CHAPTER 8

Cursor Utilities

This chapter describes the utilities that your application uses to draw and manipulate
the cursor on the screen. You should read this chapter to find out how to implement
cursors in your application. For example, you should change the arrow cursor to an
I-beam cursor when it’s over text and to an animated cursor when a medium-length
process is under way.

Cursors are defined in resources; the routines in this chapter automatically call the
Resource Manager as necessary. For more information about resources, see the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox. Color cursors are
defined in resources as well, though they use Color QuickDraw. For information about
Color QuickDraw, see the chapter “Color QuickDraw” in this book.

This chapter describes how to
» create and display black-and-white and color cursors
s change the cursor’s shape over different areas on the screen

= display an animated cursor

About the Cursor

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square usually defined
by an application in a cursor (' CURS') resource. The cursor is an integral part of the
Macintosh user interface. The user manipulates the cursor with the mouse to select
objects or areas on the screen. (It appears only on the screen and never in an offscreen
graphics port.) The user moves the cursor across the screen by moving the mouse. Most
actions take place only when the user positions the cursor over an object on the screen,
then clicks (presses and releases the mouse button). For example, a user might point at a
document icon created by your application and click to select it, then choose the Open
command from the File menu by pointing at it with the mouse button depressed and
then releasing the mouse button.

You use a cursor in the content area of your application’s windows to allow the user to
select all or part of the content. Your application also uses the cursor in the scroll bar area
of its windows to adjust the position of the document’s contents in the window area. You
can change the shape of the cursor to indicate that a user is over a certain kind of
content, such as text, or to provide feedback about the status of the computer system.

Note

Some Macintosh user manuals call the cursor a pointer because it points
to a location on the screen. To avoid confusion with other meanings of
pointer, Inside Macintosh uses the alternate term cursor. O

About the Cursor 8-3

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Basic QuickDraw supplies a predefined cursor in the global variable named ar r ow; this
is the standard arrow cursor.

One point in the cursor’s image is designated as the hot spot, which in turn points to a
location on the screen. The hot spot is the portion of the pointer that must be positioned
over a screen object before mouse clicks can have an effect on that object. For example,
when the user presses the mouse button, the Event Manager function Wi t Next Event
reports the location of the cursor’s hot spot in global coordinates. Figure 8-1 illustrates
three cursors and their hot spot points.

Figure 8-1 Hot spots in cursors

1 Hot spot 16 Hot spot Hot spot

The hot spot is a point (not a bit) in the bit image for the cursor. Imagine the rectangle
with corners (0,0) and (16,16) containing the cursor’s bit image, as in each of the
examples in Figure 8-1; each hot spot is defined in the local coordinate systems of these
rectangles. For the arrow cursor in this figure, local coordinates (1,1) designate the hot
spot. A hot spot of (8,8) is in the center of the crosshairs cursor in Figure 8-1. Notice that
the hot spot for the pointing hand cursor has a horizontal coordinate of 16 and a vertical
coordinate of 9.

Whenever the user moves the mouse, the low-level interrupt-driven mouse routines
move the cursor to a new location on the screen. Your application doesn’t need to do
anything to move the cursor.

Your application should change the cursor shape depending on where the user positions
it on the screen. For example, when the cursor is in your application’s menu bar, the
cursor should usually have an arrow shape. When the user moves the cursor over a text
document, your application should change the cursor’s shape to an I-beam, which
indicates where the insertion point will move if the user clicks. When it’s over graphic
objects, the cursor may have different shapes depending on the type of graphic and the
operation that the user is attempting to complete. You should change the cursor shape
only to provide information to the user. In other words, don’t change its shape randomly.

About the Cursor

CHAPTER 8

Cursor Utilities

In general, you should always make the cursor visible in your application. To maintain a
stable and consistent environment, the user should have access to the cursor. There are a
few cases when the cursor may not be visible. For example, in an application where the
user is entering text, the insertion point should blink and the cursor should not be
visible. If the cursor and the insertion point were both visible, it might confuse the user
about where the input would appear. Or, if the user is viewing a slide show in a
presentation software application, the cursor need not be visible. However, whenever
the user needs access to the cursor, a simple move of the mouse should make the cursor
visible again.

When the cursor is used for choosing and selecting, it should remain black. You may
want to display a color cursor when the user is drawing or typing in color. The cursor
shouldn’t contain more than one color at a time, with the exception of a multicolored
paintbrush cursor. It's hard for the eye to distinguish small areas of color. Make sure that
the hot spot can be seen when it’s placed on a background of a similar color. This can be
accomplished by changing the color of the cursor or by adding a one-pixel outline in a
contrasting color.

When your application is performing an operation that will take at least a couple of
seconds, and more time than a user might expect, you need to provide feedback to the
user that the operation is in progress. If the operation will last a second or two (a short
operation), change the cursor to the wristwatch cursor. If the operation takes several
seconds (a medium-length operation) and the user can do nothing in your application
but stop the operation, wait until it is completed, or switch to another application, you
need to display an animated cursor. This lets the user know that the computer system
hasn’t crashed—it’s just busy. If the operation will take longer than several seconds (a
lengthy operation), your application should display a status indicator to show the user
the estimated total time and the elapsing time of the operation.

For more information about displaying cursors and status indicators in your application,
see Macintosh Human Interface Guidelines.

Using the Cursor Utilities

This section describes how you can
m create cursors
= change the shape of the cursor

= animate a cursor to indicate that a medium-length process is taking place

Using the Cursor Utilities 8-5

samnn 10SIND n

CHAPTER 8

Cursor Utilities

To implement cursors, you need to

= define black-and-white cursors as ' CURS' resources in the resource file of your
application

= define color cursorsin' crsr' resources—if you want to display color cursors—in
the resource file of your application

s define' acur' resources—if you want to display animated cursors—in the resource
file of your application

= initialize the Cursor Utilities by using the | ni t Cur sor and | ni t Cur sor Ct |
procedures when your application starts up

= use the Set Cur sor or Set CCur sor procedure to change the cursor shape as
necessary

= animate the cursor by using the Spi nCur sor or Rot at eCur sor procedure

You use' CURS' resources to create black-and-white cursors for display on
black-and-white and color screens. You use ' cr sr' resources to create color cursors
for display on systems supporting Color QuickDraw. Each ' cr sr' resource also
contains a black-and-white image that Color QuickDraw displays on black-and-white
screens.

Before using the routines that handle color cursors—namely, the Get CCur sor,

Set CCur sor, and Di sposeCCur sor routines—you must test for the existence of Color
QuickDraw by using the Gest al t function with the Gest al t Qui ckDr awVer si on
selector. If the value returned in the r esponse parameter is equal to or greater than the
value of the constant gest al t 32Bi t QD, then the system supports Color QuickDraw.
Both basic and Color QuickDraw support all other routines described in this chapter.

Initializing the Cursor

When your application starts up, the Finder sets the cursor to a wristwatch; this
indicates that an operation is in progress. When your application nears completion of its
initialization tasks, it should call the | ni t Cur sor procedure to change the cursor from a
wristwatch to an arrow, as shown in the application-defined procedure Dol ni t in
Listing 8-1.

Listing 8-1 Initializing the Cursor Utilities

PROCEDURE Dol ni t;

BEG N
DoSet UpHeap; {perform Menory Manager initialization here}
InitGaf(@hePort);{initialize basic Qi ckDraw}
I nitFonts; {initialize Font Manager}
I ni t Wndows; {initialize Wndow Manager & other Tool box }

{ managers here}
{performall other initializations here}

Using the Cursor Utilities

CHAPTER 8

Cursor Utilities

I nitCursor; {set cursor to an arrow instead of a }
{ wristwatch}
InitCursorCl (NIL);{load resources for aninmated cursor with }
{ resource ID 0}
END; {of Dolnit}

If your application uses an animated cursor to indicate that an operation of medium

length is under way, it should also call the | ni t Cur sor Ct | procedure to load its
"acur' resource and associated ' CURS' resources, as illustrated in Listing 8-1.

Changing the Appearance of the Cursor

Whenever the user moves the mouse, the mouse driver, the Event Manager, and your
application are responsible for providing feedback to the user. The mouse driver
performs low-level functions, such as continually polling the mouse for its location and
status and maintaining the current location of the mouse in a global variable. Whenever
the user moves the mouse, a low-level interrupt routine of the mouse driver moves the
cursor displayed on the screen and aligns the hot spot of the cursor with the new mouse
location. This section describes how to use the Get Cur sor and Set Cur sor routines to
change the appearance of a black-and-white cursor when it is in different areas of the
screen. (To change the cursor to a color cursor, your application must use the

Cet CCur sor function, described on page 8-26, and the Set CCur sor procedure,
described on page 8-26.)

