reply record. (See the
chapter “Standard File Package” in this book for a description of
St andar dPut Fi | e and Cust onPut Fi | e.) Otherwise, specify the
system script by setting the scri pt Tag parameter to the value
snBystentcri pt.

createdDirID
The directory ID of the directory that was created.

The FSpDi r Cr eat e function creates a new directory and returns the directory ID of the
new directory in the cr eat edDi r | D parameter. Then FSpDi r Cr eat e sets the date and
time of creation and last modification to the current date and time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-158

The trap macro and routine selector for FSpDi r Cr eat e are

Trap macro Selector
__Hi ghLevel HFSDi spat ch $0005

nokErr 0 No error

di rFul Err -33 File directory full

dskFul Err -34 Disk is full

NSVvErr -35 No such volume

i oErr -36 I/0O error

bdNantr r =37 Bad filename

fnfErr —43 Directory not found or incomplete pathname
wWPr Er r —44 Hardware volume lock

vLckdErr —46 Software volume lock

dupFNEr r —48 Duplicate filename and version

di r NFEr r -120 Directory not found or incomplete pathname
wr gVol TypErr -123 Not an HFS volume

af pAccessDeni ed -5000 User does not have the correct access

File Manager Reference

FSpDelete

CHAPTER 2

File Manager

DESCRIPTION

You can use the FSpDel et e function to delete files and directories.
FUNCTI ON FSpDel ete (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file or directory to delete.

The FSpDel et e function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. The file ID reference, if any, is removed.

A file must be closed before you can delete it. Similarly, a directory must be empty
before you can delete it. If you attempt to delete an open file or a nonempty directory,
FSpDel et e returns the result code f BsyEr r. FSpDel et e also returns the result
code f BsyErr if the directory has an open working directory associated with it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for FSpDel et e are

Trap macro Selector
_Hi ghLevel HFSDi spat ch $0006

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNantEr r =37 Bad filename

fnfErr —43 File not found

wPr Er r —44 Hardware volume lock

f LckdErr —45 File is locked

vLckdErr —46 Software volume lock

f BsyErr —47 File busy, directory not empty, or working directory
control block open

di r NFEr r -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access

Accessing Information About Files and Directories

You can use several File Manager routines that accept FSSpec records if you want to
obtain and set information about files and directories and to manipulate file locking.
These routines don’t require the file to be open.

File Manager Reference 2-159

Jabeue a4
n

CHAPTER 2

File Manager

FSpGetFInfo

You can use the FSpGet FI nf o function to obtain the Finder information about a file or
directory.

FUNCTI ON FSpCet FI nfo (spec: FSSpec; VAR fndrinfo: FInfo): OSErr;

spec An FSSpec record specifying the file or directory whose Finder
information is desired.

fndrinfo Information used by the Finder.

DESCRIPTION

The FSpCet FI nf o function returns the Finder information from the volume catalog
entry for the specified file or directory. The FSpGet FI nf 0 function provides only the
original Finder information—the FI nf o or DI nf 0 records, not FXI nf 0 or DXI nf 0. (See
the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a
discussion of Finder information.)

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for FSpGet FI nf 0 are

Trap macro Selector
__Hi ghLevel HFSDi spat ch $0007

RESULT CODES

nokErr 0 No error

NsvErr -35 No such volume

i OErr -36 I/0 error

bdNanEr r =37 Bad filename

fnfErr —43 File not found

par antrr =50 No default volume

di r NFErr -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access

af pQbj ect TypeErr -5025 Directory not found or incomplete pathname
FSpSetFInfo

You can use the FSpSet FI nf o function to set the Finder information about a file
or directory.

FUNCTI ON FSpSet FI nfo (spec: FSSpec; fndrinfo: FInfo): OSErr;

spec An FSSpec record specifying the file or directory whose Finder
information will be set.

fndrinfo Information to be used by the Finder.

2-160 File Manager Reference

DESCRIPTION

ASSEMBLY-LANGUAGE INFORMATION

CHAPTER 2

File Manager

The FSpSet FI nf o function changes the Finder information in the volume catalog entry
for the specified file or directory. FSpSet FI nf o allows you to set only the original
Finder information—the FI nf o or DI nf o records, not FXI nf o or DXI nf 0. (See the
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for a
discussion of Finder information.)

The trap macro and routine selector for FSpSet FI nf o are

Trap macro Selector
__Hi ghLevel HFSDi spat ch $0008

Jabeue a4
n

RESULT CODES

noErr 0 No error

nsvErr -35 No such volume

i OErr -36 I/0 error

bdNantr r -37 Bad filename

fnfErr —43 File not found

WPr Er r —44 Hardware volume lock

f LckdErr —45 File is locked

vLckdErr —46 Software volume lock

di r NFErr -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access

af pQbj ect TypeErr -5025 Object was a directory
FSpSetFLock

DESCRIPTION

You can use the FSpSet FLock function to lock a file.
FUNCTI ON FSpSet FLock (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file to lock.

The FSpSet FLock function locks a file. After you lock a file, all new access paths to that
file are read-only. This function has no effect on existing access paths.

If the PBHCet Vol Par ns function indicates that the volume supports folder locking (that
is, the bHasFol der Lock bit of the vMAt t r i b field is set), you can use FSpSet FLock to
lock a directory.

File Manager Reference 2-161

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for FSpSet FLock are

Trap macro Selector
_Hi ghLevel HFSDi spat ch $0009

RESULT CODES
nokErr 0 No error
NSVErr -35 No such volume
i oErr -36 1/0O error
fnfErr -43 File not found
WPr Er r —44 Hardware volume lock
vLckdErr —46 Software volume lock
di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file
af pQbj ect TypeErr -5025 Folder locking not supported by volume
FSpRstFLock

You can use the FSpRst FLock function to unlock a file.
FUNCTI ON FSpRst FLock (spec: FSSpec): OSErr;

spec An FSSpec record specifying the file to unlock.

DESCRIPTION
The FSpRst FLock function unlocks a file.
If the PBHGet Vol Par ns function indicates that the volume supports folder locking (that

is, the bHasFol der Lock bit of the vMAt t ri b field is set), you can use FSpRst FLock to
unlock a directory.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for FSpRst FLock are

Trap macro Selector
__Hi ghLevel HFSDi spat ch $000A

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i oErr -36 I/0O error
fnfErr —43 File not found
WPr Er r —44 Hardware volume lock
vLckdErr —46 Software volume lock
di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file
af pQbj ect TypeErr -5025 Folder locking not supported by volume

2-162 File Manager Reference

FSpRename

CHAPTER 2

File Manager

DESCRIPTION

You can use the FSpRename function to rename a file or directory.

FUNCTI ON FSpRename (spec:

spec
newNane

FSSpec; newNane: Str255): OSErr;

An FSSpec record specifying the file or directory to rename.

The new name of the file or directory.

The FSpRenane function changes the name of a file or directory. If a file ID reference for
the specified file exists, it remains with the renamed file.

SPECIAL CONSIDERATIONS

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Moving Files or Directories

If you want to change the name of a new copy of an existing file, you should use the
FSpExchangeFi | es function instead.

The trap macro and routine selector for FSpRenane are

Trap macro

_Hi ghLevel HFSDi spat ch

noErr

di rFul Err
dskFul Err
nsvErr

i oErr
bdNantr r
fnfErr
wWPr Err
fLckdErr
vLckdErr
dupFNEr r
parantrr
f SRnErr
di r NFEr r

af pAccessDeni ed

0
-33
-34
-35
-36
=37
—43
—44
—45
—46
—48
=50
-59

-120

-5000

Selector
$000B

No error

File directory full

Volume is full

No such volume

I/0O error

Bad filename

File not found

Hardware volume lock

File is locked

Software volume lock

Duplicate filename and version

No default volume

Problem during rename

Directory not found or incomplete pathname
User does not have the correct access to the file

The FSpCat Move function allows you to move files and directories within a volume. If
the FSSpec routines are not available, you can call the high-level HFS routine Cat Move
or the low-level HFS routine PBCat Move.

File Manager Reference

2-163

Jabeue a4
n

CHAPTER 2

File Manager

FSpCatMove

DESCRIPTION

You can use the FSpCat Move function to move a file or directory from one location to
another on the same volume.

FUNCTI ON FSpCat Mbve (source: FSSpec; dest: FSSpec): OSErr;

sour ce An FSSpec record specifying the name and location of the file or
directory to be moved.

dest An FSSpec record specifying the name and location of the directory into
which the source file or directory is to be moved.

The FSpCat Move function moves the file or directory specified by the sour ce
parameter into the directory specified by the dest parameter. The directory ID specified
in the par | Dfield of the dest parameter is the directory ID of the parent of the
directory into which you want to move the source file or directory. The nane field of the
dest parameter specifies the name of the directory into which you want to move the
source file or directory.

Note

If you don’t already know the parent directory ID of the destination
directory, it might be easier to use the PBCat Move function, which
allows you to specify only the directory ID of the destination directory. O

The FSpCat Move function is strictly a file catalog operation; it does not actually change
the location of the file or directory on the disk. You cannot use FSpCat Move to move

a file or directory to another volume (that is, the vRef Numfield in both FSSpec
parameters must be the same). Also, you cannot use FSpCat Move to rename files or
directories; to rename a file or directory, use FSpRenare.

ASSEMBLY-LANGUAGE INFORMATION

2-164

The trap macro and routine selector for FSpCat Move are

Trap macro Selector

_Hi ghLevel HFSDi spat ch $000C

File Manager Reference

RESULT CODES

CHAPTER 2

File Manager

nokErr 0 No error

nsvErr -35 No such volume

i OErr -36 I/0O error

bdNanEr r -37 Bad filename or attempt to move into a file
fnfErr —43 File not found

wPr Er r -44 Hardware volume lock

f LckdErr —45 Target directory is locked

vLckdErr —46 Software volume lock

dupFNEr r —48 Duplicate filename and version

par antrr -50 No default volume

badMovErr -122 Attempt to move into offspring

wr gVol TypErr -123 Not an HFS volume

af pAccessDeni ed -5000 User does not have the correct access to the file

Exchanging the Data in Two Files

The FSpExchangeFi | es function allows you to exchange the data in two files.

FSpExchangeFiles

DESCRIPTION

You can use the FSpExchangeFi | es function to exchange the data stored in two files
on the same volume.

FUNCTI ON FSpExchangeFi |l es (source: FSSpec; dest: FSSpec): OSErr;

source The source file. The contents of this file and its file information are placed
in the file specified by the dest parameter.

dest The destination file. The contents of this file and its file information are
placed in the file specified by the sour ce parameter.

The FSpExchangeFi | es function swaps the data in two files by changing the
information in the volume’s catalog and, if the files are open, in the file control
blocks. You should use FSpExchangeFi | es when updating an existing file, so
that the file ID remains valid in case the file is being tracked through its file ID.
The FSpExchangeFi | es function changes the fields in the catalog entries that
record the location of the data and the modification dates. It swaps both the data
forks and the resource forks.

The FSpExchangeFi | es function works on both open and closed files. If either file is
open, FSpExchangeFi | es updates any file control blocks associated with the file.

File Manager Reference 2-165

Jabeue a4
n

CHAPTER 2

File Manager

Exchanging the contents of two files requires essentially the same access permissions as
opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do
not, FSpExchangeFi | es returns the result code di f f Vol Err.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for FSpExchangeFi | es are
Trap macro Selector
_Hi ghLevel HFSDi spat ch $000F

RESULT CODES
nokErr 0 No error
NsSvErr -35 Volume not found
i OErr -36 I/0O error
fnfErr —43 File not found
f LckdErr —45 File is locked
vLckdErr -46 Volume is locked or read-only
par ankrr -50 Function not supported by volume
vol OfFflinErr -53 Volume is offline
wr gVol TypErr -123 Not an HFS volume
di ffVol Err -1303 Files on different volumes
af pAccessDeni ed -5000 User does not have the correct access
af pQbj ect TypeErr -5025 Object is a directory, not a file
af pSaneQbj ect Err -5038 Source and destination files are the same

Creating File System Specifications

You can use either the FSMakeFSSpec function or the PBMakeFSSpec function to
create FSSpec records. You should always use FSMakeFSSpec or PBMakeFSSpec

to create an FSSpec record rather than allocating space and filling out the fields of the
record yourself.

FSMakeFSSpec

You can use the FSMakeFSSpec function to initialize an FSSpec record to particular
values for a file or directory.

FUNCTI ON FSMakeFSSpec (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; VAR spec: FSSpec):
OSErr;

2-166 File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager

vRef Num A volume specification. This parameter can contain a volume reference
number, a working directory reference number, a drive number, or 0
(to specify the default volume).

dirlD A directory specification. This parameter usually specifies the parent

directory ID of the target object. If the directory is sufficiently specified
by either the vRef Numor f i | eNane parameter, di r | D can be set to 0.
If you explicitly specify di r | D (that is, if it has any value other than 0),
and if vRef Numspecifies a working directory reference number, di r 1 D
overrides the directory ID included in vRef Num If the f i | eNare
parameter contains an empty string, FSMakeFSSpec creates an
FSSpec record for a directory specified by either the di r | Dor
vRef Numparameter.

fileName A full or partial pathname. If f i | eName specifies a full pathname,
FSMakeFSSpec ignores both the vRef Numand di r | D parameters. A
partial pathname might identify only the final target, or it might include
one or more parent directory names. If f i | eNane specifies a partial
pathname, then vRef Num di r | D, or both must be valid.

spec A file system specification to be filled in by FSMakeFSSpec.

The FSMakeFSSpec function fills in the fields of the spec parameter using the
information contained in the other three parameters. Call FSMakeFSSpec whenever you
want to create an FSSpec record.

You can pass the input to FSMakeFSSpec in any of the ways described in “HFS
Specifications” on page 2-28. See Table 2-10 on page 2-36 for information about the way
FSMakeFSSpec interprets its input.

If the specified volume is mounted and the specified parent directory exists, but the
target file or directory doesn’t exist in that location, FSMakeFSSpec fills in the record
and then returns f nf Er r instead of noEr r. The record is valid, but it describes a target
that doesn’t exist. You can use the record for other operations, such as creating a file with
the FSpCr eat e function.

In addition to the result codes that follow, FSMakeFSSpec can return a number of other
File Manager error codes. If your application receives any result code other than noEr r
or f nf Err, all fields of the resulting FSSpec record are set to 0.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FSMakeFSSpec are

Trap macro Selector
__Hi ghLevel HFSDi spat ch $0001

File Manager Reference 2-167

Jabeue a4
n

CHAPTER 2

File Manager
RESULT CODES

noErr 0 No error

nsvEerr -35 Volume doesn’t exist

fnfErr —43 File or directory does not exist (FSSpec is still valid)
PBMakeFSSpec

You can use the low-level PBMakeFSSpec function to create an FSSpec record for a file
or directory.

FUNCTI ON PBMakeFSSpec (paranBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CSErr The result code of the function.

- i oNanePt r StringPtr A pointer to a file or directory name.
- i oVRef Num | nt eger A volume specification.

- i oM sc Longl nt A pointer to an FSSpec record.

- ioDirlD Longl nt A parent directory ID.

DESCRIPTION

Given a complete specification for a file or directory, the PBMakeFSSpec function fills in
an FSSpec record that identifies the file or directory. (See Table 2-10 on page 2-36 for a
detailed description of valid file specifications.)

If the specified volume is mounted and the specified parent directory exists, but the
target file or directory doesn’t exist in that location, PBVMakeFSSpec fills in the record
and returns f nf Er r instead of noEr r. The record is valid, but it describes a target that
doesn’t exist. You can use the record for another operation, such as creating a file.

In addition to the result codes that follow, PBMakeFSSpec can return a number of
different File Manager error codes. When PBMakeFSSpec returns any result other
than noEr r or f nf Err, all fields of the resulting FSSpec record are set to 0.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for PBMakeFSSpec are

Trap macro Selector
_HFSDi spat ch $001B

2-168 File Manager Reference

RESULT CODES

CHAPTER 2

File Manager

noErr 0 No error

nsvErr -35 Volume doesn’t exist

fnfErr —43 File or directory does not exist (FSSpec is still valid)

High-Level HFS Routines

The File Manager provides a set of high-level file and directory manipulation routines
that are available in all operating environments. You may need to use these routines if
the FSSpec routines are not available. You do not need to call the Gest al t function to
determine if these routines are available.

Each of the high-level HFS routines allows you to specify a file or directory by providing
three parameters: a volume specification, a directory specification, and a filename. See
“HFS Specifications” on page 2-28 for a complete description of the many ways in which
you can set these parameters to pick out a file or directory.

Opening Files

You can use the functions HOpenDF, HOpenRF, and HOpen to open files.

HOpenDF
You can use the HOpenDF function to open the data fork of a file.
FUNCTI ON HOpenDF (vRef Num |Integer; dirlD: Longlnt;
fileNane: Str255; perm ssion: SignedByte;
VAR ref Num Integer): OSErr;
vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.
dirlD A directory ID.
fileName The name of the file.
per m ssi on The access mode under which to open the file.
ref Num The file reference number of the opened file.
DESCRIPTION

The HOpenDF function creates an access path to the data fork of a file and returns, in
the r ef Numparameter, an access path reference number to that fork. You can pass that
reference number as a parameter to any of the high-level file access routines.

File Manager Reference 2-169

Jabeue a4
n

CHAPTER 2

File Manager
RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i OErr -36 1/Oerror
bdNantEr r =37 Bad filename
t nf oErr —42 Too many files open
fnfErr —43 File not found
OpW Err —49 File already open for writing
per nerr -54 Attempt to open locked file for writing
di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file

HOpenRF

You can use the HOpenRF function to open the resource fork of file.

FUNCTI ON HOpenRF (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; perm ssion: SignedByte;
VAR ref Num |Integer): OSErr;

vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.
dirlD A directory ID.

fileName The name of the file.
per m ssi on The access mode under which to open the file.

ref Num The file reference number of the opened file.

DESCRIPTION

The HOpenRF function creates an access path to the resource fork of a file. A file
reference number for that file is returned in the r ef Numparameter.

SPECIAL CONSIDERATIONS

Generally, your application should use Resource Manager routines rather than File
Manager routines to access a file’s resource fork. The HOpenRF function does not read
the resource map into memory and is generally useful only for applications (such as
utilities that copy files) that need block-level access to a resource fork. In particular, you
should not use the resource fork of a file to hold nonresource data. Many parts of the
system software assume that a resource fork always contains resource data.

2-170 File Manager Reference

RESULT CODES

HOpen

CHAPTER 2

File Manager

noErr 0 No error

nsvErr -35 No such volume

i OErr -36 1/Oerror

bdNantEr r =37 Bad filename

t nf oErr —42 Too many files open

fnfErr —43 File not found

OpW Err —49 File already open for writing

per nerr -54 Attempt to open locked file for writing

di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file

DESCRIPTION

You can use the HOpen function to open the data fork of a file. Because HOpen also opens
devices, it’s safer to use the HOpenDF function instead.

FUNCTI ON HOpen (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; perm ssion: SignedByte;
VAR ref Num Integer): OSErr;

vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.
dirlD A directory ID.

fileName The name of the file.
per m ssi on The access mode under which to open the file.
ref Num The file reference number of the opened file.

The HOpen function creates an access path to the data fork of the specified file. A file
reference number for that file is returned in the r ef Numparameter.

WARNING

If you use HOpen to try to open a file whose name begins with a period,
you might mistakenly open a driver instead; subsequent attempts to
write data might corrupt data on the target device. To avoid these
problems, you should always use HOpenDF instead of HOpen. a

File Manager Reference 2-171

Jabeue a4
n

CHAPTER 2

File Manager
RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i OErr -36 1/Oerror
bdNantEr r =37 Bad filename
t nf oErr —42 Too many files open
fnfErr —43 File not found
OpW Err —49 File already open for writing
per nerr -54 Attempt to open locked file for writing
di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file

Creating and Deleting Files and Directories

You can create a file by calling the HCr eat e function and a directory by calling the
Di r Cr eat e function. To delete either a file or a directory, call HDel et e.

HCreate

You can use the HCr eat e function to create a new file.

FUNCTI ON HCreate (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; creator: OSType;
fileType: OSType): OSErr;

vRef Num A volume reference number, a working directory reference number, or 0

for the default volume.

dirlD A directory ID.

fileName The name of the new file.

creator The creator of the new file.

fileType The file type of the new file.

DESCRIPTION

The HCr eat e function creates a new file (both forks) with the specified name, creator,
and file type. For information on a file’s creator and type, see the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials.

The new file is unlocked and empty. The date and time of its creation and last
modification are set to the current date and time.

Files created using HCr eat e are not automatically opened. If you want to write data to
the new file, you must first open the file using a file access routine.

2-172 File Manager Reference

RESULT CODES

DirCreate

CHAPTER 2

File Manager

Note

The resource fork of the new file exists but is empty. You'll need to

call one of the Resource Manager procedures Cr eat eResFi | e,

HCr eat eResFi | e, or FSpCr eat eResFi | e to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFi | e, HOpenResFi | e, or FSpQpenResFi | e). O

You should not allow users to give files names that begin with a period (.). This ensures
that files can be successfully opened by applications calling HOpen instead of HOpenDF.

Jabeue a4
n

noErr 0 No error

di r Ful Err -33 File directory full

dskFul Err -34 Disk is full

nsvErr -35 No such volume

i oErr -36 I/O error

bdNantEr r =37 Bad filename

fnfErr —43 Directory not found or incomplete pathname
wWPr Er r —44 Hardware volume lock

vLckdErr —46 Software volume lock

dupFNEr r —48 Duplicate filename and version

di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access

af pObj ect TypeErr -5025 A directory exists with that name

DESCRIPTION

You can use the Di r Cr eat e function to create a new directory.

FUNCTION DirCreate (vRef Num |Integer; parentDirlID: Longlnt;
di rectoryName: Str255;
VAR createdDirI D: Longint): OSErr;

vRef Num A volume reference number, a working directory reference number,
or 0 for the default volume.

parentDirI D The directory ID of the parent directory; if it’s 0, the new directory
is placed in the root directory of the specified volume.

di rect oryName The name of the new directory.
createdDirI D The directory ID of the created directory.

The Di r Cr eat e function creates a new directory and returns the directory ID of the new
directory in the cr eat edDi r | D parameter. The date and time of its creation and last
modification are set to the current date and time.

File Manager Reference 2-173

RESULT CODES

HDelete

CHAPTER 2

File Manager

Note

A directory ID, unlike a volume reference number or a working
directory reference number, is a Longl nt value. O

noErr 0 No error

di r Ful Err -33 File directory full

dskFul Err -34 Disk is full

nsvErr -35 No such volume

i oErr -36 I/O error

bdNantr r =37 Bad filename

fnfErr —43 Directory not found or incomplete pathname
wWPr Er r —44 Hardware volume lock

vLckdErr —46 Software volume lock

dupFNEr r —48 Duplicate filename and version

di r NFEr r -120 Directory not found or incomplete pathname
wr gVol TypErr -123 Not an HFS volume

af pAccessDeni ed -5000 User does not have the correct access

DESCRIPTION

2-174

You can use the HDel et e function to delete a file or directory.

FUNCTI ON HDel ete (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255): OSErr;

vRef Num A volume specification (a volume reference number, a working directory
reference number, or 0 for the default volume).

dirlD The directory ID of the parent of the file or directory to delete.
fileName The name of the file or directory to delete.

The HDel et e function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. In addition, if a file ID reference for the specified file exists,
that reference is removed.

A file must be closed before you can delete it. Similarly, you cannot delete a directory
unless it’s empty. If you attempt to delete an open file or a nonempty directory, HDel et e
returns the result code f BsyEr r. HDel et e also returns the result code f BsyEr r if the
directory has an open working directory associated with it.

File Manager Reference

RESULT CODES

CHAPTER 2

File Manager

nokErr 0 No error

nsvErr -35 No such volume

i OErr -36 I/0O error

bdNanEr r =37 Bad filename

fnfErr —43 File not found

wPr Er r —44 Hardware volume lock

f LckdErr —-45 File is locked

vLckdErr —46 Software volume lock

f BSyErr —-47 File busy, directory not empty, or working directory
control block open

di r NFErr -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access

Accessing Information About Files and Directories

The File Manager provides a number of high-level HFS routines that allow you to obtain
and set information about files and directories and to manipulate file locking. All of the
routines described in this section operate on both forks of a file and don’t require the file
to be open.

HGetFInfo
You can use the HGet FI nf o function to obtain the Finder information for a file.
FUNCTI ON HGet FI nfo (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; VAR fndrlnfo: FInfo):
OSErr;
vRef Num A volume reference number, a working directory reference number, or
0 for the default volume.
dirlD A directory ID.
fil eName The name of the file.
fndrinfo Information used by the Finder.
DESCRIPTION

The HGet FI nf o function returns the Finder information stored in the volume’s catalog
for a file. The HGet FI nf o function returns only the original Finder information—the

FI nf o record, not FXI nf 0. (See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for a discussion of Finder information.)

File Manager Reference 2-175

Jabeue a4
n

CHAPTER 2

File Manager
RESULT CODES
nokErr 0 No error
NsvErr -35 No such volume
i OErr -36 I/0 error
bdNanEr r -37 Bad filename
fnfErr —43 File not found
par antrr =50 No default volume
di r NFErr -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access
af pQbj ect TypeErr -5025 Directory not found or incomplete pathname

HSetFInfo
You can use the HSet FI nf o function to set the Finder information for a file.
FUNCTI ON HSet FI nfo (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; fndrinfo: FInfo): OSErr;
vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.
dirlD A directory ID.
fileName The name of the file.
fndrinfo Information used by the Finder.
DESCRIPTION
The HSet FI nf o function changes the Finder information stored in the volume’s catalog
for a file. HSet FI nf o changes only the original Finder information—the FI nf o record,
not FXI nf 0. (See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for a discussion of Finder information.)
RESULT CODES
nokErr 0 No error
nsvErr -35 No such volume
i oErr -36 I/0O error
bdNantr r =37 Bad filename
fnfErr —43 File not found
wWPr Er r —-44 Hardware volume lock
f LckdErr —45 File is locked
vLckdErr —46 Software volume lock
di r NFErr -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access
af pQbj ect TypeErr -5025 Object was a directory

2-176 File Manager Reference

HSetFLock

CHAPTER 2

File Manager

DESCRIPTION

RESULT CODES

HRstFLock

You can use the HSet FLock function to lock a file.

FUNCTI ON HSet FLock (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255): OSErr;

vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.
dirlD A directory ID.

fil eNanme The name of the file.

The HSet FLock function locks a file. After you lock a file, all new access paths to that
file are read-only. This function has no effect on existing access paths.

If the PBHGet Vol Par ns function indicates that the volume supports folder locking (that
is, the bHasFol der Lock bit of the vMAt t ri b field is set), you can use HSet FLock to
lock a directory.

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 1/0 error

fnfErr —43 File not found

WPr Er r —44 Hardware volume lock

vLckdErr —46 Software volume lock

di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file
af pQoj ect TypeErr -5025 Folder locking not supported by volume

You can use the HRst FLock function to unlock a file.

FUNCTI ON HRst FLock (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255): OSErr;

vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.
dirlD A directory ID.

fil eName The name of the file.

File Manager Reference 2-177

Jabeue a4
n

CHAPTER 2

File Manager

DESCRIPTION
The HRst FLock function unlocks a file.
If the PBHGet Vol Par ns function indicates that the volume supports folder locking (that
is, the bHasFol der Lock bit of the vMAt t ri b field is set), you can use HRst FLock to
unlock a directory.
RESULT CODES
nokErr 0 No error
NsvErr -35 No such volume
i OErr -36 I/0 error
fnfErr —43 File not found
wWPr Er r —44 Hardware volume lock
vLckdErr —-46 Software volume lock
di r NFErr -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file
af pQbj ect TypeErr -5025 Folder locking not supported by volume
HRename
You can use the HRenane function to rename a file, directory, or volume.
FUNCTI ON HRenane (vRef Num |Integer; dirlD: Longlnt;
ol dName: Str255; newNane: Str255): OSErr;
vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.
dirlD A directory ID.
ol dNane An existing filename, directory name, or volume name.
newName The new filename, directory name, or volume name.
DESCRIPTION

The HRenamne function changes the name of a file, directory, or volume. Given the name
of a file or directory in ol dNare, HRename changes it to the name in newNarne. Given a
volume name or a volume reference number, it changes the name of the volume to the
name in newNane. Access paths currently in use aren’t affected.

SPECIAL CONSIDERATIONS

2-178

You cannot use HRenane to change the directory in which a file resides. If you're
renaming a volume, make sure that both names end with a colon.

Note

If a file ID reference exists for a file you are renaming, the file ID remains
with the renamed file. O

File Manager Reference

CHAPTER 2

File Manager
RESULT CODES
noErr 0 No error
di r Ful Err -33 File directory full
dskFul Err -34 Volume is full
NSVErr -35 No such volume
i OErr -36 I/0O error
bdNanEr r =37 Bad filename
fnfErr —43 File not found
wPr Er r —44 Hardware volume lock
f LckdErr —45 File is locked
vLckdErr —46 Software volume lock
dupFNEr r —48 Duplicate filename
par ankrr =50 No default volume
f sSRnErr -59 Problem during rename
di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file

Moving Files or Directories

The high-level HFS function Cat Move allows you to move files and directories within
a volume.

CatMove
You can use the Cat Move function to move files or directories from one directory to
another on the same volume.
FUNCTI ON Cat Move (vRef Num Integer; dirlD: Longlnt;
ol dNanme: Str255; newbDirlD: Longlnt;
newNane: Str255): OSErr;
vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.
dirlD A directory ID.
ol dName An existing filename or directory name.
newDi r1 D If newNane is empty, the directory ID of the target directory; otherwise,
the parent directory ID of the target directory.
newNane The name of the directory to which the file or directory is to be moved.
DESCRIPTION

The Cat Move function moves a file or directory from one directory to another within a
volume. Cat Move is strictly a file catalog operation; it does not actually change the
location of the file or directory on the disk.

File Manager Reference 2-179

Jabeue a4
n

CHAPTER 2

File Manager

The newNare parameter specifies the name of the directory to which the file or directory
is to be moved. If a valid directory name is provided for newNane, the destination
directory’s parent directory is specified in newDi r | D. However, you can specify an
empty name for newNane, in which case newDi r | Dshould be set to the directory ID of
the destination directory.

Note

It is usually simplest to specify the destination directory by passing its
directory ID in the newDi r | D parameter and by setting newNane to an
empty name. To specify an empty name, set newNane to' : ' . O

The Cat Move function cannot move a file or directory to another volume (that is, the
vRef Numparameter is used in specifying both the source and the destination). Also, you
cannot use it to rename files or directories; to rename a file or directory, use HRenane.

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i oErr -36 I/0O error
bdNangr r =37 Bad filename or attempt to move into a file
fnfErr —43 File not found
wWPr Er r —44 Hardware volume lock
f LckdErr —45 Target directory is locked
vLckdErr —46 Software volume lock
dupFNEr r —48 Duplicate filename and version
par anerr -50 No default volume
badMovEr r -122 Attempt to move into offspring
wr gVol TypErr -123 Not an HFS volume
af pAccessDeni ed -5000 User does not have the correct access to the file

Maintaining Working Directories

The File Manager provides several functions that allow you to manipulate working
directories. Working directories are used internally by the File Manager; in general,
your application should not create or directly access working directories. For more
information about working directories, see “Working Directory Reference Numbers,”
beginning on page 2-26.

7

OpenWD

You can use the QpenWD function to create a working directory.

FUNCTI ON OpenWD (vRef Num Integer; dirlD: Longlnt;
procl D: Longlnt; VAR wdRef Num Integer): OSErr;

2-180 File Manager Reference

DESCRIPTION

RESULT CODES

CloseWD

CHAPTER 2

File Manager

vRef Num A volume reference number, a working directory reference number, or 0
for the default volume.

dirlD A directory ID.

procl D A working directory user identifier. You should use your application’s

signature as the user identifier.

wdRef Num On exit, the working directory reference number.

The QpenWD function creates a working directory that corresponds to the specified
directory. It returns in wdRef Numa working directory reference number that can be used
in subsequent File Manager calls.

If a working directory having the specified user identifier already exists for the specified
directory, no new working directory is opened; instead, the existing working directory
reference number is returned in wdRef Num If the specified directory already has a
working directory with a different user identifier, a new working directory reference
number is returned.

