

C H A P T E R 8

8

C
ursor U

tilities

Cursor Utilities 8

This chapter describes the utilities that your application uses to draw and manipulate
the cursor on the screen. You should read this chapter to find out how to implement
cursors in your application. For example, you should change the arrow cursor to an
I-beam cursor when it’s over text and to an animated cursor when a medium-length
process is under way.

Cursors are defined in resources; the routines in this chapter automatically call the
Resource Manager as necessary. For more information about resources, see the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox. Color cursors are
defined in resources as well, though they use Color QuickDraw. For information about
Color QuickDraw, see the chapter “Color QuickDraw” in this book.

This chapter describes how to

■ create and display black-and-white and color cursors

■ change the cursor’s shape over different areas on the screen

■ display an animated cursor

About the Cursor 8

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square usually defined
by an application in a cursor ('CURS') resource. The cursor is an integral part of the
Macintosh user interface. The user manipulates the cursor with the mouse to select
objects or areas on the screen. (It appears only on the screen and never in an offscreen
graphics port.) The user moves the cursor across the screen by moving the mouse. Most
actions take place only when the user positions the cursor over an object on the screen,
then clicks (presses and releases the mouse button). For example, a user might point at a
document icon created by your application and click to select it, then choose the Open
command from the File menu by pointing at it with the mouse button depressed and
then releasing the mouse button.

You use a cursor in the content area of your application’s windows to allow the user to
select all or part of the content. Your application also uses the cursor in the scroll bar area
of its windows to adjust the position of the document’s contents in the window area. You
can change the shape of the cursor to indicate that a user is over a certain kind of
content, such as text, or to provide feedback about the status of the computer system.

Note
Some Macintosh user manuals call the cursor a pointer because it points
to a location on the screen. To avoid confusion with other meanings of
pointer, Inside Macintosh uses the alternate term cursor. ◆
About the Cursor 8-3

C H A P T E R 8

Cursor Utilities

Basic QuickDraw supplies a predefined cursor in the global variable named arrow; this
is the standard arrow cursor.

One point in the cursor’s image is designated as the hot spot, which in turn points to a
location on the screen. The hot spot is the portion of the pointer that must be positioned
over a screen object before mouse clicks can have an effect on that object. For example,
when the user presses the mouse button, the Event Manager function WaitNextEvent
reports the location of the cursor’s hot spot in global coordinates. Figure 8-1 illustrates
three cursors and their hot spot points.

Figure 8-1 Hot spots in cursors

The hot spot is a point (not a bit) in the bit image for the cursor. Imagine the rectangle
with corners (0,0) and (16,16) containing the cursor’s bit image, as in each of the
examples in Figure 8-1; each hot spot is defined in the local coordinate systems of these
rectangles. For the arrow cursor in this figure, local coordinates (1,1) designate the hot
spot. A hot spot of (8,8) is in the center of the crosshairs cursor in Figure 8-1. Notice that
the hot spot for the pointing hand cursor has a horizontal coordinate of 16 and a vertical
coordinate of 9.

Whenever the user moves the mouse, the low-level interrupt-driven mouse routines
move the cursor to a new location on the screen. Your application doesn’t need to do
anything to move the cursor.

Your application should change the cursor shape depending on where the user positions
it on the screen. For example, when the cursor is in your application’s menu bar, the
cursor should usually have an arrow shape. When the user moves the cursor over a text
document, your application should change the cursor’s shape to an I-beam, which
indicates where the insertion point will move if the user clicks. When it’s over graphic
objects, the cursor may have different shapes depending on the type of graphic and the
operation that the user is attempting to complete. You should change the cursor shape
only to provide information to the user. In other words, don’t change its shape randomly.

1

1

9

16

8

8

Hot spot Hot spot Hot spot
8-4 About the Cursor

C H A P T E R 8

Cursor Utilities

8

C
ursor U

tilities

In general, you should always make the cursor visible in your application. To maintain a
stable and consistent environment, the user should have access to the cursor. There are a
few cases when the cursor may not be visible. For example, in an application where the
user is entering text, the insertion point should blink and the cursor should not be
visible. If the cursor and the insertion point were both visible, it might confuse the user
about where the input would appear. Or, if the user is viewing a slide show in a
presentation software application, the cursor need not be visible. However, whenever
the user needs access to the cursor, a simple move of the mouse should make the cursor
visible again.

When the cursor is used for choosing and selecting, it should remain black. You may
want to display a color cursor when the user is drawing or typing in color. The cursor
shouldn’t contain more than one color at a time, with the exception of a multicolored
paintbrush cursor. It’s hard for the eye to distinguish small areas of color. Make sure that
the hot spot can be seen when it’s placed on a background of a similar color. This can be
accomplished by changing the color of the cursor or by adding a one-pixel outline in a
contrasting color.

When your application is performing an operation that will take at least a couple of
seconds, and more time than a user might expect, you need to provide feedback to the
user that the operation is in progress. If the operation will last a second or two (a short
operation), change the cursor to the wristwatch cursor. If the operation takes several
seconds (a medium-length operation) and the user can do nothing in your application
but stop the operation, wait until it is completed, or switch to another application, you
need to display an animated cursor. This lets the user know that the computer system
hasn’t crashed—it’s just busy. If the operation will take longer than several seconds (a
lengthy operation), your application should display a status indicator to show the user
the estimated total time and the elapsing time of the operation.

For more information about displaying cursors and status indicators in your application,
see Macintosh Human Interface Guidelines.

Using the Cursor Utilities 8

This section describes how you can

■ create cursors

■ change the shape of the cursor

■ animate a cursor to indicate that a medium-length process is taking place
Using the Cursor Utilities 8-5

C H A P T E R 8

Cursor Utilities

To implement cursors, you need to

■ define black-and-white cursors as 'CURS' resources in the resource file of your
application

■ define color cursors in 'crsr' resources—if you want to display color cursors—in
the resource file of your application

■ define 'acur' resources—if you want to display animated cursors—in the resource
file of your application

■ initialize the Cursor Utilities by using the InitCursor and InitCursorCtl
procedures when your application starts up

■ use the SetCursor or SetCCursor procedure to change the cursor shape as
necessary

■ animate the cursor by using the SpinCursor or RotateCursor procedure

You use 'CURS' resources to create black-and-white cursors for display on
black-and-white and color screens. You use 'crsr' resources to create color cursors
for display on systems supporting Color QuickDraw. Each 'crsr' resource also
contains a black-and-white image that Color QuickDraw displays on black-and-white
screens.

Before using the routines that handle color cursors—namely, the GetCCursor,
SetCCursor, and DisposeCCursor routines—you must test for the existence of Color
QuickDraw by using the Gestalt function with the GestaltQuickDrawVersion
selector. If the value returned in the response parameter is equal to or greater than the
value of the constant gestalt32BitQD, then the system supports Color QuickDraw.
Both basic and Color QuickDraw support all other routines described in this chapter.

Initializing the Cursor 8
When your application starts up, the Finder sets the cursor to a wristwatch; this
indicates that an operation is in progress. When your application nears completion of its
initialization tasks, it should call the InitCursor procedure to change the cursor from a
wristwatch to an arrow, as shown in the application-defined procedure DoInit in
Listing 8-1.

Listing 8-1 Initializing the Cursor Utilities

PROCEDURE DoInit;

BEGIN

DoSetUpHeap; {perform Memory Manager initialization here}

InitGraf(@thePort);{initialize basic QuickDraw}

InitFonts; {initialize Font Manager}

InitWindows; {initialize Window Manager & other Toolbox }

 { managers here}

 {perform all other initializations here}
8-6 Using the Cursor Utilities

C H A P T E R 8

Cursor Utilities

8

C
ursor U

tilities

InitCursor; {set cursor to an arrow instead of a }

 { wristwatch}

InitCursorCtl(NIL);{load resources for animated cursor with }

 { resource ID 0}

END; {of DoInit}

If your application uses an animated cursor to indicate that an operation of medium
length is under way, it should also call the InitCursorCtl procedure to load its
'acur' resource and associated 'CURS' resources, as illustrated in Listing 8-1.