Your application is responsible for setting the initial appearance of the cursor, for
restoring the cursor after the Event Manager function Wi t Next Event returns, and for
changing the appearance of the cursor as appropriate for your application. For example,
most applications set the cursor to the I-beam when the cursor is inside a text-editing
area of a document, and they change the cursor to an arrow when the cursor is inside a
scroll bar of a document. Your application can achieve this effect by requesting that the
Event Manager report mouse-moved events if the user moves the cursor out of a region
you specify in the nDuseRgn parameter to the Wai t Next Event function.

Vi t Next Event is described in the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The mouse driver and your application control the shape and appearance of the cursor.
A cursor can be any 256-pixel image, defined by a 16-by-16 pixel square. The mouse
driver displays the current cursor, which your application can change by using the

Set Cur sor or Set CCur sor procedure.

Using the Cursor Utilities 8-7

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Figure 8-2 shows the standard arrow cursor. You initialize the cursor to the standard
arrow cursor when you use the | ni t Cur sor procedure, as shown in Listing 8-1. As
shown in Figure 8-2, the hot spot for the arrow cursor is at location (1,1).

Figure 8-2 The standard arrow cursor

Hot spot

Figure 8-3 shows four other common cursors that are available to your application: the
I-beam, crosshairs, plus sign, and wristwatch cursors.

Figure 8-3 The I-beam, crosshairs, plus sign, and wristwatch cursors

8-8

I + <

I-beam Crosshairs Plus sign Wristwatch

The I-beam, crosshairs, plus sign, and wristwatch cursors are defined as resources,
and your application can get a handle to any of these cursors by specifying their
corresponding resource IDs to the Get Cur sor function. These constants specify the
resource IDs for these common cursors:

CONST i Beantur sor
crossCur sor
pl usCur sor

1; {used in text editing}

2; {often used for manipul ati ng graphics}

3; {often used for selecting fields in }
{ an array}

Using the Cursor Utilities

CHAPTER 8

Cursor Utilities

wat chCursor = 4; {used when a short operation is in }
{ progress}

After you use the Get Cur sor function to obtain a handle to one of these cursors or to
one defined by your own applicationina' CURS' resource, you can change the
appearance of the cursor by using the Set Cur sor procedure.

Your application usually needs to change the shape of the cursor as the user moves the
cursor to different areas within a document. Your application can use mouse-moved
events to help accomplish this. Your application also needs to adjust the cursor in
response to resume events. Most applications adjust the cursor once through the event
loop in response to almost all events.

You can request that the Event Manager report mouse-moved events whenever

the cursor is outside of a specified region that you pass as a parameter to

the V&i t Next Event function. (If you specify an empty region or a NI L handle to the
Wi t Next Event function, Wai t Next Event does not report mouse-moved events.)

If you specify a nonempty region in the mouseRgn parameter to the Wi t Next Event
function, Wi t Next Event returns a mouse-moved event whenever the cursor is outside
of that region. For example, Figure 8-4 shows a document window. Your application
might define two regions: a region that encloses the text area of the window (the I-beam
region), and a region that defines the scroll bars and all other areas outside the text area
(the arrow region). If your application has specified the I-beam region to

Wi t Next Event , the mouse driver continues to display the I-beam cursor until the user
moves the cursor out of the region.

Figure 8-4 A window and its arrow and |-beam regions
& File Edit Font Size Stle (2J
L]
Eeeeeo-—— Textl =
i
HISTORY OF THE HORSE
THIS ARTICLE PRESENTS A HISTORY OF THE HORSE,
I-beam region
K 1] B
o Arrow region (outside I-beam region)

Using the Cursor Utilities 8-9

samnn 10SIND n

CHAPTER 8

Cursor Utilities

When the user moves the cursor out of the I-beam region, VAi t Next Event reports a
mouse-moved event. Your application can then change the I-beam cursor to the arrow
cursor and change the mouseRgn parameter to the area defined by the scroll bars and
all other areas outside of the I-beam region. The cursor remains an arrow until the user
moves the cursor out of the arrow region, at which point your application receives a
mouse-moved event.

Figure 8-5 shows how an application might change the cursor from the I-beam cursor to
the arrow cursor after receiving a mouse-moved event.

Figure 8-5 Changing the cursor from the I-beam cursor to the arrow cursor

1 by Bt
s, This sec}
roprocessd:

Cursor in the I-beam region Cursor in the arrow region

1 by Matay
3, Thizsec
FOPraCess

Note that your application should recalculate the nouseRgn parameter when it receives
a mouse-moved event; otherwise, it will continue to receive mouse-moved events as
long as the cursor position is outside the original region.

Listing 8-2 shows an application-defined routine called MyAdj ust Cur sor. After
receiving any event other than a high-level event, the application’s event loop (described
in the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials) calls
MyAdj ust Cur sor to adjust the cursor.

Listing 8-2 Changing the cursor

8-10

PROCEDURE MyAdj ust Cursor (nouse: Point; VAR region: RgnHandl e);
VAR

wi ndow: W ndowPt r;
ar r owRgn: RgnHandl e;
i BeamRgn: RgnHandl e;
i BeanRect : Rect ;
nyDat a: MyDocRecHnd;
Wi ndowType: I nt eger;
BEG N
wi ndow : = Front W ndow;,

{Determ ne the type of w ndow -docunent, nodel ess, etc.}

Using the Cursor Utilities

CHAPTER 8

Cursor Utilities

Wi ndowType : = MyGet W ndowType(w ndow) ;
CASE wi ndowType OF
kMyDocW ndow.
BEG N
{initialize regions for arrow and |-beant
arrowRgn : = NewRgn;
i beamRgn : = NewRgn;
{set arrow region to large region at first}
Set Rect Rgn(arrowRgn, -32768, -32768, 32766, 32766);
{cal cul ate |-beam regi on}
{first get the docunment's TextEdit view rectangl e}
nyData : = MyDocRecHnd(Get WRef Con(wi ndow)) ;
i BeamRect : = nyData””. edi t Rec"*. vi ewRect ;
Set Port (wi ndow) ;
W TH i BeanRect DO
BEG N
Local Tod obal (topLeft);
Local Tod obal (bot Ri ght) ;
END;
Rect Rgn(i BeanRgn, i BeanRect);
W TH wi ndow*. portBi ts. bounds DO
SetOrigin(-left, -top);

{intersect |I-beamregion with wi ndow s visible region}

Sect Rgn(i BeanRgn, wi ndow". vi sRgn, i BeanRgn);
Set Origin(0,0);

{cal cul ate arrow regi on by subtracting |-beam regi on}

Di ff Rgn(arrowRgn, i BeanRgn, arrowRgn);

{change the cursor and region paranmeter as necessary}

I F PtlInRgn(nmouse, iBeanmRgn) THEN {cursor is in |I-beamrgn}

BEG N
Set Cur sor (Get Cur sor (i BeamCur sor) *") ; {set to |-beant
CopyRgn(i BeanmRgn, region); {update the regi on paran}
END;

{update cursor if in arrow region}

I F PtlnRgn(rmouse, arrowRgn) THEN {cursor is in arrow rgn}

BEG N
Set Cur sor (arrow ; {set cursor to the arrow}
CopyRgn(arrowRgn, region); {update the regi on paran}
END;

Di sposeRgn(i BeanRgn) ;
Di sposeRgn(arr owRgn) ;
END; {of kMyDocW ndow}

Using the Cursor Utilities

8-11

samnn 10SIND n

8-12

CHAPTER 8

Cursor Utilities

kMyd obal Changesl D:
MyCal cCur sor RgnFor Model essDi al ogBox(w ndow, region);
kKNi | :
BEG N
My Set Regi onNoW ndows(kNi |, region);
Set Cur sor (arrow) ;
END;
END; {of CASE}
END;

The MyAdj ust Cur sor procedure sets the cursor appropriately, according to whether a
document window or modeless dialog box is active.

For a document window, MyAdj ust Cur sor defines two regions, specified by the

ar r owRgn and i BeanRgn variables. If the cursor is inside the region described by
the ar r owRgn variable, MyAdj ust Cur sor sets the cursor to the arrow cursor and
returns the region described by ar r owRgn. Similarly, if the cursor is inside the region
described by the i BeanRgn variable, MyAdj ust Cur sor sets the cursor to the I-beam
cursor and returns the region described by i BeanRgn.

The MyAdj ust Cur sor procedure calculates the two regions by first setting the arrow
region to the largest possible region. It then sets the I-beam region to the region
described by the document’s TextEdit view rectangle. This region typically corresponds
to the content area of the window minus the scroll bars. (If your application doesn’t use
TextEdit for its document window, then set this region as appropriate to your
application.) The MyAdj ust Cur sor routine adjusts the I-beam region so that it includes
only the part of the content area that is in the window’s visible region (for example, to
take into account any floating windows that might be over the window). The code in this
listing sets the arrow region to include the entire screen except for the region occupied
by the I-beam region. (TextEdit is described in Inside Macintosh: Text.)