If the directory specified by the di r | D parameter is the volume’s root directory, no
working directory is created; instead, the volume reference number is returned in the
wdRef Numparameter.

noErr 0 No error

NSVvErr -35 No such volume

fnfErr —43 No such directory

t mvdoEr r -121 Too many working directories open

af pAccessDeni ed -5000 User does not have the correct access to the file

DESCRIPTION

You can use the Cl 0seWD function to close a working directory.
FUNCTI ON C oseWD (wdRef Num I nteger): OSErr;

wdRef Num A working directory reference number.

The O oseWD function releases the specified working directory.

Note

If you specify a volume reference number in the wdRef Numparameter,
C oseWD does nothing. O

File Manager Reference 2-181

Jabeue a4
n

RESULT CODES

CHAPTER 2

File Manager

noErr 0 No error

nsvErr -35 No such volume

rf Nunmerr -51 Bad working directory reference number

GetWDInfo

DESCRIPTION

RESULT CODES

You can use the Get DI nf o function to get information about a working directory.

FUNCTI ON Get WDI nfo (wdRef Num | nteger; VAR vRef Num | nteger;
VAR dirl D: Longlnt; VAR proclD: Longlnt):
CSErr;

wdRef Num A working directory reference number.

vRef Num If nonzero on input, a volume reference number or drive number. On
output, the volume reference number of the working directory.

dirlD On output, the directory ID of the specified working directory.

procl D The working directory user identifier.

The Get WDI nf 0 function returns information about the specified working directory.
You can use Get VDI nf o0 to convert a working directory reference number to its
corresponding volume reference number and directory ID.

noErr 0 No error
nsvErr -35 No such volume
rf Numerr -51 Bad working directory reference number

Low-Level HFS Routines

2-182

The File Manager provides a set of low-level file and directory manipulation routines
that are available in all operating environments. You do not need to call the Gest al t
function to determine if these routines are available.

These routines exchange parameters with your application through a parameter block.
When you call a low-level routine, you pass the address of the appropriate parameter
block to the routine.

Some low-level HFS routines can run either asynchronously or synchronously. Each of
these routines comes in three versions: one version requires the async parameter, and
two have the suffix Async or Sync added to their names. For more information about
the differences between the three versions, see “Low-Level File Access Routines” on

File Manager Reference

Opening Files

CHAPTER 2

File Manager

page 2-121. Only the first version of these routines is documented in this section. See
“Summary of the File Manager,” beginning on page 2-243, for a listing that includes all
three versions.

Assembly-Language Note

See the assembly-language note on page 2-121 for details on calling
these routines from assembly language. O

You can use the functions PBHOpenDF, PBHOpenRF, and PBHOpen to open files.

Jabeue a4
n

PBHOpenDF

DESCRIPTION

You can use the PBHOpenDF function to open the data fork of a file.

FUNCTI ON PBHOpenDF (par anBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

par anmBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The result code of the function.

- i oNanmePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

- i oRef Num I nt eger A file reference number.

- i oPer mssn Si gnedByt e The read / write permission.

- ioDirlD Longl nt A parent directory ID.

The PBHOpenDF function creates an access path to the data fork of a file and returns a
file reference number in the i oRef Numfield. PBHOpenDF is exactly like the PBHOpen
function except that PBHOpenDF allows you to open a file whose name begins with

a period (.).

You can open a path for writing even if it accesses a file on a locked volume, and no error
is returned until a PBW i t e, PBSet ECF, or PBAI | ocat e call is made.

If you attempt to open a locked file for writing, PBHOpenDF returns the result code
per nEr r. If you request exclusive read / write permission but another access path

is already open, PBHOpenDF returns the reference number of the existing access path
ini oRef Numand opW Er r as its function result. You should not use this reference
number unless your application originally opened the file.

File Manager Reference 2-183

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for PBHOpenDF are

Trap macro Selector

_HFSDi spat ch $001A
RESULT CODES

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 1/0 error

bdNantr r =37 Bad filename

t nf oErr —42 Too many files open

fnfErr —43 File not found

OpW Err -49 File already open for writing

pernerr -54 Attempt to open locked file for writing

di r NFErr -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access to the file
PBHOpenRF

You can use the PBHOpenRF function to open the resource fork of file.

FUNCTI ON PBHOpenRF (par anBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

par anmBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSErr The result code of the function.

- i oNanePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

- i oRef Num I nt eger A file reference number.

- i oPer mssn Si gnedByt e The read / write permission.

- ioDirlD Longl nt A directory ID.

DESCRIPTION

The PBHOpenRF function creates an access path to the resource fork of a file and returns
a file reference number in the i oRef Numfield.

2-184 File Manager Reference

CHAPTER 2

File Manager

SPECIAL CONSIDERATIONS

Generally your application should use Resource Manager routines rather than File
Manager routines to access a file’s resource fork. The PBHOpenRF function does not read
the resource map into memory and is generally useful only for applications (such as
utilities that copy files) that need block-level access to a resource fork. In particular, you
should not use the resource fork of a file to hold nonresource data. Many parts of the
system software assume that a resource fork always contains resource data.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

PBHOpen

The trap macro for PBHOpenRF is _HOpenRF.

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNangr r =37 Bad filename

t nf oErr —42 Too many files open

fnfErr —43 File not found

OpW Err —49 File already open for writing

per nerr -54 Attempt to open locked file for writing

di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file

You can use the PBHOpen function to open the data fork of a file. Because PBHOQpen will
also open devices, it’s safer to use the PBHOpenDF function instead.

FUNCTI ON PBHOpen (paranBl ock: HParnBl kPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- i oRef Num I nt eger A file reference number.

- i oPer nesn Si gnedByt e The read / write permission.

- ioDirlD Longl nt A directory ID.

File Manager Reference 2-185

Jabeue a4
n

DESCRIPTION

CHAPTER 2

File Manager

The PBHOpen function creates an access path to the data fork of the specified file and
returns a file reference number in the i oRef Numfield.

You can open a path for writing even if it accesses a file on a locked volume, and no error
is returned until a PBW i t e, PBSet EOF, or PBAI | ocat e call is made.

If you attempt to open a locked file for writing, PBHOpen returns the result code

per nEr r. If you request exclusive read / write permission but another access path is
already open, PBHOpen returns the reference number of the existing access path in

i oRef Numand opW Er r as its function result. You should not use this reference number
unless your application originally opened the file.

WARNING

If you use PBHOpen to try to open a file whose name begins with a
period, you might mistakenly open a driver instead; subsequent
attempts to write data might corrupt data on the target device. To
avoid these problems, you should always use PBHOpenDF instead
of PBHOpen. a

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBHOpen is _HOpen.

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNantEr r -37 Bad filename

t nf oErr —42 Too many files open

fnfErr —43 File not found

OpW Err —49 File already open for writing

per merr -54 Attempt to open locked file for writing

di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file

Creating and Deleting Files and Directories

You can create a file by calling the PBHCr eat e function and a directory by calling the
PBDi r Cr eat e function. To delete either a file or a directory, use PBHDel et e.

PBHCreate
You can use the PBHCr eat e function to create a new file.
FUNCTI ON PBHCr eat e (paranBl ock: HParnBl kPtr; async: Bool ean):
OSErr;
2-186 File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

. ioDirlD Longl nt A directory ID.

Jabeue a4
n

The PBHCr eat e function creates a new file (both forks); the new file is unlocked and
empty. The date and time of its creation and last modification are set to the current date
and time. If the file created isn’t temporary (that is, if it will exist after the user quits the
application), the application should call PBHSet FI nf o (after PBHCr eat e) to fill in the
information needed by the Finder.

Files created using PBHCr eat e are not automatically opened. If you want to write
data to the new file, you must first open the file using a file access routine (such
as PBHOpenDF).

Note

The resource fork of the new file exists but is empty. You'll need to

call one of the Resource Manager procedures Cr eat eResFi | e,

HCr eat eResFi | e, or FSpCr eat eResFi | e to create a resource map in
the file before you can open it (by calling one of the Resource Manager
functions OpenResFi | e, HOpenResFi | e, or FSpQpenResFi |l e). O

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBHCr eat e is _HCr eat e.

noErr 0 No error

dirFul Err -33 File directory full

dskFul Err -34 Disk is full

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNantr r -37 Bad filename

fnfErr —43 Directory not found or incomplete pathname
wWPr Er r —44 Hardware volume lock

vLckdErr 46 Software volume lock

dupFNETr r —48 Duplicate filename and version

di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access

af pQbj ect TypeErr -5025 A directory exists with that name

File Manager Reference 2-187

CHAPTER 2

File Manager

PBDirCreate

DESCRIPTION

You can use the PBDi r Cr eat e function to create a new directory.

FUNCTI ON PBDi r Creat e (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.

- i oNanePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

o ioDirlD Longl nt A directory ID.

The PBDi r Cr eat e function is identical to PBHCr eat e except that it creates a new
directory instead of a file. You can specify the parent of the directory to be created in
i oDi r | Dy if it’s 0, the new directory is placed in the root directory of the specified
volume. The directory ID of the new directory is returned in i oDi r | D. The date and
time of its creation and last modification are set to the current date and time.

Note

A directory ID, unlike a volume reference number or a working
directory reference number, is a Longl nt value. O

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-188

The trap macro and routine selector for PBDi r Cr eat e are

Trap macro Selector

_HFSDi spat ch $0006

noErr 0 No error

di rFul Err -33 File directory full

dskFul Err -34 Disk is full

nsvErr -35 No such volume

i OErr -36 I/0O error

bdNantr r =37 Bad filename

fnfErr —43 Directory not found or incomplete pathname
wWPr Er r —44 Hardware volume lock

vLckdErr —46 Software volume lock

dupFNEr r —48 Duplicate filename and version

di r NFEr r -120 Directory not found or incomplete pathname
wr gVol TypErr -123 Not an HFS volume

af pAccessDeni ed -5000 User does not have the correct access

File Manager Reference

PBHDelete

CHAPTER 2

File Manager

DESCRIPTION

You can use the PBHDel et e function to delete a file or directory.

FUNCTI ON PBHDel et e (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

par anmBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSErr The result code of the function.

. i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- ioDirlD Longl nt A directory ID.

The PBHDel et e function removes a file or directory. If the specified target is a file, both
forks of the file are deleted. In addition, if a file ID reference for the specified file exists,
that file ID reference is also removed.

A file must be closed before you can delete it. Similarly, you cannot delete a directory
unless it’s empty. If you attempt to delete an open file or a nonempty directory,

PBHDel et e returns the result code f BsyEr r. PBHDel et e also returns f BSyEr r if you
attempt to delete a directory that has an open working directory associated with it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBHDel et e is _HDel et e.

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNaneEr r =37 Bad filename

fnfErr —43 File not found

wPr Er r —44 Hardware volume lock

f LckdErr —45 File is locked

vLckdErr —46 Software volume lock

f BsyErr —-47 File busy, directory not empty, or working directory
control block open

di r NFEr r -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access

File Manager Reference 2-189

Jabeue a4
n

CHAPTER 2

File Manager

Accessing Information About Files and Directories

The File Manager provides a number of low-level HFS routines that allow you to obtain
and set information about files and directories and to manipulate file locking. All of the
routines described in this section operate on both forks of a file and don’t require the file
to be open.

PBGetCatInfo

You can use the PBGet Cat | nf o function to get information about the files and
directories in a file catalog.

FUNCTI ON PBGet Cat I nfo (paranBl ock: ClnfoPBPtr; async: Bool ean):
OSErr;

par anmBl ock A pointer to a catalog information parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block for files

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The result code of the function.

- i oNanmePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

- i oFRef Num I nt eger A file reference number.

- i oFDi r | ndex I nt eger An index.

- i oFl Attrib Si gnedByt e The file attributes.

- i oFl Fndrinfo FI nfo Information used by the Finder.

- ioDirlD Longl nt On input, a directory ID. On output, a
file ID.

- i oFl St Bl k | nt eger The first allocation block of the
data fork.

- i oFl LgLen Longl nt The logical end-of-file of the data fork.

- i oFl PyLen Longl nt The physical end-of-file of the
data fork.

- i oFl RSt Bl k | nt eger The first allocation block of the
resource fork.

- i oFl RLgLen Longl nt The logical end-of-file of the
resource fork.

- i oFl RPyLen Longl nt The physical end-of-file of the
resource fork.

- i oFl Cr Dat Longl nt The date and time of creation.

- i oFl MdDat Longl nt The date and time of the last
modification.

- i oFl BkDat Longl nt The date and time of the last backup.

- i oFI XFndr I nfo FXI nfo Additional information used by
the Finder.

- i oFl Par 1D Longl nt The directory ID of the parent directory.

- i oFl A pSi z Longl nt The file’s clump size.

2-190 File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager

Parameter block for directories

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSEr r The result code of the function.
o i oNamePt r StringPtr A pointer to a pathname.
- i oVRef Num I nt eger A volume specification.
- i oFDi r 1 ndex I nt eger An index.
- i oFl Attrib Si gnedByt e The directory attributes.
- i 0ACUser Si gnedByt e The directory access rights.
- i oDr Usr Wis DI nfo Information used by the Finder.
o ioDrDirlID Longl nt The directory ID.
- i oDr NFl s | nt eger The number of files in the directory.)
- i oDr Cr Dat Longl nt The date and time of creation. o
- i oDr MdDat Longl nt The date and time of the last =
modification. é
- i oDr BkDat Longl nt The date and time of the last backup. e
- i oDr Fndr I nfo DXI nf o Additional information used by
the Finder.
- i oDrPar 1 D Longl nt The directory ID of the parent directory.

The PBGet Cat | nf o function returns information about a file or directory, depending on
the values you specify in the i oFDi r | ndex, i oNanePtr, i oVRef Num and i oDi r| Dor
i oDr Di r | Dfields. If you need to determine whether the information returned is for a
file or a directory, you can test bit 4 of the i oFl At t ri b field; if that bit is set, the
information returned describes a directory.

The PBCet Cat | nf o function selects a file or directory according to these rules:

» If the value of i OFDi r | ndex is positive, PBGet Cat | nf o returns information about
the file or directory whose directory index is i oFDi r | ndex in the directory specified
by i oVRef Num(this will be the root directory if a volume reference number is
provided).

» If the value of i OFDi r | ndex is 0, PBGet Cat | nf o0 returns information about the file
or directory specified by i oNamePt r in the directory specified by i 0VRef Num(again,
this will be the root directory if a volume reference number is provided).

» If the value of i OFDi r | ndex is negative, PBGet Cat | nf 0 ignores i oNanePt r and
returns information about the directory specified by i oDr Di r | D.

With files, PBGet Cat | nf o is similar to PBHGet FI nf o but returns some additional
information. If the file is open, the reference number of the first access path found is
returned in i oFRef Num and the name of the file is returned in i oNanmePt r (unless
i oNanmePt r is NI L). The file’s attributes are returned in the i oFl At tri b field. See
the description of the fields of the Cl nf oPBRec data type (beginning on page 2-101)
for the meaning of the bits in this field.

Note

When you get information about a file, the i oDi r | Dfield contains the
file ID on exit from PBGet Cat | nf 0. You might need to save the value of
i oDi r | Dbefore calling PBGet Cat | nf o if you make subsequent calls
with the same parameter block. O

File Manager Reference 2-191

CHAPTER 2

File Manager

With directories, PBGet Cat | nf 0 returns information such as the directory attributes
and, for server volumes, the directory access privileges of the user. The directory
attributes are encoded by bits in the i oFI Attri b field and have these meanings:

Bit Meaning

0 Set if the directory is locked

1 Reserved

2 Set if the directory is within a shared area of the directory hierarchy
3 Set if the directory is a share point that is mounted by some user

4 Set if the item is a directory

5 Set if the directory is a share point

6-7 Reserved

Note

These bits in the i oFl At t ri b field for directories are read-only.
You cannot alter directory attributes by setting these bits using
PBSet Cat | nf 0. Instead, you can call PBHSet FLock and
PBHRst FLock to lock and unlock a directory, and PBShar e
and PBUnshar e to enable and disable file sharing on local
directories. O

The PBCet Cat | nf o function returns the directory access rights in the i 0ACUser
field only for shared volumes. As a result, you should set this field to 0 before
calling PBGet Cat | nf 0.

You can also use PBGet Cat | nf o to determine whether a file has a file ID reference.
The value of the file ID is returned in the i oDi r | Dfield. Because that parameter could
also represent a directory ID, call PBResol veFi | el DRef to see if the value is a real
file ID. If you want to determine whether a file ID reference exists for a file and create
one if it doesn’t, use PBCr eat eFi | el DRef , which will either create a file ID or
return f i dExi st s.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-192

The trap macro and routine selector for PBGet Cat | nf 0 are

Trap macro Selector

_HFSDi spat ch $0009

nokErr 0 No error

NsvErr -35 No such volume

i OErr -36 I/0 error

bdNanEr r =37 Bad filename

fnfErr —43 File not found

par ankrr =50 No default volume

di r NFErr -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access

af pQbj ect TypeErr -5025 Directory not found or incomplete pathname

File Manager Reference

CHAPTER 2

File Manager

PBSetCatInfo

You can use the PBSet Cat | nf o function to modify information about files and
directories.

FUNCTI ON PBSet Cat | nfo (paranBl ock: ClnfoPBPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a catalog information parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block for files

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oOResul t CSErr The result code of the function.

- i oNanmePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

- i oFl Fndr I nfo FI nfo Information used by the Finder.

- ioDirlD Longl nt The directory ID.

S i oFI Cr Dat Longl nt The date and time of creation.

N i oFl MdDat Longl nt The date and time of the last
modification.

- i oFl BkDat Longl nt The date and time of the last backup.

- i oFl XFndr I nfo FXI nfo Additional information used by
the Finder.

Parameter block for directories

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

. i oVRef Num I nt eger A volume specification.

- i oDr Usr Wis DI nfo Information used by the Finder.

- ioDrDirlD Longl nt The directory ID.

- i oDr Cr Dat Longl nt The date and time of creation.

= i oDr MdDat Longl nt The date and time of the last
modification.

- i oDr BkDat Longl nt The date and time of the last backup.

- i oDr Fndr I nfo DXI nf o Additional information used by
the Finder.

DESCRIPTION

The PBSet Cat | nf o function sets information about a file or directory. When used to set
information about a file, it works much as PBHSet FI nf o does, but lets you set some
additional information.

File Manager Reference 2-193

Jabeue a4
n

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBSet Cat | nf 0 are

Trap macro
_HFSDi spat ch

noErr

nsvErr

i oErr

bdNantr r

fnfErr

f LckdErr
vLckdErr

par ankrr

di r NFEr r

af pAccessDeni ed

PBHGetFInfo

-5000

Selector
$000A

0 No error

-35 No such volume
-36 1/0 error
-37 Bad filename
—43 File not found
—45 File is locked
-46 Volume is locked or read-only
-50 No default volume
-120 Directory not found or incomplete pathname

User does not have the correct access

2-194

You can use the PBHGet FI nf o function to obtain information about a file.

FUNCTI ON PBHGet FI nfo (paranBl ock: HParnmBl kPtr; async: Bool ean):

CSErr;

par anmBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

oConpl eti on
oResul t
oNanePt r
oVRef Num
oFRef Num
oFDi r I ndex
oFl Attrib
oFl Fndr I nfo
oDirID
oFl St Bl k
oFl LgLen
oFl PyLen
oFl RSt Bl k
oFl RLgLen
oFl RPyLen
oFl Cr Dat

oFl MdDat

!

File Manager Reference

ProcPtr
CSEr r
StringPtr
I nt eger

I nt eger

I nt eger
Si gnedByt e
Fl nfo
Longl nt

I nt eger
Longl nt
Longl nt

I nt eger
Longl nt
Longl nt
Longl nt
Longl nt

A pointer to a completion routine.

The result code of the function.

A pointer to a pathname.

A volume specification.

A file reference number.

An index.

The file attributes.

Information used by the Finder.

On input, a directory ID; on output, a file ID.
The first allocation block of the data fork.
The logical end-of-file of the data fork.

The physical end-of-file of the data fork.

The first allocation block of the resource fork.
The logical end-of-file of the resource fork.
The physical end-of-file of the resource fork.
The date and time of creation.

The date and time of last modification.

DESCRIPTION

CHAPTER 2

File Manager

If the value of i oFDi r | ndex is positive, the PBHGet FI nf o function returns
information about the file whose directory index is i oFDi r | ndex on the volume
specified by i 0VRef Numin the directory specified by i oDi r | D. You should call
PBHCet FI nf o just before PBHSet FI nf 0, so that the current information is present
in the parameter block.

Note

If a working directory reference number is specified in i oVRef Num the
File Manager returns information about the file whose directory index is
i oFDi r 1 ndex in the specified directory. O

If the value of i OFDi r | ndex is negative or 0, the PBHGet FI nf 0 function returns
information about the file having the name pointed to by i oNarmePt r on the volume
specified by i 0VRef Num If the file is open, the reference number of the first access path
found is returned in i oFRef Num and the name of the file is returned in i oNanmePt r
(unless i oNanePt r is NI L).

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHGet FI nf 0 is _HGet Fi | el nf o.

RESULT CODES

noErr 0 No error

nsSvErr -35 No such volume

i OErr -36 I/0O error

bdNantr r =37 Bad filename

fnfErr —43 File not found

par anerr =50 No default volume

di r NFEr r -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access

af pQbj ect TypeErr -5025 Directory not found or incomplete pathname
PBHSetFInfo

You can use the PBHSet FI nf o function to set information for a file.

FUNCTI ON PBHSet FI nf o (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference 2-195

Jabeue a4
n

DESCRIPTION

CHAPTER 2

File Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- i oFl FndrInfo FInfo Information used by the Finder.

- ioDirlD Longl nt A directory ID.

. i oFl Cr Dat Longl nt The date and time of creation.

. i oFl MdDat Longl nt The date and time of last modification.

The PBHSet FI nf o function sets information (including the date and time of creation
and modification, and information needed by the Finder) about the file having the name
pointed to by i oNanmePt r on the volume specified by i 0VRef Num You should call
PBHGet FI nf o just before PBHSet FI nf 0, so that the current information is present in
the parameter block.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHSet FI nf 0 is _HSet Fi | el nf o.

RESULT CODES

noErr 0 No error

NSVErr -35 No such volume

i oErr -36 I/0O error

bdNanEr r -37 Bad filename

fnfErr 43 File not found

WPr Er r —44 Hardware volume lock

fLckdErr —45 File is locked

vLckdErr —46 Software volume lock

di r NFEr r -120 Directory not found or incomplete pathname

af pAccessDeni ed -5000 User does not have the correct access

af pQbj ect TypeErr -5025 Object was a directory
PBHSetFLock

2-196

You can use the PBHSet FLock function to lock a file.

FUNCTI ON PBHSet FLock (paranBl ock: HParnmBl kPtr; async: Bool ean):
OSErr;

par anmBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference

CHAPTER 2

File Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- ioDirlD Longl nt A directory ID.

DESCRIPTION

The PBHSet FLock function locks the file with the name pointed to by i oNanePt r on
the volume specified by i oVRef Num After you lock a file, all new access paths to that
file are read-only. Access paths currently in use aren’t affected.

If the PBHGet Vol Par ns function indicates that the volume supports folder locking (that
is, the bHasFol der Lock bit of the vMAt t r i b field is set), you can use PBHSet FLock to
lock a directory.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro for PBHSet FLock is _HSet FLock.

RESULT CODES
noErr 0 No error
NSVErr -35 No such volume
i oErr -36 I/O error
fnfErr -43 File not found
WPr Er r —44 Hardware volume lock
vLckdErr 46 Software volume lock
di r NFEr r -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file
af pQbj ect TypeErr -5025 Folder locking not supported by volume
PBHRstFLock

You can use the PBHRst FLock function to unlock a file.

FUNCTI ON PBHRst FLock (paranBl ock: HParnmBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference 2-197

Jabeue a4
n

DESCRIPTION

CHAPTER 2

File Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- ioDirlD Longl nt A directory ID.

The PBHRst FLock function unlocks the file with the name pointed to by i oNamePt r on
the volume specified by i oVRef Num Access paths currently in use aren’t affected.

If the PBHCet Vol Par ns function indicates that the volume supports folder locking (that
is, the bHasFol der Lock bit of the vMAt t r i b field is set), you can use PBHRst FLock to
unlock a directory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for PBHRst FLock is _HRst FLock.

RESULT CODES
noErr 0 No error
nsvErr -35 No such volume
i oErr -36 I/0 error
fnfErr —43 File not found
wWPr Er r —44 Hardware volume lock
vLckdErr —46 Software volume lock
di r NFErr -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access to the file
af pQoj ect TypeErr -5025 Folder locking not supported by volume
PBHRename

2-198

You can use the PBHRename function to rename a file, directory, or volume.

FUNCTI ON PBHRename (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

par anmBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- i oM sc Ptr A pointer to the new name for the file.
- ioDirlD Longl nt A directory ID.

Given a pointer to the name of a file or directory in i oNamePt r, PBHRenarme changes it
to the name pointed to by i oM sc. Given a pointer to a volume name ini oNanePt r or
a volume reference number in i 0VRef Num it changes the name of the volume to the
name pointed to by i oM sc.

Jabeue a4
n

Note

If a file ID reference exists for the file being renamed, the file ID remains
with the file. O

IMPORTANT
You cannot use PBHRenarre to change the directory in which a file
is located. a

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro for PBHRenane is _HRenane.

nokErr 0 No error

di r Ful Err -33 File directory full

dskFul Err -34 Volume is full

nsvErr -35 No such volume

i OErr -36 I/0O error

bdNanEr r =37 Bad filename

fnfErr —43 File not found

wPr Er r —44 Hardware volume lock

f LckdErr —45 File is locked

vLckdErr —46 Software volume lock

dupFNEr r —48 Duplicate filename and version

par antrr -50 No default volume

f SRnErr -59 Problem during rename

di r NFErr -120 Directory not found or incomplete pathname
af pAccessDeni ed -5000 User does not have the correct access

Moving Files or Directories

The low-level HFS function PBCat Move allows you to move files and directories within
a volume.

File Manager Reference 2-199

PBCatMove

CHAPTER 2

File Manager

DESCRIPTION

2-200

You can use the PBCat Move function to move files or directories from one directory to
another on the same volume.

FUNCTI ON PBCat Move (paranBl ock: CMvbvePBPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a catalog move parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t OSErr The result code of the function.

- i oNamePt r StringPtr A pointer to the name of the file or
directory to be moved.

- i oVRef Num I nt eger A volume specification.

- i oNewNane StringPtr A pointer to the name of the directory
into which the file or directory is to
be moved.

- i oNewDi r | D Longl nt The directory ID of the directory into

which the file or directory is to be moved,
if i oNewNane is NI L. If i oNewNane is
not NI L, this is the parent directory ID of
the directory into which the file or
directory is to be moved.

ioDirlD Longl nt The directory ID of the file or directory to
be moved.

!

The PBCat Move function moves a file or directory from one directory to another within
a volume. PBCat Move is strictly a file catalog operation; it does not actually change the
location of the file or directory on the disk.

The source file or directory should be specified by its volume, parent directory ID, and
partial pathname. Pass a volume specification in i 0VRef Num Pass the parent directory
ID in the i oDi r | Dfield and a pointer to the partial pathname in the i oNanePt r field.

The name of the directory into which the file or directory is to be moved is specified by
the i oNewNane field. If a valid directory name is provided for i oNewNan®, the
destination directory’s parent directory is specified in i oNewDi r | D. However, you can
specify NI L for i oNewNan®, in which case i oNewDi r | Dshould be set to the directory
ID of the destination directory itself.

Note

It is usually simplest to specify the destination directory by passing
its directory ID in the i oNewDi r | Dfield and by setting i oNewNane
toNl L. O

File Manager Reference

CHAPTER 2

File Manager

The PBCat Move function cannot move a file or directory to another volume (that is,
i oVRef Numis used in specifying both the source and the destination). Also, you cannot
use it to rename files or directories; to rename a file or directory, use PBHRenare.

If a file ID reference exists for the file, the file ID reference remains with the moved file.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBCat Move are

Trap macro Selector

_HFSDi spat ch $0005

noErr 0 No error

nsvErr -35 No such volume

i oErr -36 I/0O error

bdNanEr r -37 Bad filename or attempt to move into a file
fnfErr —43 File not found

wPr Er r —44 Hardware volume lock

f LckdErr —45 Target directory is locked

vLckdErr —46 Software volume lock

dupFNEr r —48 Duplicate filename and version

par antrr -50 No default volume

badMovErr -122 Attempt to move into offspring

wr gVol TypErr -123 Not an HFS volume

af pAccessDeni ed -5000 User does not have the correct access

Maintaining Working Directories

The File Manager provides several low-level functions that allow you to manipulate
working directories. Working directories are used internally by the File Manager; in
general, your application should not create or directly access working directories. For
more information about working directories, see “Working Directory Reference
Numbers,” beginning on page 2-26.

PBOpenWD

You can use the PBOpenWD function to create a working directory.
FUNCTI ON PBOpenWD (par anBl ock: WDPBPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference 2-201

Jabeue a4
n

DESCRIPTION

CHAPTER 2

File Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- i oVWDPr ocl D Longl nt The working directory user identifier.
- i oVWDDi r I D Longl nt The working directory’s directory ID.

The PBOpenWD function creates a working directory that corresponds to the directory
specified by i oVRef Num i oWDDi r | D, and i oVDPr ocl D. (You can also specify the
directory using a combination of partial pathname and directory ID.) PBOpenWD returns
in i oVRef Numa working directory reference number that can be used in subsequent File
Manager calls.

If a working directory having the specified user identifier already exists for the specified
directory, no new working directory is opened; instead, the existing working directory
reference number is returned in i 0VRef Num If the specified directory already has a
working directory with a different user identifier, a new working directory reference
number is returned.

If the directory specified by the i oMDDI r | D parameter is the volume’s root directory, no
working directory is created; instead, the volume reference number is returned in the
i oVRef Numparameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBOpenWD are

Trap macro Selector

_HFSDi spat ch $0001
RESULT CODES

noErr 0 No error

NSVErr -35 No such volume

fnfErr -43 No such directory

t mvdoEr r -121 Too many working directories open

af pAccessDeni ed -5000 User does not have the correct access
PBCloseWD

2-202

You can use the PBC 0oseWD function to close a working directory.
FUNCTI ON PBCI oseWD (paranBl ock: WDPBPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference

CHAPTER 2

File Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSErr The result code of the function.

- i oVRef Num I nt eger A working directory reference
number.

DESCRIPTION

The PBC oseWD function releases the working directory whose working directory
reference number is specified in i 0VRef Num

Note

If you specify a volume reference number in the i oVRef Numfield,
PBCl oseWD does nothing. O

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCl oseWD are

Trap macro Selector

_HFSDi spat ch $0002
RESULT CODES

noErr 0 No error

NSVErr -35 No such volume

rf Nunkrr -51 Bad working directory reference number
PBGetWDInfo

You can use the PBGet WDI nf o function to get information about a working directory.
FUNCTI ON PBGet WDI nf o (paranBl ock: WDPBPtr; async: Bool ean): OSErr;

par anBl ock A pointer to a working directory parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.

- i oResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

o i oVRef Num I nt eger A volume specification.

- i oVDI ndex I nt eger An index.

o i oVWDPr ocl D Longl nt The working directory user identifier.

o i oOWDVRef Num I nt eger The volume reference number for the
working directory.

- i oWDDi r I D Longl nt The working directory’s directory ID.

File Manager Reference 2-203

Jabeue a4
n

DESCRIPTION

CHAPTER 2

File Manager

The PBGet WDI nf 0 function returns information about the specified working directory.
The working directory can be specified either by its working directory reference number
in i oVRef Num(in which case the value of i 0WDI ndex should be 0), or by its index
number in i OWDI ndex. In the latter case, if the value of i 0VRef Numis not 0, it's
interpreted as a volume specification, and only working directories on that volume

are indexed.

The i oWDVRef Numfield always returns the volume reference number. The i 0VRef Num
field contains a working directory reference number when a working directory reference
number is passed in that field; otherwise, it returns a volume reference number.

PBGet WDI nf 0 returns a pointer to the volume’s name in the i oNanePt r field. You
should pass a pointer to a St r 31 value if you want that name returned. If you pass NI L
in the i oNanePt r field, no volume name is returned.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBGet WDI nf o are

Trap macro Selector

_HFSDi spat ch $0007

nokErr 0 No error

nsvErr -35 No such volume

rf Nunerr -51 Bad working directory reference number

Searching a Catalog

The low-level HFS function PBCat Sear ch allows you to search a volume using a
particular set of search criteria.