Changing the Appearance of the Cursor 8
Whenever the user moves the mouse, the mouse driver, the Event Manager, and your
application are responsible for providing feedback to the user. The mouse driver
performs low-level functions, such as continually polling the mouse for its location and
status and maintaining the current location of the mouse in a global variable. Whenever
the user moves the mouse, a low-level interrupt routine of the mouse driver moves the
cursor displayed on the screen and aligns the hot spot of the cursor with the new mouse
location. This section describes how to use the GetCursor and SetCursor routines to
change the appearance of a black-and-white cursor when it is in different areas of the
screen. (To change the cursor to a color cursor, your application must use the
GetCCursor function, described on page 8-26, and the SetCCursor procedure,
described on page 8-26.)

Your application is responsible for setting the initial appearance of the cursor, for
restoring the cursor after the Event Manager function WaitNextEvent returns, and for
changing the appearance of the cursor as appropriate for your application. For example,
most applications set the cursor to the I-beam when the cursor is inside a text-editing
area of a document, and they change the cursor to an arrow when the cursor is inside a
scroll bar of a document. Your application can achieve this effect by requesting that the
Event Manager report mouse-moved events if the user moves the cursor out of a region
you specify in the mouseRgn parameter to the WaitNextEvent function.
WaitNextEvent is described in the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The mouse driver and your application control the shape and appearance of the cursor.
A cursor can be any 256-pixel image, defined by a 16-by-16 pixel square. The mouse
driver displays the current cursor, which your application can change by using the
SetCursor or SetCCursor procedure.
Using the Cursor Utilities 8-7

C H A P T E R 8

Cursor Utilities

Figure 8-2 shows the standard arrow cursor. You initialize the cursor to the standard
arrow cursor when you use the InitCursor procedure, as shown in Listing 8-1. As
shown in Figure 8-2, the hot spot for the arrow cursor is at location (1,1).

Figure 8-2 The standard arrow cursor

Figure 8-3 shows four other common cursors that are available to your application: the
I-beam, crosshairs, plus sign, and wristwatch cursors.

Figure 8-3 The I-beam, crosshairs, plus sign, and wristwatch cursors

The I-beam, crosshairs, plus sign, and wristwatch cursors are defined as resources,
and your application can get a handle to any of these cursors by specifying their
corresponding resource IDs to the GetCursor function. These constants specify the
resource IDs for these common cursors:

CONST iBeamCursor = 1; {used in text editing}
crossCursor = 2; {often used for manipulating graphics}
plusCursor = 3; {often used for selecting fields in }

 { an array}

1

1Hot spot

I -beam Crosshairs Plus s ign Wristwatch
8-8 Using the Cursor Utilities

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
watchCursor = 4; {used when a short operation is in }
{ progress}

After you use the GetCursor function to obtain a handle to one of these cursors or to
one defined by your own application in a 'CURS' resource, you can change the
appearance of the cursor by using the SetCursor procedure.

Your application usually needs to change the shape of the cursor as the user moves the
cursor to different areas within a document. Your application can use mouse-moved
events to help accomplish this. Your application also needs to adjust the cursor in
response to resume events. Most applications adjust the cursor once through the event
loop in response to almost all events.

You can request that the Event Manager report mouse-moved events whenever
the cursor is outside of a specified region that you pass as a parameter to
the WaitNextEvent function. (If you specify an empty region or a NIL handle to the
WaitNextEvent function, WaitNextEvent does not report mouse-moved events.)

If you specify a nonempty region in the mouseRgn parameter to the WaitNextEvent
function, WaitNextEvent returns a mouse-moved event whenever the cursor is outside
of that region. For example, Figure 8-4 shows a document window. Your application
might define two regions: a region that encloses the text area of the window (the I-beam
region), and a region that defines the scroll bars and all other areas outside the text area
(the arrow region). If your application has specified the I-beam region to
WaitNextEvent, the mouse driver continues to display the I-beam cursor until the user
moves the cursor out of the region.

Figure 8-4 A window and its arrow and I-beam regions

Text 1

File Edit Font Size Style ?

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE,
INCLUDING A THOROUGH STUDY OF THE BREEDS

HISTORY OF THE HORSE

Text 1

File Edit Font Size Style ?

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE,
INCLUDING A THOROUGH STUDY OF THE BREEDS

HISTORY OF THE HORSE

I-beam region

Arrow region (outside I-beam region)
Using the Cursor Utilities 8-9

C H A P T E R 8

Cursor Utilities
When the user moves the cursor out of the I-beam region, WaitNextEvent reports a
mouse-moved event. Your application can then change the I-beam cursor to the arrow
cursor and change the mouseRgn parameter to the area defined by the scroll bars and
all other areas outside of the I-beam region. The cursor remains an arrow until the user
moves the cursor out of the arrow region, at which point your application receives a
mouse-moved event.

Figure 8-5 shows how an application might change the cursor from the I-beam cursor to
the arrow cursor after receiving a mouse-moved event.

Figure 8-5 Changing the cursor from the I-beam cursor to the arrow cursor

Note that your application should recalculate the mouseRgn parameter when it receives
a mouse-moved event; otherwise, it will continue to receive mouse-moved events as
long as the cursor position is outside the original region.

Listing 8-2 shows an application-defined routine called MyAdjustCursor. After
receiving any event other than a high-level event, the application’s event loop (described
in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials) calls
MyAdjustCursor to adjust the cursor.

Listing 8-2 Changing the cursor

PROCEDURE MyAdjustCursor (mouse: Point; VAR region: RgnHandle);

VAR

window: WindowPtr;

arrowRgn: RgnHandle;

iBeamRgn: RgnHandle;

iBeamRect: Rect;

myData: MyDocRecHnd;

windowType: Integer;

BEGIN

window := FrontWindow;

{Determine the type of window--document, modeless, etc.}

Cursor in the arrow regionCursor in the I-beam region
8-10 Using the Cursor Utilities

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN

{initialize regions for arrow and I-beam}

arrowRgn := NewRgn;

ibeamRgn := NewRgn;

{set arrow region to large region at first}

SetRectRgn(arrowRgn, -32768, -32768, 32766, 32766);

{calculate I-beam region}

{first get the document's TextEdit view rectangle}

myData := MyDocRecHnd(GetWRefCon(window));

iBeamRect := myData^^.editRec^^.viewRect;

SetPort(window);

WITH iBeamRect DO

BEGIN

LocalToGlobal(topLeft);

LocalToGlobal(botRight);

END;

RectRgn(iBeamRgn, iBeamRect);

WITH window^.portBits.bounds DO

SetOrigin(-left, -top);

{intersect I-beam region with window's visible region}

SectRgn(iBeamRgn, window^.visRgn, iBeamRgn);

SetOrigin(0,0);

{calculate arrow region by subtracting I-beam region}

DiffRgn(arrowRgn, iBeamRgn, arrowRgn);

{change the cursor and region parameter as necessary}

IF PtInRgn(mouse, iBeamRgn) THEN {cursor is in I-beam rgn}

BEGIN

SetCursor(GetCursor(iBeamCursor)^^); {set to I-beam}

CopyRgn(iBeamRgn, region); {update the region param}

END;

{update cursor if in arrow region}

IF PtInRgn(mouse, arrowRgn) THEN {cursor is in arrow rgn}

BEGIN

SetCursor(arrow); {set cursor to the arrow}

CopyRgn(arrowRgn, region); {update the region param}

END;

DisposeRgn(iBeamRgn);

DisposeRgn(arrowRgn);

END; {of kMyDocWindow}
Using the Cursor Utilities 8-11

C H A P T E R 8

Cursor Utilities
kMyGlobalChangesID:

MyCalcCursorRgnForModelessDialogBox(window, region);

kNil:

BEGIN

MySetRegionNoWindows(kNil, region);

SetCursor(arrow);

END;

END; {of CASE}

END;

The MyAdjustCursor procedure sets the cursor appropriately, according to whether a
document window or modeless dialog box is active.

For a document window, MyAdjustCursor defines two regions, specified by the
arrowRgn and iBeamRgn variables. If the cursor is inside the region described by
the arrowRgn variable, MyAdjustCursor sets the cursor to the arrow cursor and
returns the region described by arrowRgn. Similarly, if the cursor is inside the region
described by the iBeamRgn variable, MyAdjustCursor sets the cursor to the I-beam
cursor and returns the region described by iBeamRgn.

The MyAdjustCursor procedure calculates the two regions by first setting the arrow
region to the largest possible region. It then sets the I-beam region to the region
described by the document’s TextEdit view rectangle. This region typically corresponds
to the content area of the window minus the scroll bars. (If your application doesn’t use
TextEdit for its document window, then set this region as appropriate to your
application.) The MyAdjustCursor routine adjusts the I-beam region so that it includes
only the part of the content area that is in the window’s visible region (for example, to
take into account any floating windows that might be over the window). The code in this
listing sets the arrow region to include the entire screen except for the region occupied
by the I-beam region. (TextEdit is described in Inside Macintosh: Text.)