The MyAdj ust Cur sor procedure then determines which region the cursor is in and sets
the cursor and region parameter appropriately.

For modeless dialog boxes, MyAdj ust Cur sor calls its own routine to appropriately
adjust the cursor for the modeless dialog box. The MyAdj ust Cur sor procedure also
appropriately adjusts the cursor if no windows are currently open.

Your application should normally hide the cursor when the user is typing. You can
remove the cursor image from the screen by using either the Hi deCur sor or

Hi de_Cur sor procedure. You can hide the cursor temporarily by using the

Cbscur eCur sor procedure, or you can hide the cursor in a given rectangle by using the
Shi el dCur sor procedure. To display a hidden cursor, use the ShowCur sor or
Show_Cur sor procedure. Note that you do not need to explicitly show the cursor after

Using the Cursor Utilities

CHAPTER 8

Cursor Utilities

your application uses the Gbscur eCur sor procedure; instead, the cursor automatically
reappears when the user moves the mouse again. These procedures are described in
“Hiding and Showing Cursors” beginning on page 8-28.

Creating an Animated Cursor

Your application should display an animated cursor when performing a medium-length
operation that might cause the user to think that the computer has stopped working. To
create an animated cursor, you should

= create a series of ' CURS' resources that make up the “frames” of the animation
= createan' acur' resource with a resource ID of 0

= pass the value NI L to the | ni t Cur sor Ct | procedure once in your program code to
load these resources

= use either the Rot at eCur sor or Spi nCur sor procedure when your application is
busy with its task

Note

An alternate, but more code-intensive, method of creating and
displaying an animated cursor is shown in the chapter “Vertical Retrace
Manager” in Inside Macintosh: Processes. O

Typically, an animated cursor uses four to seven frames. For example, the seven' CURS'
resources in Figure 8-6 constitute the seven frames of a globe cursor that spins. To create
these resources, your application typically uses a high-level utility such as ResEdit,
which is available from APDA.

Figure 8-6 The ' CURS' resources for an animated globe cursor
e B 4 £ & & B &
Resource ID# 1001 1002 1003 1004 1005 1006 1007

To collect and order your ' CURS' frames into a single animation, you must create an
"acur' resource. This resource specifies the IDs of the ' CURS' resources and the
sequence for displaying them in your animation. If your application uses only one
spinning cursor, give your ' acur' resource a resource ID of 0.

Using the Cursor Utilities 8-13

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Figure 8-7 shows how the ' CURS' resources for the spinning globe cursor are specified
inan' acur' resource using ResEdit.

8-14

Figure 8-7 An ' acur' resource for an animated cursor
Surfllriter
acurs from Surfllriter anan a1
[:} WJER CROD
@ @ x5 Size Narne iNE oL
RTE
acur o 32 | CODE

acur 1D = 0 from Surflliriter

cups| “frames”

{cursors)
g_’l'} Used o D == CURSs from Surfllriter ==
hd “frome™ P
ICOM | counter = s{'n, ® N &£
sl] Rk s00 S0 1001 1002 1003
e ® o0 o
RECT| Resource |d 1004 1005 1006 1007
- Iy KEEAR i
507 rcumse 1002 %
vers Resource Id —T —

To load the ' acur' resource and its associated ' CURS' resources, use the

I nitCursorCtl procedure once prior to calling the Rot at eCur sor or Spi nCur sor
procedure. If you pass NI L to | ni t Cur sor Ct |, then it automatically loads the ' acur'
resource that has an ID of 0 in your application’s resource file. If you wish to use
multiple animated cursors, you must create multiple " acur' resources—that is, one for
each series of ' CURS' resources. Prior to displaying one of your animated cursors with
Rot at eCur sor or Spi nCur sor, you must call the Resource Manager function

Cet Resour ce to return a handle to its ' acur' resource. Your application must coerce
that handle to one of type acur Handl e, and then pass this handle to the

I nitCursorC| procedure. See the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox for more information about Get Resour ce.

When you call Rot at eCur sor or Spi nCur sor, one frame—that is, one ' CURS'
resource—is displayed. When you pass a positive value to the procedure the next time
you call it, the next frame specified in the ' acur' resource is displayed. A negative
value passed to either procedure displays the previous frame listed in the ' acur'
resource. The distinction between Rot at eCur sor and Spi nCur sor is that your
application maintains an index for changing the cursor when calling Rot at eCur sor,
but your application does not maintain an index for changing the cursor when calling
Spi nCur sor ; instead, your application must determine the proper interval for
calling Spi nCur sor.

Using the Cursor Utilities

CHAPTER 8

Cursor Utilities

Listing 8-3 shows an application-defined routine called MyRot at eCur sor. When the
application calling MyRot at eCur sor starts on a medium-length operation and needs to
indicate to the user that the operation is in progress, the application sets its global
variable gDone to FALSE and repeatedly calls MyRot at eCur sor until the operation is
complete and gDone becomes TRUE.

Listing 8-3 Animating a cursor with the Rot at eCur sor procedure

PROCEDURE MyRot at eCur sor ;
BEG N
| F NOT gDone THEN
BEG N
Rot at eCur sor (Ti ckCount) ;
END;
END;

Listing 8-3 uses the Event Manager function Ti ckCount to maintain an index for
Rot at eCur sor to use when displaying the frames for an animated cursor. (A tick is
approximately 1/60 of a second; Ti ckCount returns the number of ticks since the
computer started up.) When the value passed as a parameter to Rot at eCur sor isa
multiple of 32, then Rot at eCur sor displays the next frame in the animation.

Listing 8-4 shows an application-defined routine called MySpi nCur sor. As you see
in Listing 8-4, the application does not maintain an index for displaying the frames for
an animated cursor. Instead, every time Spi nCur sor is called, the next frame in the
animation is displayed.

Listing 8-4 Animating a cursor with the Spi nCur sor procedure

PROCEDURE My Spi nCur sor;
BEG N
| F NOT gDone THEN
Spi nCur sor (0);
END;

If the operation takes less than a second or two, your application can simply use the

Set Cur sor procedure to display the cursor with the resource ID represented by the

wat chCur sor constant. If the operation will take longer than several seconds (a lengthy
operation), your application should display a status indicator in a dialog box to show the
user the estimated total time and the elapsing time of the operation. See the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information about
creating and displaying dialog boxes.

Using the Cursor Utilities 8-15

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Cursor Utilities Reference

This section describes the data structures, routines, and resources that are specific to
cursors. “Data Structures” shows the Pascal data structures for the Bi t s16 array and
the Cur sor, CCr sr, Cur sor s, and Acur records. “Routines” describes the routines for
initializing cursors, managing black-and-white cursors, managing color cursors, hiding
and showing cursors, and displaying animated cursors. “Resources” describes the cursor
resource, the color cursor resource, and the animated cursor resource. The constants that
represent values for the standard cursors are listed in “Summary of Cursor Utilities.”

Data Structures

Your application typically does not create the data structures described in this section.
Although you can create a Cur sor record and its associated Bi t s16 array in your
program code, it is usually easier to create a black-and-white cursor in a cursor resource,
which is described on page 8-33. Similarly, you can create a CCr sr record in your
program code, but it is usually easier to create a color cursor in a color cursor resource,
which is described on page 8-34. The Cur sor s data type contains the standard cursors
you can display. Finally, you usually list animated cursors in an animated cursor
resource, which is described on page 8-36, instead of creating them in an Acur record.

Bits16
The Bi t s16 array is used by the Cur sor record to hold a black-and-white, 16-by-16
pixel square image.
Bitsl6 = ARRAY[O0..15] OF Integer;

Cursor
Your application typically does not create Cur sor records, which are data structures of
type Cur sor. Although you can create a Cur sor record and its associated Bi t s16 array
in your program code, it is usually easier to create a black-and-white cursor in a cursor
resource, which is described on page 8-33.

8-16 Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square usually
defined by an application in a cursor (' CURS') resource. When your application uses
the Get Cur sor function (described on page 8-24) to get a cursor from a' CURS'
resource, Get Cur sor uses the Resource Manager to load the resource into memory as a
Cur sor record. Your application can then display the color cursor by using the

Set Cur sor procedure, which is described on page 8-25.

A Cur sor record is defined as follows:

TYPE CursPtr
Cur sHandl e
Cursor =
RECORD
dat a:
mask:

hot Spot :

END;

Field descriptions
dat a

mask

hot Spot

ACur sor;
ACurshPtr;

Bi t s16;
Bi t s16;
Poi nt ;

{cursor inage}
{cursor mask}
{point aligned with nouse}

Cursor image data, which must begin on a word boundary. The
Bi t s16 data type for this field is described in the preceding section.

The cursor’s mask, whose effects are shown in Table 8-1.
QuickDraw uses the mask to crop the cursor’s outline into a
background color or pattern. QuickDraw then draws the cursor into
this shape. The Bi t s16 data type for this field is described in the
preceding section.

