
 

A P P E N D I X  B

   

B

 

U
sing P

icture C
om

m
ents for P

rinting

                             
Using Picture Comments for Printing B

This appendix describes the picture comments predefined by Apple Computer, Inc., for 
its PostScript printers and several of its QuickDraw printers (including the LaserWriter 
SC, ImageWriter LQ, and StyleWriter printers). This appendix introduces you to the use 
of picture comments for printing with features that are unavailable with QuickDraw 
alone.

For most applications, sending QuickDraw’s picture-drawing routines to the printer 
driver is sufficient: the driver either uses QuickDraw or converts QuickDraw routines 
to PostScript code. See the chapter “Printing Manager” in this book for information 
about QuickDraw-based printing. For some applications, such as page-layout programs, 
QuickDraw-based printing may not be sufficient; such applications may rely on printer 
drivers—such as PostScript printer drivers—to provide features that are not available, or 
are difficult to achieve, using QuickDraw. 

For PostScript printers, one solution is for your application to send PostScript code 
directly to the printer driver, but this approach requires you to know the PostScript 
language as well as QuickDraw. If your application requires features (such as rotated 
text and dashed lines) that are unavailable with QuickDraw, you may instead want to 
use picture comments to take advantage of these features on capable printers. Created 
with the QuickDraw procedure PicComment, picture comments are data or commands 
for special processing by output devices such as printer drivers. The PicComment 
procedure is introduced in the chapter “Pictures” in this book and is expanded upon in 
this appendix.

IMPORTANT

The picture comments supported by Apple printer drivers are described 
on page B-7. However, it is impossible to determine which picture 
comments are supported by the current printer driver. ▲

About Picture Comments B

Within the drawing code sent to a printer driver after your application uses the 
PrOpenPage procedure, your application can specify picture comments by using the 
QuickDraw PicComment procedure. The PicComment procedure allows your 
application to pass data or commands directly to an output device.

PROCEDURE PicComment (kind: Integer; dataSize: Integer; 

 dataHandle: Handle);

The kind parameter specifies the kind of picture comment, and the dataSize 
parameter specifies the size of the data referred to by the dataHandle parameter. (For 
some picture comments, the values passed in the dataSize and dataHandle 
parameters should be 0 and NIL, respectively.)
About Picture Comments B-3



 

A P P E N D I X  B

 

Using Picture Comments for Printing

                                      
You typically use a picture comment to give your application and an output device 
additional control over the rendering of images. A number of picture comments have 
been given special definitions by various printer drivers. When a printer driver 
encounters one of these comments, it interprets the comment as an appropriate drawing 
operation. A PostScript printer driver, for example, may convert a picture comment into 
PostScript code. 

By including picture comments in your code that draws into a printing graphics port, 
your application can rotate text and graphics, smooth polygons, draw hairlines, create 
dashed lines, and pass PostScript code directly to the printer driver. (For information 
about the PostScript language, see the PostScript Language Reference Manual, second 
edition, published by Addison-Wesley.)

Picture comments were initially designed to allow applications to share data in the form 
of QuickDraw pictures (as described in the chapter “Pictures” in this book). With the 
advent of the PostScript LaserWriter printer, the use of picture comments was extended 
to allow applications to more easily take advantage of various PostScript features 
unavailable with QuickDraw.

However, you do not need to create a QuickDraw picture to use picture comments for 
printing. When your application calls the Printing Manager procedure PrOpenPage, 
the printer driver collects your drawing operations after they are handled by the 
low-level drawing routines contained in the QDProcs record for the printing graphics 
port. As explained in the chapter “QuickDraw Drawing” in this book, the default 
low-level procedure specified by QuickDraw in the commentProc field of the QDProcs 
record is the StdComment procedure, which simply ignores picture comments. 
However, a printer driver can replace the StdComment procedure with its own routine 
for handling picture comments. 

▲ W A R N I N G

As described in the chapter “Pictures” in this book, do not call the 
OpenCPicture or OpenPicture function between calls to 
PrOpenPage and PrClosePage. ▲

When you use the PicComment procedure after calling PrOpenPage and before calling 
PrClosePage, the printer driver either ignores the picture comment passed to 
PicComment or collects the results of its drawing operations, depending on whether the 
printer driver has installed its own low-level drawing routine that handles the picture 
comment. 

Although the PicComment procedure is available on all Macintosh computers, the 
availability of the drawing operations that you can implement with picture comments 
depends on the driver for the current printer. The inability to determine which picture 
comments are supported by the current printer driver means that if you use 
picture comments to perform drawing operations not supported by QuickDraw, you 
must also provide for printing on QuickDraw-only printers. 
B-4 About Picture Comments



 

A P P E N D I X  B

 

Using Picture Comments for Printing

  

B

 

U
sing P

icture C
om

m
ents for P

rinting

                                                
This requires your application to maintain separate code branches: for example, one that 
takes advantage of the picture comment handling of a PostScript printer driver, and 
another for a printer driver that supports only QuickDraw. Furthermore, you must hide 
the code that takes advantage of PostScript printer drivers from QuickDraw-based 
drivers, and you must hide from PostScript drivers the code that uses QuickDraw-based 
approximations of these drawing operations. Your application’s printed output will 
necessarily differ depending on the driver for the current printer.

Table B-1 lists picture comments defined for various printer drivers produced by Apple 
and used by third-party producers of various other printer drivers. For each picture 
comment, this table shows the name of the picture comment that you specify in the kind 
parameter of the PicComment procedure, the value represented by the name, the value 
for the dataSize parameter, and the value for the dataHandle parameter. (Be sure to 
dispose of the memory you allocate for any handle you pass in the dataHandle 
parameter.) Keep in mind that it is impossible to determine which picture comments are 
supported by the driver of the current printer.

Table B-1 Names, values, and data sizes for picture comments 

Name Value Data size Data handle Description

Text picture comments

TextBegin 150 6 TTxtPicRec Begin text 
function

TextEnd 151 0 NIL End text function

StringBegin 152 0 NIL Begin string 
delimitation

StringEnd 153 0 NIL End string 
delimitation

TextCenter 154 8 TCenterRec Offset to center of 
rotation for text

LineLayoutOff 155 0 NIL Turn printer 
driver’s line 
layout off

LineLayoutOn 156 0 NIL Turn printer 
driver’s line 
layout on

ClientLineLayout 157 16 TClientLLRec Customize line 
layout error 
distribution

continued
About Picture Comments B-5



 

A P P E N D I X  B

 

Using Picture Comments for Printing

                             
Graphics picture comments

PolyBegin 160 0 NIL Begin special 
polygon

PolyEnd 161 0 NIL End special 
polygon

PolyIgnore 163 0 NIL Ignore following 
polygon data

PolySmooth 164 1 TPolyVerbRec Close, fill, frame

PolyClose 165 0 NIL Smooth the curve 
between 
endpoints

RotateBegin 200 8 TRotationRec Begin rotated port

RotateEnd 201 0 NIL End rotation

RotateCenter 202 8 TCenterRec Offset to center of 
rotation

Line-drawing picture comments

DashedLine 180 Size of a 
TDashedLineRec
record

TDashedLineRec Draw following 
lines as dashed

DashedStop 181 0 NIL End dashed lines

SetLineWidth 182 4 TLineWidthHdl Set fractional line 
widths

PostScript picture comments

PostScriptBegin 190 0 NIL Set driver state to 
PostScript

PostScriptEnd 191 0 NIL Restore 
QuickDraw state

PostScriptHandle 192 Length of 
PostScript data

Handle PostScript data 
referenced in 
handle

PostScriptFile 193 Length of 
PostScript data

Handle Filename 
referenced in 
handle

TextIsPostScript 194 0 NIL QuickDraw text is 
sent as PostScript

ResourcePS 195 8 Resource type, 
resource ID, index

PostScript data in 
a resource file

PSBeginNoSave 196 0 NIL Set driver state to 
PostScript

Table B-1 Names, values, and data sizes for picture comments (continued)

Name Value Data size Data handle Description
B-6 About Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
All PostScript LaserWriter drivers support the picture comments listed in Table B-1. 

Some third-party QuickDraw printer drivers support the TextBegin, TextCenter, 
and TextEnd picture comments. 

The QuickDraw LaserWriter SC driver supports the LineLayoutOff, LineLayoutOn, 
and SetLineWidth picture comments. 

The QuickDraw ImageWriter LQ driver and versions prior to 7.2 of the QuickDraw 
StyleWriter driver support the LineLayoutOff and LineLayoutOn picture comments.

The QuickDraw Personal LaserWriter LS driver and versions later than 7.2 of the 
QuickDraw StyleWriter driver support no picture comments at all.

The SetGrayLevel picture comment is now obsolete. The PostScriptFile, 
TextIsPostScript, FormsPrinting, EndFormsPrinting, ClientLineLayout, 
PSBeginNoSave, and ResourcePS picture comments have limited use and are no 
longer recommended.

See Inside Macintosh: Advanced Color Imaging for information about the picture comments 
used by the ColorSync Utilities.

Forms-printing picture comments

FormsPrinting 210 0 NIL Don’t clear print 
buffer after each 
page

EndFormsPrinting 211 0 NIL End forms 
printing after 
PrClosePage

ColorSync picture comments

CMBeginProfile 220 0 NIL Begin ColorSync 
profile

CMEndProfile 221 0 NIL End ColorSync 
profile

CMEnableMatching 222 0 NIL Begin ColorSync 
color matching

CMDisableMatching 223 0 NIL End ColorSync 
color matching

Table B-1 Names, values, and data sizes for picture comments (continued)

Name Value Data size Data handle Description
About Picture Comments B-7



A P P E N D I X  B

Using Picture Comments for Printing
Maintaining Device Independence B

Whenever printing, you should use both QuickDraw and non-QuickDraw 
representations of an image, so that the current printer driver can render the best 
possible picture. If you send an image described with picture comments to a QuickDraw 
printer driver that does not support those picture comments, the driver ignores the 
comments and subsequently does not print your image; if you send only a QuickDraw 
image to a printer driver that supports picture comments, the driver may not render its 
best possible image.

