APPENDIX B

Using Picture Comments for Printing

This appendix describes the picture comments predefined by Apple Computer, Inc., for
its PostScript printers and several of its QuickDraw printers (including the LaserWriter
SC, ImageWriter LQ, and StyleWriter printers). This appendix introduces you to the use
of picture comments for printing with features that are unavailable with QuickDraw
alone.

For most applications, sending QuickDraw’s picture-drawing routines to the printer
driver is sufficient: the driver either uses QuickDraw or converts QuickDraw routines

to PostScript code. See the chapter “Printing Manager” in this book for information
about QuickDraw-based printing. For some applications, such as page-layout programs,
QuickDraw-based printing may not be sufficient; such applications may rely on printer
drivers—such as PostScript printer drivers—to provide features that are not available, or
are difficult to achieve, using QuickDraw.

For PostScript printers, one solution is for your application to send PostScript code
directly to the printer driver, but this approach requires you to know the PostScript
language as well as QuickDraw. If your application requires features (such as rotated
text and dashed lines) that are unavailable with QuickDraw, you may instead want to
use picture comments to take advantage of these features on capable printers. Created
with the QuickDraw procedure Pi cComrent , picture comments are data or commands
for special processing by output devices such as printer drivers. The Pi cComent
procedure is introduced in the chapter “Pictures” in this book and is expanded upon in
this appendix.

IMPORTANT

The picture comments supported by Apple printer drivers are described
on page B-7. However, it is impossible to determine which picture
comments are supported by the current printer driver. a

About Picture Comments

Within the drawing code sent to a printer driver after your application uses the

Pr OpenPage procedure, your application can specify picture comments by using the
QuickDraw Pi cComment procedure. The Pi cComment procedure allows your
application to pass data or commands directly to an output device.

PROCEDURE Pi cComment (ki nd: Integer; dataSize: I|nteger;
dat aHandl e: Handl e) ;

The ki nd parameter specifies the kind of picture comment, and the dat aSi ze
parameter specifies the size of the data referred to by the dat aHandl e parameter. (For
some picture comments, the values passed in the dat aSi ze and dat aHandl e
parameters should be 0 and NI L, respectively.)

About Picture Comments B-3

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

You typically use a picture comment to give your application and an output device
additional control over the rendering of images. A number of picture comments have
been given special definitions by various printer drivers. When a printer driver
encounters one of these comments, it interprets the comment as an appropriate drawing
operation. A PostScript printer driver, for example, may convert a picture comment into
PostScript code.

By including picture comments in your code that draws into a printing graphics port,
your application can rotate text and graphics, smooth polygons, draw hairlines, create
dashed lines, and pass PostScript code directly to the printer driver. (For information
about the PostScript language, see the PostScript Language Reference Manual, second
edition, published by Addison-Wesley.)

Picture comments were initially designed to allow applications to share data in the form
of QuickDraw pictures (as described in the chapter “Pictures” in this book). With the
advent of the PostScript LaserWriter printer, the use of picture comments was extended
to allow applications to more easily take advantage of various PostScript features
unavailable with QuickDraw.

However, you do not need to create a QuickDraw picture to use picture comments for
printing. When your application calls the Printing Manager procedure Pr OQpenPage,
the printer driver collects your drawing operations after they are handled by the
low-level drawing routines contained in the QDPr ocs record for the printing graphics
port. As explained in the chapter “QuickDraw Drawing” in this book, the default
low-level procedure specified by QuickDraw in the comment Pr oc field of the QDPr ocs
record is the St dComment procedure, which simply ignores picture comments.
However, a printer driver can replace the St dComment procedure with its own routine
for handling picture comments.

WARNING

As described in the chapter “Pictures” in this book, do not call the
OpenCPi ct ur e or OpenPi ct ur e function between calls to

Pr OpenPage and Pr Cl osePage. a

When you use the Pi cComment procedure after calling Pr OpenPage and before calling
Pr O osePage, the printer driver either ignores the picture comment passed to

Pi cComment or collects the results of its drawing operations, depending on whether the
printer driver has installed its own low-level drawing routine that handles the picture
comment.

Although the Pi cComment procedure is available on all Macintosh computers, the
availability of the drawing operations that you can implement with picture comments
depends on the driver for the current printer. The inability to determine which picture
comments are supported by the current printer driver means that if you use

picture comments to perform drawing operations not supported by QuickDraw, you
must also provide for printing on QuickDraw-only printers.

About Picture Comments

APPENDIX B

Using Picture Comments for Printing

This requires your application to maintain separate code branches: for example, one that
takes advantage of the picture comment handling of a PostScript printer driver, and
another for a printer driver that supports only QuickDraw. Furthermore, you must hide
the code that takes advantage of PostScript printer drivers from QuickDraw-based
drivers, and you must hide from PostScript drivers the code that uses QuickDraw-based
approximations of these drawing operations. Your application’s printed output will
necessarily differ depending on the driver for the current printer.

Table B-1 lists picture comments defined for various printer drivers produced by Apple
and used by third-party producers of various other printer drivers. For each picture
comment, this table shows the name of the picture comment that you specify in the ki nd
parameter of the Pi cComment procedure, the value represented by the name, the value
for the dat aSi ze parameter, and the value for the dat aHandl e parameter. (Be sure to
dispose of the memory you allocate for any handle you pass in the dat aHandl e
parameter.) Keep in mind that it is impossible to determine which picture comments are
supported by the driver of the current printer.

Table B-1 Names, values, and data sizes for picture comments

Name Value Data size Data handle Description

Text picture comments

Text Begi n 150 6 TTxt Pi cRec Begin text
function

Text End 151 0 NI L End text function

StringBegin 152 0 NI L Begin string
delimitation

StringEnd 153 0 NI L End string
delimitation

Text Cent er 154 8 TCent er Rec Offset to center of
rotation for text

Li neLayout O f 155 0 NI L Turn printer
driver’s line
layout off

Li neLayout On 156 0 NI L Turn printer
driver’s line
layout on

C i ent Li neLayout 157 16 Td i ent LLRec Customize line

About Picture Comments

layout error
distribution

continued

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Names, values, and data sizes for picture comments (continued)

Table B-1
Name Value
Graphics picture comments
Pol yBegi n 160
Pol yEnd 161
Pol yl gnor e 163
Pol ySnoot h 164
Pol yd ose 165
Rot at eBegi n 200
Rot at eEnd 201
Rot at eCent er 202

Line-drawing picture comments

DashedLi ne 180
DashedSt op 181
Set Li neW dt h 182

PostScript picture comments

Post Scri pt Begi n 190
Post Scri pt End 191
Post Scri pt Handl e 192
Post ScriptFile 193
Text | sPost Scri pt 194
Resour cePS 195
PSBegi nNoSave 196

B-6 About Picture Comments

Data size

Size of a
TDashedLi neRec
record

0
4

Length of
PostScript data

Length of
PostScript data

Data handle

NI L

NI L

NI L

TPol yVer bRec

NI L

TRot at i onRec
NI L
TCent er Rec

TDashedLi neRec

NI L
TLi neW dt hHdI

NI L

NI L

Handl e

Handl e

NI L

Resource type,
resource ID, index

NI L

Description

Begin special
polygon

End special
polygon

Ignore following
polygon data

Close, fill, frame

Smooth the curve
between
endpoints

Begin rotated port
End rotation

Offset to center of
rotation

Draw following
lines as dashed

End dashed lines

Set fractional line
widths

Set driver state to
PostScript

Restore
QuickDraw state

PostScript data
referenced in
handle

Filename
referenced in
handle

QuickDraw text is
sent as PostScript

PostScript data in
a resource file

Set driver state to
PostScript

APPENDIX B

Using Picture Comments for Printing

Table B-1 Names, values, and data sizes for picture comments (continued)
Name Value Data size Data handle Description
Forms-printing picture comments
FormsPrinting 210 0 NI L Don’t clear print
buffer after each
page
EndFor msPrinti ng 211 0 NI L End forms

printing after
Pr C osePage

ColorSync picture comments

C\VBegi nProfile 220 0 NI L Begin ColorSync
profile

CMEndProfile 221 0 NI L End ColorSync
profile

CMEnabl eMat chi ng 222 0 NI L Begin ColorSync
color matching

CMDi sabl eMat chi ng 223 0 NI L End ColorSync

color matching

All PostScript LaserWriter drivers support the picture comments listed in Table B-1.

Some third-party QuickDraw printer drivers support the Text Begi n, Text Cent er,
and Text End picture comments.

The QuickDraw LaserWriter SC driver supports the Li neLayout O f, Li neLayout On,
and Set Li neW dt h picture comments.

The QuickDraw ImageWriter LQ driver and versions prior to 7.2 of the QuickDraw
StyleWriter driver support the Li neLayout Of f and Li neLayout On picture comments.

The QuickDraw Personal LaserWriter LS driver and versions later than 7.2 of the
QuickDraw StyleWriter driver support no picture comments at all.

The Set Gr ayLevel picture comment is now obsolete. The Post Scri ptFi | e,

Text | sPost Scri pt, FornsPri nti ng, EndFornsPri nting, CientLi neLayout,
PSBegi nNoSave, and Resour cePS picture comments have limited use and are no
longer recommended.

See Inside Macintosh: Advanced Color Imaging for information about the picture comments
used by the ColorSync Utilities.

About Picture Comments B-7

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Maintaining Device Independence

B-8

Whenever printing, you should use both QuickDraw and non-QuickDraw
representations of an image, so that the current printer driver can render the best
possible picture. If you send an image described with picture comments to a QuickDraw
printer driver that does not support those picture comments, the driver ignores the
comments and subsequently does not print your image; if you send only a QuickDraw
image to a printer driver that supports picture comments, the driver may not render its
best possible image.

Printer drivers that support Text Begi n, Text Cent er, and Text End are expected to
ignore calls to the CopyBi t s, CopyMask, and CopyDeepMask procedures that fall
between the Text Begi n and Text End picture comments. Between the Text Begi n and
Text End picture comments, you can use CopyBi t s to draw a bitmap representation of
rotated text on QuickDraw printers; this bitmap is not used if the Text Begi n and

Text End picture comments are supported, but it is used if Text Begi n and Text End
are not supported. This is illustrated in Listing B-4 on page B-21.