A point in the image that aligns with the mouse location.This field
aligns a point (not a bit) in the image with the mouse location on the
screen. Whenever the user moves the mouse, the low-level
interrupt-driven mouse routines move the cursor. When the user
clicks, the Event Manager function Wai t Next Event reports the
location of the cursor’s hot spot in global coordinates.

The cursor appears on the screen as a 16-by-16 pixel square. The appearance of each bit
of the square is determined by the corresponding bits in the data and mask and, if the
mask bit is 0, by the pixel under the cursor, as shown in Table 8-1.

Table 8-1 Cursor appearance
Data Mask Resulting pixel on screen
0 1 White
1 1 Black
0 0 Same as pixel under cursor
1 0 Inverse of pixel under cursor

Cursor Utilities Reference

8-17

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Notice that if all mask bits are 0, the cursor is completely transparent, in that the image
under the cursor can still be viewed. Pixels under the white part of the cursor appear
unchanged; under the black part of the cursor, black pixels show through as white.

Basic QuickDraw supplies a predefined cursor in the global variable named ar r ow; this
is the standard arrow cursor.

CCrsr

Your application typically does not create CCr sr records, which are data structures of
type CCr sr. Although you can create a CCr st record, it is usually easier to create a color
cursor in a color cursor resource, which is described on page 8-34.

A color cursor is a 256-pixel color image in a 16-by-16 pixel square usually defined in a
color cursor (' crsr') resource. When your application uses the Get CCur sor function
(described on page 8-26) to get a color cursor from a' crsr' resource, Get CCur sor
uses the Resource Manager to load the resource into memory as a CCr sr record. Your
application can then display the color cursor by using the Set CCur sor procedure,
which is described on page 8-26.

The CCr sr record is substantially different from the Cur sor record described in the
preceding section; the fields cr sr 1Dat a, cr sr Mask, and cr sr Hot Spot in the CCr sr
record are the only ones that have counterparts in the Cur sor record. A CCr sr record is
defined as follows:

TYPE CCrsrHandle = "CCrsrPtr
CCrsrbtr = ACCrsr;
CCrsr =
RECORD
crsrType: I nt eger; {type of cursor}
crsrhap: Pi xMapHandl e; {the cursor's PixMap record}
crsrDat a: Handl e; {cursor's data}
crsrXDat a: Handl e; {expanded cursor data}
crsrXxvalid: I nt eger; {dept h of expanded dat a}
cr sr XHandl e: Handl e; {reserved for future use}
crsrlDat a: Bi t s16; {1-bit cursor}
cr sr Mask: Bi t s16; {cursor's mask}
cr sr Hot Spot : Poi nt ; {cursor's hot spot}
crsr XTabl e: Longl nt ; {private}
crsriD: Longl nt; {ct Seed for expanded cursor}
END;

8-18 Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

Field descriptions

crsrType The type of cursor. Possible values are $8000 for a black-and-white
cursor and $8001 for a color cursor.

crsrMap A handle to the Pi xMap record defining the cursor’s characteristics.
Pi xMap records are described in the chapter “Color QuickDraw” in
this book.

crsrData A handle to the cursor’s pixel data.

crsrXDat a Ahandle to the expanded pixel image used internally by Color
QuickDraw.

crsrXvalid The depth of the expanded cursor image. If you change the cursor’s

data or color table, you should set this field to 0 to cause the cursor
to be re-expanded. You should never set it to any other values.

crsr XHandl e Reserved for future use.

crsrilbata A 16-by-16 pixel image with a pixel depth of 1 to be displayed when
the cursor is on screens with pixel depths of 1 or 2 bits.

crsrMask The cursor’s mask data. QuickDraw uses the mask to crop the
cursor’s outline into a background color or pattern. QuickDraw
then draws the cursor into this shape. The same 1-bit mask is used
with images specified by the cr sr Dat a and cr sr 1Dat a fields.

cr sr Hot Spot The cursor’s hot spot.
crsrXTabl e Reserved for future use.
crsriD The color table seed for the cursor.

The first four fields of the CCr sr record are similar to the first four fields of the Pi xPat
record, and are used in the same manner by Color QuickDraw. See the chapter “Color
QuickDraw” in this book for information about Pi xPat records.

The display of a cursor involves a relationship between a mask, stored in the cr sr Mask
field with the same format used for 1-bit cursor masks, and an image. There are two
possible sources for a color cursor’s image. When the cursor is on a screen whose depth
is 1 or 2 bits per pixel, the image for the cursor is taken from the cr sr 1Dat a field, which
contains bitmap cursor data (similar to the bitmap ina' CURS' resource).

When the screen depth is greater than 2 bits per pixel, the cr sr Map field and the

cr sr Dat a field define the image. The pixels within the mask replace the destination
pixels. Color QuickDraw transfers the pixels outside the mask into the destination pixels
using the XOR Boolean transfer mode. Therefore, if pixels outside the mask are white,
the destination pixels aren’t changed. If pixels outside the mask are all black, the
destination pixels are inverted. All other values outside of the mask cause unpredictable
results. See the discussion of Boolean transfer modes in the chapter “Color QuickDraw”
in this book for more information about the XOR Boolean transfer mode.

To work properly, a color cursor’s image should contain white pixels (R = G = B = $FFFF)
for the transparent part of the image, and black pixels (R = G = B = $0000) for the part of
the image to be inverted, in addition to the other colors in the cursor’s image. Thus, to
define a cursor that contains two colors, it’s necessary to use a 2-bit cursor image (that is,
a four-color image).

Cursor Utilities Reference 8-19

samnn 10SIND n

CHAPTER 8

Cursor Utilities

If your application changes the value of your color cursor data or its color table, it should
set the cr sr XVal i d field to 0 to indicate that the color cursor’s data needs to be
re-expanded, and it should assign a new unique value to the cr sr | Dfield (unique
values can be obtained using the Color Manager function Get CTSeed, which is
described in Inside Macintosh: Advanced Color Imaging. Then your application should call
Set CCur sor to display the changed color cursor.

Cursors
When passing a value to the Show_Cur sor procedure (described on page 8-30), you can
use the Cur sor s data type to represent the kind of cursor to show. The Cur sor s data
type is defined as follows:
TYPE Cursors = {val ues to pass to Show Cursor}
(HI DDEN_CURSOR, {the current cursor}
| _BEAM _CURSCR, {the I-beam cursor; to select text}
CROSS _CURSOR, {the crosshairs cursor; to draw }
{ graphics}
PLUS CURSOR, {the plus sign cursor; to select }
{ cells}
WATCH_CURSOR, {the wistwatch cursor; to }
{ indicate a short operation in }
{ progress}
ARROW CURSCR) ; {the standard cursor}
Acur

8-20

Your application typically does not create Acur records, which are data structures of
type Acur . Although you can create an Acur record, which specifies the ' CURS'
resources to use in an animated cursor sequence, it is usually easier to create an
animated cursor (" acur') resource, which is described on page 8-36.

When your application uses the I ni t Cur sor Ct | procedure (described on page 8-22),
the Resource Manager loads an animated cursor resource into memory as an Acur
record, which in turn is used by the Rot at eCur sor procedure or Spi nCur sor
procedure (both described on page 8-32) when sequencing through ' CURS' resources.

Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

An Acur resource is defined as follows:

TYPE acurPtr = ~Acur,;
acur Handl e = ~acurPtr;

Acur =

RECORD
n: I nt eger; {nunber of cursors ("franes")}
i ndex: I nt eger; {reserved}
franmel: Integer; {'CURS' resource ID for frane #1}
filll: I nt eger; {reserved}
frame2: Integer; {'CURS' resource ID for frane #2}
fill2: I nt eger; {reserved}
franmeN. Integer; {'CURS' resource ID for frane #N}
fillN I nt eger; {reserved}

END;

Field descriptions

n The number of frames in the animated cursor.

i ndex Used by basic QuickDraw to create the animation.

franel The resource ID of the cursor (' CURS') resource for the first frame
sequence of the animation. The cursor resource is described on
page 8-33.

filll Reserved.

franme2 The resource ID of the cursor resource for the next frame in the
sequence of the animation.

fill2 Reserved.

frameN The resource ID of the cursor resource for the last frame used in the
sequence of the animation.

fillN Reserved.

Routines

This section describes the routines you use to initialize the cursor, manage a
black-and-white cursor, manage a color cursor, hide and show the cursor, and display an
animated cursor.

Initializing Cursors

When your application starts up, the Finder sets the cursor to a wristwatch; this
indicates that a short operation is in progress. When your application nears completion
of its initialization tasks, it should call the I ni t Cur sor procedure to change the cursor
from a wristwatch to an arrow.

Cursor Utilities Reference 8-21

samnn 10SIND n

InitCursor

CHAPTER 8

Cursor Utilities

If your application uses an animated cursor to indicate that an operation of medium
length is under way, it should also call the | ni t Cur sor Ct| procedure to load its
"acur' resource and associated ' CURS' resources.