The MyAdjustCursor procedure then determines which region the cursor is in and sets
the cursor and region parameter appropriately.

For modeless dialog boxes, MyAdjustCursor calls its own routine to appropriately
adjust the cursor for the modeless dialog box. The MyAdjustCursor procedure also
appropriately adjusts the cursor if no windows are currently open.

Your application should normally hide the cursor when the user is typing. You can
remove the cursor image from the screen by using either the HideCursor or
Hide_Cursor procedure. You can hide the cursor temporarily by using the
ObscureCursor procedure, or you can hide the cursor in a given rectangle by using the
ShieldCursor procedure. To display a hidden cursor, use the ShowCursor or
Show_Cursor procedure. Note that you do not need to explicitly show the cursor after
8-12 Using the Cursor Utilities

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
your application uses the ObscureCursor procedure; instead, the cursor automatically
reappears when the user moves the mouse again. These procedures are described in
“Hiding and Showing Cursors” beginning on page 8-28.

Creating an Animated Cursor 8
Your application should display an animated cursor when performing a medium-length
operation that might cause the user to think that the computer has stopped working. To
create an animated cursor, you should

■ create a series of 'CURS' resources that make up the “frames” of the animation

■ create an 'acur' resource with a resource ID of 0

■ pass the value NIL to the InitCursorCtl procedure once in your program code to
load these resources

■ use either the RotateCursor or SpinCursor procedure when your application is
busy with its task

Note
An alternate, but more code-intensive, method of creating and
displaying an animated cursor is shown in the chapter “Vertical Retrace
Manager” in Inside Macintosh: Processes. ◆

Typically, an animated cursor uses four to seven frames. For example, the seven 'CURS'
resources in Figure 8-6 constitute the seven frames of a globe cursor that spins. To create
these resources, your application typically uses a high-level utility such as ResEdit,
which is available from APDA.

Figure 8-6 The 'CURS' resources for an animated globe cursor

To collect and order your 'CURS' frames into a single animation, you must create an
'acur' resource. This resource specifies the IDs of the 'CURS' resources and the
sequence for displaying them in your animation. If your application uses only one
spinning cursor, give your 'acur' resource a resource ID of 0.

Cursor

Resource ID # 1001 1002 1003 1004 1005 1006 1007
Using the Cursor Utilities 8-13

C H A P T E R 8

Cursor Utilities
Figure 8-7 shows how the 'CURS' resources for the spinning globe cursor are specified
in an 'acur' resource using ResEdit.

Figure 8-7 An 'acur' resource for an animated cursor

To load the 'acur' resource and its associated 'CURS' resources, use the
InitCursorCtl procedure once prior to calling the RotateCursor or SpinCursor
procedure. If you pass NIL to InitCursorCtl, then it automatically loads the 'acur'
resource that has an ID of 0 in your application’s resource file. If you wish to use
multiple animated cursors, you must create multiple 'acur' resources—that is, one for
each series of 'CURS' resources. Prior to displaying one of your animated cursors with
RotateCursor or SpinCursor, you must call the Resource Manager function
GetResource to return a handle to its 'acur' resource. Your application must coerce
that handle to one of type acurHandle, and then pass this handle to the
InitCursorCtl procedure. See the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox for more information about GetResource.

When you call RotateCursor or SpinCursor, one frame—that is, one 'CURS'
resource—is displayed. When you pass a positive value to the procedure the next time
you call it, the next frame specified in the 'acur' resource is displayed. A negative
value passed to either procedure displays the previous frame listed in the 'acur'
resource. The distinction between RotateCursor and SpinCursor is that your
application maintains an index for changing the cursor when calling RotateCursor,
but your application does not maintain an index for changing the cursor when calling
SpinCursor; instead, your application must determine the proper interval for
calling SpinCursor.
8-14 Using the Cursor Utilities

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
Listing 8-3 shows an application-defined routine called MyRotateCursor. When the
application calling MyRotateCursor starts on a medium-length operation and needs to
indicate to the user that the operation is in progress, the application sets its global
variable gDone to FALSE and repeatedly calls MyRotateCursor until the operation is
complete and gDone becomes TRUE.

Listing 8-3 Animating a cursor with the RotateCursor procedure

PROCEDURE MyRotateCursor;

BEGIN

IF NOT gDone THEN

BEGIN

RotateCursor(TickCount);

END;

END;

Listing 8-3 uses the Event Manager function TickCount to maintain an index for
RotateCursor to use when displaying the frames for an animated cursor. (A tick is
approximately 1/60 of a second; TickCount returns the number of ticks since the
computer started up.) When the value passed as a parameter to RotateCursor is a
multiple of 32, then RotateCursor displays the next frame in the animation.

Listing 8-4 shows an application-defined routine called MySpinCursor. As you see
in Listing 8-4, the application does not maintain an index for displaying the frames for
an animated cursor. Instead, every time SpinCursor is called, the next frame in the
animation is displayed.

Listing 8-4 Animating a cursor with the SpinCursor procedure

PROCEDURE MySpinCursor;

BEGIN

IF NOT gDone THEN

SpinCursor(0);

END;

If the operation takes less than a second or two, your application can simply use the
SetCursor procedure to display the cursor with the resource ID represented by the
watchCursor constant. If the operation will take longer than several seconds (a lengthy
operation), your application should display a status indicator in a dialog box to show the
user the estimated total time and the elapsing time of the operation. See the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information about
creating and displaying dialog boxes.
Using the Cursor Utilities 8-15

C H A P T E R 8

Cursor Utilities
Cursor Utilities Reference 8

This section describes the data structures, routines, and resources that are specific to
cursors. “Data Structures” shows the Pascal data structures for the Bits16 array and
the Cursor, CCrsr, Cursors, and Acur records. “Routines” describes the routines for
initializing cursors, managing black-and-white cursors, managing color cursors, hiding
and showing cursors, and displaying animated cursors. “Resources” describes the cursor
resource, the color cursor resource, and the animated cursor resource. The constants that
represent values for the standard cursors are listed in “Summary of Cursor Utilities.”

Data Structures 8
Your application typically does not create the data structures described in this section.
Although you can create a Cursor record and its associated Bits16 array in your
program code, it is usually easier to create a black-and-white cursor in a cursor resource,
which is described on page 8-33. Similarly, you can create a CCrsr record in your
program code, but it is usually easier to create a color cursor in a color cursor resource,
which is described on page 8-34. The Cursors data type contains the standard cursors
you can display. Finally, you usually list animated cursors in an animated cursor
resource, which is described on page 8-36, instead of creating them in an Acur record.

Bits16 8

The Bits16 array is used by the Cursor record to hold a black-and-white, 16-by-16
pixel square image.

Bits16 = ARRAY[0..15] OF Integer;

Cursor 8

Your application typically does not create Cursor records, which are data structures of
type Cursor. Although you can create a Cursor record and its associated Bits16 array
in your program code, it is usually easier to create a black-and-white cursor in a cursor
resource, which is described on page 8-33.
8-16 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square usually
defined by an application in a cursor ('CURS') resource. When your application uses
the GetCursor function (described on page 8-24) to get a cursor from a 'CURS'
resource, GetCursor uses the Resource Manager to load the resource into memory as a
Cursor record. Your application can then display the color cursor by using the
SetCursor procedure, which is described on page 8-25.

A Cursor record is defined as follows:

TYPE CursPtr = ^Cursor;

CursHandle = ^CursPtr;

Cursor =

RECORD

data: Bits16; {cursor image}

mask: Bits16; {cursor mask}

hotSpot: Point; {point aligned with mouse}

END;

Field descriptions

data Cursor image data, which must begin on a word boundary. The
Bits16 data type for this field is described in the preceding section.

mask The cursor’s mask, whose effects are shown in Table 8-1.
QuickDraw uses the mask to crop the cursor’s outline into a
background color or pattern. QuickDraw then draws the cursor into
this shape. The Bits16 data type for this field is described in the
preceding section.

hotSpot A point in the image that aligns with the mouse location.This field
aligns a point (not a bit) in the image with the mouse location on the
screen. Whenever the user moves the mouse, the low-level
interrupt-driven mouse routines move the cursor. When the user
clicks, the Event Manager function WaitNextEvent reports the
location of the cursor’s hot spot in global coordinates.