PBCatSearch

2-204

The PBCat Sear ch function searches a volume’s catalog file using a set of search criteria
that you specify. It builds a list of all files or directories that meet your specifications.

FUNCTI ON PBCat Search (paranBl ock: HParnmBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a csPar amvariant of an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager

Parameter block

oConpl eti on
OoResul t
oNanePt r

oVRef Num

oMat chPtr
oReqgMat chCount
o0Act Mat chCount
oSearchBits

oSear chl nfol
oSear chl nf 02
oSear chTi me
oCat Posi tion
oOpt Buf f er
oOpt Buf Si ze

ProcPtr

CSEr r
StringPtr

I nt eger
FSSpecArrayPtr
Longl nt

Longl nt

Longl nt

Cl nf oPBPt r

Cl nf oPBPt r
Longl nt

Cat Posi ti onRec
Ptr

Longl nt

A pointer to a completion routine.
The result code of the function.
A pointer to a volume name.

A volume specification.

A pointer to an array of matches.
The maximum match count.

The actual match count.

Enable bits for fields in criteria
records.

The values and lower bounds.
The masks and upper bounds.

The maximum allowed search time.

The current catalog position.
A pointer to optional read buffer.
The length of optional read buffer.

The PBCat Sear ch function searches the volume you specify for files or directories
that match two coordinated sets of selection criteria. PBCat Sear ch returns (in the

i oMat chPt r field) a pointer to an array of FSSpec records identifying the files and
directories that match the criteria.

If the catalog file changes between two timed calls to PBCat Sear ch (that is, when you are

using i 0Sear chTi ne and i oCat Posi ti on to search a volume in segments and
the catalog file changes between searches), PBCat Sear ch returns a result code of
cat ChangedEr r and no matches. Depending on what has changed on the volume,
i oCat Posi ti on might be invalid, most likely by a few entries in one direction or

another. You can continue the search, but you risk either skipping some entries or reading

some twice.

When PBCat Sear ch has searched the entire volume, it returns eof Er r. If it exits
because it either spends the maximum time allowed by i 0Sear chTi ne or finds the
maximum number of matches allowed by i oReqMat chCount, it returns noEr r. You
can specify a value of 0 in the i 0Sear chTi e field to indicate that no time limit is to
be enforced.

SPECIAL CONSIDERATIONS
Not all volumes support the PBCat Sear ch function. Before you call PBCat Sear ch to

search a particular volume, you should call the PBHGet Vol Par ns function to determine

whether that volume supports PBCat Sear ch. See page 2-148 for details on calling
PBHGet Vol Par ns.

Even though AFP volumes support PBCat Sear ch, they do not support all of its features

that are available on local volumes. These restrictions apply to AFP volumes:

= AFP volumes do not use the i 0Sear chTi ne field. Current versions of the AppleShare

server software search for 1 second or until 4 matches are found. The AppleShare
workstation software keeps requesting the appropriate number of matches until the

server returns either the number specified in the i oReqMat chCount field or an error.

File Manager Reference

2-205

Jabeue a4
n

CHAPTER 2

File Manager

= AFP volumes do not support both logical and physical fork lengths. If you request a
search using the length of a fork, the actual minimum length used is the smallest of
the values in the logical and physical fields of the i 0Sear chl nf 01 record and the
actual maximum length used is the largest of the values in the logical and physical
fields of the i oSear chl nf 02 record.

» The f sSBNegat e bit of the i 0Sear chBi t s field is ignored during searches of
remote volumes that support AFP version 2.1.

= If the AFP server returns af pCat al ogChanged, the catalog position record returned
to your application (in the i oCat Posi ti on field) is the same one you passed to
PBCat Sear ch. You should clear thei ni ti al i ze field of that record to restart the

search from the beginning.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for PBCat Sear ch are

Trap macro Selector

_HFSDi spat ch $0018

noErr 0 No error (entire catalog has not been searched)
NSvErr -35 Volume not found

i oErr -36 I/0O error

eof Err -39 Logical end-of-file reached

par antrr -50 Parameters don’t specify an existing volume

ext FSEr r -58 External file system

wr gVol TypErr -123 Volume is an MFS volume

cat ChangedErr -1304 Catalog has changed and catalog position record

af pCat al ogChanged -5037

may be invalid
Catalog has changed and search cannot be resumed

See “Searching a Volume” on page 2-39 for a description of how to use PBCat Sear ch.

Exchanging the Data in Two Files

The function PBExchangeFi | es allows you to exchange the data in two files.

PBExchangeFiles

2-206

You can use the PBExchangeFi | es function to exchange the data stored in two files on

the same volume.

FUNCTI ON PBExchangeFi | es (paranBl ock: HParnBl kPtr;

File Manager Reference

async: Bool ean): OSErr;

DESCRIPTION

CHAPTER 2

File Manager

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t OSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

- i oDest NarmePt r StringPtr A pointer to the name of the destination file.
. ioDestDirlD Longl nt The destination file’s parent directory ID.

. ioSrchirlD Longl nt The source file’s parent directory ID.

The PBExchangeFi | es function swaps the data in two files by changing some of the
information in the volume catalog and, if the files are open, in the file control blocks. The
PBExchangeFi | es function uses the file ID parameter block.

You should use PBExchangeFi | es to preserve the file ID when updating an existing
file, in case the file is being tracked through its file ID.

Typically, you use PBExchangeFi | es after creating a new file during a safe save.
You identify the names and parent directory IDs of the two files to be exchanged in
the fields i oNamePt r, i oDest NanePtr,i oSrcDirl D, and i oDestDi r | D. The
PBExchangeFi | es function changes the fields in the catalog entries that record the
location of the data and the modification dates. It swaps both the data forks and the
resource forks.

The PBExchangeFi | es function works on either open or closed files. If either file is
open, PBExchangeFi | es updates any file control blocks associated with the file.
Exchanging the contents of two files requires essentially the same access privileges as
opening both files for writing.

The PBExchangeFi | es function does not require that file ID references exist for the
files being exchanged.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBExchangeFi | es are

Trap macro Selector
_HFSDi spat ch $0017

File Manager Reference 2-207

Jabeue a4
n

CHAPTER 2

File Manager
RESULT CODES
noErr 0 No error
nsvErr -35 Volume not found
i OErr -36 I/0 error
fnfErr —43 File not found
f LckdErr —45 File is locked
vLckdErr -46 Volume is locked or read-only
par ankrr -50 Function not supported by volume
vol OfFflinErr -53 Volume is offline
wr gVol TypErr -123 Not an HFS volume
di ffVol Err -1303 Files on different volumes
af pAccessDeni ed -5000 User does not have the correct access
af pQbj ect TypeErr -5025 Object is a directory, not a file
af pSaneQbj ect Err -5038 Source and destination are the same

Shared Environment Routines

The File Manager provides a number of routines that allow you to control access to files,
directories, and volumes in a shared environment. The routines described in this section
allow you to

» provide multiple users with read / write access to files

» lock and unlock portions of files opened with shared read / write permission
= manipulate share points on local shared volumes

= get and change the access privileges for directories

= mount remote volumes

= control login access

= access a list of users and groups on the local file server

Before using the routines described in this section, call the PBHGet Vol Par s
function to see if the volume supports them. (The PBGet Vol Mount | nf 0Si ze,
PBGet Vol Mount | nf 0, and PBVol umeMbunt routines are exceptions: you'll just
have to make these calls and check the result code.)

Opening Files While Denying Access

The PBHOpenDeny and PBHOpenRFDeny functions control file access modes and enable
applications to implement shared read / write access to files.

PBHOpenDeny

You can use the PBHOpenDeny function to open a file’s data fork using the access
deny modes.

FUNCTI ON PBHOpenDeny (par anBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

2-208 File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification. 2

- i oRef Num I nt eger The file reference number.

- i oDenyMbdes I nt eger Access rights data. :—.T-'-

- ioDirlD Longl nt The directory ID. =z
S
QD
«Q
o

The PBHOpenDeny function opens a file’s data fork with specific access rights specified
in the i oDenyMbdes field. The file reference number is returned in i oRef Num

The result code opW Er r is returned if you've requested write permission and you
have already opened the file for writing; in that case, the existing file reference
number is returned in i 0Ref Num You should not use this reference number unless
your application originally opened the file.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBHOpenDeny are

Trap macro Selector

_HFSDi spat ch $0038

noErr 0 No error

t nf oErr —42 Too many files open

fnfErr —43 File not found

f LckdErr —45 File is locked

vLckdErr —46 Volume is locked or read-only

OpW Err —49 File already open for writing

par ankrr -50 Function not supported by volume

per nerr -54 File is already open and cannot be opened using
specified deny modes

af pAccessDeni ed -5000 User does not have the correct access to the file

af pDenyConf i ct -5006 Requested access permission not possible

File Manager Reference 2-209

CHAPTER 2

File Manager

PBHOpenRFDeny

You can use the PBHOpenRFDeny function to open a file’s resource fork using the access
deny modes.

FUNCTI ON PBHOpenRFDeny (par anBl ock: HPar nmBl kPt r;
async: Bool ean): OSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- i oRef Num | nt eger The file reference number.

. i oDenyMbodes | nt eger Access rights data.

- ioDirlD Longl nt The directory ID.

DESCRIPTION
The PBHOpenRFDeny function opens a file’s resource fork with specific access rights.
The path reference number is returned in i oRef Num

The result code opW Er r is returned if you've requested write permission and you
have already opened the file for writing; in that case, the existing file reference
number is returned in i 0Ref Num You should not use this reference number unless
your application originally opened the file.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for PBHOpenRFDeny are

Trap macro Selector
_HFSDi spat ch $0039
RESULT CODES
noErr 0 No error
t nf oErr —42 Too many files open
fnfErr —43 File not found
f LckdErr —45 File is locked
vLckdErr —46 Volume is locked or read-only
OpW Err -49 File already open for writing
par ankr r -50 Function not supported by volume
per nErr -54 File is already open and cannot be opened using
specified deny modes
af pAccessDeni ed -5000 User does not have the correct access to the file
af pDenyConf | i ct -5006 Requested access permission not possible

2-210 File Manager Reference

CHAPTER 2

File Manager

Locking and Unlocking File Ranges

The File Manager provides several low-level routines that allow you to lock and unlock
parts of files. These functions are ineffective when used on local HFS volumes unless
local file sharing is enabled for those volumes.

PBLockRange

DESCRIPTION

You can use the PBLockRange function to lock a portion of a file.

FUNCTI ON PBLockRange (paranBl ock: ParnBl kPtr; async: Bool ean):
OSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.

- i oRef Num I nt eger A file reference number.

- i oRegCount Longl nt The number of bytes in the range.
- i oPosMbde I nt eger The positioning mode.

- i oOPosOX f set Longl nt The positioning offset.

The PBLockRange function locks a portion of a file that was opened with shared
read / write permission. The beginning of the range to be locked is determined by the

i oPosMbde and i oPosOf f set fields. The end of the range to be locked is determined
by the beginning of the range and the i oReqCount field. For example, to lock the

first 50 bytes in a file, set i oReqCount to 50, i oPosMbde to f sFronft art, and

i oPosOf f set to 0. Seti oReqCount to -1 to lock the maximum number of bytes from
the position specified in i oPosCf f set .

The PBLockRange function uses the same parameters as both PBRead and PBW i t e; by
calling it immediately before PBRead, you can use the information in the parameter
block for the PBRead call.

When you're finished with the data (typically after a call to PBW i t e), be sure to call
PBUnl ockRange to free that portion of the file for subsequent PBRead calls.

SPECIAL CONSIDERATIONS

The PBLockRange function does nothing if the file specified in the i oRef Numfield is
open with shared read / write permission but is not located on a remote server volume
or is not located under a share point on a sharable local volume. See “Locking and

File Manager Reference 2-211

Jabeue a4
n

CHAPTER 2

File Manager

Unlocking File Ranges” on page 2-51 for a simple way to determine whether calling
PBLockRange on an open file would in fact lock a range of bytes.

WARNING

In system software versions 6.0.7 and eatrlier, specifying i oPosMbde as
f sFr onLECF results in the wrong byte range being locked. a

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBLockRange are

Trap macro Selector
_HFSDi spat ch $0010
RESULT CODES
noErr 0 No error
i oErr -36 I/0O error
fnCpnErr -38 File not open
eof Err -39 Logical end-of-file reached
f LckdErr —-45 Fileis locked by another user
par ankrr =50 Negative i oReqCount
rf Nunkrr 51 Bad reference number
ext FSEr r -58 External file system
vol GoneErr -124 Server volume has been disconnected
af pNoMor eLocks -5015 No more ranges can be locked
af pRangeCQver | ap -5021 Part of range is already locked
PBUnlockRange

2-212

You can use the PBUnl ockRange function to unlock a portion of a file that was
previously locked by a call to PBLockRange.

FUNCTI ON PBUnl ockRange (paranBl ock: ParnBl kPtr; async: Bool ean):
OSErr;

par anBl ock A pointer to a basic File Manager parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The result code of the function.

- i oRef Num I nt eger A file reference number.

. i oRegCount Longl nt The number of bytes in the range.
- i oPosMbde I nt eger The positioning mode.

- i oOPosOX f set Longl nt The positioning offset.

File Manager Reference

CHAPTER 2

File Manager

DESCRIPTION

The PBUnl ockRange function unlocks a portion of a file that you locked with
PBLockRange. You specify the range by filling in the i oReqCount, i oPosMbde,
and i oPos f set fields as described in the preceding discussion of PBLockRange.
The range of bytes to be unlocked must be the exact same range locked by a previous

call to PBLockRange.

If for some reason you need to unlock a range whose beginning or length is unknown,
you can simply close the file. When a file is closed, all locked ranges held by the user

are unlocked.

SPECIAL CONSIDERATIONS

The PBUnI ockRange function does nothing if the file specified in the i oRef Numfield is
open with shared read / write permission but is not located on a remote server volume or

Jabeue a4
n

is not located under a share point on a local volume.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBUnl ockRange are

Trap macro Selector
_HFSDi spat ch $0011
RESULT CODES
noErr 0 No error
i oErr -36 I/0O error
fnCpnErr -38 File not open
eof Err -39 Logical end-of-file reached
par anmkrr -50 Negative i oReqCount
rf Nunerr -51 Bad reference number
ext FSEr r -58 External file system
vol GoneErr -124 Server volume has been disconnected

af pRangeNot Locked -5020

Manipulating Share Points

Specified range was not locked

The PBShar e and PBUnshar e functions allow you to manipulate share points on local
volumes. The PBGet UGEnt r y function lets you access the list of user and group names

and IDs on the local server.

File Manager Reference

2-213

CHAPTER 2

File Manager

PBShare
You can use the PBShar e function to establish a local volume or directory as a
share point.
FUNCTI ON PBShar e (paranBl ock: HParnBl kPtr; async: Bool ean): OSErr;
par anmBl ock A pointer to a basic HFS parameter block.
async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.
Parameter block
- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.
- i oNanePt r StringPtr A pointer to a pathname.
- i oVRef Num | nt eger A volume specification.
- ioDirlD Longl nt A directory ID.
DESCRIPTION

The PBShar e function makes the directory specified by the i oNanmePt r and i oDi r1 D
fields a share point. If i oNamePt r is NI L, then i oDi r | Dis the directory ID of the
directory that is to become a share point. If i oNamePt r points to a partial pathname,

i oDi r | Dis the parent directory of the directory to be shared. The i oVRef Numfield can
contain a volume reference number, a working directory reference number, a drive
number, or 0 for the default volume.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-214

The trap macro and routine selector for PBShar e are

Trap macro Selector

_HFSDi spat ch $0042

NoErr 0 No error

t nf oErr —42 Too many share points

fnfErr —43 File not found

dupFNEr r —48 Already a share point with this name
par ankrr -50 Function not supported by volume
di r NFEr r -120 Directory not found

af pAccessDeni ed -5000 This directory cannot be shared

af pQbj ect TypeErr -5025 Object was a file, not a directory

af pCont ai nsShar edEr r -5033 The directory contains a share point
af pl nsi deShar edErr -5043 The directory is inside a shared directory

File Manager Reference

PBUnshare

CHAPTER 2

File Manager

DESCRIPTION

You can use the PBUnshar e function to reverse the effects of PBShar e.

FUNCTI ON PBUnShar e (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to a basic HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSErr The result code of the function.

. i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- ioDirlD Longl nt A directory ID.

The PBUnshar e function makes the share point specified by the i oNamePt r and
i oDi r | Dfields unavailable on the network. If i oNamePtr is NI L, theni oDi r | Dis
the directory ID of the directory that is to become unavailable. If i oNanePt r points
to a partial pathname, i oDi r | Dis the parent directory of the directory to become

unavailable. The i oVRef Numfield can contain a volume reference number, a working

directory reference number, a drive number, or 0 for the default volume.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBUnshar e are

Trap macro Selector

_HFSDi spat ch $0043

noErr 0 No error

fnfErr —43 File not found

par amerr -50 Function not supported by volume

di r NFErr -120 Directory not found

af pQbj ect TypeErr -5025 Object was a file, not a directory; or, this directory is

not a share point

File Manager Reference

2-215

Jabeue a4
n

CHAPTER 2

File Manager

PBGetUGEntry

DESCRIPTION

You can use the PBGet UCGENt r y function to get a list of user and group entries from the
local file server.

FUNCTI ON PBGet UGEnt ry (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to an obj Par amvariant of an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSEr r The result code of the function.

- i oObj Type I nt eger A function code.

- i 0Obj NamePt r Ptr A pointer to the returned user/group name.

- i oQbj I D Longl nt A user/group ID.

The PBGet UGENt r y function returns the name and ID of the user or group whose name
is alphabetically next to that of the user or group whose ID is contained in the i oObj | D
field. You can enumerate the users or groups in alphabetical order by setting i 0Qbj | Dto
0 and then repetitively calling PBGet UGEnt r y with the same parameter block until the
result code f nf Er r is returned.

You specify whether you want information about users or groups by setting the
i oQbj Type field to the desired value. Set i 0Obj Type to 0 to receive the next user
entry; set it to —1 to receive the next group entry.

The user or group name is returned as a Pascal string pointed to by i 0Cbj NanmePt r.
The maximum size of the string is 31 characters, preceded by a length byte. If you set
i oCbj NanePtr to NI L, no name is returned.

If you seti oQbj | Dto 0, PBGet UGEnt r y returns information about the user or group
known to the local server whose name is alphabetically first. If the value of i oQbj | Dis
not 0, PBGet UGEnt r y returns information about the user or group whose name follows
immediately in alphabetical order that of the user or group having that ID.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-216

The trap macro and routine selector for PBGet UGEnt ry are

Trap macro Selector

_HFSDi spat ch $0044

noErr 0 No error

fnfErr —43 No more users or groups

par ankrr -50 Function not supported; or, i 0Qoj | Dis negative

File Manager Reference

CHAPTER 2

File Manager

Controlling Directory Access

The PBHCGet Di r Access and PBHSet Di r Access functions control privileges for
individual directories.

PBHGetDirAccess

You can use the PBHGet Di r Access function to get the access control information for
a directory.

FUNCTI ON PBHCet Di r Access (paranBl ock: HParnBl kPt r;
async: Bool ean): OSErr;

par anBl ock A pointer to an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

. i oVRef Num I nt eger A volume specification.

- i 0OACOmer | D Longl nt The owner ID.

- i OACGroupl D Longl nt The group ID.

- i OACAccess Longl nt The access rights.

- ioDirlD Longl nt The directory ID.

DESCRIPTION
The PBHCet Di r Access returns access control information for the specified directory.
On output, the i 0ACOaner | Dfield contains the ID of the directory’s owner, and the
i OACGr oupl Dfield contains the directory’s primary group. The directory’s access rights
are encoded in the i 0ACAccess field. See “Directory Access Privileges,” beginning on
page 2-18, for a description of the i 0ACAccess field.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for PBHCet Di r Access are

Trap macro Selector
_HFSDi spat ch $0032
RESULT CODES
noErr 0 No error
fnfErr —43 Directory not found
par angrr -50 Function not supported by volume
af pAccessDeni ed -5000 User does not have the correct access to the directory

File Manager Reference 2-217

Jabeue a4
n

CHAPTER 2

File Manager

PBHSetDirAccess

DESCRIPTION

You can use the PBHSet Di r Access function to change the access control information
for a directory.

FUNCTI ON PBHSet Di r Access (paranBl ock: HParnBl kPt r;
async: Bool ean): OSErr;

par anBl ock A pointer to an HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

. i 0OACOmner | D Longl nt The owner ID.

- i OACGroupl D Longl nt The group ID.

- i OACAccess Longl nt The access rights.

- ioDirlD Longl nt The directory ID.

The PBHSet Di r Access function allows you to change the access rights to the specified
directory. The i 0ACAccess field contains the directory’s access rights. You cannot set
the owner or user rights bits of the i 0ACAccess field directly (if you try to do this,
PBHSet Di r Access returns the result code par ankr r). See “Directory Access
Privileges,” beginning on page 2-18, for a description of the i 0ACAccess field.

To change the owner or group, you should set the i 0ACOmner | Dor i 0ACGr oupl D field
to the appropriate ID. You must be the owner of the directory to change the owner or
group ID. A guest on a server can manipulate the privileges of any directory owned by
the guest.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-218

The trap macro and routine selector for PBHSet Di r Access are

Trap macro Selector

_HFSDi spat ch $0033

noErr 0 No error

fnfErr —43 Directory not found

vLckdErr —46 Volume is locked or read-only

parantrr =50 Parameter error

af pAccessDeni ed -5000 User does not have the correct access to the directory
af pQbj ect TypeErr -5025 Object is a file, not a directory

File Manager Reference

CHAPTER 2

File Manager

Mounting Volumes

The File Manager provides three functions that allow your application to record the
mounting information for a volume and then to mount the volume later. The program-
matic mounting functions store the mounting information in a structure called the
AFPVol Mount | nf o record. The programmatic mounting functions use the i oPar am
variant of the Par anBl ockRec record.

In general, it is easier to mount remote volumes by creating and then resolving alias
records that describe those volumes. The Alias Manager displays the standard user
interface for user authentication when resolving alias records for remote volumes. As
a result, the routines described in this section are primarily of interest for applications
that need to mount remote volumes with no user interface or with some custom

user interface.

Note

All the functions described in this section execute synchronously. You
should not call them at interrupt time. O

PBGetVolMountInfoSize

DESCRIPTION

You use the PBCGet Vol Mount | nf 0Si ze function to determine how much space to
allocate for a volume mounting information record.

FUNCTI ON PBGet Vol Mount | nf 0Si ze (par anBl ock: ParnBl kPtr): OSErr;

par anBl ock A pointer to a basic File Manager parameter block.

Parameter block

. i oConpl etion Longl nt A pointer to a completion routine.
- i oResul t OSErr The function’s result code.

. i oVRef Num I nt eger A volume specification.

. i oBuf f er Longl nt A pointer to storage for size.

For a specified volume, the PBGet Vol Mount | nf 0Si ze function provides the size
of the record needed to hold the volume’s mounting information. The i oBuf f er
field is a pointer to the size information, which is of type | nt eger (2 bytes). If
PBGet Vol Mount | nf 0Si ze returns noEr r, that integer contains the size of the
volume mounting information record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGet Vol Mount | nf 0Si ze are

Trap macro Selector
_HFSDi spat ch $003F

File Manager Reference 2-219

Jabeue a4
n

CHAPTER 2

File Manager
RESULT CODES

nokErr 0 No error

nsvErr -35 Volume not found

par ankerr =50 Parameter error

ext FSErr -58 External file system error; typically, function

is not available for that volume

PBGetVolMountInfo

DESCRIPTION

After ascertaining the size of the record needed and allocating storage, you can use the
PBGet Vol Mount | nf o function to retrieve a record containing all the information
needed to mount the volume, except for passwords. You can later pass this record to the
PBVol uneMount function to mount the volume.

FUNCTI ON PBGet Vol Mount I nfo (paranBl ock: ParnmBl kPtr): OSErr;
par anBl ock A pointer to a basic File Manager parameter block.

Parameter block

- i oConpl eti on Longl nt A pointer to a completion routine.
- i oResul t CSEr r The function’s result code.

- i oVRef Num | nt eger A volume specification.

- i oBuf fer Longl nt A pointer to mounting information.

The PBGet Vol Mount | nf o function places the mounting information for a specified
volume into the buffer pointed to by the i oBuf f er field. The mounting information for
an AppleShare volume is stored as an AFP mounting record. The length of the buffer is
specified by the value pointed to by the i oBuf f er field in a previous call to

PBGet Vol Mount | nf oSi ze.

The PBGet Vol Mount | nf o function does not return the user password or volume
password in the AFPVol Mount | nf o record. Your application should solicit

these passwords from the user and fill in the record before attempting to mount the
remote volume.

ASSEMBLY-LANGUAGE INFORMATION

2-220

The trap macro and routine selector for PBGet Vol Mount | nf o are

Trap macro Selector

_HFSDi spat ch $0040

File Manager Reference

CHAPTER 2

File Manager
RESULT CODES
noErr 0 No error
nsvErr -35 Volume not found
par anterr =50 Parameter error
ext FSEr r -58 External file system error; typically, function is not
available for that volume
PBVolumeMount

You can use the PBVol umeMunt function to mount a volume, using either the
information returned by the PBGet Vol Mount | nf o function or a structure filled in by
your application.

FUNCTI ON PBVol uneMount (paranBl ock: ParnBl kPtr): OSErr;
par anBl ock A pointer to a basic File Manager parameter block.

Parameter block

- i oConpl eti on Longl nt A pointer to a completion routine.
- i oResul t CSErr The function’s result code.

- i oVRef Num I nt eger A volume reference number.

- i oBuffer Longl nt A pointer to mounting information.

DESCRIPTION

The PBVol unmeMount function mounts a volume and returns its volume reference
number. If you're mounting an AppleShare volume, place the volume’s AFP mounting
information record in the buffer pointed to by the i oBuf f er field.

The PBGet Vol Mount | nf o function does not return the user and volume passwords;
they’re returned blank. Typically, your application asks the user for any necessary
passwords and fills in those fields just before calling PBVol umeMount . If you want to
mount a volume with guest status, pass an empty string as the user password.

If you have enough information about the volume, you can fill in the mounting record
yourself and call PBVol uneMount, even if you did not save the mounting information
while the volume was mounted. To mount an AFP volume, you must fill in the record
with at least the zone name, server name, user name, user password, and volume
password. You can lay out the fields in any order within the data field, as long as you
specify the correct offsets.

SPECIAL CONSIDERATIONS

The File Sharing workstation software introduced in system software version 7.0 does
not currently pass the volume password. The AppleShare 3.0 workstation software does,
however, pass the volume password.

File Manager Reference 2-221

Jabeue a4
n

CHAPTER 2

File Manager

AFP volumes currently ignore the user authentication method passed in the uanmrype
field of the volume mounting information record whose address is passed ini oBuf f er.
The most secure available method is used by default, except when a user mounts the
volume as <Guest> and uses the kNoUser Aut hent i cat i on authentication method.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBVol umreMount are

Trap macro Selector
_HFSDi spat ch $0041
noEr r 0
not Qpenkrr -28
nsvErr -35
parantrr =50
ext FSErr -58
menftul | Err -108
af pBadUAM -5002
af pBadVer sNum -5003
af pNoSer ver -5016
af pUser Not Aut h -5023
af pPwdExpi r ed -5042
af pBadDi r | DType -5060
af pCant Mount Mor eSrvr s -5061
af pAl r eadyMount ed -5062
af pSanmeNodeEr r -5063

Controlling Login Access

No error

AppleTalk is not open

Volume not found

Parameter error; typically, zone, server, and
volume name combination is not valid or not
complete, or the user name is not recognized
External file system error; typically, file system
signature was not recognized, or function is
not available for that volume

Not enough memory to create a new volume
control block for mounting the volume

User authentication method is unknown
Workstation is using an AFP version that the
server doesn’t recognize

Server is not responding

User authentication failed (usually, password
is not correct)

Password has expired on server

Not a fixed directory ID volume

Maximum number of volumes has

been mounted

Volume already mounted

Attempt to log on to a server running on the
same machine

2-222

You can use the functions PBHGet Logl nl nf o, PBHVapI D, and PBHVapNane to
get information about the login method and the recognized users and groups on a

particular machine.

File Manager Reference

CHAPTER 2

File Manager

PBHGetLogInInfo

DESCRIPTION

You can use the PBHGet Logl nl nf o function to determine the login method used to log
on to a particular shared volume.

FUNCTI ON PBHCet Logl nl nfo (paranBl ock: HParnBl kPt r;
async: Bool ean): OSErr;

par anBl ock A pointer to an obj Par amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSEr r The result code of the function.

- i oVRef Num | nt eger The volume specification.

- i 0Obj Type | nt eger The login method.

- i oObj NanePtr Ptr A pointer to the user name.

The PBHCet Logl nl nf o function returns the method used for login and the user name
specified at login time for the volume specified by the i oVRef Numfield. The login user
name is returned as a Pascal string in i 0Obj NanmePt r. The maximum size of the user
name is 31 characters. The login method type is returned in the i 0Cbj Type field. These
values are recognized.

CONST
kNoUser Aut hent i cati on = 1; {no password}
kPassword = 2; {8-byte password}

kEncr ypt Passwor d
kTwoWayEncr ypt Passwor d

; {encrypted 8-byte password}
7 {two-way random encryption}

1
D W N -

Values in the range 7-127 are reserved for future use by Apple Computer, Inc. Values in
the range 128-255 are available to your application as user-defined values.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBHGet Logl nl nf o are

Trap macro Selector

_HFSDi spat ch $0031

nokErr 0 No error

nsvErr -35 Specified volume doesn’t exist

par ankrr -50 Function not supported by volume

File Manager Reference 2-223

Jabeue a4
n

PBHMapID

CHAPTER 2

File Manager

DESCRIPTION

You can use the PBHVRpI D function to determine the name of a user or group if you
know the user or group ID.

FUNCTI ON PBHWVapl D (par anBl ock: HPar Bl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to an obj Par amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

N i oQbj Type I nt eger The login method.

- i oCbj NanePt r Ptr A pointer to the user/group name.
- i oObj I D Longl nt The user/group ID.

The PBHVap! D function returns the name of a user or group given its unique ID. The

i 0Obj | Dfield contains the ID to be mapped. (AppleShare uses the value 0 to signify
<Any User>.) The i oObj Type field is the mapping function code; its value is 1 if you're
mapping a user ID to a user name or 2 if you're mapping a group ID to a group name.
The name is returned in i 0Cbj NanmePt r ; the maximum size of the name is 31 characters
(preceded by a length byte).

Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you
might not need to specify a value in the i 0Cbj Type field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

2-224

The trap macro and routine selector for PBHVapl D are

Trap macro Selector

_HFSDi spat ch $0034

nokErr 0 No error

fnfErr —43 Unrecognizable owner or group name
par ankrr -50 Function not supported by volume

File Manager Reference

CHAPTER 2

File Manager

PBHMapName

DESCRIPTION

You can use the PBHVRpName function to determine the user ID or group ID from a user
or group name.

FUNCTI ON PBHvVapNare (paranBl ock: HPar Bl kPtr; async: Bool ean):
CSErr;

par anBl ock A pointer to an obj Par amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

Jabeue a4
n

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oOResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num | nt eger A volume specification.

N i oQbj Type I nt eger The login method.

- i oCbj NanePt r Ptr A pointer to the user/group name.
- i oObj I D Longl nt The user/group ID.

Given a name, the PBHVapNane function returns the corresponding unique user ID

or group ID. The name is passed as a string in i oObj NamePt r. If NI L is passed, the ID
returned is always 0. The maximum size of the name is 31 characters. The i 0Cbj Type
field is the mapping function code; its value is 3 if you're mapping a user name to a user
ID or 4 if you're mapping a group name to a group ID. On exit, i 0Obj | D contains the
mapped ID.

Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you

might need to set the i 00bj Type field to determine which database (user or group) to

search first. If both a user and a group have the same name, this field determines which
kind of ID you receive.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBHVRpNane are

Trap macro Selector

_HFSDi spat ch $0035

noErr 0 No error

fnfErr —43 Unrecognizable owner or group name
par ankrr -50 Function not supported by volume

File Manager Reference 2-225

CHAPTER 2

File Manager

Copying and Moving Files

The File Manager provides two shared environment routines—PBHCopyFi | e and
PBHMVbveRename—that allow you to copy and move files. These routines are especially
useful when you want to copy or move files located on a remote volume, because they
allow you to forgo transmitting large amounts of data across a network. These routines
are used internally by the Finder; most applications do not need to use them.