When your application draws polygons on a PostScript printer, you can use Pol yBegi n,
Pol ySnoot h, and Pol yEnd picture comments to draw smoothed polygons; QuickDraw
printer drivers ignore these comments. To make a PostScript printer driver ignore your
QuickDraw representation of the polygons, you can use the Pol yI gnor e picture
comment, as illustrated in Listing B-6 on page B-27.

A technique for maintaining two sets of drawing codes, described in “Rotating
Graphics” beginning on page B-29 and “Drawing Dashed Lines” beginning on

page B-33, makes use of a “magic pen” visible only to PostScript drivers. Graphics
comments for drawing dashed lines and for rotating graphics require the use of the
PenMbde procedure to set the pattern mode to a value of 23. Normally this value is
undefined, but it is handled specially by PostScript printer drivers (all QuickDraw
drivers ignore it). Your application can use this pattern mode to draw objects in a picture,
and if the picture is printed on a QuickDraw printer, these objects are not visible.

To maintain device independence when you send routines to a PostScript printer driver,
you can “hide” QuickDraw routines between the Post Scr i pt Begi n and

Post Scr i pt End picture comments. The Post Scri pt Begi n comment is recognized
only by PostScript printer drivers. When a PostScript driver receives the

Post Scri pt Begi n comment, it tells the PostScript printer to save the current state

of the printer and to disable all low-level standard QuickDraw drawing procedures.
Thus, the QuickDraw representation of the graphic is ignored by PostScript printer
drivers.

Maintaining Device Independence

APPENDIX B

Using Picture Comments for Printing

Table B-2 lists the QuickDraw low-level procedures and the affected high-level drawing
routines that are disabled by the Post Scri pt Begi n picture comment.

Table B-2 Low-level QuickDraw routines disabled by the Post Scri pt Begi n comment
Low-level routine Examples of affected high-level QuickDraw routines
St dText QuickDraw text-drawing routines (as described in the chapter
“QuickDraw Text” in Inside Macintosh: Text)
St dLi ne MoveTo, Move, Li neTo, Li ne
St dRect Fr aneRect, Pai nt Rect, Fi | | Rect, Er aseRect, | nvert Rect
St dRRect Fr ameRoundRect, Pai nt RoundRect, Fi | | RoundRect,
Er aseRoundRect, | nver t RoundRect
St dOval Fr aneOval , Pai nt Oval ,Fi | | Oval , Er aseOval, | nvert Oval
St dArc FranmeArc,PaintArc,Fill Arc, EraseArc, | nvert Arc
St dPol y FramePol y, Pai nt Pol y, Fi | | Pol y, ErasePol y, | nvert Pol y
St dRgn Fr ameRgn, Pai nt Rgn
StdBits CopyBi t's, CopyMask, CopyDeepMask

To mark the end of a sequence of hidden QuickDraw drawing routines and to reenable
QuickDraw drawing routines, you can use the picture comment Post Scr i pt End.

The Post Scri pt End comment is recognized only by PostScript printer drivers. When a
PostScript driver receives the Post Scri pt End comment, it tells the PostScript printer
driver to restore the previous state of the printer driver and to enable QuickDraw
drawing operations.

For a LaserWriter PostScript printer driver, QuickDraw routines that draw text, lines,
and shapes and copy bitmaps or pixel maps have no effect when placed between the
Post Scri pt Begi n and Post Scr i pt End picture comments. Instead, the driver expects
to receive imaging instructions in subsequent picture comments. On the other hand, a
QuickDraw printer driver ignores the Post Scri pt Begi n and Post Scri pt End picture
comments.

Only PostScript printer drivers should support the DashedLi ne, DashedSt op,

Rot at eBegi n, Rot at eCent er, and Rot at eEnd picture comments. Therefore, you can
use the Post Scri pt Begi n and Post Scr i pt End picture comments to hide your
QuickDraw implementations of these comments from the printer driver. Listing B-7 on
page B-31 illustrates how to use Post Scr i pt Begi n and Post Scri pt End when
rotating graphics on PostScript printers; Listing B-9 on page B-34 illustrates how to use
Post Scri pt Begi n and Post Scri pt End when drawing dashed lines on PostScript
printers.

Maintaining Device Independence B-9

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Synchronizing QuickDraw and PostScript Printer Drivers

QuickDraw instructions such as those generated by the Move, MoveTo, PenPat , and
PenSi ze routines change the state of the current graphics port without going through
the standard low-level routines pointed to in the QDPr ocs record for the current
graphics port. A printer driver takes these changes into account only at the time it
executes an actual drawing instruction. The printer driver uses the routines specified in
the QDPr ocs record at execution time and responds only to those instructions handled
by the routines in the QDPr ocs record. Therefore, you should flush the state of the
printing graphics port explicitly by calling any routine that goes through the

QDPr ocs. | i nePr oc field, as shown in Listing B-1, before inserting code using picture
comments for a PostScript driver. The use of the application-defined routine

M/Fl ushG af Por t St at e shown here is further illustrated in Listing B-8 on page B-32.

Listing B-1 Synchronizing QuickDraw and the PostScript driver

PROCEDURE MyFl ushGr af Port St at e;

VAR
penl nfo: PenSt at e;
BEG N
Get PenSt at e(penl nf o) ; {save pen size}
PenSi ze(0, 0); {make it invisible}
MoveTo(- 3200, - 3200) ; {move the pen way off the page in }

{ case the printer driver draws a dot }
{ even with a pen size of (0,0)}
Li ne(0, 0); {go through QDProcs.|ineProc}
{next, restore pen size}
PenSi ze(penl nfo. pnSi ze. h, penl nfo. pnSi ze. v);
END;

B-10 Synchronizing QuickDraw and PostScript Printer Drivers

APPENDIX B

Using Picture Comments for Printing

A PostScript printer driver separates the PostScript code generated for text-drawing
instructions (which usually involves font queries and, sometimes, font downloading)
from the picture comments intended for PostScript devices. In certain cases, this results
in apparently nonsequential execution of drawing instructions and may affect clipping
regions or have side effects on the drawing operations you include in picture comments.
To synchronize the sequence of QuickDraw routines with the generation of PostScript
code, you need to flush the buffer maintained by the PostScript driver. You can do this
by using the Post Scri pt Begi n picture comment followed immediately by the

Post Scri pt End picture comment. This causes all PostScript code, generated either by
the application or by the printer driver, to be sent to the printer. Listing B-2 shows an
application-defined procedure that does this. The use of the application-defined routine
M/Fl ushPost Scri pt St at e shown here is further illustrated in Listing B-4 on

page B-21.

Listing B-2 Flushing the buffer for a PostScript printer driver

PROCEDURE MyFIl ushPost Scri pt St at e;
BEG N
Pi cConment (Post Scri ptBegin, 0, NL);
Pi cConment (Post Scri pt End, 0, NIL);
END;

Using Text Picture Comments

The text picture comments listed in Table B-1 on page B-5 allow you to disable the
printer driver’s line layout capabilities (as described in the next section), construct lines
of text out of disparate strings (as described in “Delimiting Strings” on page B-16), and
rotate text on the page (as described in “Rotating Text” on page B-17).

For information on drawing text, see Inside Macintosh: Text.

Disabling and Reenabling Line Layout

When your application draws text into a printing graphics port, the printer driver may
do a lot of extra work depending on the current printer; the printer driver may have to
scale and smooth fonts, remap characters, and substitute one font used onscreen for
another that exists on the printer (this last action is called font substitution).

After it selects the appropriate font, the printer driver matches the width of the printed
line with the width of the screen line. If the driver has to perform font substitution, the
two lines may be very different. For example, if your application draws a document with
the Geneva bitmapped font (instead of the Geneva TrueType font), a PostScript printer

Using Text Picture Comments B-11

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

driver could substitute the Helvetica® font for Geneva in the PostScript code it
generates. Since Helvetica is a different font, it has different metrics. A rather
exaggerated example of the effects of font substitution can be found in Figure B-1.

Figure B-1 The line layout error between a bitmapped font and a PostScript font

B-12

Bitmapped screen font (14-point Geneva) Th] 5] 54]] ne ':'f te}it.

LT)

Line layout error

PostScript printer font (14-point Helvetica) This is a line of text.

For the typical user, the appearance of Helvetica on the printed page is not that much
different from the appearance of Geneva on the screen. However, the width of the lines
using the two fonts is different; this difference is called the line layout error. The line of
text using the bitmapped screen font is much wider than the line of text using the
PostScript printer font. (Depending on the font used in the document or substituted on
the printer, you might also run into cases where the screen width is narrower than the
printed width.)

Note

There are no line layout problems with TrueType fonts, unless one font
has the same name as—but a different character width from—a
printer-resident PostScript font. O

To distribute the layout error, a printer driver must effectively increase or decrease the
width of each glyph in the line. A glyph is the distinct representation of a character in a
form that a screen or printer can display. A glyph may represent one character (the
lowercase a), more than one character (the fi ligature, two characters but one glyph), or a
nonprinting character (the space character). When using Roman scripts, most lines of
text contain some number of space character glyphs. Printer drivers take advantage of
this fact and normally apply most of the layout error to space glyphs (known as the
magjor glyphs) and the rest of the error to the other glyphs in the string (known as the
minor glyphs).

Using Text Picture Comments

APPENDIX B

Using Picture Comments for Printing

In Figure B-2, the i, s, and a characters are examples of minor glyphs, where s and a are
separated by the major glyph (the space character).

Figure B-2 Major and minor glyphs

Bitmapped screen font (14-point Geneva) Th] S]] e ':'f tE'}-::t.
Major.-.
glyph .

L

==
T

Minor glyphs

The amount of error applied to the major glyph is known as the major error, and the
amount applied to the other glyphs is the minor error.

In Figure B-3, the printer driver corrects most of the difference between the line widths
by expanding the width of the space glyphs in the string.

Figure B-3 Distributing layout error to the major glyphs

Bitmapped screen font (14-point Geneva) Thisis a line of Lext.

PostScript printer font (14-point Helvetica) ThlS‘ ‘|S‘ ﬁ ‘Iine‘ ‘Of‘ ‘teXt.