The cursor appears on the screen as a 16-by-16 pixel square. The appearance of each bit
of the square is determined by the corresponding bits in the data and mask and, if the
mask bit is 0, by the pixel under the cursor, as shown in Table 8-1.

Table 8-1 Cursor appearance

Data Mask Resulting pixel on screen

0 1 White

1 1 Black

0 0 Same as pixel under cursor

1 0 Inverse of pixel under cursor
Cursor Utilities Reference 8-17

C H A P T E R 8

Cursor Utilities
Notice that if all mask bits are 0, the cursor is completely transparent, in that the image
under the cursor can still be viewed. Pixels under the white part of the cursor appear
unchanged; under the black part of the cursor, black pixels show through as white.

Basic QuickDraw supplies a predefined cursor in the global variable named arrow; this
is the standard arrow cursor.

CCrsr 8

Your application typically does not create CCrsr records, which are data structures of
type CCrsr. Although you can create a CCrsr record, it is usually easier to create a color
cursor in a color cursor resource, which is described on page 8-34.

A color cursor is a 256-pixel color image in a 16-by-16 pixel square usually defined in a
color cursor ('crsr') resource. When your application uses the GetCCursor function
(described on page 8-26) to get a color cursor from a 'crsr' resource, GetCCursor
uses the Resource Manager to load the resource into memory as a CCrsr record. Your
application can then display the color cursor by using the SetCCursor procedure,
which is described on page 8-26.

The CCrsr record is substantially different from the Cursor record described in the
preceding section; the fields crsr1Data, crsrMask, and crsrHotSpot in the CCrsr
record are the only ones that have counterparts in the Cursor record. A CCrsr record is
defined as follows:

TYPE CCrsrHandle = ^CCrsrPtr;

CCrsrPtr = ^CCrsr;

CCrsr =

RECORD

crsrType: Integer; {type of cursor}

crsrMap: PixMapHandle; {the cursor's PixMap record}

crsrData: Handle; {cursor's data}

crsrXData: Handle; {expanded cursor data}

crsrXValid: Integer; {depth of expanded data}

crsrXHandle: Handle; {reserved for future use}

crsr1Data: Bits16; {1-bit cursor}

crsrMask: Bits16; {cursor's mask}

crsrHotSpot: Point; {cursor's hot spot}

crsrXTable: LongInt; {private}

crsrID: LongInt; {ctSeed for expanded cursor}

END;
8-18 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
Field descriptions

crsrType The type of cursor. Possible values are $8000 for a black-and-white
cursor and $8001 for a color cursor.

crsrMap A handle to the PixMap record defining the cursor’s characteristics.
PixMap records are described in the chapter “Color QuickDraw” in
this book.

crsrData A handle to the cursor’s pixel data.
crsrXData A handle to the expanded pixel image used internally by Color

QuickDraw.
crsrXValid The depth of the expanded cursor image. If you change the cursor’s

data or color table, you should set this field to 0 to cause the cursor
to be re-expanded. You should never set it to any other values.

crsrXHandle Reserved for future use.
crsr1Data A 16-by-16 pixel image with a pixel depth of 1 to be displayed when

the cursor is on screens with pixel depths of 1 or 2 bits.
crsrMask The cursor’s mask data. QuickDraw uses the mask to crop the

cursor’s outline into a background color or pattern. QuickDraw
then draws the cursor into this shape. The same 1-bit mask is used
with images specified by the crsrData and crsr1Data fields.

crsrHotSpot The cursor’s hot spot.
crsrXTable Reserved for future use.
crsrID The color table seed for the cursor.

The first four fields of the CCrsr record are similar to the first four fields of the PixPat
record, and are used in the same manner by Color QuickDraw. See the chapter “Color
QuickDraw” in this book for information about PixPat records.

The display of a cursor involves a relationship between a mask, stored in the crsrMask
field with the same format used for 1-bit cursor masks, and an image. There are two
possible sources for a color cursor’s image. When the cursor is on a screen whose depth
is 1 or 2 bits per pixel, the image for the cursor is taken from the crsr1Data field, which
contains bitmap cursor data (similar to the bitmap in a 'CURS' resource).

When the screen depth is greater than 2 bits per pixel, the crsrMap field and the
crsrData field define the image. The pixels within the mask replace the destination
pixels. Color QuickDraw transfers the pixels outside the mask into the destination pixels
using the XOR Boolean transfer mode. Therefore, if pixels outside the mask are white,
the destination pixels aren’t changed. If pixels outside the mask are all black, the
destination pixels are inverted. All other values outside of the mask cause unpredictable
results. See the discussion of Boolean transfer modes in the chapter “Color QuickDraw”
in this book for more information about the XOR Boolean transfer mode.

To work properly, a color cursor’s image should contain white pixels (R = G = B = $FFFF)
for the transparent part of the image, and black pixels (R = G = B = $0000) for the part of
the image to be inverted, in addition to the other colors in the cursor’s image. Thus, to
define a cursor that contains two colors, it’s necessary to use a 2-bit cursor image (that is,
a four-color image).
Cursor Utilities Reference 8-19

C H A P T E R 8

Cursor Utilities
If your application changes the value of your color cursor data or its color table, it should
set the crsrXValid field to 0 to indicate that the color cursor’s data needs to be
re-expanded, and it should assign a new unique value to the crsrID field (unique
values can be obtained using the Color Manager function GetCTSeed, which is
described in Inside Macintosh: Advanced Color Imaging. Then your application should call
SetCCursor to display the changed color cursor.

Cursors 8

When passing a value to the Show_Cursor procedure (described on page 8-30), you can
use the Cursors data type to represent the kind of cursor to show. The Cursors data
type is defined as follows:

 TYPE Cursors = {values to pass to Show_Cursor}

(HIDDEN_CURSOR, {the current cursor}

 I_BEAM_CURSOR, {the I-beam cursor; to select text}

 CROSS_CURSOR, {the crosshairs cursor; to draw }

{ graphics}

 PLUS_CURSOR, {the plus sign cursor; to select }

{ cells}

 WATCH_CURSOR, {the wristwatch cursor; to }

{ indicate a short operation in }

{ progress}

 ARROW_CURSOR); {the standard cursor}

Acur 8

Your application typically does not create Acur records, which are data structures of
type Acur. Although you can create an Acur record, which specifies the 'CURS'
resources to use in an animated cursor sequence, it is usually easier to create an
animated cursor ('acur') resource, which is described on page 8-36.

When your application uses the InitCursorCtl procedure (described on page 8-22),
the Resource Manager loads an animated cursor resource into memory as an Acur
record, which in turn is used by the RotateCursor procedure or SpinCursor
procedure (both described on page 8-32) when sequencing through 'CURS' resources.
8-20 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
An Acur resource is defined as follows:

TYPE acurPtr = ^Acur;

acurHandle = ^acurPtr;

Acur =

RECORD

n: Integer; {number of cursors ("frames")}

index: Integer; {reserved}

frame1: Integer; {'CURS' resource ID for frame #1}

fill1: Integer; {reserved}

frame2: Integer; {'CURS' resource ID for frame #2}

fill2: Integer; {reserved}

frameN: Integer; {'CURS' resource ID for frame #N}

fillN: Integer; {reserved}

END;

Field descriptions

n The number of frames in the animated cursor.
index Used by basic QuickDraw to create the animation.
frame1 The resource ID of the cursor ('CURS') resource for the first frame

sequence of the animation. The cursor resource is described on
page 8-33.

fill1 Reserved.
frame2 The resource ID of the cursor resource for the next frame in the

sequence of the animation.
fill2 Reserved.
frameN The resource ID of the cursor resource for the last frame used in the

sequence of the animation.
fillN Reserved.

Routines 8
This section describes the routines you use to initialize the cursor, manage a
black-and-white cursor, manage a color cursor, hide and show the cursor, and display an
animated cursor.

Initializing Cursors 8

When your application starts up, the Finder sets the cursor to a wristwatch; this
indicates that a short operation is in progress. When your application nears completion
of its initialization tasks, it should call the InitCursor procedure to change the cursor
from a wristwatch to an arrow.
Cursor Utilities Reference 8-21

C H A P T E R 8

Cursor Utilities
If your application uses an animated cursor to indicate that an operation of medium
length is under way, it should also call the InitCursorCtl procedure to load its
'acur' resource and associated 'CURS' resources.