DESCRIPTION

SEE ALSO

You use the | ni t Cur sor procedure to set the current cursor to the standard arrow and
make it visible.

PROCEDURE | ni t Cur sor;

The I ni t Cur sor procedure sets the current cursor to the standard arrow and sets the
cursor level to 0, making the cursor visible. (A value of —1 makes the cursor invisible.)
The cursor level keeps track of the number of times the cursor has been hidden to
compensate for nested calls to the Hi deCur sor and ShowCur sor procedures.

For a description of the Hi deCur sor procedure, see page 8-28. For a description of the
ShowCur sor procedure, see page 8-30. Listing 8-1 on page 8-6 illustrates how to use the
I ni t Cur sor procedure.

InitCursorCtl

8-22

To load the resources necessary for displaying an animated cursor, use the
I nitCursorCl procedure.

PROCEDURE | nitCursorCl (newCursors: UNV acurHandl e);

newCur sor s
Ahandle to an Acur record (described on page 8-20) that specifies the
cursor resources you want to use in your animation. If you specify NI L in
this parameter, | ni t Cur sor &t | loads the animated cursor resource
(described on page 8-36) with resource ID 0—as well as the cursor
resources (described on page 8-33) specified therein—from your
application’s resource file.

Cursor Utilities Reference

DESCRIPTION

CHAPTER 8

Cursor Utilities

The | ni t Cur sor &t | procedure loads the cursor resources for an animated cursor
sequence into memory. Your application should call the | ni t Cur sor Ct | procedure
once prior to calling the Rot at eCur sor procedure (described on page 8-32) or the
Spi nCur sor procedure (described on page 8-32).

If your application passes NI L in the newCur sor s parameter, | ni t Cur sor Ct | loads
the' acur' resource with resource ID 0, as well as the' CURS' resources whose resource
IDs are specified in the ' acur' resource. If any of the resources cannot be loaded, the
cursor does not change when you call Rot at eCur sor or Spi nCur sor. Otherwise, the
Rot at eCur sor procedure and the Spi nCur sor procedure display in sequence the
cursors specified in these resources.

If your application does not pass NI L in the newCur sor s parameter, it must pass a
handle to an Acur record. Your application can use the Resource Manager function

Cet Resour ce to obtain a handle toan ' acur' resource, which your application should
then coerce to a handle of type acur Handl e when passing it to | ni t Cur sor Ct | .

If your application calls the Rot at eCur sor or Spi nCur sor procedure without
calling I ni t Cursor Ct |, Rot at eCur sor and Spi nCur sor automatically call

I ni t Cursor &t | . However, since you won’t know the state of memory, any memory
allocated by the Resource Manager for animating cursors may load into an undesirable
location, possibly causing fragmentation. Calling the | ni t Cur sor Ct| procedure
during your initialization process has the advantage of causing the memory allocation
when you can control its location. For information on using the | ni t Cur sor Ct |
procedure during your initialization process, see “Initializing the Cursor” on page 8-6.

SPECIAL CONSIDERATION

SEE ALSO

If you want to use multiple ' acur' resources repeatedly during the execution of your
application, be aware that the I ni t Cur sor Ct | procedure changes each f r ameNand
fill Ninteger pair within the Acur record in memory to a handle to the corresponding
" CURS' resource, which is also in memory. Thus, if the newCur sor s parameter is not
NI L when your application calls the | ni t Cur sor Ct | procedure, your application must
guarantee that newCur sor s always points to a fresh copy of an' acur' resource.

Listing 8-1 on page 8-6 illustrates how to initialize an animated cursor by using the

I nit Cursor &1 procedure. Listing 8-3 on page 8-15 shows how to animate the cursor
with the Rot at eCur sor procedure, and Listing 8-4 on page 8-15 shows how to animate
the cursor with the Spi nCur sor procedure.

Cursor Utilities Reference 8-23

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Changing Black-and-White Cursors

GetCursor

When you use the | ni t Cur sor procedure described on page 8-22, the cursor changes
from a wristwatch to an arrow. You can change the cursor to another shape by using
the Get Cur sor function to load another cursor into memory and then using the

Set Cur sor procedure to display it on the screen.

DESCRIPTION

SEE ALSO

8-24

You use the Get Cur sor function to load a cursor resource (described on page 8-33) into
memory. You can then display the cursor specified in this resource by calling the
Set Cur sor procedure (described in the next section).

FUNCTI ON Get Cursor (cursorlD: Integer): CursHandl e;

cursorl D The resource ID for the cursor you want to display. You can supply one of
these constants to get a handle to one of the standard cursors:

CONST
i BeanmCur sor
crossCur sor
pl usCur sor
wat chCur sor

{to select text}

{to draw graphics}

{to select cells}

{to indicate a short operation }
{ in progress}

I
el

The Get Cur sor function returns a handle to a Cur sor record (described on page 8-16)
for the cursor with the resource ID that you specify in the cur sor | D parameter. If the
resource can’t be read into memory, Get Cur sor returns NI L.

To get a handle to a color cursor, use the Get CCur sor function, which is described on
page 8-26.

Listing 8-2 on page 8-10 illustrates how to use the Get Cur sor and Set Cur sor routines
to change the cursor’s shape.

Cursor Utilities Reference

SetCursor

CHAPTER 8

Cursor Utilities

DESCRIPTION

SEE ALSO

After using the Get Cur sor function to return a handle to a cursor as described in the
preceding section, you can use the Set Cur sor procedure to make that cursor the
current cursor.

PROCEDURE Set Cursor (crsr: Cursor);

crsr A Cur sor record, as described on page 8-16.

The Set Cur sor procedure displays the cursor you specify in the cr sr parameter. If the
cursor is hidden, it remains hidden and attain its new appearance only when it's
uncovered. If the cursor is already visible, it changes to the new appearance immediately.

You need to use the | ni t Cur sor procedure (described on page 8-22) to initialize the
standard arrow cursor and make it visible on the screen before you can call Set Cur sor
to change the cursor’s appearance.

To display a color cursor, you must use the Set CCur sor procedure, which is described
on page 8-26.

Listing 8-2 on page 8-10 illustrates how to use the Get Cur sor and Set Cur sor routines
to change the cursor’s shape.

Changing Color Cursors

This section describes how to create and display color cursors on the screen. It might be
useful to display a color cursor when the user is drawing or typing in color. For example,
the insertion point could appear in the color that is being used. Except for multicolored
paintbrush cursors, the cursor shouldn’t contain more than one color at once because it’s
hard for the eye to distinguish small areas of color.

To display a color cursor, you load the cursor resource into memory using the

Get CCur sor function. Then you specify the cursor to display on the screen using

the Set CCur sor procedure. Use the Di sposeCCur sor procedure to release the
memory used by the color cursor. Although you should never need to do so (because
Color QuickDraw handles this), the Al | ocCur sor procedure reallocates cursor memory.

Cursor Utilities Reference 8-25

samnn 10SIND n

GetCCursor

CHAPTER 8

Cursor Utilities

DESCRIPTION

SEE ALSO

SetCCursor

You use the Get CCur sor function to load a color cursor resource into memory.
FUNCTI ON Get CCursor (crsriD: Integer): CCrsrHandl e;

crsriD The resource ID of the cursor that you want to display.

The Get CCur sor function creates a new CCr sr record and initializes it using the
information in the ' cr sr' resource with the specified ID. The Get CCur sor function
returns a handle to the new CCr sr record. You can then display this cursor on the screen
by calling Set CCur sor . If a resource with the specified ID isn’t found, then this function
returns a NI L handle.

Since the Get CCur sor function creates a new CCr sr record each time it is called, your
application shouldn’t call the Get CCur sor function before each call to the Set CCur sor
procedure (unlike the way Get Cur sor and Set Cur sor are normally used). The

Get CCur sor function doesn’t dispose of or detach the resource, so resources of type
"crsr' should typically be purgeable. You should call the Di sposeCCur sor procedure
(described on page 8-27) when you are finished using the color cursor created with

Get CCur sor.

For a description of the ' cr sr' resource format, see page 8-34. For a description of the
CCr sr record, see page 8-18. For a description of the Set CCur sor procedure, see the
next section.

8-26

You use the Set CCur sor procedure to specify a color cursor for display on the screen.
PROCEDURE Set CCursor (cCrsr: CCrsrHandle);

cCrsr Ahandle to the color cursor to be displayed.

Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

DESCRIPTION

The Set CCur sor procedure allows your application to set a color cursor for display
on the screen. At the time the cursor is set, it’s expanded to the current screen depth so
that it can be drawn rapidly. You must call Get CCur sor before you call Set CCur sor ;
however, you can make several subsequent calls to Set CCur sor once Get CCur sor
creates the CCr sr record.