If you do want to use PBHCopyFi | e or PBHVbveRenane, you should first call
PBHGet Vol Par s to see whether the target volume supports these routines.

PBHCopyFile

DESCRIPTION

2-226

You can use the PBHCopyFi | e function to duplicate a file and optionally to rename it.

FUNCTI ON PBHCopyFi | e (paranBl ock: HParnmBl kPtr; async: Bool ean):
OSErr;

par anBl ock A pointer to a copyPar amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- i oDst VRef Num I nt eger Destination volume identifier.

- i oNewNane Ptr A pointer to the destination
pathname (may be NI L).

- i 0CopyNane Ptr A pointer to the file’s new name
(may be NI L).

- i oNewDi r1 D Longl nt The destination directory ID.

- ioDirlD Longl nt The source directory ID.

The PBHCopyFi | e function duplicates a file on the specified volume and optionally
renames it. It is an optional call for AppleShare file servers. Your application should
examine the information returned by the PBHGet Vol Par s function to see if the
volume supports PBHCopyFi | e.

For AppleShare file servers, the source and destination pathnames must indicate the
same file server; however, the parameter block may specify different source and
destination volumes on that file server. A useful way to tell if two file server volumes are
on the same file server is to call the PBHGet Vol Par ns function for each volume and
compare the server addresses returned. The server opens source files with read /deny
write enabled and destination files with write/deny read and write enabled.

File Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

CHAPTER 2

File Manager

You specify the source file with the i oVRef Num i oDi r | D, and i oNanmePt r fields. You
specify the destination directory with the i oDst VRef Num i oNewDi r | D, and

i oNewNane fields. If i oNewNane is NI L, the destination directory is the directory
having ID i oNewDi r | D on the specified volume; if i oNewNare is not NI L, the
destination directory is the directory having the partial pathname pointed to by

i oNewNane in the directory having ID i oNewDi r | D on the specified volume.

The i oCopyNarre field may contain a pointer to an optional string to be used in copying
the file; if it is not NI L, the file copy is renamed to the name specified in i oCopyNare.
The string pointed to by i 0CopyNanme must be a filename, not a partial pathname.

Jabeue a4
n

The trap macro and routine selector for PBHCopyFi | e are

Trap macro Selector
_HFSDi spat ch $0036
RESULT CODES
noErr 0 No error
dskFul Err -34 Destination volume is full
fnfErr —43 Source file not found, or destination directory does
not exist
vLckdErr -46 Destination volume is read-only
f BsyErr —-47 The source or destination file could not be opened
with the correct access modes
dupFNEr r —48 Destination file already exists
par amerr -50 Function not supported by volume
wr gVol TypErr -123 Function not supported by volume
af pAccessDeni ed -5000 The user does not have the right to read the source or
write to the destination
af pDenyConfli ct -5006 The source or destination file could not be opened
with the correct access modes
af pQbj ect TypeErr -5025 Source is a directory
PBHMoveRename

You can use the PBHVbveRenane function to move a file or directory and optionally to
rename it.

FUNCTI ON PBHVbveRenane (paranBl ock: HPar nBl kPtr;
async: Bool ean): OSErr;

par anBl ock A pointer to a copyPar amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

File Manager Reference 2-227

CHAPTER 2

File Manager

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oOResul t CSErr The result code of the function.

- i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- i oNewNane Ptr A pointer to the destination
pathname (may be NI L).

= i oCopyNane Ptr A pointer to the file’s new name
(may be NI L).

- i oNewDi r I D Longl nt The destination directory ID.

- ioDirlD Longl nt The source directory ID.

DESCRIPTION

The PBHVbveRenane function allows you to move (not copy) a file or directory and
optionally to rename it. The source and destination pathnames must point to the same
file server volume.

You specify the source file or directory with the i oVRef Num i oDi r | D, and i oNanePt r
fields. You specify the destination directory with the i oNewDi r | Dand i oNewNane
fields. If i oNewNane is NI L, the destination directory is the directory having ID

i oNewDi r | Don the specified volume; if i oNewNane is not NI L, the destination
directory is the directory having the partial pathname pointed to by i oNewNane in

the directory having ID i oNewDi r | D on the specified volume.

The i oCopyNarre field may contain a pointer to an optional string to be used in copying
the file or directory; if it is not NI L, the moved object is renamed to the name specified
in i oCopyNane. The string pointed to by i oCopyNane must be a filename, not a
partial pathname.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for PBHVbveRenane are

Trap macro Selector
_HFSDi spat ch $0037
RESULT CODES
noErr 0 No error
fnfErr —43 Source file or directory not found
f LckdErr —45 File is locked
vLckdErr —46 Destination volume is read-only
dupFNEr r -48 Destination already exists
par ankrr -50 Function not supported by volume
badMovEr r -122 Attempted to move directory into offspring
af pAccessDeni ed -5000 The user does not have the right to move the file

or directory

2-228 File Manager Reference

CHAPTER 2

File Manager

File ID Routines

Resolving File ID References

The File Manager provides several routines that allow you to track files using file IDs.
These routines use the f i dPar amvariant of the HFS parameter block.

Note

Most applications do not need to use these routines. In general you
should track files using alias records, as described in the chapter “Alias
Manager” in this book. The Alias Manager uses file IDs internally as
part of its search algorithms for finding the target of an alias record. O

Jabeue a4
n

You can find the target of a file ID reference by calling the PBResol veFi | el DRef
function.

PBResolveFileIDRef

DESCRIPTION

You can use the PBResol veFi | el DRef function to retrieve the filename and parent
directory ID of the file with a specified file ID.

FUNCTI ON PBResol veFi | el DRef (paranBl ock: HPar mBl kPt r;
async: Bool ean): OSErr;

par anBl ock A pointer to an f i dPar amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSEr r The result code of the function.

o i oNanmePt r StringPtr A pointer to a filename.

. i oVRef Num I nt eger A volume specification.

- ioSrchDirlD Longl nt The file’s parent directory ID.

- ioFilelD Longl nt A file ID.

The PBResol veFi | el DRef function returns the filename and parent directory ID of the
file referred to by file ID in the i oFi | el Dfield. It places the filename in the string
pointed to by the i oNamePt r field and the parent directory ID in the i oSrcDi r | D field.
If the name string is NI L, PBResol veFi | el DRef returns only the parent directory ID.
If the name string is not NI L but is only a volume name, PBResol veFi | el DRef ignores
the value in the i 0VRef Numfield, uses the volume name instead, and overwrites the
name string with the filename. A return code of f i dNot FoundEr r means that the
specified file ID reference has become invalid, either because the file was deleted or
because the file ID reference was destroyed by PBDel et eFi | el DRef .

File Manager Reference 2-229

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for PBResol veFi | el DRef are

Trap macro Selector
_HFSDi spat ch $0016
RESULT CODES
nokErr 0 No error
nsvErr -35 Volume not found
i oErr -36 1/0O error
fnfErr -43 File not found
par amerr -50 Function not supported by volume
vol OFflinErr -53 Volume is offline
ext FSEr r -58 External file system
wr gVol TypErr -123 Not an HFS volume
fi dNot FoundEr r -1300 File ID not found
not AFi | eErr -1302 Specified file is a directory
af pAccessDeni ed -5000 User does not have the correct access
af pQbj ect TypeErr -5025 Specified file is a directory
af pl DNot Found -5034 File ID not found
af pBadl DEr r -5039 File ID not found

Creating and Deleting File ID References

You can create and delete file ID references using the functions PBCr eat eFi | el DRef
and PBDel et eFi | el DRef .

Note
Most applications should not directly create or delete file ID references. O

PBCreateFileIDRef

Use the PBCr eat eFi | el DRef function to establish a file ID reference for a file.

FUNCTI ON PBCr eat eFi | el DRef (paranBl ock: HParnBl kPtr;
async: Bool ean): OSErr;

par anBl ock A pointer to an f i dPar amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

. i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSErr The result code of the function.

. i oNamePt r StringPtr A pointer to a filename.

. i oVRef Num I nt eger A volume specification.

. ioSrchirlD Longl nt The file’s parent directory ID.

- ioFilelD Longl nt A file ID.

2-230 File Manager Reference

DESCRIPTION

CHAPTER 2

File Manager

Given a volume reference number, filename, and parent directory ID, the

PBCr eat eFi | el DRef function creates a record to hold the name and parent directory
ID of the specified file. PBCr eat eFi | el DRef places the file ID in the i oFi | el Dfield.
If a file ID reference already exists for the file, PBCr eat eFi | el DRef supplies the file
ID but returns the result code f i dExi st s.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBCr eat eFi | el DRef are

Trap macro Selector

__HFSDi spat ch $0014
RESULT CODES

noErr 0 No error

nsSvErr -35 Volume not found

i OErr -36 I/0 error

fnfErr —43 File not found

wPr Er r -44 Hardware volume lock

vLckdErr —46 Software volume lock

par ankrr -50 Function not supported by volume

vol OfFflinErr -53 Volume is offline

ext FSEr r -58 External file system

wr gVol TypErr -123 Not an HFS volume

fidExists -1301 File ID already exists

not AFi | eErr -1302 Specified file is a directory

af pAccessDeni ed -5000 User does not have the correct access

af pQbj ect TypeErr -5025 Specified file is a directory

af pl DExi sts -5035 File ID already exists
PBDeleteFileIDRef

You can use the PBDel et eFi | el DRef function to delete a file ID reference.

FUNCTI ON PBDel et eFi | el DRef (paranBl ock: HParnBl kPtr;
async: Bool ean): OSErr;

par anBl ock A pointer to an f i dPar amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The result code of the function.

- i oNamePt r StringPtr A pointer to a filename.

- i oVRef Num I nt eger A volume specification.

- ioFilelD Longl nt A file ID.

File Manager Reference 2-231

Jabeue a4
n

DESCRIPTION

CHAPTER 2

File Manager

The PBDel et eFi | el DRef function invalidates the specified file ID reference on the
volume specified by i 0VRef Numor i oNanmePt r. After it has invalidated a file ID
reference, the File Manager can no longer resolve that ID reference to a filename and
parent directory ID.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBDel et eFi | el DRef are

Trap macro Selector

__HFSDi spat ch $0015

noErr 0 No error

nsvErr -35 Volume not found

i oErr -36 I/0O error

fnfErr —43 File not found

wPr Er r —44 Hardware volume lock

vLckdErr 46 Software volume lock

par amerr -50 Function not supported by volume
vol OFflinErr -53 Volume is offline

ext FSEr r -58 External file system

wr gVol TypErr -123 Function is not supported by volume
fi dNot FoundEr r -1300 File ID not found

af pAccessDeni ed -5000 User does not have the correct access
af pQbj ect TypeErr -5025 Specified file is a directory

af pl DNot Found -5034 File ID not found

Foreign File System Routines

The File Manager provides several routines that allow you to obtain and set privilege
information on foreign file systems. The PBGet For ei gnPri vs and PBSet For ei gnPri vs
functions allow your application or shell program to communicate with a foreign file
system about its native access-control system. These functions retrieve and set access
permissions on the foreign file system, using a f or ei gnPr i vPar amvariant of the HFS
parameter block.

PBGetForeignPrivs

2-232

You can use the PBGet For ei gnPri vs function to determine the native access-control
information for a file or directory stored on a volume managed by a foreign file system.

FUNCTI ON PBGet For ei gnPrivs (paranBl ock: HParnBl kPtr;
async: Bool ean): OSErr;

File Manager Reference

CHAPTER 2

File Manager

par anBl ock A pointer to a f or ei gnPri vPar amvariant of the HFS parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

oResul t
oNamePt r

—

—

i oVRef Num
i oForei gnPri

1

1

oForei gnPri
oForei gnPri
oForei gnPri
oForei gnPri

i oFor ei gnPri

1

i oFor ei gnPri

1

i oForei gnPri

1

DESCRIPTION

oConpl eti on

vBuf f er
vReqCount
vAct Count
vDirl D
vlinfol
vl nf 02

vl nf 03

vl nf 04

ProcPtr A pointer to a completion routine.
OSErr The result code of the function.
StringPtr A pointer to a file or
directory name.
I nt eger A volume specification.
Ptr A pointer to the privilege I
information buffer. 2
Longl nt The size allocated for the buffer. 2
Longl nt The amount used in buffer. &
I nt eger The parent directory ID. a
Longl nt Information specific to
privilege model.
Longl nt Information specific to
privilege model.
Longl nt Information specific to
privilege model.
Longl nt Information specific to

privilege model.

The PBGet For ei gnPri vs function retrieves access information for a file or directory
on a volume managed by a file system that uses a privilege model different from the AFP
model. See “Privilege Information in Foreign File Systems” on page 2-20 for a more
complete explanation of access-control privileges.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBGet For ei gnPri vs are

Trap macro
_HFSDi spat ch

RESULT CODES

noErr
nsvErr
parantrr

File Manager Reference

Selector
$0060

=35
-50

No error

Volume not found

Volume is HFS or MFS (that is, it has no foreign
privilege model), or foreign volume does not
support these calls

2-233

CHAPTER 2

File Manager

PBSetForeignPrivs

You can use the PBSet For ei gnPri vs function to change the native access-control
information for a file or directory stored on a volume managed by a foreign file system.

FUNCTI ON PBSet For ei gnPrivs (paranBl ock: HParnBl kPtr;
async: Bool ean): OSErr;

par anBl ock A pointer to a f or ei gnPri vPar amvariant of the HFS

parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.
Parameter block
- ioConpletion ProcPtr A pointer to a completion routine.
~ ioResult CSErr The result code of the function.
- ioNamePtr StringPtr A pointer to a file or directory name.
- i oVRef Num I nt eger A volume specification.
- i oForeignPrivBuffer Ptr A pointer to the privilege
information buffer.
— i oForeignPrivReqCount Longl nt The size allocated for the buffer.
- i oFor ei gnPri vAct Count Longl nt The amount used in buffer.
-~ ioForeignPrivbhDirlD I nt eger The parent directory ID.
- i oForei gnPrivlnfol Longl nt Information specific to
privilege model.
> i oForei gnPrivlnfo2 Longl nt Information specific to
privilege model.
- i oForei gnPri vl nf o3 Longl nt Information specific to
privilege model.
- i oFor ei gnPri vl nf 04 Longl nt Information specific to

DESCRIPTION

privilege model.

The PBSet For ei gnPri vs function modifies access information for a file or directory
on a volume managed by a file system that uses a privilege model different from the

AFP model.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBSet For ei gnPri vs are

Trap macro Selector
_HFSDi spat ch $0061
RESULT CODES
nokErr 0 No error
nsvErr -35 Volume not found

parantrr =50

2-234 File Manager Reference

Volume is HFS or MFS (that is, it has no foreign
privilege model), or foreign volume does not

support these calls

CHAPTER 2

File Manager

Utility Routines

The File Manager provides several utility routines that allow you to obtain information
about File Manager queues and file control blocks. These routines insulate your
application from the need to know about the data structures maintained internally by
the File Manager. Most applications do not need to use these routines.

Obtaining Queue Headers

You can use the functions Get FSQHdr, Get VCBQHdr, and Get Dr vQHdr to obtain a
pointer to the header of the file I/O queue, the VCB queue, and the drive queue,
respectively. See the chapter “Queue Utilities” in Inside Macintosh: Operating System
Utilities for a description of queues and the format of a queue header.

Jabeue a4
n

GetFSQHdr

You can use the Get FSQHdr function to get a pointer to the header of the file I/ O queue.

FUNCTI ON Get FSQHdr: QHdr Ptr;

DESCRIPTION
The Get FSQHdr function returns a pointer to the header of the file I/O queue.

ASSEMBLY-LANGUAGE INFORMATION
The global variable FSQHAr contains the header of the file I/O queue.

GetVCBQHdr

You can use the Get VCBQHdr function to get a pointer to the header of the VCB queue.

FUNCTI ON Get VCBQHdr: QHdr Ptr;

DESCRIPTION
The Get VCBQHAr function returns a pointer to the header of the VCB queue.

ASSEMBLY-LANGUAGE INFORMATION

The global variable VCBQHdr contains the header of the VCB queue. The default
volume’s VCB is pointed to by the global variable Def VCBPt r.

File Manager Reference 2-235

CHAPTER 2

File Manager

GetDrvQHdr

You can use the Get Dr vQHdr function to get a pointer to the header of the drive queue.

FUNCTI ON Get DrvQHdr: QHdrPtr;

DESCRIPTION
The Get Dr vQHdr function returns a pointer to the header of the drive queue.

ASSEMBLY-LANGUAGE INFORMATION
The global variable Dr vQHdr contains the header of the drive queue.

Adding a Drive

The AddDr i ve procedure allows you to add a drive.

AddDrive

You can use the AddDr i ve procedure to add a drive to the system.

PROCEDURE AddDrive (drvrRef Num |Integer; drvNum |Integer;
gEl : DrvQElPtr);

dr vr Ref Num A driver reference number.
dr vNum A drive number.

gEl A pointer to a drive queue element.

DESCRIPTION
The AddDr i ve procedure adds a disk drive having the specified driver reference
number and drive number to the system. The File Manager expands the drive queue
by adding a copy of the queue element pointed to by the qEl parameter to the end
of the existing queue.

Obtaining File Control Block Information

You can get information from the file control block (FCB) allocated for an open file by
calling the function PBGet FCBI nf o.

2-236 File Manager Reference

CHAPTER 2

File Manager

PBGetFCBInfo

DESCRIPTION

You can use PBCGet FCBI nf o to get information about an open file.

FUNCTI ON PBGet FCBI nf o (paranBl ock: FCBPBPtr; async: Bool ean):
CSErr;

par anmBl ock A pointer to a file control block parameter block.

async A Boolean value that specifies asynchronous (TRUE) or synchronous
(FALSE) execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The result code of the function.

o i oNamePt r StringPtr A pointer to a pathname.

- i oVRef Num I nt eger A volume specification.

- i oRef Num I nt eger The file reference number.

- i oFCBI ndx I nt eger An index.

- i oOFCBFI Nm Longl nt The file ID.

- i oOFCBFI ags I nt eger File status flags.

- i oOFCBSt Bl k I nt eger The first allocation block of the file.
- i oOFCBECF Longl nt The logical end-of-file.

- i oOFCBPLen Longl nt The physical end-of-file.

- i OFCBCr Ps Longl nt The position of the file mark.

- i oOFCBVRef Num I nt eger The volume reference number.

- i oOFCBC pSi z Longl nt The file clump size.

- i OFCBPar | D Longl nt The parent directory ID.

The PBGet FCBI nf o function returns information about the specified open file. If the
value of i OFCBI ndx is positive, the File Manager returns information about the file
whose index in the FCB buffer is i oFCBI ndx and that is located on the volume specified
by i oVRef Num(which may contain a drive number, volume reference number, or
working directory reference number). If the value of i 0VRef Numis 0, all open files are
indexed; otherwise, only open files on the specified volume are indexed.

If the value of i oFCBI ndx is 0, the File Manager returns information about the file
whose file reference number is specified by the i oRef Numfield. If the value of

i OFCBI ndx is positive, the i oRef Numfield is ignored on input and contains the file
reference number on output.

If PBGet FCBI nf 0 executes successfully, the i oNarmePt r field contains the name of the
specified open file. You should pass a pointer to a St r 31 value if you want that name
returned. If you pass NI L in the i oNanePt r field, no filename is returned.

The i oFCBFI ags field returns status information about the specified open file. See
“File Control Block Parameter Blocks” beginning on page 2-108 for a description of
the meaning of the bits in this field.

File Manager Reference 2-237

Jabeue a4
n

CHAPTER 2

File Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for PBGet FCBI nf 0 are

Trap macro Selector

_HFSDi spat ch $0008

nokErr 0 No error

NsSvErr -35 Specified volume doesn’t exist

f nOpnEr r -38 File not open

rf Nunerr -51 Reference number specifies nonexistent access path

Application-Defined Routines

This section describes the application-defined routines whose addresses you pass to
some of the File Manager routines. You can define a routine that is called after the
completion of an asynchronous call.

Completion Routines

Most low-level File Manager routines can be executed either synchronously (that
is, the application can’t continue until the routine is completed) or asynchronously
(that is, the application is free to perform other tasks while the routine is executing).
Some routines, however, can only be executed synchronously because they use the
Memory Manager to allocate and release memory.

When you execute a routine asynchronously, you can specify a completion routine that
the File Manager executes after the completion of the call.

MyCompletionProc

DESCRIPTION

2-238

A File Manager completion routine has the following syntax:

PROCEDURE My Conpl et i onPr oc;

When you execute a File Manager routine asynchronously (by setting its async
parameter to TRUE), you can specify a completion routine by passing the routine’s
address in the i oConpl et i on field of the parameter block passed to the routine.
Because you requested asynchronous execution, the File Manager places an I/O request
in the file I/ O queue and returns control to your application—possibly even before the
actual I/O operation is completed. The File Manager takes requests from the queue one
at a time and processes them; meanwhile, your application is free to do other processing.

File Manager Reference

CHAPTER 2

File Manager

A routine executed asynchronously returns control to your application with the result
code noEr r as soon as the call is placed in the file I/ O queue. This result code does not
indicate that the call has successfully completed, but simply indicates that the call was
successfully placed in the queue. To determine when the call is actually completed, you
can inspect the i oOResul t field of the parameter block. This field is set to a positive
number when the call is made and set to the actual result code when the call is
completed. If you specify a completion routine, it is executed after the result code is
placed ini oResul t.

ASSEMBLY-LANGUAGE INFORMATION

When your completion routine is called, register A0 contains a pointer to the parameter
block of the asynchronous call, and register D0 contains the result code. The value in
register DO is always identical to the value in the i oResul t field of the parameter block.

A completion routine must preserve all registers other than A0, A1, and D0-D2.

SPECIAL CONSIDERATIONS

SEE ALSO

Because a completion routine is executed at interrupt time, it should not allocate, move,
or purge memory (either directly or indirectly) and should not depend on the validity of
handles to unlocked blocks.

If your completion routine uses application global variables, it must also ensure that
register A5 contains the address of the boundary between your application global
variables and your application parameters. For details, see the discussion of the
functions Set Cur r ent A5 and Set A5 in the chapter “Memory Management Utilities”
in Inside Macintosh: Memory.

For a more complete discussion of interrupt-level processing and its limitations, see the
chapter “Introduction to Processes and Tasks” in Inside Macintosh: Processes.

File Manager Reference 2-239

Jabeue a4
n

CHAPTER 2

File Manager

Summary of the File Manager

Pascal Summary

Constants

CONST
{Gestalt constants}
gestal t FSAttr =
gest al t Ful | Ext FSDi spat chi ng
gest al t HasFSSpecCal | s

{directory I|Ds}
fsRtParl D = 1
fsRRDirID = 2;

"fs '; {file systemattributes sel ector}
0; {exports HFSD spatch traps}
1; {supports FSSpec records}

{directory ID of root directory's parent}
{directory ID of volunme's root directory}

{access nmodes for opening files}

fsCur Perm = 0
f sRdPer m = 1;
f sWPerm = 2
f SRAW Per m = 3
f SRAW ShPer m = 4,

{file mark positioning nodes}

f sAt Mar k = 0
fsFronttart = 1;
f sFr onLEOF = 2
f sFromvar k = 3
rdverify = 64,

{what ever permi ssion is allowed}
{read perm ssion}

{write permi ssion}

{exclusive read/wite perm ssion}
{shared read/wite perm ssion}

{at current mark}

{set mark relative to beginning of file}
{set mark relative to |ogical end-of-file}
{set mark relative to current mark}

{add to above for read-verify}

{val ues for ioSearchBits in PBCat Search paraneter bl ock}

fsSBParti al Narre = 1

f sSBFul | Nane = 2;
fsSBFl Attrib = 4

f sSBNegat e = 16384;
{for files only}

f sSBFI Fndr I nf o = 8;

f sSBFI LgLen = 32

f sSBFI PyLen = 64;

2-240 Summary of the File Manager

{substring of nane}

{full nane}

{directory flag; software |ock flag}
{reverse match status}

{Finder file info}
{logical length of data fork}
{physical length of data fork}

CHAPTER

File Manager

f sSBFI RLgLen = 128;
f sSBFI RPyLen 256;
f sSBFI Cr Dat 512;
f sSBFI MdDat = 1024,
f s SBFI BkDat = 2048;
f sSBFI XFndr | nfo = 4096;
f sSBFI Par | D = 8192
{for directories only}

f sSBDr Usr s = 8§;

f sSBDr Nl s = 16;

f sSBDr Cr Dat = 512;
f sSBDr MdDat 1024;
f s SBDr Bk Dat = 2048;
f sSBDr Fndr I nf o = 4096;
f sSBDr Par | D = 8192

{logical Iength of resource fork}
{physi cal |ength of resource fork}
{file creation date}

{file nodification date}

{file backup date}

{nore Finder file info}

{file's parent |D}

{Fi nder directory info}
{nunber of files in directory}
{directory creation date}
{directory nodification date}
{directory backup date}

{more Finder directory info}
{directory's parent |D}

Jabeue a4
n

{val ue of vMrForeignPriviDin file attributes buffer}

fsUni xPriv

{bit

bHasBTr eeMyr
bHasFi | el Ds
bHasCat Sear ch

bHasUser Gr ouplLi st
bHasPer sonal AccessPri vil eges

bHasFol der Lock
bHas Shor t Nane
bHasDeskt opMyr
bHasMoveRenane
bHasCopyFi | e
bHasQpenDeny
bHasExt FSVol
bNoSysDi r
bAccessCnt |
bNoBoot Bl ks
bNoDeskl t ens
bNoSwi t chTo
bTr shOF f Li ne
bNoLcl Sync
bNoVNEdi t

Summary of the File Manager

1,

eges

No gk

8;

9;

10;
11,
12,
13;
14,
15;
16;
17,
18;
19;
20;
25;
26;
27,
28;

{A/UX privil ege nodel }

positions in vMAttrib field of GetVol Parnsl nf oBuffer}
bHasBl ankAccessPri vi |

{vol unme supports inherited privileges}
{reserved}

{vol ume supports file ID functions}
{vol unme supports PBCat Sear ch}

{vol une supports AFP privil eges}

{local file sharing is enabl ed}

{vol une supports |ocking of folders}
{vol ume supports AFP short nanes}

{vol ume supports Desktop Manager}

{vol une supports _MyveRenane}

{vol ume supports _CopyFil e}

{vol unme supports shared access nodes}
{volume is external file system vol une}
{vol ume has no system directory}

{vol unme supports AFP access control}
{volume is not a startup vol une}

{do not place objects on the desktop}
{do not switch launch to applications}
{zoom vol une when it is unnounted}
{don't let Finder change nod. date}

{I ock vol une nane}

2-241

CHAPTER 2

File Manager
bNoM ni Fndr = 29;
bLocal W.i st = 30;
bLi m t FCBs = 31;

{reserved; always 1}
{use shared vol une handl e for w ndow |ist}
{limt file control bl ocks}

{nedia type in renmpte nounting information}

Appl eShar eMedi aType
= "af pm ;

{an Appl eShare vol une}

{user authentication nmethods in AFP renote nmounting information}

kNoUser Aut hent i cati on = 1;
kPasswor d = 2
kEncr ypt Passwor d = 3
kTwoWayEncrypt Password = 6;

Data Types

{guest status; no password needed}
{8-byte password}

{encrypted 8-byte password}
{two-way random encryption; }

{ authenticate both user and server}

File System Specification Record

TYPE

FSSpec = {file system specification}

RECORD
vRef Num I nt eger; {vol umre reference nunber}
par | D: Longl nt; {directory ID of parent directory}
nane: Str63; {filename or directory nane}

END;

FSSpecPt r = ~"FSSpec;

FSSpecHandl e = A~FSSpechktr;

FSSpecArr ay = ARRAY[O0..0] OF FSSpec;

FSSpecArrayPtr
FSSpecArrayHandl e

File and Directory Parameter Blocks

TYPE

NFSSpecArr ay;
NFSSpecArrayPtr;

Par anBl kType = (ioParam fil eParam voluneParam cntrl Param
sl ot DevParam nul ti DevParam accessParam
obj Param copyParam wdParam fi dParam csParam
forei gnPrivsParam ;

2-242 Summary of the File Manager

CHAPTER

File Manager

Par Bl kPt r
Par anBl ockRec
RECORD
gLi nk:
qType:

i oConpl eti on:

CASE Par anBl kType OF

oTr ap:
oCrrdAddr :

oResul t:
oNanmePtr .
oVRef Num

i oPar am

(i

oRef Num
oVer sNum
oPer mesn:
oM sc:
oBuffer:
oReqCount :
oAct Count :
oPosMbde:
oPosOF f set :

fileParam

(i

oFRef Num
oFVer sNum

filler1l:

oFDi r | ndex:
oFl Attri b:
oFIl Ver sNum

oFl Fndr | nf o:

oFl Num
oFl St Bl k:
oFl LgLen:
oFl PyLen:
oFl RSt Bl k:
oFl RLgLen:
oFl RPyLen:
oFl Cr Dat :
oFl MiDat :

vol unmePar am
(filler2:

oVol | ndex:
oVCr Dat e:

APar anBl ockRec;

CEl enPtr;
I nt eger;
I nt eger;
Ptr;
ProchPtr;
CSErr;
StringPtr;
I nt eger;

I nt eger;

Si gnedByt e;
Si gnedByt e;
Ptr;

Ptr;

Longl nt;
Longl nt;

I nt eger;
Longlnt);

I nt eger;

Si gnedByt e;
Si gnedByt e;
I nt eger;

Si gnedByt e;
Si gnedByt e;
FI nf o;
Longl nt;

I nt eger;
Longl nt ;
Longl nt;

I nt eger;
Longl nt ;
Longl nt;
Longl nt;
Longlnt);

Longl nt;
I nt eger;
Longl nt;

Summary of the File Manager

{basic File Manager paraneter bl ock}

{next queue entry}

{queue type}

{routine trap}

{routine address}

{pointer to conpletion routine}
{result code}

{poi nter to pathnane}

{vol ume specification}

Jabeue a4
n

{file reference nunber}

{version nunber}

{read/write permi ssion}

{m scel | aneous}

{data buffer}

{request ed nunmber of bytes}

{actual nunber of bytes}

{posi tioning mode and newl i ne char.}
{posi tioning offset}

{file reference nunber}

{file version nunber (unused)}
{reserved}

{directory index}

{file attributes}

{file version nunber (unused)}
{information used by the Finder}

{file 1D}
{first alloc. blk. of data fork}
{l ogi cal ECF of data fork}

{physi cal EOF of data fork}

{first alloc. blk. of resource fork}
{l ogi cal ECF of resource fork}
{physi cal EOF of resource fork}

{date and tine of creation}
{date and tinme of last nodification}

{reserved}
{vol une i ndex}

{date and time of initialization}

2-243

CHAPTER 2

File Manager
i oVLsBkUp: Longl nt; {date and tinme of last nodification}
i OVALr b: I nt eger; {volune attributes}
i OVNnFI s: I nt eger; {nunber of files in root directory}
ioVvDirSt: I nt eger; {first block of directory}
i oVBI Ln: I nt eger; {length of directory in bl ocks}
i OVNMAI BI ks: I nt eger; {nunmber of allocation bl ocks}
i oVAI Bl kSi z: Longl nt; {size of allocation blocks}
i oVd pSi z: Longl nt ; {default clunp size}
i Al Bl St : I nt eger; {first block in block map}
i 0VNxt FNum Longl nt; {next unused file |ID}
i oVFr Bl k: I nt eger); {nunmber of unused allocation bl ocks}
END;
HPar mBl kPt r = A"HPar anBl ockRec;
HPar anBl ockRec = {HFS paraneter bl ock}
RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {queue type}
i oTr ap: I nt eger; {routine trap}
i oCrdAddr : Ptr; {routine address}
i oConpl etion: ProcPtr; {pointer to conpletion routine}
i oResul t: OSErr; {result code}
i oNamePtr: StringPtr; {poi nter to pathnane}
i oVRef Num I nt eger; {vol une specification}
CASE Par anBl kType OF
i oPar am
(i oRef Num I nt eger; {file reference nunber}
i oVer sNum Si gnedByt e; {version nunber}
i oPer mssn: Si gnedByt e; {read/write pernission}
i oM sc: Ptr; {m scel | aneous}
i oBuf fer: Ptr; {data buffer}
i oReqCount : Longl nt; {request ed nunmber of bytes}
i 0Act Count : Longl nt; {actual nunber of bytes}
i oPosMbde: I nt eger; {posi tioning nmode and newl i ne char.}
i oPosOF f set : Longlnt); {posi tioning offset}
fil eParam
(1 oFRef Num I nt eger; {file reference nunber}
i oFVer sNum Si gnedByt e; {file version nunber (unused)}
fillerl: Si gnedByt €; {reserved}
i oFDi r | ndex: I nt eger; {directory index}
i oFI Attrib: Si gnedByt e; {file attributes}
i oFl Ver sNum Si gnedByt €; {file version nunber (unused)}
i oFl Fndr I nf o: FlI nf o; {information used by the Finder}
ioDirlD: Longl nt ; {directory IDor file ID}