TII T7J

Spaces between words are wider

Using Text Picture Comments B-13

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

However, if the printer driver expands only the width of the spaces, the line has a
strange appearance. To balance the changes made to the space glyphs, the driver’s line
layout routines increase the space between each glyph in the string by a small amount.
After the line is laid out in this way, the printed string should be almost exactly as wide
as the string that was displayed on the screen. As shown in Figure B-4, the space
between the uppercase T and the lowercase h in the word This has been increased, but
only slightly; most of the error has been applied to the spaces. By default, most drivers
apply about 80 percent of the total line layout error to the major glyphs and the other 20
percent to the minor glyphs. When using a script system that does not use the space
glyph to delimit words, the layout error is distributed evenly across all characters in the
line.

Figure B-4 Distributing layout error among major and minor glyphs

B-14

Bitmapped screen font (14-point Geneva) Th] 3] S5 4d]] ne ':'f te}‘{t.

PostScript printer font (14-point Helvetica) T‘his‘iS a line of text.

Major error

Minor error

A printer driver’s line layout routines are device-dependent. Since different devices have
different resident fonts, the layout error can be quite large. For this reason, you should
not assume that if you have the correct output on one type of laser printer you will have
the correct output on all devices or with all fonts.

Although the printer driver can compute the placement of a line of text on the page so
that it closely approximates the placement of the line on the screen, there are times when
adjusting the line of text by adding space can have an adverse effect on the line layout
that your application has already done.

You can disable the line layout routines of the current printer driver and give your
application more control over placement of the glyphs on the page by using the

Li neLayout O f picture comment. You may want to use this picture comment if your
application prints monospaced, tab-formatted text; draws notes or other music symbols
using glyphs from a music font; or renders mathematical equations or formulas. For
example, if your application displays musical notation, the notes should stay where your
application placed them, because small shifts in position can cause the music to be
misread.

Using Text Picture Comments

APPENDIX B

Using Picture Comments for Printing

The Li neLayout Of f picture comment instructs the printer driver to make no
adjustments to the text being sent. Your application is then responsible for identically
matching the appearance of text displayed on the screen to the printer. If the current
printer driver does not support these comments, it ignores them and places the text on
the page as well as it can.

You can reenable the printer driver’s line layout routines with the Li neLayout On
picture comment (however, some printer drivers support only the Li neLayout O f
comment). Although general line layout is disabled, some small shifts in glyph position
may still occur. These shifts are usually not a problem, but, if they are, you should use
the Pr Gener al procedure with the get Rsl Dat aOp and set Rs| Op opcodes (described
in the chapter “Printing Manager” in this book) to draw text at the resolution of the
current printer.

IMPORTANT

Setting the Fr act Enabl e global variable (described in the chapter
“Font Manager” in Inside Macintosh: Text) to TRUE does not have
precisely the same effect as using the Li neLayout Of f picture
comment. You should explicitly use the Li heLayout Of f

picture comment rather than the Set Fr act Enabl e procedure. a

Figure B-5 compares the results of an application using the Li neLayout Of f picture
comment and the Li neLayout On picture comment. In the first example, the text is
printed exactly as it is rendered on the printer, with a much smaller width. In the second
example, the printer driver’s line layout routines make the screen and printer lines the
same length.

Figure B-5 Using the Li neLayout OF f and Li neLayout On picture comments

Li neLayout O f

Bitmapped screen font (14-point Geneva) Th] S] S 4d]] ne ':'f te}{t.

PostScript printer font (14-point Helvetica) Thisis a line of text.

Li neLayout On

Bitmapped screen font (14-point Geneva) Th] 3] S5 d]] ne ':'f te}it.

PostScript printer font (14-point Helvetica) This is a line of text.

Using Text Picture Comments B-15

Bunuid 1o} sjuswiwo) ainald buisn n

B-16

APPENDIX B

Using Picture Comments for Printing

In computing the required line layout adjustments, the PostScript LaserWriter driver
proceeds as follows:

1. It collects text processed by the routine pointed to in the t ext Pr oc field of the
printing graphics port’s QDPr ocs record, and assembles the text into a logically
contiguous line. This includes text moved vertically away from the baseline to take
care of diacritical marks or exponents in the text. The accumulation of text stops when
the PostScript LaserWriter driver detects that the pen position has moved horizontally
since the conclusion of the previous text-drawing instruction, or when the driver
encounters picture comments such as Text Begi n, Text End, St ri ngBegi n, and
StringEnd.

2. Tt determines the width of the accumulated logical line of text, both on the screen and
on the printer, and distributes the line layout error among the interword and
intercharacter spacing of the printed output.

The Li neLayout Of f picture comment disables only the second step (distribution of the
line layout error); the algorithm of accumulating text into a logically contiguous piece is
not affected. Otherwise, if the character widths of the printer font are different from
those of the screen font, and if the text contains diacritical marks or exponents, the
diacritical marks and exponents would often be misplaced.

If you want precise control over the placement of different text strings within a line, you
must override the heuristic line accumulation algorithm of the PostScript LaserWriter
driver (described in the first step). A good way to override this algorithm is to use the

St ri ngBegi n and St ri ngEnd picture comments to mark individual strings as
logically independent text entities; this prevents the PostScript LaserWriter driver from
assembling the strings into one logically contiguous line of text. The St ri ngBegi n and
St ri ngEnd picture comments are described in the next section; Listing B-3 on page B-17
illustrates how to completely disable line layout by using the Li neLayout Of f and

St ri ngBegi n picture comments.

Delimiting Strings

You may want to draw a particular text string in pieces instead of a whole. For example,
to draw kerned glyphs, you can draw the first part of the string—up to the point where
kerning occurs—using the Dr awText procedure, and you can then adjust the pen and
draw the kerned glyph using the Dr awChar procedure. (The Dr awText and Dr awChar
procedures are described in the chapter “QuickDraw Text” in Inside Macintosh: Text.) You
can also draw a single string that contains different fonts, styles, or sizes—if you call

Dr awText each time the typeface or font style changes. To identify the beginning of a
single string that will be drawn using multiple calls to a QuickDraw text-drawing
routine, you can use the St ri ngBegi n picture comment. Use the St r i ngEnd picture
comment to mark its end.

Using Text Picture Comments

APPENDIX B

Using Picture Comments for Printing

You can use the St ri ngBegi n and St r i ngEnd picture comments if your application
needs complete control over glyph placement on a page. If your application uses
text-editing boxes for individual strings, it can use these picture comments to treat each
string as a separate piece of text and place all glyphs into one text-editing box.

Listing B-3 uses the St ri ngBegi n and St ri ngEnd picture comments. Use the
Li neLayout O f picture comment (described in the preceding section) in conjunction
with the St ri ngBegi n comment to turn line layout completely off.

Listing B-3 Disabling line layout by using the Li neLayout O f and St ri ngBegi n picture

comments

PROCEDURE MyStri ngReconDenmo (x: XArray; y: Integer);
BEG N
Pi cCommrent (Li neLayout O f, 0, NI L) ;
Pi cComrent (St ri ngBegi n, 0, NI L);
{position each character of the word ' Test' using }
{ MoveTo and Dr awChar}
MoveTo(x[1],y); DrawChar('T');
MoveTo(x[2],y); DrawChar('e');
MoveTo(x[3],y); DrawChar('s');
MoveTo(x[4],y); DrawChar('t');
{reenabl e the printer driver's line |layout routines}
Pi cComrent (Stri ngEnd, O, NIL) ;
Pi cCommrent (Li neLayout On, O, NI L);
END;

Rotating Text

You can use picture comments to rotate text on PostScript devices and on any
QuickDraw-based drivers that support text rotation. (This is not the kind of rotation
associated with landscape and portrait orientation of the printer paper as selected by the
user through the style dialog box. This rotation occurs in reference to the current
QuickDraw graphics port only.) The picture comments to rotate text are Text Begi n,
Text Cent er, and Text End.

If you use picture comments to rotate text, you should also generate a
device-independent representation, such as a bitmapped version of the text, to be used
on QuickDraw devices that don’t support these picture comments. Printer drivers that
support Text Begi n, Text Cent er, and Text End are expected to ignore calls to the
CopyBi t s, CopyMask, and CopyDeepMask procedures (as well as QuickDraw clipping
regions) between the Text Begi n and Text End picture comments. In this way, you can
use CopyBi t s to draw a bitmap representation of rotated text on QuickDraw printers;
the bitmap is not used if the Text Begi n and Text End picture comments are supported,
but it is used if Text Begi n and Text End are not supported.

Using Text Picture Comments B-17

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Some versions of 2-byte Kanji systems print Kanji glyphs by calling the CopyBi t s
procedure instead of calling standard text-drawing routines. You cannot use the text
rotation picture comments with these fonts. Instead, use the picture comments described
in “Rotating Graphics” beginning on page B-29.

To use picture comments to rotate text, you begin by specifying the amount of rotation as
a parameter to the Text Begi n comment. Next, you pass the center of rotation in

the Text Cent er comment. The printer driver rotates any text drawn between the

Text Cent er and Text End comments.

The Text Begi n picture comment allows your application to specify left, right, center, or
full justification; horizontal or vertical flipping; and degrees of rotation. The possible
types of alignment are shown in Figure B-6.

Figure B-6 Variations in text alignment

B-18

None

Bitmapped screen font Th]S 15 a Hrle ':'f te}(t.
| |

PostScript printer font Thisis a line of text.

Jusﬁﬁed

This is a line of text.

|

|

|
Centered

1

Thisis a line of text.

Flus;h left

Thisis a line of text.

Flusri right

Thisis a line of text.

Using Text Picture Comments

APPENDIX B

Using Picture Comments for Printing

When you specify the Text Begi n picture comment in the ki nd parameter of the

Pi cComment procedure, you also specify a TTxt Pi cHdl handle (a handle to a

TTxt Pi cRec record) in the dat aHandl e parameter. Here is how you should declare
these as Pascal data types in your application:

TYPE
TTxtPicHdl = ~TTxtPicPtr;
TTxtPicPtr = ~TTxt Pi cRec;
TTxtPicRec =
PACKED RECORD
tJus: Byt e; {justification of text}
tFlip: Byt e; {horizontal or vertical flipping}
t Angl e: Integer; {0..360 degrees clockw se rotation }
{ ininteger format}
t Li ne: Byt e; {reserved}
t Cmt : Byt e; {reserved}
t Angl eFi xed: Fi xed; {0..360 degrees cl ockw se rotation }
{ in fixed-nunber formt}
END;

You supply the t Jus field with one of these constants to specify the alignment setting of
the text:

CONST
t JusNone = 0; {no alignnent}
t JusLeft =1; {flush left}
tJusCenter = 2; {centered}
t JusRi ght = 3; {flush right}
t JusFul | = 4; {full justification}

Setting the t Jus field to left, right, or centered tells the printer driver to maintain only
the left, right, or center point of the line (respectively), preventing the driver from
recalculating the interword spacing. A value of t JusFul | specifies that both endpoints
of the line must be maintained, so the driver recalculates interword spacing instead of
rejustifying text.

