

I N S I D E M A C I N T O S H

Macintosh Toolbox Essentials

Apple Computer, Inc.
© 1992 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleShare, AppleTalk, A/UX,
EtherTalk, LaserWriter, Macintosh,
MPW, and MultiFinder and are
trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.
Apple Desktop Bus, Balloon Help,
BalloonWriter, Chicago, Finder, Geneva,
KanjiTalk, Monaco, New York,
QuickDraw, QuickTime, ResEdit,
System 7, and TrueType are trademarks
of Apple Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
AGFA is a trademark of Agfa-Gevaert.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica, Palatino, and Times are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

iii

Contents

Figures, Tables, and Listings xv

Preface

About This Book

xxv

Format of a Typical Chapter xxvi
Conventions Used in This Book xxvi

Special Fonts xxvii
Types of Notes xxvii
Empty Strings xxvii
Assembly-Language Information xxvii

The Development Environment xxviii

Chapter 1

Introduction to the Macintosh Toolbox

1-1

Overview of the Macintosh Toolbox 1-4
Events 1-5
Menus 1-6
Windows 1-6
Controls 1-7
Alert Boxes and Dialog Boxes 1-8
Icons and Other Interactions With the Finder 1-10
Resources 1-11
Help Balloons 1-14
Copy and Paste 1-14

Related System Software Features 1-14
Drawing on the Screen 1-14
Handling Text 1-14
Managing Files 1-15
Allocating Memory and Launching Processes 1-15
Creating Publishers and Subscribers 1-15
Communicating With Other Applications 1-16

Designing Your Application 1-16

Chapter 2

Event Manager

2-1

Introduction to Events 2-4
Low-Level Events 2-8
Operating-System Events 2-10
High-Level Events 2-13
Priority of Events 2-15
Switching Contexts 2-15

iv

About the Event Manager 2-16
Using the Event Manager 2-17

Obtaining Information About Events 2-18
Processing Events 2-21

Using the WaitNextEvent Function 2-22
Writing an Event Loop 2-24
Setting the Event Mask 2-26
Handling Events in a Dialog Box 2-29

Creating a Size Resource 2-30
Handling Low-Level Events 2-32

Responding to Mouse Events 2-33
Responding to Keyboard Events 2-38
Scanning for a Cancel Event 2-46
Responding to Update Events 2-47
Responding to Activate Events 2-50
Responding to Disk-Inserted Events 2-55
Responding to Null Events 2-57

Handling Operating-System Events 2-58
Responding to Suspend and Resume Events 2-60
Responding to Mouse-Moved Events 2-62

Handling High-Level Events 2-67
Responding to Events From Other Applications 2-69
Searching for a Specific High-Level Event 2-71
Determining the Sender of a High-Level Event 2-72
Sending High-Level Events 2-73
Requesting Return Receipts 2-77
Handling Apple Events 2-78

Event Manager Reference 2-78
Data Structures 2-78

The Event Record 2-79
The Target ID Record 2-81
The High-Level Event Message Record 2-82
The Event Queue 2-83

Event Manager Routines 2-84
Receiving Events 2-84
Sending Events 2-100
Converting Process Serial Numbers and Port Names 2-105
Reading the Mouse 2-108
Reading the Keyboard 2-110
Getting Timing Information 2-112

Application-Defined Routine 2-114
Filter Function for Searching the High-Level Event Queue 2-114

Resource 2-115
The Size Resource 2-115

Summary of the Event Manager 2-120
Pascal Summary 2-120

Constants 2-120

v

Data Types 2-122
Event Manager Routines 2-123
Application-Defined Routine 2-124

C Summary 2-125
Constants 2-125
Data Types 2-127
Event Manager Routines 2-128
Application-Defined Routine 2-129

Assembly-Language Summary 2-130
Data Structures 2-130
Trap Macros 2-130
Global Variables 2-131

Result Codes 2-132

Chapter 3

Menu Manager

3-1

Introduction to Menus 3-5
Menu and Menu Bar Definition Routines 3-9
The Menu Bar 3-9
Menus 3-10

Menu Items 3-11
Groups of Menu Items 3-14
Keyboard Equivalents for Menu Commands 3-16
Menus Added Automatically by the Menu Manager 3-19
The Apple Menu 3-20
The File Menu 3-22
The Edit Menu 3-24
The Font Menu 3-26
The Size Menu 3-27
The Help Menu 3-29
The Keyboard Menu 3-32
The Application Menu 3-33
Pop-Up Menus 3-33
Hierarchical Menus 3-38

About the Menu Manager 3-39
How the Menu Manager Maintains Information About Menus 3-40
How the Menu Manager Maintains Information About an Application’s

Menu Bar 3-40
Using the Menu Manager 3-41

Creating a Menu 3-42
Creating a Menu Resource 3-43
Creating a Menu Bar Resource 3-49
Setting Up Your Application’s Menu Bar 3-50

Creating a Hierarchical Menu 3-53
Creating a Pop-Up Menu 3-56

vi

Changing the Appearance of Items in a Menu 3-57
Enabling and Disabling Menu Items 3-58
Changing the Text of an Item 3-59
Changing the Font Style of Menu Items 3-60
Changing the Mark of Menu Items 3-61
Changing the Icon or Script Code of Menu Items 3-62

Adding Items to a Menu 3-64
Adding Items to the Help Menu 3-67
Adding Items to the Apple Menu 3-68
Adding Fonts to a Menu 3-69

Handling User Choice of a Menu Command 3-70
Handling Mouse-Down Events in the Menu Bar 3-72
Adjusting the Menus of an Application 3-73
Determining if the User Chose a Keyboard Equivalent 3-77

Responding When the User Chooses a Menu Item 3-78
Handling the Apple Menu 3-80
Handling the Help Menu 3-81
Handling a Size Menu 3-82

Accessing Menus From a Dialog Box 3-84
Writing Your Own Menu Definition Procedure 3-87

Calculating the Dimensions of a Menu 3-89
Drawing Menu Items in a Menu 3-90
Determining Whether the Cursor Is in an Enabled Menu Item 3-92

Menu Manager Reference 3-95
Data Structures 3-95

The Menu Record 3-95
The Menu List 3-97
The Menu Color Information Table Record 3-98

Menu Manager Routines 3-102
Initializing the Menu Manager 3-103
Creating Menus 3-105
Adding Menus to and Removing Menus From the Current

Menu List 3-108
Getting a Menu Bar Description From an 'MBAR' Resource 3-110
Getting and Setting the Menu Bar 3-112
Drawing the Menu Bar 3-113
Responding to the User’s Choice of a Menu Command 3-114
Getting a Handle to a Menu Record 3-122
Adding and Deleting Menu Items 3-124
Getting and Setting the Appearance of Menu Items 3-130
Disposing of Menus 3-140
Counting the Items in a Menu 3-140
Highlighting the Menu Bar 3-141
Recalculating Menu Dimensions 3-142
Managing Entries in the Menu Color Information Table 3-143

Application-Defined Routine 3-148
The Menu Definition Procedure 3-148

vii

Resources 3-151
The Menu Resource 3-151
The Menu Bar Resource 3-155
The Menu Color Information Table Resource 3-155
The Menu Definition Procedure Resource 3-157

Summary of the Menu Manager 3-158
Pascal Summary 3-158

Constants 3-158
Data Types 3-158
Menu Manager Routines 3-159
Application-Defined Routine 3-162

C Summary 3-162
Constants 3-162
Data Types 3-163
Menu Manager Routines 3-164
Application-Defined Routine 3-166

Assembly-Language Summary 3-167
Data Structures 3-167
Global Variables 3-167

Result Codes 3-167

Chapter 4

Window Manager

4-1

Introduction to Windows 4-4
Active and Inactive Windows 4-6
Types of Windows 4-8
Window Regions 4-12
Dialog Boxes and Alert Boxes 4-13
Controls 4-14
Windows on the Desktop 4-15

About the Window Manager 4-16
Graphics Ports 4-17
Window Records 4-19
Color Windows 4-20
Events in Windows 4-21

Using the Window Manager 4-22
Managing Multiple Windows 4-23
Creating a Window 4-25

Defining a Window Resource 4-25
Creating a Window From a Resource 4-27
Positioning a Document Window on the Desktop 4-30

Drawing the Window Contents 4-39
Updating the Content Region 4-40
Maintaining the Update Region 4-41
Handling Events in Windows 4-41

Handling Mouse Events in Windows 4-42

viii

Handling Keyboard Events in Windows 4-47
Handling Update Events 4-48
Handling Activate Events 4-50

Moving a Window 4-53
Zooming a Window 4-53
Resizing a Window 4-57
Closing a Window 4-60
Hiding and Showing a Window 4-62

Window Manager Reference 4-64
Window Manager Reference 4-65

Data Structures 4-65
The Color Window Record 4-65
The Window Record 4-69
The Window State Data Record 4-70
The Window Color Table Record 4-71
The Auxiliary Window Record 4-73
The Window List 4-74

Window Manager Routines 4-74
Initializing the Window Manager 4-74
Creating Windows 4-75
Naming Windows 4-85
Displaying Windows 4-86
Retrieving Window Information 4-91
Moving Windows 4-94
Resizing Windows 4-99
Zooming Windows 4-101
Closing and Deallocating Windows 4-103
Maintaining the Update Region 4-106
Setting and Retrieving Other Window Characteristics 4-109
Manipulating the Desktop 4-112
Manipulating Window Color Information 4-114
Low-Level Routines 4-116

Application-Defined Routine 4-120
The Window Definition Function 4-120

Resources 4-124
The Window Resource 4-124
The Window Definition Function Resource 4-127
The Window Color Table Resource 4-127

Summary of the Window Manager 4-130
Pascal Summary 4-130

Constants 4-130
Data Types 4-132
Window Manager Routines 4-134
Application-Defined Routine 4-136

C Summary 4-137
Constants 4-137
Data Types 4-139

ix

Window Manager Routines 4-140
Application-Defined Routine 4-143

Assembly-Language Summary 4-144
Data Types 4-144
Global Variables 4-145

Chapter 5

Control Manager

5-1

Introduction to Controls 5-4
Buttons 5-5
Checkboxes 5-5
Radio Buttons 5-6
Pop-Up Menus 5-6
Scroll Bars 5-7
Other Controls 5-11
Active and Inactive Controls 5-11
The Control Definition Function 5-14

About the Control Manager 5-14
Using the Control Manager 5-15

Creating and Displaying a Control 5-15
Creating a Button, Checkbox, or Radio Button 5-17
Creating Scroll Bars 5-21
Creating a Pop-Up Menu 5-25
Updating a Control 5-29

Responding to Mouse Events in a Control 5-30
Determining a Mouse-Down Event in a Control 5-31
Tracking the Cursor in a Control 5-35

Determining and Changing Control Settings 5-37
Scrolling Through a Document 5-43

Scrolling in Response to Events in the Scroll Box 5-53
Scrolling in Response to Events in Scroll Arrows and Gray Areas 5-57
Drawing a Scrolled Document Inside a Window 5-62

Moving and Resizing Scroll Bars 5-65
Defining Your Own Control Definition Function 5-71

Control Manager Reference 5-72
Data Structures 5-72

Control Manager Reference 5-73
The Control Record 5-73
The Auxiliary Control Record 5-76
The Pop-Up Menu Private Data Record 5-77
The Control Color Table Record 5-77

Control Manager Routines 5-80
Creating Controls 5-81
Drawing Controls 5-85
Handling Mouse Events in Controls 5-88
Changing Control Settings and Display 5-93
Determining Control Values 5-102
Removing Controls 5-108

x

Application-Defined Routines 5-109
Defining Your Own Control Definition Function 5-109
Defining Your Own Action Procedures 5-115

Resources 5-117
The Control Resource 5-118
The Control Color Table Resource 5-121
The Control Definition Function 5-123

Summary of the Control Manager 5-124
Pascal Summary 5-124

Constants 5-124
Data Types 5-126
Control Manager Routines 5-127
Application-Defined Routines 5-129

C Summary 5-129
Constants 5-129
Data Types 5-131
Control Manager Routines 5-132
Application-Defined Routines 5-134

Assembly-Language Summary 5-134
Data Structures 5-134
Global Variables 5-135

Chapter 6

Dialog Manager

6-1

Introduction to Alerts and Dialog Boxes 6-6
Types of Alerts 6-8
Types of Dialog Boxes 6-9

Modal Dialog Boxes 6-10
Movable Modal Dialog Boxes 6-11
Modeless Dialog Boxes 6-12

Items in Alert and Dialog Boxes 6-13
Events in Alert and Dialog Boxes 6-14
Alert Boxes, Dialog Boxes, and the Window Manager 6-15
About the Dialog Manager 6-16

Using the Dialog Manager 6-17
Creating Alert Sounds and Alert Boxes 6-18
Creating Dialog Boxes 6-23
Providing Items for Alert and Dialog Boxes 6-26

Item Types 6-30
Display Rectangles 6-32
Enabled and Disabled Items 6-36
Resource IDs for Items 6-36
Titles for Buttons, Checkboxes, and Radio Buttons 6-37
Text Strings for Static Text and Editable Text Items 6-40
Pop-Up Menus as Items 6-42
Keyboard Navigation Among Items 6-44

xi

Manipulating Items 6-44
Changing Static Text 6-46
Getting Text From Editable Text Items 6-48
Adding Items to an Existing Dialog Box 6-51

Using an Application-Defined Item to Draw the Bold Outline
for a Default Button 6-56

Using the Dialog Manager 6-61
Using the Dialog Manager 6-61

Displaying Alert and Dialog Boxes 6-61
Positioning Alert and Dialog Boxes 6-62
Deactivating Windows Behind Alert and Modal Dialog Boxes 6-64
Displaying Modeless Dialog Boxes 6-66
Adjusting Menus for Modal Dialog Boxes 6-68
Adjusting Menus for Movable Modal and Modeless Dialog Boxes 6-73
Displaying Multiple Alert and Dialog Boxes 6-74
Displaying Alert and Dialog Boxes From the Background 6-74
Including Color in Your Alert and Dialog Boxes 6-75

Handling Events in Alert and Dialog Boxes 6-77
Responding to Events in Controls 6-78
Responding to Events in Editable Text Items 6-79
Responding to Events in Alert Boxes 6-81
Responding to Events in Modal Dialog Boxes 6-82
Writing an Event Filter Function for Alert and Modal

Dialog Boxes 6-86
Responding to Mouse Events in Modeless and

Movable Modal Dialog Boxes 6-89
Responding to Keyboard Events in Modeless and

Movable Modal Dialog Boxes 6-94
Responding to Activate and Update Events in Modeless and Movable

Modal Dialog Boxes 6-97
Closing Dialog Boxes 6-100

Dialog Manager Reference 6-101
Data Structure 6-101

The Dialog Record 6-101
Dialog Manager Routines 6-102

Initializing the Dialog Manager 6-103
Creating Alerts 6-105
Creating and Disposing of Dialog Boxes 6-113
Manipulating Items in Alert and Dialog Boxes 6-120
Handling Text in Alert and Dialog Boxes 6-129
Handling Events in Dialog Boxes 6-135

Application-Defined Routines 6-143
Resources 6-147

The Dialog Resource 6-148
The Alert Resource 6-150
The Item List Resource 6-151
The Dialog Color Table Resource 6-156
The Alert Color Table Resource 6-157
The Item Color Table Resource 6-158

xii

Summary of the Dialog Manager 6-165
Pascal Summary 6-165

Constants 6-165
Data Types 6-166
Dialog Manager Routines 6-166
Application-Defined Routines 6-168

C Summary 6-168
Constants 6-168
Data Types 6-169
Dialog Manager Routines 6-170
Application-Defined Routines 6-172

Assembly-Language Summary 6-172
Data Structures 6-172
Global Variables 6-172

Chapter 7

Finder Interface

7-1

Introduction to the Finder Interface 7-3
About the Finder Interface 7-6
Using the Finder Interface 7-6

Giving a Signature to Your Application and a Creator and a
File Type to Your Documents 7-8

Creating Icons for the Finder 7-11
Creating Customized Document Icons 7-17
Creating File Reference Resources 7-18
Creating a Bundle Resource 7-20
How and When the Finder Launches Your Application 7-25
Displaying Messages When the Finder Can’t Find

Your Application 7-27
Providing Version Resources 7-31
Using Finder Information in the Catalog File 7-32
Supporting Stationery Pads 7-34
Distributing Fonts, Sounds, and Other Movable Resources 7-36
Providing Balloon Help for Nondocument Icons 7-38
Using Aliases 7-39
Using the System Folder and Its Related Directories 7-41
The Desktop Database 7-45

Finder Interface Reference 7-46
Data Structures 7-46

File Information Record 7-47
Extended File Information Record 7-49
Directory Information Record 7-50
Extended Directory Information Record 7-50

Routines 7-51
Resolving Alias Files 7-51
Finding Directories 7-53

xiii

Resources 7-56
The Signature Resource 7-57
The Icon List Resource 7-57
The Small Icon List Resource 7-58
The Large 4-Bit Color Icon Resource 7-59
The Small 4-Bit Color Icon Resource 7-60
The Large 8-Bit Color Icon Resource 7-61
The Small 8-Bit Color Icon Resource 7-62
The Icon Resource 7-63
The Color Icon Resource 7-64
The File Reference Resource 7-64
The Bundle Resource 7-65
The Missing-Application Name String 7-68
The Application-Missing Message String 7-68
The Version Resource 7-69

Summary of the Finder Interface 7-71
Pascal Summary 7-71

Constants 7-71
Data Types 7-73
Routines 7-74

C Summary 7-74
Constants 7-74
Data Types 7-76
Routines 7-77

Assembly-Language Summary 7-77

Data Structures 7-77
Result Codes 7-78

Glossary

GL-1

Index

IN-1

xv

Figures, Tables, and Listings

Chapter 1

Introduction to the Macintosh Toolbox

1-1

Figure 1-1

The SurfWriter application with multiple windows on
the desktop 1-3

Figure 1-2

A typical window 1-6

Figure 1-3

Common controls 1-7

Figure 1-4

An alert box 1-8

Figure 1-5

Modal, movable modal, and modeless dialog boxes 1-9

Chapter 2

Event Manager

2-1

Figure 2-1

Sources of events sent to your application 2-6

Figure 2-2

Low-level events 2-10

Figure 2-3

Operating-system events 2-11

Figure 2-4

High-level events 2-14

Figure 2-5

The

modifiers

 field of the event record 2-20

Figure 2-6

The event mask 2-27

Figure 2-7

The

message

 field of the event record for keyboard
events 2-40

Figure 2-8

Keyboard translation 2-41

Figure 2-9

Virtual key codes for the Apple Keyboard II, ISO layout 2-42

Figure 2-10

Virtual key codes for the Apple Extended Keyboard II 2-43

Figure 2-11

Responding to an update event for a window 2-49

Figure 2-12

Responding to activate events for a window 2-52

Figure 2-13

The standard arrow cursor 2-63

Figure 2-14

The I-beam, crosshairs, plus sign, and wristwatch cursors 2-63

Figure 2-15

The arrow region and the I-beam region 2-64

Figure 2-16

Changing the cursor from the I-beam cursor to the arrow
cursor 2-65

Figure 2-17

Structure of the

KeyTranslate

 function result 2-111

Listing 2-1

Using the

WaitNextEvent

 function 2-23

Listing 2-2

An event loop 2-24

Listing 2-3

Processing events 2-26

Listing 2-4

The Rez input for a sample

'SIZE'

 resource 2-31

Listing 2-5

Handling mouse-down events 2-34

Listing 2-6

Handling key-down and auto-key events 2-44

Listing 2-7

Handling key-down events 2-44

Listing 2-8

Scanning for a Command-period event 2-46

xvi

Listing 2-9

Responding to update events 2-50

Listing 2-10

Responding to activate events 2-53

Listing 2-11

Responding to disk-inserted events 2-56

Listing 2-12

Handling null events 2-57

Listing 2-13

Responding to operating-system events 2-59

Listing 2-14

Responding to suspend and resume events 2-61

Listing 2-15

Changing the cursor 2-65

Listing 2-16

Accepting a high-level event 2-70

Listing 2-17

Posting a high-level event by application signature 2-74

Listing 2-18

Using the

PPCBrowser

 function to post a high-level event 2-76

Listing 2-19

A Rez template for a

'SIZE'

 resource 2-116

Chapter 3

Menu Manager

3-1

Figure 3-1

A pull-down menu, a submenu, and a pop-up menu 3-6

Figure 3-2

The SurfWriter application’s menu bar with the Edit
menu displayed 3-7

Figure 3-3

The menu bar of the SurfWriter application 3-10

Figure 3-4

The SurfWriter application’s menu bar localized for another
script system 3-10

Figure 3-5

Two menus with various characteristics 3-13

Figure 3-6

Menu items in a mutually exclusive group 3-14

Figure 3-7

Menu items in an accumulating group 3-15

Figure 3-8

Use of a checkmark and dash in an accumulating group 3-15

Figure 3-9

The Apple menu for the SurfWriter application 3-21

Figure 3-10

Choosing the About command of the SurfWriter
application 3-22

Figure 3-11

The standard File menu for an application 3-22

Figure 3-12

The standard Edit menu for an application 3-24

Figure 3-13

A typical Font menu 3-26

Figure 3-14

A Font menu showing a selection containing more than
one font 3-27

Figure 3-15

A typical Size menu 3-28

Figure 3-16

A dialog box to select a new point size for a font 3-28

Figure 3-17

Entering a new point size for a font 3-29

Figure 3-18

The Other command with a font size added to it 3-29

Figure 3-19

The Help menu of the SurfWriter application 3-30

Figure 3-20

Default help balloons for the Apple menu and
Application menu 3-31

Figure 3-21

Help balloons for different states of the Cut command 3-31

Figure 3-22

Accessing the Keyboard menu from an application 3-32

Figure 3-23

SurfWriter’s Application menu 3-33

Figure 3-24

A pop-up menu 3-34

Figure 3-25

A pop-up menu in its closed and open states 3-34

Figure 3-26

Making a selection from a pop-up menu 3-35

Figure 3-27

Choosing one attribute from a list of many 3-36

Figure 3-28

A dialog box with checkboxes and pop-up menus 3-37

Figure 3-29

A type-in pop-up menu in its closed and open states 3-37

Figure 3-30

A type-in pop-up menu with a user’s choice added 3-38

Figure 3-31

A hierarchical menu item and its submenu 3-39

Figure 3-32

A menu item with a submenu 3-53

xvii

Figure 3-33

A pop-up menu in a dialog box 3-56

Figure 3-34

Icons in menu items 3-63

Figure 3-35

A Size menu with user-specified size added 3-82

Figure 3-36

Menu access from a modal dialog box 3-85

Figure 3-37

Structure of a compiled menu (

'MENU'

) resource 3-152

Figure 3-38

The variable-length data that describes menu items as defined by
the standard menu definition procedure 3-153

Figure 3-39

Structure of a compiled menu bar (

'MBAR'

) resource 3-155

Figure 3-40

Structure of a compiled menu color information table

(

'mctb'

) resource 3-156

Figure 3-41

Structure of a menu color entry in an

'mctb'

 resource 3-157

Table 3-1

Reserved keyboard equivalents for all systems 3-18

Table 3-2

Reserved keyboard equivalents for worldwide systems 3-19

Table 3-3

Other common keyboard equivalents 3-19

Table 3-4

Actions for standard File menu commands 3-23

Table 3-5

Actions for standard Edit menu commands 3-25

Table 3-6

Specifying submenus, script codes, reduced icons, small icons,
and color icons of a menu item in a menu resource 3-46

Table 3-7

Color information for menu entries 3-100

Table 3-8

Mapping between new and previous names of Menu Manager
routines 3-102

Listing 3-1

Rez input for a

'MENU'

 resource for the Apple menu 3-43

Listing 3-2

Rez input for a

'MENU'

 resource for an Edit menu 3-48
Listing 3-3 Rez input for a 'MENU' resource for a File menu 3-49
Listing 3-4 Rez input for an 'MBAR' resource 3-49
Listing 3-5 Setting up an application’s menus and menu bar 3-50
Listing 3-6 Saving and restoring menu color information 3-52
Listing 3-7 Rez input for a description of a hierarchical menu with

a submenu 3-54
Listing 3-8 Creating a hierarchical menu 3-55
Listing 3-9 Changing the text of a menu item 3-59
Listing 3-10 Setting the font style of menu items 3-60
Listing 3-11 Adding marks to and removing marks from menu items 3-61
Listing 3-12 Specifying icons for menu items 3-63
Listing 3-13 Rez input for text of menu items 3-66
Listing 3-14 Adding an item to the Help menu 3-68
Listing 3-15 Adding menu items to the Apple menu 3-69
Listing 3-16 Adding font names to a menu 3-70
Listing 3-17 Determining whether a mouse-down event occurred 3-72
Listing 3-18 Determining when the cursor is in the menu bar 3-72
Listing 3-19 Adjusting an application’s menus 3-74
Listing 3-20 Adjusting the File menu for a document window 3-74
Listing 3-21 Adjusting the Edit menu for a document window 3-75
Listing 3-22 Determining when a key is pressed 3-77
Listing 3-23 Checking a key-down event for a keyboard equivalent 3-78
Listing 3-24 Responding to the user’s choice of a menu command 3-79
Listing 3-25 Responding to the user’s choice of an item from the

Apple menu 3-80
Listing 3-26 Responding to the user’s choice of a command from the

Help menu 3-81

xviii

Listing 3-27 Handling the Size menu 3-83
Listing 3-28 A sample menu definition procedure 3-89
Listing 3-29 Calculating the size of a menu 3-90
Listing 3-30 Drawing menu items 3-91
Listing 3-31 Choosing menu items 3-93

Chapter 4 Window Manager 4-1

Figure 4-1 Multiple windows 4-4
Figure 4-2 A document window 4-5
Figure 4-3 Active and inactive document windows 4-7
Figure 4-4 A window of type zoomDocProc 4-8
Figure 4-5 A window of type zoomDocProc, with size box and inactive

scroll bars 4-9
Figure 4-6 Window types for alert boxes and fixed-position modal

dialog boxes 4-9
Figure 4-7 A window of type movableDBoxProc 4-10
Figure 4-8 A window of type noGrowDocProc 4-10
Figure 4-9 Seldom-used window types 4-11
Figure 4-10 Window frame, content region, and structure region 4-12
Figure 4-11 Scroll bars 4-14
Figure 4-12 Controls in a dialog box 4-15
Figure 4-13 The QuickDraw global coordinate plane 4-17
Figure 4-14 A window’s local and global coordinate systems 4-19
Figure 4-15 Document window positions on a single screen 4-31
Figure 4-16 “Filling in” an empty document window position 4-31
Figure 4-17 Document window positions on multiple screens 4-33
Figure 4-18 Moving one window and adding to another window’s

update region 4-40
Figure 4-19 The close box with and without highlighting 4-46
Figure 4-20 The zoom box with and without highlighting 4-47
Figure 4-21 The effects of BeginUpdate and EndUpdate on the visible region

and update region 4-49
Figure 4-22 The cumulative effects of HideWindow, ShowWindow, and

SelectWindow 4-63
Figure 4-23 Limiting rectangle used by DragGrayRgn 4-98
Figure 4-24 Structure of a compiled window ('WIND') resource 4-124
Figure 4-25 Structure of a compiled window color table

('wctb') resource 4-128

Listing 4-1 Determining the window type 4-25
Listing 4-2 Rez input for a window ('WIND') resource for a

document window 4-26
Listing 4-3 Creating a new window 4-28
Listing 4-4 Application-defined data structure for storing a window’s

state data 4-34
Listing 4-5 Saving a document window’s position 4-34
Listing 4-6 Positioning the window when the user opens a

saved document 4-36
Listing 4-7 Opening a saved document 4-37
Listing 4-8 Drawing a window 4-39

xix

Listing 4-9 Handling mouse-down events 4-44
Listing 4-10 Handling update events 4-50
Listing 4-11 Handling activate events 4-51
Listing 4-12 Zooming a window 4-55
Listing 4-13 Resizing a window 4-58
Listing 4-14 Adjusting scroll bars and content region when resizing

a window 4-59
Listing 4-15 Converting a window region to local coordinates 4-60
Listing 4-16 Handling a close command 4-60
Listing 4-17 Closing a document 4-61
Listing 4-18 Showing a hidden dialog box 4-64

Chapter 5 Control Manager 5-1

Figure 5-1 Standard controls provided by the Control Manager 5-4
Figure 5-2 A default button 5-5
Figure 5-3 A selected checkbox 5-5
Figure 5-4 A vertical scroll bar 5-7
Figure 5-5 Using the scroll box and scroll arrows 5-8
Figure 5-6 Spatial relations between a document and a window, and their

representation by a scroll bar 5-10
Figure 5-7 Custom slider controls 5-11
Figure 5-8 Visual feedback for user selection of active controls 5-12
Figure 5-9 Inactive controls 5-13
Figure 5-10 A button in a simple window 5-17
Figure 5-11 Radio buttons in a simple window 5-20
Figure 5-12 How a scroll bar should overlap the window frame 5-22
Figure 5-13 A pop-up menu 5-26
Figure 5-14 Dimensions of a sample pop-up menu 5-26
Figure 5-15 Three controls in a window 5-34
Figure 5-16 Moving a document relative to its window 5-46
Figure 5-17 Updating the contents of a scrolled window 5-49
Figure 5-18 Restoring the window origin to (0,0) 5-50
Figure 5-19 Scrolling to the end of a document 5-51
Figure 5-20 Updating a window’s contents and returning the window origin

to (0,0) 5-51
Figure 5-21 Moving and resizing scroll bars 5-66
Figure 5-22 A vertical scroll bar before the application moves it within a

resized window 5-69
Figure 5-23 A vertical scroll bar after the application moves its upper-left

point 5-69
Figure 5-24 A custom control 5-71
Figure 5-25 Structure of a compiled control ('CNTL') resource 5-118
Figure 5-26 Structure of a compiled control color table

('cctb') resource 5-122

Table 5-1 Mapping between new and previous names of Control Manager
routines 5-80

Listing 5-1 Creating a button for a window 5-17
Listing 5-2 Rez input for a control resource 5-18

xx

Listing 5-3 Rez input for the control resources of radio buttons 5-21
Listing 5-4 Rez input for resources for a window and its scroll bars 5-23
Listing 5-5 Creating a document window with scroll bars 5-24
Listing 5-6 Rez input for the control resource of a pop-up menu 5-26
Listing 5-7 Responding to an update event for a window 5-29
Listing 5-8 Redrawing the controls in the update region 5-30
Listing 5-9 Detecting mouse-down events in a window 5-32
Listing 5-10 Detecting mouse-down events in a pop-up menu and a

button 5-33
Listing 5-11 Using the TrackControl function with a button 5-36
Listing 5-12 Using TrackControl with a pop-up menu 5-37
Listing 5-13 Responding to a click in a checkbox 5-38
Listing 5-14 Adjusting scroll bar settings and locations 5-39
Listing 5-15 Assigning settings to scroll bars 5-40
Listing 5-16 Adjusting the maximum and current settings for a scroll

bar 5-41
Listing 5-17 Using ScrollRect to scroll the bits displayed in the

window 5-47
Listing 5-18 Responding to mouse events in a scroll bar 5-53
Listing 5-19 Action procedures for scrolling through a text document 5-59
Listing 5-20 Moving the scroll box from the action procedures 5-61
Listing 5-21 An application-defined update routine 5-62
Listing 5-22 Redrawing a window containing graphics objects 5-63
Listing 5-23 Redrawing a window after scrolling a TextEdit edit record 5-65
Listing 5-24 Changing the size and location of a window’s scroll bars 5-67

Chapter 6 Dialog Manager 6-1

Figure 6-1 An alert box used by the Finder 6-6
Figure 6-2 A typical dialog box 6-7
Figure 6-3 A note alert 6-8
Figure 6-4 A caution alert 6-9
Figure 6-5 A stop alert 6-9
Figure 6-6 A modal dialog box 6-10
Figure 6-7 A movable modal dialog box 6-11
Figure 6-8 A modeless dialog box 6-12
Figure 6-9 Typical items in a dialog box 6-13
Figure 6-10 An alert box to save changes to a document 6-19
Figure 6-11 An alert box displayed only during the third and fourth

alert stages 6-21
Figure 6-12 A simple modal dialog box 6-24
Figure 6-13 Relationship of various resources to an alert box 6-27
Figure 6-14 A safe default button in an alert box 6-31
Figure 6-15 The consistent spacing of buttons and text in an alert box 6-33
Figure 6-16 Incorrectly and correctly sized display rectangles for alternate script

systems 6-35
Figure 6-17 Inactive controls and disabled items 6-37
Figure 6-18 A dialog box with OK and Cancel buttons 6-38
Figure 6-19 A movable modal dialog box with a Stop button 6-39
Figure 6-20 An alert box with a Revert button 6-39
Figure 6-21 An obscure and useless alert message 6-41

xxi

Figure 6-22 A less obscure alert message 6-41
Figure 6-23 A clear and helpful alert message 6-41
Figure 6-24 A pop-up menu in a dialog box 6-42
Figure 6-25 A selected scrolling list 6-45
Figure 6-26 An alert box that displays a document name 6-46
Figure 6-27 Two editable text items in a modeless dialog box 6-48
Figure 6-28 An existing dialog box and items to append 6-51
Figure 6-29 The dialog box after items are overlaid 6-52
Figure 6-30 The dialog box after items are appended to the right 6-52
Figure 6-31 The dialog box after items are appended to the bottom 6-53
Figure 6-32 A dialog box with an item appended relative to an

existing item 6-53
Figure 6-33 An alert box in front of a document window 6-63
Figure 6-34 An alert box on the main screen 6-63
Figure 6-35 An alert box in the alert position of the document

window screen 6-64
Figure 6-36 An alert box displayed only after the third alert stage 6-65
Figure 6-37 A modeless dialog box for changing text in a document 6-66
Figure 6-38 Menu access when displaying a modal dialog box 6-69
Figure 6-39 Three buttons for which CautionAlert reports events 6-81
Figure 6-40 Four items for which ModalDialog reports events 6-83
Figure 6-41 A modeless dialog box for which DialogSelect

reports events 6-91
Figure 6-42 Structure of a compiled dialog ('DLOG') resource 6-148
Figure 6-43 Structure of a compiled alert ('ALRT') resource 6-150
Figure 6-44 Structure of a compiled item list ('DITL') resource 6-152
Figure 6-45 Structure of compiled button, checkbox, radio button, static text,

and editable text items 6-153
Figure 6-46 Structure of compiled control, icon, and picture items 6-154
Figure 6-47 Structure of a compiled application-defined item 6-155
Figure 6-48 Structure of compiled help items 6-155
Figure 6-49 Structure of a compiled item color table resource 6-159
Figure 6-50 Structure of a compiled control color table 6-161
Figure 6-51 Structure of a compiled text style table 6-162