2-244

Summary of the File Manager

CHAPTER 2

File Manager

oFl St Bl k:
oFl LgLen:
oFl PyLen:
oFl RSt Bl k:
oFl RLgLen:
oFl RPyLen:
oFl Cr Dat :
oFl MdDat :

vol umePar am

(filler2:
oVol | ndex:
oVCr Dat e:
oVLsMod:
oVAL r b:
OVNn+l s:
oVBi t Map:
oAl | ocPtr:
oVNMAl Bl ks:
oVAI Bl kSi z:
oVd pSi z:
oAl Bl St
oVNxt CNI D:
oVFr Bl k:
oVSi g\Wor d
oVDr vl nf o:
oVDRef Num
oVFSI D:
oVBKkUp:
oVSegNum
oVW Cnt :
oVFi | Cnt:
oVDi r Cnt :
oVFndr | nf o:

accessPar am

(filler3:
i oDenyModes:
filler4:
fillerb:
i 0ACUser :
filler6:
i OACOwner | D:
i OACG oupl D
i OACAccess:

I nt eger;
Longl nt;
Longl nt ;
I nt eger;
Longl nt;
Longl nt ;
Longl nt;
Longl nt);

Longl nt;
I nt eger;
Longl nt ;
Longl nt;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
Longl nt;
Longl nt;
I nt eger;
Longl nt;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
Longl nt;
I nt eger;
Longl nt ;
Longl nt;
Longl nt;

ARRAY[1..8] OF

I nt eger;
I nt eger;
I nt eger;
Si gnedByt e
Si gnedByt e
Longl nt;
Longl nt ;
Longl nt;
Longl nt);

Summary of the File Manager

{first alloc. blk. of data fork}

{l ogi cal EOF of data fork}

{physi cal EOF of data fork}

{first alloc. blk. of resource fork}
{l ogi cal EOF of resource fork}
{physi cal EOF of resource fork}
{date and tinme of creation}

{date and tine of |ast nodification}

{reserved}

{vol unme i ndex}

{date and tinme of initialization}
{date and tinme of last nodification}
{volunme attributes}

{nunber of files in root directory}
{first block of volune bitmp}
{first block of next new fil e}
{nunmber of allocation bl ocks}

{size of allocation blocks}
{default clunp size}

{first block in volume map}

{next unused node | D}

{nunmber of unused allocation bl ocks}
{vol urmre si gnat ur e}

{drive nunber}

{driver reference nunber}
{file-systemidentifier}

{date and tinme of |ast backup}
{used internally}

{volume wite count}

{nunber of files on vol une}

{nunmber of directories on vol une}
Longlnt);

{information used by the Finder}

Jabeue a4
IIHII

{reserved}

{access node information}
{reserved}

{reserved}

{user access rights}
{reserved}

{owner | D}

{group | D}

{directory access rights}

2-245

CHAPTER 2

File Manager

obj Par am

(filler7:

i 0Obj Type:

i 00bj NanePtr:
iohj I D

copyPar am

(i oDst VRef Num
filler8:
i oNewNane:
i 0CopyNane:
i oNewDi r | D

wdPar am

(filler9:

i oVDI ndex:

i oVWDPr ocl D
i oOVWDVRef Num
fillerl0:
fillerll:
fillerl2:
fillerl3:

i oWDDi r | D:

fi dPar am

(fillerl4:

i oDest NanePtr :

fillerls:
i oDestDirl D:
fillerl6:
fillerl?:
ioSrcDirl D
fillerl8:
i oFi | el Dt

csPar am

2-246

(i ovatchPtr:

oSearchBits

oSear chTi ne:

oOpt Buf fer:
oOpt Buf Si ze:

oReqgMat chCount :
oAct Mat chCount :

oSear chl nf ol:
oSear chl nf 02

oCat Posi ti on:

I nt eger;
I nt eger;
Ptr;

Longl nt);

I nt eger;
I nt eger;
Ptr;
Ptr;
Longl nt);

I nt eger;
I nt eger;
Longl nt ;
I nt eger;
I nt eger;
Longl nt ;
Longl nt;
Longl nt;
Longlnt);

Longl nt;
StringPtr;
Longl nt;
Longl nt;
Longl nt ;
Longl nt;
Longl nt;
I nt eger;
Longl nt);

FSSpecArrayPtr;
Longl nt;

Longl nt;
Longl nt ;

Cl nf oPBPt

Cl nf oPBPt T ;
Longl nt ;

Cat Posi ti onRec;
Ptr;

Longlnt);

Summary of the File Manager

{reserved}

{function code}

{ptr to returned creator/group nane}
{creator/group |D}

{destination volume identifier}
{reserved}

{pointer to destination pathnane}
{pointer to optional nane}
{destination directory |ID}

{reserved}

{working directory index}

{working directory user identifier}
{working directory's vol. ref. num}
{reserved}

{reserved}

{reserved}

{reserved}

{working directory's directory |D}

{reserved}

{pointer to destination fil enane}
{reserved}

{destination parent directory |D}
{reserved}

{reserved}

{source parent directory I|ID}
{reserved}

{file 1D}

{pointer to array of matches}

{max. nunber of matches to return}
{actual nunber of matches}

{enable bits for matching rul es}
{pointer to val ues and | ower bounds}
{pointer to nasks and upper bounds}
{maxi numtime to search}

{current catal og position}

{pointer to optional read buffer}
{length of optional read buffer}

CHAPTER 2

File Manager

forei gnPrivParam
(filler21l:
filler22:
i oForei gnPrivBuffe
i oFor ei gnPri vReqCo
i oFor ei gnPri vAct Co

Longl nt;

Longl nt ;
r: Ptr;
unt: Longlnt;
unt : Longl nt;

filler23: Longl nt;
i oForei gnPrivDirlD: Longl nt;
i oForei gnPrivlnfol: Longl nt;
i oFor ei gnPri vl nf o2: Longl nt;
i oForei gnPri vl nfo3: Longl nt;
i oForei gnPri vl nfo4: Longl nt);

END;

Catalog Information Parameter Blocks

TYPE
Cl nf oType

AN

Cl nf oPBPt r
Cl nf oPBRec =
RECORD

gLi nk:

qType:
i oTr ap:
oCndAddr :
oConpl et i on:
OoResul t:
oNamePtr:
oVRef Num
oFRef Num
oFVer sNum

fillerl:

i oFDi r I ndex:

i oFl Attrib:

i 0ACUser :
CASE Cl nfoType OF
hFi | el nf o:

(i oFl Fndr I nf o:

ioDirlD:

i oFl St Bl k:

i oFl LgLen:

i oFl PyLen:

{reserved}

{reserved}

{privileges data buffer}
{size of buffer}

{armount of buffer used}
{reserved}

{parent directory ID of }
{ foreign file or directory}
{privileges data}

{privil eges data}

{privil eges data}
{privileges data}

Jabeue a4
n

(hfilelnfo, dirlnfo);

Cl nf oPBRec

{catal og infornmation paraneter bl ock}

CEl enPtr;

I nt eger;

I nt eger;
Ptr;
ProcPtr;
OSErr;
StringPtr;
I nt eger;

I nt eger;

Si gnedByt e
Si gnedByt e
| nt eger;

Si gnedByt e
Si gnedByt e

FI nf o;

Longl nt ;
I nt eger;
Longl nt;
Longl nt ;

Summary of the File Manager

{next queue entry}

{queue type}

{routine trap}

{routine address}

{pointer to conpletion routine}
{result code}

{poi nter to pathnane}

{vol une specification}

{file reference nunber}
{version nunber}

{reserved}

{directory index}

{file or directory attributes}
{directory access rights}

{information used by the Finder}
{directory IDor file ID}

{first alloc. blk. of data fork}
{l ogi cal ECF of data fork}
{physi cal EOF of data fork}

2-247

CHAPTER 2

File Manager
i oFl RSt Bl k: I nt eger;
i oFl RLgLen: Longl nt ;
i oFl RPyLen: Longl nt;
i oFl Cr Dat : Longl nt;
i oFl MdDat : Longl nt ;
i oFl BkDat : Longl nt ;
i oFl XFndr | nf o: FXI nf o;
i oFl Par | D: Longl nt ;
i oFl A pSi z: Longl nt);
dirlnfo:
(i oDrUsrWis: DI nf o;
ioDrDirlD: Longl nt ;
i oDr NnFl s: I nt eger;
fillers3: ARRAY[1..9] OF
i oDr Cr Dat : Longl nt;
i oDr MdDat : Longl nt;
i oDr BkDat : Longl nt ;
i oDr Fndr | nf o: DXI nf o;
i oDr Par | D Longl nt);
END;
Catalog Position Record
TYPE
Cat Posi ti onRec = {cata
RECORD
initialize: Longl nt ;
priv: ARRAY[1. .6] OF
END;

Catalog Move Parameter Block

TYPE
ChVbvePBPt r = ~"CMovePBRec;
CvbvePBRec =
RECORD
gLi nk: CEl enPtr;
qType: I nt eger;
i oTr ap: I nt eger;
i oCrdAddr : Ptr;
i oConpl etion: ProcPtr;
i oResul t: OSErr;
i oNamePtr: StringPtr;
i oVRef Num I nt eger;

2-248 Summary of the File Manager

{first alloc. blk. of resource fork}
{l ogi cal EOF of resource fork}
{physi cal EOF of resource fork}
{date and tinme of creation}

{date and tine of l|ast nodification}
{date and time of |ast backup}

{addi tional Finder infornmation}
{file parent directory I|ID}

{file's clunp size}

{informati on used by the Finder}
{directory |D}

{nunber of files in directory}

I nt eger;

{date and time of creation}

{date and tinme of last nodification}
{date and tine of |ast backup}

{addi tional Finder information}
{directory's parent directory |D}

0og position record}

{starting point}

I nt eger; {private data}

{catal og nove paraneter bl ock}

{next queue entry}

{queue type}

{routine trap}

{routine address}

{pointer to conpletion routine}
{result code}

{poi nter to pathnane}

{vol ume specification}

CHAPTER 2

File Manager

fillerl:

i oNewNane:

filler2:

i oNewDi r | D;

filler3:

ioDirlD:
END;

Longl nt;
StringPtr;
Longl nt ;

Longl nt;

ARRAY[1..2] OF
Longl nt ;

Working Directory Parameter Block

TYPE
V\DPBPt r
WDPBRec
RECORD
gLi nk:
qType:
oTr ap:
oCrrdAddr :
oConpl et i on:
oResul t:
oNamePtr:
oVRef Num
fillerl:
i oVWDI ndex:
i oWDPr ocl D
i oOVWDVRef Num
filler2:
i oWDDi r | D:
END;

"ADPBRec;

CEl enPtr;
I nt eger;

I nt eger;
Ptr;
ProcPtr;
OSErr;
StringPtr;
I nt eger;

I nt eger;

I nt eger;
Longl nt ;

I nt eger;
ARRAY[1..7] OF
Longl nt ;

File Control Block Parameter Block

TYPE
FCBPBPt r
FCBPBRec
RECORD
gLi nk:
qType:
i oTr ap:
i oCndAddr :
i oConpl etion:
i oResul t:
i oONamePtr:
i oVRef Num

NFCBPBRec;

CEl enPtr;
I nt eger;

I nt eger;
Ptr;
ProcPtr;
OSErr;
StringPtr;
I nt eger;

Summary of the File Manager

{reserved}

{name of new directory}

{reserved}

{directory I D of new directory}
Longl nt; {reserved}

{directory ID of current directory}

Jabeue a4
n

{working directory paraneter bl ock}

{next queue entry}

{queue type}

{routine trap}

{routine address}

{pointer to conpletion routine}
{result code}

{poi nter to pathnane}

{vol ume specification}

{reserved}

{working directory index}

{working directory user identifier}
{working directory's vol. ref. num}
I nteger; {reserved}

{working directory's directory |D}

{file control block paraneter bl ock}

{next queue entry}

{queue type}

{routine trap}

{routine address}

{pointer to conpletion routine}
{result code}

{poi nter to pathnane}

{vol une specification}

2-249

CHAPTER 2

File Manager
i oRef Num I nt eger; {file reference nunber}
filler: I nt eger; {reserved}
i OFCBI ndx: I nt eger; { FCB i ndex}
fillerl: I nt eger; {reserved}
i OFCBFI Nm Longl nt ; {file ID}
i oOFCBFI ags: I nt eger; {fl ags}
i oOFCBSt Bl k: I nt eger; {first allocation block of file}
i OFCBECF: Longl nt ; {l ogical end-of-file}
i oOFCBPLen: Longl nt; {physi cal end-of-file}
i oOFCBCr Ps: Longl nt; {position of the file nark}
i OFCBVRef Num I nt eger; {vol une reference nunber}
i oOFCBQ pSi z: Longl nt; {file's clunmp size}
i oFCBPar | D: Longl nt; {parent directory |D}

END;

Volume Attributes Buffer

TYPE

Get Vol Par nsl nf oBuf fer =

RECORD
vMVer si on: I nt eger; {version nunber}
VMAttri b: Longl nt; {volume attributes}
vM.ocal Hand: Handl e; {reserved}
vMSer ver Adr : Longl nt ; {network server address}
vWol umeG ade: Longl nt; {relative speed rating}
vMForei gnPrivli D Integer; {foreign privilege nodel}

END;

Volume Mounting Information Records

TYPE
Vol uneType
Vol Mount | nf oPt r
Vol Mount | nf oHeader

OSType;
Vol Mount | nf oHeader ;
{vol ume mounting information}

RECORD
| engt h: I nt eger; {l'ength of nounting information}
medi a: Vol unmeType; {type of vol une}

END;

AFPVol Mount | nf oPt r
AFPVol Mount I nf o

AAFPVol Mount | nf o;
{ AFP vol urme nounting information}

RECORD
| engt h: I nt eger; {l'ength of nounting information}
medi a: Vol uneType; {type of vol une}

2-250 Summary of the File Manager

CHAPTER 2

File Manager

fl ags:

nbpl nterval :
nbpCount :
uamlype:
zoneNanmeOf f set :

server Namef f set :

vol NameOr f set :
user NameOf f set :

I nt eger;
Si gnedByt e;
Si gnedByt e;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
I nt eger;

user Passwor dOf f set :

vol Passwor dOf f set :

AFPDat a:

END;

Internal Data Types

I nt eger;

I nt eger;

PACKED ARRAY[1..144] OF CHAR

{reserved; nust be set to 0}
{NBP retry interval}

{NBP retry count}

{user authentication nethod}
{of fset to zone nane}

{of fset server nane}

{offset to vol une nane}

{of fset to user nane}

to user

{of f set passwor d}

{offset to vol ume password}

Jabeue a4
n

{standard AFP nounting info}

Volume and File Control Blocks

TYPE

VCB

RECORD
gLi nk:
qType:
vcbFl ags:
vchSi g\Wor d:
vcbCr Dat e:
vcbLsMod:
VCbAt r b:
vCbNnFl s:
vcbVBMS :
vcbAl | ocPtr:
vcbNmAl Bl ks:
vcbAl Bl kSi z:
vchd pSi z:
VCbAI Bl St :
vcbNxt CNI D:
vcbFr eeBks:
vcbVN:
vcbDr vNum
vcbDRef Num
vcbFSI D

QEl enPtr;
| nt eger;
I nt eger;
I nt eger;
Longl nt ;
Longl nt;
I nt eger;
| nt eger;
I nt eger;
I nt eger;
I nt eger;
Longl nt;
Longl nt;
| nt eger;
Longl nt;
I nt eger;
String[27];
I nt eger;
I nt eger;
I nt eger;

Summary of the File Manager

{vol ume control bl ock}

{next queue entry}
{queue type}

{volune flags (bit 15 =
{vol ume si gnat ur e}
{date and tinme of vol une creation}
{date and tinme of last nodification}
{vol ume attributes}

{nunber of files in root directory}
{first block of volunme bitmp}

{start of next allocation search}
{nunber of allocation blocks in vol une}
{size (in bytes) of allocation bl ocks}
{default clunp size}

{first allocation block in vol une}
{next unused catal og node | D}

{nunber of unused allocation bl ocks}
{vol ume nane}

{drive nunber}

{driver reference nunber}
{file-systemidentifier}

1if dirty)}

2-251

CHAPTER 2

File Manager

vcbVRef Num
vcbMAdr :
vchbBuf Adr:
vcbM.en:
vcbDi r I ndex:
vcbDi r Bl k:
vcbVol BkUp:
vcbVSegNum
vcbW Cnt :
vcbXTd pSi z:
vcbCTd pSi z:
vCcbNnRt Di rs:
vcbFi | Cnt:
vcbDi rCnt:
vcbFndr | nf o:

vcbVCSi ze:
vcbVBMCSi z:
vebCt | CSi z:
VCbXTAI Bl ks:
vcbCTAI Bl ks:
vcbXTRef :
vCcbCTRef :
vcbhCt | Buf:
vchbDi r | DM
vchO f sM

END;

FCB
RECORD

2-252

f cbFl Num

f cbFl ags:

f cbSBI k:

f cbECF:

f cbPLen:
fchCr Ps:
fcbVPtr:

f cbBf Adr:

f cbFl Pos:
fcbd nmpSi ze
fcbBTCBPtr:
f cbExt Rec:
f cbFType:

I nt eger;
Ptr;
Ptr;

I nt eger;
I nt eger;
I nt eger;
Longl nt;
I nt eger;
Longl nt ;
Longl nt;
Longl nt;
I nt eger;
Longl nt;
Longl nt;
ARRAY[1. . 8]

I nt eger;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
I nt eger;
Ptr;

Longl nt;
I nt eger;

Longl nt ;
I nt eger;
I nt eger;
Longl nt ;
Longl nt;
Longl nt;
Ptr;
Ptr;

I nt eger,
Longl nt ;
Ptr;

Ext Dat aRec;
Longl nt ;

Summary of the File Manager

{vol umre reference nunber}

{used internally}

{used internally}

{used internally}

{used internally}

{used internally}

{date and tinme of |ast backup}
{vol ume backup sequence number}
{volume wite count}

{clunmp size for extents overflow fil e}
{clunp size for catalog file}
{nunber of directories in root dir.}
{nunber of files in vol une}
{nunber of directories in volune}
CF Longl nt;

{information used by the Finder}
{used internally}

{used internally}

{used internally}

{size of extents overflow file}
{size of catalog file}

{ref. num for extents overflow file}
{ref. num for catalog file}
{ptr. to extents and catal og caches}

{directory | ast searched}
{of fspring index at |ast search}

{file control bl ock}
{file | D}
{file flags}

{first allocation block of file}
{l ogical end-of-file}

{physi cal end-of-file}

{current file nmark position}
{pointer to volune control bl ock}
{pointer to access path buffer}
{reserved}

{file clunp size}

{pointer to B*-tree control
{first three file extents}
{file's four Finder type bytes}

bl ock}

CHAPTER 2

File Manager
f cbCat Pos: Longl nt; {catal og hint for use on C ose}
fcobDirlD: Longl nt ; {file's parent directory I|ID}
f cbCNane: String[31]; {nane of file}

END;

Drive Queue Elements

TYPE
Dr vQE! = {drive queue el ement}
RECORD
gLi nk: QEl enPtr; {next queue entry}
gType: I nt eger; {flag for dQ@xrvSz and dQDrvSz2}
dQDri ve: I nt eger; {drive nunber}
dQRef Num I nt eger; {driver reference nunber}
dQFSI D: I nt eger; {file-systemidentifier}
dQDrvSz: I nt eger; {nunmber of 1| ogical blocks on drive}
dQDrvSz2: I nt eger; {additional field for large drives}
END;

High-Level File Access Routines

Reading, Writing, and Closing Files

FUNCTI ON FSRead (refNum Integer; VAR count: Longlnt;
buffPtr: Ptr): CSErr;

FUNCTI ON FSWite (refNum Integer; VAR count: Longlnt;
buffPtr: Ptr): OCSErr;

FUNCTI ON FSO ose (ref Num Integer): CSErr;

Manipulating the File Mark

FUNCTI ON Cet FPos (ref Num Integer; VAR filePos: Longlnt): OSErr;

FUNCTI ON Set FPos (refNum |Integer; posMode: |nteger;
posOFf: Longlnt): OSErr;

Manipulating the End-of-File

FUNCTI ON CGet EOF (ref Num Integer; VAR | ogECF: Longlnt): OSErr;
FUNCTI ON Set EOF (refNum Integer; |ogECF: Longlnt): OSErr;
Allocating File Blocks

FUNCTI ON Al | ocat e (refNum Integer; VAR count: Longlint): OSErr;
FUNCTI ON Al | ocConti g (refNum Integer; VAR count: Longlint): CSErr;

Summary of the File Manager 2-253

Jabeue a4
n

CHAPTER 2

File Manager

Low-Level File Access Routines

Reading, Writing, and Closing Files

FUNCTI ON PBRead
FUNCTI ON PBReadSync
FUNCTI ON PBReadAsync
FUNCTI ON PBWite
FUNCTI ON PBW it eSync
FUNCTI ON PBW it eAsync
FUNCTI ON PBC ose
FUNCTI ON PBC oseSync
FUNCTI ON PBC oseAsync

Manipulating the File Mark

FUNCTI ON PBGet FPos
FUNCTI ON PBGet FPosSync
FUNCTI ON PBGet FPosAsync
FUNCTI ON PBSet FPos
FUNCTI ON PBSet FPosSync
FUNCTI ON PBSet FPosAsync

Manipulating the End-of-File

FUNCTI ON PBGet EOF
FUNCTI ON PBGet EOFSync
FUNCTI ON PBGet EOFAsync
FUNCTI ON PBSet EOF
FUNCTI ON PBSet EOFSync
FUNCTI ON PBSet EOFAsync

Allocating File Blocks

FUNCTI ON PBAI | ocat e
FUNCTI ON PBAI | ocat eSync
FUNCTI ON PBAIl | ocat eAsync
FUNCTI ON PBAI | ocConti g

FUNCTI ON PBAI | ocCont i gSync
FUNCTI ON PBAI | ocConti gAsync (par anBl ock:

2-254

(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:

(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:

(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:

(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:

Summary of the File Manager

Par nBl kPt r ;

Par mBl kPt r) :
Par nBl kPt r):

Par nBl kPt r ;

Par mBl kPt r) :
Par nBl kPt r):

Par nBl kPt r ;

Par mBl kPt r) :
Par nBl kPt r):

Par nBl kPt r ;

Par mBI kPt r):
Par mBl kPt r) :

Par nBl kPt r ;

Par mBI kPt r):
Par mBl kPt r) :

Par nBl kPt ;

Par nBl kPtr):
Par mBl kPt r):

Par nBl kPt ;

Par nBl kPtr):
Par mBl kPt r):

Par nBl kPt r ;

Par mBl kPt r):
Par mBl kPt r) :

Par nBl kPtr ;

Par mBI kPt r):
Par mBl kPt r) :

async:
OSErr;
OSErr;

async:
OSErr;
OSErr;

async:
OSErr;
OSErr;

async:
CSErr;
OSErr;

async:
CSErr;
OSErr;

async:
OSErr;
OSErr;

async:
OSErr;
OSErr;

async:
CSErr ;
CSErr;
async:
CSErr;
CSErr;

Bool ean):

Bool ean):

Bool ean):

Bool ean) :

Bool ean) :

Bool ean):

Bool ean):

Bool ean) :

Bool ean) :

OSEr r;

OSEr r;

OSEr r;

CSEr r;

CSEr r;

CSEr r;

CSEr r;

CSErr;

CSErr;

CHAPTER 2

File Manager
Updating Files
FUNCTI ON PBFl ushFi | e (paranBl ock: ParnBl kPtr; async: Bool ean): CSErr;
FUNCTI ON PBFI ushFi | eSync (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON PBFl ushFi | eAsync (paranBl ock: ParnmBl kPtr): OSErr;
High-Level Volume Access Routines
Unmounting Volumes
FUNCTI ON Unnount Vol (vol Nane: StringPtr; vRefNum Integer): OSErr;
FUNCTI ON Ej ect (vol Name: StringPtr; vRefNum Integer): OSErr;
Updating Volumes
FUNCTI ON Fl ushVol (vol Name: StringPtr; vRefNum Integer): OSErr;
Manipulating the Default Volume
FUNCTI ON Get Vol (vol Name: StringPtr; VAR vRef Num | nteger):
OSErr;
FUNCTI ON Set Vol (vol Name: StringPtr; vRefNum Integer): OSErr;
FUNCTI ON HCet Vol (vol Nare: StringPtr; VAR vRef Num I nteger;
VAR dirl D: Longlnt): OSErr;
FUNCTI ON HSet Vol (vol Nane: StringPtr; vRefNum | nteger;
dirlD: Longlnt): OSErr;
Obtaining Volume Information
FUNCTI ON Get VI nfo (drvNum |Integer; vol Nane: StringPtr;
VAR vRef Num | nteger; VAR freeBytes: Longlnt):
CSErr;
FUNCTI ON CGet VRef Num (refNum Integer; VAR vRef Num Integer): OCSErr;
Low-Level Volume Access Routines
Mounting and Unmounting Volumes
FUNCTI ON PBMount Vol (paranmBl ock: ParnBl kPtr): OSErr;
FUNCTI ON PBUnnount Vol (paranBl ock: ParnmBl kPtr): OSErr;
FUNCTI ON PBEj ect (paranBl ock: ParnBl kPtr): OSErr;
FUNCTI ON PBOF f Li ne (paranBl ock: ParnBl kPtr): OSErr;
Summary of the File Manager 2-255

Jabeue a4
n

CHAPTER 2

File Manager

Updating Volumes

FUNCTI ON PBFI ushVol (paranBl ock: ParnBl kPtr; async: Bool ean): CSErr;

FUNCTI ON PBFI ushVol Sync (paranBl ock: ParnBl kPtr): OSErr;

FUNCTI ON PBFl ushVol Async (paranBl ock: ParnmBl kPtr): OSErr;

Obtaining Volume Information

FUNCTI ON PBHCGet VI nf o (paranBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

FUNCTI ON PBHGet VI nf 0Sync (paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBHGet VI nf 0Async (paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBSet VI nf o (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

FUNCTI ON PBSet VI nf oSync (paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBSet VI nf 0Async (paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBHGCet Vol Par s (paramBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

FUNCTI ON PBHCet Vol Par mnsSync (par anBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBHGet Vol Par nsAsync (par anBl ock: HParnBl kPtr): CSErr;

Manipulating the Default Volume

FUNCTI ON PBCet Vol (paranBl ock: ParnBl kPtr; async: Bool ean): CSErr;

FUNCTI ON PBGet Vol Sync (paranBl ock: ParnmBl kPtr): OSErr;

FUNCTI ON PBGet Vol Async (paranBl ock: ParnBl kPtr): OSErr;

FUNCTI ON PBSet Vol (paranBl ock: ParnBl kPtr; async: Bool ean): OSErr;

FUNCTI ON PBSet Vol Sync (paranBl ock: ParnBl kPtr): OSErr;

FUNCTI ON PBSet Vol Async (paranBl ock: ParnBl kPtr): OSErr;

FUNCTI ON PBHCet Vol (paranBl ock: WDPBPtr; async: Bool ean): OSErr;

FUNCTI ON PBHGet Vol Sync (paranBl ock: WDPBPtr): OSErr;

FUNCTI ON PBHGet Vol Async (paranBl ock: WDPBPtr): OSErr;

FUNCTI ON PBHSet Vol (paranBl ock: WDPBPtr; async: Bool ean): CSErr;

FUNCTI ON PBHSet Vol Sync (paranBl ock: WDPBPtr): OSErr;

FUNCTI ON PBHSet Vol Async (paranBl ock: WDPBPtr): OSErr;

File System Specification Routines

Opening Files

FUNCTI ON FSpOpenDF (spec: FSSpec; pernission: SignedByte;
VAR ref Num Integer): OSErr;

FUNCTI ON FSpOpenRF (spec: FSSpec; perm ssion: SignedByte;
VAR ref Num | nteger): OSErr;

2-256 Summary of the File Manager

CHAPTER 2

File Manager

Creating and Deleting Files and Directories

FUNCTI ON FSpCreat e (spec: FSSpec; creator: OSType;
fileType: OSType; scriptTag: ScriptCode):
OSErr;

FUNCTI ON FSpDi rCreate (spec: FSSpec; scriptTag: ScriptCode;
VAR createdDirI D: Longlnt): OSErr;

FUNCTI ON FSpDel et e (spec: FSSpec): CSErr;

Accessing Information About Files and Directories

Jabeue a4
n

FUNCTI ON FSpGCet FI nfo (spec: FSSpec; VAR fndrinfo: FInfo): CSErr;
FUNCTI ON FSpSet FI nf o (spec: FSSpec; fndrinfo: FInfo): OSErr;
FUNCTI ON FSpSet FLock (spec: FSSpec): OSErr;

FUNCTI ON FSpRst FLock (spec: FSSpec): CSErr;

FUNCTI ON FSpRenane (spec: FSSpec; newNane: Str255): CSErr;

Moving Files or Directories
FUNCTI ON FSpCat Move (source: FSSpec; dest: FSSpec): OSErr;

Exchanging the Data in Two Files
FUNCTI ON FSpExchangeFi | es (source: FSSpec; dest: FSSpec): OSErr;

Creating File System Specifications

FUNCTI ON FSMakeFSSpec (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; VAR spec: FSSpec): OSErr;

FUNCTI ON PBVakeFSSpec (paranBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

FUNCTI ON PBMakeFSSpecSync (paranBl ock: HParnBl kPtr): OSErr;
FUNCTI ON PBMakeFSSpecAsync (paranBl ock: HParnBl kPtr): OSErr;

High-Level HFS Routines

Opening Files

FUNCTI ON HOpenDF (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; perm ssion: SignedByte;
VAR ref Num Integer): OSErr;

FUNCTI ON HOpenRF (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; perm ssion: SignedByte;
VAR ref Num Integer): OSErr;

Summary of the File Manager 2-257

CHAPTER 2

File Manager

FUNCTI ON HOpen (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; perm ssion: SignedByte;
VAR ref Num Integer): OSErr;

Creating and Deleting Files and Directories

FUNCTI ON HCr eat e (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255; creator: OSType;
fileType: OSType): OSErr;

FUNCTION Dir Create (vRef Num Integer; parentDirlD: Longlnt;
di rect oryName: Str255;

VAR createdDirI D Longlnt): OSErr;

FUNCTI ON HDel et e (vRef Num Integer; dirlD: Longlnt;
fileNane: Str255): CSErr;

Accessing Information About Files and Directories

FUNCTI ON HGet FI nf o (vRef Num Integer; dirlD: Longlnt;

fileNane: Str255; VAR fndrinfo: FInfo): OSErr;
FUNCTI ON HSet FI nf o (vRef Num Integer; dirlD: Longlnt;

fileNane: Str255; fndrinfo: FInfo): OSErr;
FUNCTI ON HSet FLock (vRef Num Integer; dirlD: Longlnt;

fileNane: Str255): CSErr;
FUNCTI ON HRst FLock (vRef Num Integer; dirlD: Longlnt;

fileNane: Str255): OSErr;
FUNCTI ON HRenane (vRef Num Integer; dirlD: Longlnt;

ol dNane: Str255; newNane: Str255): OSErr;

Moving Files or Directories

FUNCTI ON Cat Move (vRef Num Integer; dirlD: Longlnt;
ol dName: Str255; newDirlD: Longlnt;
newNane: Str255): OSErr;

Maintaining Working Directories

FUNCTI ON QpenWD (vRef Num Integer; dirlD: Longlnt;
procl D: Longlnt; VAR wdRef Num Integer): OSErr;
FUNCTI ON C oseWD (wdRef Num | nteger): OSErr;
FUNCTI ON Get VDI nf o (wdRef Num | nteger; VAR vRef Num I nteger;
VAR dirl D Longlnt; VAR proclD: Longlnt):
OSErr;