You supply the t Fl i p field with one of these constants to specify the horizontal or
vertical flipping of text about the center point (which, in turn, is specified with the

Text Cent er picture comment):

CONST
t Fl i pNone =0; {no flip of text}
t Fl i pHori zont al 1; {horizontal flip of text}
tFlipVertical ; {vertical flip of text}

1
N

Using Text Picture Comments B-19

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

You supply the t Angl e field with an integer to specify the number of degrees by which
the printer driver should rotate the text.

Thet Li ne and t Cmt fields are reserved.

You supply the t Angl eFi xed field with a fixed-point number to specify the number of
degrees by which the printer driver should rotate the text.

In a TTxt Pi cRec record, you can provide the degrees of rotation both as an integer (in
the t Angl e field) and as a fixed-point number (in the t Angl eFi xed field). You should
always specify the rotation in both fields, even for drivers that support only integral
rotation. The driver determines which field to use based on the size of the handle passed
to Pi cConmmrent . If you do not define the t Angl eFi xed field in the TTXt Pi cRec
record, the printer driver automatically uses the t Angl e field.

To rotate an object, a printer driver needs information concerning the center of rotation.
Immediately after a Text Begi n comment, the driver expects the Text Cent er picture
comment specifying the offset to the center of rotation for any text enclosed within the
text picture comments. The driver stores this offset and adds it to the location of the

first text-drawing routine after it receives the Text Cent er picture comment. This allows
you to send multiple runs of text to be rotated with different centers of rotation, while
using only one set of Text Begi n and Text End picture comments. The printer driver
expects the string locations to be in the coordinate system of the current graphics port.

The printer driver rotates the entire graphics port to draw the text, so it can draw several
strings with one Text Begi n picture comment and one Text Cent er picture comment.
You should always include as much text as possible in a single Text Begi n picture
comment so that the driver makes the fewest number of rotations.

The printer driver can draw nontextual objects within the bounds of the text rotation
comments, but it must restore the printing graphics port to its original state to draw the
object, and then rotate the printing graphics port again to draw the next string of text.
You must send another Text Cent er comment before each new rotation.

When you specify the Text Cent er (or Rot at eCent er) picture comment in the

ki nd parameter of the Pi cCommrent procedure, you also supply in the dat aHandl e
parameter a TCent er Hdl handle, which is a handle to a TCent er Rec record. You can
use this record to specify the center of rotation for text or (as described in “Rotating
Graphics” beginning on page B-29) for graphics. Here is how you should declare these as
Pascal data types in your application:

TYPE

TCenterHdl = ~TCenterPtr;

TCenterPtr = ~TCent er Rec;

TCenterRec =

RECORD
y: Fi xed; {vertical offset fromcurrent pen |ocation}
X: Fi xed; {hori zontal offset fromcurrent pen |ocation}

END;

B-20 Using Text Picture Comments

APPENDIX B

Using Picture Comments for Printing

You use they field to specify the vertical offset along the y-axis from the current pen
location to the center of rotation.

You use the x field to specify the horizontal offset along the x-axis from the current pen
location to the center of rotation.

The application-defined routine MyDr awiXSt r i ng, shown in Listing B-4, rotates the
strings by the degrees specified in the r ot parameter. The rotation occurs around the
current point, offset by the value passed in the ct r parameter. The strings are justified
and flipped according to the j ust and f | i p parameters. If the printer driver supports
the Text Begi n, Text Cent er, and Text End picture comments, the printer driver
rotates the text at device resolution; otherwise, an application-defined procedure is
called to generate a bitmap of the rotated and flipped text, using CopyBi t s to draw the
text in the printing graphics port. The pen position is preserved. (Listing B-8 on

page B-32 illustrates how to use the TCent er Rec record to rotate graphics.)

Listing B-4 Displaying rotated text using picture comments

PROCEDURE MyDr awXString(s: Str255; ctr: Point;
just, flip: Integer; rot: Fixed);

VAR
hT: TTxt Pi cHdl ;
hC: TCent er Hdl ;
zer oRect : Rect ;
pt: Poi nt ;
ol dd i p: RgnHandl e;
BEG N
Get Pen(pt); {to preserve the pen position}

hT : = TTxt Pi cHdl (NewHandl e(Si zeOf (TTxt Pi cRec)));
hC : = TCent er Hdl (NewHandl e(Si zeOf (TCent er Rec))) ;
W TH hT*" DO

BEG N
tJus := just;
tFlip := flip;
tAngle := - FixRound(rot); {counterclockw se}
tLine := 0; {reserved}
tCmt := 0; {used internally by the printer driver}
t Angl eFi xed := - rot;

END;

hCr~.y = Long2Fi x(ctr.v);

hCr . x : = Long2Fi x(ctr. h);

MyFl ushPost Scri pt State; {see Listing B-2 on page B-11}
Pi cConment (Text Begi n, Si zeOf (TTxt Pi cRec), Handl e(hT));

Pi cConment (Text Cent er, Si zeOf (TCent er Rec) , Handl e(hQC)) ;
{graphics state now has rotated/flipped coordi nat es}

Using Text Picture Comments B-21

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

olddip := NewRgn;

Getdip(olddip);

Set Rect (zer oRect, 0,0, 0, 0);

CipRect(zeroRect); {hides this DrawString from}

DrawsString(s); { QuickDraw in the rotated }

{ environnent}

d i pRect (ol dd i p*. rgnBBox) ;

{now the "fallback" bitmp representation}

MyQDSt ri ngRot ation(s, ctr, just, flip, rot);

Pi cConment (Text End, 0, NIL);

{set environnent back to the original state}

Di sposeHandl e(Handl e(hT));

Di sposeHandl e(Handl e(hQ));

MoveTo(pt. h, pt.v); {restore the pen position}
END;

Because the PostScript LaserWriter driver buffers generated PostScript code, and because
the driver ignores clipping regions between the Text Begi n and Text End picture
comments, clipping regions for drawing instructions that precede Text Begi n may be
affected. Therefore, MyDr awXSt r i ng uses the application-defined routine

MyFl ushPost Scri pt St at e (shown in Listing B-2 on page B-11) immediately before
using the Text Begi n picture comment.

Using Graphics Picture Comments

Graphics picture comments, listed in Table B-1 on page B-5, provide your application
with the ability to render smoothed polygons (as described in the next section) and to
rotate graphics (as described in “Rotating Graphics” on page B-29).

In general, you cannot use one set of graphics picture comments (for instance, the
polygon-drawing picture comments) with another (graphics rotation comments). When
using these two types of comments, you should simply rotate the points of the polygon
before drawing,.

The graphics comments for drawing dashed lines and for rotating graphics require the
use of the PenMbde procedure (described in the chapter “QuickDraw Drawing” in this
book) to set the pattern mode to a value of 23. Normally this value is undefined, but it is
handled specially by PostScript printer drivers, which treat it like the sr cCopy Boolean
transfer mode (described in the chapters “QuickDraw Drawing” and “Color
QuickDraw”). All QuickDraw drivers ignore this pattern mode. Your application can use
this pattern mode to draw objects in a picture and, if the picture is printed on a
QuickDraw printer, these objects are not visible.

B-22 Using Graphics Picture Comments

APPENDIX B

Using Picture Comments for Printing

Drawing Polygons

By using picture comments, you can draw high-resolution polygons on PostScript
printing devices. PostScript supports four types of polygons: open, framed, filled, and
smoothed. (QuickDraw supports all of these types except smoothed.)

Type Description

Open A polygon whose endpoints do not join. This type of polygon cannot be
filled.

Framed A closed polygon that is not filled. Framed and filled polygons are

exclusive to one another.
Filled A closed polygon whose interior is entirely covered with a pattern.

Smoothed A polygon (open, framed, or filled) whose edges have been rounded.

Figure B-7 shows these four types of polygons.

Figure B-7 Types of polygons

Open Framed
Filled Smoothed

g

Using Graphics Picture Comments B-23

Bunuid 1o} sjuswiwo) ainald buisn n

B-24

APPENDIX B

Using Picture Comments for Printing

To draw polygons, perform the following steps:

1. Use the Pol yBegi n picture comment to alert the PostScript driver that you are
drawing a polygon.

2. Optionally, you can use the Pol yCl ose picture comment to use “closed” smoothing
between the first and last vertices of the polygon.

3. Use the Pol ySnpot h picture comment to tell the PostScript driver to draw a Bézier
curve.

4. Use the Get O i p procedure to save the current clipping region; then use the
d i pRect procedure to hide your polygon’s drawing commands from QuickDraw.

5. Draw your polygon. The PostScript driver renders it smoothly.
6. Use the Set O i p procedure to restore the previous clipping region.

7. Use the Pol yI gnor e picture comment to make the printer driver ignore the
line-drawing commands for your QuickDraw representation of the polygon.

8. Draw your QuickDraw representation of the polygon.
9. Use the Pol yEnd picture comment.

The Pol yBegi n and Pol yEnd picture comments surround the polygon description.
Note that the printer driver draws the polygon at the location of the pen when it receives
the Pol yBegi n picture comment, so you must set the pen’s location before using the

Pol yBegi n picture comment. For polygons that are smoothed, you must set the pen
size to 0 after the Pol yBegi n picture comment to prevent the unsmoothed polygon
from being drawn on printers that do not support the polygon comments.

All QuickDraw routines called between Pol yBegi n and Pol yEnd that are processed
by the low-level St dLi ne routine are part of the polygon—that is, the endpoints of each
of the lines become vertices of the polygons.

You should use the Pol yO ose, Pol ySnoot h, and Pol yl gnor e picture comments
between the Pol yBegi n and Pol yEnd picture comments.