Table 6-1 Mapping between new and previous names of Dialog Manager
routines 6-102

Listing 6-1 Rez input for an alert resource 6-19
Listing 6-2 Specifying different alert responses according to

alert stage 6-21
Listing 6-3 Creating your own sound procedure for alerts 6-22
Listing 6-4 Rez input for a dialog resource 6-24
Listing 6-5 Rez input for providing an alert box with items 6-27
Listing 6-6 Rez input for consistent spacing of display rectangles 6-34
Listing 6-7 Rez input for a dialog resource and an item list resource for a

dialog box that includes a pop-up menu 6-43
Listing 6-8 Rez input for a control resource and a menu resource for a

pop-up menu 6-43
Listing 6-9 Using the ParamText procedure to substitute

text strings 6-47

xxii

Listing 6-10 Specifying where ParamText should substitute text in an alert
box message 6-48

Listing 6-11 Specifying editable text items in an item list 6-49
Listing 6-12 Getting the text entered by the user in an editable text item 6-49
Listing 6-13 Appending an item to an existing dialog box 6-54
Listing 6-14 Rez input for a dialog box and the item appended to it 6-55
Listing 6-15 Rez input for an application-defined item in an item list 6-57
Listing 6-16 Installing the draw procedure for an application-defined

item 6-58
Listing 6-17 Creating a draw procedure that draws a bold outline around the

default button 6-59
Listing 6-18 Deactivating the front window before displaying an

alert box 6-65
Listing 6-19 Using GetAlertStage to determine when to deactivate the

front window 6-66
Listing 6-20 Ensuring that the modeless dialog box isn’t already open before

creating it 6-67
Listing 6-21 Adjusting menus for various windows 6-70
Listing 6-22 Disabling menus for a modal dialog box with editable

text items 6-70
Listing 6-23 Adjusting the Edit menu for a modal dialog box 6-72
Listing 6-24 Rez input for a dialog color table resource using the system’s

default colors 6-75
Listing 6-25 Using DialogSelect during null events 6-79
Listing 6-26 Responding to events in a modal dialog box 6-83
Listing 6-27 A typical event filter function for alert and modal

dialog boxes 6-88
Listing 6-28 Handling mouse-down events for all windows 6-91
Listing 6-29 Using the DialogSelect function for responding to

mouse-down events 6-92
Listing 6-30 Hiding a modeless dialog box in response to a

Close command 6-94
Listing 6-31 Checking for key-down events involving the Command key 6-95
Listing 6-32 Checking for key-down events in a modeless dialog box 6-95
Listing 6-33 Responding to key-down events in a modeless dialog box 6-96
Listing 6-34 Activating a modeless dialog box 6-98
Listing 6-35 Updating a modeless dialog box 6-99

Chapter 7 Finder Interface 7-1

Figure 7-1 Application and document icons in a window on the desktop 7-4
Figure 7-2 A customized help balloon for an application icon 7-5
Figure 7-3 A Finder message identifying a missing application 7-5
Figure 7-4 Large black-and-white application icons for a company’s

product line 7-12
Figure 7-5 Default large black-and-white icons 7-12
Figure 7-6 A black-and-white icon and its mask for an application 7-13
Figure 7-7 The ResEdit view of an icon 7-14
Figure 7-8 Linking icon list resources and file reference resources in a

bundle resource 7-23
Figure 7-9 The default application-unavailable alert box 7-27

xxiii

Figure 7-10 The application-unavailable alert box specifying an
application’s name 7-29

Figure 7-11 The application-unavailable alert box with a customized
message 7-30

Figure 7-12 The application-unavailable alert box for 'TEXT' and
'PICT' documents 7-30

Figure 7-13 The version data in the information window 7-33
Figure 7-14 Default and customized help balloons for application icons 7-38
Figure 7-15 The System Folder and related folders 7-42
Figure 7-16 Structure of a signature resource compiled as a string

('STR ') resource 7-57
Figure 7-17 Structure of a compiled icon list ('ICN#') resource 7-58
Figure 7-18 Structure of a compiled small icon list ('ics#') resource 7-59
Figure 7-19 Structure of a compiled large 4-bit color icon

('icl4') resource 7-60
Figure 7-20 Structure of a compiled small 4-bit color icon

('ics4') resource 7-61
Figure 7-21 Structure of a compiled large 8-bit color icon

('icl8') resource 7-62
Figure 7-22 Structure of a compiled small 8-bit color icon

('ics8') resource 7-63
Figure 7-23 Structure of a compiled icon ('ICON') resource 7-64
Figure 7-24 Structure of a compiled file reference ('FREF') resource 7-65
Figure 7-25 Structure of a compiled bundle ('BNDL') resource 7-66
Figure 7-26 Mapping local IDs to icon list resource IDs in a

bundle resource 7-67
Figure 7-27 Structure of superfluous local ID mapping for file reference

resources in a bundle resource 7-67
Figure 7-28 Structure of a compiled missing-application name

string resource 7-68
Figure 7-29 Structure of a compiled application-missing message

string resource 7-69
Figure 7-30 Format of a compiled version ('vers') resource 7-70

Listing 7-1 Rez input for a signature resource 7-8
Listing 7-2 Rez input for an icon list resource 7-14
Listing 7-3 Rez input for file reference resources 7-19
Listing 7-4 Rez input for a bundle resource 7-21
Listing 7-5 Rez input for a missing-application name string resource 7-28
Listing 7-6 Storing a missing-application name string resource in the resource

fork of a document 7-28
Listing 7-7 Copying the missing-application name string resource into the

resource fork of a document 7-29
Listing 7-8 Rez input for an application-missing message string

resource 7-30
Listing 7-9 Rez input for a pair of version resources 7-32
Listing 7-10 Rez input for a size resource 7-35
Listing 7-11 Determining whether a document is a stationery pad 7-36
Listing 7-12 Rez input for a help balloon resource for an

application icon 7-39
Listing 7-13 Using the ResolveAliasFile function to open a file 7-41

xxv

P R E F A C E

About This Book

This book, Inside Macintosh: Macintosh Toolbox Essentials, describes the essential
elements of a Macintosh application and the system software routines that you
can use to implement them.

If you are new to programming on the Macintosh computer, you should also
read Inside Macintosh: Overview for an introduction to general concepts of
Macintosh programming and Macintosh Human Interface Guidelines for a
complete discussion of user interface guidelines and principles that every
Macintosh application should follow.

This book describes events, windows, menus, controls, alert boxes, and dialog
boxes. It also discusses how your application interacts with the Finder.

Macintosh applications respond to user actions and to other hardware- and
software-related events. To design your application so that it can respond to
events (such as keyboard input, mouse input, changes in the appearance of
windows on the screen, and changes in your application’s processing status),
see the chapter “Event Manager” in this book.

To create menus and set up your application’s menu bar, see the chapter
“Menu Manager.” This chapter describes how to define the items in your
menus, how to enable and disable menus, how to allow the user to choose
a menu item, and how to respond once the user chooses a menu item.

To create windows in which the user can view or edit information, see the
chapter “Window Manager.” This chapter describes the basic types of
windows and discusses how your application can work together with the
Window Manager to support the standard user interface conventions
associated with manipulating a window, such as moving a window, zooming
a window, and resizing a window.

To create controls in your application’s windows—such as scroll bars—or to
create controls in dialog boxes—such as buttons or checkboxes—see the
chapter “Control Manager.”

To create dialog boxes or alert boxes—windows that your application uses to
communicate with or solicit information from the user—see the chapter
“Dialog Manager.”

To create icons for your applications and the documents it creates, see the
chapter “Finder Interface.” This chapter also introduces file types and
creators and describes the various kinds of resources (icons, file references,
and bundles) that the Finder needs to display your application and the
documents it creates.

After implementing the basic elements of a Macintosh application as described
in this book, you can add additional features, such as help balloons and

xxvi

P R E F A C E

support for copy and paste, as described in Inside Macintosh: More Macintosh
Toolbox. You can also find detailed information about the Resource Manager in
Inside Macintosh: More Macintosh Toolbox.

Once you understand how to create menus, windows, and dialog boxes, you
can save information that the user enters in a window by writing the data to a
file. You can also open a previously saved file and read the information from
the file into a window. You use the File Manager to open, read, write, and close
files. See the chapter “Introduction to File Management” in Inside Macintosh:
Files for information on how to read and write files.

For information about drawing into a window or other graphics port, see
Inside Macintosh: Imaging.

For information on handling text in your application, see Inside
Macintosh: Text.

For information on communicating with other applications, see Inside
Macintosh: Interapplication Communication.

Format of a Typical Chapter 0
Almost all chapters in this book follow a standard structure. For example, the
Event Manager chapter contains these sections:

� “Introduction to Events.” This section presents a general introduction to the
types of events that your application can receive.

� “About the Event Manager.” This section provides an overview of the
features provided by the Event Manager.

� “Using the Event Manager.” This section describes the tasks you can
accomplish using the Event Manager. It describes how to use the most
common routines, gives related user interface information, provides code
samples, and supplies additional information.

� “Event Manager Reference.” This section provides a complete reference
to the Event Manager by describing the data structures, routines, and
resources it uses. Each routine description also follows a standard format,
which presents the routine declaration followed by a description of every
parameter of the routine. Some routine descriptions also give additional
descriptive information, such as assembly-language information or
result codes.

� “Summary of the Event Manager.” This section provides the Pascal and
C interfaces for the constants, data structures, routines, and result codes
associated with the Event Manager. It also includes relevant assembly-
language interface information.

Conventions Used in This Book 0
Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as the contents of registers, use special formats so that you
can scan them quickly.

xxvii

P R E F A C E

Special Fonts 0

All code listings, reserved words, and names of actual data structures,
fields, constants, parameters, and routines are shown in Courier (this
is Courier).

Words that appear in boldface are key terms or concepts and are defined in
the Glossary.

Types of Notes 0

There are several types of notes used in this book.

Note
A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 2-7.) �

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 5-27.) �

� W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on page
page 2-105.) �

Empty Strings 0

This book occasionally instructs you to provide an empty string in routine
parameters and resources. How you specify an empty string depends on what
language and development environment you are using. In Rez input files and
in C code, for example, you specify an empty string by using two double
quotation marks (""), and in Pascal you specify an empty string by using two
single quotation marks (' ').

Assembly-Language Information 0

Inside Macintosh provides information about the registers for specific routines
like this:

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

D0 Contents of register D0 on exit

xxviii

P R E F A C E

In the “Assembly-Language Summary” section at the end of each chapter,
Inside Macintosh presents information about the fields of data structures in
this format:

The left column indicates the byte offset of the field from the beginning of the
data structure. The second column shows the field name as defined in the
MPW Pascal interface files; the third column indicates the size of that field.
The fourth column provides a brief description of the use of the field. For a
complete description of each field, see the discussion of the data structure in
the reference section of the chapter.

The Development Environment 0
The system software routines described in this book are available using Pascal,
C, or assembly-language interfaces. How you access these routines depends
on the development environment you are using. When showing system
software routines, this book uses the Pascal interface available with the
Macintosh Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal (except for listings that
describe resources, which are shown in Rez-input format). They show
methods of using various routines and illustrate techniques for accomplishing
particular tasks. All code listings have been compiled and, in many cases,
tested. However, Apple Computer, Inc., does not intend for you to use these
code samples in your application. You can find the location of code listings in
the list of figures, tables, and listings. If you know the name of a particular
routine (such as DoEvent or MyAdjustMenus) shown in a code listing, you
can find the page on which the routine occurs by looking under the entry
“sample routines” in the index of this book.

In order to make the code listings in this book more readable, they show only
limited error handling. You need to develop your own techniques for handling
errors.

This book occasionally illustrates concepts by reference to a sample
application called SurfWriter; this is not an actual product of Apple
Computer, Inc.

0 what word event code

2 message long event message

6 when long ticks since startup

Contents 1-1

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

1 Introduction to the

Contents

Macintosh Toolbox

Overview of the Macintosh Toolbox 1-4
Events 1-5
Menus 1-6
Windows 1-6
Controls 1-7
Alert Boxes and Dialog Boxes 1-8
Icons and Other Interactions With the Finder 1-10
Resources 1-11
Help Balloons 1-14
Copy and Paste 1-14

Related System Software Features 1-14
Drawing on the Screen 1-14
Handling Text 1-14
Managing Files 1-15
Allocating Memory and Launching Processes 1-15
Creating Publishers and Subscribers 1-15
Communicating With Other Applications 1-16

Designing Your Application 1-16

C H A P T E R 1

1-3

Introduction to the Macintosh Toolbox 1

This chapter presents an introduction to the features provided by the Macintosh Toolbox.
The Macintosh Toolbox is a collection of system software routines that your application
can use to present a consistent and standard interface to the user; these routines also
allow you to simplify other tasks your application might need to perform.

A typical Macintosh application presents a friendly, intuitive, easy-to-use, visual inter-
face to the user. The careful design of a Macintosh application gives users the freedom
to perform actions and accomplish tasks according to their needs. The idea behind this
careful design is to put the user in control. In general, the user of a Macintosh application
should always be free to choose the next action he or she will perform. (This is the basic
tenet of the event loop and is explained in more detail in the chapter “Event Manager” in
this book.)

Figure 1-1 shows the screen as it might appear when a user is interacting with a typical
Macintosh application, such as SurfWriter. The SurfWriter application is an application
that lets a user do simple text editing. Like most Macintosh applications, the SurfWriter
application uses

� menus to let the user choose commands

� windows to allow the user to enter and edit information

� scroll bars to allow the user to view more information in a window

Figure 1-1 The SurfWriter application with multiple windows on the desktop

Menu bar

Menu

Active window

Modeless dialog box DesktopScroll bar

C H A P T E R 1

Introduction to the Macintosh Toolbox

1-4 Overview of the Macintosh Toolbox

� other controls (such as the Change button) to let the user control various settings
or options

� dialog boxes to solicit information from the user

You can create an application that incorporates these user-interface elements and that
helps users accomplish specific tasks by taking advantage of the routines provided by the
Macintosh Toolbox.

Overview of the Macintosh Toolbox 1

Macintosh system software contains a powerful set of routines that your application can
use to create windows, manage menus, paint objects, display text, open files, share data
between programs, and print files, as well as perform many other helpful tasks.

The Macintosh Toolbox encompasses a number of system software routines, most (but
not all) of which help present your application’s interface to the user. Some of these
routines include those provided by the Event Manager, Menu Manager, Window
Manager, Control Manager, Dialog Manager, Help Manager, Resource Manager, and
Scrap Manager.

You can directly call these routines from within your application. By using system
software routines, you can take advantage of the many tasks they can perform for
you, and you can concentrate on the parts of your application that are specific to
your particular product.

Using the Macintosh Toolbox, you can

� respond to user actions, such as mouse actions or keyboard input

� create and display menus

� create and display windows, alert boxes, and dialog boxes

� create and display controls in windows, alert boxes, and dialog boxes

� create icons for your application and its documents

This book, Macintosh Toolbox Essentials, describes these fundamental elements of a
Macintosh application. Inside Macintosh: More Macintosh Toolbox describes additional
features of a Macintosh application, including how you can

� create help balloons for your application’s menus, windows, and dialog boxes

� support copy and paste

� specify characteristics of your application’s menus, windows, controls, dialog boxes,
and help balloons in resources so that you can more easily localize your application

C H A P T E R 1

Introduction to the Macintosh Toolbox

Overview of the Macintosh Toolbox 1-5

The best Macintosh applications are designed according to the guidelines in Macintosh
Human Interface Guidelines. You should always design your application so that it meets
the needs of its users and responds in consistent and expected ways. Macintosh Human
Interface Guidelines describes

� the philosophy and the design principles behind the Macintosh interface

� the parts of the Macintosh interface including the interface elements and behaviors

� ways to do human interface design for Macintosh products

You can often get valuable feedback on the design of your application by performing user
testing. Do usability testing of your application early and often in the development phase
of your product.

Events 1
At the core of every Macintosh application is the application’s event loop. The event loop
is that piece of code in an application that processes and responds to user actions and
other events. You can use the Event Manager to retrieve information about these actions.
For example, you can get information that tells your application whether the user pressed
a key or the mouse button, whether one of your application’s windows needs updating
as a result of the user moving windows, or whether some other hardware or software
action requires a response from your application.

You should structure your application so that it can respond to events and so that the
user is able to perform tasks in any order. For example, a user should be able to type text
in a window, select a graphic and copy it, open a new document, paste in the graphic,
open another document, and then go back to the first window to select text and change
its typeface, size, or style.

Your application should respond to events in a way that lets the user switch between
your application and others whenever the user chooses to do so (for example, by clicking
in a window belonging to another application). Your application should also yield time to
other applications when it isn’t busy. System software provides a cooperative
multitasking environment that allows users to switch between many open applications
and that allows applications to receive available processing time when other applications
aren’t using the processor. System software coordinates the scheduling of processing time
between your application and other applications.

You can also let your application communicate with other applications in order to request
services or information from another application or to provide services to other
applications. You can use the Event Manager or Apple Event Manager to do this.

The chapter “Event Manager” in this book describes how to structure your event loop
and event-handling code to receive notification of user actions and changes in the
processing status of your application, how to communicate with other applications, and
how to respond to these events.

C H A P T E R 1

Introduction to the Macintosh Toolbox

1-6 Overview of the Macintosh Toolbox

Menus 1
Menus are an important part of the design of a Macintosh application. Menus let users
view or choose an item from a list of choices or commands that your application
provides. You design your menus according to the tasks or actions your application
performs. All applications should support the Apple, File, Edit, Help, Keyboard, and
Application menus. Figure 1-1 on page 1-3 shows the File menu of the SurfWriter
application.

System software makes it easy for you to create pull-down, hierarchical, and pop-up
menus. The chapter “Menu Manager” in this book describes how to create your
application’s menus, set up your menu bar, display menus, and respond to the user’s
choice of an item from a menu.

Windows 1
Most applications interact with the user through windows. Figure 1-2 shows a common
window and its elements. The chapter “Window Manager” in this book describes the
types of windows your application can create and how to respond to user actions
involving windows.

Figure 1-2 A typical window

The user typically has one or more windows on the desktop, often from a number of
different applications. Although the user can have multiple windows on the desktop,
only one window is the active window. The active window is the window that appears
frontmost on the desktop and is identified by racing stripes in its title bar. Figure 1-2

Title barClose box Zoom box

Scroll bar

Scroll bar

Size boxContent area

C H A P T E R 1

Introduction to the Macintosh Toolbox

Overview of the Macintosh Toolbox 1-7

shows an active window; in Figure 1-1 on page 1-3, the window titled SalesReport is an
inactive window.

All keyboard activity is directed toward the active window. You should make sure that
your application follows the human interface guidelines regarding active and inactive
windows. For example, you should show the scroll bars and highlight any selection in an
active window belonging to your application; you should hide the scroll bars and remove
highlighting from any selection in an inactive window belonging to your application. The
menu bar of your application also should always reflect the state of your application’s
active window—that is, your application should enable only those menu commands that
pertain to the active window.

You can use system software routines to assist you when your application needs to
create, move, size, zoom, or update the contents of your window. The chapter “Window
Manager” in this book describes how you can accomplish these tasks.

Controls 1
Most windows and dialog boxes contain controls. Controls are onscreen objects that the
user can manipulate with the mouse to cause an immediate action from your application
or to change settings in order to modify a future action.

Buttons, checkboxes, radio buttons, pop-up menus, and scroll bars are examples of
common controls used by most applications. Checkboxes, radio buttons, and pop-up
menus are most often used in dialog boxes; buttons are most often used in alert boxes or
dialog boxes; scroll bars are most often used in windows. Figure 1-3 illustrates these
types of controls.

Figure 1-3 Common controls

Button

Checkbox

Radio buttons

Pop-up menu

Scroll bar

C H A P T E R 1

Introduction to the Macintosh Toolbox

1-8 Overview of the Macintosh Toolbox

A button appears as a rounded rectangle with a title centered inside. Use a button to
perform an instantaneous action when the user clicks the button, such as completing
operations defined by a dialog box or acknowledging an error message in an alert box.

A checkbox appears as a small square with a title beside it; the box contains an X when
the setting associated with the box is on and is empty when the setting is off. Use a
checkbox to indicate an option that must be either off or on.

A radio button appears as a circle with a title beside it; the circle contains a small black
dot when the setting associated with the radio button is on and is empty when the setting
is off. Radio buttons are similar to checkboxes in that they retain and display
an on-or-off setting; however, only one radio button in a group of radio buttons should
be on at any one time. You must decide how to group your radio buttons, and your
application must ensure that only one radio button in a group is on.

A pop-up menu is a menu that appears in a dialog box or window. You can use pop-up
menus as an alternative to radio buttons, to allow the user to select from a list of choices
or settings.

A scroll bar appears as a light gray rectangle that has scroll arrows at each end of the
rectangle. A window can have a horizontal scroll bar, a vertical scroll bar, or both. You
can use scroll bars to let the user change the portion of a document that the user can view
within a window.

You can track and respond to user actions in controls, redraw controls, and manipulate
controls using Control Manager routines. You usually use the Dialog Manager to handle
most controls in dialog boxes or alert boxes for you. The chapter “Control Manager” in
this book describes how to create controls (with special emphasis on creating and using
scroll bars in windows), and the chapter “Dialog Manager” in this book provides
additional information about how to create controls in dialog boxes and alert boxes.

Alert Boxes and Dialog Boxes 1
In addition to standard windows, your application typically also uses alert boxes and
dialog boxes. An alert box is a window that your application displays on the screen to
warn the user or to report an error to the user. An alert box typically consists of text
describing the situation and buttons for the user to acknowledge or rectify the problem.
Figure 1-4 shows an alert box that the SurfWriter application displays when the user
attempts to close a window without saving the document. The alert box gives the user a
chance to save the document before the SurfWriter application closes the window; this
prevents the user from accidentally losing data.

Figure 1-4 An alert box

C H A P T E R 1

Introduction to the Macintosh Toolbox

Overview of the Macintosh Toolbox 1-9

A dialog box is a window that you can use for the specific purpose of soliciting
additional information from the user. The Dialog Manager provides routines to help you
display dialog boxes and provides standard and consistent methods of interacting with
the user. Dialog boxes can contain editable text items, informative or instructional text,
and controls such as buttons and checkboxes. You can create modal, movable modal, or
modeless dialog boxes. Figure 1-5 shows an example of each type of dialog box.

A modal dialog box is a dialog box that puts the user in the state or “mode” of being able
to work only inside the dialog box. A modal dialog box is similar in appearance to an
alert box, except that a modal dialog box can contain editable text items and additional

Figure 1-5 Modal, movable modal, and modeless dialog boxes

A modal dialog box

A movable modal dialog box

A modeless dialog box

C H A P T E R 1

Introduction to the Macintosh Toolbox

1-10 Overview of the Macintosh Toolbox

controls, such as radio buttons and pop-up menus. The user cannot move a modal dialog
box, and the user can dismiss a modal dialog box only by clicking its buttons. You should
use a modal dialog box only when it’s essential for the user to complete an operation
before performing any other work.

A movable modal dialog box is a modal dialog box with a title bar (but no close box) that
allows the user to move the dialog box. The user can dismiss the dialog box only by
clicking its buttons; however, when you use movable modal dialog boxes, you should
allow the user to switch to another application if the user clicks in the window of another
application or chooses another application from the Apple or Application menu. Use a
movable modal dialog box when the user might need to move the dialog box to view
other areas of the screen or when the user can switch to another application without
affecting the state of your application.

A modeless dialog box is a dialog box that looks like a document window without a size
box or scroll bars. A modeless dialog box does not require the user to respond before
doing anything else. The user can move a modeless dialog box, move between a
modeless dialog box and other windows, and close a modeless dialog box just like a
document window. Whenever possible, use a modeless dialog box instead of a movable
modal or modal dialog box. Use a modeless dialog box when the user can perform other
operations—such as working in document windows—without dismissing the modeless
dialog box.

The chapter “Dialog Manager” in this book describes in detail how you can create alert
boxes and dialog boxes for your application.

Icons and Other Interactions With the Finder 1
Once you’ve designed your application, you need to create icons to represent the
application and the documents it creates. The Finder displays these icons to the
user. If your application appears as an item in the Apple or Application menu, the
Menu Manager displays your application’s icon next to its name, and the Menu
Manager displays your application’s icon as the title of the Application menu when
your application is the active application.

The chapter “Finder Interface” in this book describes how to define and create the icons
for your application and its documents. The chapter also describes how your application
interacts with the Finder.

When a user opens your application or opens or prints one of its documents, the Finder
uses the Process Manager to schedule your application for execution and then sets up the
information your application needs to determine which, if any, files to open or print. In
System 7, your application can choose to receive this information through Apple events.
By supporting these and other Apple events, your application can efficiently respond to
requests from the user as well as requests from other applications. See
Inside Macintosh: Interapplication Communication for information about supporting
Apple events.

C H A P T E R 1

Introduction to the Macintosh Toolbox

Overview of the Macintosh Toolbox 1-11

Resources 1
Resources are basic elements of every Macintosh application. By defining descriptions of
menus, windows, controls, dialog boxes, sounds, fonts, and icons in resources, you can
make these and other elements easier to create and manage. Using resources also eases
translation of user interface elements into other languages.

A resource is any data stored according to a defined structure in the resource fork of
a file; the data in a resource is interpreted according to its resource type. You usually
create resources using a resource compiler or resource editor. This book shows resources
in Rez format; Rez is a resource compiler provided with the Macintosh Programmer’s
Workshop (available from APDA). You can also use other resource tools, such as ResEdit
(also available from APDA), to create the resources for your application.

Most of the managers described in this book use the Resource Manager to read resources
for you. For example, you can use the Menu Manager, Window Manager, Dialog
Manager, and Control Manager to read descriptions of your application’s menus,
windows, dialog boxes, and controls from resources. These managers all interpret a
resource’s data accordingly once it is read into memory. While you’ll typically use these
managers to access resources for you, you can also directly use the Resource Manager
to read and write resources.

The chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox describes the
Resource Manager in detail. However, to help you understand how the Menu Manager,
Window Manager, Dialog Manager, and Control Manager use resources, this section
gives a brief overview of resources and provides a general introduction to the Resource
Manager.

Macintosh system software treats a file as a named, ordered sequence of bytes stored
on a Macintosh volume and divided into two forks, the data fork and the resource fork.
The data fork contains data that usually corresponds to data created by the user; the
application creating the file can store and interpret the data in the data fork in whatever
manner is appropriate. The resource fork of a file consists of a resource map and the
resources themselves.

When you write data to a file, you write to either the file’s resource fork or its data fork.
You typically read from and write to a file’s data fork using File Manager routines and
read from and write to a file’s resource fork using Resource Manager routines.

You typically store as resources data that has a defined structure—such as icons and
sounds—and descriptions of menus, controls, dialog boxes, and windows. When you
create a resource, you assign it a resource type and resource ID. A resource type is a
sequence of four characters that uniquely identifies a specific type of resource, and a
resource ID identifies by number a specific resource within that type. (You can also
use a resource name in place of a resource ID to identify a particular resource within a
resource type.) For example, to create a description of a menu in a resource, you create
a resource of type 'MENU' and give it a resource ID or resource name that is unique from
any other 'MENU' resources that you have defined. Some resources have restrictions on
the numbers you can use for resource IDs; in general, numbers 128 through 32767 are
available for your use.

C H A P T E R 1

Introduction to the Macintosh Toolbox

1-12 Overview of the Macintosh Toolbox

System software defines a number of standard resource types, such as 'ALRT', 'CNTL',
'CODE', 'DITL', 'DLOG', 'FONT', 'ICN#', 'ICON', 'MBAR', 'MENU', 'STR ',
'STR#', and 'WIND'. You can use these resource types to define their corresponding
elements (for example, use a 'WIND' resource to define a window). You can also create
your own resource types if your application needs resources other than the standard
resource types defined by the system software.

The Resource Manager does not interpret the format of an individual resource type.
When you request a resource of a particular type with a given resource ID, the Resource
Manager looks for the specified resource and, if it finds it, reads the resource into
memory and returns a handle to it. Your application or other system software routines
can use the Resource Manager to read resources into memory. For example, when you
use the Window Manager to read a description of a window from a 'WIND' resource, the
Window Manager uses the Resource Manager to read the resource into memory. Once the
resource is in memory, the Window Manager interprets the resource’s data and creates a
window with the characteristics described by the resource.

System software stores certain resources used by the system software in the System
file. Although many of these resources are used only by the system software, your
application can access some of these resources if needed. For example, the standard
images for the I-beam and wristwatch cursors are stored as resources of type 'CURS'
in the System file. You can use these resources to change the appearance of the cursor
used by your application.

Occasionally you may need to write resources to the resource fork of a file. For example,
if your application saves the last position and size of a window (as determined by
the user), you can store this information in the resource fork of the document in a
resource defined by your application. The next time the user opens the document, your
application can read the location saved in this resource and position the document
accordingly.

You typically store the resources specific to your application, such as descriptions of its
menus, windows, controls, and dialog boxes, in the resource fork of your application.
You can store resources specific to a document created by your application in the resource
fork of the document file.

The resource map in the resource fork of a file contains entries that provide the location
of each resource in the resource fork. When the Resource Manager opens the resource
fork of a file, it reads the resource map into memory. As the Resource Manager reads
resources into memory, it replaces their entries in the resource map with handles to their
data in memory. The Resource Manager always searches the resource map in memory,
not the resource map of the resource fork on disk, when it searches for a resource. If a
requested resource is in memory, the Resource Manager uses the resource in memory;
otherwise it reads the resource from the resource fork on disk into memory.

Once the Resource Manager has opened a resource fork and read its resource map into
memory, it keeps the map in memory until the file is closed. You can specify that a
resource be read into memory immediately when the Resource Manager opens a file’s
resource fork, or you can specify that the Resource Manager read it into memory only
when needed. The Resource Manager stores resources from resource forks opened by

C H A P T E R 1

Introduction to the Macintosh Toolbox

Overview of the Macintosh Toolbox 1-13

your application in relocatable blocks in your application’s heap. You can also specify
whether the Resource Manager should purge a resource from memory in order to make
room in memory for other data. If you specify that a resource is purgeable, you need to
use the Resource Manager to make sure the resource is in memory before accessing it
through its resource handle.

When a user opens your application, system software opens your application’s resource
fork. When your application opens a file, your application typically opens both the
file’s data fork and the file’s resource fork. When your application requests a resource
from the Resource Manager, the Resource Manager follows a specific search order.
(If necessary, your application can change the search order using Resource Manager
routines.) The Resource Manager normally looks first for the resource in the resource fork
of the last file that your application opened. So, if your application has a single file open,
the Resource Manager looks first in that file’s resource fork. If the Resource Manager
doesn’t find the resource there, it continues to search each resource fork open to your
application in the reverse order that the files were opened. After looking in the resource
forks of files your application has opened, the Resource Manager searches your
application’s resource fork. If it doesn’t find the resource there, it searches the resource
fork of the System file.

This search path allows your application to use resources defined in the System file, to
override resources defined in the System file, to share resources between files by using
resources stored in your application’s resource fork, and to override your application-
defined resources and use resources specific to a document.

A Macintosh file always contains both a resource fork and a data fork, although one
or both of those forks can be empty. Document files typically contain the document’s data
in the data fork and any document-specific resources—such as preference settings,
window location, and the document icon—in the resource fork. The resource fork
of an application typically includes resources that describe the application’s menus,
windows, controls, dialog boxes, and icons, as well as the code itself, which is also stored
as a resource.

Whether you store data in the data fork or the resource fork of a document file depends
largely on whether you can structure that data in a useful manner as a resource.
For example, it’s often convenient to store document-specific settings, such as the
document’s previous window size and location, as a resource in the document’s resource
fork. Data that is likely to be edited by the user is usually stored in the data fork of
a document.

A resource fork can contain at most 2700 resources. The Resource Manager uses a linear
search when searching a resource fork’s resource types and resource IDs. In general, you
should not create more than 500 resources of the same type in any one resource fork.

Inside Macintosh: More Macintosh Toolbox describes resources and the use of the Resource
Manager in more detail. For information on writing data to a file’s data fork, see Inside
Macintosh: Files.

C H A P T E R 1

Introduction to the Macintosh Toolbox

1-14 Related System Software Features

Help Balloons 1
Your application can provide help balloons for elements such as menus, dialog boxes, or
the content area of a window. The chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox describes how your application can provide help balloons. You can also
create help balloons for some elements of your application’s interface—such as its
menus—using the application BalloonWriter, which is available from APDA.

Copy and Paste 1
All Macintosh applications should support the copying of data from and pasting of data
to the Clipboard. The chapter “Scrap Manager” in Inside Macintosh: More Macintosh
Toolbox describes how to copy data from the Clipboard and paste data to the Clipboard
by using the Scrap Manager.

Related System Software Features 1

In addition to the managers provided by the Macintosh Toolbox, you can also use other
managers and system software routines. For example, you can use QuickDraw routines
to draw the content of your application’s windows, TextEdit (in conjunction with the
Dialog Manager) to handle editable text items in dialog boxes, the File Manager to read
and write files, the Process Manager and Memory Manager to control various aspects of
your application’s execution, and the Edition Manager and Apple Event Manager to
support interapplication communication. The rest of this chapter describes some of these
managers and where you can find more information about them.