Printer drivers that support TextBegin, TextCenter, and TextEnd are expected to 
ignore calls to the CopyBits, CopyMask, and CopyDeepMask procedures that fall 
between the TextBegin and TextEnd picture comments. Between the TextBegin and 
TextEnd picture comments, you can use CopyBits to draw a bitmap representation of 
rotated text on QuickDraw printers; this bitmap is not used if the TextBegin and 
TextEnd picture comments are supported, but it is used if TextBegin and TextEnd 
are not supported. This is illustrated in Listing B-4 on page B-21.

When your application draws polygons on a PostScript printer, you can use PolyBegin, 
PolySmooth, and PolyEnd picture comments to draw smoothed polygons; QuickDraw 
printer drivers ignore these comments. To make a PostScript printer driver ignore your 
QuickDraw representation of the polygons, you can use the PolyIgnore picture 
comment, as illustrated in Listing B-6 on page B-27.

A technique for maintaining two sets of drawing codes, described in “Rotating 
Graphics” beginning on page B-29 and “Drawing Dashed Lines” beginning on 
page B-33, makes use of a “magic pen” visible only to PostScript drivers. Graphics 
comments for drawing dashed lines and for rotating graphics require the use of the 
PenMode procedure to set the pattern mode to a value of 23. Normally this value is 
undefined, but it is handled specially by PostScript printer drivers (all QuickDraw 
drivers ignore it). Your application can use this pattern mode to draw objects in a picture, 
and if the picture is printed on a QuickDraw printer, these objects are not visible. 

To maintain device independence when you send routines to a PostScript printer driver, 
you can “hide” QuickDraw routines between the PostScriptBegin and 
PostScriptEnd picture comments. The PostScriptBegin comment is recognized 
only by PostScript printer drivers. When a PostScript driver receives the 
PostScriptBegin comment, it tells the PostScript printer to save the current state 
of the printer and to disable all low-level standard QuickDraw drawing procedures. 
Thus, the QuickDraw representation of the graphic is ignored by PostScript printer 
drivers.
B-8 Maintaining Device Independence



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
Table B-2 lists the QuickDraw low-level procedures and the affected high-level drawing 
routines that are disabled by the PostScriptBegin picture comment.

To mark the end of a sequence of hidden QuickDraw drawing routines and to reenable 
QuickDraw drawing routines, you can use the picture comment PostScriptEnd. 
The PostScriptEnd comment is recognized only by PostScript printer drivers. When a 
PostScript driver receives the PostScriptEnd comment, it tells the PostScript printer 
driver to restore the previous state of the printer driver and to enable QuickDraw 
drawing operations.

For a LaserWriter PostScript printer driver, QuickDraw routines that draw text, lines, 
and shapes and copy bitmaps or pixel maps have no effect when placed between the 
PostScriptBegin and PostScriptEnd picture comments. Instead, the driver expects 
to receive imaging instructions in subsequent picture comments. On the other hand, a 
QuickDraw printer driver ignores the PostScriptBegin and PostScriptEnd picture 
comments.

Only PostScript printer drivers should support the DashedLine, DashedStop, 
RotateBegin, RotateCenter, and RotateEnd picture comments. Therefore, you can 
use the PostScriptBegin and PostScriptEnd picture comments to hide your 
QuickDraw implementations of these comments from the printer driver. Listing B-7 on 
page B-31 illustrates how to use PostScriptBegin and PostScriptEnd when 
rotating graphics on PostScript printers; Listing B-9 on page B-34 illustrates how to use 
PostScriptBegin and PostScriptEnd when drawing dashed lines on PostScript 
printers.

Table B-2 Low-level QuickDraw routines disabled by the PostScriptBegin comment

Low-level routine Examples of affected high-level QuickDraw routines 

StdText QuickDraw text-drawing routines (as described in the chapter 
“QuickDraw Text” in Inside Macintosh: Text)

StdLine MoveTo, Move, LineTo, Line

StdRect FrameRect, PaintRect, FillRect, EraseRect, InvertRect

StdRRect FrameRoundRect, PaintRoundRect, FillRoundRect, 
EraseRoundRect, InvertRoundRect

StdOval FrameOval, PaintOval, FillOval, EraseOval, InvertOval

StdArc FrameArc, PaintArc, FillArc, EraseArc, InvertArc

StdPoly FramePoly, PaintPoly, FillPoly, ErasePoly, InvertPoly

StdRgn FrameRgn, PaintRgn

StdBits CopyBits, CopyMask, CopyDeepMask
Maintaining Device Independence B-9



A P P E N D I X  B

Using Picture Comments for Printing
Synchronizing QuickDraw and PostScript Printer Drivers B

QuickDraw instructions such as those generated by the Move, MoveTo, PenPat, and 
PenSize routines change the state of the current graphics port without going through 
the standard low-level routines pointed to in the QDProcs record for the current 
graphics port. A printer driver takes these changes into account only at the time it 
executes an actual drawing instruction. The printer driver uses the routines specified in 
the QDProcs record at execution time and responds only to those instructions handled 
by the routines in the QDProcs record. Therefore, you should flush the state of the 
printing graphics port explicitly by calling any routine that goes through the 
QDProcs.lineProc field, as shown in Listing B-1, before inserting code using picture 
comments for a PostScript driver. The use of the application-defined routine 
MyFlushGrafPortState shown here is further illustrated in Listing B-8 on page B-32.

Listing B-1 Synchronizing QuickDraw and the PostScript driver

PROCEDURE MyFlushGrafPortState;

VAR

penInfo: PenState;

BEGIN

GetPenState(penInfo); {save pen size}

PenSize(0,0);        {make it invisible}

MoveTo(-3200,-3200); {move the pen way off the page in }

{ case the printer driver draws a dot }

{ even with a pen size of (0,0)}

Line(0,0); {go through QDProcs.lineProc}

{next, restore pen size}

PenSize(penInfo.pnSize.h, penInfo.pnSize.v);  

END;
B-10 Synchronizing QuickDraw and PostScript Printer Drivers



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
A PostScript printer driver separates the PostScript code generated for text-drawing 
instructions (which usually involves font queries and, sometimes, font downloading) 
from the picture comments intended for PostScript devices. In certain cases, this results 
in apparently nonsequential execution of drawing instructions and may affect clipping 
regions or have side effects on the drawing operations you include in picture comments. 
To synchronize the sequence of QuickDraw routines with the generation of PostScript 
code, you need to flush the buffer maintained by the PostScript driver. You can do this 
by using the PostScriptBegin picture comment followed immediately by the 
PostScriptEnd picture comment. This causes all PostScript code, generated either by 
the application or by the printer driver, to be sent to the printer. Listing B-2 shows an 
application-defined procedure that does this. The use of the application-defined routine 
MyFlushPostScriptState shown here is further illustrated in Listing B-4 on 
page B-21.

Listing B-2 Flushing the buffer for a PostScript printer driver

PROCEDURE MyFlushPostScriptState;

BEGIN

   PicComment(PostScriptBegin, 0, NIL);

   PicComment(PostScriptEnd, 0, NIL);

END;

Using Text Picture Comments B

The text picture comments listed in Table B-1 on page B-5 allow you to disable the 
printer driver’s line layout capabilities (as described in the next section), construct lines 
of text out of disparate strings (as described in “Delimiting Strings” on page B-16), and 
rotate text on the page (as described in “Rotating Text” on page B-17).

For information on drawing text, see Inside Macintosh: Text.

Disabling and Reenabling Line Layout B
When your application draws text into a printing graphics port, the printer driver may 
do a lot of extra work depending on the current printer; the printer driver may have to 
scale and smooth fonts, remap characters, and substitute one font used onscreen for 
another that exists on the printer (this last action is called font substitution). 

After it selects the appropriate font, the printer driver matches the width of the printed 
line with the width of the screen line. If the driver has to perform font substitution, the 
two lines may be very different. For example, if your application draws a document with 
the Geneva bitmapped font (instead of the Geneva TrueType font), a PostScript printer 
Using Text Picture Comments B-11



A P P E N D I X  B

Using Picture Comments for Printing
driver could substitute the Helvetica® font for Geneva in the PostScript code it 
generates. Since Helvetica is a different font, it has different metrics. A rather 
exaggerated example of the effects of font substitution can be found in Figure B-1. 

Figure B-1 The line layout error between a bitmapped font and a PostScript font

For the typical user, the appearance of Helvetica on the printed page is not that much 
different from the appearance of Geneva on the screen. However, the width of the lines 
using the two fonts is different; this difference is called the line layout error.  The line of 
text using the bitmapped screen font is much wider than the line of text using the 
PostScript printer font. (Depending on the font used in the document or substituted on 
the printer, you might also run into cases where the screen width is narrower than the 
printed width.) 

Note
There are no line layout problems with TrueType fonts, unless one font 
has the same name as—but a different character width from—a 
printer-resident PostScript font. ◆

To distribute the layout error, a printer driver must effectively increase or decrease the 
width of each glyph in the line. A glyph  is the distinct representation of a character in a 
form that a screen or printer can display. A glyph may represent one character (the 
lowercase a), more than one character (the fi ligature, two characters but one glyph), or a 
nonprinting character (the space character). When using Roman scripts, most lines of 
text contain some number of space character glyphs. Printer drivers take advantage of 
this fact and normally apply most of the layout error to space glyphs (known as the 
major glyphs ) and the rest of the error to the other glyphs in the string (known as the 
minor glyphs ).

This is a line of text.PostScript printer font (14-point Helvetica) 

Bitmapped screen font (14-point Geneva) 

Line layout error
B-12 Using Text Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
In Figure B-2, the i, s, and a characters are examples of minor glyphs, where s and a are 
separated by the major glyph (the space character).