The Pol yO ose comment specifies that the printer driver should treat all vertices of the
polygon in the same manner; in particular, this affects the shape of the smooth curve
between the polygon’s first and last vertices, which might otherwise be distinguishable
as separate points. The Pol yCl ose comment, however, does not automatically close the
polygon as the PostScript operator ¢l osepat h does.

Using Graphics Picture Comments

APPENDIX B

Using Picture Comments for Printing

To render high-resolution B-splines when PostScript is available, use the Pol ySnoot h
picture comment, which directs the PostScript printer driver to interpret the polygon
vertices as control nodes for a quadratic Bézier spline. PostScript has a direct facility for
cubic B-splines, and the PostScript printer driver translates the quadratic B-spline nodes
into the appropriate nodes for a cubic B-spline that will emulate the original quadratic.
This allows you to use this PostScript feature without having to call PostScript routines
directly.

Note

PostScript Level 1 has some problems with very large polygons that
have more than 1500 points. For this reason, you may want to avoid
doubling the points on large smoothed polygons, even though a greater
number of points might aid in making the polygon smoother. O

When you use the Pol ySnoot h picture comment, pass a TPol yVer bHdl handle, which
is a handle to a TPol yVer bRec record, in the dat aHandl e parameter of the

Pi cComment procedure. You use a TPol yVer bRec record to tell the printer driver to
interpret the polygon vertices as control nodes for a quadratic Bézier spline. Here is how
you should declare these as Pascal data structures in your application:

Type
TPol yVer bHdI ATPol yVer bPtr;
TPol yVer bPt r = ~TPol yVer bRec;
TPol yVer bRec
PACKED RECORD

f7,f6,f5,1f4,f3: Bool ean; {reserved; set to 0}
f Pol yd ose: Bool ean; {TRUE is sane as Pol yd ose }
{ picture comrent}
fPol yFill: Bool ean; {TRUE neans fill polygon}
f Pol yf rame: Bool ean; { TRUE neans frame pol ygon}
END;

Thef7,f6,f5,f4, and f 3 fields are reserved bits; you should set them to 0.

Setting the f Pol yCl ose field to 1 achieves the same result as the Pol yCl ose picture
comment. The Pol yCl ose comment specifies that the printer driver should treat all
vertices of the polygon in the same manner; in particular, this affects the shape of the
smooth curve between the polygon’s first and last vertices, which might otherwise be
distinguishable as separate points. The Pol yCl ose comment does not automatically
close the polygon as the PostScript operator cl osepat h does.

Using Graphics Picture Comments B-25

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Set the f Pol yFi | | field to 1 if you want the printer driver to fill the polygon, or set it
to 0 if not.

Set the f Pol yFr ane field to 1 if you want the printer driver to frame the polygon, or set
it to 0 if not.

In Listing B-5, the polygon coordinates are defined through arrays of points, initialized
using an application-defined procedure, MyDef i neVer ti ces. The procedure

MyDef i neVerti ces specifies the points for two polygons. The array referenced
through the parameter p defines the points used for the PostScript representation of the
polygon. The array referenced through the parameter q defines the points used for the
QuickDraw representation of the polygon.

Listing B-5 Creating polygons

PROCEDURE MyDefi neVertices(VAR p,q: PointArrayPtr);

CONST

cx = 280; {x coordinate for center point}

cy = 280; {y coordinate for center point}

ro = 200; {radi us}

kN = 4; {number of vertices for PostScript}

kM = 6; {nunber of vertices for QuickDraw approximation}
BEG N

{the array p” contains the control points for the Bézier curve}
Set Pt (p~[0],cx + r0,cy);
Set Pt (p*[1],cx,cy + r0);
SetPt(p”2],cx - r0,cy);
Set Pt (p*[3],cx,cy - r0);
pr[4] = pM[O];
{g™ contains the points for a Qui ckDraw approxi mati on of the curve}
qr[0] = p*[O];
SetPt (g”[1],cx,cy + round(0.7 * (p1].v - cy)));
SetPt(gr[2], (pM1].h + p~[2].h) DV 2,
(ph1].v + p[2].v) DV 2);
SetPt(g”[3],cx + round(0.8 * (p~2].h - ¢cx)),cy);
SetPt(g*[4],a"[2].h,cy + cy - g*[2].v);
SetPt(g™[5], g™ 1].h,cy + cy - g*[1].v);
q*[6] := q*[0];
END;

B-26 Using Graphics Picture Comments

APPENDIX B

Using Picture Comments for Printing

Use the Pol yI gnor e comment before drawing your QuickDraw version of the polygon;
between Pol yl gnor e and Pol yEnd, drivers that support these two comments ignore
all QuickDraw routines processed through the low-level procedure St dLi ne. You can
enclose the application-defined procedure MyPol ygonDenp, shown in Listing B-6,
between QpenPi ct ur e and O osePi ct ur e calls to create a picture containing both
QuickDraw and PostScript representations of the polygon. Alternatively, you can call
MyPol ygonDenp when drawing directly into a printing graphics port.

Listing B-6 Drawing polygons

PROCEDURE MyPol ygonDenp;

VAR
p, Q: Poi nt ArrayPtr;
aPol yVer bH: TPol yVer bHdI ;
i I nt eger;
cli pRgn, pol yRgn: RgnHandl e;
zer oRect: Rect ;
BEG N
p := PointArrayPtr(NewPtr(SizeOf (Point) * (kN + 1)));

g := PointArrayPtr(NewPtr(Si zeOf (Point) * (kM + 1)));
IF (p = NL) OR(g = NL) THEN DoErr(kMenError);
MyDef i neVertices(p,q);
PenNormal ; {first show the standard QuickDraw pol ygon}
MoveTo(p”[0] . h, pA[0].V);
FORi := 1 TO kN DO

Li neTo(p™[i].h,pMi].v);
PenSi ze(2,2); {now show the sane pol ygon "snoot hed"}
PenPat (gray) ;
{first, the PostScript representation, clipped from Qi ckDraw}
aPol yVer bH: =

TPol yVer bHdI (NewHandl e(Si zeOf (TPol yVer bRec))) ;
| F aPol yVer bH<> NI L THEN

W TH aPol yRecH** DO

BEG N
f Pol yFrame : = TRUE;
f Pol yFi I | = FALSE;
f Pol yCl ose : = FALSE;

Using Graphics Picture Comments B-27

Bunuid 1o} sjuswiwo) ainald buisn n

B-28

APPENDIX B

Using Picture Comments for Printing

{conpare with the result for TRUE!}

f3 := FALSE;

f4 := FALSE;

f5 := FALSE;

f6 := FALSE;

f7 := FALSE;
END;

MoveTo(p~[0] . h, pA[0] . V);
Pi cCommrent (Pol yBegi n, 0, NI L) ;
{pi cConment (Pol yd ose, 0, NIL); only if }
{ fPolyd ose = TRUE, above!}
Pi cConmrent (Pol ySnoot h, Si zeOf (TPol yVer bRec) ,
Handl e(aPol yVer bH)) ;

clipRgn : = NewRgn;
GetCip(clipRgn);
C i pRect (zeroRect);
FORi := 1 TO kN DO

Li neTo(p™[i].h, pMi].v);
{next, the QuickDraw approxinmation of the snoothed }
{ polygon, invisible for PostScript because of Polylgnore}
SetCip(clipRgn);
Pi cConment (Pol yl gnore, 0, NI L) ;
pol yRgn : = NewRgn;

OpenRgn;
MoveTo(g”[0]. h,g*0].vVv);
FORi := 1 TO kM DO

Li neTo(g”[i].h,gMi].v);
G oseRgn(pol yRgn) ;
FrameRgn(pol yRgn) ; {or FillRgn, if fPolyFill above is TRUE}
Pi cConmrent (Pol yEnd, O, NI L) ;
Di sposeHandl e(Handl e(aPol yVer bH)) ;
Di sposeRgn(pol yRgn) ;
Di sposePtr(Ptr(p));
Di sposePtr(Ptr(q));

END;

Using Graphics Picture Comments

APPENDIX B

Using Picture Comments for Printing

The two versions of the drawn polygon are shown in Figure B-8.

Figure B-8 QuickDraw and PostScript polygons

QuickDraw-rendered polygon PostScript-rendered polygon

Note that you do not need to open a region, collect the line segments in the region, and
draw the polygon through the Fr aneRgn procedure (described in the chapter
“QuickDraw Drawing” in this book). This method is demonstrated in Listing B-6 only to
prepare you for situations where you want to fill the polygon with a pattern. You cannot
open a polygon and use the Fi | | Pol y procedure (also described in the chapter
“QuickDraw Drawing” in this book), because the PostScript driver “owns” the polygon
concept at this point and captures—and ignores—all line drawing between the

Pol yl gnor e and Pol yEnd comments. Regions do not interfere with polygons,
however, and they can be used to paint or fill the polygonal shape.

Rotating Graphics

You can rotate QuickDraw objects on PostScript printers. The printer driver rotates the
entire PostScript coordinate space before drawing the objects, which then appear rotated.
All objects that you want to rotate must be contained between the Rot at eBegi n and
Rot at eEnd picture comments.

You specify the center of rotation with the Rot at eCent er picture comment. Unlike text
rotation, where you pass the Text Begi n picture comment first and then the

Rot at eCent er picture comment, you must pass the offset (which is relative to the
center of rotation) with the Rot at eCent er picture comment before you use the

Rot at eBegi n picture comment. When you specify the Rot at eCent er picture
comment in the ki nd parameter of the Pi cCommrent procedure, you also supply in the
dat aHandl| e parameter a TCent er Hdl handle, which is a handle to a TCent er Rec
record. You can use this record to specify the center of rotation for graphics or text. See
“Rotating Text” beginning on page B-17 for a description of the fields of a TCent er Rec
record.