Drawing on the Screen 1
System software routines, such as the routines provided by QuickDraw, perform all
drawing on the screen. For example, your application tells QuickDraw what and where
to draw, and QuickDraw does the actual drawing to the screen. The graphics routines
provided by system software support quick drawing of objects such as circles, ovals,
rectangles, lines, text, and pictures. See Inside Macintosh: Imaging for specific graphics-
related information.

Handling Text 1
You can use the system software routines provided by TextEdit to greatly simplify basic
text editing and formatting that your application would otherwise have to implement.
For example, most applications use editable text items in dialog boxes; your application
can use the Dialog Manager (which calls TextEdit) to automatically handle user
interaction in editable text items. The Dialog Manager and your application can use

C H A P T E R 1

Introduction to the Macintosh Toolbox

Related System Software Features 1-15

TextEdit to insert new text, delete characters that the user backspaces over, scroll text
within a window, cut text, copy text, paste text, select text, and handle word wrapping.
Most applications use TextEdit only for simple text editing in a dialog box and use their
own techniques for handling editable text in document windows.

You should design your application so that it can handle text in more than one language
or script. System software provides many routines to help you accomplish this. For
example, if your application automatically displays the date in the footer of your
document, you can use Text Utility routines to automatically display the date in the
format common to the current script. Similarly, if your application provides a Find
command, it can use Text Utility routines to search according to the word-break tables
and according to the current script.

See Inside Macintosh: Text for information on how you can provide support for text editing
in documents created by your application and for information on designing your
application so that it can support text editing in more than one language or script.

Managing Files 1
When the user chooses the Save or Save As menu command, you usually write to a file
the data that the user has entered in the active window. When the user selects a file using
the Open command, you read information from a file. You can use the File Manager to
read and write files. You can use the system software routines provided by the Standard
File Package to present a standard and consistent interface to the user when saving and
opening files. See the chapters “Introduction to File Management” and “Standard File
Package” in Inside Macintosh: Files for information about these topics.

Allocating Memory and Launching Processes 1
For information about how the Process Manager launches your application, see
the chapter “Process Manager” in Inside Macintosh: Processes. See the chapter
“Introduction to Memory Management” in Inside Macintosh: Memory for informa-
tion about how system software manages memory; how you can manage the memory
in your application’s partition effectively; and how your application can allocate, release,
or manipulate memory.

Creating Publishers and Subscribers 1
Your application should support Edition Manager features so that users can share and
automatically update data between documents. See the chapter “Edition Manager” in
Inside Macintosh: Interapplication Communication for information about supporting publish
and subscribe features.

C H A P T E R 1

Introduction to the Macintosh Toolbox

1-16 Designing Your Application

Communicating With Other Applications 1
System software provides various means of communication between applications. You
can use Event Manager routines to communicate, in the form of high-level events, with
other applications. High-level events are not required to adhere to any specific protocol,
so their interpretation is defined by each application that sends or receives them. Apple
events are high-level events that follow a standard defined protocol (the Apple Event
Interprocess Messaging Protocol). In most cases, you should use Apple events for
communication between applications. Because Apple has defined a standard set of Apple
events, all applications can interpret specific Apple events in the same way and respond
in an expected manner.

Both the Event Manager and Apple Event Manager rely on the services of the
Program-to-Program Communications (PPC) Toolbox to actually send and receive events
between applications. Your application can also directly access the PPC Toolbox if you
need to get additional control or services not provided by the Event Manager or Apple
Event Manager.

If your application supports publish and subscribe features, the Edition Manager sends
your application Apple events to notify it when new data is available for a subscriber or
to request that it create a new publisher.

For information on Apple events, publish and subscribe features, or direct access to the
PPC Toolbox, see Inside Macintosh: Interapplication Communication.

Designing Your Application 1

As previously described, you’ll need to make extensive use of this book and Macintosh
Human Interface Guidelines as you begin to design your application. Once you implement
the basic elements of a Macintosh application, you can begin to add features unique to
your application. Once again, you’ll find Macintosh Human Interface Guidelines and other
books in the Inside Macintosh library valuable tools as you create applications.

Contents 2-1

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0

Contents

2 Event Manager

Introduction to Events 2-4
Low-Level Events 2-8
Operating-System Events 2-10
High-Level Events 2-13
Priority of Events 2-15
Switching Contexts 2-15

About the Event Manager 2-16
Using the Event Manager 2-17

Obtaining Information About Events 2-18
Processing Events 2-21

Using the WaitNextEvent Function 2-22
Writing an Event Loop 2-24
Setting the Event Mask 2-26
Handling Events in a Dialog Box 2-29

Creating a Size Resource 2-30
Handling Low-Level Events 2-32

Responding to Mouse Events 2-33
Responding to Keyboard Events 2-38
Scanning for a Cancel Event 2-46
Responding to Update Events 2-47
Responding to Activate Events 2-50
Responding to Disk-Inserted Events 2-55
Responding to Null Events 2-57

Handling Operating-System Events 2-58
Responding to Suspend and Resume Events 2-60
Responding to Mouse-Moved Events 2-62

Handling High-Level Events 2-67
Responding to Events From Other Applications 2-69
Searching for a Specific High-Level Event 2-71
Determining the Sender of a High-Level Event 2-72

C H A P T E R 2

2-2 Contents

Sending High-Level Events 2-73
Requesting Return Receipts 2-77
Handling Apple Events 2-78

Event Manager Reference 2-78
Data Structures 2-79

The Event Record 2-79
The Target ID Record 2-81
The High-Level Event Message Record 2-82
The Event Queue 2-83

Event Manager Routines 2-84
Receiving Events 2-84
Sending Events 2-100
Converting Process Serial Numbers and Port Names 2-105
Reading the Mouse 2-108
Reading the Keyboard 2-110
Getting Timing Information 2-112

Application-Defined Routine 2-114
Filter Function for Searching the High-Level Event Queue 2-114

Resource 2-115
The Size Resource 2-115

Summary of the Event Manager 2-120
Pascal Summary 2-120

Constants 2-120
Data Types 2-122
Event Manager Routines 2-123
Application-Defined Routine 2-124

C Summary 2-125
Constants 2-125
Data Types 2-127
Event Manager Routines 2-128
Application-Defined Routine 2-129

Assembly-Language Summary 2-130
Data Structures 2-130
Trap Macros 2-130
Global Variables 2-131

Result Codes 2-132

C H A P T E R 2

2-3

Event Manager 2

This chapter describes how your application can use the Toolbox Event Manager to
receive information about actions performed by the user, to receive notice of changes in
the processing status of your application, and to communicate with other applications.

For example, you can retrieve information from the Toolbox Event Manager that gives
your application details about whether the user has pressed a key or the mouse button,
whether one of your application’s windows needs updating, or whether some other
hardware-related or software-related action requires a response from your application.

Your application also uses the Event Manager to support the cooperative, multitasking
environment available on Macintosh computers. This environment allows users to switch
between many open applications and allows other applications to receive background
processing time. By using Event Manager routines, you allow the system software to
coordinate the scheduling of processing time between your application and other
applications.

The Event Manager and Process Manager maintain the cooperative, multitasking
environment. The Process Manager coordinates the scheduling of applications, and the
Event Manager communicates information about changes in your application’s
processing status to your application.

See the chapter “Process Manager” in Inside Macintosh: Processes for complete information
on how the Process Manager schedules applications for execution.

You can use the Event Manager to communicate with other applications. Your application
can also communicate with other applications using the services of the Apple Event
Manager.

The Event Manager and Apple Event Manager routines that let your application
communicate with other applications depend on the services of the Program-to-Program
Communications (PPC) Toolbox. The services performed by the Event Manager and
Apple Event Manager meet the needs of most applications for interapplication
communication. However, to get additional control or capabilities not provided by the
Event Manager or Apple Event Manager, you can choose to access the PPC Toolbox
directly. The chapter “Program-to-Program Communications Toolbox” in Inside
Macintosh: Interapplication Communication describes the PPC Toolbox routines that are
available to your application.

For a comparison of the services provided by the Event Manager, Apple Event Manager,
and PPC Toolbox, see Inside Macintosh: Interapplication Communication. For additional
information about Apple events, including descriptions of how to process the required
Apple events, see Inside Macintosh: Interapplication Communication.

This chapter describes both the Toolbox Event Manager and the Operating System Event
Manager. The Operating System Event Manager maintains a queue in which it stores
hardware-related occurrences that you may want your application to respond to. The
Toolbox Event Manager communicates the information maintained by the Operating
System Event Manager to your application. In most cases, your application needs to
interact only with the Toolbox Event Manager. In this chapter, the name Event Manager
refers to the Toolbox Event Manager.

C H A P T E R 2

Event Manager

2-4 Introduction to Events

This chapter provides a general introduction to events and then explains how you can
use the Event Manager to

� receive keypresses and mouse clicks as input for your application

� receive indication that your application’s windows need to be activated or updated

� allow other applications to use the available system resources when your application
isn’t using them

� communicate with other applications

Introduction to Events 2

Most Macintosh applications receive information about hardware and software
occurrences that require a response from the application, through events. An event is the
means by which the Event Manager communicates information about user actions,
changes in the processing status of the application, and other occurrences that require a
response from the application.

The Event Manager communicates information about events that occur through the event
record. The EventRecord data type defines the event record. The event record contains
information about what type of event occurred (a mouse click or keypress, for example)
and contains additional information associated with the event (for example, for a
keypress the Event Manager also reports which key was pressed).

Most Macintosh applications are event-driven—that is, they respond to various changes
or occurrences and take action based on the nature of the event. Typically, a Macintosh
application repeatedly checks to see if an event has occurred and, if so, responds to the
event. If no events are pending, the application can choose to relinquish the processor for
a specified amount of time or can perform other tasks before checking again to see
whether an event has occurred.

Your application typically retrieves events from the Event Manager and also relinquishes
processor time by using the WaitNextEvent function. If any events are pending for
your application, the WaitNextEvent function returns the event to your application. If
no events are pending for your application, the WaitNextEvent function may allocate
processing time to other applications.

When multiple applications are open, the user chooses one to interact with at any given
time. The active application (or foreground process) is the one currently interacting with
the user. The foreground process displays its menu bar, and its windows are in front of
the windows of all other applications. (The term process refers to an open application or,
in some cases, an open desk accessory.)

There can be only one foreground process at any one time; however, multiple processes
can exist in the background. A background process is a process that is not currently
interacting with the user. The foreground process has first priority for accessing the
CPU. Other processes can access the CPU only when the foreground process yields time
to them.

C H A P T E R 2

Event Manager

Introduction to Events 2-5

By using WaitNextEvent to retrieve events, you allow other applications to make use of
processing time that your application would otherwise not use. When your application is
in the background, it in turn can receive processing time when other applications
relinquish the CPU. Using WaitNextEvent also allows users to switch between
multiple open applications.

An application that is in the background can get CPU time but can’t interact with the user
while it is in the background. (However, the user can choose to bring the application to
the foreground—for example, by clicking in one of the application’s windows.) An
application can also post a notification request using the Notification Manager if the
application is in the background and requires the user’s attention. Any application that
has the canBackground flag set in its size ('SIZE') resource is eligible to obtain access
to the CPU when it is in the background.

At any given time a process is either in the foreground or the background; a process can
switch between the two states at well-defined times.

The Event Manager ensures that switching between applications occurs in a smooth
fashion—by sending your application an event when it is about to be suspended and
sending it an event when it has processing time again and can resume executing. The
Event Manager and Process Manager coordinate this switching and scheduling of
processor time among many applications.

Your application can receive various types of events: low-level events, operating-system
events, and high-level events.

The Event Manager returns low-level events to your application for occurrences such as
the user pressing the mouse button, releasing the mouse button, pressing a key on the
keyboard, or inserting a disk. The Event Manager also returns low-level events to your
application if your application needs to activate (make changes to a window based on
whether it is in front or not) or update (redraw the contents of) one of its windows. When
your application requests an event and there are no other events to report, the Event
Manager returns a null event.

The Event Manager returns operating-system events to your application when the
processing status of your application is about to change or has changed. For example, if
a user brings your application to the foreground, the Process Manager sends an event
through the Event Manager to your application. Some of the work of reactivating your
application is done automatically, both by the Process Manager and by the Window
Manager; your application must take care of any further processing needed as a result of
your application being reactivated.

The Event Manager returns high-level events to your application as a result of
communication directed to your application from another application or process.

Low-level events, except for update events and null events, are always directed to the
foreground process. Operating-system events are also always directed to the foreground
process. High-level events, update events, and null events can be directed to the
foreground process or background processes.

C H A P T E R 2

Event Manager

2-6

Introduction to Events

You can specify which types of events you want your application to receive. You do this
by specifying an event mask as a parameter to various Event Manager routines. An

event
mask

 allows you to mask out the events you are not interested in receiving. For example,
you can accept all events except high-level events.

Events can originate from a number of different sources: the Operating System Event
Manager, Window Manager, Process Manager, and PPC Toolbox. Figure 2-1 shows the
relationships between the Toolbox Event Manager, other parts of the system software,
and your application.

Figure 2-1

Sources of events sent to your application

The Operating System Event Manager creates and maintains a queue referred to as the

Operating System event queue.

 The Operating System Event Manager detects and
reports low-level hardware-related events such as mouse clicks, keypresses, and disk
insertions. The Operating System Event Manager places these events in the Operating
System event queue. The Toolbox Event Manager retrieves events from this event queue
and returns events, one at a time at your application’s request, to your application.

Operating
System
event
queue

Operating System
Event Manager

Event 20

Event 19

Event 1

Window
Manager

Toolbox Event
Manager

Process
Manager

Event stream

PPC
Toolbox

Event 25

Event 24

Event 1

Event 10

Event 9

Event 1

Event 5

Event 4

Event 1

High-
level
event
queue

C H A P T E R 2

Event Manager

Introduction to Events 2-7

A maximum of 20 events can be pending in the Operating System event queue. If the
Operating System event queue becomes full, the Operating System Event Manager
begins to discard old events to make room for new ones as events are posted. The
Operating System Event Manager always discards the oldest event in the queue when
it must discard an event. However, this is not a common occurrence; your application
typically processes events much faster than the user can generate them. The actual
capacity of the event queue is determined by system startup information stored on
the startup volume; see the chapter “File Manager” in Inside Macintosh: Files for system
startup information.

The Event Manager can also report events from the Window Manager and Process
Manager. If a window needs to be updated, activated, or deactivated, the
Window Manager directs an event to the Toolbox Event Manager. Similarly, the
Process Manager directs an event to the Toolbox Event Manager if the processing
status of your application changes. The Toolbox Event Manager reports these events
to your application.

Note
On computers running System 6, MultiFinder provides some of
the capabilities supplied by the Process Manager in System 7. On
computers running System 6 without MultiFinder, only a single-
application environment is supported. �

Your application can use the Event Manager to send and receive high-level events. To
transmit high-level events between applications, the Event Manager uses the PPC
Toolbox on behalf of your application. For each open application capable of receiving
high-level events, the Event Manager maintains a separate queue, referred to as the
application’s high-level event queue, to store high-level events. The size of an
application’s high-level event queue is limited only by the amount of available memory.

Your application’s event stream consists of those events that are available to your
application for retrieval when it makes a request for an event. For example, when your
application is in the background, its event stream can contain only update events, null
events, and high-level events.

When your application asks the Event Manager for the next event, the Event Manager
returns the next available event according to its priority. In general, the Event Manager
returns events in this order of priority:

1. low-level events

2. operating-system events

3. high-level events

The next sections describe low-level events, operating-system events, and high-level
events in greater detail.

C H A P T E R 2

Event Manager

2-8 Introduction to Events

Low-Level Events 2
The Event Manager uses low-level events to report very low-level hardware and
software occurrences. Low-level events report

� actions by the user (such as pressing the mouse button, typing on the keyboard, or
inserting a disk)

� changes in windows on the screen

� that the Event Manager has no other events to report

Low-level events that report actions by the user include mouse-down, mouse-up,
key-down, key-up, auto-key, and disk-inserted events. The Event Manager reports any of
these events when the user performs the action associated with each event.

Mouse-down and mouse-up events report that the user pressed or released the mouse
button. For these events the Event Manager returns the location of the cursor at the time
the mouse button was pressed or released. Key-down and key-up events report that the
user pressed or released a key. Auto-key events report that the user has held a key down
for a certain amount of time. For keyboard-related events, the Event Manager reports
which key was pressed. For mouse-related and keyboard-related events, the Event
Manager also reports the state of the modifier keys (the Option, Command, Caps Lock,
Control, and Shift keys) at the time of the event.

When the user inserts a disk, the Operating System attempts to mount the volume on the
disk by calling the File Manager function PBMountVol. The Operating System Event
Manager then generates a disk-inserted event. If the user is interacting with a standard
file dialog box, the Standard File Package intercepts the disk-inserted event and handles
it. Otherwise, the event is left in the event queue for your application to retrieve. In most
cases your application can handle unexpected disk-inserted events by simply checking to
see if the volume was successfully mounted.

Update events and activate events are two types of low-level events that the Event
Manager can report as a result of changes in the appearance of windows on the screen.
For example, if a user is working with several open documents belonging to your
application, you can allow the user to switch from one document to another when the
user clicks in the appropriate window. You can determine whether the user clicked in
another window by using the Window Manager function FindWindow; if the user
clicked in another window, you can then use the Window Manager procedure
SelectWindow to generate the necessary activate events. Before the Event Manager
sends your application any activate events relating to this occurrence, the Window
Manager does some work for you, such as unhighlighting the deactivated window and
highlighting the newly activated window. At your application’s next request for an event,
the Event Manager returns an activate event.

An activate event indicates the window involved and whether the window is becoming
activated or deactivated. Your application should perform any other necessary actions to
complete the transformation of the window from active to inactive or vice versa. For
example, when a window becomes active, your application should show any scroll bars
and restore any selections.

C H A P T E R 2

Event Manager

Introduction to Events 2-9

Your application typically receives an activate event for the window being deactivated,
followed by an activate event for the window becoming active at your application’s next
request for an event.

Note
If the user switches between your application and another application
(by clicking in the window of another application, for example), your
application is responsible for activating or deactivating any windows
as appropriate. Your application is notified of this occurrence
through operating-system events. If your application has the
acceptSuspendResumeEvents and doesActivateOnFGSwitch
flags set in its 'SIZE' resource, your application is notified of the switch
through an operating-system event and does not receive a separate
activate event when the user switches between applications. �

The Window Manager generates update events to control the appearance of windows on
the screen. The Window Manager keeps track of the front-to-back ordering of windows
and allows windows to overlap other windows. The Window Manager coordinates the
display of windows. When one window covers another window and then the user moves
the first window, the Window Manager generates an update event so that the contents of
the newly exposed area can be updated. The Event Manager reports update events as
needed to the applications whose windows need updating. Unlike other low-level
events, update events can be directed to the foreground process or background processes.

Activate and update events generated by the Window Manager are not placed into the
Operating System event queue but are sent directly to the Event Manager.

The Event Manager reports a null event when your application requests an event and
your application’s event stream does not contain any of the requested event types. By
using the WaitNextEvent function, you can yield time to other processes when null
events are the only pending events for your application.

When your application receives a null event, your application can do idle processing
(such as blinking the caret) if it is in the foreground or do other tasks if it is in the
background. If you want your application to receive null events when it is in the
background, you must set the canBackground flag in your application’s 'SIZE'
resource. If your application does not perform any processing in response to null events
when it is in the background, then set the cannotBackground flag. If you set the
cannotBackground flag, the Event Manager does not report null events to your
application when it is in the background. However, the Event Manager still reports
update events (and high-level events if the isHighLevelEventAware flag is set in the
'SIZE' resource) to your application when it is in the background regardless of how the
background flag is set.

Figure 2-2 shows the various kinds of low-level events your application can receive. See
“Handling Low-Level Events” beginning on page 2-32 for complete details of how your
application should respond to low-level events.

C H A P T E R 2

Event Manager

2-10 Introduction to Events

Figure 2-2 Low-level events

Operating-System Events 2
The cooperative, multitasking environment allows the user to interact with your
application and with other applications. The Process Manager coordinates the scheduling
of applications, and the Event Manager communicates information about changes in the
operating status of applications to the applications involved.

For example, when your application is about to be switched into the background, the
Event Manager sends it a suspend event. Then, when your application is switched back
into the foreground, it receives a resume event. These types of events, as well as a special
type of mouse event, the mouse-moved event, are known as operating-system events.

Figure 2-3 illustrates how the Event Manager helps provide this cooperative,
multitasking environment. The Process Manager generates suspend, resume, and
mouse-moved events, and the Event Manager reports these events to applications.

Operating System
Event Manager

Event 20

Event 19

Event 1

Window
Manager

Activate
Update

Key-up
Key-down
Auto-key
Mouse-up
Mouse-down

Toolbox Event
Manager

Event stream

Disk-
inserted

Operating
System
event
queue

C H A P T E R 2

Event Manager

Introduction to Events 2-11

Figure 2-3 Operating-system events

Note
If your application sets the acceptSuspendResumeEvents and
doesActivateOnFGSwitch flags in its 'SIZE' resource, your
application is also responsible for activating or deactivating any
windows as appropriate in response to operating-system events. For
maximum compatibility, your application should set these flags and
handle suspend and resume events. See “The Size Resource” beginning
on page 2-115 for more information on these and other flags in the
'SIZE' resource. �

When your application receives a suspend event, it does not actually switch to the
background until it makes its next request to receive events from the Event Manager. At
the time that it receives the suspend event, your application should convert any private
scrap into the global scrap if necessary. Your application should hide scroll bars, remove
the highlighting from any selections, and hide any floating windows. If your application

Operating System
Event Manager

Toolbox Event
Manager

Suspend
Resume
Mouse-moved

Operating
System
event
queue

Event 20

Event 19

Event 1

Process
Manager

Event stream

C H A P T E R 2

Event Manager

2-12 Introduction to Events

shows a window that displays the Clipboard contents, you should hide this window also.
Then you should call WaitNextEvent to relinquish the CPU and allow the Operating
System to schedule other processes for execution. It is important to minimize the
processing you do in response to a suspend event so that the computer appears
responsive to the user.

When control returns to your application, the first event it receives is a resume event.
Your application should convert the global scrap back to its private scrap, if necessary.
Your application should also restore any windows to the state the user left them in at the
time of the previous suspend event. For example, your application should show any
scroll bars, highlight any selections, and show any floating windows. See “Responding to
Suspend and Resume Events” beginning on page 2-60 for complete details of how your
application should respond to these events.

The events that your application can receive in the background are update, null, and
high-level events. When your application is in the background, it should not perform any
processing that would make the foreground process appear unresponsive to the user.
When receiving events in the background, your application should perform any needed
action in response to an event and then quickly return.

Your application should never interact with the user when it is in the background. If you
need to notify the user of some special occurrence while your application is executing
in the background, you should use the Notification Manager to queue a notification
request. You should not attempt to display an alert box while your application is in the
background. Instead, your application can specify that the Notification Manager play
a sound, display an alert box, cause a small icon representing your application to
blink in alternation with the Application menu icon, display a diamond next to your
application’s name in the Application menu, or put a combination of these actions
into effect.

These actions are designed to alert the user that another application needs the user’s
attention. By using the Notification Manager you help maintain the user interface
principle of giving the user control, as the user can choose to bring the application
requesting attention to the foreground at the user’s convenience. See the chapter
“Notification Manager” in Inside Macintosh: Processes for examples of how to post
notification requests.

Another kind of operating-system event is the mouse-moved event. You can request that
the Event Manager send your application a mouse-moved event whenever the cursor
is outside of a region that you specify to the WaitNextEvent function. For example, you
can use mouse-moved events as a convenient way for your application to change the
appearance of the cursor as the user moves the cursor from the text area of a document to
the scroll bar. See “Responding to Mouse-Moved Events” beginning on page 2-62 for
detailed examples.

C H A P T E R 2

Event Manager

Introduction to Events 2-13

High-Level Events 2
The Event Manager provides routines that let applications communicate with each other
by exchanging high-level events. A high-level event is an event that your application can
send to another application to give it some information, to receive some information from
it, or to have it perform some action.

For example, your application can send a high-level event to another application
instructing that application to perform a specific action, such as adding a row to a
spreadsheet or changing the font size of a paragraph. Your application can also send a
high-level event to another application requesting information from that application—for
example, requesting a dictionary application to return the definition of a particular word.
When you send a high-level event to another application, you can also include additional
information or commands in an optional data buffer. For example, your application can
use a high-level event to send a list of new words and definitions to a dictionary
application.

Note
High-level events are available only in system software
version 7.0 or later. �

Figure 2-4 on the next page shows three different applications communicating with each
other by sending and receiving high-level events. The Event Manager uses the PPC
Toolbox to transmit high-level events. The Event Manager maintains a high-level event
queue for each application that has identified itself as capable of receiving high-level
events. The high-level event queues are limited in size only by available memory.

For effective communication between applications, your application must define the set
of high-level events it responds to and let other applications know the events it accepts.
By implementing the capabilities to send events to and receive events from other
applications, you allow other applications to interact with your application and provide
enhanced capabilities to your users.

Generally, there is no restriction on the type of processing that one application can
request from another by sending it a high-level event. For a high-level event sent by one
application to be understood by another application, however, the sender and receiver
must agree on a protocol, that is, on the way the event is to be interpreted. Apple events
are high-level events whose structure and interpretation are determined by the Apple
Event Interprocess Messaging Protocol (AEIMP).

Your application should support the required Apple events, as described in Inside
Macintosh: Interapplication Communication. The Finder uses the required Apple events to
provide your application with information when it is opened and to give it the names of
documents to open or print when the user opens or prints documents from the Finder.

C H A P T E R 2

Event Manager

2-14 Introduction to Events

Figure 2-4 High-level events

In addition, you may want your application to support other common Apple events.
For example, the Edition Manager uses Apple events to communicate information
about document sections among the various applications that may publish sections
or subscribe to them. The Edition Manager sends the appropriate Apple events
to applications that want to maintain up-to-date subscriber sections within their
documents. If a user alters a section of a document that has previously been published
and updates the edition, the Edition Manager might post an Apple event to the
application indicating that a new edition is available. The application receiving the Apple
event can then update the subscriber or ignore the information, as the user dictates. For
complete information on responding to Apple events sent by the Edition Manager, see
the chapter “Edition Manager” in Inside Macintosh: Interapplication Communication.

Operating System
Event Manager

Operating
System
event
queue

High-level
events

Toolbox Event
Manager

Event stream

PPC
Toolbox

Event 20

Event 19

Event 1

Event 25

Event 24

Event 10

Event 9

Event 5

Event 4

High-
level
event
queueEvent 1 Event 1Event 1

C H A P T E R 2

Event Manager

Introduction to Events 2-15

To ensure compatibility and smooth interaction with other Macintosh applications,
you should use the Apple event protocol for high-level events whenever possible.
You should define new protocols only if your application must communicate with
applications on other computers that use different protocols or if your application
has other special needs. For complete information about Apple events and about
implementing the required set of Apple events, see Inside Macintosh: Interapplication
Communication.

Note
All Macintosh system software that sends or receives high-level events
uses the Apple events protocol. �

Priority of Events 2
Each type of event has a certain priority. The Event Manager returns events in this order
of priority:

1. activate events

2. mouse-down, mouse-up, key-down, key-up, and disk-inserted events in FIFO (first-in,
first-out) order

3. auto-key events

4. update events (in front-to-back order of windows)

5. operating-system events (suspend, resume, mouse-moved)

6. high-level events

7. null events

Several of the Event Manager routines can be restricted to operate on one or more specific
types of events. You do this by disabling (or “masking out”) the events you are not
interested in receiving. See “Setting the Event Mask” beginning on page 2-26 for details
about specifying the types of events you wish to receive.

Switching Contexts 2
Processes running in the background receive processing time when the foreground
process makes an event call (that is, calls WaitNextEvent or EventAvail) and there
are no events pending for that foreground process. A process running in the background
should relinquish the CPU regularly to ensure a timely return to the foreground process
when necessary.

In System 7 (or with MultiFinder in earlier versions), the available processing time is
distributed among multiple processes through a procedure known as context switching (or
just switching). All switching occurs at a well-defined time, namely, when an application
calls WaitNextEvent. When a context switch occurs, the Process Manager allocates
processing time to a process other than the one that had been receiving processing time.
Two types of context switching may occur: major and minor.

C H A P T E R 2

Event Manager

2-16 About the Event Manager

A major switch is a complete context switch: an application’s windows are moved from
the back to the front, or vice versa. In a major switch, two applications are involved, the
one being switched to the foreground and the one being switched to the background. The
Process Manager switches the A5 worlds of both applications, as well as the relevant
low-memory environments. If those applications receive suspend and resume events,
they are so notified at the time that a major switch occurs.

A minor switch occurs when the Process Manager gives time to a background process
without bringing the background process to the front. The two processes involved in a
minor switch can be two background processes or a foreground process and a
background process. As in a major switch, the Process Manager switches the A5 worlds
and the low-memory environments of the two processes. However, the order of windows
is not switched, and neither process receives either suspend or resume events.

When the frontmost window is an alert box or a modal dialog box, major switching does
not occur, although minor switching can. To determine whether major switching can
occur, the Operating System checks (among other things) to see if the window definition
procedure of the frontmost window is dBoxProc, because the type dBoxProc is
specifically reserved for alert boxes and modal dialog boxes. (If the frontmost window is
a movable modal dialog box, major switching can still occur.)

Note
Your application can also get switched out if it calls a system software
routine that makes an event call. For example, when your application
calls ModalDialog, a minor switch can occur. �

Your application can receive processing time and perform tasks in the background,
but your application should not interact with the user or perform tasks that would slow
down the responsiveness of the foreground process.

Your application indicates scheduling options to the Operating System, such as whether
the application can use null-event processing time when in the background, whether it
can accept suspend and resume events, and so forth, by setting flags in its size ('SIZE')
resource. Every application executing in System 7, as well as every application executing
in System 6 with MultiFinder, should contain a 'SIZE' resource. See “Creating a Size
Resource” beginning on page 2-30 for details on how to specify this information.

About the Event Manager 2

The Toolbox Event Manager provides routines that communicate information about
actions performed by the user and give notice of changes in the processing status of your
application. The Event Manager also provides routines that your application can use to
communicate with other applications. You can control the scheduling of your application
for execution by using the Event Manager.

C H A P T E R 2

Event Manager

Using the Event Manager 2-17

The rest of this chapter explains

� how to structure your main event loop to receive and process events

� how to create a 'SIZE' resource to specify your application’s memory requirements
and scheduling options

� how to respond to most types of events

� how to receive and process high-level events

� how to send high-level events to other applications

Using the Event Manager 2

You can use the Event Manager to receive information about hardware-related events,
about changes in the appearance of your application’s windows, or about changes in
the operating status of your application. You can also use the Event Manager to
communicate directly with other applications. This communication can include sending
events to other applications, receiving events from other applications, and searching for
specific events from other applications.

Your application can both send and receive high-level events, but it generally only
receives low-level events and should not send them. Your application receives low-level
events, operating-system events, and high-level events in the same way, which is by
asking the Event Manager for the next available event. If the event your application
receives is a high-level event, your application might need to use another Event Manager
or Apple Event Manager routine to retrieve an optional data buffer and additional
information accompanying that event.

Before using the Event Manager, you can use the Gestalt function to determine if
certain features of the Event Manager are available. See the chapter “Gestalt Manager” in
Inside Macintosh: Operating System Utilities for information on the Gestalt function.

If your application sends or receives high-level events, you should use the Gestalt
function with the gestaltPPCToolboxAttr selector to determine whether the PPC
Toolbox is present. Use the Gestalt function with the gestaltOSAttr selector to see if
the Process Manager is available. If the PPC Toolbox and the Process Manager are
present, then the system software provides support for high-level events.

If your application sends or receives Apple events, use the Gestalt function with the
gestaltAppleEventsAttr selector to determine whether the Apple Event Manager
is available.

Your application needs to initialize QuickDraw, the Font Manager, and the Window
Manager before using the Event Manager. Your application can accomplish this
initialization by using the InitGraf, InitFonts, and InitWindows procedures.

C H A P T E R 2

Event Manager

2-18 Using the Event Manager

When your application starts, you can call the FlushEvents procedure to empty
the Operating System event queue of any low-level events left unprocessed by
another application. For example, you might want to remove any mouse-down
events or keyboard events that the user might have entered while the Finder launched
your application.

This section shows how to retrieve events from the Event Manager, how to mask out
unwanted events, how to specify memory and scheduling options for your application,
and how to handle each type of event received from the Event Manager.

Obtaining Information About Events 2
You get information about events through the event record. The EventRecord data type
defines the event record and has this structure:

TYPE EventRecord =

RECORD

what: Integer; {event code}

message: LongInt; {event message}

when: LongInt; {ticks since startup}

where: Point; {mouse location}

modifiers: Integer; {modifier flags}

END;

Field descriptions

what The what field indicates the type of event received. The type of
event can be identified by these constants:

CONST

nullEvent = 0; {no other pending events}

mouseDown = 1; {mouse button pressed}

mouseUp = 2; {mouse button released}

keyDown = 3; {key pressed}

keyUp = 4; {key released}

autoKey = 5; {key repeatedly held down}

updateEvt = 6; {window needs updating}

diskEvt = 7; {disk inserted}

activateEvt = 8; {activate/deactivate window}

osEvt = 15;{operating-system event-- }

 { resume, suspend, or }

 { mouse-moved}

kHighLevelEvent = 23;{high-level event}

C H A P T E R 2

Event Manager

Using the Event Manager 2-19

message The message field contains additional information associated with
the event. The interpretation of this information depends on the
event type. The contents of the message field for each event type
are summarized here:

when The when field indicates the time when the event was posted (in
ticks since system startup). When needed, you can use the when
field to compare how much time has elapsed between successive
mouse events.

where For low-level events and operating-system events, the where field
contains the location of the cursor at the time the event was posted
(in global coordinates).
For high-level events, the where field contains a second event
specifier, the event ID. The event ID defines the particular type of
event within the class of events defined by the message field of the
high-level event. For high-level events, you should interpret the
where field as having the data type OSType, not Point.