Figure B-2 Major and minor glyphs

The amount of error applied to the major glyph is known as the major error, and the 
amount applied to the other glyphs is the minor error.

In Figure B-3, the printer driver corrects most of the difference between the line widths 
by expanding the width of the space glyphs in the string. 

Figure B-3 Distributing layout error to the major glyphs

Bitmapped screen font (14-point Geneva) 

Minor glyphs

Major

glyph

PostScript printer font (14-point Helvetica)

Bitmapped screen font (14-point Geneva)

Spaces between words are wider

This  is  a  line  of  text.
Using Text Picture Comments B-13



A P P E N D I X  B

Using Picture Comments for Printing
However, if the printer driver expands only the width of the spaces, the line has a 
strange appearance. To balance the changes made to the space glyphs, the driver’s line 
layout routines increase the space between each glyph in the string by a small amount. 
After the line is laid out in this way, the printed string should be almost exactly as wide 
as the string that was displayed on the screen. As shown in Figure B-4, the space 
between the uppercase T and the lowercase h in the word This has been increased, but 
only slightly; most of the error has been applied to the spaces. By default, most drivers 
apply about 80 percent of the total line layout error to the major glyphs and the other 20 
percent to the minor glyphs. When using a script system that does not use the space 
glyph to delimit words, the layout error is distributed evenly across all characters in the 
line.

Figure B-4 Distributing layout error among major and minor glyphs

A printer driver’s line layout routines are device-dependent. Since different devices have 
different resident fonts, the layout error can be quite large. For this reason, you should 
not assume that if you have the correct output on one type of laser printer you will have 
the correct output on all devices or with all fonts. 

Although the printer driver can compute the placement of a line of text on the page so 
that it closely approximates the placement of the line on the screen, there are times when 
adjusting the line of text by adding space can have an adverse effect on the line layout 
that your application has already done. 

You can disable the line layout routines of the current printer driver and give your 
application more control over placement of the glyphs on the page by using the 
LineLayoutOff picture comment. You may want to use this picture comment if your 
application prints monospaced, tab-formatted text; draws notes or other music symbols 
using glyphs from a music font; or renders mathematical equations or formulas. For 
example, if your application displays musical notation, the notes should stay where your 
application placed them, because small shifts in position can cause the music to be 
misread. 

PostScript printer font (14-point Helvetica)

Bitmapped screen font (14-point Geneva)

Major error

This is a l ine of text.

Minor error
B-14 Using Text Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
The LineLayoutOff picture comment instructs the printer driver to make no 
adjustments to the text being sent. Your application is then responsible for identically 
matching the appearance of text displayed on the screen to the printer. If the current 
printer driver does not support these comments, it ignores them and places the text on 
the page as well as it can. 

You can reenable the printer driver’s line layout routines with the LineLayoutOn 
picture comment (however, some printer drivers support only the LineLayoutOff 
comment). Although general line layout is disabled, some small shifts in glyph position 
may still occur. These shifts are usually not a problem, but, if they are, you should use 
the PrGeneral procedure with the getRslDataOp and setRslOp opcodes (described 
in the chapter “Printing Manager” in this book) to draw text at the resolution of the 
current printer. 

IMPORTANT

Setting the FractEnable global variable (described in the chapter 
“Font Manager” in Inside Macintosh: Text) to TRUE does not have 
precisely the same effect as using the LineLayoutOff picture 
comment. You should explicitly use the LineLayoutOff 
picture comment rather than the SetFractEnable procedure. ▲

Figure B-5 compares the results of an application using the LineLayoutOff picture 
comment and the LineLayoutOn picture comment. In the first example, the text is 
printed exactly as it is rendered on the printer, with a much smaller width. In the second 
example, the printer driver’s line layout routines make the screen and printer lines the 
same length.

Figure B-5 Using the LineLayoutOff and LineLayoutOn picture comments

PostScript printer font (14-point Helvetica)

Bitmapped screen font (14-point Geneva)

This is a line of text.

PostScript printer font (14-point Helvetica)

Bitmapped screen font (14-point Geneva)

T his is a l ine of text.

LineLayoutOff

LineLayoutOn
Using Text Picture Comments B-15



A P P E N D I X  B

Using Picture Comments for Printing
In computing the required line layout adjustments, the PostScript LaserWriter driver 
proceeds as follows:

1. It collects text processed by the routine pointed to in the textProc field of the 
printing graphics port’s QDProcs record, and assembles the text into a logically 
contiguous line. This includes text moved vertically away from the baseline to take 
care of diacritical marks or exponents in the text. The accumulation of text stops when 
the PostScript LaserWriter driver detects that the pen position has moved horizontally 
since the conclusion of the previous text-drawing instruction, or when the driver 
encounters picture comments such as TextBegin, TextEnd, StringBegin, and 
StringEnd.

2. It determines the width of the accumulated logical line of text, both on the screen and 
on the printer, and distributes the line layout error among the interword and 
intercharacter spacing of the printed output.

The LineLayoutOff picture comment disables only the second step (distribution of the 
line layout error); the algorithm of accumulating text into a logically contiguous piece is 
not affected. Otherwise, if the character widths of the printer font are different from 
those of the screen font, and if the text contains diacritical marks or exponents, the 
diacritical marks and exponents would often be misplaced.

If you want precise control over the placement of different text strings within a line, you 
must override the heuristic line accumulation algorithm of the PostScript LaserWriter 
driver (described in the first step). A good way to override this algorithm is to use the 
StringBegin and StringEnd picture comments to mark individual strings as 
logically independent text entities; this prevents the PostScript LaserWriter driver from 
assembling the strings into one logically contiguous line of text. The StringBegin and 
StringEnd picture comments are described in the next section; Listing B-3 on page B-17 
illustrates how to completely disable line layout by using the LineLayoutOff and 
StringBegin picture comments.

Delimiting Strings B
You may want to draw a particular text string in pieces instead of a whole. For example, 
to draw kerned glyphs, you can draw the first part of the string—up to the point where 
kerning occurs—using the DrawText procedure, and you can then adjust the pen and 
draw the kerned glyph using the DrawChar procedure. (The DrawText and DrawChar 
procedures are described in the chapter “QuickDraw Text” in Inside Macintosh: Text.) You 
can also draw a single string that contains different fonts, styles, or sizes—if you call 
DrawText each time the typeface or font style changes. To identify the beginning of a 
single string that will be drawn using multiple calls to a QuickDraw text-drawing 
routine, you can use the StringBegin picture comment. Use the StringEnd picture 
comment to mark its end. 
B-16 Using Text Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
You can use the StringBegin and StringEnd picture comments if your application 
needs complete control over glyph placement on a page. If your application uses 
text-editing boxes for individual strings, it can use these picture comments to treat each 
string as a separate piece of text and place all glyphs into one text-editing box.

Listing B-3 uses the StringBegin and StringEnd picture comments. Use the 
LineLayoutOff picture comment (described in the preceding section) in conjunction 
with the StringBegin comment to turn line layout completely off.

Listing B-3 Disabling line layout by using the LineLayoutOff and StringBegin picture 
comments

PROCEDURE MyStringReconDemo (x: XArray; y: Integer);

BEGIN

PicComment(LineLayoutOff,0,NIL);

PicComment(StringBegin,0,NIL);

{position each character of the word 'Test' using }

{ MoveTo and DrawChar}

MoveTo(x[1],y); DrawChar('T');

MoveTo(x[2],y); DrawChar('e');

MoveTo(x[3],y); DrawChar('s');

MoveTo(x[4],y); DrawChar('t');

{reenable the printer driver's line layout routines}

PicComment(StringEnd,0,NIL);

PicComment(LineLayoutOn,0,NIL);

END;

Rotating Text B
You can use picture comments to rotate text on PostScript devices and on any 
QuickDraw-based drivers that support text rotation. (This is not the kind of rotation 
associated with landscape and portrait orientation of the printer paper as selected by the 
user through the style dialog box. This rotation occurs in reference to the current 
QuickDraw graphics port only.) The picture comments to rotate text are TextBegin, 
TextCenter, and TextEnd. 

If you use picture comments to rotate text, you should also generate a 
device-independent representation, such as a bitmapped version of the text, to be used 
on QuickDraw devices that don’t support these picture comments. Printer drivers that 
support TextBegin, TextCenter, and TextEnd are expected to ignore calls to the 
CopyBits, CopyMask, and CopyDeepMask procedures (as well as QuickDraw clipping 
regions) between the TextBegin and TextEnd picture comments. In this way, you can 
use CopyBits to draw a bitmap representation of rotated text on QuickDraw printers; 
the bitmap is not used if the TextBegin and TextEnd picture comments are supported, 
but it is used if TextBegin and TextEnd are not supported.
Using Text Picture Comments B-17



A P P E N D I X  B

Using Picture Comments for Printing
Some versions of 2-byte Kanji systems print Kanji glyphs by calling the CopyBits 
procedure instead of calling standard text-drawing routines. You cannot use the text 
rotation picture comments with these fonts. Instead, use the picture comments described 
in “Rotating Graphics” beginning on page B-29.

To use picture comments to rotate text, you begin by specifying the amount of rotation as 
a parameter to the TextBegin comment. Next, you pass the center of rotation in 
the TextCenter comment. The printer driver rotates any text drawn between the 
TextCenter and TextEnd comments. 

The TextBegin picture comment allows your application to specify left, right, center, or 
full justification; horizontal or vertical flipping; and degrees of rotation. The possible 
types of alignment are shown in Figure B-6.

Figure B-6 Variations in text alignment

PostScript printer font

Bitmapped screen font

None

This is a line of text.

This is a line of text.

This is a line of text.

This is a line of text.

This is a l ine of text.