If your application has changed the cursor’s data or its color table, it must also invalidate
the crsrXVal i d and cr sr | Dfields of the CCr sr record before calling Set CCur sor.

DisposeCCursor

You use the Di sposeCCur sor procedure to dispose of all records allocated by the
Get CCur sor function. The Di sposeCCur sor procedure is also available as the
Di sposCCur sor procedure.

PROCEDURE Di sposeCCursor (cCrsr: CCrsrHandle);

cCrsr Ahandle to the color cursor to be disposed of.

DESCRIPTION

The Di sposeCCur sor procedure disposes of memory allocated by the Get CCur sor
function. You should use Di sposeCCur sor for each call to the Get CCur sor function
(described on page 8-26).

AllocCursor

Although you typically won’t need to, you can use the Al | ocCur sor procedure to
reallocate cursor memory.

PROCEDURE Al | ocCur sor;

DESCRIPTION

Under normal circumstances, you should never need to use this procedure, since Color
QuickDraw handles reallocation of cursor memory.

Cursor Utilities Reference 8-27

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Hiding and Showing Cursors

HideCursor

You can remove the cursor image from the screen by using either the Hi deCur sor or

H de_Cur sor procedure. You can hide the cursor temporarily by using the

Qbscur eCur sor procedure, or you can hide the cursor in a given rectangle by using the
Shi el dCur sor procedure. Your application should hide the cursor when the user is
typing, for example. To display a cursor hidden by the Hi deCur sor, Hi de_Cur sor, or
Obscur eCur sor procedure, use the ShowCur sor or Show_Cur sor procedure. (When
you use Cbscur eCur sor to hide the cursor, the cursor is redisplayed automatically the
next time the user moves the mouse.)

DESCRIPTION

You can use the Hi deCur sor procedure to remove the cursor from the screen.

PROCEDURE Hi deCur sor ;

The Hi deCur sor procedure removes the cursor from the screen, restores the bits under
the cursor image, and decrements the cursor level (which | ni t Cur sor initialized to 0).
You might want to use Hi deCur sor when the user is using the keyboard to create
content in one of your application’s windows. Every call to Hi deCur sor should be
balanced by a subsequent call to the ShowCur sor procedure, which is described on
page 8-30.

Hide_Cursor

DESCRIPTION

8-28

You can use the Hi de_Cur sor procedure to hide the cursor if it is visible on the screen.
The Hi de_Cur sor procedure is functionally the same as the Hi deCur sor procedure
described in the preceding section.

PROCEDURE Hi de_Cur sor;

The H de_Cur sor procedure calls the H deCur sor procedure to remove the cursor’s
image from the screen and decrements the cursor level by 1. Every call to Hi de_Cur sor
should be balanced by a subsequent call to the Show_Cur sor procedure, which is
described on page 8-30. Before using H de_Cur sor, you must use the | ni t Cur sor Ct |
procedure, which is described on page 8-22.

Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

ObscureCursor

You use the Gbscur eCur sor procedure to hide the cursor until the next time the user
moves the mouse.

PROCEDURE (bscur eCur sor ;

DESCRIPTION
The Obscur eCur sor procedure temporarily hides the cursor; the cursor is redisplayed
the next time the user moves the mouse. Your application normally calls
Qbscur eCur sor when the user begins to type. Unlike Hi deCur sor (which is described
on page 8-28), Qbscur eCur sor has no effect on the cursor level and must not be
balanced by a call to ShowCur sor.
ShieldCursor
You can use the Shi el dCur sor procedure to hide the cursor in a rectangle.
PROCEDURE Shi el dCursor (shiel dRect: Rect; offsetPt: Point);
shi el dRect
A rectangle in which the cursor is hidden whenever the cursor intersects
the rectangle. The rectangle may be specified in global or local
coordinates. If you are using global coordinates, pass (0,0) in the
of f set Pt parameter. If you are using the local coordinates of a graphics
port, pass the coordinates for the upper-left corner of the graphics port’s
boundary rectangle in the of f set Pt parameter.
of f set Pt A point value for the offset of the rectangle. Like the basic QuickDraw
procedure Local Tod obal , the Shi el dCur sor procedure offsets the
coordinates of the rectangle by the coordinates of this point.
DESCRIPTION

If the cursor and the given rectangle intersect, Shi el dCur sor hides the cursor. If they
don’t intersect, the cursor remains visible while the mouse isn’t moving, but is hidden
when the mouse moves. This procedure may be useful when using a feature such as
QuickTime to display content in a specified rectangle. When a QuickTime movie is
animating, the cursor should not be visible in front of the movie.

The Shi el dCur sor procedure decrements the cursor level and should be balanced by a
call to the ShowCur sor procedure, which is described in the next section.

Cursor Utilities Reference 8-29

samnn 10SIND n

CHAPTER 8

Cursor Utilities

ShowCursor

DESCRIPTION

SEE ALSO

You use the ShowCur sor procedure to display a cursor hidden by the Hi deCur sor or
Shi el dCur sor procedure.

PROCEDURE ShowCur sor ;

The ShowCur sor procedure increments the cursor level, which may have been
decremented by the Hi deCur sor or Shi el dCur sor procedure, and displays the cursor
on the screen when the level is 0. A call to the ShowCur sor procedure should balance
each previous call to the Hi deCur sor or Shi el dCur sor procedure. The level isn't
incremented beyond 0, so extra calls to ShowCur sor have no effect.

Low-level interrupt-driven routines link the cursor with the mouse position, so that if
the cursor level is 0 (visible), the cursor automatically follows the mouse.

If the cursor has been changed with the Set Cur sor procedure while hidden,
ShowCur sor displays the new cursor.

For a description of the H deCur sor procedure, see page 8-28. The Shi el dCur sor
procedure is described on page 8-29, and the Set Cur sor procedure is described on
page 8-25.

Show_Cursor

8-30

You use the Show_Cur sor procedure to display the cursor on the screen if you have
used the Hi de_Cur sor procedure (described on page 8-28) to remove the cursor from
the screen.

PROCEDURE Show Cursor (cursorKind: Cursors);

cur sor Ki nd
The kind of cursor to show. To specify one of the standard cursors, you
can use one of these values defined by the Cur sor s data type.

TYPE Cursors = {val ues to pass Show Cursor}
(HI DDEN_CURSOR, {the current cursor}
| _BEAM CURSOR, {the I-beam cursor; to select text}

CROSS_CURSOR, {the crosshairs cursor; to draw }
{ graphics}

PLUS CURSOR, {the plus sign cursor; to select }
{ cells}

Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

WATCH_CURSOR, {the wistwatch cursor; to }
{ indicate a short operation in }
{ progress}

ARROW CURSCR) ; {the standard cursor}

DESCRIPTION

The Show_Cur sor procedure increments the cursor level, which may have been
decremented by the H de_Cur sor procedure, and displays the specified cursor on the
screen only if the level becomes 0 (it is never incremented beyond 0). You can specify one
of the standard cursors or the current cursor by passing one of the previously listed
values in the cur sor Ki nd parameter. If you specify one of the standard cursors, the
Show_Cur sor procedure calls the Set Cur sor procedure for the specified cursor prior
to calling ShowCur sor . If you specify H DDEN_CURSOR, this procedure just calls
ShowCur sor . Before using Show_Cur sor, you must use the | ni t Cur sor Ct |
procedure, which is described on page 8-22.

SPECIAL CONSIDERATIONS

The value ARROW CURSOR works correctly only if the basic QuickDraw global variables
have been set up by using the | ni t & af procedure, which is described in the chapter
“Basic QuickDraw” in this book.

SEE ALSO
Figure 8-3 on page 8-8 illustrates the cursors represented by the Cur sor s data type.

Displaying Animated Cursors

This section describes how to display an animated cursor using the Rot at eCur sor
procedure or the Spi nCur sor procedure. You use an animated cursor when your
application performs a medium-length operation that might cause the user to think that
the computer has quit working. The two procedures are similar, but you must maintain a
counter with the Rot at eCur sor procedure.

You need to call the | ni t Cur sor &t | procedure to load your cursor resources before
using the routines described in this section. For information about using the
I ni t Cursor Ct| procedure, see page 8-22.

Cursor Utilities Reference 8-31

samnn 10SIND n

CHAPTER 8

Cursor Utilities

RotateCursor

DESCRIPTION

SEE ALSO

SpinCursor

You can use the Rot at eCur sor procedure to display an animated cursor when your
application performs a medium-length operation that might cause the user to think that
the computer has quit working.

PROCEDURE Rot at eCursor (counter: Longlnt);

count er An incrementing or decrementing index maintained by your application.
When the index is a multiple of 32, the next cursor frame is used in the
animation. A positive counter moves forward through the cursor frames,
and a negative counter moves backward through the cursor frames.