Event type Event message

null, mouse-up,
mouse-down

Undefined.

key-up, key-down,
auto-key

Character code and virtual key code in
low-order word. For Apple Desktop Bus
(ADB) keyboards, the low byte of the
high-order word contains the ADB address
of the keyboard where the keyboard event
occurred. The high byte of the high-order
word is reserved.

update, activate Pointer to the window to update, activate, or
deactivate.

disk-inserted Drive number in low-order word, File
Manager result code in high-order word.

resume The suspendResumeMessage constant in
bits 24–31 and a 1 in bit 0 to indicate the
event is a resume event. Bit 1 contains either
a 1 or a 0 to indicate if Clipboard conversion
is required, and bits 2–23 are reserved.

suspend The suspendResumeMessage constant in
bits 24–31 and a 0 in bit 0 to indicate the
event is a suspend event. Bit 1 is undefined,
and bits 2–23 are reserved.

mouse-moved The mouseMovedMessage constant in bits
24–31. Bits 2–23 are reserved, and bit 0 and
bit 1 are undefined.

high-level Class of events to which the high-level event
belongs. The message and where fields of
a high-level event define the specific type of
high-level event received.

C H A P T E R 2

Event Manager

2-20 Using the Event Manager

modifiers The modifiers field contains information about the state of the
modifier keys and the mouse button at the time the event was
posted. For activate events, this field also indicates whether the
window should be activated or deactivated. In System 7 it also
indicates whether a mouse-down event caused your application to
switch to the foreground.

Each of the modifier keys is represented by a specific bit in the modifiers field of the
event record. Figure 2-5 shows how to interpret the modifiers field. You can examine
the modifiers field of the event record to determine which, if any, of the modifier keys
were pressed at the time of the event. The modifier keys include the Option, Command,
Caps Lock, Control, and Shift keys. If your application attaches special meaning to any of
these keys in combination with other keys or when the mouse button is down, you can
test the state of the modifiers field to determine the action your application should
take. For example, you can use this information to determine whether the user pressed
the Command key and another key at the same time to make a menu selection.

Figure 2-5 The modifiers field of the event record

Bit 0 in the modifiers field gives additional information that is valid only if the event is
an activate event or a mouse-down event.

For activate events, the value of bit 0 is 1 if the window pointed to by the event message
should be activated, and the value is 0 if the window should be deactivated.

For mouse-down events in System 7, bit 0 indicates whether a mouse-down event caused
your application to switch to the foreground. If so, bit 0 contains 1; otherwise,
it contains 0.

1 if right Control key down, 0 if not

1 if right Option key down, 0 if not

1 if right Shift key down, 0 if not

1 if Control key down, 0 if not

1 if Option key down, 0 if not

1 if Caps Lock key down, 0 if not

1 if Shift key down, 0 if not

1 if Command key down, 0 if not

1 if mouse button up, 0 if not

1 if window being deactivated or if mouse-down event caused a foreground switch, 0 if deactivated

* Reserved for future use

1 5 1 0 8 7 6 5 4 3 2 1 0

*
1 4 1 3 1 2 1 1 9

* * * * *
B i t s

C H A P T E R 2

Event Manager

Using the Event Manager 2-21

You can also use these constants as masks to test the setting of various bits in the
modifiers field:

CONST activeFlag = 1; {set if window being activated or if }

{ mouse-down event caused fgnd switch}

btnState = 128; {set if mouse button up}

cmdKey = 256; {set if Command key down}

shiftKey = 512; {set if Shift key down}

alphaLock = 1024; {set if Caps Lock key down}

optionKey = 2048; {set if Option key down}

controlKey = 4096; {set if Control key down}

Note that the bit giving information about the mouse button is set if the mouse button is
up. The bits for the modifier keys are set if the corresponding key is down.

Some keyboards do not distinguish between the right or left Control, Shift, and Option
keys; for example, the virtual key code for the right Shift key and left Shift key might be
the same. For these keyboards, if the user presses the Control, Shift, or Option key, the
Event Manager sets only the bits corresponding to the shiftKey, optionKey, and
controlKey constants. For keyboards that do distinguish between these keys, the Event
Manager sets the bits in the modifiers field to indicate whether the right or left Control,
Shift, or Option keys were pressed. For example, the Event Manager sets bit 13 in the
modifiers field if the user presses the right Shift key and sets bit 9 if the user presses
the left Shift key. In most cases your application should not need to distinguish between
the left and right Control, Shift, and Option keys.

Processing Events 2
Applications receive events one at a time by asking the Event Manager for the next
available event. You use Event Manager routines to receive (or in the case of
EventAvail, simply to look at) the next available event that is pending for your
application. You supply an event record as a parameter to the Event Manager routines
that retrieve events. The Event Manager fills out the event record with the relevant
information about that event and returns it to your application.

Your application can use the WaitNextEvent function to retrieve events from the Event
Manager. If no events are pending for your application, the WaitNextEvent function
may allocate processing time to other applications. If an event is pending for your
application, the WaitNextEvent function returns the next available event of a specified
type and removes the returned event from your application’s event stream.

The EventAvail function gets the next available event of a specified type and returns it
to your application, but does not remove the event from your application’s event stream.
EventAvail thus allows your application to look at an event in the event stream
without actually processing the event.

C H A P T E R 2

Event Manager

2-22 Using the Event Manager

Note
You can also use the GetNextEvent function to retrieve and remove an
event; however, you should use WaitNextEvent to provide greater
support for multitasking. �

Using the WaitNextEvent Function 2

Your application typically calls WaitNextEvent repeatedly. The next section, “Writing
an Event Loop,” shows how to use WaitNextEvent with other routines to process
events. This discussion focuses on the WaitNextEvent function itself.

The WaitNextEvent function requires four parameters:

� an event mask (eventMask)

� an event record (theEvent)

� a sleep value (sleep)

� a mouse region (mouseRgn)

When WaitNextEvent returns, the event record contains information about the
retrieved event, if any.

The eventMask parameter specifies the events you are interested in receiving.
WaitNextEvent returns events one at a time, in order of priority and at your
application’s request, according to the value you specify in the eventMask parameter. If
your application specifies that it doesn’t want to receive particular types of events, those
events are not returned to your application when it makes a request for an event.
However, those events are not removed from the event stream. (To remove events from
the Operating System event queue, you can use the FlushEvents procedure with a
mask specifying only those events you wish to remove from the queue.) See “Setting the
Event Mask” beginning on page 2-26 for examples of how to use constants to set the
value of the eventMask parameter.

The sleep parameter specifies the amount of time (in ticks) for which your application
agrees to relinquish the processor if no events are pending for it. When that time expires
or when an event becomes available for your application, the Process Manager schedules
your application for execution. In general, you should specify a value greater than 0 in
the sleep parameter so that other applications can receive processing time if they need
it. If the user is editing text and your application needs to blink the caret at periodic
intervals or uses TextEdit to blink the caret, your application should not specify a value
greater than the value returned by the GetCaretTime function.

In the mouseRgn parameter you specify a screen region inside of which the Event
Manager does not generate mouse-moved events. You should specify the region in
global coordinates. If the user moves the cursor outside of this region and your
application is the foreground process, the Event Manager reports mouse-moved events.
Your application should recalculate the mouseRgn parameter when it receives a
mouse-moved event; otherwise it will continue to receive mouse-moved events as long as
the cursor is outside of the original region. If you pass an empty region or a NIL region
handle, the Event Manager does not return mouse-moved events. You can use the

C H A P T E R 2

Event Manager

Using the Event Manager 2-23

mouseRgn parameter as a convenient way to change the shape of the cursor—for
example, when the user moves the cursor from the content area of a window to the scroll
bar. See “Responding to Mouse-Moved Events” beginning on page 2-62 for information
on how to set and change the mouseRgn parameter.

Listing 2-1 shows an example of using the WaitNextEvent function.

Listing 2-1 Using the WaitNextEvent function

VAR

eventMask: Integer;

event: EventRecord;

cursorRgn: RgnHandle;

mySleep: LongInt;

gotEvent: Boolean;

eventMask := everyEvent; {accept all events}

mySleep := MyGetSleep; {set an appropriate sleep value}

cursorRgn := MyGetRgn; {set the region as appropriate}

gotEvent := WaitNextEvent(eventMask,event,mySleep,cursorRgn);

The code in Listing 2-1 specifies that WaitNextEvent should return the next pending
event of any kind, give up the processor if no events are pending, and return a
mouse-moved event if the user moves the cursor out of the specified region.

The WaitNextEvent function returns after retrieving an event or after the time specified
in the sleep parameter has expired. If there are no events of the types specified by the
eventMask parameter (other than null events) pending for your application, and the
time specified in the sleep parameter has not expired, WaitNextEvent may allocate
processing time to background processes. Once an
event for your application occurs or the time specified in the sleep parameter
expires, your application receives processing time again.

WaitNextEvent returns a function result of TRUE if it has retrieved any event other than
a null event. If there are no events of the types specified by the eventMask parameter
(other than null events) pending for the application, WaitNextEvent
returns FALSE.

Before returning an event to your application, WaitNextEvent performs other
processing and may intercept the event. The WaitNextEvent function:

� Calls the Operating System Event Manager function SystemEvent to determine
whether the event should be handled by your application or the Operating System.
For example, if the event is a Command–Shift–number key sequence, the Event
Manager intercepts the event and calls the corresponding 'FKEY' resource to perform
the associated action.

� Makes the alarm go off if the alarm is set and the current time is the alarm time. The
user sets the alarm using the Alarm Clock desk accessory.

C H A P T E R 2

Event Manager

2-24 Using the Event Manager

� Calls the SystemTask procedure, which gives time to each open desk accessory or
device driver to perform any periodic action defined for it. A desk accessory or device
driver specifies how often the periodic action should occur, and SystemTask gives
time to the desk accessory or device driver at the appropriate interval.

In System 7, the WaitNextEvent function reports a suspend event to your
application when

� your application is in the foreground and the user opens a desk accessory or other
item from the Apple menu,

� the user clicks in the window belonging to a desk accessory or another application, or

� the user chooses another process from the Application menu.

After your application is switched out, the Event Manager directs events (other than
events your application can receive in the background) to the newly activated process
until the user switches back to your application or another application.

Writing an Event Loop 2

In applications that are event-driven (that is, applications that decide what to do at any
time by receiving and responding to events), you can obtain information about pending
events by calling Event Manager routines. Since you call these routines repeatedly, the
section of code in which you request events from the Event Manager usually takes the
form of a loop; this section of code is called the event loop.

Listing 2-2 shows a simple event loop (an application-defined procedure called
MyEventLoop) for an application running in System 7.

Listing 2-2 An event loop

PROCEDURE MyEventLoop;

VAR

cursorRgn: RgnHandle;

gotEvent: Boolean;

event: EventRecord;

BEGIN

cursorRgn := NewRgn; {pass an empty region the first time thru}

REPEAT

gotEvent := WaitNextEvent(everyEvent, event, MyGetSleep,

cursorRgn);

IF (event.what <> kHighLevelEvent) AND (NOT gInBackground)

THEN MyAdjustCursor(event.where, cursorRgn);

IF gotEvent THEN {the event isn’t a null event, }

DoEvent(event) { so handle it}

ELSE {no event (other than null) to handle }

DoIdle(event); { right now, so do idle processing}

UNTIL gDone; {loop until user quits}

END;

C H A P T E R 2

Event Manager

Using the Event Manager 2-25

The MyEventLoop procedure repeatedly uses WaitNextEvent to retrieve events. The
WaitNextEvent function returns a Boolean value of FALSE if there are no events of the
specified types other than null events pending for the application. WaitNextEvent
returns TRUE if it has retrieved any event other than a null event.

After WaitNextEvent returns, the MyEventLoop procedure first calls an application-
defined routine, MyAdjustCursor, to adjust the cursor as necessary. You usually adjust
the cursor in response to mouse-moved events, and often in response to other events as
well. This code adjusts the cursor once every time through the event loop, when the
application receives any event other than a high-level event. The code does not adjust the
cursor if the event is a high-level event, because the where field of a high-level event
contains the event ID, not the location of the cursor. The code also does not adjust the
cursor if this application is in the background, as the foreground process is responsible
for setting the appearance of the cursor.

If WaitNextEvent retrieved any event other than a null event, the event loop calls
DoEvent, an application-defined procedure, to process the event. Otherwise, the
procedure calls an application-defined idling procedure, DoIdle.

Note
If your application uses modeless dialog boxes, you need to
appropriately handle events in them. You can choose to handle events for
modeless dialog boxes using the same routines that you use to handle
events in other windows; this is the approach used throughout this
chapter. Alternatively, you can choose to call the IsDialogEvent
function in your event loop. See “Handling Events in a Dialog Box” on
page 2-29 for information on handling events in alert boxes, modal
dialog boxes, movable modal dialog boxes, and modeless dialog boxes.
For additional information on dialog boxes, see the chapter “Dialog
Manager” in this book. �

If you intend to design your application to run in either a single-application environ-
ment (such as System 6 without MultiFinder) or a multiple-application environment,
the very beginning of your event loop should test to make sure the WaitNextEvent
function is available. If WaitNextEvent is not available, your code should use
GetNextEvent to retrieve events. If your code uses GetNextEvent, it should also
call SystemTask to allow desk accessories to perform periodic actions. However,
your code should always use WaitNextEvent if it is available, rather than
GetNextEvent. If your application calls WaitNextEvent, it should not call the
SystemTask procedure.

The event loop shown in Listing 2-2 calls an application-defined procedure, DoEvent, to
determine what kind of event the call to WaitNextEvent retrieved. Listing 2-3 defines a
simple DoEvent procedure. The DoEvent procedure examines the value of the what
field of the event record to determine the type of event received and then calls an
appropriate application-defined routine to further process the event.

C H A P T E R 2

Event Manager

2-26 Using the Event Manager

Listing 2-3 Processing events

PROCEDURE DoEvent (event: EventRecord);

VAR

window: WindowPtr;

activate: Boolean;

BEGIN

CASE event.what OF

mouseDown:

DoMouseDown(event);

mouseUp:

DoMouseUp(event);

keyDown, autoKey:

DoKeyDown(event);

activateEvt:

BEGIN

window := WindowPtr(event.message);

activate := BAnd(event.modifiers, activeFlag) <> 0;

DoActivate(window, activate, event);

END;

updateEvt:

DoUpdate(WindowPtr(event.message));

diskEvt:

DoDiskEvent(event);

osEvt:

DoOSEvent(event);

kHighLevelEvent:

DoHighLevelEvent(event);

END; {of case}

END;

The next sections describe how to set the event mask, handle events in dialog boxes,
and create your application’s 'SIZE' resource. Following sections show code that can
handle each kind of event.

Setting the Event Mask 2

Several of the Event Manager routines can be restricted to operate on a specific event
type or group of types. You do this by specifying the event types you want your
application to receive, thereby disabling (or “masking out”) the events you are not
interested in receiving. To specify which event types an Event Manager routine governs,
you supply a parameter known as an event mask.

The event mask is an integer with one bit position for each event type. If the bit
representing a particular event type is set, then the Event Manager returns events of

C H A P T E R 2

Event Manager

Using the Event Manager 2-27

that type. If the bit is set to 0, the Event Manager does not return events of that type. To
accept all types of events, set every bit of the event mask to 1. You can do this using the
constant everyEvent.

CONST everyEvent = -1; {every event}

Figure 2-6 shows the bits corresponding to each event type in the event mask.

Figure 2-6 The event mask

You can use these constants when referring to the bits in the event mask that correspond
to each individual event type:

CONST mDownMask = 2; {mouse-down event (bit 1)}

mUpMask = 4; {mouse-up event (bit 2)}

keyDownMask = 8; {key-down event (bit 3)}

keyUpMask = 16; {key-up event (bit 4)}

autoKeyMask = 32; {auto-key event (bit 5)}

updateMask = 64; {update event (bit 6)}

diskMask = 128; {disk-inserted event (bit 7)}

activMask = 256; {activate event (bit 8)}

highLevelEventMask = 1024; {high-level event (bit 10)}

osMask = -32768; {operating-system event (bit 15)}

Operating system event

High-level event

Activate event

Disk-inserted event

Update event

Auto-key event

Key-up event

Key-down event

Mouse-up event

Mouse-down event

* Reserved for future use

1 5 1 0 8 7 6 5 4 3 2 1 0

*
1 4 1 3 1 2 1 1 9

* * * * *
B i t s

C H A P T E R 2

Event Manager

2-28 Using the Event Manager

You can select any subset of events by adding or subtracting these constants. For
example, you can use this code to accept only high-level events and mouse-down events
and mask out all other events:

myErr := WaitNextEvent(highLevelEventMask + mDownMask, myEvent,

 mySleep, myMRgnHnd);

The everyEvent constant indicates that you wish to receive every type of event. To
accept all events except mouse-up events, you can use the code:

myErr := WaitNextEvent(everyEvent - mUpMask, myEvent, mySleep,

 myMRgnHnd);

Masking out specific types of events does not remove those events from the event stream.
If a type of event is masked out, the Event Manager simply ignores it when reporting
events from the event stream. Note that you cannot mask out null events by setting the
event mask. The Event Manager always returns a null event if no other events are
pending. However, if you do not want the Event Manager to report null events to your
application when it is in the background, you can set the cannotBackground flag in
your application’s 'SIZE' resource.

In most cases you should always use everyEvent as your event mask. The user expects
most applications to respond to keyboard, mouse, update, and other events.

The types of events returned to your application are also affected by the system event
mask. The Event Manager maintains a system event mask for each application. The
system event mask controls which low-level event types get posted in the Operating
System event queue. The Event Manager uses the system event mask of the current
process (the process that is currently executing and the process associated with the
CurrentA5 global variable) when determining which low-level events to post in the
Operating System event queue. The system event mask is an integer with 1 bit for
each corresponding low-level event type. These constants refer to the bits that represent
the corresponding low-level event types in the system event mask:

CONST mDownMask = 2; {mouse-down (bit 1)}
mUpMask = 4; {mouse-up (bit 2)}
keyDownMask = 8; {key-down (bit 3)}
keyUpMask = 16; {key-up (bit 4)}
autoKeyMask = 32; {auto-key (bit 5)}
diskMask = 128; {disk-inserted (bit 7)}

When a low-level event (other than an update or activate event) occurs, the Operating
System Event Manager posts the low-level event in the Operating System event queue
only if the bit corresponding to the low-level event type is set in the system event mask of
the current process. When your application starts, the Operating System initializes the
system event mask of your application to post mouse-up, mouse-down, key-down,
auto-key, and disk-inserted events in the Operating System event queue. Thus, the
system event mask has this initial setting:

systemEventMask := everyEvent - keyUpMask;

C H A P T E R 2

Event Manager

Using the Event Manager 2-29

Your application should not change the system event mask except to enable key-up
events if your application needs to respond to key-up events. (Most applications ignore
key-up events.) If your application needs to receive key-up events, you can change the
system event mask using the Operating System Event Manager procedure
SetEventMask. Note that your application cannot rely on receiving key-up events when
it is not the current process. For example, if your application is the foreground (and
current) process and a minor switch occurs, the Event Manager uses the system event
mask of the background process (now the current process) when posting low-level event
types. When your application becomes the current process again, the Event Manager uses
the system event mask of your application when posting low-level events.

Handling Events in a Dialog Box 2

If your application uses alert boxes, modal dialog boxes, movable modal dialog boxes,
or modeless dialog boxes, you need to make sure your application handles events for
them appropriately.

To display and handle events in alert boxes, you use the Dialog Manager functions
Alert, NoteAlert, CautionAlert, and StopAlert. The Dialog Manager handles all
of the events generated by the user until the user clicks a button (typically the OK or
Cancel button). When the user clicks the OK or Cancel button, the alert box functions
highlight the button that was clicked, close the alert box, and report the user’s selection
to your application. Your application is responsible for performing the appropriate action
associated with that button.

For modal dialog boxes, you can use the Dialog Manager procedure ModalDialog. The
Dialog Manager handles most of the user interaction until the user selects an item. The
ModalDialog procedure then reports that the user selected an enabled item, and your
application is responsible for performing the action associated with that item. Your
application typically calls ModalDialog repeatedly, responding to clicks on enabled
items as reported by ModalDialog, until the user selects OK or Cancel.

For alert boxes and modal dialog boxes, you should also supply an event filter function
as one of the parameters to the alert box functions or ModalDialog procedure. As the
user interacts with the alert or modal dialog box, these functions pass events to your
event filter function before handling each event. Your event filter function can handle any
events not handled by the Dialog Manager or, if necessary, can choose to handle events
normally handled by the Dialog Manager. For more information on filter functions for
alert and dialog boxes, see the chapter “Dialog Manager” in this book.

To handle events in movable modal dialog boxes, you can use the Dialog Manager
functions IsDialogEvent and DialogSelect or you can use other Toolbox routines to
handle events without using the Dialog Manager.

For modeless dialog boxes, you can choose to handle events in them using an approach
similar to the one you use to handle events in other windows; that is, when you receive
an event, you first determine the type of event that occurred and then take the
appropriate action based on the type of window that is in front. If a modeless dialog box
is in front, you can provide code that takes any actions specific to that modeless dialog
box and call the DialogSelect function to handle any events that your code doesn’t

C H A P T E R 2

Event Manager

2-30 Using the Event Manager

handle. This is the approach used throughout this chapter. Alternatively, you can choose
to call the IsDialogEvent function in your event loop. If you do this, you can use the
IsDialogEvent function to determine whether the event involves a modeless dialog
box that belongs to your application. If the event involves a modeless dialog box
(including null events) and a modeless dialog box is active, IsDialogEvent returns
TRUE. Otherwise, IsDialogEvent returns FALSE.

If IsDialogEvent returns TRUE, your application can check to see what type of event
occurred and, depending on the type of event, it can choose to handle the event itself.

Regardless of the approach you use, if your application chooses not to handle the event,
it should call DialogSelect. The DialogSelect function handles events for modeless
dialog boxes (including null events). It also blinks the caret in editable text items when
necessary.

For more information on the DialogSelect function and events in dialog boxes, see the
chapter “Dialog Manager” in this book.

Creating a Size Resource 2
Your application should include a size ('SIZE') resource. You use a 'SIZE' resource to
inform the Operating System about the memory size requirements for your application
so that the Operating System can set up a partition of the appropriate size for your
application. You also use the 'SIZE' resource to indicate certain scheduling options to
the Operating System, such as whether your application can accept suspend and
resume events.

You can also specify additional information in the 'SIZE' resource in System 7,
indicating whether your application is 32-bit clean, whether your application supports
stationery documents, whether your application uses TextEdit’s inline input services,
whether your application wishes to receive notification of the termination of any applica-
tions it has launched, and whether your application wishes to receive high-level events.

A 'SIZE' resource consists of a 16-bit flags field, followed by two 32-bit size fields. The
flags field specifies operating characteristics of your application, and the size fields
indicate the minimum and preferred partition sizes for your application. The minimum
partition size is the actual limit below which your application will not run. The preferred
partition size is the memory size at which your application can run most effectively and
that the Operating System attempts to secure upon launch of your application. If that
amount of memory is unavailable, your application is placed into
the largest contiguous block available, provided that it is larger than the specified
minimum size.

Note
If the amount of available memory is between the minimum and the
preferred sizes, the Finder displays a dialog box asking if the user wants
to run the application using the amount of memory available. If your
application does not have a 'SIZE' resource, it is assigned a default
partition size of 512 KB and the Process Manager uses a default value
of FALSE for all specifications normally defined by constants in the
flags field. �

C H A P T E R 2

Event Manager

Using the Event Manager 2-31

When you define a 'SIZE' resource, you should give it a resource ID of –1. A user can
modify the preferred size in the Finder’s information window for your application. If the
user does alter the partition size, the Operating System creates a new 'SIZE' resource
having a resource ID of 0. At application launch time, the Process Manager looks for a
'SIZE' resource with ID 0; if this resource is not found, it uses your original 'SIZE'
resource with ID –1. This new 'SIZE' resource is also created when the user modifies
any of the other settings in the resource.

When creating a 'SIZE' resource, you first need to determine the various operating
characteristics of your application. For example, if your application has nothing useful to
do when it is in the background, then you should not set the canBackground flag.
Similarly, if you have not tested your application in an environment that uses all 32 bits
of a handle or pointer for memory addresses, then you should not set the
is32BitCompatible flag.

Listing 2-4 shows the Rez input for a sample 'SIZE' resource. (Rez is a resource
compiler available with the MPW environment.)

Listing 2-4 The Rez input for a sample 'SIZE' resource

resource 'SIZE' (-1) {

reserved, /*reserved*/

acceptSuspendResumeEvents, /*accepts suspend&resume events*/

reserved, /*reserved*/

canBackground, /*can use background null */

/* events*/

doesActivateOnFGSwitch, /*activates own windows in */

/* response to OS events*/

backgroundAndForeground, /*application has a user */

/* interface*/

dontGetFrontClicks, /*don't return mouse events */

/* in front window on resume*/

ignoreAppDiedEvents, /*doesn't want app-died events*/

is32BitCompatible, /*works with 24- or 32-bit addr*/

isHighLevelEventAware, /*supports high-level events*/

localAndRemoteHLEvents, /*also remote high-level events*/

isStationeryAware, /*can use stationery documents*/

dontUseTextEditServices, /*can't use inline input */

/* services*/

reserved, /*reserved*/

reserved, /*reserved*/

reserved, /*reserved*/

kPrefSize * 1024, /*preferred memory size*/

kMinSize * 1024 /*minimum memory size*/

};

C H A P T E R 2

Event Manager

2-32 Using the Event Manager

The 'SIZE' resource specification in Listing 2-4 indicates, among other things, that the
application accepts suspend and resume events, does processing in the background using
null events, activates or deactivates any windows as necessary in response to
operating-system events, can execute in both the foreground and background, and
doesn’t want to receive any mouse event associated with a resume event that was caused
by the user clicking in the application’s front window. It also indicates that the
application doesn’t want to receive Application Died events, can work in 24-bit or 32-bit
addressing mode, does accept high-level events, including both local and network
high-level events, does handle stationery documents, and doesn’t use TextEdit’s inline
input services. In this example, the Rez-input file must define values for the constants
kPrefSize and kMinSize; for example, if kPrefSize is set to 50, the preferred
partition size is 50 KB.

The numbers you specify as your application’s preferred and minimum memory sizes
depend on the particular memory requirements of your application. Your application’s
memory requirements depend on the size of your application’s static heap, dynamic
heap, A5 world, and stack. (See “Introduction to Memory Management” in Inside
Macintosh: Memory for complete details about these areas of your application’s partition.)

The static heap size includes objects that are always present during the execution of your
application—for example, code segments, Toolbox data structures for window records,
and so on.

Dynamic heap requirements come from various objects created on a per-document basis
(which may vary in size proportionally with the document itself) and objects that are
required for specific commands or functions.

The size of the A5 world depends on the amount of global data and the number of
intersegment jumps your application contains.

The stack contains variables, return addresses, and temporary information. The size of
the application stack varies among computers, so you should base your values for the
stack size according to the stack size required on a Macintosh Plus computer (8 KB).
The Process Manager automatically adjusts your requested amount of memory to
compensate for the different stack sizes on different machines. For example, if you
request 512 KB, more stack space (approximately 16 KB) will be allocated on machines
with larger default stack sizes.

Unfortunately, it is difficult to forecast all of these conditions with any great degree of
reliability. You should be able to determine reasonably accurate estimates for the stack
size, static heap size, A5 world, and jump table. In addition, you can use tools such as
MacsBug’s heap-exploring commands to help you empirically determine your
application’s dynamic memory requirements.

See “The Size Resource” beginning on page 2-115 for additional information on the
meaning of each of the fields and flags of a 'SIZE' resource.

Handling Low-Level Events 2
Low-level events include hardware-related occurrences stored in the Operating System
event queue and activate and update events generated by the Window Manager. When
your application receives a low-level event, your application needs to determine the type

C H A P T E R 2

Event Manager

Using the Event Manager 2-33

of event and respond appropriately. The following sections discuss how to respond to
mouse events, keyboard events (including certain specific keyboard events, such as when
the user presses the Command key and period key at the same time), update events,
activate events, disk-inserted events, and null events.

Responding to Mouse Events 2

Whenever the user presses or releases the mouse button, the Operating System Event
Manager records the action in the Operating System event queue. These actions are
stored in the event queue as mouse-down and mouse-up events. Your application can
retrieve these events using the WaitNextEvent function.

Events related to movements of the mouse are not stored in the event queue. The mouse
driver automatically tracks the mouse and displays the cursor as the user moves the
mouse. Therefore, the Operating System Event Manager does not report an event if the
user simply moves the mouse.

However, you can request that the Event Manager report mouse-moved events if the user
moves the cursor out of a region that you specify to the WaitNextEvent function. For
example, your application can use mouse-moved events in this way to change the shape
of the cursor from an I-beam to an arrow when the user moves the cursor from a text area
to the scroll bar of a window.

The rest of this section describes how your application responds to mouse-down or
mouse-up events. See “Responding to Mouse-Moved Events” beginning on page 2-62
for specific details on mouse-moved events.

The user expects that pressing the mouse button correlates to particular actions in an
application. Your application is responsible for providing feedback or performing any
actions in response to the user. For example, if the user presses the mouse button while
the cursor is in the menu bar, your application should use the Menu Manager function
MenuSelect to allow the user to choose a menu command.

Your application can receive and respond to mouse-down and mouse-up events. Most
applications respond to mouse-down events and use the routines of various managers
(such as MenuSelect, DragWindow, TEClick, TrackBox, TrackGoAway, and
TrackControl) to handle the corresponding mouse-up events. You can also provide
code to respond to mouse-up events if it’s appropriate for your application. For example,
if your application implements its own text-editing capabilities, you might let the user
select lines of text by dragging the mouse and use mouse-up events to signal the end of
the selection.

In System 7, your application receives mouse-down events only when it is the foreground
process and the user clicks in the menu bar, in a window belonging to your application,
or in a window belonging to a desk accessory that was launched in your application’s
partition. If the user clicks in a window belonging to another application, the Event
Manager sends your application a suspend event and performs a major switch to the
other application.

When your application receives a mouse-down event, you need to first determine the
location of the cursor at the time the mouse button was pressed (the mouse location) and
respond appropriately. You can use the Window Manager function FindWindow to find

C H A P T E R 2

Event Manager

2-34 Using the Event Manager

which of your application’s windows, if any, the mouse button was pressed in and, if
applicable, to find which part of the window it was pressed in. The FindWindow
function also reports whether the given mouse location is in the menu bar or, in some
cases, in a window belonging to a desk accessory (if the desk accessory was launched in
your application’s partition).

The what field of the event record for a mouse event contains the mouseDown or
mouseUp constant to report that the mouse button was pressed or released. The
message field is undefined. The when field contains the number of ticks since the system
last started up. You can use the when field to compare how much time has elapsed
between successive mouse events; for example, you might use this information to help
detect mouse double clicks.

The where field of the event record contains the location of the cursor at the time the
mouse button was pressed or released. You can pass this location to the FindWindow
function; the FindWindow function maps the given mouse location to particular areas
of the screen.

The modifiers field contains information about the state of the modifier keys at the
time the mouse button was pressed or released. Your application can perform different
actions based on the state of the modifier keys. For example, your application might let
the user extend a selection or select multiple objects at a time if the Shift key was down at
the time of the mouse-down event.

Listing 2-5 shows code that handles mouse-down events. The DoMouseDown procedure
is an application-defined procedure that is called from the DoEvent procedure.
(Listing 2-3 on page 2-26 shows the DoEvent procedure.)

Listing 2-5 Handling mouse-down events

PROCEDURE DoMouseDown (event: EventRecord);
VAR

part: Integer;
thisWindow: WindowPtr;

BEGIN
{map location of the cursor (at the time of mouse-down event) }
{ to general areas of the screen}
part := FindWindow(event.where, thisWindow);

CASE part OF {take action based on the mouse location}

inMenuBar: {mouse down in menu bar, respond appropriately}

BEGIN

{first adjust marks and enabled state of menu items}

MyAdjustMenus;

{let user choose a menu command}

DoMenuCommand(MenuSelect(event.where));

END;

 inSysWindow: {cursor in a window belonging to a desk accessory}
SystemClick(event, thisWindow);

C H A P T E R 2

Event Manager

Using the Event Manager 2-35

 inContent: {mouse down occurred in the content area of }

 { one of your application's windows}

IF thisWindow <> FrontWindow THEN

BEGIN {mouse down occurred in a window other than the front }

{ window—-make the window clicked in the front window, }

{ unless the front window is movable modal}

IF MyIsMovableModal(FrontWindow) THEN

SysBeep(30)

ELSE

SelectWindow(thisWindow);

END

ELSE {mouse down was in the content area of front window}

DoContentClick(thisWindow, event);

 inDrag: {handle mouse down in drag area}

IF (thisWindow <> FrontWindow) AND

(MyIsMovableModal(FrontWindow))

THEN

SysBeep(30)

ELSE

 DragWindow(thisWindow, event.where, GetGrayRgn^^.rgnBBox);

 inGrow: {handle mouse down in grow region}

DoGrowWindow(thisWindow, event);

inGoAway: {handle mouse down in go-away region}

 IF TrackGoAway(thisWindow, event.where) THEN

DoCloseCmd;

 inZoomIn, inZoomOut: {handle mouse down in zoom box region}

IF TrackBox(thisWindow, event.where, part) THEN

DoZoomWindow(thisWindow, part);

END; {end of CASE}

END;{of DoMouseDown}

When your application retrieves a mouse-down event, call the Window Manager
function FindWindow to map the location of the cursor to particular areas of the screen.
Given a mouse location, the FindWindow function returns as its function result a value
that indicates whether the mouse location is in the menu bar, in one of your application’s
windows, or, in some cases, in a desk accessory window. If the mouse location is in an
application window, the function result indicates which part of the window the mouse
location is in. You can test the function result of FindWindow against these constants to
determine the mouse location at the time of the mouse-down event:

CONST inDesk = 0;{none of the following}

inMenuBar = 1;{in the menu bar}

inSysWindow = 2;{in a desk accessory window}

C H A P T E R 2

Event Manager

2-36 Using the Event Manager

inContent = 3;{anywhere in content region except the }

 { grow region if the window is active, }

 { anywhere in content region including the }

 { grow region if the window is inactive}

inDrag = 4;{in drag (title bar) region}

inGrow = 5;{in grow region (active window only)}

inGoAway = 6;{in go-away region (active window only)}

inZoomIn = 7;{in zoom-in region (active window only)}

inZoomOut = 8;{in zoom-out region (active window only)}

The FindWindow function reports the inDesk constant if the mouse location is not in
the menu bar, desk accessory window, or any window of your application. For example,
the FindWindow function may report this constant if the location of the cursor is inside a
window frame but not in the drag region or go-away region of the window; your
application seldom receives the inDesk constant.