2-258 Summary of the File Manager

CHAPTER 2

File Manager

Low-Level HFS Routines

Opening Files

FUNCTI ON

FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON

PBHOpenDF

PBHOpenDFSync
PBHOpenDFAsync

PBHOpenRF

PBHOpenRFSync
PBHOpenRFAsync

PBHOpen

PBHOpenSync
PBHOpenAsync

(par anBl ock:

CSErr;

(par anBl ock:
(par anBl ock:
(par anBl ock:

CSErr;

(par anBl ock:
(par anBl ock:
(par anBl ock:

CSEr r;

(par anBl ock:
(par anBl ock:

Creating and Deleting Files and Directories

FUNCTI ON

FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON

PBHCr eat e

PBHCr eat eSync
PBHCr eat eAsync

PBDi r Cr eat e

PBDi r Cr eat eSync
PBDi r Cr eat eAsync

PBHDel et e

PBHDel et eSync
PBHDel et eAsync

(par anBl ock:

OSEr r;

(par anBl ock:
(par anBl ock:
(par anBl ock:

CSErr;

(par anBl ock:
(par anBl ock:
(par anBl ock:

CSEr r;

(par anBl ock:
(par anBl ock:

HPar nBl kPt r ;

HPar nBl kPt r) :
HPar Bl kPt r) :

HPar nBl kPt r;

HPar nBl kPt r) :
HPar Bl kPt r) :

HPar nBl kPt r ;

HPar Bl kPt r) :
HPar nBl kPt r) :

HPar mBl kPt r ;

HPar mBl kPt r):
HPar nBl kPt r) :

HPar nBl kPt r ;

HPar nBl kPt r) :
HPar Bl kPt r):

HPar nBl kPt r;

HPar nBl kPt r) :
HPar mBl kPt r):

Accessing Information About Files and Directories

FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON

PBGet Cat | nf o
PBGet Cat | nf oSync
PBGet Cat | nf 0Async
PBSet Cat | nf o
PBSet Cat | nf oSync
PBSet Cat | nf 0Async

PBHCet FI nf o

(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:

OSEr r;

Summary of the File Manager

Cl nf oPBPt r;
ClnfoPBPtr):
Cl nf oPBPt) :
Cl nf oPBPt r;
ClnfoPBPtr):
Cl nf oPBPt) :
HPar Bl kPt r;

async:

async:

async:

async:

async:

async:

async:
OSErr;
OSErr;

async:
OSErr;
OSErr;
async:

Bool ean):

OSEr r;
CSEr r;

Bool ean) :

OSEr r;
CSEr r;

Bool ean) :

CSErr;
CSEr r;

Bool ean):

OSEr r;
CSEr r;

Bool ean):

OSEr r;
CSEr r;

Bool ean) :

OSEr r;
OSEr r;

Bool ean):

Bool ean):

Bool ean):

OSEr r;

OSEr r;

2-259

Jabeue a4
n

FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON
FUNCTI ON

FUNCTI ON
FUNCTI ON

CHAPTER 2

File Manager

PBHGet FI nf oSync
PBHGet FI nf oAsync
PBHSet FI nf o

PBHSet FI nf oSync
PBHSet FI nf oAsync
PBHSet FLock

PBHSet FLockSync
PBHSet FLockAsync
PBHRst FLock

PBHRst FLockSync
PBHRst FLockAsync
PBHRenane

PBHRenanmeSync
PBHRenaneAsync

Moving Files or Directories

FUNCTI ON
FUNCTI ON
FUNCTI ON

Maintaining Working Directories

FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON
FUNCTI ON

PBCat Move
PBCat MbveSync
PBCat MbveAsync

PBOpenWD
PBOpenWDSync
PBOpenWWDAsyNnc
PBC oseWD

PBCl oseWDSync
PBCl oseWDAsync
PBGet WDI nf 0
PBGet WDI nf oSync
PBGet WDI nf 0Async

Searching a Catalog

FUNCTI ON

FUNCTI ON
FUNCTI ON

2-260

PBCat Sear ch

PBCat Sear chSync
PBCat Sear chAsync

(par anBl ock:
(par anBl ock:
(par anBl ock:

CSEr r;

(par anBl ock:
(par anBl ock:
(par anBl ock:

CSEr r;

(par anBl ock:
(par anBl ock:
(par anBl ock:

OSErr;

(par anBl ock:
(par anBl ock:
(par anBl ock:

CSErr;

(par anBl ock:
(par anBl ock:

(par anBl ock:
(par anBl ock:
(par anBl ock:

(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:
(par anBl ock:

(par anBl ock:

CSEr r;

(par anBl ock:
(par anBl ock:

Summary of the File Manager

HPar Bl kPt r) :
HPar nBl kPt r) :

HPar nBl kPt r ;

HPar nBl kPt) :
HPar nBl kPt r) :

HPar nBl kPt r ;

HPar Bl kPt r) :
HPar Bl kPt r) :

HPar nBl kPt r ;

HPar Bl kPt r) :
HPar nBl kPt) :

HPar nBl kPt r ;

HPar nBl kPt r) :
HPar Bl kPt r) :

C\vovePBPt r;
ChVbvePBPt 1) :
C\VbvePBPt 1) :

VDPBPt T ;
WDPBPt 1) :
VDPBPt 1) :
VDPBPt T ;
WDPBPt 1) :
VDPBPt 1) :
VDPBPt T ;
WDPBPt 1) :
VDPBPt 1) :

HPar mBl kPt ;

HPar nBl kPt r) :
HPar Bl kPt) :

async:

async:
OSErr;
OSErr;

async:
OSErr;
OSErr;

async:
OSErr;
OSErr;

CSErr;
OSEr r;
async:

CSErr;
OSEr r;
async:

CSEr r;
CSErr;
async:

CSEr r;
CSErr;
async:

CSEr r;
CSEr r;

CSEr r;
CSErr;

async:

CSEr r;
CSErr;

Bool ean):

Bool ean):

Bool ean):

Bool ean):

Bool ean) :

Bool ean) :

Bool ean):

Bool ean):

CSEr r;

OSEr r;

OSEr r;

Bool ean) :

OSEr r;

Exchanging the Data in Two Files

CHAPTER 2

File Manager

FUNCTI ON PBExchangeFi | es (paranBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

FUNCTI ON PBExchangeFi | esSync (par anBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBExchangeFi | esAsync

(paranBl ock: HParnBl kPtr): OSErr;

Shared Environment Routines

Opening Files While Denying Access

FUNCTI ON PBHOpenDeny (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

FUNCTI ON PBHOpenDenySync (paranmBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBHOpenDenyAsync (paranmBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBHOpenRFDeny (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

FUNCTI ON PBHOpenRFDenySync (par anBl ock: HParnmBl kPtr): OSErr;

FUNCTI ON PBHOpenRFDenyAsync (par anBl ock: HParnBl kPtr): OCSErr;

Locking and Unlocking File Ranges

FUNCTI ON PBLockRange (paranBl ock: ParmBl kPtr; async: Bool ean): OSErr;

FUNCTI ON PBLockRangeSync (paranBl ock: ParnBl kPtr): OSErr;

FUNCTI ON PBLockRangeAsync (paranmBl ock: ParnBl kPtr): OSErr;

FUNCTI ON PBUnI ockRange (paranBl ock: ParmBl kPtr; async: Bool ean): OSErr;

FUNCTI ON PBUnl ockRangeSync (paranBl ock: ParnBl kPtr): OSErr;

FUNCTI ON PBUnl ockRangeAsync (paranBl ock: ParnmBl kPtr): OSErr;

Manipulating Share Points

FUNCTI ON PBShar e (paranBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

FUNCTI ON PBShar eSync (paranmBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBShar eAsync (paranBl ock: HParnBl kPtr): OCSErr;

FUNCTI ON PBUnshar e (paranmBl ock: HParnBl kPtr; async: Bool ean):
OSErr;

FUNCTI ON PBUnshar eSync (paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBUnshar eAsync (paranmBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBGet UGEnt ry (paranBl ock: HParnBl kPtr; async: Bool ean):
CSErr;

FUNCTI ON PBGet UGENt rySync (paranmBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBGet UGENnt ryAsync (par anBl ock: HParnBl kPtr): CSErr;

Summary of the File Manager 2-261

Jabeue a4
n

CHAPTER 2

File Manager

Controlling Directory Access

FUNCTI ON

FUNCTI ON
FUNCTI ON

FUNCTI ON

FUNCTI ON
FUNCTI ON

PBHGet Di

PBHGet Di
PBHGet Di

PBHSet Di

PBHSet Di
PBHSet Di

Mounting Volumes

FUNCTI ON PBGet Vol Mount | nf 0Si ze

(par anBl ock:
FUNCTI ON PBGet Vol Mount I nfo (par anBl ock:
FUNCTI ON PBVol uneMount (par anBl ock:
Controlling Login Access
FUNCTI ON PBHGCet Logl nl nf o (par anBl ock:

OSErr;
FUNCTI ON PBHGet Logl nl nf oSync (par anBl ock:
FUNCTI ON PBHCet Logl nl nf oAsync

(par anBl ock:
FUNCTI ON PBHVapl D (par anmBl ock

CSErr;
FUNCTI ON PBHVapl DSync (par anBl ock:
FUNCTI ON PBHVapl DAsync (par anBl ock:
FUNCTI ON PBHVapNane (par anBl ock

OSErr;
FUNCTI ON PBHVapNaneSync (par anBl ock
FUNCTI ON PBHVapNanmeAsync (par anBl ock:
Copying and Moving Files
FUNCTI ON PBHCopyFi | e (par anBl ock:

OSErr;
FUNCTI ON PBHCopyFi | eSync (par anBl ock:
FUNCTI ON PBHCopyFi | eAsync (par anBl ock

2-262

r Access
CSEr r;

r AccessSync (par anBl ock:

r AccessAsync

(par anBl ock:

r Access
CSErr;

r AccessSync (par anBl ock:

r AccessAsync

(par anBl ock:

Summary of the File Manager

(par anBl ock:

(par anBl ock:

HPar nBl kPt r ;

HPar Bl kPt) :

HPar nBl kPt r) :

HPar nBl kPt r ;

HPar Bl kPt r) :

HPar nBl kPt r) :

Par mBl kPt r) :
Par mBl kPt r):
Par mBl kPt r):

HPar nBl kPt r;

HPar nBl kPt r) :

HPar Bl kPt r) :

HPar nBl kPt r ;

HPar Bl kPt) :
HPar nBl kPt r) :

HPar nBl kPt r ;

HPar nBl kPt) :
HPar nBl kPt r) :

HPar nBl kPt r;

HPar nBl kPt r) :
HPar Bl kPt r):

async:

CSErr;

CSErr;
async:

CSEr r;

CSErr;

CSEr r;
CSErr;
CSErr;

async:

CSErr;

CSEr r;
async:

CSErr;
CSErr ;
async:

OSErr;
CSErr;

async:

CSErr ;
CSErr;

Bool ean) :

Bool ean) :

Bool ean):

Bool ean) :

Bool ean) :

Bool ean):

CHAPTER 2

File Manager

FUNCTI ON PBHVbveRenane (paranBl ock: HParnBl kPtr; async: Bool ean):

OSErr;
FUNCTI ON PBHVbveRenaneSync (paranBl ock: HParnBl kPtr): OSErr;
FUNCTI ON PBHVbveRenaneAsync (paranBl ock: HParnBl kPtr): OSErr;

File ID Routines

Resolving File ID References

FUNCTI ON PBResol veFi | el DRef (paranBl ock: HParnBl kPtr; async: Bool ean):

CSErr;

FUNCTI ON PBResol veFi | el DRef Sync
(paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBResol veFi | el DRef Async
(paranBl ock: HParnBl kPtr): OSErr;

Creating and Deleting File ID References

FUNCTI ON PBCr eat eFi | el DRef (paranBl ock: HParnBl kPtr; async: Bool ean):

CSErr;

FUNCTI ON PBCr eat eFi | el DRef Sync
(paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBCr eat eFi | el DRef Async
(paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBDel et eFi | el DRef (paranBl ock: HPar nBl kPtr; async: Bool ean):

CSEr r;

FUNCTI ON PBDel et eFi | el DRef Sync
(paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBDel et eFi | el DRef Async
(paranBl ock: HParnBl kPtr): OSErr;

Foreign File System Routines

Accessing Privilege Information in Foreign File Systems

FUNCTI ON PBGet For ei gnPrivs (paranBl ock: HParnBl kPtr; async: Bool ean):

CSErr;

FUNCTI ON PBGet For ei gnPri vsSync
(paranBl ock: HParnBl kPtr): OSErr;

FUNCTI ON PBGet For ei gnPri vsAsync
(paranBl ock: HParnBl kPtr): OSErr;

Summary of the File Manager

2-263

Jabeue a4
n

CHAPTER 2

File Manager

FUNCTI ON PBSet For ei gnPrivs (paranBl ock:

OSErr;
FUNCTI ON PBSet For ei gnPri vsSync

(par anBl ock:

FUNCTI ON PBSet For ei gnPri vsAsync

HPar nBl kPt r; async: Bool ean):

HPar nBl kPtr): OSErr;

(paranBl ock: HParnBl kPtr): OSErr;
Utility Routines
Obtaining Queue Headers
FUNCTI ON Get FSQHdr © QHdrPtr;
FUNCTI ON Get VCBQHdr : QHdrPtr;
FUNCTI ON Get Dr vQHdr ; QHdrPtr;
Adding a Drive
PROCEDURE AddDri ve (drvrRef Num Integer; drvNum | nteger;

gEl : DrvCEIPtr);

Obtaining File Control Block Information

FUNCTI ON PBGet FCBI nf 0 (par anBl ock:
FUNCTI ON PBCet FCBI nf oSync (par anBl ock:
FUNCTI ON PBGet FCBI nf oAsync (par anBl ock:

Application-Defined Routine

FCBPBPtr; async: Bool ean): OSErr;
FCBPBPtr): OSErr;
FCBPBPtr): OSErr;

Completion Routines
PROCEDURE My Conpl et i onProc;

C Summary

Constants

/| *CGestalt constants*/

#defi ne gestal t FSAttr "fs '
#def i ne gestalt Ful | Ext FSDi spatching 0
#def i ne gest al t HasFSSpecCal | s 1

2-264 Summary of the File Manager

/*file systemattributes sel ector*/
/*exports HFSDi spatch traps*/
/*supports FSSpec records*/

CHAPTER 2

File Manager

/*directory | Ds*/

enum {
fsRtParl D =1, /*directory ID of root directory's parent*/
fsRRDirID = 2}; /*directory I D of volune's root directory*/

/*values for requesting file read/wite perm ssions*/

enum {
fsCur Perm = 0, /*what ever permi ssion is allowed*/
f sRdPer m = 1, /*read perm ssion*/
f sSW Perm = 2, /*write perm ssion*/ T
f SRAW Per m = 3, /*excl usive read/wite perm ssion*/ g
f SRAW ShPer m = 4}; /*shared read/wite permssion*/ %
«Q
0]

/*file mark positioning nodes*/

enum {
f sAt Mar k = 0, /*at current nark}
fsFrontt art =1, /*set mark relative to beginning of file*/
f sFronmLECF = 2, /*set mark relative to |ogical end-of-file*/
f sFr omvar k = 3, /*set mark relative to current mark*/
rdVerify = 64}; /*add to above for read-verify*/

/*values for ioSearchBits in PBCat Search paraneter bl ock*/

enum {
fsSBParti al Nane = 1, /*substring of name*/
f sSBFul | Narme = 2, [*full name*/
fsSBFI Attrib = 4, /*directory flag; software | ock flag*/
f sSBNegat e = 16384}; /*reverse match status*/

[*for files only*/

enum {
f sSBFI Fndr I nf o = 8, /*Finder file info*/
f sSBFI LgLen = 32, /*logical length of data fork*/
f sSSBFI PyLen = 64, [*physical length of data fork*/
f sSBFI RLgLen = 128, /*l ogical length of resource fork*/
f sSBFI RPyLen = 256, / *physi cal |ength of resource fork*/
f sSBFI Cr Dat = 512, /*file creation date*/
f sSBFI MdDat = 1024, /*file nodification date*/
f sSBFI Bk Dat = 2048, /*file backup date*/
f sSBFI XFndr I nf o = 4096, /*more Finder file info*/
f sSBFI Par | D = 8192}; /*file' s parent |D*/

Summary of the File Manager 2-265

CHAPTER 2

File Manager

/[*for directories only*/

enum {
f sSBDr Usr s = 8, /*Finder directory info*/
f sSBDr Nl s = 16, /*nunber of files in directory*/
f sSBDr Cr Dat = 512, /*directory creation date*/
f s SBDr MdDat = 1024, /*directory nodification date*/
f s SBDr Bk Dat = 2048, /*directory backup date*/
f sSBDr Fndr I nf o = 4096, /*nore Finder directory info*/
f sSBDr Par | D = 8192}; /*directory's parent |D*/

/*val ue of vMrForeignPriviD in file attributes buffer*/
enum {fsUni xPriv = 1}; /*A UX privil ege nodel */

/*bit positions in vMAttrib field of GetVol Parnsl nfoBuffer*/

enum {

bHasBl ankAccessPri vi |l eges

= 4, /*vol une supports inherited privil eges*/
bHasBTr eeMyr = b5, /*reserved*/
bHasFi | el Ds = 6, /*vol ume supports file ID functions*/
bHasCat Sear ch =7, /*vol une supports PBCat Search*/
bHasUser Gr oupLi st = 8, /*vol ume supports AFP privil eges*/
bHasPer sonal AccessPri vil eges

=9, /*local file sharing is enabl ed*/
bHasFol der Lock = 10, /*vol unme supports | ocking of folders*/
bHas Shor t Nane = 11, /*vol ume supports shorter vol unme name*/
bHasDeskt opMyr = 12, /*vol une supports Desktop Manager*/
bHasMoveRenane = 13, /*vol unme supports _MoveRenane*/
bHasCopyFi | e = 14, /*vol ume supports _CopyFile*/
bHasQpenDeny = 15, /*vol une supports shared access nodes*/
bHasExt FSVol = 16, /*volume is external file system vol une*/
bNoSysDi r = 17, /*vol ume has no systemdirectory*/
bAccessCnt | = 18, /*vol une supports AFP access control */
bNoBoot Bl ks = 19, /*volunme is not a startup vol unme*/
bNoDeskl t ens = 20, /*do not place objects on the desktop*/
bNoSwi t chTo = 25, /*do not switch launch to applications*/
bTrshOF f Li ne = 26, /*zoom vol unme when it is unmounted*/
bNoLcl Sync = 27, /*don't |et Finder change nod. date*/
bNoVNEdi t = 28, /*1 ock vol une nane*/
bNoM ni Fndr = 29, /*reserved; always 1*/
bLocal W.i st = 30, /*use shared vol une handl e for w ndow */

[* list*/

bLi mi t FCBs = 31}; [*limt file control Dbl ocks*/

2-266 Summary of the File Manager

CHAPTER 2

File Manager

/*media type in renote nmounting infornation/*

enum { Appl eShar eMedi aType

= "afpm};

/*an Appl eShare vol urme*/

/*user authentication nmethods in AFP renote nounting information*/

enum {
kNoUser Aut hent i cati on =
kPassword =
kEncr ypt Passwor d =
kTwoWayEncr ypt Password =

Data Types

/*guest status; no password needed*/
/*8-byte password*/

/*encrypted 8-byte password*/
/*two-way random encryption; */

/* authenticate both user and server*/

File System Specification Record

struct FSSpec {

short vRef Num
| ong par | D;
Str63 nane;

b

t ypedef struct FSSpec FSSpec;
t ypedef FSSpec *FSSpecPtr;

t ypedef FSSpecPtr *FSSpecHandl e;

File and Directory Parameter Blocks

uni on Par anBl ockRec {

/*file system specification*/

/*vol unme reference nunber*/
/*directory I D of parent directory*/
/*filenanme or directory name*/

| OPar am i oPar am

Fi | ePar am fileParam

Vol unePar am vol unmePar am
Cntrl Param cntrl Param

Sl ot DevPar am sl ot DevPar am
Mul ti DevPar am nmul ti DevPar am

b

t ypedef uni on ParanmBl ockRec Par anBl ockRec;
t ypedef ParanBl ockRec *Par nBl kPt r;

Summary of the File Manager

2-267

Jabeue a4
n

CHAPTER 2

File Manager

#def i ne Par anBl ockHeader \

CEl enPtr gLi nk;

short gType;

short i oTr ap;

Ptr i oCndAddr ;

ProcPtr i oConpl etion;

OSEr r i oResul t;

StringPtr i oNamePtr ;

short i oVRef Num
struct | OParam {

Par anBl ockHeader

short i oRef Num

char i oVer sNum

char i oPermssn

Ptr i oM sc;

Ptr i oBuf fer;

| ong i oReqCount ;

| ong i oAct Count ;

short i oPoshbde;

| ong i oPosOf f set ;

b

typedef struct | OParam | OPar am

struct Fil eParam {

Par anBl ockHeader

short i oFRef Num
char i oFVer sNum
char fillerl,
short i oFDi r | ndex;
unsi gned char ioFl Attrib;
unsi gned char i oFl Ver sNum
FI nf o i oFl Fndr I nf o;
unsi gned long ioFl Num
unsi gned short i oFl StBIlk;

| ong i oFl LgLen;

| ong i oFl PyLen;
unsi gned short i oFl RSt Bl k;
| ong i oFl RLgLen

| ong i oFl RPyLen
unsi gned | ong i oFl CrDat;
unsi gned long ioFl MiDat ;

}s

typedef struct FileParam Fil eParam

2-268 Summary of the File Manager

/*next queue entry*/\
/*queue type*/\
/*routine trap*/\
/*routine address*/\
/*conpl etion routine*/\
/*result code*/\
/*pointer to pathnane*/\
/*vol unme specification*/

/*file reference nunber*/
/*versi on numnber*/
/*read/wite pernission*/

/*m scel | aneous*/

/*data buffer*/

/*request ed nunber of bytes*/
/*actual nunber of bytes*/

/*positioning node and new i ne char.*/

/*positioning of fset*/

/*file reference nunber*/

/*file version nunber (unused)*/
[*reserved*/

/[*directory index*/

[*file attributes*/

/*file version nunber (unused)*/
/*information used by the Finder*/
[*File | D*/
/*first alloc. blk. of data fork*/
/*1 ogi cal EOF of data fork*/
/ *physi cal ECF of data fork*/
/*first alloc. blk. of
/*1 ogi cal EOF of resource fork*/
/ *physi cal EOF of resource fork*/
/*date and tine of creation*/
/*date and tine of |ast

resource fork*/

nodi fi cati on*/

CHAPTER 2

File Manager

struct Vol uneParam {
Par amBl ockHeader

| ong filler2;
short i oVol | ndex;
unsi gned | ong ioVCrDate;
unsi gned | ong ioVLsBkUp;
unsi gned short ioVAtrb;

unsi gned short i oVNnHl s;
unsi gned short ioVDirSt;
short i oVBI Ln;
unsi gned short i oVNMAl Bl ks;
| ong i oVAI Bl kSi z;
| ong i oVC pSi z;
unsi gned short i oAl Bl St;
unsi gned long i oVNxt FNum
unsi gned short ioVFrBlk;

s

t ypedef struct Vol uneParam Vol unePar am

uni on HPar anBl ockRec {
HI OPar am
HFi | ePar am
HVol unePar am
AccessPar am

i oPar am

oj Par am obj Par am
CopyPar am copyPar am
WDPar am wdPar am
FI DPar am fi dPar am
CSPar am csParam

For ei gnPri vPar am

b

fileParam
vol umePar am
accessPar am

/*reserved*/

/*vol ume i ndex*/

/*date and tine of initialization*/
/*date and tine of |ast nodification*/
/*volume attributes*/

/*nunber of files in root directory*/
/*first block of directory*/

/*length of directory in blocks*/
/*nunber of allocation blocks*/

/*size of allocation bl ocks*/

/*nunber of bytes to allocate*/
/*first block in block nap*/

/*next unused file |ID*/

/*nunber of unused all ocation bl ocks*/

/ *HFS par aneter bl ock*/

forei gnPrivParam

t ypedef uni on HPar anBl ockRec HPar anBl ockRec;

t ypedef HPar anBl ockRec *HPar nBl kPt r;

struct HI OParam {
Par anBl ockHeader

short i oRef Num
char i oVer sNum
char i oPer nesn;
Ptr i oM sc;

Ptr i oBuf fer;

| ong i oRegqCount ;

Summary of the File Manager

/*file reference nunber*/
/*version nunber*/
/*read/wite perm ssion*/
/*m scel | aneous*/

/*data buffer*/

/ *request ed nunber of bytes*/

2-269

Jabeue a4
n

CHAPTER 2

File Manager

| ong i 0Act Count ;
short i oPosMbde;
| ong i oPosOF f set ;

}s

typedef struct H OParam HI OPar am

struct HFil eParam {
Par anmBl ockHeader
short i oFRef Num
char i oFVer sNum
char fillerl;
short i oFDi r 1l ndex;
char i oFl Attrib;
char i oFI Ver sNum
FI nfo i oFl Fndr | nf o;
| ong ioDirlD;
unsi gned short i oFl St Bl k;
| ong i oFl LgLen;
| ong i oFl PyLen;
unsi gned short i oFl RSt Bl k;
| ong i oFl RLgLen
| ong i oFl RPyLen;
unsi gned | ong i oFl Cr Dat ;
unsi gned | ong i oFl MiDat ;

b

typedef struct HFil eParam HFi | eParam

struct HVol umePar am {
Par anBl ockHeader
| ong filler2;
short i oVol | ndex;
unsi gned | ong i oVCr Dat e;
unsi gned | ong i oVLsMod;
short i OVAL T b;
unsi gned short i OVNFI s;
short i oVBi t Map
short i oAl'l ocPtr
unsi gned short i OVNMAI Bl ks;
| ong i oVAI Bl kSi z;
| ong i oVd pSi z
short i 0Al Bl St
| ong i OVNxt CNI D

2-270 Summary of the File Manager

/*actual nunber of bytes*/
/*positioning node and new i ne char. */
/*positioning of fset*/

/*file reference nunber*/

/*file version nunber (unused)*/

[*reserved*/

/*directory index*/

/[*file attributes*/

/*file version nunber (unused)*/
/*information used by the Finder*/
/*directory IDor file I D/

/*first alloc. blk. of data fork*/

/*1 ogi cal EOF of data fork*/

/ *physi cal ECF of data fork*/

/*first alloc. blk. of resource fork*/
/*1 ogi cal EOF of resource fork*/

/ *physi cal EOF of resource fork*/
/*date and tine of creation*/

/*date and tine of |ast nodification*/

/*reserved*/

/*vol ume i ndex*/

/*date and tine of initialization*/
/*date and tinme of |ast nodification*/
/*volune attributes*/

/*nunber of files in root directory*/
/*first block of volune bitnap*/
/*first block of next new file*/
/*nunber of allocation bl ocks*/
/*size of allocation blocks*/
/*default clunp size*/

/[*first block in volune map*/

/ *next unused node | D*/

CHAPTER 2

File Manager

unsi gned short i oVFr Bl k; /*nunber of unused allocation bl ocks*/
unsi gned short i OVSi gWor d; /*vol une si gnature*/

short i oVDr vl nf o; /*drive nunber*/

short i oVDRef Num [*driver reference nunber*/

short i oVFSI D; [*file-systemidentifier*/

unsi gned | ong i oVBkUp; /*date and tine of |ast backup*/
unsi gned short i oVSegNum /*used internally*/

| ong i OVW Cnt ; /*volunme wite count*/

| ong i oVFi | Cnt; [*nunber of files on vol une*/

| ong i ovDi r Cnt; /*nunber of directories on vol une*/
| ong i oVFndriInfo[8];/*informati on used by the Finder*/

1
typedef struct HVol unePar am HVol unePar am

struct AccessParam {
Par anBl ockHeader

short fillers3; /*reserved*/

short i oDenyMbdes; / *access node i nformation*/
short fillerd4,; [*reserved*/

char fillerb; /*reserved*/

char i 0ACUser ; /*user access rights*/

| ong filler6; [*reserved*/

| ong i OACOmner | D /*owner | D*/

| ong i 0ACGr oupl D /*group | D*/

| ong i 0ACAccess; /*directory access rights*/

i
t ypedef struct AccessParam AccessParam

struct oj Param {
Par anBl ockHeader

short filler7, /*reserved*/

short i 0Obj Type; /*function code*/

StringPtr i obj NanePtr; /*ptr to returned creator/group nane*/
| ong i othj | by [*creator/group | D/

| ong i oReqCount ; /*size of buffer area*/

| ong i 0Act Count ; /*l ength of data*/

b

typedef struct Cbj Param Ooj Param

Summary of the File Manager 2-271

Jabeue a4
n

CHAPTER 2

File Manager

struct CopyParam {
Par amBl ockHeader

short i oDst VRef Num
short filler8;
StringPtr i oNewNane;
StringPtr i oCopyNane;

| ong i oNewDi r | D

| ong fillerl4;

| ong fillerls;

| ong ioDirlD

b
t ypedef struct CopyParam CopyParam

struct WDPar am {
Par anBl ockHeader

short filler9;
short i oVDI ndex;

| ong i oOVDPr ocl D
short i oVWDVRef Num
short fillerl0;

| ong fillerl1;

| ong fillerl2;

| ong fillerl3;

| ong i oOVDDI r | D

b

typedef struct WDPar am WDPar am

struct FI DParam {
Par anBl ockHeader
| ong fillerl;
StringPtr i oDest NamePtr ;
| ong filler2;
| ong i oDestDirl D
| ong fillers3;
| ong filler4;
| ong i oSrcDirl D
short fillerb;
| ong i oFi | el D

b

t ypedef struct FIDParam FI DParam

2-272 Summary of the File Manager

/*destination volune identifier*/

[*reserved*/

/*pointer to destination pathnane*/
/[*pointer to optional nanme*/
/*destination directory |ID*/

[*reserved*/

/*reserved*/

/*directory IDor file I D/

[*reserved*/

/*wor ki ng directory index*/

/*working directory user identifier*/
/*working directory's vol. ref. num*/
/*reserved*/

/*reserved*/

[*reserved*/

/*reserved*/

/*working directory's directory |D*/

[*reserved*/

/*pointer to destination filenanme*/
[*reserved*/

/*destination parent directory |D*/
/*reserved*/

[*reserved*/

/*source parent directory |ID*/
/*reserved*/

[*file | D*/

CHAPTER 2

File Manager

struct CSParam {

b

Par amBl ockHeader
FSSpecPt r

| ong

| ong

| ong

Cl nf oPBPt r

Cl nf oPBPt r

| ong

Cat Posi ti onRec
Ptr

| ong

oMat chPtr;

/*pointer to array of matches*/

oRegMat chCount; /*max nunber of natches to return*/
oAct Mat chCount; /*actual nunber of matches*/

oSearchBits
oSear chl nf o1;

oSear chl nf 02

oSear chTi ne;
oCat Posi ti on;
oOpt Buf fer;
oOpt Buf Si ze

typedef struct CSParam CSParam

struct

b

t ypedef struct

For ei gnPri vPar am {

Par anBl ockHeader

| ong fillerl;

| ong filler2;

Ptr i oForei gnPri vBuffer;

| ong i oFor ei gnPri vReqCount ;
| ong i oFor ei gnPri vAct Count ;
| ong fillers3;

| ong i oForei gnPrivDirlD;

| ong i oForei gnPrivlnfol

| ong i oForei gnPrivlnfo2

| ong i oForei gnPrivlnfo3

[ong i oFor ei gnPri vl nf o4;

/*enable bits for matching rul es*/
/*pointer to values and | ower */

/* bounds*/

/*pointer to masks and upper */

/* bounds*/

/[*maxi mumtime to search*/
[*current catal og position*/
/*pointer to optional read buffer*/
/*length of optional read buffer*/

Jabeue a4
n

/*reserved*/

/*reserved*/

/*privileges data buffer*/
/*size of buffer*/
/*amount of buffer used*/
/*reserved*/

/*parent directory ID of foreign */
/* file or directory*/
/*privileges data*/
/*privil eges data*/
/*privil eges data*/
/*privileges data*/

For ei gnPri vPar am For ei gnPri vPar am

t ypedef Forei gnPrivParam *Forei gnPrivParanPtr;