Using Graphics Picture Comments B-29

Bunuid 1o} sjuswiwo) ainald buisn n

B-30

APPENDIX B

Using Picture Comments for Printing

When you specify the Rot at eBegi n picture comment in the ki nd parameter of the
Pi cComment procedure, you also supply in the dat aHandl e parameter a

TRot at i onHdl handle, which is a handle to a TRot at i onRec record. You use

a TRot at i onRec record to specify the rotation of a graphic. Here’s how you should
declare these as Pascal data structures:

TYPE
TRot ati onHdl = ~TRotati onPtr;
TRot ati onPtr "TRot at i onRec;
TRot ati onRec

RECORD
rrlip: Integer; {horizontal/vertical flipping}
r Angl e: Integer; {0..360 clockw se rotation in }
{ integer formt}
r Angl eFi xed: Fi xed; {0..360 clockwi se rotation in }
{ fixed-nunber format}
END;

You use the r Fl i p field to specify whether to flip the graphic horizontally or vertically
in addition to rotating it. Here are the possible values for this field:

Value Description
0 No coordinate flip

1 Horizontal coordinate flip

2 Vertical coordinate flip

You supply the r Angl eFi xed field with a fixed-point number to specify the number of
degrees by which the printer driver should rotate the graphic.

You can provide the degrees of rotation both as an integer (in the r Angl e field) and as a
fixed-point number (in the r Angl eFi xed field). You should always specify the rotation
in both fields, even for drivers that support only integral rotation.

Once you set up the rotation with the Rot at eCent er and Rot at eBegi n picture
comments, you draw the graphics objects you want to rotate. Before drawing the objects,
use the PenMbde procedure to set the pattern mode to a value of 23, which represents a
special pattern mode for PostScript printer drivers. You should draw the QuickDraw
image, using the CopyBi t s procedure, inside its own pair of Post Scri pt Begi n and
Post Scri pt End comments so that the QuickDraw representation will not show up

on PostScript devices. (You should also use the Pr Gener al procedure with the

get Rs| Dat aQp opcode, described in the chapter “Printing Manager” in this book, to
determine and use the maximum printer resolution.)

In Listing B-7, the application-defined procedure MyRot at eDenp rotates the same image
for both QuickDraw and PostScript printers.

Using Graphics Picture Comments

APPENDIX B

Using Picture Comments for Printing

Listing B-7 Using picture comments to rotate graphics

PROCEDURE MyRot at eDenp;

CONST
angle = 30;
VAR
spi nRect : Rect ;
del t a: Poi nt ;
BEA N

Set Rect (spi nRect, 100, 100, 300, 200) ;
W TH spi nRect DO SetPt(delta, (right - left) DV 2,
(bottom- top) DV 2);
PenSi ze(2, 2) ;
PenPat (1t Gray) ;
FrameRect (spi nRect); {show the unrotated square}
PenNor mal ;
MyPSRot at edRect (spi nRect, del ta, angl e) ;
{Qui ckDraw equi val ent of the rotated object, hidden fromthe PostScript }
{ driver because of PostScriptBegin and Post Scri pt End}
Pi cConment (Post Scri pt Begin, 0, NL);
MyQ@DRot at edRect (spi nRect, delta, angle);
Pi cComrent (Post Scri pt End, 0, NIL);
END;

The application-defined procedure My QDRot at edRect rotates the four points of the
rectangle by an angle around the center and draws the rotated rectangle. To include this
QuickDraw representation of the rotated objects (in case the Rot at eCent er and

Rot at eBegi n picture comments are not supported), the code in Listing B-7 assumes
that only PostScript drivers implement these comments. The only way to hide from the
driver the application-defined procedure that provides a QuickDraw representation of
the rotated objects is to surround it by Post Scri pt Begi n and Post Scri pt End
comments.

To hide from QuickDraw the graphics rotation for a PostScript printer, Listing B-8 uses
pattern mode 23.

Using Graphics Picture Comments B-31

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Listing B-8 Using the Rot at eCent er, Rot at eBegi n, and Rot at eEnd picture comments

PROCEDURE MyPSRot at edRect (r: Rect; offset: Point; angle: Integer);
{does the rectangle rotation for the PostScript LaserWiter driver}
{uses the RotateCenter, RotateBegin, and RotateEnd picture conments, }
{ and the "magic" pattern node 23 to hide the drawi ng from Qui ckDr aw}
CONST

magi cPen = 23;

VAR
rlnfo: TRot at i onHdl ;
rCenter: TCent er Hdl ;
ol dPenMbde: I nteger;

BEG N

rinfo := TRotationHdl (NewHandl e(Si zeOf (TRot ati onRec))) ;
rCenter := TCenterHdl (NewHandl e(Si zeO' (TCent erRec))) ;
IF (rinfo = NIL) OR (rCenter = NIL)

THEN DebugStr (' NewHandl e failed');
W TH r I nf o™ DO

BEG N
rElip 1= 0;
rAngle := - angle;
r Angl eFi xed : = BitShift(Longlnt(rAngle), 16);
END;
W TH r Cent er** DO
BEG N
X := Long2Fi x(of fset. h);
y := Long2Fi x(of fset.v);
END;

MoveTo(r.left,r.top);
MyFl ushGr af Port St at e; {see Listing B-1 on page B-10}
Pi cCommrent (Rot at eCent er, Si zeOf (TCent er Rec) , Handl e(r Center));
Pi cConment (Rot at eBegi n, Si zeOf (TRot ati onRec), Handl e(r1nfo));
ol dPenMbde : = thePort”. pnMode;
PenMbde(magi cPen) ;
FrameRect (r);
PenMbde(ol dPenMode) ;
Pi cConment (Rot at eEnd, 0, NI L) ;
Di sposeHandl e(Handl e(rlnfo));
Di sposeHandl e(Handl e(r Center));
END;

B-32 Using Graphics Picture Comments

APPENDIX B

Using Picture Comments for Printing

Using Line-Drawing Picture Comments

Line-drawing picture comments, listed in Table B-1 on page B-5, provide your
application with the ability to draw dashed lines (as described in the next section) and to
display fractional line widths (as described in “Using Fractional Line Widths” on

page B-35).

Drawing Dashed Lines

Your application may use dashed lines frequently, particularly if it is a spreadsheet or
accounting application. You can use the DashedLi ne picture comment to draw dashed
lines on capable printers without drawing each individual dash. You use the

DashedSt op picture comment to tell the printer driver when you are finished sending
dashed line information.

When you use the DashedLi ne comment, the printer driver draws the indicated lines
or rectangles. You should pass a handle to a TDashedLi neRec record in the

dat aHandl| e parameter of the Pi cComment procedure. You use a TDashedLi neRec
record to specify how the dashed line should look. Here is how you should declare these
as Pascal data structures:

TYPE
TDashedLi neHdl
TDashedLi nePt r
TDashedLi neRec
PACKED RECORD
of fset: Si gnedByte; {offset}
cent er ed: Si gnedByte; {reserved; set to 0}
intervals: ARRAY[O0..0] OF SignedByte;
{points for drawi ng and not }
{ drawi ng dashes}

ATDashedLi nePtr ;
ATDashedLi neRec;

END;

Use the of f set field to specify an offset as with the PostScript set dash operator.

The cent er ed field is reserved and should be set to 0. Your application must center the
dashed lines.

In the i nt er val s field, specify an array of dash intervals describing the number of
points drawn for a dash and the number of points not drawn between them.

You must provide both a QuickDraw and a picture comment version of the dashed line.
The code in Listing B-9 uses the Post Scr i pt Begi n and Post Scri pt End picture
comments to hide QuickDraw code from PostScript, and it uses pattern mode 23 to
render PostScript drawing invisible in QuickDraw.

Using Line-Drawing Picture Comments B-33

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Listing B-9 Using the DashedLi ne picture comment

PRCOCEDURE DashDenv;

CONST
magi cPen = 23
cx = 280; {center al ong x-axi s}
cy = 280; {center along y-axis}
ro = 200; {radi us}
VAR
dashHdl : TDashedLi neHdl
i I nt eger;
a, rad: Ext ended,;
BEG N

PenSi ze(2, 2) ;

{First the PostScript picture corment version. Pattern node }
{ 23 nmakes the line drawing invisible to QuickDraw.}
PenMode(nagi cPen) ;

dashHdl := TDashedLi neHdl (NewHandl e(Si zeOf (TDashedLi neRec))) ;
| F dashHdl <> NI L THEN

W TH dashHdl ** DO

BEG N
of fset := 4; {just for fun}
centered : = 0; {currently ignored--set to 0}
interval s[0] := 2; {nunber of interval specs}
intervals[1] :=4; {this nmeans 4 points on ...}
intervals[2] :=6; {... and 6 points off}

Pi cComrent (DashedLi ne, Si zeO(TDashedLi neRec),
Handl e(dashHdl)) ;

END;
rad := 3.14159 / 180; {conversi on degrees -> radi ans}
FORi := 0 TO9 DO
BEA N {draw sone dashed |ines}
a:=1i * 20 * rad;
MoveTo(cx, cy);
Line(round(r0 * cos(a)), - round(r0 * sin(a)));
END;

Pi cComment (DashedStop, O, NIL); {that's enough!}

Di sposeHandl| e(Handl e(dashHdl)) ;

PenMbde(srcOr); {no nmmgi c any nore}

{Now, the QuickDraw version. The PostScript driver must }
{ ignore it, so enclose it between PostScriptBegin and }
{ Post Scri ptEnd conments.}

Pi cCommrent (Post Scri pt Begin, 0, N L);

PenSi ze(2, 2) ;

B-34 Using Line-Drawing Picture Comments

APPENDIX B

Using Picture Comments for Printing

FORi :=0 TO 9 DO
BEG N

MoveTo(cx, cy) ;

MyDashed@DLi ne(round(r0 * cos(i * 20 * rad)),

- round(r0 * sin(i * 20 * rad)), dashHdl);
END;
Pi cConment (Post Scri pt End, 0, NIL);
END;

Using Fractional Line Widths

Your application may need lines as thin as possible or thinner than the screen can
display, especially if it is a desktop publishing, spreadsheet, or design application. You
can draw hairlines (lines that are less than 1/72 of an inch wide) with printer drivers
that support the Set Li neW dt h picture comment. Your application passes the printer
driver a scaling factor (such as 1/4) that the driver applies to the pen size when
rendering the picture.

QuickDraw and the PostScript language define 1 point to be 1/72 of an inch, so there are
exactly 72 points per inch on the Macintosh screen. The resolution of a PostScript device
such as the 300-dpi LaserWriter printer is about four times that of the screen, so the
driver can render lines that are approximately 1/4 of a point thick, which is about 1/288
of an inch.