If FindWindow returns the inMenuBar constant, the mouse location is in the menu bar.
In this case your application should first adjust its menus. The application-defined
MyAdjustMenus procedure adjusts its menus—enabling and disabling items and setting
marks—based on the context of the active window. For example, if the active window is a
document window that contains a selection, your application should enable the Cut and
Copy commands in the Edit menu, add marks to the appropriate items in the Font, Size,
and Style menus, and adjust any other menu items accordingly. After adjusting your
application’s menus, call the Menu Manager function MenuSelect, passing it the
location of the mouse, to allow the user to choose a menu command. The MenuSelect
function handles all user interaction until the user releases the mouse button. The
MenuSelect function returns as its function result a long integer indicating the menu
selection made by the user. As shown in Listing 2-5 on page 2-34, the DoMouseDown
routine calls an application-defined routine, DoMenuCommand, to perform the menu
command selected by the user. See the chapter “Menu Manager” in this book for a listing
that gives the code for the MyAdjustMenus and DoMenuCommand routines and for more
information about responding to specific menu commands.

In System 7, the FindWindow function seldom returns the inSysWindow constant. The
FindWindow function returns this constant only when a mouse-down event occurred
in a desk accessory that was launched in the application’s partition. Normally, if the
user clicks in a desk accessory’s window, the Event Manager sends your application a
suspend event and brings the desk accessory to the foreground. From that point on,
mouse-down events and other events are handled by the desk accessory until the user
again clicks in one of your application’s windows.

If FindWindow does return the inSysWindow constant, the mouse location is in a
window belonging to a desk accessory that was launched in your application’s
partition. In this case, your application should call the SystemClick procedure. The
SystemClick procedure routes the event to the desk accessory as appropriate. If the
mouse button was pressed while the cursor was in the content region of the desk
accessory’s window and the window is inactive, SystemClick makes it the active
window. It does this by sending your application an activate event to deactivate its front
window and directing an event to the desk accessory to activate its window.

C H A P T E R 2

Event Manager

Using the Event Manager 2-37

FindWindow can return any of the constants inContent, inDrag, inGrow, inGoAway,
inZoomIn, or inZoomOut if the given mouse location is in your application’s active
window. If the cursor is in the content area, your application should perform any actions
appropriate to your application. Note that scroll bars are part of the content region. In
most cases, if the cursor is in the content area, your application first needs to determine
whether the mouse location is in the scroll bar or any other controls and then respond
appropriately. The DoMouseDown procedure calls the application-defined procedure
DoContentClick to handle mouse-down events in the content area of the active
window. If your application needs to determine whether the mouse-down event caused a
foreground switch (and you set the getFrontClicks flag in your application’s 'SIZE'
resource), your DoContentClick procedure can test bit 0 in the modifiers field of the
event record (normally your application does not test for this condition).
See the chapter “Control Manager” in this book for an example DoContentClick
procedure and for detailed information on implementing controls in your
application’s windows.

If the mouse location is in any of the other specified regions of an active application
window, your application should perform the action corresponding to that region.
For example, if the cursor is in the drag region, your application should call the
Window Manager procedure DragWindow to allow the user to drag the window to
a new location.

If the mouse location is in an inactive application window, FindWindow can return the
inContent or inDrag constant, but does not distinguish between any other areas of the
window. In this case, if FindWindow reports the inContent constant, your application
should bring the inactive window to the front using the SelectWindow procedure
(unless the active window is a movable modal dialog box). If the active window is a
movable modal dialog box, then your application should use the SysBeep procedure to
play the system alert sound rather than activating the selected window. Also, if your
application interprets the first mouse click in an inactive window as a request to activate
the window and perform an action, you can process the event again. However, note that
most users expect the first click in an inactive window to activate
the window without performing any additional action. If FindWindow reports inDrag
for an inactive application window, your application should call the DragWindow
procedure to allow the user to drag the window to a new location (unless the active
window is a movable modal dialog box, in which case your application should simply
play the system alert sound).

If you’re using TextEdit to handle text editing and call TEClick, TEClick automatically
interprets mouse double clicks appropriately, including allowing the user to select a word
by double-clicking it. Your application must provide the means to allow double- clicking
in this manner in all other contexts.

You can detect mouse double clicks by comparing the time and location of a mouse-up
event with that of the immediately following mouse-down event. The GetDblTime
function returns the recommended difference in ticks that should exist between the
occurrence of a mouse-up and mouse-down event for those two mouse events to be
considered a double click.

C H A P T E R 2

Event Manager

2-38 Using the Event Manager

You should interpret mouse events as a double click if both of these conditions are true:

� The times of the mouse-up event and mouse-down event differ by a number of ticks
less than or equal to the value returned by the GetDblTime function.

� The locations of the two mouse-down events separated by the mouse-up event are
sufficiently close to each other. How you determine this value depends on your
application and the context in which the mouse-down events occurred. For example,
in a word-processing application, you might consider two mouse-down events a
double click if the mouse locations both mapped to the same character, whereas in a
graphics application you might consider it a double click if the sum of the horizontal
and vertical difference between the two mouse locations is no more than five pixels.

The Event Manager also provides other routines that give information about the mouse.
You can find the current mouse location using the GetMouse procedure. You can
determine the current state of the mouse button using the Button, StillDown, and
WaitMouseUp functions. See “Reading the Mouse” beginning on page 2-108 for detailed
information on these routines.

Responding to Keyboard Events 2

Your application can receive keyboard events to notify you when the user has pressed
or released a key or continued to hold down a key. When the user presses a key, the
Operating System Event Manager stores a key-down event in the Operating System
event queue. Your application can retrieve the event from the queue; determine which
key was pressed; determine which modifier keys, if any, were pressed at the time of the
event; and respond appropriately. Typically, your application provides feedback by
echoing (displaying) the glyph representing the character generated by the pressed key
on the screen.

When the user holds down a key for a certain amount of time, the Event Manager
generates auto-key events. The Event Manager generates an auto-key event after a certain
initial delay (the auto-key threshold) has elapsed since the original key-down event. The
Event Manager generates subsequent auto-key events whenever a certain repeat interval
(the auto-key rate) has elapsed since the last auto-key event and while
the original key is still held down. The user can set the initial delay and rate of repetition
using the Keyboard control panel. The default value for the auto-key threshold is
16 ticks, and the default value for the auto-key rate is 4 ticks. Current values of the auto-
key threshold and auto-key rate are stored in the system global variables KeyThresh
and KeyRepThresh.

In addition to getting keyboard events when the user presses or releases a key, you can
directly read the keyboard (and keypad) using the GetKeys procedure.

When the user presses a key or a combination of keys, your application should respond
appropriately. Your application should follow the guidelines in Macintosh Human Interface
Guidelines for consistent use of and response to keyboard events. For example, your
application should allow the user to choose a frequently used menu command by using a
keyboard equivalent for that menu command—usually a combination of the Command
key and another key. Your application should also respond to the user pressing the arrow
keys, Shift key, or other keys according to the guidelines provided
in Macintosh Human Interface Guidelines.

C H A P T E R 2

Event Manager

Using the Event Manager 2-39

Also note that certain keyboards have different physical layouts or contain additional
keys, such as function keys. If your application supports function keys or other special
keys, you should follow the guidelines in Macintosh Human Interface Guidelines when
determining what action to take when the user presses one of these keys.

Certain keystroke combinations are handled by the Event Manager and not returned to
your application. If the user holds down the Command and Shift keys while pressing a
numeric key to produce a special effect, that special effect occurs. Apple provides three
standard Command–Shift–number key sequences. The standard Command–Shift–
number key sequences are 1 for ejecting the disk in the internal drive, 2 for ejecting the
disk in a second internal drive or for ejecting the disk in an external drive if the computer
has only one internal drive, and 3 for taking a snapshot of the screen and storing it as a
TeachText document on the startup volume.

The action corresponding to a Command–Shift–number key sequence is implemented
as a routine that takes no parameters and is stored in an 'FKEY' resource with a resource
ID that corresponds to the number that activates it. Apple reserves 'FKEY' resources
with resource IDs 1 through 4 for its own use; if you provide an 'FKEY' resource, use a
resource ID between 5 and 9.

You can disable the Event Manager’s processing of Command–Shift–number key
sequences for numbers 3 through 9 by setting the system global variable ScrDmpEnb
(a byte) to 0. However, in most cases you should not disable the Event Manager’s
processing of these events.

The what field of the event record for a keyboard-related event contains either the
keyDown or keyUp constant to indicate that the key was pressed or released, or the
autokey constant to indicate that the key is being held down.

The Event Manager sets the system event mask of your application to accept all events
except key-up events. Most applications ignore key-up events. If your application needs
to receive key-up events, you can change the system event mask of your application
using the Operating System Event Manager procedure SetEventMask.

In the low-order word the message field contains the character code and virtual key
code that corresponds to the key pressed by the user.

The virtual key code represents the key pressed or released by the user; this value is
always the same for a specific physical key on a particular keyboard. For example, on
the Apple Keyboard II, ISO layout, the virtual key code for the fifth key to the right
of the Tab key (the key labeled “T”) is always $11, regardless of which modifier keys
are also pressed.

To determine the virtual key code that corresponds to a specific physical key, system
software uses a hardware-specific key-map ('KMAP') resource that specifies the virtual
key codes for a particular keyboard. After determining the virtual key code of the key
pressed by the user, system software uses a script-specific keyboard-layout ('KCHR')
resource to map a virtual key code to a specific character code. Any given script system
has one or more 'KCHR' resources. For example, a particular computer might contain the
French 'KCHR' resource in addition to the standard U.S. 'KCHR' resource. In this
situation, the current 'KCHR' resource determines whether virtual key codes are mapped
to the French or U.S. character set.

C H A P T E R 2

Event Manager

2-40 Using the Event Manager

The character code represents a particular character. The character code that is generated
depends on the virtual key code, the state of the modifier keys, and the current 'KCHR'
resource. For example, the U.S. 'KCHR' resource specifies that for the virtual key code
$2D (the fifth key to the left of the Shift key and labeled “N” on an Apple Keyboard II,
Domestic layout), the character code is $6E when no modifier keys are pressed; the
character code is $4E when this key is pressed in combination with the Shift key.
Character codes for the Roman script system are specified in the extended version of
ASCII (the American Standard Code for Information Interchange).

The message field contains additional information for ADB keyboards. The low-order
byte of the high-order word contains the ADB address of the keyboard where the
keyboard event occurred. Figure 2-7 shows the structure of the message field of the
event record for keyboard events.

Figure 2-7 The message field of the event record for keyboard events

Usually your application uses the character code, rather than the virtual key code, when
responding to keyboard events. You can use these two constants to access the virtual key
code and character code in the message field:

CONST charCodeMask = $000000FF;{mask for character code}

keyCodeMask = $0000FF00;{mask for virtual key code}

The when field contains the number of ticks since the system last started up. You can
use the when field to compare how much time has expired between successive
keyboard events.

The where field of the event record contains the location of the cursor at the time the key
was pressed or released. You typically disregard the mouse location when processing
keyboard events.

The modifiers field contains information about the state of the modifier keys at the
time the key was pressed or released. Your application can perform different actions
based on the state of the modifier keys. For example, your application might perform an
action associated with a corresponding menu command if the Command key was down
at the time of the key-down event.

System software can support a number of different types of keyboards, for example, the
Apple Keyboard II, the Apple Extended keyboards, or other keyboards. The system
software uses various keyboard resources and international resources to manage different
types of keyboards. Figure 2-8 illustrates how system software maps keys to character
codes.

Reserved ADB address Virtual key code Character code

24 2331 16 15 08 7

C H A P T E R 2

Event Manager

Using the Event Manager 2-41

Figure 2-8 Keyboard translation

When a user presses or releases a key on the keyboard, the keyboard generates a raw
key code. The system software uses a 'KMAP' resource to map the raw key code to a
hardware-independent virtual key code and to set bits indicating the state of the modifier
keys. A 'KMAP' resource specifies the physical arrangement of a particular keyboard and
indicates the virtual key codes that correspond to each physical key.

If the optional key-remap ('itlk') resource is present, the system software remaps the
virtual key codes and modifier state for some key combinations on certain keyboards
before using the 'KCHR' resource. The 'itlk' resource can reintroduce hardware
dependence because certain scripts, languages, and regions need subtle differences in
layout for specific keyboards. If present, the 'itlk' resource affects only a few keys.

After mapping the virtual key code and the state of the modifier keys through an
optional 'itlk' resource, the system software uses a 'KCHR' resource to produce the
character code representing the key that was pressed or released. The 'KCHR' resource
specifies how to map the setting of the modifier keys and a virtual key code to a character
code.

Raw key code

'KMAP'
resource

Modifier
state

New virtual
key code

Virtual key code

New modifier
state

'itlk'
resource

'itlk'
present? No

Yes

'KCHR'
resource

Character
code

Event
message

Virtual key code

Character code

Virtual key code

Virtual key code

Modifier state

Modifier state

C H A P T E R 2

Event Manager

2-42 Using the Event Manager

After mapping the key, the Event Manager returns the virtual key code and the character
code in the message field of the event record.

 Figure 2-9 shows the virtual key codes as specified by the 'KMAP' resource for the Apple
Keyboard II, ISO layout. The labels for the keys on the keyboard are shown using the U.S.
keyboard layout. The virtual key codes are shown in hexadecimal.

Figure 2-9 Virtual key codes for the Apple Keyboard II, ISO layout

Figure 2-10 shows the virtual key codes as specified by the 'KMAP' resource for the
Apple Extended Keyboard II, one that uses the Domestic (ANSI) layout, and one that
uses the ISO layout. The labels for the keys on the ISO keyboard are shown using the
French keyboard layout. The virtual key codes are shown in hexadecimal.

If a user of an Apple Extended Keyboard II (using the U.S. 'KCHR' resource) presses the
key labeled “C” and no modifier keys, the system software maps this through the 'KMAP'
and 'KCHR' resources to produce a virtual key code of $08 and the character code $63 (the
character “c”) in the message field of the event record. If the user presses the key labeled
“C” and the Option key, then the system software maps this to virtual key code $08 and
the character code $8D (the character “ç”) in the message field.

As another example, if a user of an Apple Extended Keyboard II, Domestic layout, is
using the U.S. 'KCHR' resource and presses the key labeled “M” the system software
maps this through the 'KMAP' and 'KCHR' resources to produce a virtual key code of $2E
and the character code $6D (the character “m”) in the message field of the event record.

If a user of an Apple Extended Keyboard II, ISO layout, is using the French 'KCHR'
resource and presses the key labeled “M” the system software maps this through the
'KMAP' and 'KCHR' resources to produce a virtual key code of $29 and the character
code $6D (the character “m”) in the message field of the event record.

See Inside Macintosh: Text for additional information about the keyboard resources and
how the Script Manager manages various scripts.

51 4B 4347

5B 5C 4E59

57 58 4556

54

41

4C

52

53 55

1 2 3 4 5 6 7 8 9 0
+! @ # % ^ & ()

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

$

{
[]

}

?
/.,

=

: "
; '

ctrl

= /

7 8 9

4 5 6

1 2 3

0 .

_

+

37

12 13 14 15 17 16 1A 1C 19 1D

0C 0D 0E 0F 11 10 20 22 1F 23

00 01 02 03 05 04 26 28 25

06 07 08 09 0B 2D 2E

 21 1E

382F2B

29

1B 33180A

30

3B

27

24

3238

31 3C

2A

3A 3B 3D

3E

35

36

2C

esc

~

§
±

7F7F

C H A P T E R 2

Event Manager

Using the Event Manager 2-43

Figure 2-10 Virtual key codes for the Apple Extended Keyboard II

A
pp

le
E

xt
en

de
d

K
ey

bo
ar

d
II,

D
om

es
tic

A
pp

le
E

xt
en

de
d

K
ey

bo
ar

d
II,

IS
O

(F
re

nc
h

ke
yb

oa
rd

la
yo

ut
)

F1
3

F1
4

F1
5

nu
m

loc
k

ca
ps

loc
k

sc
ro

ll
loc

k

=
/

7
8

9

4
5

6

1
2

3

0
.

_ +

nu
m

loc
k

de
lhe
lp

ins

ho
m

e
pa

ge

up

en
d

pa
ge

do

wn

en
te

r

es
c

F6
F7

F8
F5

F1
F2

F3
F4

F9
F1

0
F1

1
F1

2

alt
alt

2
3

4
5

6
7

8
9

0
+

@
#

%
^

&
(

)

Q
W

E
R

T
Y

U
I

O
P

A
S

D
F

G
H

J
K

L

Z
X

C
V

B
N

M

$

co
nt

ro
l

{ [
]}

? /
.

,

=

:
"

;
'

co
nt

ro
l

sh
ift

ca
ps

loc
k

ta
b

op
tio

n
op

tio
n

sh
ift

de
let

e

re
tu

rn

cle
ar

nu
m

m
aju

s
de

fil
F1

3
F1

4
F1

5

im
p

ec
ra

n
pa

us
e

ar
re

t
de

fil

=
/

7
8

9

4
5

6

1
2

3

0
,

_ +

ve
rr

nu
m

su
pp

r

aid
e

ins
er

es
c

F6
F7

F8
F5

F1
F2

F3
F4

F9
F1

0
F1

1
F1

2

alt
alt

&
e

"
'

(
§

e
!

ç
a

°
1

2
3

5
6

7
9

0

A
Z

E
R

T
Y

U
I

O
P

Q
S

D
F

G
H

J
K

L

W
X

C
V

B
N

,

4

ctr
l

.. v

$

+ =
:

;

)

%
M

ctr
l

@#

37
37

12
13

14
15

17
16

1A
1C

19
1D

0C
0D

0E
0F

11
10

20
22

1F
23

00
01

02
03

05
04

26
28

25

06
07

08
09

0B
2D

2E

21
1E

38
2F

2B

29

1B
336F

35
7A

78
63

76
60

61
62

65
6D

67

72
73

74

75
77

79

69
6B

71

7B
7D

7C

7E

51
4B

43
47

5B
5C

4E
59

57
58

45
56

54

41

4C

52

53
55

18
0A

30 39
27

2A
24

32
38

31
3A

2C

64

3A
3B

3B

1
`35

7A
78

63
76

72
73

74

75
77

79

7B
7D

7C

7E

51
4B

43
47

5B
5C

4E
59

57
58

45
56

54

41

4C

52

53
55

37
37

12
13

14
15

17
16

1A
1C

19
1D

0C
0D

0E
0F

11
10

20
22

1F
23

00
01

02
03

05
04

26
28

25

07
08

09
0B

2D
2E

2B

21
1E

38
2C

2F

291B
33

18
32

30 39
27

24

06
38

31
3A

2A

3B
3A

7F
7F

7F
7F

60
61

62
64

65
6D

67
6F

69
6B

71

3B

!
~

`

8
`

`

ù
£

/
.

?
<>

`

` `

`

C H A P T E R 2

Event Manager

2-44 Using the Event Manager

Listing 2-6 shows code that handles key-down and auto-key events. The DoKeyDown
procedure is an application-defined procedure that is called from the DoEvent
procedure. (Listing 2-3 on page 2-26 shows the DoEvent procedure.)

Listing 2-6 Handling key-down and auto-key events

PROCEDURE DoKeyDown (event: EventRecord);

VAR

key: Char;

BEGIN

key := CHR(BAnd(event.message, charCodeMask));

IF BAnd(event.modifiers, cmdKey) <> 0 THEN

BEGIN {Command key down}

IF event.what = keyDown THEN

BEGIN {first enable/disable/check menu items as needed-- }

{ the MyAdjustMenus procedure adjusts the menus }

{ as appropriate for the current window}

MyAdjustMenus;

DoMenuCommand(MenuKey(key)); {handle the menu command}

END;

END

ELSE

MyHandleKeyDown(event);

END;

The DoKeyDown procedure in Listing 2-6 first extracts the character code of the key
pressed from the message field of the event record. It then checks the modifiers field
of the event record to determine if the Command key was pressed at the time of the
event. If so, and if the event is a key-down event, the code calls the application-defined
procedure MyAdjustMenus, and then calls another application-defined routine,
DoMenuCommand, to perform the menu command associated with that key. (The
MyAdjustMenus procedure adjusts the menus appropriately, and according to whether
the current window is a document window or modeless dialog box. See the chapter
“Menu Manager” in this book for code that defines the MyAdjustMenus procedure.)
Otherwise, the code calls the application-defined procedure MyHandleKeyDown to
handle the event.

Listing 2-7 shows the application-defined routine MyHandleKeyDown.

Listing 2-7 Handling key-down events

PROCEDURE MyHandleKeyDown (event: EventRecord);

VAR

key: Char;

window: WindowPtr;

C H A P T E R 2

Event Manager

Using the Event Manager 2-45

myData: MyDocRecHnd;

te: TEHandle;

windowType: Integer;

BEGIN

window := FrontWindow;

{determine the type of window--document, modeless, etc.}

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

key := CHR(BAnd(event.message, charCodeMask));

IF window <> NIL THEN

BEGIN

IF key = char(kTab) THEN {handle special characters}

MyDoTab(event)

ELSE

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

te := myData^^.editRec;

IF

(te^^.teLength - (te^^.selEnd - te^^.selStart) + 1

< kMaxTELength) THEN

BEGIN

TEKey(key, te); {insert character in document}

MyAdjustScrollBars(window, FALSE);

MyAdjustTE(window);

myData^^.windowDirty := TRUE;

END;

END;

END;

END

ELSE

MyHandleKeyDownInModeless(event, windowType);

END;

The MyHandleKeyDown procedure in Listing 2-7 handles key-down events in any
window of the application. For document windows, the code inserts the character
represented by the key pressed by the user into the active document. It first finds the
active document using the FrontWindow function, then handles the event as
appropriate for the document window. For example, it treats the Tab key as a special
character and calls an application-defined routine, MyDoTab, to handle this character
appropriately for the document. For all other keys directed to the document window, the
code gets the edit record associated with the document, and then it simply inserts the
character into the document, using the TextEdit TEKey procedure. It also calls two other
application-defined routines, MyAdjustScrollBars and MyAdjustTE, to update the
document and edit record.

C H A P T E R 2

Event Manager

2-46 Using the Event Manager

The MyHandleKeyDown procedure calls an application-defined routine,
MyHandleKeyDownInModeless, to handle key-down events in modeless dialog boxes.
See the chapter “Dialog Manager” in this book for more information on handling events
in dialog boxes.

Scanning for a Cancel Event 2

Your application should allow the user to cancel a lengthy operation by using the
Command-period combination. Your application can implement this cancel operation by
periodically examining the state of the keyboard using the GetKeys procedure, or your
application can scan the event queue for a keyboard event.

Listing 2-8 shows an application-defined function that scans the event queue for any
occurrence of a Command-period event.

The UserDidCancel function in Listing 2-8 first checks to see if the user changed the
script. The application maintains a global variable, gCurrentKeyScript, that keeps
track of this information. The application also uses a global variable, gPeriodKeyCode,
to hold the key code that maps to the period key according to the current script. If the
current script has changed, the UserDidCancel function calls an application-defined
routine, MySetPeriodKeyCode, to change the value of the gPeriodKeyCode global
variable as necessary.

The UserDidCancel function then determines whether A/UX is running. You must
use a different method to scan the event queue if A/UX is running. This code uses
an application-defined function called MyCheckAUXEventQueue to search for a
Command-period event if A/UX is running. Otherwise, the code checks the what field
for a key-down event. If it finds a key-down event, it then checks the message field
to determine whether the user pressed the period key and checks the modifiers
field to determine whether the user also pressed the Command key. If it finds the
Command-period combination, it sets the foundEvent variable to TRUE and returns this
value. Otherwise, it looks at the next entry in the queue and continues to search the
queue until it either finds a Command-period event or reaches the end of the queue.

Listing 2-8 Scanning for a Command-period event

FUNCTION UserDidCancel: Boolean;

VAR

foundEvent: Boolean;

eventQPtr: EvQElPtr;

eventQHdr: QHdrPtr;

keyCode: LongInt;

isCmdKey: LongInt;

BEGIN

foundEvent := FALSE; {assume the event is not there}

{Check to see if the script has changed}

IF (gCurrentKeyScript <> GetEnvirons(smKeyScript)) THEN

MySetPeriodKeyCode; {set gPeriodKeyCode to match new script}

C H A P T E R 2

Event Manager

Using the Event Manager 2-47

IF (GetAUXVersion > 0) THEN {if A/UX is running use this method}

foundEvent := MyCheckAUXEventQueue(gPeriodKeyCode, cmdKey)

ELSE

BEGIN {scan event queue}

eventQHdr := GetEvQHdr; {get the event queue header}

eventQPtr := EvQElPtr(eventQHdr^.qHead); {get first entry}

WHILE (eventQPtr <> NIL) AND (NOT(foundEvent)) DO

BEGIN {look for key-down event}

IF (eventQPtr^.evtQWhat = keyDown) THEN {found key-down event, }

BEGIN { look for Command-period}

keyCode := BAND(eventQPtr^.evtQMessage, keyCodeMask);

keyCode := BSR(keyCode, 8);

isCmdKey := BAND(eventQPtr^.evtQModifiers, cmdKey);

IF isCmdKey <> 0 THEN {Command key was pressed}

IF keyCode = gPeriodKeyCode THEN

foundEvent := TRUE; {key pressed was '.'}

END; {of found key-down}

IF (NOT foundEvent) THEN {go to next entry}

eventQPtr := EvQElPtr(eventQPtr^.qLink);

END; {of while}

END; {of scan event queue}

UserDidCancel := foundEvent; {return result of search}

END;

Responding to Update Events 2

The Event Manager reports update events to your application whenever one of your
application’s windows needs updating. Upon receiving an update event, your applica-
tion should update the contents of the specified window. Your application can call the
Window Manager procedure BeginUpdate, draw the window’s contents, and then call
EndUpdate when your application has finished updating the window’s contents.

Your application can also let the Window Manager automatically update the contents of a
window by supplying in the window record a handle to a picture that contains the
contents of the window. This technique is generally useful only for windows that contain
static information that doesn’t change or can’t be edited. For example, if your application
provides a window that always displays a picture of the earth, you can supply the handle
to the picture, and the Window Manager automatically updates the window as needed,
without sending your application an update event. In most cases, your application needs
to perform the update itself.

The Window Manager maintains an update region for each window. The Window
Manager keeps track of all areas in a window’s content region that need to be redrawn
and accumulates them in the window’s update region. When an application calls
WaitNextEvent or EventAvail (or GetNextEvent), the Event Manager checks to see
if any windows have an update region that is not empty. If so, the Event Manager reports

C H A P T E R 2

Event Manager

2-48 Using the Event Manager

update events to the appropriate applications; any applications with windows that
require updating receive the necessary update events according to the normal processing
of events.

If more than one window needs updating, the Event Manager issues update events for
the frontmost window first. This means that updating of windows occurs in front-to-back
order, which is what the user expects.

When one of your application’s windows needs to be updated, the Window Manager
calls the window definition function of that window, requesting that it draw the window
frame. The Window Manager then generates an update event for that window. The Event
Manager reports any update events for your application’s windows to your application,
and your application should update the window contents as necessary.

In response to an update event, your application should first call the BeginUpdate
procedure. The BeginUpdate procedure temporarily replaces the visible region of the
window’s graphics port (that part of the window that is visible on the screen) with the
intersection of the visible region and update region of the window. The BeginUpdate
procedure then clears the update region of the window—preventing the update event for
this occurrence from being reported again.

After calling BeginUpdate, your application should draw the window’s contents, either
entirely or in part. You can draw either the entire content region or only the area in the
visible region. In either case, the Window Manager allows only what falls within the
visible region to be drawn on the screen. (Because the BeginUpdate procedure
intersects the visible region with the update region, the visible region at this point
corresponds to any visible parts of the old update region.)

The EndUpdate procedure restores the normal visible region of the window’s
graphics port.

Figure 2-11 shows how an application updates its windows. In this example, Window 1
partially covers Window 2. When the user moves Window 1 so that more of Window 2 is
exposed, the Window Manager requests the window definition function of the window
to update the window frame, and accumulates the area requiring updating in the update
region of the window.

When the application receives an update event for this window, the message field of the
event record contains a pointer to the window that needs updating. Your application can
call BeginUpdate, draw the window’s contents, and then call EndUpdate. This
completes the handling of the update event.

Your application can receive update events when it is in the foreground or in the
background. In the example shown in Figure 2-11, Window 1 and Window 2 could
belong to the same application or different applications. In either case, the Event
Manager reports an update event to the application whose window contents
need updating.

C H A P T E R 2

Event Manager

Using the Event Manager 2-49

Figure 2-11 Responding to an update event for a window

Your application should respond to update events or at least call the BeginUpdate
procedure in response to an update event. If you do not call the BeginUpdate
procedure, your application continues to receive update events for the window (until
the update region is empty). You should always make sure that you match a call to
BeginUpdate with a call to EndUpdate. By calling the BeginUpdate and EndUpdate
procedures, you indicate to the Window Manager that you have updated the window
and handled the update event.

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE
INCLUDING A THOROUGH STUDY OF THE BREEDS

HISTORY OF THE HORSE

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE
INCLUDING A THOROUGH STUDY OF THE BREEDS

HISTORY OF THE HORSE

Update region

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE
INCLUDING A THOROUGH STUDY OF THE BREEDS

HISTORY OF THE HORSE

C H A P T E R 2

Event Manager

2-50 Using the Event Manager

Listing 2-9 shows an example of an application-defined routine that responds to
update events.

Listing 2-9 Responding to update events

PROCEDURE DoUpdate (window: WindowPtr);

VAR

windowType: Integer;

BEGIN

{determine the type of window--document, modeless, etc.}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN

BeginUpdate(window);

MyDrawWindow(window);

EndUpdate(window);

END;

OTHERWISE

DoUpdateMyDialog(window);

END; {of CASE}

END;

The DoUpdate procedure in Listing 2-9 first determines if the window is a document
window or a modeless dialog box. The MyGetWindowType function is an
application-defined routine that returns the kMyDocWindow constant if the window is a
document window and returns other application-defined constants if the window is a
modeless dialog box.

If the window is a document window, the procedure does all its drawing of the window
within calls to the BeginUpdate and EndUpdate procedures. The application-defined
routine MyDrawWindow performs the actual updating of the document window contents.
See the chapter “Window Manager” in this book for code that shows the
MyGetWindowType and MyDrawWindow routines.

If the window is a modeless dialog box, the code calls the application-defined
DoUpdateMyDialog procedure to update the contents of the dialog box. See the chapter
“Dialog Manager” in this book for details on handling update events in dialog boxes.

Responding to Activate Events 2

When several windows belonging to your application are open, you should allow the
user to switch from one window to another by clicking in the appropriate window. To
implement this, whenever your application receives a mouse-down event, you should

C H A P T E R 2

Event Manager

Using the Event Manager 2-51

first determine whether the user clicked in another window by using the Window
Manager function FindWindow; if so, you can use the Window Manager procedure
SelectWindow to generate the necessary activate events.

Before returning to your application and before your application receives any events
relating to this occurrence, the SelectWindow procedure does some work for you, such
as removing the highlighting from the window to be deactivated and highlighting the
newly activated window. At your application’s next request for an event, the Event
Manager returns an activate event.

An activate event indicates the window involved and whether the window is being
activated or deactivated. Your application should perform any other actions needed to
complete the action of the window becoming active or inactive. For example, when a
window becomes active, your application should show any scroll bars and restore
selections as necessary.

Your application typically receives an activate event (with a flag that indicates the
window should be deactivated) for the window being deactivated, followed by an
activate event for the window becoming active.

Activate events are not placed into the Operating System event queue but are sent
directly to the Event Manager.

Figure 2-12 on the next page shows two documents belonging to the same application,
with Window 1 the active window. When the user clicks in Window 2, your application
receives a mouse-down event and can use the FindWindow function to determine
whether the mouse location is in an inactive window. If so, your application should call
the SelectWindow procedure. The SelectWindow procedure removes highlighting
of Window 1, highlights Window 2, and generates activate events for both of these
occurrences. The Event Manager reports the activate events one at a time to your
application; in this example, the first activate event indicates that Window 1 should be
deactivated. Your application should hide the scroll bars and remove the highlighting
from any selections as necessary.

The next activate event indicates that Window 2 should be activated. Your application
should show the scroll bars and restore any selections as necessary. If the window needs
updating as a result of being activated, the Event Manager sends your application an
update event so that your application can update the window contents.

Your application also needs to activate or deactivate windows in response to suspend
and resume events. If you set the acceptSuspendResumeEvents flag and the
doesActivateOnFGSwitch flag in your application’s 'SIZE' resource, your
application is responsible for activating or deactivating your application’s
windows in response to handling suspend and resume events. If you set the
acceptSuspendResumeEvents flag and do not set the doesActivateOnFGSwitch
flag, your application receives an activate event immediately following a suspend or
resume event. In most cases, you should set both the acceptSuspendResumeEvents
and doesActivateOnFGSwitch flags in your application’s 'SIZE' resource.