Flush left

Flush right

Centered

Justified
B-18 Using Text Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
When you specify the TextBegin picture comment in the kind parameter of the 
PicComment procedure, you also specify a TTxtPicHdl handle (a handle to a 
TTxtPicRec record) in the dataHandle parameter. Here is how you should declare 
these as Pascal data types in your application:

TYPE 

TTxtPicHdl = ^TTxtPicPtr;

TTxtPicPtr = ^TTxtPicRec;

TTxtPicRec =

PACKED RECORD

tJus: Byte; {justification of text}

tFlip: Byte; {horizontal or vertical flipping}

tAngle: Integer; {0..360 degrees clockwise rotation }

{ in integer format}

tLine: Byte; {reserved}

tCmnt: Byte; {reserved}

tAngleFixed: Fixed; {0..360 degrees clockwise rotation }

{ in fixed-number format}

END;

You supply the tJus field with one of these constants to specify the alignment setting of 
the text:

CONST

tJusNone = 0; {no alignment}

tJusLeft = 1; {flush left}

tJusCenter = 2; {centered}

tJusRight = 3; {flush right}

tJusFull = 4; {full justification}

Setting the tJus field to left, right, or centered tells the printer driver to maintain only 
the left, right, or center point of the line (respectively), preventing the driver from 
recalculating the interword spacing. A value of tJusFull specifies that both endpoints 
of the line must be maintained, so the driver recalculates interword spacing instead of 
rejustifying text.

You supply the tFlip field with one of these constants to specify the horizontal or 
vertical flipping of text about the center point (which, in turn, is specified with the 
TextCenter picture comment):

CONST

tFlipNone = 0; {no flip of text}

tFlipHorizontal = 1; {horizontal flip of text}

tFlipVertical = 2; {vertical flip of text}
Using Text Picture Comments B-19



A P P E N D I X  B

Using Picture Comments for Printing
You supply the tAngle field with an integer to specify the number of degrees by which 
the printer driver should rotate the text. 

The tLine and tCmnt fields are reserved.

You supply the tAngleFixed field with a fixed-point number to specify the number of 
degrees by which the printer driver should rotate the text. 

In a TTxtPicRec record, you can provide the degrees of rotation both as an integer (in 
the tAngle field) and as a fixed-point number (in the tAngleFixed field). You should 
always specify the rotation in both fields, even for drivers that support only integral 
rotation. The driver determines which field to use based on the size of the handle passed 
to PicComment. If you do not define the tAngleFixed field in the TTxtPicRec 
record, the printer driver automatically uses the tAngle field. 

To rotate an object, a printer driver needs information concerning the center of rotation. 
Immediately after a TextBegin comment, the driver expects the TextCenter picture 
comment specifying the offset to the center of rotation for any text enclosed within the 
text picture comments. The driver stores this offset and adds it to the location of the 
first text-drawing routine after it receives the TextCenter picture comment. This allows 
you to send multiple runs of text to be rotated with different centers of rotation, while 
using only one set of TextBegin and TextEnd picture comments. The printer driver 
expects the string locations to be in the coordinate system of the current graphics port. 

The printer driver rotates the entire graphics port to draw the text, so it can draw several 
strings with one TextBegin picture comment and one TextCenter picture comment. 
You should always include as much text as possible in a single TextBegin picture 
comment so that the driver makes the fewest number of rotations.

The printer driver can draw nontextual objects within the bounds of the text rotation 
comments, but it must restore the printing graphics port to its original state to draw the 
object, and then rotate the printing graphics port again to draw the next string of text. 
You must send another TextCenter comment before each new rotation. 

When you specify the TextCenter (or RotateCenter) picture comment in the 
kind parameter of the PicComment procedure, you also supply in the dataHandle 
parameter a TCenterHdl handle, which is a handle to a TCenterRec record. You can 
use this record to specify the center of rotation for text or (as described in “Rotating 
Graphics” beginning on page B-29) for graphics. Here is how you should declare these as 
Pascal data types in your application:

TYPE

TCenterHdl = ^TCenterPtr;

TCenterPtr = ^TCenterRec;

TCenterRec = 

RECORD

y: Fixed; {vertical offset from current pen location}

x: Fixed; {horizontal offset from current pen location}

END; 
B-20 Using Text Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
You use the y field to specify the vertical offset along the y-axis from the current pen 
location to the center of rotation.

You use the x field to specify the horizontal offset along the x-axis from the current pen 
location to the center of rotation.

The application-defined routine MyDrawXString, shown in Listing B-4, rotates the 
strings by the degrees specified in the rot parameter. The rotation occurs around the 
current point, offset by the value passed in the ctr parameter. The strings are justified 
and flipped according to the just and flip parameters. If the printer driver supports 
the TextBegin, TextCenter, and TextEnd picture comments, the printer driver 
rotates the text at device resolution; otherwise, an application-defined procedure is 
called to generate a bitmap of the rotated and flipped text, using CopyBits to draw the 
text in the printing graphics port. The pen position is preserved. (Listing B-8 on 
page B-32 illustrates how to use the TCenterRec record to rotate graphics.)

Listing B-4 Displaying rotated text using picture comments

PROCEDURE MyDrawXString(s: Str255; ctr: Point;

  just, flip: Integer; rot: Fixed);

VAR

hT: TTxtPicHdl;

hC: TCenterHdl;

zeroRect: Rect;

pt: Point;

oldClip: RgnHandle;

BEGIN

GetPen(pt); {to preserve the pen position}

hT := TTxtPicHdl(NewHandle(SizeOf(TTxtPicRec)));

hC := TCenterHdl(NewHandle(SizeOf(TCenterRec)));

WITH hT^^ DO

BEGIN

tJus := just;

tFlip := flip; 

tAngle := - FixRound(rot); {counterclockwise}

tLine := 0; {reserved}

tCmnt := 0; {used internally by the printer driver}

tAngleFixed := - rot;

END;

hC^^.y := Long2Fix(ctr.v);

hC^^.x := Long2Fix(ctr.h);

MyFlushPostScriptState; {see Listing B-2 on page B-11}

PicComment(TextBegin,SizeOf(TTxtPicRec),Handle(hT));

PicComment(TextCenter,SizeOf(TCenterRec),Handle(hC));

{graphics state now has rotated/flipped coordinates}
Using Text Picture Comments B-21



A P P E N D I X  B

Using Picture Comments for Printing
oldClip := NewRgn;

GetClip(oldClip);

SetRect(zeroRect,0,0,0,0);

ClipRect(zeroRect); {hides this DrawString from }

DrawString(s); { QuickDraw in the rotated }

{ environment}

ClipRect(oldClip^^.rgnBBox);

{now the "fallback" bitmap representation}

MyQDStringRotation(s, ctr, just, flip, rot);

PicComment(TextEnd, 0, NIL);

{set environment back to the original state}

DisposeHandle(Handle(hT));

DisposeHandle(Handle(hC));

MoveTo(pt.h, pt.v); {restore the pen position}

END;

Because the PostScript LaserWriter driver buffers generated PostScript code, and because 
the driver ignores clipping regions between the TextBegin and TextEnd picture 
comments, clipping regions for drawing instructions that precede TextBegin may be 
affected. Therefore, MyDrawXString uses the application-defined routine 
MyFlushPostScriptState (shown in Listing B-2 on page B-11) immediately before 
using the TextBegin picture comment.

Using Graphics Picture Comments B

Graphics picture comments, listed in Table B-1 on page B-5, provide your application 
with the ability to render smoothed polygons (as described in the next section) and to 
rotate graphics (as described in “Rotating Graphics” on page B-29).

In general, you cannot use one set of graphics picture comments (for instance, the 
polygon-drawing picture comments) with another (graphics rotation comments). When 
using these two types of comments, you should simply rotate the points of the polygon 
before drawing.

The graphics comments for drawing dashed lines and for rotating graphics require the 
use of the PenMode procedure (described in the chapter “QuickDraw Drawing” in this 
book) to set the pattern mode to a value of 23. Normally this value is undefined, but it is 
handled specially by PostScript printer drivers, which treat it like the srcCopy Boolean 
transfer mode (described in the chapters “QuickDraw Drawing” and “Color 
QuickDraw”). All QuickDraw drivers ignore this pattern mode. Your application can use 
this pattern mode to draw objects in a picture and, if the picture is printed on a 
QuickDraw printer, these objects are not visible. 
B-22 Using Graphics Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
Drawing Polygons B
By using picture comments, you can draw high-resolution polygons on PostScript 
printing devices. PostScript supports four types of polygons: open, framed, filled, and 
smoothed. (QuickDraw supports all of these types except smoothed.)

Figure B-7 shows these four types of polygons.

Figure B-7 Types of polygons

Type Description

Open A polygon whose endpoints do not join. This type of polygon cannot be 
filled.

Framed A closed polygon that is not filled. Framed and filled polygons are 
exclusive to one another.

Filled A closed polygon whose interior is entirely covered with a pattern.

Smoothed A polygon (open, framed, or filled) whose edges have been rounded.

Open Framed

SmoothedFilled
Using Graphics Picture Comments B-23



A P P E N D I X  B

Using Picture Comments for Printing
To draw polygons, perform the following steps:

1. Use the PolyBegin picture comment to alert the PostScript driver that you are 
drawing a polygon.

2. Optionally, you can use the PolyClose picture comment to use “closed” smoothing 
between the first and last vertices of the polygon.

3. Use the PolySmooth picture comment to tell the PostScript driver to draw a Bézier 
curve.

4. Use the GetClip procedure to save the current clipping region; then use the 
ClipRect procedure to hide your polygon’s drawing commands from QuickDraw.

5. Draw your polygon. The PostScript driver renders it smoothly.

6. Use the SetClip procedure to restore the previous clipping region.

7. Use the PolyIgnore picture comment to make the printer driver ignore the 
line-drawing commands for your QuickDraw representation of the polygon.

8. Draw your QuickDraw representation of the polygon.

9. Use the PolyEnd picture comment.

The PolyBegin and PolyEnd picture comments surround the polygon description. 
Note that the printer driver draws the polygon at the location of the pen when it receives 
the PolyBegin picture comment, so you must set the pen’s location before using the 
PolyBegin picture comment. For polygons that are smoothed, you must set the pen 
size to 0 after the PolyBegin picture comment to prevent the unsmoothed polygon 
from being drawn on printers that do not support the polygon comments.