InitCursor 8

You use the InitCursor procedure to set the current cursor to the standard arrow and
make it visible.

PROCEDURE InitCursor;

DESCRIPTION

The InitCursor procedure sets the current cursor to the standard arrow and sets the
cursor level to 0, making the cursor visible. (A value of –1 makes the cursor invisible.)
The cursor level keeps track of the number of times the cursor has been hidden to
compensate for nested calls to the HideCursor and ShowCursor procedures.

SEE ALSO

For a description of the HideCursor procedure, see page 8-28. For a description of the
ShowCursor procedure, see page 8-30. Listing 8-1 on page 8-6 illustrates how to use the
InitCursor procedure.

InitCursorCtl 8

To load the resources necessary for displaying an animated cursor, use the
InitCursorCtl procedure.

PROCEDURE InitCursorCtl (newCursors: UNIV acurHandle);

newCursors
A handle to an Acur record (described on page 8-20) that specifies the
cursor resources you want to use in your animation. If you specify NIL in
this parameter, InitCursorCtl loads the animated cursor resource
(described on page 8-36) with resource ID 0—as well as the cursor
resources (described on page 8-33) specified therein—from your
application’s resource file.
8-22 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
DESCRIPTION

The InitCursorCtl procedure loads the cursor resources for an animated cursor
sequence into memory. Your application should call the InitCursorCtl procedure
once prior to calling the RotateCursor procedure (described on page 8-32) or the
SpinCursor procedure (described on page 8-32).

If your application passes NIL in the newCursors parameter, InitCursorCtl loads
the 'acur' resource with resource ID 0, as well as the 'CURS' resources whose resource
IDs are specified in the 'acur' resource. If any of the resources cannot be loaded, the
cursor does not change when you call RotateCursor or SpinCursor. Otherwise, the
RotateCursor procedure and the SpinCursor procedure display in sequence the
cursors specified in these resources.

If your application does not pass NIL in the newCursors parameter, it must pass a
handle to an Acur record. Your application can use the Resource Manager function
GetResource to obtain a handle to an 'acur' resource, which your application should
then coerce to a handle of type acurHandle when passing it to InitCursorCtl.

If your application calls the RotateCursor or SpinCursor procedure without
calling InitCursorCtl, RotateCursor and SpinCursor automatically call
InitCursorCtl. However, since you won’t know the state of memory, any memory
allocated by the Resource Manager for animating cursors may load into an undesirable
location, possibly causing fragmentation. Calling the InitCursorCtl procedure
during your initialization process has the advantage of causing the memory allocation
when you can control its location. For information on using the InitCursorCtl
procedure during your initialization process, see “Initializing the Cursor” on page 8-6.

SPECIAL CONSIDERATION

If you want to use multiple 'acur' resources repeatedly during the execution of your
application, be aware that the InitCursorCtl procedure changes each frameN and
fillN integer pair within the Acur record in memory to a handle to the corresponding
'CURS' resource, which is also in memory. Thus, if the newCursors parameter is not
NIL when your application calls the InitCursorCtl procedure, your application must
guarantee that newCursors always points to a fresh copy of an 'acur' resource.

SEE ALSO

Listing 8-1 on page 8-6 illustrates how to initialize an animated cursor by using the
InitCursorCtl procedure. Listing 8-3 on page 8-15 shows how to animate the cursor
with the RotateCursor procedure, and Listing 8-4 on page 8-15 shows how to animate
the cursor with the SpinCursor procedure.
Cursor Utilities Reference 8-23

C H A P T E R 8

Cursor Utilities
Changing Black-and-White Cursors 8

When you use the InitCursor procedure described on page 8-22, the cursor changes
from a wristwatch to an arrow. You can change the cursor to another shape by using
the GetCursor function to load another cursor into memory and then using the
SetCursor procedure to display it on the screen.

GetCursor 8

You use the GetCursor function to load a cursor resource (described on page 8-33) into
memory. You can then display the cursor specified in this resource by calling the
SetCursor procedure (described in the next section).

FUNCTION GetCursor (cursorID: Integer): CursHandle;

cursorID The resource ID for the cursor you want to display. You can supply one of
these constants to get a handle to one of the standard cursors:

CONST

iBeamCursor = 1; {to select text}

crossCursor = 2; {to draw graphics}

plusCursor = 3; {to select cells}

watchCursor = 4; {to indicate a short operation }

{ in progress}

DESCRIPTION

The GetCursor function returns a handle to a Cursor record (described on page 8-16)
for the cursor with the resource ID that you specify in the cursorID parameter. If the
resource can’t be read into memory, GetCursor returns NIL.

To get a handle to a color cursor, use the GetCCursor function, which is described on
page 8-26.

SEE ALSO

Listing 8-2 on page 8-10 illustrates how to use the GetCursor and SetCursor routines
to change the cursor’s shape.
8-24 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
SetCursor 8

After using the GetCursor function to return a handle to a cursor as described in the
preceding section, you can use the SetCursor procedure to make that cursor the
current cursor.

PROCEDURE SetCursor (crsr: Cursor);

crsr A Cursor record, as described on page 8-16.

DESCRIPTION

The SetCursor procedure displays the cursor you specify in the crsr parameter. If the
cursor is hidden, it remains hidden and attain its new appearance only when it’s
uncovered. If the cursor is already visible, it changes to the new appearance immediately.

You need to use the InitCursor procedure (described on page 8-22) to initialize the
standard arrow cursor and make it visible on the screen before you can call SetCursor
to change the cursor’s appearance.

To display a color cursor, you must use the SetCCursor procedure, which is described
on page 8-26.

SEE ALSO

Listing 8-2 on page 8-10 illustrates how to use the GetCursor and SetCursor routines
to change the cursor’s shape.

Changing Color Cursors 8

This section describes how to create and display color cursors on the screen. It might be
useful to display a color cursor when the user is drawing or typing in color. For example,
the insertion point could appear in the color that is being used. Except for multicolored
paintbrush cursors, the cursor shouldn’t contain more than one color at once because it’s
hard for the eye to distinguish small areas of color.

To display a color cursor, you load the cursor resource into memory using the
GetCCursor function. Then you specify the cursor to display on the screen using
the SetCCursor procedure. Use the DisposeCCursor procedure to release the
memory used by the color cursor. Although you should never need to do so (because
Color QuickDraw handles this), the AllocCursor procedure reallocates cursor memory.
Cursor Utilities Reference 8-25

C H A P T E R 8

Cursor Utilities
GetCCursor 8

You use the GetCCursor function to load a color cursor resource into memory.

FUNCTION GetCCursor (crsrID: Integer): CCrsrHandle;

crsrID The resource ID of the cursor that you want to display.

DESCRIPTION

The GetCCursor function creates a new CCrsr record and initializes it using the
information in the 'crsr' resource with the specified ID. The GetCCursor function
returns a handle to the new CCrsr record. You can then display this cursor on the screen
by calling SetCCursor. If a resource with the specified ID isn’t found, then this function
returns a NIL handle.

Since the GetCCursor function creates a new CCrsr record each time it is called, your
application shouldn’t call the GetCCursor function before each call to the SetCCursor
procedure (unlike the way GetCursor and SetCursor are normally used). The
GetCCursor function doesn’t dispose of or detach the resource, so resources of type
'crsr' should typically be purgeable. You should call the DisposeCCursor procedure
(described on page 8-27) when you are finished using the color cursor created with
GetCCursor.

SEE ALSO

For a description of the 'crsr' resource format, see page 8-34. For a description of the
CCrsr record, see page 8-18. For a description of the SetCCursor procedure, see the
next section.

SetCCursor 8

You use the SetCCursor procedure to specify a color cursor for display on the screen.

PROCEDURE SetCCursor (cCrsr: CCrsrHandle);

cCrsr A handle to the color cursor to be displayed.
8-26 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
DESCRIPTION

The SetCCursor procedure allows your application to set a color cursor for display
on the screen. At the time the cursor is set, it’s expanded to the current screen depth so
that it can be drawn rapidly. You must call GetCCursor before you call SetCCursor;
however, you can make several subsequent calls to SetCCursor once GetCCursor
creates the CCrsr record.

If your application has changed the cursor’s data or its color table, it must also invalidate
the crsrXValid and crsrID fields of the CCrsr record before calling SetCCursor.

DisposeCCursor 8

You use the DisposeCCursor procedure to dispose of all records allocated by the
GetCCursor function. The DisposeCCursor procedure is also available as the
DisposCCursor procedure.