The Rot at eCur sor procedure animates whatever sequence of cursors you set up by
using the | ni t Cur sor &t | procedure. If the value of count er is a multiple of 32, the
Rot at eCur sor procedure calls the Set Cur sor procedure to set the cursor to the

next cursor frame. Rot at eCur sor does not show the cursor if it is currently hidden. If
the cursor is hidden, you can show it by making a call to ShowCur sor or Show_Cur sor
(both described on page 8-30).

For an example of using the Rot at eCur sor procedure, see Listing 8-3 on page 8-15.

8-32

You can use the Spi nCur sor procedure to display an animated cursor when your
application performs a medium-length operation that might cause the user to think that
the computer has quit working.

PROCEDURE Spi nCursor (increnment: |nteger);
i ncrement A value that determines the sequencing direction of the cursor. A
positive increment moves forward through the cursor frames, and a

negative increment moves backward through the cursor frames. A 0 value
for the increment resets the counter to 0 and steps to the next cursor frame.

Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

DESCRIPTION

The Spi nCur sor procedure is similar to the Rot at eCur sor procedure except that,
instead of passing a counter, you pass a value that indicates which direction to spin the
cursor. Your application is responsible for determining the proper intervals at which to
call Spi nCur sor. Your application specifies the increment to be counted, either positive
or negative, and Spi nCur sor adds the increment to its counter. The sign of the
increment, not the sign of the accumulated value of the Spi nCur sor counter,
determines the cursor’s direction of spin.

SEE ALSO
For an example of using the Spi nCur sor procedure, see Listing 8-4 on page 8-15.

Resources

This section describes the cursor (' CURS') resource, the color cursor (' cr sr') resource,
and the animated cursor (' acur ') resource. Your application can use a' CURS' resource
to create a black-and-white cursor other than the standard cursorsora' crsr'

resource to create a color cursor to display on color screens. Your application can use an
"acur' resource to create an animated cursor to display when a medium-length
operation is taking place. These resource types should be marked as purgeable. See the
discussion of the pointing device in Macintosh Human Interface Guidelines for more
information on when to use different types of cursors in your application; see also the
discussion of color in the same book.

The Cursor Resource

You can use a cursor resource to define a cursor to display in your application. A cursor
resource is a resource of type ' CURS' . All cursor resources must be marked purgeable
and must have resource IDs greater than 128. You use the Get Cur sor function
(described on page 8-24) to obtain a cursor stored ina' CURS' resource. QuickDraw
reads the requested resource, copies it, and then alters the copy before passing it to your
application.

This section describes the structure of this resource after it has been compiled by the Rez
resource compiler, available from APDA. However, you typically use a high-level utility
such as the ResEdit application to create ' CURS' resources. You can then use the DeRez
decompiler to convert your ' CURS' resources into Rez input when necessary.

Cursor Utilities Reference 8-33

samnn 10SIND n

CHAPTER 8

Cursor Utilities

The compiled output format for a' CURS' resource is illustrated in Figure 8-8.

Figure 8-8 Format of a compiled cursor (' CURS') resource

' CURS' resource type Bytes

} Data } 32

Z Mask /32

Hot spot 4

The compiled version of a' CURS' resource contains the following elements:
= Data. A bitmap for the cursor.

= Mask. A bitmap for the cursor’s mask. QuickDraw uses the mask to crop the cursor’s
outline into a background color or pattern. QuickDraw then draws the cursor into this
shape.

= Hot spot. The cursor’s hot spot.

The Color Cursor Resource

8-34

You can use a color cursor resource to define a colored cursor to display in your
application. A color cursor resource is a resource of type ' crsr' . All color cursor
resources must be marked purgeable and must have resource IDs greater than 128. You
use the Get CCur sor function (described on page 8-26) to obtain a color cursor stored in
a'crsr' resource. Color QuickDraw reads the requested resource, copies it, and then
alters the copy before passing it to the application. Each time you call Get CCur sor, you
get a new copy of the cursor. This means that you should call Get CCur sor only once for
a color cursor, even if you call the Set CCur sor procedure many times.

This section describes the structure of this resource after it has been compiled by the Rez
resource compiler, available from APDA. However, you typically use a high-level utility
such as the ResEdit application to create ' cr sr' resources. You can then use the DeRez
decompiler to convert your ' cr sr' resources into Rez input when necessary.

The compiled output format fora' crsr' resource is illustrated in Figure 8-9.

Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

Figure 8-9 Format of a compiled color cursor (' cr sr') resource
‘crsr' resource type Bytes
Type of cursor 2
Offset to pixel map 4
Offset to pixel data 4
@]
c
g
Expanded cursor data 4 E
Expanded data depth 2 é'
Reserved 4
Z 1-bit cursor data / 32
Z Cursor mask / 32
Hot spot 4
Table ID 4
Cursor ID 4
Z Pixel map for cursor /Variable
Z Bounds / 26
Z Pixel size / 18
Z Pixel data /Variable
{ Color table {Variable

Cursor Utilities Reference 8-35

CHAPTER 8

Cursor Utilities

The compiled version of a' crsr' resource contains the following elements:

= Type of cursor. A value of $8001 identifies this as a color cursor. A value of $8000
identifies this as a black-and-white cursor.

= Offset to Pi xMap record. This offset is from the beginning of the resource data.
= Offset to pixel data. This offset is from the beginning of the resource data.

= Expanded cursor data. This expanded pixel image is used internally by Color
QuickDraw.

= Expanded data depth. This is the pixel depth of the expanded cursor image.
= Reserved. The Resource Manager uses this element for storage.

= Cursor data. This field contains a 16-by-16 pixel 1-bit image to be displayed when
the cursor is on 1-bit or 2-bit screens.

= Cursor mask. A bitmap for the cursor’s mask. QuickDraw uses the mask to crop
the cursor’s outline into a background color or pattern. QuickDraw then draws the
cursor into this shape.

= Hot spot. The cursor’s hot spot.

= Table ID. This contains an offset to the color table data from the beginning of the
resource data.

s Cursor ID. This contains the cursor’s resource ID.

= Pixel map. This pixel map describes the image when drawing the color cursor.
The pixel map contains an offset to the color table data from the beginning of the
resource.

= Bounds. The boundary rectangle of the cursor.
= Pixel size. The number of pixels per bit in the cursor.
» Pixel data. The data for the cursor.

= Color table. A color table containing the color information for the cursor’s pixel map.

The Animated Cursor Resource

You can use an animated cursor resource to define a set of frames for an animated cursor
to display in your application. An animated cursor resource is a resource of type' acur' .

If you pass NI L to I ni t Cur sor Ct | (described on page 8-22), it automatically loads the
"acur' resource that has an ID of 0 in your application’s resource file. If you wish to use
multiple ' acur' resources, you must give them resources IDs greater than 128, and you
must use the Resource Manager function Get Resour ce to obtain handles to them.

You must then coerce their handles to type acur Handl e, which you pass to

I nitCursorCtl.Youuse the Spi nCur sor or Rot at eCur sor procedure to animate
the cursors stored inan ' acur' resource.

8-36 Cursor Utilities Reference

CHAPTER 8

Cursor Utilities

This section describes the structure of this resource after it has been compiled by the Rez
resource compiler, available from APDA. However, you typically use a high-level tool
such as the ResEdit application to create ' acur' resources. You can then use the DeRez

decompiler to convert your ' acur’

The compiled output format for an' acur' resource is illustrated in Figure 8-10.

resources into Rez input when necessary.

Figure 8-10 Format of a compiled animated cursor (' acur ') resource

"acur' resource type

Bytes

Number of cursors

2

Next frame to show

Resource ID for first frame

Reserved

Resource ID for last frame

Reserved

The compiled version of an ' acur’

resource contains the following elements:

s Number of cursors. The number of frames used to animate the cursor.

= Next frame to show. Reserved.

= Resource ID of the cursor resource that defines the first frame of the animation.

= Reserved.

= Resource ID of the cursor resource that defines the last frame of the animation.

= Reserved.