All QuickDraw routines called between PolyBegin and PolyEnd that are processed 
by the low-level StdLine routine are part of the polygon—that is, the endpoints of each 
of the lines become vertices of the polygons.

You should use the PolyClose, PolySmooth, and PolyIgnore picture comments 
between the PolyBegin and PolyEnd picture comments. 

The PolyClose comment specifies that the printer driver should treat all vertices of the 
polygon in the same manner; in particular, this affects the shape of the smooth curve 
between the polygon’s first and last vertices, which might otherwise be distinguishable 
as separate points. The PolyClose comment, however, does not automatically close the 
polygon as the PostScript operator closepath does. 
B-24 Using Graphics Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
To render high-resolution B-splines when PostScript is available, use the PolySmooth 
picture comment, which directs the PostScript printer driver to interpret the polygon 
vertices as control nodes for a quadratic Bézier spline. PostScript has a direct facility for 
cubic B-splines, and the PostScript printer driver translates the quadratic B-spline nodes 
into the appropriate nodes for a cubic B-spline that will emulate the original quadratic. 
This allows you to use this PostScript feature without having to call PostScript routines 
directly. 

Note
PostScript Level 1 has some problems with very large polygons that 
have more than 1500 points. For this reason, you may want to avoid 
doubling the points on large smoothed polygons, even though a greater 
number of points might aid in making the polygon smoother. ◆

When you use the PolySmooth picture comment, pass a TPolyVerbHdl handle, which 
is a handle to a TPolyVerbRec record, in the dataHandle parameter of the 
PicComment procedure. You use a TPolyVerbRec record to tell the printer driver to 
interpret the polygon vertices as control nodes for a quadratic Bézier spline. Here is how 
you should declare these as Pascal data structures in your application:

Type 

TPolyVerbHdl = ^TPolyVerbPtr;

TPolyVerbPtr = ^TPolyVerbRec;

TPolyVerbRec =

PACKED RECORD

f7,f6,f5,f4,f3: Boolean; {reserved; set to 0}

fPolyClose: Boolean; {TRUE is same as PolyClose }

{ picture comment}

fPolyFill: Boolean; {TRUE means fill polygon}

fPolyframe: Boolean; {TRUE means frame polygon}

END;

The f7, f6, f5, f4, and f3 fields are reserved bits; you should set them to 0.

Setting the fPolyClose field to 1 achieves the same result as the PolyClose picture 
comment. The PolyClose comment specifies that the printer driver should treat all 
vertices of the polygon in the same manner; in particular, this affects the shape of the 
smooth curve between the polygon’s first and last vertices, which might otherwise be 
distinguishable as separate points. The PolyClose comment does not automatically 
close the polygon as the PostScript operator closepath does.
Using Graphics Picture Comments B-25



A P P E N D I X  B

Using Picture Comments for Printing
Set the fPolyFill field to 1 if you want the printer driver to fill the polygon, or set it 
to 0 if not.

Set the fPolyFrame field to 1 if you want the printer driver to frame the polygon, or set 
it to 0 if not.

In Listing B-5, the polygon coordinates are defined through arrays of points, initialized 
using an application-defined procedure, MyDefineVertices. The procedure 
MyDefineVertices specifies the points for two polygons. The array referenced 
through the parameter p defines the points used for the PostScript representation of the 
polygon. The array referenced through the parameter q defines the points used for the 
QuickDraw representation of the polygon.

Listing B-5 Creating polygons

PROCEDURE MyDefineVertices(VAR p,q: PointArrayPtr);

CONST

cx = 280; {x coordinate for center point}

cy = 280; {y coordinate for center point}

r0 = 200; {radius}

kN = 4; {number of vertices for PostScript}

kM = 6; {number of vertices for QuickDraw approximation}

BEGIN

{the array p^ contains the control points for the Bézier curve}

SetPt(p^[0],cx + r0,cy);

SetPt(p^[1],cx,cy + r0);

SetPt(p^[2],cx - r0,cy);

SetPt(p^[3],cx,cy - r0);

p^[4] := p^[0];

{q^ contains the points for a QuickDraw approximation of the curve}

q^[0] := p^[0];

SetPt(q^[1],cx,cy + round(0.7 * (p^[1].v - cy)));

SetPt(q^[2],(p^[1].h + p^[2].h) DIV 2,

(p^[1].v + p^[2].v) DIV 2);

SetPt(q^[3],cx + round(0.8 * (p^[2].h - cx)),cy);

SetPt(q^[4],q^[2].h,cy + cy - q^[2].v);

SetPt(q^[5],q^[1].h,cy + cy - q^[1].v);

q^[6] := q^[0];

END;
B-26 Using Graphics Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
Use the PolyIgnore comment before drawing your QuickDraw version of the polygon; 
between PolyIgnore and PolyEnd, drivers that support these two comments ignore 
all QuickDraw routines processed through the low-level procedure StdLine. You can 
enclose the application-defined procedure MyPolygonDemo, shown in Listing B-6, 
between OpenPicture and ClosePicture calls to create a picture containing both 
QuickDraw and PostScript representations of the polygon. Alternatively, you can call 
MyPolygonDemo when drawing directly into a printing graphics port.

Listing B-6 Drawing polygons

PROCEDURE MyPolygonDemo;

VAR

p, q: PointArrayPtr;

aPolyVerbH: TPolyVerbHdl;

i: Integer;

clipRgn, polyRgn: RgnHandle;

zeroRect: Rect;

BEGIN

p := PointArrayPtr(NewPtr(SizeOf(Point) * (kN + 1)));

q := PointArrayPtr(NewPtr(SizeOf(Point) * (kM + 1)));

IF (p = NIL) OR (q = NIL) THEN DoErr(kMemError);

MyDefineVertices(p,q);

PenNormal; {first show the standard QuickDraw polygon}

MoveTo(p^[0].h,p^[0].v);

FOR i := 1 TO kN DO

LineTo(p^[i].h,p^[i].v);

PenSize(2,2); {now show the same polygon "smoothed"}

PenPat(gray);

{first, the PostScript representation, clipped from QuickDraw}

aPolyVerbH:= 

TPolyVerbHdl(NewHandle(SizeOf(TPolyVerbRec)));

IF aPolyVerbH<> NIL THEN

WITH aPolyRecH^^ DO

BEGIN

fPolyFrame := TRUE;

fPolyFill  := FALSE;

fPolyClose := FALSE;
Using Graphics Picture Comments B-27



A P P E N D I X  B

Using Picture Comments for Printing
{compare with the result for TRUE!}

f3 := FALSE;

f4 := FALSE;

f5 := FALSE;

f6 := FALSE;

f7 := FALSE;

END;

MoveTo(p^[0].h,p^[0].v);

PicComment(PolyBegin,0,NIL);

{picComment(PolyClose,0,NIL); only if }

{ fPolyClose = TRUE, above!}

PicComment(PolySmooth,SizeOf(TPolyVerbRec),

Handle(aPolyVerbH));

clipRgn := NewRgn;

GetClip(clipRgn);

ClipRect(zeroRect);

FOR i := 1 TO kN DO

LineTo(p^[i].h,p^[i].v);

{next, the QuickDraw approximation of the smoothed }

{ polygon, invisible for PostScript because of PolyIgnore}

SetClip(clipRgn);

PicComment(PolyIgnore,0,NIL);

polyRgn := NewRgn;

OpenRgn;

MoveTo(q^[0].h,q^[0].v);

FOR i := 1 TO kM DO

LineTo(q^[i].h,q^[i].v);

CloseRgn(polyRgn);

FrameRgn(polyRgn); {or FillRgn, if fPolyFill above is TRUE}

PicComment(PolyEnd,0,NIL);

DisposeHandle(Handle(aPolyVerbH));

DisposeRgn(polyRgn);

DisposePtr(Ptr(p));

DisposePtr(Ptr(q));

END;
B-28 Using Graphics Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
The two versions of the drawn polygon are shown in Figure B-8.

Figure B-8 QuickDraw and PostScript polygons

Note that you do not need to open a region, collect the line segments in the region, and 
draw the polygon through the FrameRgn procedure (described in the chapter 
“QuickDraw Drawing” in this book). This method is demonstrated in Listing B-6 only to 
prepare you for situations where you want to fill the polygon with a pattern. You cannot 
open a polygon and use the FillPoly procedure (also described in the chapter 
“QuickDraw Drawing” in this book), because the PostScript driver “owns” the polygon 
concept at this point and captures—and ignores—all line drawing between the 
PolyIgnore and PolyEnd comments. Regions do not interfere with polygons, 
however, and they can be used to paint or fill the polygonal shape.

Rotating Graphics B
You can rotate QuickDraw objects on PostScript printers. The printer driver rotates the 
entire PostScript coordinate space before drawing the objects, which then appear rotated. 
All objects that you want to rotate must be contained between the RotateBegin and 
RotateEnd picture comments. 

You specify the center of rotation with the RotateCenter picture comment. Unlike text 
rotation, where you pass the TextBegin picture comment first and then the 
RotateCenter picture comment, you must pass the offset (which is relative to the 
center of rotation) with the RotateCenter picture comment before you use the 
RotateBegin picture comment. When you specify the RotateCenter picture 
comment in the kind parameter of the PicComment procedure, you also supply in the 
dataHandle parameter a TCenterHdl handle, which is a handle to a TCenterRec 
record. You can use this record to specify the center of rotation for graphics or text. See 
“Rotating Text” beginning on page B-17 for a description of the fields of a TCenterRec 
record.