When you specify the Set Li neW dt h picture comment in the ki nd parameter of the

Pi cCommrent procedure, you also specify a TLi neW dt hHdl handle (a handle to a data
structure of type TLi neW dt h) in the dat aHandl e parameter. The TLi neW dt h

data structure is defined by the Poi nt data type. Here is how you should declare these
as Pascal data types in your application:

TLi neW dt hHdI
TLi neW dt hPt r
TLi neW dt h

ATLI neW dt hPt r;
ATLi neW dt h;
Point; {v = nunmerator, h = denom nator}

Use the vertical coordinate of the point as the numerator and the horizontal coordinate
as the denominator of the scaling factor: the driver multiplies the horizontal and vertical
components of the pen by the scaling factor to obtain the new pen width. For example, if
you have a pen size of (1,2) and your Set Li neW dt h picture comment uses 2 for the
horizontal and 7 for the vertical, the pen size will then be (7/2) x 1 pixel wide and

(7/2) x 2 pixels high.

In Figure B-9, the original pen size is 1 point. The first scaling factor is 5.0 or (5,1), which
gives the pen a width of 5 points. The second scaling factor, applied to the new pen
width, is 0.2 or (1,5), which gives the pen a width of 1 point again.

Using Line-Drawing Picture Comments B-35

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Figure B-9 Changing the pen width using the Set Li neW dt h picture comment

1-point thickness

1-point pen size times 5.0 = 5-point thickness
|

5-point pen size times 0.2 = 1-point thickness

The Set Li neW dt h picture comment is implemented by all PostScript LaserWriter
printer drivers and by some QuickDraw printer drivers. However, not all

QuickDraw printer drivers support Set Li neW dt h, and there is no backup solution for
cases where it is not supported. Among QuickDraw printer drivers that do support

Set Li neW dt h, some drivers emulate PostScript printer drivers, while others—such as
the QuickDraw LaserWriter SC driver—implement Set Li neW dt h differently.

The difference between the implementations of the Set Li neW dt h comment by the
PostScript LaserWriter driver and the QuickDraw LaserWriter SC driver is apparent as
soon as Set Li neW dt h is used a second time. The PostScript driver keeps an internal
line-scaling factor, which is initialized to 1.0 when a job is started. Each number passed
through Set Li neW dt h is multiplied by the current internal scaling factor to get the
effective scaling factor for the pen size. The LaserWriter SC driver, on the other hand,
replaces its current scaling factor for the pen size by the new value passed through

Set Li neW dt h.

To support both implementations, you must always use an additional Set Li neW dt h
picture comment to reset the PostScript driver line width to 1.0 before scaling to a new
value width, as illustrated by the following lines of code:

Pi cConment (Set Li neW dt h, SizeO (TLi neWdth), Handl e(1/ ol dLi neWdth));
Pi cConment (Set Li neW dt h, SizeOf (TLi neWdth), Handl e(newLi neWdth));

For example, suppose your application set the line width to 0.25, and now it needs a line
width of 0.5. The following two Set Li neW dt h comments have the desired effect on all
PostScript and QuickDraw drivers that implement the Set Li neW dt h comment.

Value passed

Current line width, Current line width, along with New line width, New line width,
PS driver QD driver Set Li neW dth PS driver QD driver

0.25 0.25 4/1 1.0 4.0

1.0 4.0 1/2 0.5 0.5

B-36 Using Line-Drawing Picture Comments

APPENDIX B

Using Picture Comments for Printing

The sample code in Listing B-10 gives the expected results on PostScript LaserWriter and
QuickDraw printer drivers that implement the Set Li neW dt h comment.

Listing B-10 Using the Set Li neW dt h picture comment

PROCEDURE MySet Newli neW dt h(ol dW dt h, newW dt h: TLi neW dt h) ;

VAR
tenpW dt hH: TLi neW dt hHdl ;

BEG N
tenmpW dt hH : = TLi neW dt hHdl (NewHandl e(Si zeOf (TLi neW dt h)));
tenpW dt hH*~. v : = ol dW dt h. h;
tempW dt hH* . h : = ol dW dt h. v;
Pi cConment (Set Li neW dt h, SizeO (TLi neWdth), Handl e(tenmpWdthH));
tenpW dt hH*" : = newW dt h;
Pi cCommrent (Set Li neW dth, SizeO (TLi neWdth), Handl e(tenpW dthH));
Di sposeHand| e(Handl e(t enpW dt hH)) ;

END;

PROCEDURE MyLi neW dt hDenv;

CONST
y0 = 50; {top left of denv}
x0 = 50;
d0 = 440; {length of horizontal Iines}
e0 = 5; {di stance between |ines}
kN = 5; {nunber of 1|ines}
VAR
ol dW dt h, neww dt h: TLi neW dt h;
i,j,Y: I nt eger;
BEG N
PenNor mal ;
y 1= y0;
Set Pt (ol dWdth, 1, 1); {initial line width = 1.0}
FORi :=1 TO5 DO
BEG N

Set Pt (newW dth, 4,i);
{want to set it toi/4 =0.25, 0.50, 0.75 ...}
Set NewLi neW dt h(ol dW dt h, newW dt h) ;
MoveTo(x0, vy);
Li ne(do, 0);
y =y + e0;
oldWdth := newWdt h;
END;
END;

Using Line-Drawing Picture Comments B-37

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Using PostScript Picture Comments

B-38

You can access the PostScript language directly using the Post Scr i pt Handl e picture
comment, and so bypass QuickDraw entirely. When you send PostScript code directly to
the printer driver, it sends your code directly to the printer with no preprocessing and no
error checking.

Note

These picture comments affect the state of the PostScript drawing
environment and can have such effects as printing blank pages. Also,
many PostScript printer drivers do not use the same version of
PostScript and produce different outputs with the same commands; you
should test your code on as many PostScript printers as possible. In all
cases, use the PostScript picture comments with extreme caution. O

Calling PostScript Routines Directly

Your application can tell the printer driver to disable all QuickDraw drawing routines by
using the Post Scr i pt Begi n picture comment. The driver uses the PostScript save
and r est or e operators to preserve the state of the PostScript interpreter. When the
driver receives the Post Scri pt End picture comment, it reenables QuickDraw drawing
routines.

You send PostScript code to the driver via the Post Scri pt Handl e picture comment by
including a handle to the PostScript code in the dat aHandl e parameter of the

Pi cComment procedure. The driver performs no preprocessing or error checking on this
code. The handle contains text with no length byte or word; use the dat aSi ze
parameter to convey the length of the PostScript code. (As with all picture comments,
the handle you pass belongs to you, and you must dispose of it when you're finished
with it.) You indicate the end of the PostScript commands with a carriage return

(ASCII $0D). You must use Post Scr i pt Begi n and Post Scr i pt End around any

Post Scri pt Handl e comments; otherwise, the PostScript driver will not properly save
and restore the PostScript drawing environment.

Listing B-11 gives an example of an application-defined procedure called

DoPost Scri pt Li ne. The procedure is used to transmit a string of PostScript code
through the Post Scri pt Handl e picture comment to the PostScript printer driver.
DoPost Scri pt Li ne should be called only between Post Scri pt Begi n

and Post Scri pt End picture comments, as shown in the application-defined procedure
DoPost Scri pt Corment s.

Using PostScript Picture Comments

APPENDIX B

Using Picture Comments for Printing

Listing B-11 Sending PostScript code directly to the printer

PROCEDURE DoPost Scri pt Li ne(s: Str255);

VAR
h: Handl e;

BEG N
h : = NewHandl e(256);
IF h = NNL THEN DebugStr (' NewHandl e failed');
Bl ockMove(@[1], h”, Length(s));
Pi cComment (Post Scri pt Handl e, Length(s), h);
han o= 13;
Pi cComrent (Post Scri ptHandl e, 1, h); {add a carriage return}
Di sposeHandl e(h);

END;

PROCEDURE DoPost Scri pt Comrent s;
BEG N
{first, the sinple exanpl e}
Pi cConment (Post Scri pt Begi n, 0, NI L) ;
DoPost Scri pt Li ne(* 100 100 noveto O 100 rlineto 100 O rlineto ");
DoPost ScriptLine('0 -100 rlineto -100 O rlineto');
DoPost Scri pt Li ne(' stroke');
MoveTo(30, 30) ;
DrawString(' This text does not appear on PostScript printers.');
Pi cConment (Post Scri pt End, O, NI L) ;
END;

Optimizing PostScript Printing

Although your printing code should be device-independent, you can optimize it for a
PostScript printer. However, you cannot be sure that the current printer is a PostScript
printer, so you may need to create two versions of the same drawing code: one for a
PostScript printer and one for a QuickDraw printer, as described previously in this
appendix.

For printing to a PostScript printer, you'll need to observe the following limitations:
» Regions aren’t supported; try to simulate them with polygons or bitmaps.

» Clipping regions should be limited to rectangles. PostScript clips nonsquare patterns
to squares.

» Thel nvert data type, part of the QuickDraw G af Ver b data type, is not supported
by the PostScript LaserWriter printer driver.

» The PostScript LaserWriter driver does not support all Boolean transfer modes. It
supports the sr cCopy, srcQOr, sr cBi ¢, not Sr cCopy, and not Sr ¢Bi ¢ modes for

Using PostScript Picture Comments B-39

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

bitmaps and text. For all other objects drawn with QuickDraw, the PostScript
LaserWriter driver supports only the sr cCopy mode.

s There can be a small difference in glyph widths between fonts rendered on the screen
and on the printer. Only the endpoints of text strings are the same.

= Only PostScript Level 2 supports color patterns that use colors other than red, green,
blue, cyan, yellow, magenta, white, and black.

= The printer may print some large patterns at half size or smaller sizes, depending on
its resolution.

= Polygons and smoothed polygons that result in the creation of paths larger than the
limit of the PostScript printer (typically 1500 or 3000, depending on the version of
PostScript) result in a PostScript error.

Although the PostScript LaserWriter printer is relatively fast, there are some techniques
an application can use to ensure its maximum performance.

= Printing patterns takes time, because the bitmap for the pattern has to be built. The
black-and-white patterns, and some of the gray patterns, have been optimized to use
the PostScript grayscales.

= Use the Text Begi n picture comment for text alignment. In the cases of flush left,
flush right, or centered alignment, only the left, right, or center points are accurate,
respectively; in the case of fully justified text, both the left and right endpoints are
accurate.