C H A P T E R 2

Event Manager

2-52 Using the Event Manager

Figure 2-12 Responding to activate events for a window

HISTORY OF THE HORSE
HISTORY OF THE BREED AND ITS ADVERSE EFFECTS
ON THE DEVELOPMENT OF THE PLEASURE MOUNT

HISTORY OF THE HORSE
HISTORY OF THE BREED AND ITS ADVERSE EFFECTS
ON THE DEVELOPMENT OF THE PLEASURE MOUNT

HISTORY OF THE HORSE
HISTORY OF THE BREED AND ITS ADVERSE EFFECTS
ON THE DEVELOPMENT OF THE PLEASURE MOUNT

Window 1 is active.
User clicks in Window 2.
Application receives a
mouse-down event and
calls FindWindow,
then SelectWindow.

Window Manager
removes highlighting of
Window 1.

Application hides scroll
bars of Window 1 in
response to activate
event.

HISTORY OF THE BREED AND ITS ADVERSE EFFECTS
ON THE DEVELOPMENT OF THE PLEASURE MOUNT

HISTORY OF THE HORSE

Window Manager
highlights Window 2.

Application shows
scroll bars of Window 2
in response to activate
event and updates
window contents in
response to update
event.

HISTORY OF THE BREED AND ITS ADVERSE EFFECTS
ON THE DEVELOPMENT OF THE PLEASURE MOUNT

HISTORY OF THE HORSE

C H A P T E R 2

Event Manager

Using the Event Manager 2-53

The what field of an event record for an activate event contains the activateEvt
constant. The message field contains a pointer to the window being activated or
deactivated. The modifiers field contains additional information about the activate
event, along with information about the state of the modifier keys at the time the event
was posted. Your application can examine bit 0 of the modifiers field of the event
record to determine if the window should be activated or deactivated. Bit 0 of the
modifiers field is 1 if the window should be activated and 0 if the window should be
deactivated. You can use the activeFlag constant to test the state of this bit in the
modifiers field.

The when field of the event record contains the number of ticks since the system last
started up. The where field of the event record contains the location of the cursor at the
time the activate event occurred.

Upon receiving an activate event that indicates the window is being deactivated, your
application should hide any scroll bars and remove the highlighting from any selections
as necessary.

Upon receiving an activate event that indicates the window is becoming active, your
application should show any scroll bars, highlight any selections, and otherwise restore
the window to the state it was in when it was last active. For example, your application
should restore the insertion point to its previous position, and the document should be
scrolled to the position in which the user last left it. Your application should also adjust
its menus appropriately for the newly active window—adjusting the marks and enabled
state of menu items based on the state of the active window.

Listing 2-10 shows an application-defined procedure that responds to activate events.

Listing 2-10 Responding to activate events

PROCEDURE DoActivate (window: windowPtr; activate: Boolean;

 event: EventRecord);

VAR

growRect: Rect; {window's grow rectangle}

myData: MyDocRecHnd; {window's document record}

windowType: Integer;

BEGIN

{determine the type of window--document, modeless, etc.}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH myData^^ DO

IF activate THEN {window is being activated}

C H A P T E R 2

Event Manager

2-54 Using the Event Manager

BEGIN

{restore any selections or display caret}

MyRestoreSelection(window);

{adjust menus as appropriate for this document window}

MyAdjustMenus;

{activate any scroll bars}

vScrollBar^^.contrlVis := kControlVisible;

hScrollBar^^.contrlVis := kControlVisible;

{invalidate area of scroll bars to force update}

InvalRect(vScrollBar^^.contrlRect);

InvalRect(hScrollBar^^.contrlRect);

{invalidate area of size box, if any}

growRect := window^.portRect;

WITH growRect DO

BEGIN

top := bottom - kScrollbarAdjust;

left := right - kScrollbarAdjust;

END; {end of WITH growRect statement}

InvalRect(growRect);

END

ELSE {window is being deactivated}

BEGIN

{unhighlight selection (if any) or hide the caret}

MyHideSelection;

HideControl(vScrollBar); {hide any scroll bars}

HideControl(hScrollBar);

DrawGrowIcon(window); {change size box immediately}

END;

HUnLock(Handle(myData));

END; {end of kMyDocWindow}

kMyGlobalChangesID: {this window is a modeless dialog box }

{ for this app's Global Changes command}

MyDoActivateGlobalChangesDialog(window, event);

{handle other modeless dialog boxes as appropriate}

END; {of CASE}

END;

Listing 2-10 uses the application-defined function MyGetWindowType to determine what
type of window is involved with the activate event. If the window is a document
window, the DoActivate procedure uses the GetWRefCon function to get a handle
to the window’s document record. (The DoActivate procedure, and other application-
defined routines, maintain information about the document associated with a window
in a document record; the application stores a handle to the document record as the
window’s reference constant value when it creates a new window. See the chapter
“Window Manager” in this book for information on defining a document record.)

C H A P T E R 2

Event Manager

Using the Event Manager 2-55

If the document window should be activated, the code calls an application-defined
routine, MyRestoreSelection. Your application should restore any selection or display
the caret as appropriate. For example, if your application uses TextEdit to display text in
the content area of windows, you can call the TextEdit procedure TEActivate to restore
any selection or display a caret at the insertion point. The DoActivate procedure then
calls another application-defined procedure, MyAdjustMenus, to adjust the menus as
appropriate for the document window. (See
the chapter “Menu Manager” for a listing of the MyAdjustMenus procedure.) After
restoring any selections and adjusting its menus, the code shows the scroll bars and size
box of the window being activated. It does this by invalidating the area of the scroll bars
and size box, accumulating these areas into the update region. This causes an update
event to be generated. The application redraws its controls as appropriate in response to
update events.

If the document window should be deactivated, the code in Listing 2-10 unhighlights
the selection and hides the caret by calling the application-defined procedure
MyHideSelection. The code then hides the scroll bars and size box of the
deactivated window.

If the window associated with the activate event is a modeless dialog box, for example, a
Global Changes modeless dialog box, the DoActivate procedure calls an
application-defined procedure to activate or deactivate the dialog box as needed. See the
“Dialog Manager” chapter in this book for information on handling activate events in
modeless dialog boxes.

Responding to Disk-Inserted Events 2

When your application uses the Standard File Package to allow the user to choose a file to
open or choose a location for storing a file, the Standard File Package responds to
disk-inserted events for your application while interacting with the user. In most cases, if
your application receives an unexpected disk-inserted event, it can simply check to see if
the disk was successfully mounted and use the Disk Initialization Manager function
DIBadMount to notify the user if the disk was not successfully mounted.

When the user inserts a disk, the Operating System attempts to mount the volume on the
disk by calling the File Manager function PBMountVol. If the volume is successfully
mounted, an icon representing the disk appears on the desktop. The Operating System
Event Manager then generates a disk-inserted event. If the user is interacting with a
standard file dialog box, the Standard File Package intercepts the disk-inserted event and
handles it. Otherwise, the event is left in the event queue for your application to retrieve.
The Desk Manager also intercepts and handles disk-inserted events if a desk accessory is
in front.

Usually your application should handle and not mask out disk-inserted events. The user
might insert a disk at any time and expects to be warned if the disk is uninitialized or
damaged. If your application receives a disk-inserted event and the volume was
successfully mounted, your application usually does not need to take any further action.
However, if the volume was not successfully mounted, then your application should give
the user a chance to initialize or eject the uninitialized or damaged disk.

C H A P T E R 2

Event Manager

2-56 Using the Event Manager

If you do mask out disk-inserted events, the event stays in the Operating System event
queue until your application calls the Standard File Package or until an application that
does handle disk-inserted events becomes the foreground process. This situation can be
confusing to the user, so your application should handle disk-inserted events at the time
that they occur.

If the volume was successfully mounted and your application either does not use the
Standard File Package or prompts the user to insert a disk, then you can choose to
respond to disk-inserted events in whatever way is appropriate for your application.

The Dialog Manager procedure ModalDialog masks out disk-inserted events. (The
Standard File Package changes the mask in order to receive disk-inserted events.) If one
of your application’s modal dialog boxes needs to respond to disk-inserted events, then
you can change the event mask from within the event filter function that you supply as
one of the parameters to ModalDialog. Otherwise, your application can respond to the
disk-inserted event after the user dismisses the modal dialog box.

The what field of the event record contains the diskEvt constant to indicate a
disk-inserted event. The message field contains the drive number in the low-order word
and the result code from the PBMountVol function in the high-order word. Your
application can examine the high-order word to determine if the attempt to mount the
volume was successful. If the volume was not successfully mounted, your application
can notify the user using the Disk Initialization Manager function DIBadMount. If the
volume was successfully mounted, your application can use the drive number returned
in the low-order word for accessing the disk.

Listing 2-11 shows a procedure that handles disk-inserted events. If the disk was not
successfully mounted, the procedure notifies the user using the DIBadMount function.
Otherwise, it does not take any action. See the chapter “Disk Initialization Manager”
in Inside Macintosh: Files for information on the routines provided by the Disk
Initialization Manager.

Listing 2-11 Responding to disk-inserted events

PROCEDURE DoDiskEvent (event: EventRecord);

VAR

thisPoint: Point;

myErr: OSErr;

BEGIN

IF HiWord(event.message) <> noErr THEN

BEGIN {attempt to mount was unsuccessful}

DILoad; {load Disk Initialization Manager}

SetPt(thisPoint, 120, 120);

{notify the user}

myErr := DIBadMount(thisPoint, event.message);

DIUnload; {unload Disk Initialization Manager}

END

C H A P T E R 2

Event Manager

Using the Event Manager 2-57

ELSE {attempt to mount was successful}

; {record the drive number or do other processing}

END;

Responding to Null Events 2

When the Event Manager has no other events to report, it returns a null event. The
WaitNextEvent function reports a null event by returning a function result of FALSE
and setting the what field of the returned event record to nullEvt. (The EventAvail
and GetNextEvent functions also return null events in this manner.)

When your application receives a null event, it can perform idle processing. Your
application should do minimum processing in response to a null event, so that other
processes can use the CPU and so that the foreground process (or your application, if
it is in the foreground) can respond promptly to the user.

For example, if your application receives a null event and it is in the foreground, it can
make the caret blink in the active window.

If your application receives a null event in the background, it can perform tasks or do
other processing while in the background. However, your application should not
perform any tasks that would slow down the responsiveness of the foreground process.
Your application also should not interact with the user if it is in the background.

If you don’t want your application to receive null events when it is in the background, set
the cannotBackground flag in your application’s 'SIZE' resource.

Listing 2-12 shows a procedure that performs idle processing in response to a null event.
If the application is not in the background and the active window is a document window,
this code calls the TextEdit procedure TEIdle. The TEIdle procedure makes a blinking
caret appear at the insertion point in the text referred to by the edit record. (This
application uses TextEdit to display text in its document windows; if you don’t use
TextEdit for your document windows, provide your own routine to blink the caret.) If the
active window is a modeless dialog box, the DoIdle procedure calls the Dialog Manager
function DialogSelect to blink the caret in any editable text item of the dialog box.

Listing 2-12 Handling null events

PROCEDURE DoIdle (event: EventRecord);

VAR

window: WindowPtr;

myData: MyDocRecHnd;

windowType: Integer;

itemHit: Integer;

result: Boolean;

BEGIN

C H A P T E R 2

Event Manager

2-58 Using the Event Manager

window := FrontWindow;

{determine the type of window--document, modeless, etc.}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

IF (NOT gInBackground) THEN

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

TEIdle(myData^^.editRec);

END;

kMyGlobalChangesID:

result := DialogSelect(event, window, itemHit);

END; {of CASE}

END;

Handling Operating-System Events 2
Operating-system events include suspend, resume, and mouse-moved events. Your
application receives suspend and resume events as a result of changes in its processing
status. Your application can request that the Event Manager return mouse-moved events
whenever the cursor is outside a specified region by specifying a nonempty region in
the mouseRgn parameter to WaitNextEvent. If you specify an empty region or a NIL
region handle in the mouseRgn parameter, the Event Manager does not report mouse-
moved events.

Your application examines the event record to determine which event it received and to
obtain additional information associated with the event.

The what field in the event record of an operating-system event contains the
osEvt constant.

The message field in the event record of an operating-system event contains information
indicating whether the event is a suspend, resume, or mouse-moved event. The message
field also indicates whether Clipboard conversion is required when the application
resumes execution. The bits in the message field give this information:

Bit Contents

0 0 if a suspend event

1 if a resume event

1 0 if Clipboard conversion not required

1 if Clipboard conversion required

2–23 Reserved

24–31 suspendResumeMessage if a suspend or resume event
mouseMovedMessage if a mouse-moved event

C H A P T E R 2

Event Manager

Using the Event Manager 2-59

Note that you need to examine bits 24–31 of the message field to determine what kind of
operating-system event you have received. Bits 24–31 in the message field contain one of
these two constants:

CONST suspendResumeMessage = $01; {suspend or resume event}

mouseMovedMessage = $FA; {mouse-moved event}

If the event is a suspend or resume event, you need to examine bit 0 to determine
whether that event is a suspend or resume event. Bits 0 and 1 are meaningful only if bits
24–31 indicate that the event is a suspend or resume event. You can use the resumeFlag
constant to determine whether the event is a suspend or resume event. If the event is a
resume event, you can use the convertClipboardFlag constant to determine whether
Clipboard conversion from the Clipboard to your application’s scrap is required:

CONST resumeFlag = 1; {resume event}

convertClipboardFlag = 2; {Clipboard conversion required}

Whenever the user performs a copy or cut operation, your application should copy the
selected data either to its private scrap or, if your application doesn’t have a private
scrap, to the Clipboard. If your application uses a private scrap, you need to convert the
data from your private scrap to the Clipboard whenever your application receives a
suspend event. Likewise, you need to convert any data from the Clipboard (if it has
changed) when your application receives a resume event. For resume events, the value of
bit 1 of the message field is 1 if your application needs to read in the new contents of the
Clipboard.

Listing 2-13 shows a procedure that responds to operating-system events.

Listing 2-13 Responding to operating-system events

PROCEDURE DoOSEvent (event: EventRecord);

BEGIN

CASE BAnd(BRotL(event.message, 8), $FF) OF {get high byte}

mouseMovedMessage:

DoIdle(event); {mouse-moved same as idle for this app}

suspendResumeMessage:

DoSuspendResumeEvent(event);{handle supend/resume event}

END;

END;

The DoOSEvent procedure in Listing 2-13 is called from the DoEvent procedure (shown
in Listing 2-3 on page 2-26) whenever the application receives an operating-system event.
The DoOSEvent procedure examines the high byte of the message field to determine
whether the event is a mouse-moved, suspend, or resume event, and it then calls an
application-defined procedure to handle the event. Note that most applications either
adjust the cursor in response to mouse-moved events or adjust the cursor in their event
loop whenever any type of event is received. The code in this chapter uses the latter

C H A P T E R 2

Event Manager

2-60 Using the Event Manager

approach, and thus the DoOSEvent procedure simply calls its DoIdle procedure in
response to mouse-moved events. The next two sections show the code that handles
suspend, resume, and mouse-moved events.

Responding to Suspend and Resume Events 2

The WaitNextEvent function returns a suspend event when your application is about
to be switched to the background. WaitNextEvent returns a resume event when your
application becomes the foreground process again.

Upon receiving a suspend event, your application should deactivate the front window,
remove the highlighting from any selections, and hide any floating windows. Your
application should also convert any private scrap into the global scrap, if necessary.
If your application shows a window that displays the Clipboard contents, you should
hide this window also, as the user might change the contents of the Clipboard before
returning to your application. Your application can also do anything else necessary to
get ready for a major switch. Then your application should call WaitNextEvent to
relinquish the processor and allow the Operating System to schedule other processes
for execution.

Upon receiving a resume event, your application should activate the front window and
restore any windows to the state the user left them in at the time of the previous suspend
event. For example, your application should show scroll bars, restore any selections that
were previously in effect, and show any floating windows. Your application should copy
the contents of the Clipboard and convert the data back to its private scrap, if necessary.
If your application shows a window that displays the Clipboard contents, you can update
the contents of the window after reading in the scrap. Your application can then resume
interacting with the user.

Responding to a suspend or resume event usually involves activating or deactivating
windows. If you set the acceptSuspendResumeEvents flag and the
doesActivateOnFGSwitch flag in your application’s 'SIZE' resource, your
application is responsible for activating or deactivating your application’s windows
in response to handling suspend and resume events.

Note
If you set the acceptSuspendResumeEvents flag and do not set the
doesActivateOnFGSwitch flag in your application’s 'SIZE'
resource, your application receives an activate event immediately
following a suspend or resume event. In most cases, you should set both
the acceptSuspendResumeEvents and doesActivateOnFGSwitch
flags in your application’s 'SIZE' resource. �

Your application can use the Scrap Manager functions InfoScrap, ZeroScrap,
PutScrap, and GetScrap to read data from and write data to the Clipboard.
See the chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox for
additional details.

C H A P T E R 2

Event Manager

Using the Event Manager 2-61

Note
If your application does not handle suspend and resume events (as
indicated by a flag in its 'SIZE' resource), then the Operating System
has to trick your application into performing scrap coercion to ensure
that the contents of the Clipboard can be transferred from one applica-
tion to another. This process adds to the time it takes to move the
foreground application to the background and vice versa. �

Listing 2-14 shows a procedure that responds to suspend and resume events. The
DoSuspendResumeEvent procedure first gets a pointer to the front window using
the Window Manager function FrontWindow. It then examines bit 0 of the message
field of the event record to determine whether the event is a suspend or resume event.
If the event is a resume event, the code examines bit 1 of the message field of the
event record to determine whether it needs to read in the contents of the scrap. If so,
the code calls an application-defined routine, MyConvertScrap, that reads in the
scrap and converts the contents to its private scrap. It then sets a private global flag,
gInBackground, to FALSE, to indicate that the application is not in the background. It
then calls another application-defined routine, DoActivate (shown in Listing 2-10), to
activate the application’s front window.

For suspend events, the DoSuspendResumeEvent procedure calls the
application-defined MyConvertScrap procedure to copy the contents of its private
scrap to the global scrap. It then sets a private global flag, gInBackground, to TRUE, to
indicate that the application is in the background. Finally, it calls another
application-defined routine to deactivate the application’s front window.

Listing 2-14 Responding to suspend and resume events

PROCEDURE DoSuspendResumeEvent (event: EventRecord);

VAR

currentFrontWindow: WindowPtr;

BEGIN {handle suspend/resume event}

currentFrontWindow := FrontWindow;

IF (BAnd(event.message, resumeFlag) <> 0) THEN

BEGIN {it's a resume event}

IF (BAnd(event.message, convertClipboardFlag) <> 0) THEN

MyConvertScrap(kClipboardToPrivate);

gInBackground := FALSE;

{activate front window}

DoActivate(currentFrontWindow, NOT gInBackground, event);

MyShowClipboardWindow; {show Clipboard window if it was }

{ showing at last suspend event}

MyShowFloatingWindows; {show any floating windows}

END

ELSE

C H A P T E R 2

Event Manager

2-62 Using the Event Manager

BEGIN {it's a suspend event}

MyConvertScrap(kPrivateToClipboard);

gInBackground := TRUE;

{deactivate front window}

DoActivate(currentFrontWindow, NOT gInBackground, event);

MyHideClipboardWindow; {hide Clipboard window if showing}

MyHideFloatingWindows; {hide any floating windows}

END;

END;

Your application can receive processing time while in the background and perform tasks
in the background, but your application should not interact with the user or perform
tasks that would slow down the responsiveness of the foreground process.

If you need to notify the user of some special occurrence while your application is
executing in the background, you should use the Notification Manager to queue a
notification request. See the chapter “Notification Manager” in Inside Macintosh:
Processes for examples of how to post notification requests.

Responding to Mouse-Moved Events 2

Whenever the user moves the mouse, the mouse driver, the Event Manager, and your
application are responsible for providing feedback to the user. The mouse driver
performs low-level functions, such as continually polling the mouse for its location and
status and maintaining the current location of the mouse in a global variable.

As the user moves the mouse, the user expects the cursor to move to a corresponding
relative location on the screen. The low-level interrupt routines of the mouse driver map
the movement of the mouse to relative locations on the screen. Whenever the user moves
the mouse, a low-level interrupt routine of the mouse driver moves the cursor displayed
on the screen and aligns the hot spot of the cursor with the new mouse location. A hot
spot is a point that the mouse driver uses to align the cursor with the mouse location.

Your application is responsible for setting the initial appearance of the cursor, for
restoring the cursor after WaitNextEvent returns, and for changing the appearance of
the cursor as appropriate for your application. For example, most applications set the
cursor to the I-beam when the cursor is inside a text-editing area of a document, and
change the cursor to an arrow when the cursor is inside the scroll bar of a document.
Your application can achieve this effect by requesting that the Event Manager report
mouse-moved events if the user moves the cursor out of a region you specify in the
mouseRgn parameter to the WaitNextEvent function.

The mouse driver and your application control the shape and appearance of the cursor. A
cursor can be any 256-bit image, defined by a 16-by-16 bit square. The mouse driver
displays the current cursor, which your application can change by using various cursor-
handling routines (for example, the SetCursor procedure).

Figure 2-13 shows the standard arrow cursor. You can initialize the cursor to the standard
arrow cursor using the InitCursor procedure. In Figure 2-13, the hot spot
for the arrow cursor is at location (1,1). See Inside Macintosh: Imaging for information on

C H A P T E R 2

Event Manager

Using the Event Manager 2-63

the cursor-handling routines and for specific details of how your application can define
its own cursors.

Figure 2-13 The standard arrow cursor

Figure 2-14 shows four other common cursors that are available to your application: the
I-beam, crosshairs, plus sign, and wristwatch cursors.

Figure 2-14 The I-beam, crosshairs, plus sign, and wristwatch cursors

The I-beam, crosshairs, plus sign, and wristwatch cursors are defined as resources,
and your application can get a handle to any of these cursors by specifying their
corresponding resource IDs to the GetCursor function. These constants specify the
resource IDs for the I-beam, crosshairs, plus sign, and wristwatch cursors:

CONST iBeamCursor = 1;{used in text editing}
crossCursor = 2;{often used for manipulating graphics}
plusCursor = 3;{often used for selecting fields in }

 { an array}
watchCursor = 4;{used to mean a lengthy operation }

 { is in progress}

1

1Hot spot

I -beam Crosshairs Plus s ign Wristwatch

C H A P T E R 2

Event Manager

2-64 Using the Event Manager

You can change the appearance of the cursor using the SetCursor procedure or other
cursor-handling routines. You can also define your own cursors, store them in resources,
and use them as needed in your application.

Your application usually needs to change the shape of the cursor as the user moves the
cursor to different areas within a document. Your application can use mouse-moved
events to accomplish this. Your application also needs to adjust the cursor in response to
resume events. Most applications adjust the cursor once through the event loop in
response to almost all events.

You can request that the Event Manager report mouse-moved events whenever
the cursor is outside of a specified region that you pass as a parameter to the
WaitNextEvent function. If you specify an empty region or a NIL handle to
the WaitNextEvent function, WaitNextEvent does not report mouse-moved events.

If you specify a nonempty region in the mouseRgn parameter to the WaitNextEvent
function, WaitNextEvent returns a mouse-moved event whenever the cursor is out of
this region. For example, Figure 2-15 shows a document window. An application might
define two regions: a region that encloses the text area of a window (the I-beam region),
and a region that defines the scroll bars and all other areas outside the text area (the arrow
region). By specifying the I-beam region to WaitNextEvent, the mouse driver continues
to display the I-beam cursor until the user moves the cursor out of this region.

Figure 2-15 The arrow region and the I-beam region

When the user moves the cursor out of the I-beam region, WaitNextEvent reports a
mouse-moved event. Your application can then change the I-beam cursor to the arrow
cursor and change the mouseRgn parameter to the area defined by the scroll bars and
all other areas outside of the I-beam region. The cursor now remains an arrow until the
user moves the cursor out of this region, at which point your application receives a
mouse-moved event.

Figure 2-16 shows how an application might change the cursor from the I-beam cursor to
the arrow cursor after receiving a mouse-moved event.

 ARTICLE PRESENTS A HISTORY OF THE HORSE,
LUDING A THOROUGH STUDY OF THE BREEDS

ISTORY OF THE HORSE
I-beam region

Arrow region
(outside I-beam region)

C H A P T E R 2

Event Manager

Using the Event Manager 2-65

Figure 2-16 Changing the cursor from the I-beam cursor to the arrow cursor

Note that your application should recalculate the mouseRgn parameter when it receives
a mouse-moved event; otherwise, it will continue to receive mouse-moved events as long
as the cursor position is outside the original region.

After receiving any event other than a high-level event, the MyEventLoop procedure
(shown in Listing 2-2 on page 2-24) calls the application-defined procedure
MyAdjustCursor to adjust the cursor. After adjusting the cursor, if the event is an
operating-system event, the DoEvent procedure calls the DoOSEvent procedure. The
DoOSEvent procedure calls the DoIdle procedure for mouse-moved events. The
DoIdle procedure simply calls TEIdle to blink the caret in the text-editing window.

Listing 2-15 shows the application-defined routine MyAdjustCursor.

Listing 2-15 Changing the cursor

PROCEDURE MyAdjustCursor (mouse: Point; VAR region: RgnHandle);

VAR

window: WindowPtr;

arrowRgn: RgnHandle;

iBeamRgn: RgnHandle;

iBeamRect: Rect;

myData: MyDocRecHnd;

windowType: Integer;

BEGIN

window := FrontWindow;

{determine the type of window--document, modeless, etc.}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

I-beam cursor
 ARTICLE PRESENTS A HISTORY OF THE HORSE,

LUDING A THOROUGH STUDY OF THE BREEDS

ISTORY OF THE HORSE

Arrow cursor

S ARTICLE PRESENTS A HISTORY OF THE HORSE,
LUDING A THOROUGH STUDY OF THE BREEDS

ISTORY OF THE HORSE

C H A P T E R 2

Event Manager

2-66 Using the Event Manager

BEGIN

{initialize regions for arrow and I-beam}

arrowRgn := NewRgn;

ibeamRgn := NewRgn;

{set arrow region to large region at first}

SetRectRgn(arrowRgn, -32768, -32768, 32766, 32766);

{calculate I-beam region}

{first get the document's TextEdit view rectangle}

myData := MyDocRecHnd(GetWRefCon(window));

iBeamRect := myData^^.editRec^^.viewRect;

SetPort(window);

WITH iBeamRect DO

BEGIN

LocalToGlobal(topLeft);

LocalToGlobal(botRight);

END;

RectRgn(iBeamRgn, iBeamRect);

WITH window^.portBits.bounds DO

SetOrigin(-left, -top);

{intersect I-beam region with window's visible region}

SectRgn(iBeamRgn, window^.visRgn, iBeamRgn);

SetOrigin(0,0);

{calculate arrow region by subtracting I-beam region}

DiffRgn(arrowRgn, iBeamRgn, arrowRgn);

{change the cursor and region parameter as necessary}

IF PtInRgn(mouse, iBeamRgn) THEN {cursor is in I-beam rgn}

BEGIN

SetCursor(GetCursor(iBeamCursor)^^); {set to I-beam}

CopyRgn(iBeamRgn, region); {update the region param}

END;

{update cursor if in arrow region}

IF PtInRgn(mouse, arrowRgn) THEN {cursor is in arrow rgn}

BEGIN

SetCursor(arrow); {set cursor to the arrow}

CopyRgn(arrowRgn, region); {update the region param}

END;

DisposeRgn(iBeamRgn);

DisposeRgn(arrowRgn);

END; {of kMyDocWindow}

C H A P T E R 2

Event Manager

Using the Event Manager 2-67

kMyGlobalChangesID:

MyCalcCursorRgnForModelessDialogBox(window, region);

kNil:

BEGIN

MySetRegionNoWindows(kNil, region);

SetCursor(arrow);

END;

 END; {of CASE}

END;

The MyAdjustCursor procedure sets the cursor appropriately, according to whether a
document window or modeless dialog box is active.

For a document window, the code in Listing 2-15 defines two regions, specified by
the arrowRgn and iBeamRgn variables. If the cursor is inside the region described
by the arrowRgn variable, the code sets the cursor to the arrow cursor and returns the
region described by arrowRgn. Similarly, if the cursor is inside the region described
by the iBeamRgn variable, the code sets the cursor to the I-beam cursor and returns
the region described by iBeamRgn.

The MyAdjustCursor procedure calculates the two regions by first setting the arrow
region to the largest possible region. It then sets the I-beam region to the region described
by the document’s TextEdit view rectangle. This region typically corresponds to the
content area of the window minus the scroll bars. (If your application doesn’t
use TextEdit for its document window, then set this region as appropriate to your
application.) The code then adjusts the I-beam region so that it includes only the part of
the content area that is in the window’s visible region (for example, to take into account
any floating windows that might be over the window). The code then sets the arrow
region to include the entire screen except for the region occupied by the I-beam region.

The procedure then determines which region the cursor is in and sets the cursor and
region parameter appropriately.

For modeless dialog boxes (for example, the Global Changes modeless dialog box), the
MyAdjustCursor procedure calls an application-defined routine to appropriately adjust
the cursor for the modeless dialog box. The MyAdjustCursor procedure also
appropriately adjusts the cursor if no windows are currently open.

Handling High-Level Events 2
High-level events provide a means of communication between applications. Apple
events are high-level events that follow the Apple Event Interprocess Messaging Protocol
(AEIMP). In most cases, you should use Apple events rather than define your own
high-level events if you wish to communicate with other applications. If you plan to use
Apple events, see Inside Macintosh: Interapplication Communication for specific information
on Apple events, and refer to this section for specific details about how the Event
Manager reports high-level events.

C H A P T E R 2

Event Manager

2-68 Using the Event Manager

To receive high-level events, you must set the appropriate flags in your application’s
'SIZE' resource. You must set the isHighLevelEventAware flag if your application
is to receive any high-level events. You must set the localAndRemoteHLEvents
flag for your application to receive high-level events sent from another computer on
the network. In addition, to receive high-level events from another computer, your
application must be shared and Program Linking must be enabled. The user shares your
application by selecting your application in the Finder and choosing Sharing from the
File menu and enables Program Linking from the Sharing Setup control panel.

If you set the isHighLevelEventAware flag in your application’s 'SIZE' resource,
your application receives the Finder information in the form of Apple events. The Finder
information is the information your application can use to determine which files to open
or print. Your application must respond to the required Apple events (Open Application,
Open Documents, Print Documents, and Quit Application) that are sent by the Finder if
your application sends or receives high-level events.

The what field in the event record of a high-level event contains the kHighLevelEvent
constant.

To determine the type of high-level event received, your application needs to examine the
message and where fields of the event record. For high-level events, these two fields of
the event record have special meanings.

The message field and the where field of the event record together define the specific
type of high-level event received. Your application should interpret these fields as having
the data type OSType, not LongInt or Point.

The message field contains the event class of the high-level event. For example, Apple
events sent by the Edition Manager have the event class 'sect'. You can define your own
group of events that are specific to your application. If you have registered your
application signature with Apple Computer, Inc., then you can use your signature to
define the class of events that belong to your application. Note, however, that Apple
reserves the use of all event classes whose names contain only lowercase letters and
nonalphabetic characters.

For high-level events, the where field in the event record contains a second message
specifier, called the event ID. The event ID defines the particular type of event (or
message) within the class of events defined by the event class. For example, the Section
Read event sent by the Edition Manager has event class 'sect' and event ID 'read'. The
Open Documents event sent by the Finder has event class 'aevt' and event ID 'odoc'.
You can define your own set of event IDs corresponding to your own event class. For
example, if the message field contains 'biff' and the where field contains 'cmd1', then
the high-level event indicates the type of event defined by 'cmd1' within the class of
events defined by the application with the signature 'biff'.

Note
If your application supports Apple events, you can call the
AEProcessAppleEvent function to determine the type of Apple event
received, rather than examining the message and where fields. �

C H A P T E R 2

Event Manager

Using the Event Manager 2-69

Note that because the where field of an event record for a high-level event is used to
select a specific kind of event (within the class determined by the message field),
high-level event records do not contain the mouse location at the time of the event. You
should not interpret the where field before interpreting the what field because different
event classes can contain overlapping sets of event IDs.

Unlike low-level events and operating-system events, high-level events may not be
completely determined by the event record returned to your application when it calls
WaitNextEvent. For example, you might still need to know which other application
sent you the high-level event or what additional data that application wants to send you.
Your application can obtain this further information about the high-level event by calling
the AcceptHighLevelEvent function. The additional information associated with a
high-level event includes

� the identity of the sender of the event
� a unique number that identifies the request associated with the event or associates the

particular event with a request from a previous event
� the address and length of a data buffer that can contain optional data

To obtain this additional information, your application must call
AcceptHighLevelEvent before calling WaitNextEvent again. By convention,
calling AcceptHighLevelEvent indicates that your application intends to process
the high-level event.

To accept an Apple event, call the AEProcessAppleEvent function instead of
the AcceptHighLevelEvent function. The Apple Event Manager also extracts
any additional information associated with the Apple event at your application’s request.
This chapter discusses how to accept high-level events using the
AcceptHighLevelEvent function; for information on the AEProcessAppleEvent
function, see Inside Macintosh: Interapplication Communication.

Responding to Events From Other Applications 2

You can identify high-level events by the value in the what field of the event record. The
message and where fields further classify the type of high-level event. Your application
can choose to recognize as many events as are appropriate. Some high-level events may
be fully specified by their event record only, while others may include additional
information in an optional buffer. To get that additional information or to find the sender
of the event, use the AcceptHighLevelEvent function.

Note
To respond to an Apple event, use the Apple Event Manager, as
described in Inside Macintosh: Interapplication Communication. �

Listing 2-16 on the next page illustrates how to respond to a high-level event.

The DoHighLevelEvent procedure in Listing 2-16 first determines the type of high-
level event received by checking the message and where fields of the event record. It
then uses AcceptHighLevelEvent to get any additional data associated with the
event. This particular application recognizes only one type of high-level event. If the
event is not of this type, the code assumes that the event is an Apple event and calls
AEProcessAppleEvent to handle the event.

C H A P T E R 2

Event Manager

2-70 Using the Event Manager

In general, you cannot know in advance how big the optional data buffer is, so you can
allocate a zero-length buffer and then resize it if the call to AcceptHighLevelEvent
returns the bufferIsSmall result code.