QuickDraw-rendered polygon PostScript-rendered polygon
Using Graphics Picture Comments B-29



A P P E N D I X  B

Using Picture Comments for Printing
When you specify the RotateBegin picture comment in the kind parameter of the 
PicComment procedure, you also supply in the dataHandle parameter a 
TRotationHdl handle, which is a handle to a TRotationRec record. You use 
a TRotationRec record to specify the rotation of a graphic. Here’s how you should 
declare these as Pascal data structures:

TYPE 

TRotationHdl = ^TRotationPtr;

TRotationPtr = ^TRotationRec;

TRotationRec =

RECORD

rFlip: Integer; {horizontal/vertical flipping}

rAngle: Integer; {0..360 clockwise rotation in }

{ integer format}

rAngleFixed: Fixed; {0..360 clockwise rotation in }

{ fixed-number format}

END;

You use the rFlip field to specify whether to flip the graphic horizontally or vertically 
in addition to rotating it. Here are the possible values for this field:

You supply the rAngleFixed field with a fixed-point number to specify the number of 
degrees by which the printer driver should rotate the graphic. 

You can provide the degrees of rotation both as an integer (in the rAngle field) and as a 
fixed-point number (in the rAngleFixed field). You should always specify the rotation 
in both fields, even for drivers that support only integral rotation. 

Once you set up the rotation with the RotateCenter and RotateBegin picture 
comments, you draw the graphics objects you want to rotate. Before drawing the objects, 
use the PenMode procedure to set the pattern mode to a value of 23, which represents a 
special pattern mode for PostScript printer drivers. You should draw the QuickDraw 
image, using the CopyBits procedure, inside its own pair of PostScriptBegin and 
PostScriptEnd comments so that the QuickDraw representation will not show up 
on PostScript devices. (You should also use the PrGeneral procedure with the 
getRslDataOp opcode, described in the chapter “Printing Manager” in this book, to 
determine and use the maximum printer resolution.) 

In Listing B-7, the application-defined procedure MyRotateDemo rotates the same image 
for both QuickDraw and PostScript printers. 

Value Description

0 No coordinate flip

1 Horizontal coordinate flip

2 Vertical coordinate flip
B-30 Using Graphics Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
Listing B-7 Using picture comments to rotate graphics

PROCEDURE MyRotateDemo;

CONST

angle = 30;

VAR

spinRect: Rect;

delta: Point;

BEGIN

SetRect(spinRect,100,100,300,200);

WITH spinRect DO SetPt(delta,(right - left) DIV 2,

 (bottom - top) DIV 2);

PenSize(2,2);

PenPat(ltGray);

FrameRect(spinRect); {show the unrotated square}

PenNormal;

MyPSRotatedRect(spinRect,delta,angle);

{QuickDraw equivalent of the rotated object, hidden from the PostScript }

{ driver because of PostScriptBegin and PostScriptEnd}

PicComment(PostScriptBegin, 0, NIL);

MyQDRotatedRect(spinRect, delta, angle);

PicComment(PostScriptEnd, 0, NIL);

END;

The application-defined procedure MyQDRotatedRect rotates the four points of the 
rectangle by an angle around the center and draws the rotated rectangle. To include this 
QuickDraw representation of the rotated objects (in case the RotateCenter and 
RotateBegin picture comments are not supported), the code in Listing B-7 assumes 
that only PostScript drivers implement these comments. The only way to hide from the 
driver the application-defined procedure that provides a QuickDraw representation of 
the rotated objects is to surround it by PostScriptBegin and PostScriptEnd 
comments.

To hide from QuickDraw the graphics rotation for a PostScript printer, Listing B-8 uses 
pattern mode 23.
Using Graphics Picture Comments B-31



A P P E N D I X  B

Using Picture Comments for Printing
Listing B-8 Using the RotateCenter, RotateBegin, and RotateEnd picture comments

PROCEDURE MyPSRotatedRect(r: Rect; offset: Point; angle: Integer);

{does the rectangle rotation for the PostScript LaserWriter driver}

{uses the RotateCenter, RotateBegin, and RotateEnd picture comments, }

{ and the "magic" pattern mode 23 to hide the drawing from QuickDraw}

CONST

magicPen = 23;

VAR

rInfo: TRotationHdl;

rCenter: TCenterHdl;

oldPenMode: Integer;

BEGIN

rInfo := TRotationHdl(NewHandle(SizeOf(TRotationRec)));

rCenter := TCenterHdl(NewHandle(SizeOf(TCenterRec)));

IF (rInfo = NIL) OR (rCenter = NIL)

THEN DebugStr('NewHandle failed');

WITH rInfo^^ DO

BEGIN

rFlip := 0;

rAngle := - angle;

rAngleFixed := BitShift(LongInt(rAngle),16);

END;

WITH rCenter^^ DO

BEGIN

x := Long2Fix(offset.h);

y := Long2Fix(offset.v);

END;

MoveTo(r.left,r.top);

MyFlushGrafPortState; {see Listing B-1 on page B-10}

PicComment(RotateCenter,SizeOf(TCenterRec),Handle(rCenter));

PicComment(RotateBegin,SizeOf(TRotationRec),Handle(rInfo));

oldPenMode := thePort^.pnMode;

PenMode(magicPen);

FrameRect(r);

PenMode(oldPenMode);

PicComment(RotateEnd,0,NIL);

DisposeHandle(Handle(rInfo));

DisposeHandle(Handle(rCenter));

END;
B-32 Using Graphics Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
Using Line-Drawing Picture Comments B

Line-drawing picture comments, listed in Table B-1 on page B-5, provide your 
application with the ability to draw dashed lines (as described in the next section) and to 
display fractional line widths (as described in “Using Fractional Line Widths” on 
page B-35).

Drawing Dashed Lines B
Your application may use dashed lines frequently, particularly if it is a spreadsheet or 
accounting application. You can use the DashedLine picture comment to draw dashed 
lines on capable printers without drawing each individual dash. You use the 
DashedStop picture comment to tell the printer driver when you are finished sending 
dashed line information. 

When you use the DashedLine comment, the printer driver draws the indicated lines 
or rectangles. You should pass a handle to a TDashedLineRec record in the 
dataHandle parameter of the PicComment procedure. You use a TDashedLineRec 
record to specify how the dashed line should look. Here is how you should declare these 
as Pascal data structures:

TYPE 

TDashedLineHdl = ^TDashedLinePtr;

TDashedLinePtr = ^TDashedLineRec;

TDashedLineRec =

PACKED RECORD

offset: SignedByte; {offset}

centered: SignedByte; {reserved; set to 0}

intervals: ARRAY[0..0] OF SignedByte;

{points for drawing and not }

{ drawing dashes}

END;

Use the offset field to specify an offset as with the PostScript setdash operator.

The centered field is reserved and should be set to 0. Your application must center the 
dashed lines.

In the intervals field, specify an array of dash intervals describing the number of 
points drawn for a dash and the number of points not drawn between them.

You must provide both a QuickDraw and a picture comment version of the dashed line. 
The code in Listing B-9 uses the PostScriptBegin and PostScriptEnd picture 
comments to hide QuickDraw code from PostScript, and it uses pattern mode 23 to 
render PostScript drawing invisible in QuickDraw. 
Using Line-Drawing Picture Comments B-33



A P P E N D I X  B

Using Picture Comments for Printing
Listing B-9 Using the DashedLine picture comment

PROCEDURE DashDemo;

CONST

magicPen = 23; 

cx = 280; {center along x-axis}

cy = 280; {center along y-axis}

r0 = 200; {radius}

VAR

dashHdl: TDashedLineHdl;

i: Integer;

a, rad: Extended;

BEGIN

PenSize(2,2);

{First the PostScript picture comment version. Pattern mode } 

{ 23 makes the line drawing invisible to QuickDraw.}

PenMode(magicPen);

dashHdl := TDashedLineHdl(NewHandle(SizeOf(TDashedLineRec)));

IF dashHdl <> NIL THEN

WITH dashHdl^^ DO

BEGIN

offset := 4;       {just for fun}

centered := 0;     {currently ignored--set to 0}

intervals[0] := 2; {number of interval specs}

intervals[1] := 4; {this means 4 points on ...}

intervals[2] := 6; {... and 6 points off}

PicComment(DashedLine, SizeOf(TDashedLineRec), 

Handle(dashHdl));

END;

rad := 3.14159 / 180; {conversion degrees -> radians}

FOR i := 0 TO 9 DO

BEGIN {draw some dashed lines}

a := i * 20 * rad;

MoveTo(cx, cy);

Line(round(r0 * cos(a)), - round(r0 * sin(a)));

END;

PicComment(DashedStop, 0, NIL); {that's enough!}

DisposeHandle(Handle(dashHdl));

PenMode(srcOr);  {no magic any more}

{Now, the QuickDraw version. The PostScript driver must }

{ ignore it, so enclose it between PostScriptBegin and }

{ PostScriptEnd comments.}

PicComment(PostScriptBegin, 0, NIL);

PenSize(2,2);
B-34 Using Line-Drawing Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
FOR i := 0 TO 9 DO

BEGIN

MoveTo(cx,cy);

MyDashedQDLine(round(r0 * cos(i * 20 * rad)),

 - round(r0 * sin(i * 20 * rad)), dashHdl);

END;

PicComment(PostScriptEnd, 0, NIL);

END;

Using Fractional Line Widths B
Your application may need lines as thin as possible or thinner than the screen can 
display, especially if it is a desktop publishing, spreadsheet, or design application. You 
can draw hairlines  (lines that are less than 1/72 of an inch wide) with printer drivers 
that support the SetLineWidth picture comment. Your application passes the printer 
driver a scaling factor (such as 1/4) that the driver applies to the pen size when 
rendering the picture. 

QuickDraw and the PostScript language define 1 point to be 1/72 of an inch, so there are 
exactly 72 points per inch on the Macintosh screen. The resolution of a PostScript device 
such as the 300-dpi LaserWriter printer is about four times that of the screen, so the 
driver can render lines that are approximately 1/4 of a point thick, which is about 1/288 
of an inch.