Summary of the File Manager

2-273

CHAPTER 2

File Manager

Catalog Information Parameter Blocks

enum {hFi |l el nfo, dirlnfo};
t ypedef unsigned char Cl nfoType;

uni on CI nf oPBRec {
HFil el nfo
Dirinfo

hFi | el nf o;
dirlnfo;

b

t ypedef uni on Cl nfoPBRec Cl nf oPBRec;
t ypedef Cl nf oPBRec *Cl nfoPBPtr;

struct HFilelnfo {
Par anBl ockHeader
short i oFRef Num
char i oFVer sNum
char fillerl,;
short i oFDi r | ndex;
char i oFl Attrib
char i 0ACUser ;
Fl nfo i oFl Fndr I nf o;
| ong ioDirlD
unsi gned short i oFl St Bl k;
| ong i oFl LgLen;
| ong i oFl PyLen;
unsi gned short i oFl RSt Bl k;
| ong i oFl RLgLen
| ong i oFl RPyLen
unsi gned | ong i oFl Cr Dat ;
unsi gned | ong i oFl MdDat ;
unsi gned | ong i oFl BkDat ;
FXI nf o i oFl XFndr | nf o;
| ong i oFl Par | D;
| ong i oFl C pSi z
1
typedef struct HFilelnfo HFilelnfo;
struct Dirinfo {
Par anBl ockHeader
short i oFRef Num
short filler1;
short i oFDi r | ndex;
2-274 Summary of the File Manager

/*catal og i nformati on paraneter

bl ock*/

/*file reference nunber*/

/*versi on number*/

/*reserved*/

/*file index*/

/[*file attributes*/

/*directory access rights*/
/*information used by the Finder*/
[*directory ID or file ID*/

/*first alloc. blk. of data fork*/

/*l ogical EOF of data fork*/

/ *physi cal EOF of data fork*/

/*first alloc. blk. of resource fork*/
/*l ogi cal EOF of resource fork*/

/ *physi cal ECF of resource fork*/
/*date and tine of creation*/

/*date and tinme of |ast nodification*/
/*date and tine of |ast backup*/
/*addi tional Finder infornmation*/
/*file parent directory ID (integer)*/
[*file s clunmp size*/

/*file reference nunber*/
/*reserved*/
/*directory index*/

CHAPTER 2

File Manager
char i OFI Attrib;
char filler2;
DI nfo i oDr Usr Wis;
| ong ioDrDirl D
unsi gned short i oDr NnFl s;
short filler3[9];
unsi gned | ong i oDr Cr Dat ;
unsi gned | ong i oDr MdDat ;
unsi gned | ong i oDr BkDat ;
DXI nfo i oDr Fndr I nf o;
| ong i oDr Par | D;

b

typedef struct Dirlnfo Dirlnfo;

Catalog Position Record

struct CatPositionRec {
| ong initialize;
short priv[6];

b

t ypedef struct CatPositionRec CatPositi

Catalog Move Parameter Block

struct CMovePBRec {

CEl enPtr gLi nk;
short qType;
short i oTr ap;

Ptr i oCrdAddr ;
ProcPtr i oConpl eti on;
OSEr r i oResul t;
StringPtr i oNamePtr ;
short i oVRef Num
| ong fillerl;
StringPtr i oNewNane;
| ong filler2;

| ong i oNewDi r | D
| ong filler3[2];
| ong ioDirlD;

}s

typedef struct CMovePBRec CMovePBRec;
t ypedef CMovePBRec *CMovePBPtr;

Summary of the File Manager

/*directory attributes*/
/*reserved*/

/*information used by the Finder*/
/*directory | D/

/*nunber of files in directory*/
/*reserved*/

/*date and tine of creation*/
/*date and tine of |ast nodification*/
/*date and tine of |ast backup*/
/*addi tional Finder infornmation*/
/*directory's parent directory |D*/

Jabeue a4
n

/*cat al og position record*/
[*starting point*/
/*private data*/

onRec;

/*catal og nove paraneter bl ock*/
/ *next queue entry*/

/ *queue type*/

/*routine trap*/

/*routine address*/

/*conpl etion routine*/

/*result code*/

/*pointer to pathnane*/

/*vol unme specification*/

[*reserved*/

/*nane of new directory*/
/*reserved*/

/*directory I D of new directory*/
[*reserved*/

/[*directory ID of current directory*/

2-275

CHAPTER 2

File Manager

Working Directory Parameter Block

struct

b

WDPBRec {
CEl enPtr
short
short
Ptr
ProcPtr
OSEr r
StringPtr
short
short
short
| ong
short
short
| ong

gLi nk;
qType;

oTr ap;
oCndAddr ;
oConpl et i on;
oResul t;
oNamePtr ;
oVRef Num

filler1l;

oWDI ndex;
oVWDPr ocl D
oVWDVRef Num

filler2[7];

oVWDDi r | D;

typedef struct WDPBRec WDPBRec;
t ypedef WDPBRec *WDPBPtT;

File Control Block Parameter Block

struct

2-276

FCBPBRec {
CEl enPtr
short
short
Ptr
ProcPtr
OSEr r
StringPtr
short
short
short
short
short
| ong
short
unsi gned short
| ong
| ong
| ong
short

gLi nk;
qType;

oTr ap;
oCrdAddr ;
oConpl et i on;
oResul t;
oNamePtr ;
oVRef Num
oRef Num

filler;

oFCBI ndx;

filler1;

oFCBFI Nm
oFCBFI ags;
oFCBSt Bl k;
oFCBECF,;
oFCBPLen;
oFCBCr Ps;
oFCBVRef Num

Summary of the File Manager

/*wor ki ng directory paraneter bl ock*/
/*next queue entry*/

/ *queue type*/

/*routine trap*/

/*routine address*/

/*conpl etion routine*/

/*result code*/

/*poi nter to pat hname*/

/*vol une specification*/

[*reserved*/

/*wor ki ng directory index*/

/*working directory user identifier*/
/*working directory's vol. ref. num */
[*reserved*/

/*working directory's directory |D*/

/*file control block paraneter bl ock*/
/*next queue entry*/

/ *queue type*/

/*routine trap*/

/*routine address*/

/*conpl etion routine*/

/*result code*/

/*poi nter to pathname*/

/*vol unme specification*/

/*file reference nunber*/
/*reserved*/

/*FCB i ndex*/

[*reserved*/

[*file | D*/

/*flags*/

/*first allocation block of file*/
/*1 ogi cal end-of-file*/

/ *physi cal end-of-file*/
/*position of the file mark*/
/*vol unme reference nunber*/

CHAPTER 2

File Manager

| ong i oOFCBC pSi z; /*file' s clump size*/

| ong i oFCBPar | D /*parent directory |D*/
1
t ypedef struct FCBPBRec FCBPBRec;
t ypedef FCBPBRec *FCBPBPtr;

Volume Attributes Buffer

struct Cet Vol Parnsl nf oBuf fer {
short vMVer si on; /*version numnber*/ -
| ong VMAttri b; /*vol ume attributes*/ o
Handl e vM_ocal Hand; / *reserved*/ gz;
| ong vMSer ver Adr ; /*network server address*/ §
| ong vMol uneGr ade; /*relative speed rating*/ &
short vMForeignPrivIi D, [/*foreign privilege nodel */

1
typedef struct GCet Vol Parnsl nf oBuf fer Get Vol Par nsl nf oBuf fer;

Volume Mounting Information Records

struct Vol Mount | nf oHeader { /*vol unme nounting information*/
short [engt h; /*1 ength of nounting information*/
Vol uneType medi a; /*type of vol unme*/

b

t ypedef struct Vol Mount | nf oHeader Vol Mount | nf oHeader ;
t ypedef Vol Mount | nf oHeader *Vol Mount | nfoPtr;

struct AFPVol Mount | nf of /*AFP vol une nounting information*/
short | engt h; /*length of nounting information*/
Vol uneType nedi a; /*type of vol une*/
short fl ags; /*reserved; nust be set to 0*/
char nbpl nt erval ; /*NBP retry interval */
char nbpCount ; /*NBP retry count*/
short uanype; /*user authentication nethod*/
short zoneNaneO f set ; /*of fset to zone nane*/
short server NameOf f set ; /*of fset server nane*/
short vol NanmeOf f set ; /*of fset to vol une nane*/
short user Namef f set ; /*of fset to user name*/
short user PasswordOf fset; /*offset to user password*/
short vol Passwor dOf f set ; /*of fset to vol une password*/
char AFPDat a[144] ; /*standard AFP mounting i nfo*/

b

t ypedef struct AFPVol Mount | nfo AFPVol Mount | nf o;
t ypedef AFPVol Mount | nfo * AFPVol Mount | nf oPtr;

Summary of the File Manager 2-277

CHAPTER 2

File Manager

Internal Data Types

Volume and File Control Blocks

struct VCB {

CEl enPtr gLi nk;

short qType;

short vcbFl ags;
unsi gned short vchSi gWr d;
unsi gned | ong vcbCr Dat e;
unsi gned | ong vcbLsMod;
short VCbhAL 1 b;
unsi gned short vCbNnHl s;
short vchVBMst ;
short VCbAl | ocPtr
unsi gned short vcbNmAl Bl ks;
| ong vcbAl Bl kSi z;
| ong vchd pSi z;
short VCcbAl Bl St

| ong vcbNxt CNI D
unsi gned short vcbFr eeBks;
Str27 vCcbWN,

short vchbDr vNum
short vchbDRef Num
short VvcbFSI D
short vchbVRef Num
Ptr vcbMAdr ;

Ptr vchBuf Adr;
short vcbM.en;
short vcbDi r | ndex;
short vchDir Bl k;
unsi gned | ong vcbVol BkUp
unsi gned short vchVSegNum
| ong vchbW Cnt ;

| ong vcbXTd pSi z;
| ong vcbhCTd pSi z;
unsi gned short vVCbNnRt Di r s;
| ong vcbFi | Cnt;

| ong vcbDirCnt;

| ong

2-278 Summary of the File Manager

/*vol unme control bl ock*/

/*next queue entry*/

/ *queue type*/

/[*volume flags (bit 15 =1 if dirty)*/
/*vol ume signature*/

/*date and tinme of volune creation*/
/*date and tine of |ast nodification*/
/*volume attributes*/

/*nunber of files in root directory*/
/*first block of volune bitmap*/
/*start of next allocation search*/
/*nunber of allocation blocks in */

/* vol ume*/

/*size (in bytes) of allocation */

/* bl ocks*/

/*default clunp size*/

/*first allocation block in vol ume*/
/*next unused catal og node |D*/
/*nunmber of unused allocation bl ocks*/
/*vol ume name*/

/*drive nunber*/

/*driver reference nunber*/
[*file-systemidentifier*/

/*vol une reference nunber*/

/*used internally*/

/*used internally*/

/*used internally*/

/*used internally*/

/*used internally*/

/*date and tinme of |ast backup*/

/*vol ume backup sequence nunber*/
/*volume wite count*/

/*clunmp size for extents overflow */
[* file*/

/*clunp size for catalog file*/
/*nunber of directories in root dir.*/
/*nunber of files in vol unme*/

/*nunber of directories in volune*/

vcbFndrinfo[8];/*information used by the Finder*/

b

CHAPTER 2

File Manager

unsi gned short
unsi gned short
unsi gned short
unsi gned short
unsi gned short

short

short
Ptr

| ong
short

vchVCSi ze
vcbVBMCSI z;
vchCQ I CSi z;
VvCbXTAl Bl ks;
vcbCTAI Bl ks;

VCcbXTRef ;

vcbCTRef ;

vcbCt | Buf;
vcbDi r 1 DM

vebOF f sM

typedef struct VCB VCB;

struct

b

t ypedef struct

Drive Queue Elements

struct

FCB {
| ong
short
short
| ong
| ong
| ong
Ptr
Ptr
short
| ong
Ptr
Ext Dat aRec
| ong
| ong
| ong
Str31

DrvQeEl {
CEl enPtr
short
short
short
short

f cbFl Num

f cbFl ags;

f chSBI k;

f cbEOF;
fcbPLen;
fcbCr Ps;
fcbVPtr;

f chBf Adr;

f cbFl Pos;
fcbd mpSi ze
fcbBTCBPt r;
f cbExt Rec;
f cbFType

f cbCat Pos;
fcbDrl D,

f cbCNane;

FCB FCB;

gLi nk;
qType;
dQDrive;
dQRef Num
dQFSI D,

Summary of the File Manager

/*used internally*/

/*used internally*/

/*used internally*/

/*size of extents overflow file*/
/*size of catalog file*/

/*ref. num for extents overflow */

[* file*/

/*ref. num for catalog file*/

/[*ptr. to extents and catal og caches*/

/*directory |ast searched*/
/[*of fspring index at |ast search*/

Jabeue a4
n

/*file control block*/

[*file | D*/

/*file flags*/

/*first allocation block of file*/
/*1 ogical end-of-file*/

/ *physi cal end-of-file*/

[*current file mark position*/
/*pointer to volunme control block*/
/*pointer to access path buffer*/

/ *unused*/

[*file clunp size*/
/*pointer to B*-tree control
[*first three file extents*/
/*file' s four Finder type bytes*/
/*catal og hint for use on O ose*/
/*file's parent directory |D*/
/*name of file*/

bl ock*/

/*drive queue el ement*/

/*next queue entry*/

/*flag for dQrvSz and dQrvSz2*/
/*drive nunber*/

/*driver reference nunber*/
[*file-systemidentifier*/

2-279

CHAPTER 2

File Manager

unsi gned short dQrvSz;

unsi gned short dQDrvSz2;

b

typedef struct DrvQEl DrvQE;

High-Level File Access Routines

/*nunber of |ogical blocks on drive*/
/*additional field for large drives*/

Reading, Writing, and Closing Files

pascal OSErr FSRead
pascal OSErr FSWite
pascal OSErr FSC ose

Manipulating the File Mark

pascal OSErr Get FPos
pascal OSErr Set FPos

Manipulating the End-of-File

pascal OSErr Get ECF
pascal OSErr Set ECF

Allocating File Blocks

pascal OSErr Allocate
pascal OSErr AllocContig

Low-Level File Access Routines

(short
(short
(short

(short
(short

(short
(short

(short
(short

ref Num |ong *count, Ptr buffPtr);
ref Num |ong *count, Ptr buffPtr);
ref Num ;

ref Num |ong *fil ePos);
ref Num short poshMbde, |ong posOif);

ref Num | ong *I| ogEOF);
ref Num | ong | ogeOF);

ref Num | ong *count);
ref Num | ong *count);

Reading, Writing, and Closing Files

pascal OSErr PBRead
pascal OSErr PBReadSync
pascal OSErr PBReadAsync
pascal OSErr PBWite
pascal OSErr PBWiteSync
pascal OSErr PBWiteAsync
pascal OSErr PBC ose
pascal OSErr PBC oseSync
pascal OSErr PBC oseAsync

(ParnBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;
(ParnBl kPt r par anBl ock) ;
(ParnBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;
(ParnBl kPt r par anBl ock) ;
(ParnBl kPt r paranBl ock, Bool ean async);
(ParnBl kPt r paranBl ock) ;
(ParnBl kPt r paranBl ock) ;

2-280 Summary of the File Manager

CHAPTER 2

File Manager

Manipulating the File Mark

pascal OSErr PBGet FPos (Par nBl kPt r
pascal OSErr PBGet FPosSync (ParnBl kPtr
pascal OSErr PBGet FPosAsync (ParnBl kPtr
pascal OSErr PBSet FPos (Par nBl kPt r
pascal OSErr PBSet FPosSync (ParnBl kPtr
pascal OSErr PBSet FPosAsync (ParnBl kPtr
Manipulating the End-of-File
pascal OSErr PBGet EOF (ParnBl kPt r
pascal OSErr PBGet EOFSync (ParnBl kPt r
pascal OSErr PBGet EOFAsync (ParnBl kPt r
pascal OSErr PBSet EOF (ParnBl kPt r
pascal OSErr PBSet EOFSync (ParnBl kPt r
pascal OSErr PBSet EOFAsync (ParnBl kPtr
Allocating File Blocks
pascal OSErr PBAl | ocate (ParnBl kPt r
pascal OSErr PBAIl ocateSync (ParnBl kPtr
pascal OSErr PBAI | ocat eAsync (Par nBl kPt r
pascal OSErr PBAllocContig (ParnBl kPtr
pascal OSErr PBAI |l ocConti gSync

(ParnBl kPt r
pascal OSErr PBAI | ocConti gAsync

(Par nBl kPt r
Updating Files
pascal OSErr PBFl ushFile (ParmBI kPt r
pascal OSErr PBFl ushFil eSync (Par nBl kPt r
pascal OSErr PBFl ushFil eAsync

(Par nBl kPt r

High-Level Volume Access Routines

par anBl ock, Bool ean
par anBl ock) ;
par anBl ock) ;
par anBl ock, Bool ean
par anBl ock) ;

par anBl ock) ;

par anBl ock, Bool ean
par anBl ock) ;
par anBl ock) ;
par anBl ock, Bool ean
par anBl ock) ;

par anBl ock) ;

par anBl ock, Bool ean
par anBl ock) ;
par amBl ock) ;

par anBl ock, Bool ean

par anBl ock) ;

par anBl ock) ;

par anBl ock, Bool ean

par anBl ock) ;

par anBl ock) ;

async) ;

async) ;

async) ;

async) ;

async) ;

async) ;

async) ;

Unmounting Volumes

CSEr r
CSEr r

pascal
pascal

Unnount Vol
Ej ect

(StringPtr vol Nane,
(StringPtr vol Nane,

Summary of the File Manager

short vRef Nunj ;
short vRef Nunj ;

2-281

Jabeue a4
n

CHAPTER 2

File Manager
Updating Volumes
pascal OSErr Fl ushVol (StringPtr vol Nane,

Manipulating the Default Volume

short vRef Nunj;

pascal OSErr Get Vol (StringPtr vol Nane, short *vRef Num;
pascal OSErr Set Vol (StringPtr vol Nanme, short vRefNun);
pascal OSErr HCGet Vol (StringPtr vol Name, short *vRef Num
long *dirlD);
pascal OSErr HSet Vol (StringPtr vol Name, short vRefNum long dirlD);
Obtaining Volume Information
pascal OSErr GetVinfo (short drvNum StringPtr vol Nane,
short *vRef Num 1ong *freeBytes);
pascal OSErr Get VRef Num (short ref Num short *vRef Nun);
Low-Level Volume Access Routines
Mounting and Unmounting Volumes
pascal OSErr PBMbunt Vol (ParmBlI kPt r par anBl ock) ;
pascal OSErr PBUnnount Vol (Par Bl kPt r paranBl ock) ;
pascal OSErr PBEj ect (ParnBl kPt r paranBl ock) ;
pascal OSErr PBO fLine (ParnBl kPt r paranBl ock) ;
Updating Volumes
pascal OSErr PBFl ushVol (ParnBl kPt r paranBl ock; Bool ean async);
pascal OSErr PBFl ushVol Sync (ParnBl kPtr paranBl ock);
pascal OSErr PBFl ushVol Async (Par nBl kPtr paranBl ock);

Obtaining Volume Information

pascal
pascal
pascal

pascal
pascal
pascal
pascal

2-282

OSErr PBHGet VI nf o (HPar nBl kPt r par anBl
OSErr PBHGet VI nf 0Sync (HPar Bl kPt r par anBl

OSErr PBHGet VI nf 0Async
(HPar Bl kPt r par anBl

OSErr PBSet VI nfo (HPar Bl kPt r par anBl
OSErr PBSet VI nf oSync (HPar nBlI kPtr par anBl
OSErr PBSet VI nf oAsync (HPar nBl kPt r par anBl
OSErr PBHGet Vol Parms (HPar Bl kPt r par anBl

Summary of the File Manager

ock,
ock) ;

ock) ;
ock,
ock) ;
ock) ;
ock,

Bool ean async);

Bool ean async);

Bool ean async);

CHAPTER 2

File Manager

pascal OSErr PBHGet Vol Par nsSync
(HPar Bl kPt r par anBl ock) ;

pascal OSErr PBHGet Vol Par msAsync
(HPar Bl kPt r par anBl ock) ;

Manipulating the Default Volume

pascal OSErr PBCet Vol (ParnBl kPt r paranBl ock, Bool ean async);
pascal OSErr PBGet Vol Sync (ParnBl kPt r paranBl ock) ;

pascal OSErr PBCet Vol Async (ParnBl kPtr paranBl ock) ;

pascal OSErr PBSet Vol (ParnBl kPt r paranBl ock, Bool ean async);
pascal OSErr PBSet Vol Sync (ParnBl kPt r paranBl ock) ;

pascal OSErr PBSet Vol Async (ParnBl kPtr paranBl ock) ;

pascal OSErr PBHGet Vol (WDPBPt r par anBl ock, Bool ean async);
pascal OSErr PBHGet Vol Sync (WDPBPtr paranBl ock);

pascal OSErr PBHGet Vol Async (WDPBPtr paranBl ock);

pascal OSErr PBHSet Vol (WDPBPt r par anBl ock, Bool ean async);
pascal OSErr PBHSet Vol Sync (WDPBPtr paranBl ock);

pascal OSErr PBHSet Vol Async (WDPBPtr paranBl ock);

Jabeue a4
n

File System Specification Routines

Opening Files

pascal OSErr FSpQOpenDF (const FSSpec *spec, char perm ssion,
short *ref Num;

pascal OSErr FSpOpenRF (const FSSpec *spec, char perm ssion,

short *ref Nun);

Creating and Deleting Files and Directories

pascal OSErr FSpCreate (const FSSpec *spec, OSType creator,
CSType fil eType, ScriptCode scriptTag);

pascal OSErr FSpDirCreate (const FSSpec *spec, ScriptCode scriptTag,
Il ong *createdDirlD);

pascal OSErr FSpDel ete (const FSSpec *spec);

Accessing Information About Files and Directories

pascal OSErr FSpGet FInfo (const FSSpec *spec, FInfo *fndrlnfo);

pascal OSErr FSpSet Fl nfo (const FSSpec *spec, const FInfo *fndrlnfo);
pascal OSErr FSpSet FLock (const FSSpec *spec);

pascal OSErr FSpRst FLock (const FSSpec *spec);

pascal OSErr FSpRenane (const FSSpec *spec, Const Str255Param newNane) ;

Summary of the File Manager 2-283

CHAPTER 2

File Manager

Moving Files or Directories

pascal OSErr FSpCat Move (const FSSpec *source, const FSSpec *dest);

Exchanging the Data in Two Files

pascal OSErr FSpExchangeFil es
(const FSSpec *source, const FSSpec *dest);

Creating File System Specifications
pascal OSErr FSMakeFSSpec (short vRefNum long dirlD,

Const Str255Param fi | eName, FSSpecPtr spec);
pascal OSErr PBMakeFSSpec (HPar nBl kPt r par anBl ock, Bool ean async);

pascal OSErr PBMakeFSSpecSync
(HPar Bl kPt r par anBl ock) ;

pascal OSErr PBMakeFSSpecAsync
(HPar Bl kPt r par anBl ock) ;

High-Level HFS Routines

Opening Files

pascal OSErr HOpenDF (short vRefNum 1ong dirlD,
const Str255 fileNanme, char perm ssion,
short *ref Nun;

pascal OSErr HOpenRF (short vRefNum 1ong dirlD,
const Str255 fileName, char perm ssion,
short *ref Nun;

pascal OSErr HOpen (short vRef Num 1ong dirlD,
const Str255 fileName, char perm ssion,
short *ref Nun;

Creating and Deleting Files and Directories

pascal OSErr HCreate (short vRef Num Ilong dirlD,
const Str255 fileNane, OSType creator,
CSType fil eType);
pascal OSErr DirCreate (short vRef Num |ong parentDirlD,
const Str255 directoryNane,
Il ong *createdDirl D);

pascal OSErr HDel ete (short vRef Num Ilong dirlD,
const Str255 fil eNane);

2-284 Summary of the File Manager

CHAPTER 2

File Manager

Accessing Information About Files and Directories

FInfo *fndrlnfo);

const FInfo *fndrlnfo);

pascal OSErr HGetFInfo (short vRef Num 1ong dirlD,
const Str255 fil eNane,

pascal OSErr HSetFlInfo (short vRef Num 1ong dirlD,
const Str255 fil eNane,

pascal OSErr HSet FLock (short vRef Num Ilong dirlD,

const Str255 fil eNane);

pascal OSErr HRst FLock (short vRef Num

const Str255 fil eNane);

pascal OSErr HRenane (short vRef Num

const Str255 ol dNane,

Moving Files or Directories

pascal OSErr Cat Move (short vRef Num
const Str255 ol dNane, |

const Str255 newNane);

Maintaining Working Directories

pascal OSErr CpenWD (short vRefNum long dirl

short *wdRef Nun) ;
CSErr O oseWD (short wdRef Num ;

OSErr CGet WDl nfo

pascal

pascal
| ong *procl D);

Low-Level HFS Routines

(short wdRef Num short *vRef Num

long dirlD,

long dirlD,
const Str255 newNane);

long dirlD,

ong newDirl D,

D, long proclD,

I ong *dirl D,

Opening Files

OSErr PBHOpenDF (HPar nBl kPt r par anBl ock,
OSErr PBHOpenDFSync (HPar Bl kPt r par anBl ock) ;
OSErr PBHOpenDFAsync (HParnBl kPt r par anBl ock) ;
OSErr PBHOpenRF (HPar nBl kPt r par anBl ock,
OSErr PBHOpenRFSync (HPar Bl kPt r par anBl ock) ;
OSErr PBHOpenRFAsync (HParnBl kPt r paranBl ock) ;
OSErr PBHOpen (HPar nBl kPt r par anBl ock,
OSErr PBHOpenSync (HPar Bl kPt r par anBl ock) ;
OSErr PBHOpenAsync (HPar Bl kPt r par anBl ock) ;

pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal

Summary of the File Manager

Bool ean async);

Bool ean async);

Bool ean async);

2-285

Jabeue a4
n

Creating and Deleting Files and Directories

pascal
pascal
pascal
pascal
pascal
pascal

pascal
pascal
pascal

OSEr r

CHAPTER 2

File Manager

CSErr PBHCr eat e (HPar nBl kPt r
OSErr PBHCreateSync (HParnBl kPt r
OSErr PBHCr eat eAsync (HPar Bl kPt r
CSErr PBDirCreate (HPar nBl kPt r
OSErr PBDi r Cr eat eSync (HPar nBl kPt r
OSErr PBDir Cr eat eAsync

(HPar nBl kPt r
OSErr PBHDel et e (HPar nBl kPt r

OSErr PBHDel et eSync (HPar nBl kPt r
PBHDel et eAsync (HPar nBl kPt r par anBl ock) ;

par anBl ock, Bool ean
par anBl ock) ;
par anBl ock) ;
par anBl ock, Bool ean
par anBl ock) ;

par anBl ock) ;
par anBl ock, Bool ean
par anBl ock) ;

Accessing Information About Files and Directories

pascal
pascal

pascal

pascal
pascal

pascal

pascal
pascal
pascal

pascal
pascal
pascal

pascal
pascal
pascal

pascal
pascal
pascal

pascal

2-286

OSErr PBGet Catl nfo

CSErr PBGet Cat | nf oSync
(Cl nfoPBPt r

OSErr PBGet Cat | nf oAsync

(CI nf oPBPt r
OSErr PBSet Cat I nf o (ClI nfoPBPt T

OSErr PBSet Cat | nf oSync
(Cl nf oPBPt r

OSErr PBSet Cat | nf oAsync

OSErr PBHGet FI nf o
CSEr r

OSErr PBHSet FI nf o
CSErr

OSErr PBHSet FLock
CSErr

OSErr PBHRst FLock
CSEr r

OSErr PBHRename

async) ;

async) ;

async) ;

(Cl nf oPBPtr paranBl ock, Bool ean async);

par anBl ock, Bool ean async);

par anBl ock) ;

par anBl ock, Bool ean async);

par anBl ock) ;

(Cl nfoPBPtr paranBl ock);

Summary of the File Manager

(HPar Bl kPt r par anBl ock, Bool ean
PBHCet FI nf oSync (HPar nBl kPt r

OSErr PBHGet FI nf 0Async
(HPar Bl kPt r

(HPar nBl kPt r
PBHSet FI nf oSync (HPar nBl kPt r

OSErr PBHSet FI nf oAsync
(HPar Bl kPt r

(HPar nBl kPt r
PBHSet FLockSync (HPar nBl kPt r

OSErr PBHSet FLockAsync
(HPar nBl kPt r

(HPar nBI kPt r
PBHRst FLockSync (HPar nBl kPt r

OSErr PBHRst FLockAsync
(HPar nBl kPt r

(HPar nBI kPt r

par anBl ock) ;

par anBl ock) ;
par anBl ock, Bool ean
par anBl ock) ;

par anBl ock) ;
par anBl ock, Bool ean
par anBl ock) ;

par anBl ock) ;
par anBl ock, Bool ean
par amBl ock) ;

par anBl ock) ;
par anBl ock, Bool ean

async) ;

async);

async) ;

async) ;

async) ;

CHAPTER 2

File Manager

pascal OSErr PBHRenaneSync (HParnBl kPtr paranBl ock);
pascal OSErr PBHRenaneAsync (HParnBl kPtr paranBl ock);

Moving Files or Directories

pascal OSErr PBCat Move (CvovePBPtr paranBl ock, Bool ean async);
pascal OSErr PBCat MoveSync (CMovePBPtr paranBl ock);

pascal OSErr PBCat MoveAsync (CMovePBPtr paranBl ock);

Maintaining Working Directories

pascal OSErr PBOpenWD (WDPBPt r par anBl ock, Bool ean async);
pascal OSErr PBOpenWDSync (VDPBPt r par anBl ock) ;
pascal OSErr PBOpenWDAsync (WDPBPtr paranBl ock);
pascal OSErr PBC oseWD (WDPBPt r par anBl ock, Bool ean async);
pascal OSErr PBC oseWDSync (WDPBPtr paranBl ock);
pascal OSErr PBC oseWDAsync (WDPBPtr paranBl ock);
pascal OSErr PBGet WDI nf o (WDPBPt r par anBl ock, Bool ean async);
pascal OSErr PBGet WDI nf oSync (VWDPBPt r par anBl ock) ;

pascal OSErr PBGet WDI nf 0Async
(VDPBPt r par anBl ock) ;

Searching a Catalog
pascal OSErr PBCat Search (HPar mBl kPt r paranBl ock, Bool ean async);
pascal OSErr PBCat Sear chSync (HPar nBl kPtr par anBl ock);

pascal OSErr PBCat Sear chAsync
(HPar Bl kPt r par anBl ock) ;

Exchanging the Data in Two Files

pascal OSErr PBExchangeFi | es (HPar nBl kPtr paranBl ock, Bool ean async);

pascal OSErr PBExchangeFil esSync
(HPar Bl kPt r par anBl ock) ;

pascal OSErr PBExchangeFi | esAsync
(HPar Bl kPt r par anBl ock) ;

Shared Environment Routines

Opening Files While Denying Access

pascal OSErr PBHOpenDeny (HPar Bl kPt r par anBl ock, Bool ean async);
pascal OSErr PBHOpenDenySync (HPar nBl kPtr paranBl ock) ;

Summary of the File Manager

2-287

Jabeue a4
n

pascal

pascal
pascal

pascal

CHAPTER 2

File Manager

OSErr PBHOpenDenyAsync

(HPar nBl kPt r
OSErr PBHOpenRFDeny (HPar nBl kPt r
OSErr PBHOpenRFDenySync

(HPar Bl kPt r
OSErr PBHOpenRFDenyAsync

(HPar nBl kPt r

Locking and Unlocking File Ranges

pascal
pascal
pascal

pascal
pascal

pascal

pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal

OSErr PBLockRange (Par mBl kPt r
OSErr PBLockRangeSync (Par nBl kPt r
OSErr PBLockRangeAsync

(Par nBl kPt r
OSErr PBUNnl ockRange (ParnBl kPt r
OSErr PBUnl ockRangeSync

(Par Bl kPt r
CSErr PBUnl ockRangeAsync

(Par nBl kPt r

Manipulating Share Points

OSErr PBShar e (HPar nBl kPt r
OSErr PBShar eSync (HPar nBl kPt r
OSErr PBShar eAsync (HPar nBI kPt r
OSErr PBUnshare (HPar nBl kPt r
CSErr PBUnshareSync (HPar nBl kPt r
OSErr PBUnshar eAsync (HParnBl kPt r
OSErr PBGet UGEnt ry (HPar nBl kPt r
OSErr PBCGet UGENt rySync