Listing 2-16 Accepting a high-level event

PROCEDURE DoHighLevelEvent (event: EventRecord);

VAR

myTarg: TargetID; {target ID record}

myRefCon: LongInt;

myBuff: Ptr;

myLen: LongInt;

myErr: OSErr;

BEGIN

IF (event.message = LongInt(kMySpecialHLEventClass)) AND

(LongInt(event.where) = LongInt(kMySpecialHLEventID)) THEN

BEGIN

{it's a high-level event that doesn't use AEIMP}

myLen := 0; {start with a 0-byte buffer}

myBuff := NIL;

myErr:=AcceptHighLevelEvent(myTarg,myRefCon, myBuff, myLen);

IF myErr = bufferIsSmall THEN

BEGIN

myBuff := NewPtr(myLen);{allocate needed storage}

myErr := AcceptHighLevelEvent(myTarg, myRefCon, myBuff,

 myLen);

IF myErr = noErr THEN

; {perform any action requested by the event}

END;

IF myErr <> noErr THEN

DoError(myErr);{perform the necessary error handling}

END

ELSE

BEGIN {otherwise, assume that the event is an Apple event}

myErr := AEProcessAppleEvent(event);

IF myErr <> noErr THEN

DoError(myErr);{perform the necessary error handling}

END;

END;

The AcceptHighLevelEvent function returns additional information and data
associated with the event. The ID of the sender of the event is returned in the first
parameter, which is a target ID record. You can inspect the fields of that record to
determine which application sent the event. The target ID record contains the session

C H A P T E R 2

Event Manager

Using the Event Manager 2-71

reference number that identifies the connection with the other application as well as the
port name and location name of the sender. If the high-level event requires that you
return information, you can use the information returned in the target ID record to
send an event back to the requesting application. See “Determining the Sender of a
High-Level Event” on page 2-72 and “Sending High-Level Events” on page 2-73 for
specific information on the target ID record.

The second parameter to AcceptHighLevelEvent, the reference constant parameter, is
a unique number that identifies the request associated with the event or identifies that
the particular event is related to a request from a previous event. If you send a response
to this event, you should use the same value for the reference constant so that the sender
of the event can associate the reply with the original request.

The third parameter points to any additional data associated with the event. Any data
in this additional buffer is defined by the particular high-level event. On input, the fourth
parameter to AcceptHighLevelEvent, the length parameter, contains the
size of the buffer. If no error occurs, on output the length parameter contains the size
of the message accepted. If the AcceptHighLevelEvent function returns the result
code bufferIsSmall, the length parameter contains the size of the message yet to
be received.

Searching for a Specific High-Level Event 2

Sometimes you do not want to accept the next available high-level event pending for
your application. Instead, you might want to select one event from among all the
high-level events in your application’s high-level event queue. For example, you might
want to look for a return receipt for a high-level event you previously posted before
processing other high-level events.

You can select a specific high-level event by calling the GetSpecificHighLevelEvent
function. One of the parameters you pass to this function is a filter function that you
provide. Your filter function should examine an event in your application’s high-level
event queue and determine whether it is the kind of event you wish to receive. If it is,
your filter function returns TRUE. This indicates that your filter function does not want to
inspect any more events. If the filter function finds an event of the desired type, it should
call AcceptHighLevelEvent to retrieve the event. When your function returns TRUE,
the GetSpecificHighLevelEvent function itself returns TRUE.

If your filter function returns FALSE for an event in the high-level event queue, then
GetSpecificHighLevelEvent looks at the next event in the high-level event queue
and executes your filter function. If the filter function returns FALSE for all the high-
level events in the queue, then GetSpecificHighLevelEvent itself returns FALSE to
your application.

Here’s how you declare the filter function whose address you pass to the
GetSpecificHighLevelEvent function:

FUNCTION MyFilter (yourDataPtr: Ptr;

 msgBuff: HighLevelEventMsgPtr;

 sender: TargetID): Boolean;

C H A P T E R 2

Event Manager

2-72 Using the Event Manager

When your application calls GetSpecificHighLevelEvent, you pass it a parameter
that indicates the criteria your filter function should use to search for a specific event. The
GetSpecificHighLevelEvent function passes this information to your filter function
in the yourDataPtr parameter. The GetSpecificHighLevelEvent function also
provides your filter function with information about the event record of the high-level
event in the msgBuff parameter as well as information about the sender of the high-level
event in the sender parameter.

The msgBuff parameter contains a pointer to a high-level event message record that has
this structure:

TYPE HighLevelEventMsg =

RECORD

HighLevelEventMsgHeaderLength: Integer;

version: Integer;

reserved1: LongInt;

theMsgEvent: EventRecord;

userRefCon: LongInt;

postingOptions: LongInt;

msgLength: LongInt;

END;

HighLevelEventMsgPtr= ^HighLevelEventMsg;

When you call GetSpecificHighLevelEvent and it executes your filter function for a
high-level event waiting in the high-level event queue, the fields of the high-level event
message record are filled in by the Event Manager. You can then compare the fields of this
record to the information in the yourDataPtr parameter to determine whether that
event suits your needs. For example, the yourDataPtr parameter might contain the
signature of a return receipt. You can test its value against the event class of the event
record contained in the theMsgEvent field of the high-level event message record.

Determining the Sender of a High-Level Event 2

When you receive a high-level event, part of the information returned by
AcceptHighLevelEvent is the identity of the sender of the event. You can use that
information to respond selectively to requests made by other applications or to find
which application to send any replies to. The information about the sender is provided in
the form of a target ID record, defined as follows:

TYPE TargetID =

RECORD

sessionID: LongInt; {session reference number}

name: PPCPortRec; {sender's port name}

location: LocationNameRec; {sender's location name}

recvrName: PPCPortRec; {reserved}

END;

C H A P T E R 2

Event Manager

Using the Event Manager 2-73

The sessionID field corresponds to the session reference number created by the PPC
Toolbox. This is a 32-bit number that uniquely identifies a PPC Toolbox session (or
connection) with another application. The name and location fields contain the
sender’s port name and location name. If the sending application is on the same
computer as the receiving application, you can determine the sending application’s
process serial number by calling the GetProcessSerialNumberFromPortName
function.

Sending High-Level Events 2

You use the PostHighLevelEvent function to send a high-level event to another
application. When doing so, you need to provide six pieces of information:

� an event record with the event class and event ID assigned appropriately

� the identity of the recipient of the event

� a unique number that identifies the communication associated with this
particular event

� a data buffer that can contain optional data

� the length of the data buffer

� options determining how the event is posted

Note
To send an Apple event, use the Apple Event Manager function
AESend. The Apple Event Manager uses the Event Manager to post
Apple events. For information on posting Apple events, see Inside
Macintosh: Interapplication Communication. �

When you post a high-level event to an application on the same computer, you can
specify its recipient in one of four ways:

� by port name and location name (specified in a target ID record)

� by a session reference number

� by the application’s creator signature

� by a process serial number

To specify the recipient of a high-level event sent across a network, you can use only
the receiving application’s port name and location name or its session reference number.
You can use any of the four ways when sending high-level events to applications on the
local computer.

You specify the recipient of a high-level event in the receiverID parameter when you
use the PostHighLevelEvent function. To specify a port name and location name,
provide the address of a target ID record in the receiverID parameter. To specify a
process serial number, provide its address in the receiverID parameter. To specify a
session reference number, or signature, provide the data in the receiverID parameter.

When you are replying to a high-level event, it is easy to identify the recipient because
you can use the target ID record that you receive from AcceptHighLevelEvent, the

C H A P T E R 2

Event Manager

2-74 Using the Event Manager

session reference number contained in that target ID record, or the process serial number
(if the receiving process is local). Note that replying by session reference number is
always the fastest way to respond to a high-level event.

When you are not replying to a previous event, you need to determine the identity of
the target application yourself. You can use one of several methods to do this. If the target
application is on the local computer, you can search for that application’s creator
signature or its process serial number by calling the GetProcessInformation
function. See the chapter “Process Manager” in Inside Macintosh: Processes for a detailed
explanation of the GetProcessInformation function and for examples of how to use
it to generate a list of process serial numbers of all open processes on the local computer.

If the application to which you want to send a high-level event is located on a remote
computer, you need to identify it either by its session reference number or by its port
name and location name. You can call the PPCBrowser function to let the user browse
for a specific port. You can call the IPCListPorts function to obtain a list of all ports
registered with the target PPC Toolbox. See the chapter “Program-to-Program
Communications Toolbox” in Inside Macintosh: Interapplication Communication for an
explanation of both of these functions.

As just described, you can identify the recipient of the high-level event in one of four
ways. Listing 2-17 illustrates how to send a high-level event to an application on the local
computer using the application’s creator signature. In this example, an application is
sending a high-level event to the application with the creator signature of 'boff'. The
specific high-level event being sent is identified by the event class 'boff' and the event
ID 'cmd1'.

Listing 2-17 Posting a high-level event by application signature

PROCEDURE MyPostTest;

VAR

myEvent: EventRecord; {an event record}

myRecvID: OSType; {receiver ID}

myOpts: LongInt; {posting options}

myErr: OSErr;

BEGIN

myEvent.what := kHighLevelEvent;

myEvent.message := LongInt('boff'); {event class}

myEvent.where := Point(LongInt('cmd1')); {event ID}

{the receiver is identified by its signature and }

{ a return receipt is requested}

myOpts := receiverIDisSignature + nReturnReceipt;

myRecvID := 'boff'; {receiver's signature}

myErr := PostHighLevelEvent(myEvent, Ptr(myRecvID), 0, NIL, 0,

myOpts);

IF myErr <> noErr THEN

DoError(myErr);

END;

C H A P T E R 2

Event Manager

Using the Event Manager 2-75

In this example of using the PostHighLevelEvent function, there is no additional data
to transmit, so the sending application provides NIL as the pointer to the data buffer and
sets the buffer length to 0. The myOpts variable specifies posting options.

Posting options are of two types: delivery options and options associated with the
receiverID parameter. You can specify one or more delivery options to indicate if you
want the other application to receive the event at the next opportunity and to indicate if
you want acknowledgment that the other application received the event. You use the
options associated with the receiverID parameter to indicate how you are specifying
the recipient of the event. To set the various posting options, use these constants:

CONST nAttnMsg = $00000001;{give this message priority}

nReturnReceipt = $00000200;{return receipt requested}

receiverIDisTargetID = $00005000;{ID is port name and location name}

receiverIDisSessionID = $00006000;{ID is PPC session ref number}

receiverIDisSignature = $00007000;{ID is creator signature}

receiverIDisPSN = $00008000;{ID is process serial number}

When you specify the receiving application in the receiverID parameter, you can use
these constants to specify the receiver of the event by port name and location name,
session reference number, process serial number, or signature. Any of these specifications
allows you to send an event to another application on the local computer. For example, in
Listing 2-17 the myOpts variable indicates that the receiver is identified by its creator
signature, and the myRecvID variable contains the receiver’s creator signature. To send
events to an application on a remote computer, you can specify the recipient only by the
session reference number or by the port name and location name.

When you specify the receiver of the event by port name and location name, use the
receiverIDisTargetID constant in the posting options parameter and specify the
address of a target ID record in the receiverID parameter.

TYPE TargetID =

RECORD

sessionID: LongInt; {unused for posting}

name: PPCPortRec; {recipient's port name}

location: LocationNameRec; {recipient's port loc}

recvrName: PPCPortRec; {unused for posting}

END;

When you pass a target ID record, you need to specify only the name and location
fields. You can use the IPCListPorts function to list all of the existing port names
along with information on whether the port will accept authenticated service on the
computer specified by the location name. For information on how to use the
IPCListPorts function, see the chapter “Program-to-Program Communications
Toolbox” in Inside Macintosh: Interapplication Communication.

You can also use the PPCBrowser function to fill in a target ID record. Listing 2-18 on the
next page illustrates how to use the PPCBrowser function to post a high-level event. In
this example, the sending application wants to locate a dictionary application and have
the dictionary return the definition of a word to it.

C H A P T E R 2

Event Manager

2-76 Using the Event Manager

Listing 2-18 Using the PPCBrowser function to post a high-level event

FUNCTION MyPostWithPPCBrowser (aTextPtr: Ptr; textlength: LongInt): OSErr;

VAR

myHLEvent: EventRecord;

myErr: OSErr;

myNumTries: Integer;

myPortInfo: PortInfoRec;

myTarget: TargetID;

BEGIN

{use PPCBrowser to get the target}

myErr := PPCBrowser('Select an Application', 'Application', FALSE,

 myTarget.location, myPortInfo, NIL, '');

IF myErr = NoErr THEN

BEGIN

{copy port name into myTarget.name}

myTarget.name := myPortInfo.name;

myHLEvent.what := kHighLevelEvent;

myHLEvent.message := LongInt('Dict');

myHLEvent.where := Point(LongInt('Defn'));

{if a connection is broken, then sessClosedErr is returned to }

{ PostHighLevelEvent; to reestablish the connection, just post }

{ the event one more time}

myNumTries := 0;

REPEAT

myErr := PostHighLevelEvent(myHLEvent, @myTarget, 0, aTextPtr,

 textlength, receiverIDisTargetID);

myNumTries := myNumTries + 1;

UNTIL (myErr <> sessClosedErr) OR (myNumTries > 1);

END;

MyPostWithPPCBrowser := myErr; {return any error}

END;

The application-defined function in Listing 2-18 uses the PPCBrowser function to
display a dialog box asking the user to select a dictionary. (For additional information
on the PPCBrowser function, see Inside Macintosh: Interapplication Communication.) If
the user selects a dictionary, this code posts a high-level event to that dictionary
application asking for the definition of the selected text. Note that the sending application
and the receiving application must both agree that definition queries are to be of event
class 'Dict' and event ID 'Defn'. It is necessary to define a private protocol only in cases
in which no suitable Apple event exists.

C H A P T E R 2

Event Manager

Using the Event Manager 2-77

Note
You should avoid passing handles to the receiving application in an
attempt to share a block of data. It is better to put the relevant data into a
buffer (as illustrated in Listing 2-18) and pass the address of the buffer. If
you absolutely must share data by passing a handle, make sure that the
block of data is located in the system heap. �

If a high-level event is posted successfully, PostHighLevelEvent returns the result
code noErr, which indicates only that the event was successfully passed to the PPC
Toolbox. Your application needs to call another Event Manager routine (EventAvail,
GetNextEvent, or WaitNextEvent) to give the other application an opportunity to
receive the event.

The event you send might require the other application to return some information to
your application by sending a high-level event back to your application. You can scan for
the response by using GetSpecificHighLevelEvent. If your application must wait
for this event, you might want to display a wristwatch cursor or take other action as
appropriate to your application. You also might want to implement a timeout mechanism
in case your application never receives a response to the event.

Requesting Return Receipts 2

When you post a high-level event, you can request a return receipt by including the
nReturnReceipt constant as one of the posting options. This requests that the Event
Manager send your application a high-level event that tells you whether the other
application accepted your event. Note that this does not necessarily mean that the other
application performed any action you might have requested from it.

A return receipt is a high-level event having an event class and an event ID indicated by
these two constants:

CONST HighLevelEventMsgClass = 'jaym';

rtrnReceiptMsgID = 'rtrn';

Return receipts are posted by the Event Manager on the computer of the receiving
application (and not by the receiving application itself). No data buffer is associated with
a return receipt. However, the posting Event Manager sets the modifiers field of the
high-level event record to one of the following values:

CONST msgWasNotAccepted = 0;

msgWasFullyAccepted = 1;

msgWasPartiallyAccepted = 2;

The msgWasNotAccepted constant indicates that your event was not accepted by
the receiving application. This means that the receiving application was notified
of the arrival of your event (through WaitNextEvent) but did not call
AcceptHighLevelEvent to accept the event. The msgWasFullyAccepted constant
indicates that the receiving application did call AcceptHighLevelEvent and retrieved
all the data in the optional data buffer. The msgWasPartiallyAccepted constant

C H A P T E R 2

Event Manager

2-78 Event Manager Reference

indicates that the receiving application called AcceptHighLevelEvent, but the
application’s data buffer was too small to hold the data sent with your application, and
the receiving application called WaitNextEvent before retrieving the rest of the buffer.

Note that a return receipt does not indicate the identity of the receiving application. To
determine on whose behalf the Event Manager has sent you a particular return receipt,
you need to call AcceptHighLevelEvent. When AcceptHighLevelEvent returns
successfully, the sender parameter contains a target ID record with the fields filled in for
the receiving application. With return receipts, the msgLen parameter is 0, the msgBuff
parameter is NIL, and the msgRefCon parameter contains the unique number of the
refCon parameter of the original high-level event sender (that is, your application).

Handling Apple Events 2

If your application uses high-level events, your application must respond to the
required Apple events sent by the Finder. The four required Apple events are Open
Application, Open Documents, Print Documents, and Quit Application. See Inside
Macintosh: Interapplication Communication for information on how to handle the required
Apple events.

When your application receives a high-level event (as indicated by the
kHighLevelEvent constant in the what field of the event record), and if your
application supports Apple events, call the AEProcessAppleEvent function. The
AEProcessAppleEvent function provides an easy way for your application to identify
the event class and event ID of the Apple event and to direct the Apple Event Manager to
call the code in your program that handles the Apple event.

To send Apple events to other applications, use the AESend function.

To ensure compatibility and smooth interaction with other Macintosh applications, you
should use the Apple event protocol for high-level events whenever possible. By
implementing the capabilities to send Apple events to and receive Apple events from
other applications, you allow other applications to interact with your application and
provide enhanced capabilities to your users.

See Inside Macintosh: Interapplication Communication for complete information on how to
send and receive Apple events.

Event Manager Reference 2

This section describes the data structures and routines for the Event Manager and
Operating System Event Manager. It also describes the 'SIZE' resource.

Data Structures 2

This section describes the event record, target ID record, high-level event message record,
and structure of the Operating System event queue. The Event Manager

C H A P T E R 2

Event Manager

Event Manager Reference 2-79

uses event records to return information about events. You can use a target ID record
to specify or identify the address of another application or process with which your
application is communicating. If your application supplies a filter function as a parameter
to the GetSpecificHighLevelEvent function, your filter function
receives information about high-level events in a high-level event message record.

The Event Record 2

When your application uses an Event Manager routine to retrieve an event, the Event
Manager returns information about the retrieved event in an event record. The
EventRecord data type defines the event record.

TYPE EventRecord =

RECORD

what: Integer; {event code}

message: LongInt; {event message}

when: LongInt; {ticks since startup}

where: Point; {mouse location}

modifiers: Integer; {modifier flags}

END;

Field descriptions

what The what field indicates the type of event received. The type of
event can be identified by these constants:

CONST
nullEvent = 0; {no other pending events}
mouseDown = 1; {mouse button pressed}
mouseUp = 2; {mouse button released}
keyDown = 3; {key pressed}
keyUp = 4; {key released}
autoKey = 5; {key repeatedly held down}
updateEvt = 6; {window needs updating}
diskEvt = 7; {disk inserted}
activateEvt = 8; {activate/deactivate window}
osEvt = 15;{operating-system event-- }

 { resume, suspend, or }
 { mouse-moved}

kHighLevelEvent = 23;{high-level event}

Note that in System 7, event types with the values 9 through 14 are
undefined and reserved for future use by Apple. All other values for
the what field are also reserved for use by Apple.

C H A P T E R 2

Event Manager

2-80 Event Manager Reference

message Additional information associated with the event. The interpreta-
tion of this information depends on the event type. The contents of
the message field for each event type are summarized here:

when The when field indicates the time when the event was posted (in
ticks since system startup).

where For low-level events and operating-system events, the where field
contains the location of the cursor at the time the event was posted
(in global coordinates).
For high-level events, the where field contains a second event
specifier, the event ID. The event ID defines the particular type of
event within the class of events defined by the message field of the
high-level event. For high-level events, you should interpret the
where field as having the data type OSType, not Point.

modifiers The modifiers field contains information about the state of the
modifier keys and the mouse button at the time the event was
posted. For activate events, this field also indicates whether the

Event type Event message

null, mouse-up,
mouse-down

Undefined.

key-up, key-down,
auto-key

Character code and virtual key code in
low-order word. For Apple Desktop Bus
(ADB) keyboards, the low byte of the
high-order word contains the ADB address
of the keyboard where the keyboard event
occurred. The high byte of the high-order
word is reserved.

update, activate Pointer to the window to update, activate, or
deactivate.

disk-inserted Drive number in low-order word, File
Manager result code in high-order word.

resume The suspendResumeMessage constant in
bits 24–31 and a 1 in bit 0 to indicate the
event is a resume event. Bit 1 contains either
a 1 or a 0 to indicate if Clipboard conversion
is required, and bits 2–23 are reserved.

suspend The suspendResumeMessage constant in
bits 24–31 and a 0 in bit 0 to indicate the
event is a suspend event. Bit 1 is undefined,
and bits 2–23 are reserved.

mouse-moved The mouseMovedMessage constant in bits
24–31. Bits 2–23 are reserved, and bit 0 and
bit 1 are undefined.

high-level Class of events to which the high-level event
belongs. The message and where fields of
a high-level event define the specific type of
high-level event received.

C H A P T E R 2

Event Manager

Event Manager Reference 2-81

window should be activated or deactivated. In System 7 it also
indicates whether the mouse-down event caused your application to
switch to the foreground.
Each of the modifier keys is represented by a specific bit in the
modifiers field of the event record. Figure 2-5, on page 2-20,
shows how to interpret the modifiers field. The modifier keys
include the Option, Command, Caps Lock, Control, and Shift keys.
If your application attaches special meaning to any of these keys in
combination with other keys or when the mouse button is down,
you can test the state of the modifiers field to determine the action
your application should take. For example, you can use this
information to determine whether the user pressed the Command
key and another key to make a menu choice.

The Target ID Record 2

When you send a high-level event to another application, you can use the target ID
record to specify the recipient of the event. When you receive a high-level event, the
AcceptHighLevelEvent function uses a target ID record to return information about
the sender of the event.

The TargetID data type defines the target ID record.

TYPE TargetID =

RECORD

sessionID: LongInt; {session reference number}

name: PPCPortRec; {port name}

location: LocationNameRec; {location name}

recvrName: PPCPortRec; {reserved}

END;

Field descriptions

sessionID For high-level events that your application receives, this field
contains the session reference number created by the PPC Toolbox.
This is a 32-bit number that uniquely identifies a PPC Toolbox
session (or connection) with another application. This field is not
used by your application when sending a high-level event to
another process. (To send a high-level event that specifies the
recipient by session reference number, provide a pointer to a session
reference number in the receiverID parameter and use the
receiverIDisSessionID constant in the postingOptions
parameter to PostHighLevelEvent.)

name For high-level events that your application receives, this field
contains a PPC port record that specifies the port name of the
process from which the high-level event originated. When sending a
high-level event to a process on a local or remote computer, you can
specify the port name of the recipient process in a PPC port record
that you provide in this field.

C H A P T E R 2

Event Manager

2-82 Event Manager Reference

If the sending application is on the same computer as the
receiving application, you can determine the sending
application’s process serial number by calling the
GetProcessSerialNumberFromPortName function.

location For high-level events that your application receives, this field
contains a location name record that identifies the location name
of the process from which the high-level event originated. When
sending a high-level event to a process on a local or remote
computer, you can specify the location name of the recipient process
in a location name record that you provide in this field.

recvrName This field is reserved.

The High-Level Event Message Record 2

You can search your application’s high-level event queue for a specific high-level event
by using the GetSpecificHighLevelEvent function and providing a filter function.
Your filter function receives a pointer to a high-level event message record that contains
information about a high-level event. (See “Filter Function for Searching the High-Level
Event Queue” on page 2-114 for information on how to define a filter function.)

The HighLevelEventMsg data type defines the structure of a high-level event
message record.

TYPE HighLevelEventMsg =

RECORD

HighLevelEventMsgHeaderLength: Integer;

version: Integer;

reserved1: LongInt;

theMsgEvent: EventRecord;

userRefCon: LongInt;

postingOptions: LongInt;

msgLength: LongInt;

END;

Field descriptions

HighLevelEventMsgHeaderLength
Reserved for use by the Event Manager.

version Reserved for use by the Event Manager.
reserved1 Reserved for use by the Event Manager.
theMsgEvent The event record of a high-level event. Your filter function can

compare the fields of this event record to determine whether the
high-level event is the desired event. If your filter function finds the
desired event, it should call AcceptHighLevelEvent to accept the
event and remove the event from the high-level event queue, and
return TRUE as its function result.

C H A P T E R 2

Event Manager

Event Manager Reference 2-83

userRefCon A unique number that identifies the communication associated with
this event.

postingOptions Reserved for use by the Event Manager.
msgLength Reserved for use by the Event Manager.

The Event Queue 2

The event queue is a standard Macintosh Operating System queue that the Operating
System Event Manager maintains. Only mouse-up, mouse-down, key-up, key-down,
auto-key, and disk-inserted events are stored in the Operating System event queue. In
most cases, your application should not access the event queue directly. Instead you
usually use the WaitNextEvent function, which can retrieve events from this queue as
well as from other sources.

The event queue consists of a header followed by the actual entries in the queue. The
event queue has the same header as all standard Macintosh Operating System queues.
The Qhdr data type defines the queue header.

TYPE QHdr =

RECORD

qFlags: Integer; {queue flags}

qHead: QElemPtr; {first queue entry}

qTail: QElemPtr; {last queue entry}

END;

The EvQEl data type defines an entry in the Operating System event queue.

TYPE EvQEl =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type (ORD(evType))}

evtQWhat: Integer; {event code}

evtQMessage: LongInt; {event message}

evtQWhen: LongInt; {ticks since startup}

evtQWhere: Point; {mouse location}

evtQModifiers: Integer; {modifier flags}

END;

Each entry in the event queue begins with 4 bytes of flags followed by a pointer to the
next queue entry. The flags are maintained by and internal to the Operating System Event
Manager. The queue entries are linked by pointers, and the first field of the EvQEl data
type, which represents the structure of a queue entry, begins with a pointer to the next
queue entry. Thus you cannot directly access the flags using the EvQEl data type.

C H A P T E R 2

Event Manager

2-84 Event Manager Reference

Event Manager Routines 2

The Event Manager includes routines for receiving events, receiving and sending
high-level events, and searching for specific high-level events. The Event Manager also
provides routines for converting between process serial numbers and port names, getting
information about the state of the mouse button, reading the keyboard, and getting
timing information.

Receiving Events 2

You can use the WaitNextEvent or GetNextEvent function to retrieve an event from
the Event Manager and remove the event from the event stream. To provide greater
support for multitasking, however, you should use the WaitNextEvent function instead
of GetNextEvent whenever possible. You can use the EventAvail function
to look at an event without removing it from the event stream. You can use the
AcceptHighLevelEvent function to get additional information associated with a
high-level event and GetSpecificHighLevelEvent to search for a specific high-
level event.

The FlushEvents procedure removes all low-level events from the Operating System
event queue. In general, your application should not empty the event queue.

You can use the SystemClick procedure to route events to desk accessories when
necessary. The SystemTask and SystemEvent routines are used by the Event Manager,
and your application usually does not need to call these two routines.

You usually use the functions provided by the Toolbox Event Manager to retrieve events
from the event stream. Even if you are interested only in the events stored in the
Operating System event queue, you can retrieve these events using the Toolbox Event
Manager by setting the event mask to mask out all events except keyboard, mouse, and
disk-inserted events. However, you can choose to use Operating System Event Manager
routines to perform this task.

The Operating System Event Manager provides two functions, GetOSEvent and
OSEventAvail, to retrieve events from the Operating System event queue. In most
cases, your application will not need to use these two functions.

If your application needs to receive key-up events, you can change the system event
mask of your application using the SetEventMask procedure. The GetEvQHdr function
returns a pointer to the header of the Operating System event queue.

C H A P T E R 2

Event Manager

Event Manager Reference 2-85

WaitNextEvent 2

You can use the WaitNextEvent function to retrieve events one at a time from the Event
Manager.

FUNCTION WaitNextEvent (eventMask: Integer;

VAR theEvent: EventRecord; sleep: LongInt;

mouseRgn: RgnHandle): Boolean;

eventMask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants. You can use
these constants to specify the event mask:

CONST

mDownMask = 2; {mouse-down event (bit 1)}

mUpMask = 4; {mouse-up event (bit 2)}

keyDownMask = 8; {key-down event (bit 3)}

keyUpMask = 16; {key-up event (bit 4)}

autoKeyMask = 32; {auto-key event (bit 5)}

updateMask = 64; {update event (bit 6)}

diskMask = 128; {disk-inserted event (bit 7)}

activMask = 256; {activate event (bit 8)}

highLevelEventMask

 = 1024; {high-level event (bit 10)}

osMask = -32768; {operating-system (bit 15)}

To accept all events, you can specify the everyEvent constant as the
event mask:

CONST

everyEvent = -1; {every event}

If no event of any of the designated types is available, WaitNextEvent
returns a null event. WaitNextEvent determines the next available event
to return based on the eventMask parameter and the priority of the
event.

Events not designated by the event mask remain in the event stream until
retrieved by an application. Low-level events in the Operating System
event queue are kept in the queue until they are retrieved by your
application or another application or until the queue becomes full. Once
the queue becomes full, the Operating System Event Manager begins
discarding the oldest events in the queue.

theEvent The next available event of the specified type or types. The
WaitNextEvent function removes the returned event from the event
stream and returns the information about the event in an event record.
The event record includes the type of event received and other
information. See “The Event Record,” beginning on page 2-79, for a
description of the fields in the event record.

C H A P T E R 2

Event Manager

2-86 Event Manager Reference

In addition to the event record, high-level events can contain additional
data; you use the AcceptHighLevelEvent or AEProcessAppleEvent
functions to get additional data associated with these events.

sleep The number of ticks (a tick is approximately 1/60 of a second) indicating
the amount of time your application is willing to relinquish the processor
if no events (other than null events) are pending for your application. If
you specify a value greater than 0 for the sleep parameter, your
application relinquishes the processor for the specified time or until an
event occurs.

You should usually specify a value greater than 0 for the sleep parameter
to allow background processes to receive processing time. You should not
set the sleep parameter to a value greater than the number of ticks
returned by GetCaretTime if your application provides text-editing
capabilities. When the specified time expires, and if there are no pending
events for your application, WaitNextEvent returns a null event in the
parameter theEvent.

mouseRgn A handle to a region that specifies a region inside of which mouse
movement does not cause mouse-moved events. In other words, your
application receives mouse-moved events only when the cursor is outside
the specified region. You should specify the region in global coordinates. If
you pass an empty region or a NIL region handle, the Event Manager does
not report mouse-moved events to your application. Note that your
application should recalculate the mouseRgn parameter when it receives a
mouse-moved event, or it will continue to receive mouse-moved events as
long as the cursor position is outside the original mouseRgn.

DESCRIPTION

The WaitNextEvent function returns FALSE as its function result if the event being
returned is a null event or if WaitNextEvent has intercepted the event; otherwise,
WaitNextEvent returns TRUE. The WaitNextEvent function calls the Operating
System Event Manager function SystemEvent to determine whether the event should
be handled by the application or the Operating System.

If no events are pending for your application, WaitNextEvent waits for a specified
amount of time for an event. (During this time, processing time may be allocated to
background processes.) If an event occurs, it is returned as the value of the parameter
theEvent, and WaitNextEvent returns a function result of TRUE. If the specified
time expires and there are no pending events for your application, WaitNextEvent
returns a null event in theEvent and a function result of FALSE.

Before returning an event to your application, WaitNextEvent performs other
processing and may intercept the event.

The WaitNextEvent function intercepts Command–Shift–number key sequences and
calls the corresponding 'FKEY' resource to perform the associated action. The Event
Manager’s processing of Command–Shift–number key sequences with numbers 3
through 9 can be disabled by setting the ScrDmpEnable global variable (a byte) to 0.

The WaitNextEvent function also makes the alarm go off if the alarm is set and
the current time is the alarm time. The user sets the alarm using the Alarm Clock
desk accessory.

C H A P T E R 2

Event Manager

Event Manager Reference 2-87

The WaitNextEvent function also calls the SystemTask procedure, which gives time
to each open desk accessory or device driver to perform any periodic action defined
for it. A desk accessory or device driver specifies how often the periodic action should
occur, and SystemTask gives time to the desk accessory or device driver at the
appropriate interval.

Some high-level events may be fully specified by their event records only, while others
may include additional information in an optional buffer. To get any additional
information and to find the sender of the event, use the AcceptHighLevelEvent
function.

If the returned event is a high-level event and your application supports Apple events,
use the Apple Event Manager function AEProcessAppleEvent to respond to the Apple
event and to get additional information associated with the Apple event.

SPECIAL CONSIDERATIONS

In System 7, if your application is in the foreground and the user opens a desk accessory
or other item from the Apple menu, clicks in the window belonging to another
application or desk accessory, or chooses another process from the Application menu, the
next event reported to your application by the WaitNextEvent function is a suspend
event. After your application is switched out, the Event Manager directs events (other
than events your application can receive in the background) to the newly activated
process until the user switches back to your application or another application.

Note
In a single-application environment in System 6, and in a multiple-
application environment in which the desk accessory is launched in
the application’s partition (for example, a desk accessory opened by the
user from the Apple menu while holding down the Option key), the
Event Manager handles events for desk accessories in a slightly
different manner.

In these environments, when mouse-up, activate, update, and keyboard
events (including keyboard equivalents of menu commands) occur, the
Event Manager checks to see whether the active window belongs to a
desk accessory and whether the desk accessory can handle the event. If
so, it sends the event to the desk accessory and WaitNextEvent returns
FALSE to your application. Also note that in these environments, the
Event Manager returns TRUE for mouse-down events, regardless of
whether the mouse-down event is for a desk accessory or not. For
mouse-down events in these situations, if the mouse button was
pressed while the cursor was in a desk accessory window (as indicated
by the inSystem constant returned by the FindWindow function),
your application should call the SystemClick procedure. The
SystemClick procedure handles mouse-down events as appropriate
for desk accessories, including sending your application an activate
event to deactivate its front window if the desk accessory window needs
to be activated. �

C H A P T E R 2

Event Manager

2-88 Event Manager Reference

SEE ALSO

For examples that use the WaitNextEvent function, see Listing 2-1 on page 2-23 and
Listing 2-2 on page 2-24.