When you specify the SetLineWidth picture comment in the kind parameter of the 
PicComment procedure, you also specify a TLineWidthHdl handle (a handle to a data 
structure of type TLineWidth) in the dataHandle parameter. The TLineWidth 
data structure is defined by the Point data type. Here is how you should declare these 
as Pascal data types in your application:

TLineWidthHdl = ^TLineWidthPtr;

TLineWidthPtr = ^TLineWidth;

TLineWidth = Point; {v = numerator, h = denominator}

Use the vertical coordinate of the point as the numerator and the horizontal coordinate 
as the denominator of the scaling factor: the driver multiplies the horizontal and vertical 
components of the pen by the scaling factor to obtain the new pen width. For example, if 
you have a pen size of (1,2) and your SetLineWidth picture comment uses 2 for the 
horizontal and 7 for the vertical, the pen size will then be (7/2) × 1 pixel wide and 
(7/2) × 2 pixels high.

In Figure B-9, the original pen size is 1 point. The first scaling factor is 5.0 or (5,1), which 
gives the pen a width of 5 points. The second scaling factor, applied to the new pen 
width, is 0.2 or (1,5), which gives the pen a width of 1 point again.
Using Line-Drawing Picture Comments B-35



A P P E N D I X  B

Using Picture Comments for Printing
Figure B-9 Changing the pen width using the SetLineWidth picture comment

The SetLineWidth picture comment is implemented by all PostScript LaserWriter 
printer drivers and by some QuickDraw printer drivers. However, not all 
QuickDraw printer drivers support SetLineWidth, and there is no backup solution for 
cases where it is not supported. Among QuickDraw printer drivers that do support 
SetLineWidth, some drivers emulate PostScript printer drivers, while others—such as 
the QuickDraw LaserWriter SC driver—implement SetLineWidth differently. 

The difference between the implementations of the SetLineWidth comment by the 
PostScript LaserWriter driver and the QuickDraw LaserWriter SC driver is apparent as 
soon as SetLineWidth is used a second time. The PostScript driver keeps an internal 
line-scaling factor, which is initialized to 1.0 when a job is started. Each number passed 
through SetLineWidth is multiplied by the current internal scaling factor to get the 
effective scaling factor for the pen size. The LaserWriter SC driver, on the other hand, 
replaces its current scaling factor for the pen size by the new value passed through 
SetLineWidth. 

To support both implementations, you must always use an additional SetLineWidth 
picture comment to reset the PostScript driver line width to 1.0 before scaling to a new 
value width, as illustrated by the following lines of code:

PicComment(SetLineWidth, SizeOf(TLineWidth), Handle(1/oldLineWidth));

PicComment(SetLineWidth, SizeOf(TLineWidth), Handle(newLineWidth));

For example, suppose your application set the line width to 0.25, and now it needs a line 
width of 0.5. The following two SetLineWidth comments have the desired effect on all 
PostScript and QuickDraw drivers that implement the SetLineWidth comment.

Current line width,
PS driver

Current line width,
QD driver

Value passed
along with

SetLineWidth
New line width,

PS driver
New line width,

QD driver

0.25 0.25 4/1 1.0 4.0

1.0 4.0 1/2 0.5 0.5

1-point thickness

1-point pen size times 5.0   =   5-point thickness

5-point pen size times 0.2   =  1-point thickness
B-36 Using Line-Drawing Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
The sample code in Listing B-10 gives the expected results on PostScript LaserWriter and 
QuickDraw printer drivers that implement the SetLineWidth comment.

Listing B-10 Using the SetLineWidth picture comment

PROCEDURE MySetNewLineWidth(oldWidth,newWidth: TLineWidth);

VAR

tempWidthH: TLineWidthHdl;

BEGIN

tempWidthH := TLineWidthHdl(NewHandle(SizeOf(TLineWidth)));

tempWidthH^^.v := oldWidth.h;

tempWidthH^^.h := oldWidth.v;

PicComment(SetLineWidth, SizeOf(TLineWidth), Handle(tempWidthH));

tempWidthH^^ := newWidth;

PicComment(SetLineWidth, SizeOf(TLineWidth), Handle(tempWidthH));

DisposeHandle(Handle(tempWidthH));

END;

PROCEDURE MyLineWidthDemo;

CONST

y0 = 50; {top left of demo}

x0 = 50;

d0 = 440; {length of horizontal lines}

e0 = 5; {distance between lines}

kN = 5; {number of lines}

VAR

oldWidth,newWidth: TLineWidth;

i,j,y: Integer;

BEGIN

PenNormal;

y := y0;

SetPt(oldWidth,1,1); {initial line width = 1.0}

FOR i := 1 TO 5 DO

BEGIN

SetPt(newWidth,4,i);

{want to set it to i/4 = 0.25, 0.50, 0.75 ...}

SetNewLineWidth(oldWidth,newWidth);

MoveTo(x0, y);

Line(d0, 0);

y := y + e0;

oldWidth := newWidth;

END;

END;
Using Line-Drawing Picture Comments B-37



A P P E N D I X  B

Using Picture Comments for Printing
Using PostScript Picture Comments B

You can access the PostScript language directly using the PostScriptHandle picture 
comment, and so bypass QuickDraw entirely. When you send PostScript code directly to 
the printer driver, it sends your code directly to the printer with no preprocessing and no 
error checking.

Note
These picture comments affect the state of the PostScript drawing 
environment and can have such effects as printing blank pages. Also, 
many PostScript printer drivers do not use the same version of 
PostScript and produce different outputs with the same commands; you 
should test your code on as many PostScript printers as possible. In all 
cases, use the PostScript picture comments with extreme caution. ◆

Calling PostScript Routines Directly B
Your application can tell the printer driver to disable all QuickDraw drawing routines by 
using the PostScriptBegin picture comment. The driver uses the PostScript save 
and restore operators to preserve the state of the PostScript interpreter. When the 
driver receives the PostScriptEnd picture comment, it reenables QuickDraw drawing 
routines.

You send PostScript code to the driver via the PostScriptHandle picture comment by 
including a handle to the PostScript code in the dataHandle parameter of the 
PicComment procedure. The driver performs no preprocessing or error checking on this 
code. The handle contains text with no length byte or word; use the dataSize 
parameter to convey the length of the PostScript code. (As with all picture comments, 
the handle you pass belongs to you, and you must dispose of it when you’re finished 
with it.) You indicate the end of the PostScript commands with a carriage return 
(ASCII $0D). You must use PostScriptBegin and PostScriptEnd around any 
PostScriptHandle comments; otherwise, the PostScript driver will not properly save 
and restore the PostScript drawing environment. 

Listing B-11 gives an example of an application-defined procedure called 
DoPostScriptLine. The procedure is used to transmit a string of PostScript code 
through the PostScriptHandle picture comment to the PostScript printer driver. 
DoPostScriptLine should be called only between PostScriptBegin 
and PostScriptEnd picture comments, as shown in the application-defined procedure 
DoPostScriptComments.
B-38 Using PostScript Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
Listing B-11 Sending PostScript code directly to the printer

PROCEDURE DoPostScriptLine(s: Str255);

VAR

h: Handle;

BEGIN

h := NewHandle(256);

IF h = NIL THEN DebugStr('NewHandle failed');

BlockMove(@s[1], h^, Length(s));

PicComment(PostScriptHandle, Length(s), h);

h^^ := 13;

PicComment(PostScriptHandle, 1, h); {add a carriage return}

DisposeHandle(h);

END;

PROCEDURE DoPostScriptComments;

BEGIN

{first, the simple example}

PicComment(PostScriptBegin,0,NIL);

DoPostScriptLine('100 100 moveto 0 100 rlineto 100 0 rlineto ');

DoPostScriptLine('0 -100 rlineto -100 0 rlineto');

DoPostScriptLine('stroke');

MoveTo(30,30);

DrawString('This text does not appear on PostScript printers.');

PicComment(PostScriptEnd,0,NIL);

END;

Optimizing PostScript Printing B
Although your printing code should be device-independent, you can optimize it for a 
PostScript printer. However, you cannot be sure that the current printer is a PostScript 
printer, so you may need to create two versions of the same drawing code: one for a 
PostScript printer and one for a QuickDraw printer, as described previously in this 
appendix. 

For printing to a PostScript printer, you’ll need to observe the following limitations: 

■ Regions aren’t supported; try to simulate them with polygons or bitmaps. 

■ Clipping regions should be limited to rectangles. PostScript clips nonsquare patterns 
to squares. 

■ The Invert data type, part of the QuickDraw GrafVerb data type, is not supported 
by the PostScript LaserWriter printer driver. 

■ The PostScript LaserWriter driver does not support all Boolean transfer modes. It 
supports the srcCopy, srcOr, srcBic, notSrcCopy, and notSrcBic modes for 
Using PostScript Picture Comments B-39



A P P E N D I X  B

Using Picture Comments for Printing
bitmaps and text. For all other objects drawn with QuickDraw, the PostScript 
LaserWriter driver supports only the srcCopy mode. 

■ There can be a small difference in glyph widths between fonts rendered on the screen 
and on the printer. Only the endpoints of text strings are the same. 

■ Only PostScript Level 2 supports color patterns that use colors other than red, green, 
blue, cyan, yellow, magenta, white, and black. 

■ The printer may print some large patterns at half size or smaller sizes, depending on 
its resolution. 

■ Polygons and smoothed polygons that result in the creation of paths larger than the 
limit of the PostScript printer (typically 1500 or 3000, depending on the version of 
PostScript) result in a PostScript error.

Although the PostScript LaserWriter printer is relatively fast, there are some techniques 
an application can use to ensure its maximum performance.

■ Printing patterns takes time, because the bitmap for the pattern has to be built. The 
black-and-white patterns, and some of the gray patterns, have been optimized to use 
the PostScript grayscales. 

■ Use the TextBegin picture comment for text alignment. In the cases of flush left, 
flush right, or centered alignment, only the left, right, or center points are accurate, 
respectively; in the case of fully justified text, both the left and right endpoints are 
accurate. 