PROCEDURE DisposeCCursor (cCrsr: CCrsrHandle);

cCrsr A handle to the color cursor to be disposed of.

DESCRIPTION

The DisposeCCursor procedure disposes of memory allocated by the GetCCursor
function. You should use DisposeCCursor for each call to the GetCCursor function
(described on page 8-26).

AllocCursor 8

Although you typically won’t need to, you can use the AllocCursor procedure to
reallocate cursor memory.

PROCEDURE AllocCursor;

DESCRIPTION

Under normal circumstances, you should never need to use this procedure, since Color
QuickDraw handles reallocation of cursor memory.
Cursor Utilities Reference 8-27

C H A P T E R 8

Cursor Utilities
Hiding and Showing Cursors 8

You can remove the cursor image from the screen by using either the HideCursor or
Hide_Cursor procedure. You can hide the cursor temporarily by using the
ObscureCursor procedure, or you can hide the cursor in a given rectangle by using the
ShieldCursor procedure. Your application should hide the cursor when the user is
typing, for example. To display a cursor hidden by the HideCursor, Hide_Cursor, or
ObscureCursor procedure, use the ShowCursor or Show_Cursor procedure. (When
you use ObscureCursor to hide the cursor, the cursor is redisplayed automatically the
next time the user moves the mouse.)

HideCursor 8

You can use the HideCursor procedure to remove the cursor from the screen.

PROCEDURE HideCursor;

DESCRIPTION

The HideCursor procedure removes the cursor from the screen, restores the bits under
the cursor image, and decrements the cursor level (which InitCursor initialized to 0).
You might want to use HideCursor when the user is using the keyboard to create
content in one of your application’s windows. Every call to HideCursor should be
balanced by a subsequent call to the ShowCursor procedure, which is described on
page 8-30.

Hide_Cursor 8

You can use the Hide_Cursor procedure to hide the cursor if it is visible on the screen.
The Hide_Cursor procedure is functionally the same as the HideCursor procedure
described in the preceding section.

PROCEDURE Hide_Cursor;

DESCRIPTION

The Hide_Cursor procedure calls the HideCursor procedure to remove the cursor’s
image from the screen and decrements the cursor level by 1. Every call to Hide_Cursor
should be balanced by a subsequent call to the Show_Cursor procedure, which is
described on page 8-30. Before using Hide_Cursor, you must use the InitCursorCtl
procedure, which is described on page 8-22.
8-28 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
ObscureCursor 8

You use the ObscureCursor procedure to hide the cursor until the next time the user
moves the mouse.

PROCEDURE ObscureCursor;

DESCRIPTION

The ObscureCursor procedure temporarily hides the cursor; the cursor is redisplayed
the next time the user moves the mouse. Your application normally calls
ObscureCursor when the user begins to type. Unlike HideCursor (which is described
on page 8-28), ObscureCursor has no effect on the cursor level and must not be
balanced by a call to ShowCursor.

ShieldCursor 8

You can use the ShieldCursor procedure to hide the cursor in a rectangle.

PROCEDURE ShieldCursor (shieldRect: Rect; offsetPt: Point);

shieldRect
A rectangle in which the cursor is hidden whenever the cursor intersects
the rectangle. The rectangle may be specified in global or local
coordinates. If you are using global coordinates, pass (0,0) in the
offsetPt parameter. If you are using the local coordinates of a graphics
port, pass the coordinates for the upper-left corner of the graphics port’s
boundary rectangle in the offsetPt parameter.

offsetPt A point value for the offset of the rectangle. Like the basic QuickDraw
procedure LocalToGlobal, the ShieldCursor procedure offsets the
coordinates of the rectangle by the coordinates of this point.

DESCRIPTION

If the cursor and the given rectangle intersect, ShieldCursor hides the cursor. If they
don’t intersect, the cursor remains visible while the mouse isn’t moving, but is hidden
when the mouse moves. This procedure may be useful when using a feature such as
QuickTime to display content in a specified rectangle. When a QuickTime movie is
animating, the cursor should not be visible in front of the movie.

The ShieldCursor procedure decrements the cursor level and should be balanced by a
call to the ShowCursor procedure, which is described in the next section.
Cursor Utilities Reference 8-29

C H A P T E R 8

Cursor Utilities
ShowCursor 8

You use the ShowCursor procedure to display a cursor hidden by the HideCursor or
ShieldCursor procedure.

PROCEDURE ShowCursor;

DESCRIPTION

The ShowCursor procedure increments the cursor level, which may have been
decremented by the HideCursor or ShieldCursor procedure, and displays the cursor
on the screen when the level is 0. A call to the ShowCursor procedure should balance
each previous call to the HideCursor or ShieldCursor procedure. The level isn’t
incremented beyond 0, so extra calls to ShowCursor have no effect.

Low-level interrupt-driven routines link the cursor with the mouse position, so that if
the cursor level is 0 (visible), the cursor automatically follows the mouse.

If the cursor has been changed with the SetCursor procedure while hidden,
ShowCursor displays the new cursor.

SEE ALSO

For a description of the HideCursor procedure, see page 8-28. The ShieldCursor
procedure is described on page 8-29, and the SetCursor procedure is described on
page 8-25.

Show_Cursor 8

You use the Show_Cursor procedure to display the cursor on the screen if you have
used the Hide_Cursor procedure (described on page 8-28) to remove the cursor from
the screen.

PROCEDURE Show_Cursor (cursorKind: Cursors);

cursorKind
The kind of cursor to show. To specify one of the standard cursors, you
can use one of these values defined by the Cursors data type.

 TYPE Cursors = {values to pass Show_Cursor}

(HIDDEN_CURSOR, {the current cursor}

 I_BEAM_CURSOR, {the I-beam cursor; to select text}

 CROSS_CURSOR, {the crosshairs cursor; to draw }

{ graphics}

 PLUS_CURSOR, {the plus sign cursor; to select }

{ cells}
8-30 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
 WATCH_CURSOR, {the wristwatch cursor; to }

{ indicate a short operation in }

{ progress}

 ARROW_CURSOR); {the standard cursor}

DESCRIPTION

The Show_Cursor procedure increments the cursor level, which may have been
decremented by the Hide_Cursor procedure, and displays the specified cursor on the
screen only if the level becomes 0 (it is never incremented beyond 0). You can specify one
of the standard cursors or the current cursor by passing one of the previously listed
values in the cursorKind parameter. If you specify one of the standard cursors, the
Show_Cursor procedure calls the SetCursor procedure for the specified cursor prior
to calling ShowCursor. If you specify HIDDEN_CURSOR, this procedure just calls
ShowCursor. Before using Show_Cursor, you must use the InitCursorCtl
procedure, which is described on page 8-22.

SPECIAL CONSIDERATIONS

The value ARROW_CURSOR works correctly only if the basic QuickDraw global variables
have been set up by using the InitGraf procedure, which is described in the chapter
“Basic QuickDraw” in this book.

SEE ALSO

Figure 8-3 on page 8-8 illustrates the cursors represented by the Cursors data type.

Displaying Animated Cursors 8

This section describes how to display an animated cursor using the RotateCursor
procedure or the SpinCursor procedure. You use an animated cursor when your
application performs a medium-length operation that might cause the user to think that
the computer has quit working. The two procedures are similar, but you must maintain a
counter with the RotateCursor procedure.

You need to call the InitCursorCtl procedure to load your cursor resources before
using the routines described in this section. For information about using the
InitCursorCtl procedure, see page 8-22.
Cursor Utilities Reference 8-31

C H A P T E R 8

Cursor Utilities
RotateCursor 8

You can use the RotateCursor procedure to display an animated cursor when your
application performs a medium-length operation that might cause the user to think that
the computer has quit working.

PROCEDURE RotateCursor (counter: LongInt);

counter An incrementing or decrementing index maintained by your application.
When the index is a multiple of 32, the next cursor frame is used in the
animation. A positive counter moves forward through the cursor frames,
and a negative counter moves backward through the cursor frames.

DESCRIPTION

The RotateCursor procedure animates whatever sequence of cursors you set up by
using the InitCursorCtl procedure. If the value of counter is a multiple of 32, the
RotateCursor procedure calls the SetCursor procedure to set the cursor to the
next cursor frame. RotateCursor does not show the cursor if it is currently hidden. If
the cursor is hidden, you can show it by making a call to ShowCursor or Show_Cursor
(both described on page 8-30).