Cursor Utilities Reference

8-37

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Summary of Cursor Utilities

Pascal Summary

Constants

CONST
i BeamCursor = 1; {used in text editing}
crossCursor = 2; {often used for manipul ating graphi cs}
plusCursor = 3; {often used for selecting fields in an array}
wat chCursor = 4; {used to nmean a short operation is in progress}

Data Types

TYPE Bitsl6 = ARRAY[O0..15] OF Integer;

CursPtr = ~Cursor;
Cur sHandl e = ~CursPtr;

Cursor =
RECORD

dat a: Bitsl16; {cursor inage}

mask: Bitsl16; {cursor mask}

hot Spot: Poi nt; {point aligned with nouse}
END;

CCrsrbPtr = ~"CCrsr;
CCrsrHandl e = *"CCrsrbtr;

CCrsr =
RECORD
crsrType: I nt eger; {type of cursor}
crsrMap: Pi xMapHandl e; {the cursor's PixMap record}
crsrDat a: Handl e; {cursor's data}
crsrXData: Handl e; {expanded cursor data}
crsrXvalid: Integer; {depth of expanded data (O if none)}
cr sr XHandl e: Handl e; {future use}

8-38 Summary of Cursor Utilities

CHAPTER 8

Cursor Utilities

crsrlDat a: Bi t s16; {1-bit cursor}
crsr Mask: Bi t s16; {cursor's nask}
crsrHot Spot: Poi nt; {cursor's hot spot}
crsrXTable: Longlnt; {privat e}
crsrlD: Longl nt ; {ct Seed for expanded cursor}
END;
Cursors = {val ues to pass to Show Cursor}

(HI DDEN_CURSOR, {the current cursor}
| _BEAM CURSOR, {the |I-beam cursor; to select text}

CROSS_CURSOR, {the crosshairs cursor; to draw graphics}
PLUS CURSOR, {the plus sign cursor; to select cells}
WATCH_CURSOR, {the wistwatch cursor; to indicate a }

{ short operation in progress}
ARROW CURSCR) ; {the standard cursor}

acurbPtr = ~Acur;
acur Handl e = “acurPtr;

Acur =

RECORD
n: I nt eger; {nunber of cursors ("franes")}
i ndex: I nt eger; {reserved}
framel: |Integer; {'"CURS resource ID for frane #1}
filll: I nt eger; {reserved}
frane2: Integer; {'CURS' resource ID for frane #2}
fill2: I nt eger; {reserved}
frameN: Integer; {'CURS' resource ID for frame #N
fillN I nt eger; {reserved}

END;

Routines

Initializing Cursors

PROCEDURE | ni t Cur sor
PROCEDURE | ni t Cur sor Ct | (newCursors: UNV acur Handl e);

Changing Black-and-White Cursors

FUNCTI ON Cet Cur sor (cursorl D Integer): CursHandl e;
PROCEDURE Set Cur sor (crsr: Cursor);

Summary of Cursor Utilities

8-39

samnn 10SIND n

CHAPTER 8

Cursor Utilities

Changing Color Cursors

{Di sposeCCursor is also spe
FUNCTI ON Get CCur sor
PROCEDURE Set CCur sor
PROCEDURE Di sposeCCur sor
PROCEDURE Al | ocCur sor;

Hiding and Showing Cursors

PROCEDURE Hi deCur sor ;
PROCEDURE Hi de_Cur sor;
PROCEDURE (bscur eCur sor ;
PROCEDURE Shi el dCur sor
PROCEDURE ShowCur sor ;
PROCEDURE Show_Cur sor

Displaying Animated Cursors

PROCEDURE Rot at eCur sor
PROCEDURE Spi nCur sor

Il ed as D sposCCursor}
(cursorl D Integer): CCursHandl e;
(cCrsr: CCrsrHandl e);
(cCrsr: CCrsrHandle);

(shiel dRect: Rect; offsetPt: Point);

(cursorKind: Cursors);

(counter: Longlnt);
(increnment: Integer);

C Summary
Constants
enum {
i BeamCursor = 1, /* used in text editing */
crossCursor = 2, /* often used for manipul ati ng graphics */
pl usCursor = 3, /* often used for selecting fields in an array */
wat chCursor = 4 /* used to nean a short operation is in progress */
1
enum { /* values to pass to Show Cursor */
HI DDEN_CURSOR, /* the current cursor */
| BEAM CURSOR, /* the |-beamcursor; to select tect */
CROSS_CURSOR, /* the crosshairs cursor; to draw graphics */
PLUS CURSOR, /* the plus sign cursor; to select cells */

8-40 Summary of Cursor Utili

ties

CHAPTER 8

Cursor Utilities

WATCH_CURSCR,

/* the wistwatch cursor

to indicate a short

operation in progress */

ARROW CURSOR /* the standard cursor */
1
t ypedef unsigned char Cursors;
Data Types
t ypedef short Bits16[16];
struct Cursor {
Bitsl6 dat a; /* cursor image */
Bitsl6 mask; /* cursor mask */
Poi nt hot Spot; /* point aligned with nouse */

1
t ypedef struct Cursor Cursor
t ypedef Cursor *CursPtr

struct CCrsr {

short crsrType;

Pi xMapHandl e crsrMap
Handl e crsrDat a;
Handl e crsr XDat a;
short crsrXvalid,
Handl e crsr XHandl e;
Bitsl6 crsriDat a;
Bitsl6 crsrMask;
Poi nt crsr Hot Spot ;
| ong crsrXTabl e;
| ong crsriD

1
typedef struct CCrsr CCrsr;
typedef CCrsr *CCrsrPtr

struct Acur {

short n; /*
short i ndex; /*
short franmel; /* 'CURS
short filll; /*
short frame2; /* 'CURS

Summary of Cursor Utilities

**Cur sHandl e;

/* type of cursor */

/* the cursor's PixMap record */
/* cursor's data */

/* expanded cursor data */

/* depth of expanded data (0 if none)
/* future use */

/* 1-bit cursor */

/* cursor's mask */

/* cursor's hot spot */

/* private */

/* ctSeed for expanded cursor */

** CCr sr Handl e;

nunber of cursors ("franes of filn) */
reserved */

resource ID for frane #1 */

reserved */

resource |D for frane #2 */

*/

8-41

samnn 10SIND n

CHAPTER 8

Cursor Utilities

short fill2; /* reserved */
short frameN, /* 'CURS resource ID for frane #N */
short fillN; /* reserved */

}s

typedef struct Acur acur, *acurPtr, **acur Handl e;

Functions

Initializing Cursors

pascal void InitCursor (void);
pascal void InitCursorCl (acur Handl e newCursors);

Changing Black-and-White Cursors

pascal CursHandl e Get Cursor (short cursorlD);
pascal void Set Cursor (const Cursor *crsr);

Changing Color Cursors
/* Di sposeCCursor is also spelled as D sposCCursor */
pascal CCrsrHandl e Get CCursor

(short crsriD);
pascal void Set CCursor (CCrsrHandl e cCrsr);
pascal void Di sposeCCursor (CCrsrHandle cCrsr);
pascal void All ocCursor (void);

Hiding and Showing Cursors

pascal void Hi deCursor (void);

pascal void Hi de_Cursor (void);

pascal void CbscureCursor (voi d);

pascal void Shiel dCursor (const Rect *shieldRect, Point offsetPt);
pascal void ShowCursor (void);

pascal void Show Cursor (Cursors cursorKind);

8-42 Summary of Cursor Utilities

CHAPTER 8

Cursor Utilities

Displaying Animated Cursors

pascal void RotateCursor (long counter);
pascal void SpinCursor (short increment);

Assembly-Language Summary

Data Structures

Cursor Data Structure

0 dat a 32 bytes cursor image
32 mask 32 bytes cursor mask
64 hot Spot long point aligned with mouse

Color Cursor Data Structure

0 crsrType word type of cursor
2 crsrap long the cursor’s Pi xMap record
6 crsrbData long cursor’s data
10 crsr XDat a long expanded cursor data
14 crsrXxvalid word depth of expanded data (0 if none)
16 crsrXHandl e long handle for future use
20 crsrilbData 16 words 1-bit data
52 crsrMask 16 words 1-bit mask
84 cr sr Hot Spot long hot spot for cursor
88 crsr XTabl e long table ID for expanded data
92 crsriD long ID for cursor
96 crsrRec long size of cursor save area

Global Variables

arrow The standard arrow cursor.

Summary of Cursor Utilities

8-43

samnn 10SIND n

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to QuickDraw TOC
	 Introduction to QuickDraw
	 Basic QuickDraw TOC
	 Basic QuickDraw
	 QuickDraw Drawing TOC
	 QuickDraw Drawing
	 Color QuickDraw TOC
	 Color QuickDraw
	 Graphics Devices TOC
	 Graphics Devices
	 Offscreen Graphics Worlds TOC
	 Offscreen Graphics Worlds
	 Pictures TOC
	 Pictures
	 Cursor Utilities TOC
	Cursor Utilities
	About the Cursor
	Using the Cursor Utilities
	Initializing the Cursor
	Changing the Appearance of the Cursor
	Creating an Animated Cursor

	Cursor Utilities Reference
	Data Structures
	Routines
	Initializing Cursors
	Changing Black-and-White Cursors
	Changing Color Cursors
	Hiding and Showing Cursors
	Displaying Animated Cursors

	Resources
	The Cursor Resource
	The Color Cursor Resource
	The Animated Cursor Resource

	Summary of Cursor Utilities
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Functions

	Assembly-Language Summary
	Data Structures
	Global Variables

	 Printing Manager TOC
	 Printing Manager
	 Appendix Opener
	 Appendix A (Picture Opcodes) TOC
	 Appendix A (Picture Opcodes)
	 Appendix B (Using Picture Comments for Printing) TOC
	 Appendix B (Using Picture Comments for Printing)
	 Glossary
	 Index
	 Colophon