■ If you want to position each glyph independently, use the LineLayoutOff and 
StringBegin picture comments. If you are trying to position glyphs and the driver 
is trying to position glyphs too, there is conflict, and printing takes much longer than 
necessary. 

For more information on the PostScript language, see the PostScript Language Reference 
Manual, second edition, available from Addison-Wesley. 

Picture Comments to Avoid B

The SetGrayLevel picture comment is now obsolete. The PostScriptFile, 
TextIsPostScript, FormsPrinting, EndFormsPrinting, ClientLineLayout, 
PSBeginNoSave, and ResourcePS picture comments have limited use and are not 
recommended. This section describes the shortcomings of these picture comments.

The SetGrayLevel picture comment was designed to provide access to the PostScript 
setgray operator while drawing with QuickDraw in black-and-white mode. For most 
drawing operations, however, the printer driver sets the gray level to match the 
foreground color for the printing graphics port, and the effect of the SetGrayLevel 
picture comment is often unpredictable. If direct access to the PostScript setgray 
operator seems desirable, it is preferable to send the instruction with the 
PostScriptHandle picture comment.

The TextIsPostScript picture comment interprets all the text manipulated with 
QuickDraw text-drawing routines (namely, DrawChar, DrawString, DrawText, and 
B-40 Picture Comments to Avoid



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
anything else that calls the StdText low-level procedure) as PostScript code. There is no 
good reason to use this picture comment, but there is one important reason not to use it: 
printer drivers that do not support the TextIsPostScript picture comment will print 
the PostScript text instead of interpreting it. If you need to transmit PostScript code 
directly to a printer that understands it, use the PostScriptHandle comment and 
include a QuickDraw representation for all other printer drivers.

The ResourcePS picture comment loads PostScript code from a resource file. The 
resource file is expected to be open at the time that you use ResourcePS. Under 
background printing, there are no guarantees the resource file will still be open when the 
Printing Manager needs it. If you want to keep PostScript code in a resource file, it is 
easy to write a routine that loads the resources and sends their contents using the 
PostScriptHandle picture comment.

The PostScriptFile picture comment loads PostScript code from a file; as with the 
ResourcePS comment, there are no guarantees the file will be open when the Printing 
Manager needs it during background printing. If you want to keep PostScript code in a 
file, it is easy to write a routine that loads the file and its contents using the 
PostScriptHandle picture comment.

As with the PostScriptBegin picture comment, the PSBeginNoSave picture 
comment allows applications to change the state of a PostScript printer driver. Some 
applications do not want to restore the previous state of the PostScript interpreter after 
sending PostScript code; the PSBeginNoSave comment was intended for situations 
where applications do not want to preserve the printer state. However, the 
PSBeginNoSave picture comment allows applications to interfere with the LaserWriter 
8.0 printer driver, and the driver, by calling the PostScript operator grestore, can 
interfere with the application. The use of PSBeginNoSave can lead to incorrect clipping, 
incorrect colors, and PostScript language errors and should therefore be avoided.

By default, most drivers apply about 80 percent of the total line layout error to the 
major glyphs (the space character) and the other 20 percent to the minor glyphs (all other 
glyphs). (When using a script system that does not use the space glyph to delimit words, 
the layout error is distributed evenly across all characters in the font.) The 
ClientLineLayout picture comment allows applications to redefine the major glyph, 
and the percentages of the line layout error assigned to the major and minor glyphs. The 
ClientLineLayout picture comment is rather subtle and very specific to the 
PostScript LaserWriter driver. Only very ambitious page layout applications might be 
interested in this functionality, however; their designers should instead aim at a more 
general scheme of line layout control that does not rely upon this very driver-specific 
picture comment.

Intended for printing forms on PostScript LaserWriter printers, the FormsPrinting 
picture comment directs the PostScript LaserWriter driver not to clear its page buffer 
after printing a page. The EndFormsPrinting picture comment directs the PostScript 
LaserWriter driver to clear its page buffer after printing a page. When a page is 
completed, applications must erase the areas that need to be updated and draw the new 
information. The graphics that make up the form are drawn only once per page, which 
may improve performance. However, you need to write a separate printing loop for the 
PostScript LaserWriter driver if you want to use this comment. 
Picture Comments to Avoid B-41



A P P E N D I X  B

Using Picture Comments for Printing
Including Constants and Data Types for Picture Comments B

For the picture comments described in this appendix, neither QuickDraw nor the 
Printing Manager includes constant definitions or data type declarations; instead, you 
must include these in your own build files. Listed here are the constants and data types 
for picture comments that have been predefined for printer drivers from Apple 
Computer, Inc.

{PicComments.p}

CONST

{values for picture comments}

TextBegin = 150;

TextEnd = 151;

StringBegin = 152;

StringEnd = 153;

TextCenter = 154;

LineLayoutOff = 155;

LineLayoutOn = 156;

ClientLineLayout = 157; {considered to be of limited usefulness}

PolyBegin = 160;

PolyEnd = 161;

PolyIgnore = 163;

PolySmooth = 164;

PolyClose = 165;

DashedLine = 180;

DashedStop = 181;

SetLineWidth = 182;

PostScriptBegin = 190;

PostScriptEnd = 191;

PostScriptHandle = 192;

PostScriptFile = 193; {considered to be of limited usefulness}

TextIsPostScript = 194; {considered to be of limited usefulness}

ResourcePS = 195; {considered to be of limited usefulness}

PSBeginNoSave = 196; {dangerous to use with LaserWriter 8.0}

SetGrayLevel = 197; {this comment now obsolete}

RotateBegin = 200;

RotateEnd = 201;

RotateCenter = 202;

{values for the tJus field of the TTxtPicRec record}

tJusNone = 0;

tJusLeft = 1;

tJusCenter = 2;
B-42 Including Constants and Data Types for Picture Comments



A P P E N D I X  B

Using Picture Comments for Printing

B
U

sing P
icture C

om
m

ents for P
rinting
tJusRight = 3;

tJusFull = 4;

{values for the tFlip field of the TTxtPicRec record}

tFlipNone = 0;         

tFlipHorizontal = 1;

tFlipVertical = 2;

TYPE

TTxtPicHdl = ^TTxtPicPtr;

TTxtPicPtr = ^TTxtPicRec;

TTxtPicRec = PACKED RECORD

tJus: Byte; {justification for line layout of text}

tFlip: Byte; {horizontal or vertical flipping}

tAngle: Integer; {0..360 degrees clockwise rotation }

{ in integer format}

tLine: Byte; {reserved}

tCmnt: Byte; {reserved}

tAngleFixed: Byte; {0..360 degrees clockwise rotation in }

{ fixed-number format}

END;

TRotationHdl = ^TRotationPtr;

TRotationPtr = ^TRotationRec;

TRotationRec = RECORD

rFlip: Integer; {horizontal/vertical flipping}

rAngle: Integer; {0..360 degrees clockwise rotation }

{ in integer format}

rAngleFixed: Fixed; {0..360 degrees clockwise rotation in }

{ fixed-number format}

END;

TCenterHdl = ^TCenterPtr;

TCenterPtr = ^TCenterRec;

TCenterRec = RECORD

y: Fixed; {vertical offset from current pen location}

x: Fixed; {horizontal offset from current pen location}

END;

TPolyVerbHdl = ^TPolyVerbPtr;

TPolyVerbPtr = ^TPolyVerbRec;
Including Constants and Data Types for Picture Comments B-43



A P P E N D I X  B

Using Picture Comments for Printing
TPolyVerbRec = PACKED RECORD

f7, f6, f5, f4, f3: Boolean; {reserved; set to 0}

fPolyClose: Boolean; {TRUE is same as PolyClose }

{ picture comment}

fPolyFill: Boolean; {TRUE means fill polygon}

fPolyFrame: Boolean; {TRUE means frame polygon}

END;

TDashedLineHdl = ^TDashedLinePtr;

TDashedLinePtr = ^TDashedLineRec;

TDashedLineRec = PACKED RECORD

offset: SignedByte; {offset into pattern for first dash}

centered: SignedByte; {reserved; set to 0}

intervals: ARRAY[0..5] OF SignedByte;

{points for drawing and not drawing dashes}

TLineWidthHdl = ^TLineWidthPtr;

TLineWidthPtr = ^TLineWidth;

TLineWidth = Point; {v = numerator, h = denominator}

END;
B-44 Including Constants and Data Types for Picture Comments


	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to QuickDraw TOC
	 Introduction to QuickDraw
	 Basic QuickDraw TOC
	 Basic QuickDraw
	 QuickDraw Drawing TOC
	 QuickDraw Drawing
	 Color QuickDraw TOC
	 Color QuickDraw
	 Graphics Devices TOC
	 Graphics Devices
	 Offscreen Graphics Worlds TOC
	 Offscreen Graphics Worlds
	 Pictures TOC
	 Pictures
	 Cursor Utilities TOC
	 Cursor Utilities
	 Printing Manager TOC
	 Printing Manager
	 Appendix Opener
	 Appendix A (Picture Opcodes) TOC
	 Appendix A (Picture Opcodes)
	 Appendix B (Using Picture Comments for Printing) TOC
	Using Picture Comments for Printing
	About Picture Comments
	Maintaining Device Independence
	Synchronizing QuickDraw and PostScript Printer Dri...
	Using Text Picture Comments
	Disabling and Reenabling Line Layout
	Delimiting Strings
	Rotating Text

	Using Graphics Picture Comments
	Drawing Polygons
	Rotating Graphics

	Using Line-Drawing Picture Comments
	Drawing Dashed Lines
	Using Fractional Line Widths

	Using PostScript Picture Comments
	Calling PostScript Routines Directly
	Optimizing PostScript Printing

	Picture Comments to Avoid
	Including Constants and Data Types for Picture Com...

	 Glossary
	 Index
	 Colophon