SEE ALSO

For an example of using the RotateCursor procedure, see Listing 8-3 on page 8-15.

SpinCursor 8

You can use the SpinCursor procedure to display an animated cursor when your
application performs a medium-length operation that might cause the user to think that
the computer has quit working.

PROCEDURE SpinCursor (increment: Integer);

increment A value that determines the sequencing direction of the cursor. A
positive increment moves forward through the cursor frames, and a
negative increment moves backward through the cursor frames. A 0 value
for the increment resets the counter to 0 and steps to the next cursor frame.
8-32 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
DESCRIPTION

The SpinCursor procedure is similar to the RotateCursor procedure except that,
instead of passing a counter, you pass a value that indicates which direction to spin the
cursor. Your application is responsible for determining the proper intervals at which to
call SpinCursor. Your application specifies the increment to be counted, either positive
or negative, and SpinCursor adds the increment to its counter. The sign of the
increment, not the sign of the accumulated value of the SpinCursor counter,
determines the cursor’s direction of spin.

SEE ALSO

For an example of using the SpinCursor procedure, see Listing 8-4 on page 8-15.

Resources 8
This section describes the cursor ('CURS') resource, the color cursor ('crsr') resource,
and the animated cursor ('acur') resource. Your application can use a 'CURS' resource
to create a black-and-white cursor other than the standard cursors or a 'crsr'
resource to create a color cursor to display on color screens. Your application can use an
'acur' resource to create an animated cursor to display when a medium-length
operation is taking place. These resource types should be marked as purgeable. See the
discussion of the pointing device in Macintosh Human Interface Guidelines for more
information on when to use different types of cursors in your application; see also the
discussion of color in the same book.

The Cursor Resource 8

You can use a cursor resource to define a cursor to display in your application. A cursor
resource is a resource of type 'CURS'. All cursor resources must be marked purgeable
and must have resource IDs greater than 128. You use the GetCursor function
(described on page 8-24) to obtain a cursor stored in a 'CURS' resource. QuickDraw
reads the requested resource, copies it, and then alters the copy before passing it to your
application.

This section describes the structure of this resource after it has been compiled by the Rez
resource compiler, available from APDA. However, you typically use a high-level utility
such as the ResEdit application to create 'CURS' resources. You can then use the DeRez
decompiler to convert your 'CURS' resources into Rez input when necessary.
Cursor Utilities Reference 8-33

C H A P T E R 8

Cursor Utilities
The compiled output format for a 'CURS' resource is illustrated in Figure 8-8.

Figure 8-8 Format of a compiled cursor ('CURS') resource

The compiled version of a 'CURS' resource contains the following elements:

■ Data. A bitmap for the cursor.

■ Mask. A bitmap for the cursor’s mask. QuickDraw uses the mask to crop the cursor’s
outline into a background color or pattern. QuickDraw then draws the cursor into this
shape.

■ Hot spot. The cursor’s hot spot.

The Color Cursor Resource 8

You can use a color cursor resource to define a colored cursor to display in your
application. A color cursor resource is a resource of type 'crsr'. All color cursor
resources must be marked purgeable and must have resource IDs greater than 128. You
use the GetCCursor function (described on page 8-26) to obtain a color cursor stored in
a 'crsr' resource. Color QuickDraw reads the requested resource, copies it, and then
alters the copy before passing it to the application. Each time you call GetCCursor, you
get a new copy of the cursor. This means that you should call GetCCursor only once for
a color cursor, even if you call the SetCCursor procedure many times.

This section describes the structure of this resource after it has been compiled by the Rez
resource compiler, available from APDA. However, you typically use a high-level utility
such as the ResEdit application to create 'crsr' resources. You can then use the DeRez
decompiler to convert your 'crsr' resources into Rez input when necessary.

The compiled output format for a 'crsr' resource is illustrated in Figure 8-9.

'CURS' resource type Bytes

Data

Mask

Hot spot

32

32

4

8-34 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
Figure 8-9 Format of a compiled color cursor ('crsr') resource

'crsr' resource type Bytes

2

32

4

4

4

2

4

32

4

4

4

Variable

26

18

Variable

Variable

Type of cursor

Offset to pixel map

Expanded cursor data

Offset to pixel data

Expanded data depth

Reserved

1-bit cursor data

Cursor mask

Hot spot

Table ID

Pixel map for cursor

Cursor ID

Bounds

Pixel size

Pixel data

Color table
Cursor Utilities Reference 8-35

C H A P T E R 8

Cursor Utilities
The compiled version of a 'crsr' resource contains the following elements:

■ Type of cursor. A value of $8001 identifies this as a color cursor. A value of $8000
identifies this as a black-and-white cursor.

■ Offset to PixMap record. This offset is from the beginning of the resource data.

■ Offset to pixel data. This offset is from the beginning of the resource data.

■ Expanded cursor data. This expanded pixel image is used internally by Color
QuickDraw.

■ Expanded data depth. This is the pixel depth of the expanded cursor image.

■ Reserved. The Resource Manager uses this element for storage.

■ Cursor data. This field contains a 16-by-16 pixel 1-bit image to be displayed when
the cursor is on 1-bit or 2-bit screens.

■ Cursor mask. A bitmap for the cursor’s mask. QuickDraw uses the mask to crop
the cursor’s outline into a background color or pattern. QuickDraw then draws the
cursor into this shape.

■ Hot spot. The cursor’s hot spot.

■ Table ID. This contains an offset to the color table data from the beginning of the
resource data.

■ Cursor ID. This contains the cursor’s resource ID.

■ Pixel map. This pixel map describes the image when drawing the color cursor.
The pixel map contains an offset to the color table data from the beginning of the
resource.

■ Bounds. The boundary rectangle of the cursor.

■ Pixel size. The number of pixels per bit in the cursor.

■ Pixel data. The data for the cursor.

■ Color table. A color table containing the color information for the cursor’s pixel map.

The Animated Cursor Resource 8

You can use an animated cursor resource to define a set of frames for an animated cursor
to display in your application. An animated cursor resource is a resource of type 'acur'.

If you pass NIL to InitCursorCtl (described on page 8-22), it automatically loads the
'acur' resource that has an ID of 0 in your application’s resource file. If you wish to use
multiple 'acur' resources, you must give them resources IDs greater than 128, and you
must use the Resource Manager function GetResource to obtain handles to them.
You must then coerce their handles to type acurHandle, which you pass to
InitCursorCtl. You use the SpinCursor or RotateCursor procedure to animate
the cursors stored in an 'acur' resource.
8-36 Cursor Utilities Reference

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
This section describes the structure of this resource after it has been compiled by the Rez
resource compiler, available from APDA. However, you typically use a high-level tool
such as the ResEdit application to create 'acur' resources. You can then use the DeRez
decompiler to convert your 'acur' resources into Rez input when necessary.

The compiled output format for an 'acur' resource is illustrated in Figure 8-10.

Figure 8-10 Format of a compiled animated cursor ('acur') resource

The compiled version of an 'acur' resource contains the following elements:

■ Number of cursors. The number of frames used to animate the cursor.

■ Next frame to show. Reserved.

■ Resource ID of the cursor resource that defines the first frame of the animation.

■ Reserved.

■ Resource ID of the cursor resource that defines the last frame of the animation.

■ Reserved.