= If you want to position each glyph independently, use the Li neLayout O f and
St ri ngBegi n picture comments. If you are trying to position glyphs and the driver
is trying to position glyphs too, there is conflict, and printing takes much longer than
necessary.

For more information on the PostScript language, see the PostScript Language Reference
Manual, second edition, available from Addison-Wesley.

Picture Comments to Avoid

B-40

The Set Gr ayLevel picture comment is now obsolete. The Post Scri ptFi | e,

Text | sPost Scri pt, FormsPri nti ng, EndFor msPrinting, dientLi neLayout,
PSBegi nNoSave, and Resour cePS picture comments have limited use and are not
recommended. This section describes the shortcomings of these picture comments.

The Set G ayLevel picture comment was designed to provide access to the PostScript
set gr ay operator while drawing with QuickDraw in black-and-white mode. For most
drawing operations, however, the printer driver sets the gray level to match the
foreground color for the printing graphics port, and the effect of the Set G ayLevel
picture comment is often unpredictable. If direct access to the PostScript set gr ay
operator seems desirable, it is preferable to send the instruction with the

Post Scr i pt Handl e picture comment.

The Text | sPost Scri pt picture comment interprets all the text manipulated with
QuickDraw text-drawing routines (namely, Dr awChar, Dr awSt r i ng, Dr awText , and

Picture Comments to Avoid

APPENDIX B

Using Picture Comments for Printing

anything else that calls the St dText low-level procedure) as PostScript code. There is no
good reason to use this picture comment, but there is one important reason not to use it:
printer drivers that do not support the Text | sPost Scri pt picture comment will print
the PostScript text instead of interpreting it. If you need to transmit PostScript code
directly to a printer that understands it, use the Post Scri pt Handl e comment and
include a QuickDraw representation for all other printer drivers.

The Resour cePS picture comment loads PostScript code from a resource file. The
resource file is expected to be open at the time that you use Resour cePS. Under
background printing, there are no guarantees the resource file will still be open when the
Printing Manager needs it. If you want to keep PostScript code in a resource file, it is
easy to write a routine that loads the resources and sends their contents using the

Post Scri pt Handl e picture comment.

The Post Scri pt Fi | e picture comment loads PostScript code from a file; as with the
Resour cePS comment, there are no guarantees the file will be open when the Printing
Manager needs it during background printing. If you want to keep PostScript code in a
file, it is easy to write a routine that loads the file and its contents using the

Post Scr i pt Handl e picture comment.

As with the Post Scri pt Begi n picture comment, the PSBegi nNoSave picture
comment allows applications to change the state of a PostScript printer driver. Some
applications do not want to restore the previous state of the PostScript interpreter after
sending PostScript code; the PSBegi nNoSave comment was intended for situations
where applications do not want to preserve the printer state. However, the

PSBegi nNoSave picture comment allows applications to interfere with the LaserWriter
8.0 printer driver, and the driver, by calling the PostScript operator gr est or e, can
interfere with the application. The use of PSBegi nNoSave can lead to incorrect clipping,
incorrect colors, and PostScript language errors and should therefore be avoided.

By default, most drivers apply about 80 percent of the total line layout error to the

major glyphs (the space character) and the other 20 percent to the minor glyphs (all other
glyphs). (When using a script system that does not use the space glyph to delimit words,
the layout error is distributed evenly across all characters in the font.) The

d i ent Li neLayout picture comment allows applications to redefine the major glyph,
and the percentages of the line layout error assigned to the major and minor glyphs. The
d i ent Li neLayout picture comment is rather subtle and very specific to the
PostScript LaserWriter driver. Only very ambitious page layout applications might be
interested in this functionality, however; their designers should instead aim at a more
general scheme of line layout control that does not rely upon this very driver-specific
picture comment.

Intended for printing forms on PostScript LaserWriter printers, the For nsPri nti ng
picture comment directs the PostScript LaserWriter driver not to clear its page buffer
after printing a page. The EndFor nsPri nt i ng picture comment directs the PostScript
LaserWriter driver to clear its page buffer after printing a page. When a page is
completed, applications must erase the areas that need to be updated and draw the new
information. The graphics that make up the form are drawn only once per page, which
may improve performance. However, you need to write a separate printing loop for the
PostScript LaserWriter driver if you want to use this comment.

Picture Comments to Avoid B-41

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

Including Constants and Data Types for Picture Comments

For the picture comments described in this appendix, neither QuickDraw nor the
Printing Manager includes constant definitions or data type declarations; instead, you
must include these in your own build files. Listed here are the constants and data types
for picture comments that have been predefined for printer drivers from Apple
Computer, Inc.

{ Pi cConment s. p}

CONST
{val ues for picture conments}
Text Begi n = 150;
Text End = 151;
StringBegin = 152;
StringEnd = 153;
Text Cent er = 154;
Li neLayout O f = 155;
Li neLayout On = 156;
dientlLineLayout = 157; {considered to be of limted useful ness}
Pol yBegi n = 160;
Pol yEnd = 161;
Pol yl gnor e = 163;
Pol ySnoot h = 164,
Pol yd ose = 165;
DashedLi ne = 180;
DashedSt op = 181,
Set Li neW dt h = 182;
Post Scri pt Begi n = 190;
Post Scri pt End = 191,
Post Scri ptHandl e = 192;
Post ScriptFile = 193; {considered to be of limted useful ness}
Text | sPost Script = 194; {considered to be of |imted useful ness}
Resour cePS = 195; {considered to be of limted useful ness}
PSBegi nNoSave = 196; {dangerous to use with LaserWiter 8.0}
Set GrayLevel = 197, {this conment now obsol et e}
Rot at eBegi n = 200;
Rot at eEnd = 201;
Rot at eCent er = 202;
{values for the tJus field of the TTxtPi cRec record}
t JusNone = 0;
tJusLeft = 1;
t JusCent er = 2;

B-42 Including Constants and Data Types for Picture Comments

APPENDIX B

Using Picture Comments for Printing

{values for the tFlip field of the TTxtPi cRec record}

t JusRi ght = 3;
t JusFul | = 4,
t Fl i pNone = 0;
t Fl i pHori zont al =1,
tFlipVerti cal = 2;
TYPE
TTxt PicHdl = ATTxtPicPtr;
TTxtPi cPtr = ~TTxtPi cRec;
TTxt Pi cRec = PACKED RECORD
t Jus: Byt e;
tFlip: Byt e;
t Angl e: I nt eger;
t Li ne: Byt e;
tCmt : Byt e;
t Angl eFi xed: Byt e;
END;
TRot ati onHdl = ~TRotationPtr;
TRot ati onPtr = ~TRot ati onRec;
TRot ati onRec = RECORD
rlip: I nt eger;
r Angl e: I nt eger;
r Angl eFi xed: Fi xed;
END;

TCenterHdl = ~TCenterPtr;
TCenterPtr ATCent er Rec;
TCent er Rec RECORD
y: Fi xed; {verti cal
X: Fi xed; {hori zont al
END;

TPol yVer bHdI
TPol yVer bPt r

ATPol yVer bPtr;
ATPol yVer bRec;

of fset fromcurrent

{justification for line |ayout of text}
{hori zontal or vertical flipping}
{0..360 degrees clockwi se rotation }

{ in integer format}

{reserved}

{reserved}

{0..360 degrees clockwi se rotation in }
{ fixed-nunber fornat}

{horizontal /vertical flipping}

{0..360 degrees clockwi se rotation }

{ in integer format}

{0..360 degrees clockwi se rotation in }
{ fixed-nunber format}

pen | ocati on}
of fset fromcurrent pen |ocation}

Including Constants and Data Types for Picture Comments

B-43

Bunuid 1o} sjuswiwo) ainald buisn n

APPENDIX B

Using Picture Comments for Printing

TPol yVer bRec = PACKED RECORD
f7, f6, f5, f4, f3: Boolean; {reserved; set to 0}

f Pol yd ose: Bool ean; {TRUE is sane as Pol yd ose }
{ picture comrent}
fPol yFill: Bool ean; {TRUE neans fill pol ygon}
f Pol yFr ane: Bool ean; {TRUE neans frame pol ygon}
END;

TDashedLi neHdl = ~TDashedLi nePtr;
TDashedLi nePtr = ~TDashedLi neRec;
TDashedLi neRec = PACKED RECORD
of f set: Si gnedByt e; {offset into pattern for first dash}
cent er ed: Si gnedByt e; {reserved; set to 0}
intervals: ARRAY[O..5] OF SignedByte;
{points for drawi ng and not draw ng dashes}

TLi neW dt hHdl = ATLi neWdt hPtr;

TLi neWdt hPtr = ~TLi neW dt h;

TLineWdth = Point; {v = nunerator, h = denom nator}
END;

B-44 Including Constants and Data Types for Picture Comments

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to QuickDraw TOC
	 Introduction to QuickDraw
	 Basic QuickDraw TOC
	 Basic QuickDraw
	 QuickDraw Drawing TOC
	 QuickDraw Drawing
	 Color QuickDraw TOC
	 Color QuickDraw
	 Graphics Devices TOC
	 Graphics Devices
	 Offscreen Graphics Worlds TOC
	 Offscreen Graphics Worlds
	 Pictures TOC
	 Pictures
	 Cursor Utilities TOC
	 Cursor Utilities
	 Printing Manager TOC
	 Printing Manager
	 Appendix Opener
	 Appendix A (Picture Opcodes) TOC
	 Appendix A (Picture Opcodes)
	 Appendix B (Using Picture Comments for Printing) TOC
	Using Picture Comments for Printing
	About Picture Comments
	Maintaining Device Independence
	Synchronizing QuickDraw and PostScript Printer Dri...
	Using Text Picture Comments
	Disabling and Reenabling Line Layout
	Delimiting Strings
	Rotating Text

	Using Graphics Picture Comments
	Drawing Polygons
	Rotating Graphics

	Using Line-Drawing Picture Comments
	Drawing Dashed Lines
	Using Fractional Line Widths

	Using PostScript Picture Comments
	Calling PostScript Routines Directly
	Optimizing PostScript Printing

	Picture Comments to Avoid
	Including Constants and Data Types for Picture Com...

	 Glossary
	 Index
	 Colophon