(HPar nBIl kPt r
OSErr PBGet UGENt r yAsync

pascal

Controlling Directory Access

pascal
pascal

pascal

2-288

CSEr r
CSEr r

CSEr r

(HPar nBl kPt r

PBHGet Di r Access (HPar nBl kPt r
PBHGet Di r AccessSync

(HPar nBl kPt r

PBHGet Di r AccessAsync

(HPar Bl kPt r

Summary of the File Manager

par anBl ock) ;
par anBl ock, Bool ean

par anBl ock) ;

par anBl ock) ;

async) ;

par anBl ock, Bool ean async);

par anBl ock) ;

par anBl ock) ;

par anBl ock, Bool ean async);

par anBl ock) ;

par anBl ock) ;

par anBl ock, Bool ean
par anBl ock) ;
par anBl ock) ;
par anBl ock, Bool ean
par anBl ock) ;
par anBl ock) ;

par anBl ock, Bool ean

par anmBl ock) ;

par anBl ock) ;

par anBl ock, Bool ean
par anBl ock) ;

par anBl ock) ;

async) ;

async) ;

async) ;

async) ;

pascal
pascal

pascal

CHAPTER 2

File Manager

OSErr PBHSet Di r Access (HPar nBl kPt r

OSErr PBHSet Di r AccessSync
(HPar nBl kPt r

OSErr PBHSet Di r AccessAsync
(HPar Bl kPt r

Mounting Volumes

pascal

pascal

pascal

OSErr PBGet Vol Mount | nf 0Si ze

par anBl ock, Bool ean async);

par anBl ock) ;

par anBl ock) ;

(ParnBl kPt r paranBl ock) ;

OSErr PBGet Vol Mount | nf o

(Par nBl kPt r paranBl ock) ;
OSErr PBVol uneMount (ParnBl kPt r paranBl ock);

Controlling Login Access

pascal
pascal

pascal

pascal
pascal
pascal
pascal
pascal
pascal

OSErr PBHGet Logl nl nf o (HPar nBI kPt r
OSErr PBHGet Logl nl nf oSync

(HPar nBl kPt r
OSErr PBHGet Logl nl nf oAsync

(HPar nBl kPt r
OSErr PBHWApI D (HPar nBI kPt r

OSErr PBHWVapl DSync (HPar nBl kPt r
CSErr PBHVApl DAsync (HPar nBl kPt r
OSErr PBHWVapNane (HPar nBI kPt r
OSErr PBHVApNameSync (HPar Bl kPt r
CSErr PBHVApNanmeAsync (HPar nBl kPt r

Copying and Moving Files

pascal
pascal
pascal

pascal
pascal

pascal

OSErr PBHCopyFi |l e (HPar nBl kPt r
OSErr PBHCopyFi | eSync (HPar nBl kPt r

OSErr PBHCopyFi | eAsync
(HPar nBl kPt r

OSErr PBHWveRenane (HPar nBl kPt r

OSErr PBHMoveRenameSync
(HPar nBl kPt r

OSErr PBHWbveRenaneAsync
(HPar nBl kPt r

Summary of the File Manager

par anBl ock, Bool ean async);

par anmBl ock) ;

par anBl ock) ;
par anBl ock, Bool ean async);
par anBl ock) ;
par anBl ock) ;
par anBl ock, Bool ean async);
par anBl ock) ;
par anBl ock) ;

par anBl ock, Bool ean async);
par anBl ock) ;

par anBl ock) ;
par anBl ock, Bool ean async);

par anBl ock) ;

par anBl ock) ;

2-289

Jabeue a4
n

CHAPTER 2

File Manager

File ID Routines

Resolving File ID References

pascal OSErr PBResol veFi | el DRef
(HPar nBl kPt r par anBl ock, Bool ean async);
pascal OSErr PBResol veFi | el DRef Sync
(HPar mBl kPt r par anBl ock) ;
pascal OSErr PBResol veFil el DRef Async
(HPar mBl kPt r par anBl ock) ;
Creating and Deleting File ID References
pascal OSErr PBCreat eFil el DRef
(HPar nBl kPt r par anBl ock, Bool ean async);
pascal OSErr PBCreateFil el DRef Sync
(HPar mBl kPt r par anBl ock) ;
pascal OSErr PBCreateFil el DRef Async
(HPar Bl kPt r par anBl ock) ;
pascal OSErr PBDel et eFi | el DRef
(HPar Bl kPt r par anBl ock, Bool ean async);
pascal OSErr PBDel et eFi | el DRef Sync
(HPar Bl kPt r par anBl ock) ;
pascal OSErr PBDel et eFi | el DRef Async
(HPar Bl kPt r par anBl ock) ;
Foreign File System Routines
Accessing Privilege Information in Foreign File Systems
pascal OSErr PBGet ForeignPrivs
(HPar nBl kPt r par anBl ock, Bool ean async);
pascal OSErr PBGet Forei gnPrivsSync
(HPar Bl kPt r par anBl ock) ;
pascal OSErr PBGet Forei gnPrivsAsync
(HPar Bl kPt r par anBl ock) ;
pascal OSErr PBSet ForeignPrivs
(HPar nBl kPt r par anBl ock, Bool ean async);
pascal OSErr PBSet Forei gnPrivsSync
(HPar nBl kPt r par anBl ock) ;
pascal OSErr PBSet Forei gnPri vsAsync
(HPar mBl kPt r par anBl ock) ;
2-290 Summary of the File Manager

CHAPTER 2

File Manager

Utility Routines

Obtaining Queue Headers

#def i ne Get FSQHdr () (QHdrPtr);

#def i ne Get VCBQHdr () (QHdrPtr);

#def i ne Get DrvQHdr () (QHdrPtr);

Adding a Drive

pascal void AddDrive (short drvrRefNum short drvNum DrvQEl Ptr qEl);

Obtaining File Control Block Information

pascal OSErr PBGet FCBI nfo (FCBPBPt r paranBl ock, Bool ean async);

pascal OSErr PBGet FCBI nf oSync
(FCBPBPt r par anBl ock) ;

pascal OSErr PBGCet FCBI nf oAsync
(FCBPBPt r paranBl ock) ;

Application-Defined Routine

Completion Routines

pascal void MyConpl eti onProc (void);

Assembly-Language Summary

Constants

;flags in trap words
hf sBi t EQU 9 ;set for an HFS call
asyncTrpBit EQU 10 ;set for an asynchronous call

;masks for flags in trap words
newHFS EQU $200 ; make an HFS cal |
ASYNC EQU $400 ; make an asynchronous call

Summary of the File Manager

2-291

Jabeue a4
n

CHAPTER 2

File Manager

Data Structures

File System Specification Record

0
2
6

vRef Num
parl D
name

word
long
64 bytes

HES Parameter Block Common Fields

0
4
6
8
12
16
18
22

gLi nk

qType

i oTrap

i oCndAddr

i oConpl eti on
i oResul t

i oNanePt r

i oVRef Num

I/O Parameter Variant

24
26
27
28
32
36
40
44
46

oRef Num
oVer sNum
oPer nssn
oM sc
oBuf f er
oReqCount
oAct Count
oPosMode
oPosOf f set

File Parameter Variant

24
26
27
28
30
31
32
48
52
54
58
62
64
68
72
76

2-292

i oFRef Num
i oFVer sNum

fillerl

oFDi r I ndex
oFl Attrib
oFl Ver sNum
oFl Fndrinfo
oDirlID
oFl St Bl k
oFl LgLen
oFl PyLen
oFl RSt Bl k
oFl RLgLen
oFl RPyLen
oF!| Cr Dat
oFl MiDat

long
word
word
long
long
word
long
word

word
byte
byte
long
long
long
long
word
long

word
byte
byte
word
byte
byte
16 bytes
long
word
long
long
word
long
long
long
long

Summary of the File Manager

volume reference number
parent directory ID
filename or directory name

next queue entry

queue type

routine trap

routine address

address of completion routine
result code

pointer to pathname

volume specification

file reference number

version number

read / write permission

miscellaneous

data buffer

requested number of bytes

actual number of bytes

positioning mode and newline character
positioning offset

file reference number

file version number (unused)
reserved

directory index

file attributes

file version number (unused)
information used by the Finder
directory ID or file ID

first allocation block of data fork
logical end-of-file of data fork
physical end-of-file of data fork
first allocation block of resource fork
logical end-of-file of resource fork
physical end-of-file of resource fork
date and time of creation

date and time of last modification

CHAPTER 2

File Manager

Volume Parameter Variant

24
28
30
34
38
40
42
44
46
48
50
54
56
60
62
64
66
68
70
74
76
80
84
88

filler2
oVol | ndex
oVCr Dat e
oVLsMbd
oVAtrb
OVNnFl s
oVBi t Map
oAl | ocPtr
oVNMAI Bl ks
oVAI Bl kSi z
oVCQ pSi z
OAl Bl St
oVNxt CNI D
oVFr Bl k
oVSi gWor d
oVDrvl nfo
oVDRef Num
oVFSI D
oVBKkUp
oVSeqNum
oVW Cnt
oVFi | Cnt
oVDi r Cnt
oVFndr I nfo

Access Variant

24 filler3

26 i oDenyMbdes
28 filler4d

30 fillerb

31 i o0ACUser

32 filler6

36 i oOACOwner | D
40 i OACG oupl D
44 i oACAccess
Object Variant

24 filler7

26 i oObj Type

28 i 0Cbj NanePt r
32 i otbj I D
Copy Variant

24 i oDst VRef Num
26 filler8

28 i oNewNane

32 i oCopyNamne
36 i oNewDi r I D

long
word
long
long
word
word
word
word
word
long
long
word
long
word
word
word
word
word
long
word
long
long
long
32 bytes

word
word
word
byte
byte
long
long
long
long

word
word
long
long

word
word
long
long
long

Summary of the File Manager

reserved

volume index

date and time of initialization
date and time of last modification
volume attributes

number of files in root directory
first block of volume bitmap
first block of next new file
number of allocation blocks

size of allocation blocks

default clump size

first block in volume map

next unused node ID

number of unused allocation blocks
volume signature

drive number

driver reference number
file-system identifier

date and time of last backup
used internally

volume write count

number of files on volume
number of directories on volume
information used by the Finder

Jabeue a4
n

reserved

access mode information
reserved

reserved

user access rights
reserved

owner ID

group ID

directory access rights

reserved

function code

pointer to returned creator/group name
creator/ group ID

destination volume identifier
reserved

pointer to destination pathname
pointer to optional name

directory ID of destination directory

2-293

CHAPTER 2

File Manager

Working Directory Variant

24 filler9 word

26 i oWDI ndex word

28 i oVDPr ocl D long

32 i oWDVRef Num word

34 fillerl0 word

36 fillerll long

40 fillerl2 long

44 fillerl3 long

48 i oVDDi r I D long

File ID Variant

24 fillerl4 long

28 i oDest NanmePt r long

32 fillerl5 long

36 i oDestDirlD long

40 fillerl6 long

44 fillerl7 long

48 ioSrchirlD long

52 fillerl8 word

54 ioFilelD long
Catalog Search Variant

24 i oMat chPtr long

28 i oRegMat chCount long

32 i oAct Mat chCount long

36 i oSearchBits long

40 i oSear chl nf ol long

44 i oSear chl nf 02 long

48 i oSear chTi e long

52 i oCat Posi tion 16 bytes
68 i oOpt Buf f er long

72 i oOpt Buf Si ze long
Foreign Privileges Variant

24 filler21 long
28 filler22 long
32 i oForei gnPri vBuffer long
36 i oFor ei gnPri vReqCount long
40 i oFor ei gnPri vAct Count long
44 filler23 long
48 i oForeignPrivDirl D long
52 i oForeignPrivinfol long
56 i oForei gnPri vl nfo2 long
60 i oForei gnPri vl nfo3 long
64 i oForei gnPri vl nfo4 long
2-294 Summary of the File Manager

reserved

working directory’s index

working directory’s user identifier

working directory’s volume reference number
reserved

reserved

reserved

reserved

working directory’s directory ID

reserved

pointer to destination filename
reserved

destination parent directory ID
reserved

reserved

source parent directory ID
reserved

file ID

pointer to array of matches
maximum match count

actual match count

search criteria selector

pointer to values and lower bounds
pointer to masks and upper bounds
time limit on search

catalog position record

pointer to optional read buffer
length of optional read buffer

reserved

reserved

pointer to privileges data buffer
size allocated for buffer
amount of buffer used
reserved

parent directory ID of target
privileges data

privileges data

privileges data

privileges data

CHAPTER 2

File Manager

Catalog Information Parameter Block (Files Variant)

24 i oFRef Num
26 i oFVer sNum
27 fillerl

28 i oFDi r | ndex
30 i oFl Attrib
31 i oOACUser

32 i oFl Usr Wis
48 i oFl Num

52 i oFI St Bl k
54 i oFl LgLen
58 i oFl PyLen
62 i oFl RSt Bl k
64 i oFl RLgLen
68 i oFl RPyLen
72 i oFl Cr Dat
76 i oFl MdDat
80 i oFl BkDat
84 i oFl XFndr I nfo
100 i oFl Par| D
104 i oFl d pSi z

word
byte
byte
word
byte
byte

16 bytes
long
word
long
long
word
long
long
long
long
long

16 bytes
long
long

file reference number

version number

reserved

directory index

file attributes

directory access rights

information used by the Finder

file ID

first allocation block of data fork
logical end-of-file of data fork
physical end-of-file of data fork

first allocation block of resource fork
logical end-of-file of resource fork
physical end-of-file of resource fork
date and time of creation

date and time of last modification
date and time of last backup
additional information used by the Finder
file parent directory ID

file’s clump size

Jabeue a4
n

Catalog Information Parameter Block (Directories Variant)

24 i oFRef Num
26 i oFVer sNum
27 fillerl

28 i oFDi r | ndex

30 i oFl Attrib
31 i o0ACUser
32 i oDr Usr Wis
48 ioDrDirlI D
52 i oDr Nl s
54 filler3

72 i oDr Cr Dat
76 i oDr MdDat
80 i oDr BkDat
84 i oDr Fndr I nfo
100 i oDr Par| D

Catalog Position Record
0 initialize
4 priv

word
byte
byte
word
byte
byte

16 bytes
long
word

18 bytes
long
long
long

16 bytes
long

long
12 bytes

Summary of the File Manager

file reference number

version number

reserved

directory index

directory attributes

directory access rights
information used by the Finder
directory ID

number of files in directory
reserved

date and time of creation

date and time of last modification
date and time of last backup
additional information used by the Finder
directory’s parent directory ID

starting place for next search
private data

2-295

CHAPTER 2

File Manager

Catalog Move Parameter Block

24
28
32
36
40
48

fillerl long
i oNewNane long
filler2 long
i oNewDi r I D long
filler3 8 bytes
ioDirlD long

Working Directory Parameter Block

24
26
28
32
34
48

fillerl word
i oVDI ndex word
i oWDPr ocl D long
i oOVWDVRef Num word
filler2 14 bytes
ioWbDirl D long

File Control Block Parameter Block

24
26
28
30
32
36
38
40
44
48
52
54
58

i oRef Num word
filler word
i oFCBI ndx word
i oFCBfillerl word
i OFCBFI Nm long
i oFCBFI ags word
i oOFCBSt Bl k word
i oFCBECF long
i oOFCBPLen long
i OFCBCr Ps long
i OFCBVRef Num word
i oFCBC pSi z long
i oFCBPar | D long

Volume Attributes Buffer

0
2
6
10
14
18

Volume Mounting Information Record

0
2

2-296

vWer si on word
VMAttrib long
vM.ocal Hand long
vMser ver Adr long
vMol umreG ade long
vMFor ei gnPri vl D word

I ength word

medi a

4 bytes

Summary of the File Manager

reserved

pointer to name of new directory
reserved

directory ID of new directory
reserved

directory ID of current directory

reserved

working directory’s index

working directory’s user identifier

working directory’s volume reference number
reserved

working directory’s directory ID

file reference number
reserved

FCB index

reserved

file ID

flags

first allocation block of file
logical end-of-file
physical end-of-file
position of the file mark
volume reference number
file’s clump size

parent directory ID

version number
volume attributes
reserved

network server address
relative speed rating
foreign privilege model

length of record
type of volume

CHAPTER 2

File Manager

AFP Mounting Information Record

0 | ength word
2 nmedi a 4 bytes
6 flags word
8 nbpl nt er val byte
9 nbpCount byte
10 uaniype word
12 zoneNaneO f set word
14 server NameO f set word
16 vol NameOf f set word
18 user NameOf f set word
20 user Passwor dOF f set word
22 vol Passwor dOF f set word

24 AFPDat a 144 bytes

length of record

type of volume

reserved; must be 0

NBP retry interval

NBP retry count

user authentication method
offset to zone name

offset to server name
offset to volume name
offset to user name

offset to user password
offset to volume password
mounting data

Jabeue a4
n

Volume Control Block Data Structure (Internal)

0 gLi nk long
4 qType word
6 vcbFl ags word
8 vchSi gwrd word
10 vcbCrDate long
14 vcbLsMod long
18 VvCcbAtrb word
20 vcbNnFl s word
22 vchbVBMSt word
24 vCcbAl | ocPtr word
26 vcbNmAl Bl ks word
28 vcbAl Bl kSi z long
32 vchd pSi z long
36 vcbAl Bl St word
38 vcbNxt CNI D long
42 vcbFr eeBks word
44 vcbVN 28 bytes
72 vcbDr vNum word
74 vcbDRef Num word
76 vcbFSI D word
78 vcbVRef Num word
80 vchbMAdr long
84 vchBuf Adr long
88 vcbM.en word
90 vcbDi r | ndex word
92 vcbDir Bl k word
94 vcbVol BkUp long
98 vchbVSegNum word

Summary of the File Manager

next queue entry

queue type

volume flags

volume signature

date and time of initialization

date and time of last modification
volume attributes

number of files in root directory
first block of volume bitmap

start of next allocation search
number of allocation blocks in volume
size (in bytes) of allocation block
default clump size

first allocation block in volume
next unused catalog node ID
number of unused allocation blocks
volume name preceded by length byte
drive number

driver reference number
file-system identifier

volume reference number

pointer to block map

pointer to volume buffer

number of bytes in block map
reserved

reserved

date and time of last backup
volume backup sequence number

2-297

100
104
108
112
114
118
122
154
156
158
160
162
164
166
168
172
176

CHAPTER 2

File Manager

vcbW Cnt
vcbXTd pSi z
vcbCTd pSi z
vVCbNmRt Di r s
vcbFi | Cnt
vcbDi r Cnt
vcbFndrinfo
vcbVCSi ze
vcbVBMCSi z
vcbhCt I CSi z
vCcbXTAl Bks
vcbCTAl Bks

vCcbXTRef
vCcbCTRef
vcbhCt | Buf
vcbDir| DM
vchO fsM

long
long
long
word
long
long
32 bytes
word
word
word
word
word
word
word
long
long
word

File Control Block Data Structure (Internal)

0

4

6

8
12
16
20
24
28
30
34
38
50
54
58
62

Drive Queue Elements

0
4
6
8
10
12
14

2-298

f cbFl Num
f cbFl ags
f cbSBI k

f cbEOF
fcbPLen
fcbCrPs
fcbVvPtr

f cbBf Adr
f cbFl Pos

fcbd npSi ze

f cbBTCBPt r
f cbExt Rec
f cbFType

f cbCat Pos
fcbDirID
f cbCNane

gLi nk
qType
dQDrive
dQRef Num
dQFSI D
dQDrvSz
dQ@rvSz2

long
word
word
long
long
long
long
long
word
long
long

12 bytes
long
long
long

32 bytes

long

word
word
word
word
word
word

Summary of the File Manager

volume write count

clump size for extents overflow file
clump size for catalog file

number of directories in root directory
number of files in volume

number of directories in volume
information used by the Finder

reserved

reserved

reserved

size in blocks of extents overflow file
size in blocks of catalog file

file reference number for extents overflow file
file reference number for catalog file
pointer to extents and catalog tree caches
directory last searched

offspring index at last search

file ID

file flags

first allocation block of file
logical end-of-file

physical end-of-file

current file mark position
pointer to volume control block
pointer to access path buffer
reserved

file’s clump size

pointer to B*-tree control block
first three file extents

file’s four Finder type bytes
catalog hint for use on close
file’s parent directory ID

name of open file, preceded by length byte

next queue entry

flag for dQDr vSz and dQDr vSz2 fields
drive number

driver reference number

file-system identifier

number of logical blocks on drive
additional field for large drives

CHAPTER 2

File Manager

Trap Macros

Trap Macro Names

Pascal name Trap macro name
PBAI | ocat e _Allocate
PBAl | ocConti g _AllocContig
PBC ose O ose

PBDi r Creat e _DirCreate
PBEj ect _Ej ect

PBFl ushFi | e _FlushFile
PBFI ushVol _Fl ushVvol
PBGet ECF _Get EOF
PBCGet FPos _CGet FPos
PBCet Vol _Get Vol

PBHCr eat e _HCreate
PBHDel et e _HDel et e
PBHGet FI nf o _HGetFilelnfo
PBHCet VI nf o _HGet Vol I nfo
PBHGet Vol _ HGet Vol
PBHGet Vol Par s _CGet Vol Par ns
PBHOpen _HOpen
PBHOpenRF _HOpenRF
PBHRenane _HRenane
PBHRst FLock _HRst FLock
PBHSet FI nf o _HSetFilelnfo
PBHSet FLock _HSet FLock
PBHSet Vol __HSet Vol
PBMount Vol _Mbunt Vol
PBOr f Li ne _OffLine
PBRead _Read

PBSet ECF _Set EOF
PBSet FPos _Set FPos
PBSet VI nf o _Set Vol Info
PBSet Vol _ Set Vol
PBUnmount Vol __Unnount Vol
PBWite _Wite

Summary of the File Manager

2-299

Jabeue a4
n

CHAPTER 2

File Manager

Trap Macros Requiring Routine Selectors

_HFSDi spat ch

Selector Routine

$0001 PBOpenWD

$0002 PBCl oseWD

$0005 PBCat Move

$0006 PBDi r Cr eat e

$0007 PBGet WDI nf o

$0008 PBGet FCBI nf o
$0009 PBGet Cat I nf o
$000A PBSet Cat I nfo
$000B PBSet VI nf o

$0010 PBLockRange

$0011 PBUNnl ockRange
$0014 PBCr eat eFi | el DRef
$0015 PBDel et eFi | el DRef
$0016 PBResol veFi | el DRef
$0017 PBExchangeFi | es
$0018 PBCat Sear ch

$001A PBHOpenDF

$001B PBVakeFSSpec
$0030 PBHCet Vol Par ns
$0031 PBHGet Logl nl nfo
$0032 PBHCet Di r Access
$0033 PBHSet Di r Access
$0034 PBHVap! D

$0035 PBHVEpNarme

$0036 PBHCopyFi | e

$0037 PBHMVbveRenane
$0038 PBHOpenDeny

$0039 PBHOpenRFDeny
$003F PBGet Vol Mbunt | nf 0Si ze
$0040 PBGet Vol Mount | nf o
$0041 PBVol uneMbunt
$0042 PBShar e

$0043 PBUnshar e

2-300 Summary of the File Manager

CHAPTER 2

File Manager
Selector Routine
$0044 PBGet UGENt ry
$0060 PBCet For ei gnPrivs
$0061 PBSet For ei gnPri vs

_Hi ghLevel FSDi spat ch

Selector Routine

$0001 FSMakeFSSpec
$0002 FSpOpenDF

$0003 FSpOpenRF

$0004 FSpCr eat e

$0005 FSpDi r Creat e
$0006 FSpDel et e

$0007 FSpGet FI nf o

$0008 FSpSet FI nf o

$0009 FSpSet FLock
$000A FSpRst FLock
$000B FSpRenane

$000C FSpCat Move

$000D FSpOpenResFi | e
$000E FSpCr eat eResFi |l e
$000F FSpExchangeFi | es

Summary of the File Manager

2-301

Jabeue a4
n

CHAPTER 2

File Manager

Global Variables

Boot Dri ve
Def VCBPt r
Dr vQHdr
FSFCBLen
FSQHdr
ToExt FS
VCBQHdr

word
long

10 bytes
word

10 bytes
long

10 bytes

Result Codes

Working directory reference number for startup volume.
Pointer to default volume control block.

Drive queue header.

Size of a file control block.

File I/O queue header.

Pointer to external file system.

Volume control block queue header.

noErr

not OpenkErr

dirFul Err
dskFul Err
nsvErr

i oErr
bdNantr r
fnCpnErr
eof Err
posErr

t nf oErr
fnfErr
wWPr Er r

f LckdErr
vLckdErr
f BSyErr

dupFNEr r
OpW Err

parantrr
rf Nunerr

of pErr

vol O flinErr

per nErr

vol OnLi nErr

nsDr vErr

noMacDskEr r

ext FSEr r
fSRnErr
badNVDBEr r
wr Per nErr

menful | Err

di r NFEr r
t mwdoEr r
badMovErr

wr gVol TypErr

2-302

Summary of the File Manager

28
-33
-34
-35
-36
=37
-38
-39
—40
—42
—43
—44
—45
—46
—47

—48
—49
=50
-51

-52
-53
—54
-55
56

=57
-58
-59
-60
—61
-108
-120
-121
-122
-123

No error

AppleTalk is not open

File directory full

All allocation blocks on the volume are full
Volume not found

I/0O error

Bad filename or volume name

File not open

Logical end-of-file reached

Attempt to position mark before start of file

Too many files open

File not found

Hardware volume lock

File is locked

Software volume lock

File is busy; one or more files are open; directory not
empty or working directory control block is open
A file with the specified name already exists

File already open for writing

Parameter error

Reference number specifies nonexistent access path;
bad working directory reference number

Error during CGet FPos

Volume is offline

Attempt to open locked file for writing

Specified volume is already mounted and online
Specified drive number doesn’t match any number
in the drive queue

Volume lacks Macintosh-format directory
External file system

Problem during rename

Bad master directory block

Read /write permission doesn’t allow writing
Insufficient memory available

Directory not found

Too many working directories open

Attempted to move into offspring

Not an HFS volume

CHAPTER 2

File Manager

vol GoneErr
fsDSI nt Err

fi dNot FoundEr r
fi dExi sts

not AFi | eErr

di ffVol Err

cat ChangedErr

saneFi |l eErr
af pAccessDeni ed

af pBadUAM
af pBadVer sNum

af pDenyConf | i ct

af pNoMor eLocks

af pNoSer ver
af pRangeNot Locked

af pRangeQver | ap
af pUser Not Aut h
af pQbj ect TypeErr

af pCont ai nsShar edEr r
af pl DNot Found

af pl DExi st's

af pCat al ogChanged

af pSamebj ect Err

af pBadl DErr

af pPwdExpi r ed

af pl nsi deShar edErr
af pBadDi r | DType

af pCant Mount Mor eSrvr s
af pAl r eadyMount ed

af pSameNodeEr r

Summary of the File Manager

-124

-127
-1300
-1301
-1302
-1303
-1304

-1306
-5000

-5002
-5003

-5006

-5015

-5016
-5020

-5021

-5023

-5025

-5033
-5034
-5035
-5037
-5038
-5039
-5042
-5043
-5060
-5061
-5062
-5063

Server volume has been disconnected

Internal file system error

File ID not found

File ID already exists

Specified file is a directory

Files are on different volumes

Catalog has changed and catalog position record
may be invalid

Files are the same

The operation has failed because the user does not
have the correct access to the file or folder

User authentication method is unknown
Workstation is using an AFP version that the server
doesn’t recognize

The operation has failed because the permission or
deny mode conflicts with the mode in which the
fork has already been opened

Byte range locking has failed because the server
cannot lock any additional ranges

Server is not responding

User has attempted to unlock a range that was not
locked by that user

User attempted to lock some or all of a range that is
already locked

User authentication failed (usually, password is
not correct)

Object was a file, not a directory; or, this directory is
not a share point

The directory contains a share point

File ID not found

File ID already exists

Catalog has changed and search cannot be resumed
Source and destination are the same

Bad file ID

Password has expired on server

The directory is inside a shared directory

Not a fixed directory ID volume

Maximum number of volumes have been mounted
Volume already mounted

Attempt to log on to a server running on the

same machine

2-303

Jabeue a4
n

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to File Management TOC
	 Introduction to File Management
	 File Manager TOC
	File Manager
	About the File Manager
	File Manipulation
	Directory Manipulation
	Volume Manipulation
	Volume Searching
	Shared Environments
	Shared File Access Permissions
	Directory Access Privileges
	Remote Volume Mounting
	Privilege Information in Foreign File Systems

	File ID Reference Routines

	Identifying Files, Directories, and Volumes
	File System Specifications
	File IDs
	Directory IDs
	Volume Reference Numbers
	Working Directory Reference Numbers
	Names and Pathnames
	HFS Specifications
	Search Paths

	Using the File Manager
	Determining the Features of the File Manager
	Creating File System Specification Records
	Manipulating the Default Volume and Directory
	Deleting Files and File Forks
	Searching a Volume
	Constructing Full Pathnames
	Determining the Amount of Free Space on a Volume
	Sharing Volumes and Directories
	Locking and Unlocking File Ranges

	Data Organization on Volumes
	Disk and Volume Organization
	Boot Blocks
	Master Directory Blocks
	Volume Bitmaps
	B*-Trees
	Nodes
	Node Records
	Header Nodes
	Map Nodes
	Index Nodes
	Leaf Nodes

	Catalog Files
	Catalog File Keys
	Catalog File Data Records

	Extents Overflow Files

	Data Organization in Memory
	The File I/O Queue
	Volume Control Blocks
	File Control Blocks
	B*-Tree Control Blocks
	The Drive Queue

	File Manager Reference
	Data Structures
	File System Specification Record
	Basic File Manager Parameter Block
	HFS Parameter Block
	Catalog Information Parameter Blocks
	Catalog Position Records
	Catalog Move Parameter Blocks
	Working Directory Parameter Blocks
	File Control Block Parameter Blocks
	Volume Attributes Buffer
	Volume Mounting Information Records

	High-Level File Access Routines
	Reading, Writing, and Closing Files
	Manipulating the File Mark
	Manipulating the End-of-File
	Allocating File Blocks

	Low-Level File Access Routines
	Reading, Writing, and Closing Files
	Manipulating the File Mark
	Manipulating the End-of-File
	Allocating File Blocks
	Updating Files

	High-Level Volume Access Routines
	Unmounting Volumes
	Updating Volumes
	Manipulating the Default Volume
	Obtaining Volume Information

	Low-Level Volume Access Routines
	Mounting and Unmounting Volumes
	Updating Volumes
	Obtaining Volume Information
	Manipulating the Default Volume

	File System Specification Routines
	Opening Files
	Creating and Deleting Files and Directories
	Accessing Information About Files and Directories
	Moving Files or Directories
	Exchanging the Data in Two Files
	Creating File System Specifications

	High-Level HFS Routines
	Opening Files
	Creating and Deleting Files and Directories
	Accessing Information About Files and Directories
	Moving Files or Directories
	Maintaining Working Directories

	Low-Level HFS Routines
	Opening Files
	Creating and Deleting Files and Directories
	Accessing Information About Files and Directories
	Moving Files or Directories
	Maintaining Working Directories
	Searching a Catalog
	Exchanging the Data in Two Files

	Shared Environment Routines
	Opening Files While Denying Access
	Locking and Unlocking File Ranges
	Manipulating Share Points
	Controlling Directory Access
	Mounting Volumes
	Controlling Login Access
	Copying and Moving Files

	File ID Routines
	Resolving File ID References
	Creating and Deleting File ID References

	Foreign File System Routines
	Utility Routines
	Obtaining Queue Headers
	Adding a Drive
	Obtaining File Control Block Information

	Application-Defined Routines
	Completion Routines

	Summary of the File Manager
	Pascal Summary
	Constants
	Data Types
	Internal Data Types
	High-Level File Access Routines
	Low-Level File Access Routines
	High-Level Volume Access Routines
	Low-Level Volume Access Routines
	File System Specification Routines
	High-Level HFS Routines
	Low-Level HFS Routines
	Shared Environment Routines
	File ID Routines
	Foreign File System Routines
	Utility Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Internal Data Types
	High-Level File Access Routines
	Low-Level File Access Routines
	High-Level Volume Access Routines
	Low-Level Volume Access Routines
	File System Specification Routines
	High-Level HFS Routines
	Low-Level HFS Routines
	Shared Environment Routines
	File ID Routines
	Foreign File System Routines
	Utility Routines
	Application-Defined Routine

	Assembly-Language Summary
	Constants
	Data Structures
	Trap Macros
	Global Variables

	Result Codes

	 Standard File Package TOC
	 Standard File Package
	 Alias Manager TOC
	 Alias Manager
	 Disk Initialization Manager TOC
	 Disk Initialization Manager
	 Glossary
	 Index
	 Colophon