'acur' resource type Bytes

Number of cursors

Next frame to show

Resource ID for first frame

Reserved

Resource ID for last frame

Reserved

2

2

2

2

2

2

Cursor Utilities Reference 8-37

C H A P T E R 8

Cursor Utilities
Summary of Cursor Utilities 8

Pascal Summary 8

Constants 8

CONST

iBeamCursor = 1; {used in text editing}

crossCursor = 2; {often used for manipulating graphics}

plusCursor = 3; {often used for selecting fields in an array}

watchCursor = 4; {used to mean a short operation is in progress}

Data Types 8

TYPE Bits16 = ARRAY[0..15] OF Integer;

CursPtr = ^Cursor;

CursHandle = ^CursPtr;

Cursor =

RECORD

data: Bits16; {cursor image}

mask: Bits16; {cursor mask}

hotSpot: Point; {point aligned with mouse}

END;

CCrsrPtr = ^CCrsr;

CCrsrHandle = ^CCrsrPtr;

CCrsr =

RECORD

crsrType: Integer; {type of cursor}

crsrMap: PixMapHandle; {the cursor's PixMap record}

crsrData: Handle; {cursor's data}

crsrXData: Handle; {expanded cursor data}

crsrXValid: Integer; {depth of expanded data (0 if none)}

crsrXHandle:Handle; {future use}
8-38 Summary of Cursor Utilities

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
crsr1Data: Bits16; {1-bit cursor}

crsrMask: Bits16; {cursor's mask}

crsrHotSpot: Point; {cursor's hot spot}

crsrXTable: LongInt; {private}

crsrID: LongInt; {ctSeed for expanded cursor}

END;

Cursors = {values to pass to Show_Cursor}

(HIDDEN_CURSOR, {the current cursor}

 I_BEAM_CURSOR, {the I-beam cursor; to select text}

 CROSS_CURSOR, {the crosshairs cursor; to draw graphics}

 PLUS_CURSOR, {the plus sign cursor; to select cells}

 WATCH_CURSOR, {the wristwatch cursor; to indicate a }

{ short operation in progress}

 ARROW_CURSOR); {the standard cursor}

acurPtr = ^Acur;

acurHandle = ^acurPtr;

Acur =

RECORD

n: Integer; {number of cursors ("frames")}

index: Integer; {reserved}

frame1: Integer; {'CURS' resource ID for frame #1}

fill1: Integer; {reserved}

frame2: Integer; {'CURS' resource ID for frame #2}

fill2: Integer; {reserved}

frameN: Integer; {'CURS' resource ID for frame #N}

fillN: Integer; {reserved}

END;

Routines 8

Initializing Cursors

PROCEDURE InitCursor;

PROCEDURE InitCursorCtl (newCursors: UNIV acurHandle);

Changing Black-and-White Cursors

FUNCTION GetCursor (cursorID: Integer): CursHandle;

PROCEDURE SetCursor (crsr: Cursor);
Summary of Cursor Utilities 8-39

C H A P T E R 8

Cursor Utilities
Changing Color Cursors

{DisposeCCursor is also spelled as DisposCCursor}

FUNCTION GetCCursor (cursorID: Integer): CCursHandle;

PROCEDURE SetCCursor (cCrsr: CCrsrHandle);

PROCEDURE DisposeCCursor (cCrsr: CCrsrHandle);

PROCEDURE AllocCursor;

Hiding and Showing Cursors

PROCEDURE HideCursor;

PROCEDURE Hide_Cursor;

PROCEDURE ObscureCursor;

PROCEDURE ShieldCursor (shieldRect: Rect; offsetPt: Point);

PROCEDURE ShowCursor;

PROCEDURE Show_Cursor (cursorKind: Cursors);

Displaying Animated Cursors

PROCEDURE RotateCursor (counter: LongInt);

PROCEDURE SpinCursor (increment: Integer);

C Summary 8

Constants 8

enum {

iBeamCursor = 1, /* used in text editing */

crossCursor = 2, /* often used for manipulating graphics */

plusCursor = 3, /* often used for selecting fields in an array */

watchCursor = 4 /* used to mean a short operation is in progress */

};

enum { /* values to pass to Show_Cursor */

HIDDEN_CURSOR, /* the current cursor */

I_BEAM_CURSOR, /* the I-beam cursor; to select tect */

CROSS_CURSOR, /* the crosshairs cursor; to draw graphics */

PLUS_CURSOR, /* the plus sign cursor; to select cells */
8-40 Summary of Cursor Utilities

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
WATCH_CURSOR, /* the wristwatch cursor; to indicate a short

 operation in progress */

ARROW_CURSOR /* the standard cursor */

};

typedef unsigned char Cursors;

Data Types 8

typedef short Bits16[16];

struct Cursor {

Bits16 data; /* cursor image */

Bits16 mask; /* cursor mask */

Point hotSpot; /* point aligned with mouse */

};

typedef struct Cursor Cursor;

typedef Cursor *CursPtr, **CursHandle;

struct CCrsr {

 short crsrType; /* type of cursor */

PixMapHandle crsrMap; /* the cursor's PixMap record */

 Handle crsrData; /* cursor's data */

 Handle crsrXData; /* expanded cursor data */

 short crsrXValid; /* depth of expanded data (0 if none) */

 Handle crsrXHandle; /* future use */

 Bits16 crsr1Data; /* 1-bit cursor */

 Bits16 crsrMask; /* cursor's mask */

 Point crsrHotSpot; /* cursor's hot spot */

 long crsrXTable; /* private */

 long crsrID; /* ctSeed for expanded cursor */

};

typedef struct CCrsr CCrsr;

typedef CCrsr *CCrsrPtr, **CCrsrHandle;

struct Acur {

short n; /* number of cursors ("frames of film") */

short index; /* reserved */

short frame1; /* 'CURS' resource ID for frame #1 */

short fill1; /* reserved */

short frame2; /* 'CURS' resource ID for frame #2 */
Summary of Cursor Utilities 8-41

C H A P T E R 8

Cursor Utilities
short fill2; /* reserved */

short frameN; /* 'CURS' resource ID for frame #N */

short fillN; /* reserved */

};

typedef struct Acur acur,*acurPtr,**acurHandle;

Functions 8

Initializing Cursors

pascal void InitCursor (void);

pascal void InitCursorCtl (acurHandle newCursors);

Changing Black-and-White Cursors

pascal CursHandle GetCursor (short cursorID);

pascal void SetCursor (const Cursor *crsr);

Changing Color Cursors

/* DisposeCCursor is also spelled as DisposCCursor */

pascal CCrsrHandle GetCCursor

(short crsrID);

pascal void SetCCursor (CCrsrHandle cCrsr);

pascal void DisposeCCursor (CCrsrHandle cCrsr);

pascal void AllocCursor (void);

Hiding and Showing Cursors

pascal void HideCursor (void);

pascal void Hide_Cursor (void);

pascal void ObscureCursor (void);

pascal void ShieldCursor (const Rect *shieldRect, Point offsetPt);

pascal void ShowCursor (void);

pascal void Show_Cursor (Cursors cursorKind);
8-42 Summary of Cursor Utilities

C H A P T E R 8

Cursor Utilities

8
C

ursor U
tilities
Displaying Animated Cursors

pascal void RotateCursor (long counter);

pascal void SpinCursor (short increment);

Assembly-Language Summary 8

Data Structures 8

Cursor Data Structure

Color Cursor Data Structure

Global Variables 8

0 data 32 bytes cursor image
32 mask 32 bytes cursor mask
64 hotSpot long point aligned with mouse

0 crsrType word type of cursor
2 crsrMap long the cursor’s PixMap record
6 crsrData long cursor’s data

10 crsrXData long expanded cursor data
14 crsrXValid word depth of expanded data (0 if none)
16 crsrXHandle long handle for future use
20 crsr1Data 16 words 1-bit data
52 crsrMask 16 words 1-bit mask
84 crsrHotSpot long hot spot for cursor
88 crsrXTable long table ID for expanded data
92 crsrID long ID for cursor
96 crsrRec long size of cursor save area

arrow The standard arrow cursor.
Summary of Cursor Utilities 8-43

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to QuickDraw TOC
	 Introduction to QuickDraw
	 Basic QuickDraw TOC
	 Basic QuickDraw
	 QuickDraw Drawing TOC
	 QuickDraw Drawing
	 Color QuickDraw TOC
	 Color QuickDraw
	 Graphics Devices TOC
	 Graphics Devices
	 Offscreen Graphics Worlds TOC
	 Offscreen Graphics Worlds
	 Pictures TOC
	 Pictures
	 Cursor Utilities TOC
	Cursor Utilities
	About the Cursor
	Using the Cursor Utilities
	Initializing the Cursor
	Changing the Appearance of the Cursor
	Creating an Animated Cursor

	Cursor Utilities Reference
	Data Structures
	Routines
	Initializing Cursors
	Changing Black-and-White Cursors
	Changing Color Cursors
	Hiding and Showing Cursors
	Displaying Animated Cursors

	Resources
	The Cursor Resource
	The Color Cursor Resource
	The Animated Cursor Resource

	Summary of Cursor Utilities
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Functions

	Assembly-Language Summary
	Data Structures
	Global Variables

	 Printing Manager TOC
	 Printing Manager
	 Appendix Opener
	 Appendix A (Picture Opcodes) TOC
	 Appendix A (Picture Opcodes)
	 Appendix B (Using Picture Comments for Printing) TOC
	 Appendix B (Using Picture Comments for Printing)
	 Glossary
	 Index
	 Colophon