To get information about the sender of a high-level event and to retrieve any
additional data associated with the high-level event, see the description of the
AcceptHighLevelEvent function on page 2-90. For details on how to process
an Apple event, see the description of the AEProcessAppleEvent function in
Inside Macintosh: Interapplication Communication.

For information on how to retrieve an event without removing it from the event stream,
see the description of the EventAvail function, immediately following.

EventAvail 2

You can use the EventAvail function to retrieve the next available event from
the Event Manager without removing the returned event from your application’s
event stream.

FUNCTION EventAvail (eventMask: Integer;

VAR theEvent: EventRecord): Boolean;

eventMask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants. You can use
these constants to specify the event mask:

CONST

mDownMask = 2; {mouse-down event (bit 1)}

mUpMask = 4; {mouse-up event (bit 2)}

keyDownMask = 8; {key-down event (bit 3)}

keyUpMask = 16; {key-up event (bit 4)}

autoKeyMask = 32; {auto-key event (bit 5)}

updateMask = 64; {update event (bit 6)}

diskMask = 128; {disk-inserted event (bit 7)}

activMask = 256; {activate event (bit 8)}

highLevelEventMask

 = 1024; {high-level event (bit 10)}

osMask = -32768; {operating-system (bit 15)}

To accept all events, you can specify the everyEvent constant as the
event mask:

CONST

everyEvent = -1; {every event}

If no event of any of the designated types is available, EventAvail
returns a null event.

C H A P T E R 2

Event Manager

Event Manager Reference 2-89

theEvent The next available event of the specified type or types. The EventAvail
function does not remove the returned event from the event stream, but
does return the information about the event in an event record. The event
record includes the type of event received and other information.

DESCRIPTION

EventAvail returns FALSE as its function result if the event being returned is a null
event; otherwise, EventAvail returns TRUE.

Like WaitNextEvent, the EventAvail function calls the SystemTask procedure to
give time to each open desk accessory or device driver to perform any periodic action
defined for it. The EventAvail function also makes the alarm go off if the alarm is set
and the current time is the alarm time. The user sets the alarm using the Alarm Clock
desk accessory.

SPECIAL CONSIDERATIONS

If EventAvail returns a low-level event from the Operating System event queue, the
event will not be accessible later if, in the meantime, the event queue becomes full and
the event is discarded from it; however, this is not a common occurrence.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record.

GetNextEvent 2

Although you should normally use WaitNextEvent, you can also use the
GetNextEvent function to retrieve events one at a time from the Event Manager.

FUNCTION GetNextEvent (eventMask: Integer;

VAR theEvent: EventRecord): Boolean;

eventMask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants (listed in
“Setting the Event Mask” beginning on page 2-26). If no event of any of
the designated types is available, GetNextEvent returns a null event.

theEvent The next available event of the specified type or types. The
GetNextEvent function removes the returned event from the
event stream and returns the information about the event in an
event record. The event record includes the type of event received
and other information.

C H A P T E R 2

Event Manager

2-90 Event Manager Reference

DESCRIPTION

GetNextEvent returns FALSE as its function result if the event being returned is a null
event or if GetNextEvent has intercepted the event; otherwise, GetNextEvent returns
TRUE. The GetNextEvent function calls the Operating System Manager function
SystemEvent to determine whether the event should be handled by the application or
the Operating System.

Like WaitNextEvent, the GetNextEvent function calls the SystemTask procedure to
give time to each open desk accessory or device driver to perform any periodic action
defined for it. The GetNextEvent function also makes the alarm go off if the alarm is set
and the current time is the alarm time. (The user sets the alarm using the Alarm Clock
desk accessory.)

The GetNextEvent function also intercepts Command–Shift–number key sequences
and calls the corresponding 'FKEY' resource to perform the associated action. The Event
Manager’s processing of Command–Shift–number key sequences with numbers
3 through 9 can be disabled by setting the ScrDmpEnable global variable (a byte) to 0.

SPECIAL CONSIDERATIONS

For greater support of the multitasking environment, your application should use
WaitNextEvent instead of GetNextEvent whenever possible. If your application does
call GetNextEvent, it should also call the SystemTask procedure.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record. For information on the SystemTask procedure, see page 2-95.

AcceptHighLevelEvent 2

After receiving a high-level event (other than an Apple event), use the
AcceptHighLevelEvent function to get any additional information associated
with the event.

FUNCTION AcceptHighLevelEvent (VAR sender: TargetID;

VAR msgRefcon: LongInt;

msgBuff: Ptr;

VAR msgLen: LongInt): OSErr;

sender Identifies the sender of the event; this information is returned in a target
ID record. The sender parameter contains the session reference number
that identifies the connection with the other application and the port name
and location name of the sender.

C H A P T E R 2

Event Manager

Event Manager Reference 2-91

msgRefcon Uniquely identifies the communication associated with this event. If you
send a response to this event, you should specify the same value for the
msgRefcon parameter so that the sender of the event can associate the
reply with the original request.

msgBuff Specifies where the AcceptHighLevelEvent function should return any
additional data associated with the event. Your application is responsible
for allocating the memory for the additional data pointed
to by the msgBuff parameter and for setting the msgLen parameter to the
number of bytes that you have allocated for the data.

If the msgBuff parameter points to an area in memory that is
not large enough to hold all the data associated with the event,
AcceptHighLevelEvent returns as much data as the specified
memory area can hold, returns the amount of data remaining in the
msgLen parameter, and returns the result code bufferIsSmall.

msgLen Contains the size of the data (in bytes) pointed to by the msgBuff
parameter. If AcceptHighLevelEvent returns the result code
bufferIsSmall, the msgLen parameter contains the number of bytes
remaining. You can call AcceptHighLevelEvent again to receive the
rest of the data.

DESCRIPTION

When your application receives a high-level event, you can use the
AcceptHighLevelEvent function to get additional data associated with the
event. The AcceptHighLevelEvent function returns information that identifies
the sender of the event and the unique message reference constant of the event.

Your application should allocate memory for any additional data associated with the
event, then supply a pointer to the data area and also provide the length in bytes of the
data area.

SPECIAL CONSIDERATIONS

The AcceptHighLevelEvent function may move or purge memory. You should not
call this function from within an interrupt, such as in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the AcceptHighLevelEvent function are

RESULT CODES

Trap macro Selector

_OSDispatch $0033

noErr 0 No error
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event

C H A P T E R 2

Event Manager

2-92 Event Manager Reference

SEE ALSO

For details on how to process an Apple event using the AEProcessAppleEvent
function, see Inside Macintosh: Interapplication Communication.

GetSpecificHighLevelEvent 2

You can use the GetSpecificHighLevelEvent function to select and optionally
retrieve a specific high-level event from your application’s high-level event queue.

FUNCTION GetSpecificHighLevelEvent

(aFilter: GetSpecificFilterProcPtr;

 yourDataPtr: UNIV Ptr; VAR err: OSErr): Boolean;

aFilter Specifies the filter function that GetSpecificHighLevelEvent should
use to search for a specific event. GetSpecificHighLevelEvent calls
your filter function once for each event in your application’s high-level
event queue until your filter function returns TRUE or the end of the queue
is reached.

yourDataPtr
Specifies the criteria your filter function should use to select a specific
event. For example, in the yourDataPtr parameter you can specify a
reference constant to search for a particular event, a pointer to a target ID
record to search for a specific sender of an event, or an event class to
search for a specific class of event.

err GetSpecificHighLevelEvent returns in this parameter a value
indicating if any errors occurred. The err parameter contains the noErr
constant if no errors occurred or noOutstandingHLE if no high-level
events are pending in your application’s high-level event queue.

DESCRIPTION

You can use the GetSpecificHighLevelEvent function to search for a specific
high-level event in your application’s high-level event queue. You provide a pointer to a
filter function as one of the parameters to GetSpecificHighLevelEvent. The
GetSpecificHighLevelEvent function calls your filter function once for every event
in your application’s high-level event queue, until your filter function returns TRUE or
the end of the queue is reached.

The GetSpecificHighLevelEvent function passes the value you specify in the
yourDataPtr parameter to your filter function. Your filter function also receives as
parameters the event record associated with the high-level event and the target ID record
that identifies the sender of the event. Your filter function can compare the contents of the
yourDataPtr parameter with any of the other information it receives.

If your filter function finds a match, it can call AcceptHighLevelEvent if necessary,
and then return TRUE. If your filter function does not find a match, then it should
return FALSE.

C H A P T E R 2

Event Manager

Event Manager Reference 2-93

If your filter function returns TRUE, the GetSpecificHighLevelEvent function
returns TRUE. If your filter function returns FALSE for all high-level events in your
application’s event queue, or if there are no high-level events in the queue,
GetSpecificHighLevelEvent returns FALSE.

SPECIAL CONSIDERATIONS

The GetSpecificHighLevelEvent function may move or purge memory. You
should not call this function from within an interrupt, such as in a completion routine
or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSpecificHighLevelEvent
function are

SEE ALSO

See “Filter Function for Searching the High-Level Event Queue” on page 2-114 for more
information about how to define a filter function and the parameters that
GetSpecificHighLevelEvent passes to your filter function.

FlushEvents 2

The FlushEvents procedure removes low-level events from the Operating System
event queue. Note that FlushEvents does not remove any types of events not stored
in the Operating System event queue.

You can choose to use the FlushEvents procedure when your application first starts to
empty the Operating System event queue of any keystrokes or mouse events generated
by the user while the Finder loaded your application. In general, however, your
application should not empty the queue at any other time as this loses user actions and
makes your application and the computer appear unresponsive to the user.

PROCEDURE FlushEvents (whichMask: Integer; stopMask: Integer);

whichMask A value that indicates which kinds of low-level events are to be removed
from the Operating System event queue; this parameter is interpreted
as a sum of event mask constants. The whichMask and stopMask
parameters together specify which events to remove.

Trap macro Selector

_OSDispatch $0045

C H A P T E R 2

Event Manager

2-94 Event Manager Reference

stopMask A value that limits which low-level events are to be removed from the
Operating System event queue; this parameter is interpreted as a sum
of event mask constants. FlushEvents does not remove any low-
level events that are specified by the stopMask parameter. To remove
all events specified by the whichMask parameter, specify 0 as the
stopMask parameter.

DESCRIPTION

FlushEvents removes only low-level events stored in the Operating System event
queue; it does not remove activate, update, operating-system, or high-level events.

You specify which low-level events to remove using the whichMask and stopMask
parameters. FlushEvents removes the low-level events specified by the whichMask
parameter, up to but not including the first event of any type specified by the
stopMask parameter.

If the event queue doesn’t contain any of the events specified by the whichMask
parameter, FlushEvents does not remove any events from the queue.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register D0 with the event mask (whichMask) and stop mask before
calling FlushEvents. When FlushEvents returns, register D0 contains 0 if all events
were removed from the queue or, if all events were not removed from the queue, an
event code that specifies the type of event that caused the removal process to stop.

SEE ALSO

See “Setting the Event Mask” beginning on page 2-26 for information on how to specify
an event mask.

SystemClick 2

After receiving a mouse-down event, your application should call the Window
Manager function FindWindow to determine where the cursor was when the mouse
button was pressed. If FindWindow returns the inSysWindow constant, call the
SystemClick procedure to handle the event.

PROCEDURE SystemClick (theEvent: EventRecord;
 theWindow: WindowPtr);

Registers on entry

D0 Event mask (low-order word)

Stop mask (high-order word)

Registers on exit

D0 0 if all events were removed from the queue, or the event code
of the event that stopped the search (low-order word)

C H A P T E R 2

Event Manager

Event Manager Reference 2-95

theEvent The event record for the event.

theWindow The window in which the mouse-down event occurred. Pass the window
pointer returned by FindWindow in this parameter.

DESCRIPTION

If a mouse-down event occurred in a desk accessory’s window, the SystemClick
procedure determines which part of the desk accessory’s window the cursor was in when
the mouse button was pressed and routes the event to the appropriate desk accessory as
necessary.

If the mouse button was pressed while the cursor was in the content region of the desk
accessory’s window and the window is active, SystemClick sends the mouse-down
event to the desk accessory to process. If the mouse-down event occurred in the content
region of the window and the window is inactive, SystemClick makes it the active
window. It does this by sending your application an activate event to deactivate its
front window and directing an event to the desk accessory to activate its window.

If the mouse button was pressed while the cursor was in the drag region or go-away
region, SystemClick calls the Window Manager routine DragWindow or
TrackGoAway, as appropriate. If TrackGoAway reports that the user closed the desk
accessory, SystemClick sends a close message to the desk accessory.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record.

SystemTask 2

In a multiple-application environment, the WaitNextEvent function is responsible for
giving time to each open desk accessory or driver to perform any periodic action. You
should not call SystemTask if your application calls WaitNextEvent.

If your application calls GetNextEvent, your application should call the SystemTask
procedure.

PROCEDURE SystemTask;

DESCRIPTION

The SystemTask procedure gives time to each open desk accessory or driver to
perform the periodic action defined for it. A desk accessory or device driver specifies
how often the periodic action should occur, and SystemTask gives time to the desk
accessory or device driver at the appropriate interval.

If your application calls GetNextEvent, your application should call SystemTask at
least every sixtieth of a second. This usually corresponds to calling SystemTask once

C H A P T E R 2

Event Manager

2-96 Event Manager Reference

each time through your event loop. If your application does a large amount of
processing, you may need to call SystemTask more than once in your event loop.

SEE ALSO

For a description of the WaitNextEvent function and the GetNextEvent function, see
page 2-85 and page 2-89, respectively.

SystemEvent 2

The WaitNextEvent and GetNextEvent functions call the SystemEvent function. In
most cases your application should not call the SystemEvent function.

The SystemEvent function determines if a specific event should be handled by the
application or the Operating System.

FUNCTION SystemEvent (theEvent: EventRecord): Boolean;

theEvent The event record for the event.

DESCRIPTION

SystemEvent returns FALSE as its function result if the event should be handled by the
application; otherwise, SystemEvent takes any appropriate actions and returns TRUE.

For activate, update, mouse-up, and keyboard events (including keyboard equivalents of
commands), SystemEvent checks to see whether the active window belongs to a desk
accessory and whether that desk accessory can handle that type of event. If so,
SystemEvent sends the event to the desk accessory and returns TRUE. Otherwise,
SystemEvent returns FALSE.

For mouse-down events and null events, SystemEvent returns FALSE.

For disk-inserted events, SystemEvent attempts to mount the disk using the
PBMountVol function but returns FALSE so that the application can perform further
processing if necessary.

ASSEMBLY-LANGUAGE INFORMATION

If the SEvtEnb global variable (a byte) contains 0, SystemEvent always returns FALSE.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record. For a description of the PBMountVol function, see the chapter “File
Manager” in Inside Macintosh: Files.

C H A P T E R 2

Event Manager

Event Manager Reference 2-97

GetOSEvent 2

The Toolbox Event Manager calls the GetOSEvent function to retrieve low-level events
stored in the Operating System event queue. In most cases your application should not
use this function.

FUNCTION GetOSEvent (mask: Integer;

VAR theEvent: EventRecord): Boolean;

mask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants. GetOSEvent
returns only low-level events stored in the Operating System event queue;
it does not return activate, update, operating-system, or high-level events.
If no low-level event of any of the designated types is available,
GetOSEvent returns a null event.

theEvent The next available low-level event of the specified type or types in the
Operating System event queue. The GetOSEvent function removes the
returned event from the Operating System event queue and returns the
information about the event in an event record. The event record includes
the type of event received and other information.

DESCRIPTION

The GetOSEvent function retrieves and removes an event from the Operating System
event queue. GetOSEvent returns FALSE as its function result if the event being
returned is a null event; otherwise, GetOSEvent returns TRUE. GetOSEvent does not
intercept or respond to the event in any way. It also does not process Command–Shift–
number key combinations or process any alarms set by the user through the Alarm Clock
desk accessory.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with the address of an event record and register D0 with the
event mask before invoking GetOSEvent. When GetOSEvent returns, register D0
indicates whether the returned event is a null event or an event other than a null event
and the returned event is accessible through register A0.

Registers on entry

A0 Address of event record

D0 Event mask (low-order word)

Registers on exit

A0 Address of event record

D0 0 if GetOSEvent returns any event other than a null event, or
–1 if it returns a null event (low-order byte)

C H A P T E R 2

Event Manager

2-98 Event Manager Reference

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record. See “Setting the Event Mask,” beginning on page 2-26, for information on
how to specify an event mask.

OSEventAvail 2

The Toolbox Event Manager uses the OSEventAvail function to retrieve an event from
the Operating System event queue without removing it. In most cases your application
does not need to use this function.

FUNCTION OSEventAvail (mask: Integer;

VAR theEvent: EventRecord): Boolean;

mask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants.
OSEventAvail returns only low-level events stored in the Operating
System event queue; it does not return activate, update, operating-system,
or high-level events. If no low-level event of any of the designated types is
available, OSEventAvail returns a null event.

theEvent The next available event of the specified type or types. The
OSEventAvail function does not remove the returned event from the
Operating System event queue but does return information about the
event in an event record. The event record includes the type of event
received and other information.

DESCRIPTION

The OSEventAvail function retrieves an event from the Operating System event queue
without removing it from the queue. The OSEventAvail function returns FALSE as its
function result if the event being returned is a null event; otherwise, OSEventAvail
returns TRUE.

OSEventAvail does not intercept or respond to the event in any way. It also does not
process Command–Shift–number key combinations or process any alarms set by the user
through the Alarm Clock desk accessory.

SPECIAL CONSIDERATIONS

If the OSEventAvail function returns a low-level event from the Operating System
event queue, the event will not be accessible later if, in the meantime, the event
queue becomes full and the event is discarded from it; however, this is not a common
occurrence.

C H A P T E R 2

Event Manager

Event Manager Reference 2-99

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with the address of an event record and register D0 with the
event mask before invoking OSEventAvail. When OSEventAvail returns, register D0
indicates whether the returned event is a null event or some other event, and the
returned event is accessible through register A0.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record. See “Setting the Event Mask,” beginning on page 2-26, for information on
how to specify an event mask

SetEventMask 2

The SetEventMask procedure sets the system event mask of your application to the
specified mask. Your application should not call the SetEventMask procedure to disable
any event types from being posted. Use SetEventMask only to enable key-up events if
your application needs to respond to key-up events.

PROCEDURE SetEventMask (theMask: Integer);

theMask An event mask that specifies which events should be posted in the
Operating System event queue.

DESCRIPTION

The SetEventMask procedure sets the system event mask of your application according
to the parameter theMask. The Operating System Event Manager posts only low-level
events (other than update or activate events) corresponding to bits in the system event
mask of the current process when posting events in the Operating System event queue.
The system event mask of an application is initially set to post mouse-up, mouse-down,
key-down, auto-key, and disk-inserted events into the Operating System event queue.

Registers on entry

A0 Address of event record

D0 Event mask (low-order word)

Registers on exit

A0 Address of event record

D0 0 if OSEventAvail returns any event other than a null event,
or –1 if it returns a null event (low-order byte)

C H A P T E R 2

Event Manager

2-100 Event Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The system event mask of the current application is available in the SysEvtMask system
global variable.

SEE ALSO

For additional information on event masks, see “Setting the Event Mask” beginning on
page 2-26.

GetEvQHdr 2

The Event Manager uses the GetEvQHdr function to get a pointer to the header of the
Operating System event queue. In most cases your application should not call the
GetEvQHdr function.

FUNCTION GetEvQHdr: QHdrPtr;

DESCRIPTION

The GetEvQHdr function returns a pointer to the header of the Operating System
event queue.

ASSEMBLY-LANGUAGE NOTE

The EventQueue system global variable contains the header of the event queue.

SEE ALSO

See “The Event Queue” on page 2-83 for information on the structure of the Operating
System event queue.

Sending Events 2

You can send events to other applications or processes using the PostHighLevelEvent
function. To send Apple events to other applications, use the Apple Event Manager
function AESend. The Operating System Event Manager also provides the PPostEvent
and PostEvent functions for posting low-level events to the Operating System event
queue. The PostEvent function is used by the Toolbox Event Manager. In most cases
your application should not use the PostEvent function.

C H A P T E R 2

Event Manager

Event Manager Reference 2-101

PostHighLevelEvent 2

You can use the PostHighLevelEvent function to send a high-level event to
another application.

FUNCTION PostHighLevelEvent (theEvent: EventRecord;

receiverID: Ptr; msgRefcon: LongInt;

msgBuff: Ptr; msgLen: LongInt;

postingOptions: LongInt): OSErr;

theEvent The event to send. Your application should fill out the what, message,
and where fields of the event record. Specify the kHighLevelEvent
constant in the what field, the event class of the high-level event in the
message field, and the event ID in the where field. You do not need to fill
out the when or modifiers fields; the Event Manager automatically
assigns the appropriate values to these fields when you send the message.

receiverID
The recipient of the high-level event. When sending an event to another
application on the local computer, you can specify the recipient of the
event by session reference number, process serial number, signature, or
port name and location name. When sending an event to an application on
a remote computer, you can specify the recipient only by the session
reference number or by the port name and location name.

To specify a port name and location name, provide the address of a target
ID record in the receiverID parameter. To specify a process serial
number, provide its address in the receiverID parameter. To specify a
session reference number, or signature, provide the data (cast to the Ptr
data type) in the receiverID parameter.

msgRefcon A unique number that identifies the communication associated with this
event. Your application can set this field to any value it chooses. If you are
replying to a high-level event, you should use the same value in the
msgRefcon parameter as specified in the high-level event that originated
the request.

msgBuff A pointer to a data buffer that contains any additional data for the event.

msgLen The size (in bytes) of the data buffer pointed to by the msgBuff
parameter.

postingOptions
Options associated with the receiverID parameter and delivery options
associated with the event. You can specify one or more delivery options to
indicate whether you want the other application to receive the event at the
next opportunity and to indicate whether you want acknowledgment that
the event was received by the other application. You use the options
associated with the receiverID parameter to indicate how you are
specifying the recipient of the event—whether by port name and location
name in a target ID record, by session reference number, by process serial
number, or by signature.

C H A P T E R 2

Event Manager

2-102 Event Manager Reference

You can use a combination of these constants in the postingOptions
parameter:

CONST

nAttnMsg

= $00000001; {give this message priority}

nReturnReceipt

= $00000200; {return receipt requested}

receiverIDisTargetID

= $00005000; {ID is port name and location name}

receiverIDisSessionID

= $00006000; {ID is PPC session reference number}

receiverIDisSignature

= $00007000; {ID is creator signature}

receiverIDisPSN

= $00008000; {ID is process serial number}

DESCRIPTION

The PostHighLevelEvent function posts the high-level event to the specified process.

If the application to which you are sending a high-level event terminates, you receive
the result code sessionClosedErr the next time your application calls
PostHighLevelEvent to send another high-level event to the terminated application. If
you do not care about any state information about that session, you can just resend your
event. Otherwise, you must restart another session and resend your event.

If your application is running in the background and posts a high-level event that
requires the network authentication dialog box to be displayed, PostHighLevelEvent
returns the noUserInteractionAllowed result code, does not display the network
authentication dialog box, and does not send the event. If your application receives the
noUserInteractionAllowed result code, you can use the Notification Manager to
inform the user that your application needs attention. When the user brings your
application to the foreground, you can repost the event. If the reposting is successful,
your application can continue to post high-level events without further user interaction.
Note that PostHighLevelEvent can return noUserInteractionAllowed only on
the first posting of a high-level event to a remote target.

SPECIAL CONSIDERATIONS

The PostHighLevelEvent function may move or purge memory. You should not call
this function from within an interrupt, such as in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PostHighLevelEvent function are

Trap macro Selector

_OSDispatch $0034

C H A P T E R 2

Event Manager

Event Manager Reference 2-103

SEE ALSO

For details on how to send Apple events to other applications using the AESend function,
see Inside Macintosh: Interapplication Communication.

RESULT CODES

PPostEvent 2

In most cases your application does not need to post events in the Operating System
event queue; however, if you must do so, you can use the PPostEvent function.

FUNCTION PPostEvent (eventCode: Integer; eventMsg: LongInt;

VAR qEl: EvQElPtr): OSErr;

eventCode A value that indicates the type of event to post into the Operating System
event queue. The types of events that can be posted in this queue are
represented by these constants: mouseDown, mouseUp, keyDown, keyUp,
autoKey, and diskEvt. Do not attempt to post any other type of event in
the Operating System event queue.

eventMsg A long integer that contains the contents of the message field for the
event that PPostEvent should post in the queue.

qEl PPostEvent returns a pointer to the event queue entry of the posted
event in this parameter.

DESCRIPTION

In the eventCode and eventMsg parameters, you specify the value for the what and
message fields of the event’s event record. The PPostEvent function fills out the when,
where, and modifiers fields of the event record with the current time, current mouse
location, and current state of the modifier keys and mouse button.

The PPostEvent function returns a pointer to the event queue entry of the posted event
in the qEl parameter. You can change any fields of the posted event by changing the
fields of its event queue entry. For example, you can change the posted event’s modifier
keys by changing the value of the evtQModifiers field of the event queue entry.

The PPostEvent function posts only events that are enabled by the system event mask.
If the event queue is full, PPostEvent removes the oldest event in the queue and posts
the new event.

noErr 0 No error
connectionInvalid –609 Connection is invalid
noUserInteractionAllowed –610 Cannot interact directly with user
sessionClosedErr –917 Session closed

C H A P T E R 2

Event Manager

2-104 Event Manager Reference

� W A R N I N G

Do not post any events other than mouse-down, mouse-up, key-down,
key-up, auto-key, and disk-inserted events in the Operating System
event queue. Attempting to post other events into the Operating
System event queue interferes with the internal operation of the
Event Manager. �

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 and register D0 before invoking PPostEvent. The
PPostEvent function returns values in registers A0 and D0.

RESULT CODES

SEE ALSO

For a description of the entries in the event queue, see “The Event Queue” on page 2-83.

PostEvent 2

The Toolbox Event Manager uses the PostEvent function to post events into the
Operating System event queue. In most cases your application should not call the
PostEvent function.

FUNCTION PostEvent (eventNum: Integer; eventMsg: LongInt): OSErr;

eventNum A value that indicates the type of event to post into the Operating System
event queue. The types of events that can be posted in this queue are
represented by these constants: mouseDown, mouseUp, keyDown, keyUp,
autoKey, and diskEvt. Do not attempt to post any other type of event in
the Operating System event queue.

eventMsg A long integer that contains the contents of the message field for the
event that PostEvent should post in the queue.

Registers on entry

A0 Event number (low-order word)

D0 Event message (long)

Registers on exit

A0 Pointer to an event queue entry (long)

D0 Result code (low-order word)

evtNotEnb 1 Event type not valid—event not posted
noErr 0 No error

C H A P T E R 2

Event Manager

Event Manager Reference 2-105

DESCRIPTION

In the eventNum and eventMsg parameters, you specify the value for the what and
message fields of the event’s event record. The PostEvent function fills out the when,
where, and modifiers fields of the event record with the current time, current mouse
location, and current state of the modifier keys and mouse button.

The PostEvent function posts only events that are enabled by the system event mask. If
the event queue is full, PostEvent removes the oldest event in the queue and posts the
new event.

Note that if you use PostEvent to repost an event, the PostEvent function fills out the
when, where, and modifier fields of the event record, giving these fields of the
reposted event different values from the values contained in the original event.

� W A R N I N G

Do not post any events other than mouse-down, mouse-up, key-down,
key-up, auto-key, and disk-inserted events in the Operating System
event queue. Attempting to post other events into the Operating
System event queue interferes with the internal operation of the
Event Manager. �

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with the event code and register D0 with the event
message before invoking PostEvent. When PostEvent returns, register D0
contains the result code.

RESULT CODES

Converting Process Serial Numbers and Port Names 2

The Event Manager provides two functions to convert between process serial
numbers and port names (GetProcessSerialNumberFromPortName and
GetPortNameFromProcessSerialNumber). Both functions are intended to map serial
numbers to port names (or vice versa) for applications open on the local computer. They
do not return useful results for applications open on remote computers.

Registers on entry

A0 Event number (low-order word)

D0 Event message (long)

Registers on exit

D0 Result code (low-order word)

evtNotEnb 1 Event type not valid—event not posted
noErr 0 No error

C H A P T E R 2

Event Manager

2-106 Event Manager Reference

GetProcessSerialNumberFromPortName 2

Use GetProcessSerialNumberFromPortName to get the process serial number of a
process.

FUNCTION GetProcessSerialNumberFromPortName

(portName: PPCPortRec;

 VAR PSN: ProcessSerialNumber): OSErr;

portName The port name registered to a process whose serial number you want.

PSN Returns the process serial number of the process designated by the
portName parameter. You can use the returned process serial number to
send a high-level event to that process. Do not interpret the value of the
process serial number.

DESCRIPTION

The GetProcessSerialNumberFromPortName function returns the process serial
number of the process registered at a specific port.

SPECIAL CONSIDERATIONS

The GetProcessSerialNumberFromPortName function does not move or purge
memory but for other reasons should not be called from within an interrupt, such as
in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetProcessSerialNumberFromPortName
function are

RESULT CODES

SEE ALSO

For a description of the PPCPortRec data type, see the chapter “Program-to-Program
Communications Toolbox” in Inside Macintosh: Interapplication Communication.

Trap macro Selector

_OSDispatch $0035

noErr 0 No error
noPortErr –903 Invalid port name

C H A P T E R 2

Event Manager

Event Manager Reference 2-107

GetPortNameFromProcessSerialNumber 2

Use GetPortNameFromProcessSerialNumber to get the port name of a process.

FUNCTION GetPortNameFromProcessSerialNumber

(VAR portName: PPCPortRec;

 PSN: ProcessSerialNumber): OSErr;

portName Returns the port name of the process designated by the PSN parameter.
You can use the returned port name to send a high-level event to
that process.

PSN The process serial number of the process whose port name you want.

DESCRIPTION

The GetPortNameFromProcessSerialNumber function returns the port name
registered to a process having a specific process serial number.

SPECIAL CONSIDERATIONS

The GetPortNameFromProcessSerialNumber function does not move or purge
memory but for other reasons should not be called from within an interrupt, such as
in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPortNameFromProcessSerialNumber
function are

RESULT CODES

SEE ALSO

For a description of the PPCPortRec data type, see the chapter “Program-to-Program
Communications Toolbox” in Inside Macintosh: Interapplication Communication.

Trap macro Selector

_OSDispatch $0046

noErr 0 No error
procNotFound –600 No eligible process with specified process

serial number

C H A P T E R 2

Event Manager

2-108 Event Manager Reference

Reading the Mouse 2

The Event Manager provides routines you can use to get information about the mouse.
You can get the current mouse location using the GetMouse procedure. You can use
the Button function to determine whether the user pressed the mouse button. After
receiving a mouse-down event, you can use the StillDown function to determine
whether the mouse button is still down, and you can use WaitMouseUp to determine if
the user subsequently released the mouse.

GetMouse 2

You can use the GetMouse procedure to obtain the current mouse location.

PROCEDURE GetMouse (VAR mouseLoc: Point);

mouseLoc Returns the current mouse location in local coordinates of the current
graphics port (for example, the active window). Note that this value
differs from the value of the where field of the event record, which
specifies the mouse location in global coordinates.

Button 2

You can use the Button function to determine whether the user pressed the
mouse button.

FUNCTION Button: Boolean;

DESCRIPTION

The Button function looks in the Operating System event queue for a mouse-down
event. If it finds one, the Button function returns TRUE; otherwise, it returns FALSE. To
determine whether the mouse button is still down after a mouse-down event, use the
StillDown function.

SEE ALSO

See “The Event Queue” on page 2-83 for information about the Operating System
event queue.

C H A P T E R 2

Event Manager

Event Manager Reference 2-109

StillDown 2

After receiving a mouse-down event, you can use the StillDown function to determine
if the mouse button is still down.

FUNCTION StillDown: Boolean;

DESCRIPTION

The StillDown function looks in the Operating System event queue for a mouse
event. If it finds one, the StillDown function returns FALSE. If it does not find any
mouse events pending in the Operating System event queue, the StillDown function
returns TRUE.

SEE ALSO

See “The Event Queue” on page 2-83 for information about the Operating System
event queue.

WaitMouseUp 2

After receiving a mouse-down event, you can use the WaitMouseUp function to
determine if the user subsequently released the mouse.

FUNCTION WaitMouseUp: Boolean;

DESCRIPTION

The WaitMouseUp function looks in the Operating System event queue for a mouse-up
event. If it finds one, the WaitMouseUp function removes the mouse-up event from the
queue and returns TRUE. If it does not find any mouse events pending in the Operating
System event queue, the WaitMouseUp function returns FALSE.

SEE ALSO

See “The Event Queue” on page 2-83 for information about the Operating System
event queue.

C H A P T E R 2

Event Manager

2-110 Event Manager Reference

Reading the Keyboard 2

The Event Manager reports keyboard events one at a time at your application’s request
when you use the WaitNextEvent, EventAvail, or GetNextEvent function. In
addition to getting keyboard events when the user presses or releases a key, you can
directly read the keyboard (and keypad) at any time using the GetKeys procedure.

You can also use the KeyTranslate function to convert virtual key codes to character
code values using a specified 'KCHR' resource.

GetKeys 2

You can use the GetKeys procedure to obtain the current state of the keyboard.

PROCEDURE GetKeys (VAR theKeys: KeyMap);

theKeys Returns the current state of the keyboard, including the keypad, if any.
The GetKeys procedure returns this information using the KeyMap data
type.

TYPE KeyMap = PACKED ARRAY[0..127] OF Boolean;

Each key on the keyboard or keypad corresponds to an element in the
KeyMap array. The index for a particular key is the same as the key’s
virtual key code minus 1. For example, the key with virtual key code 38
(the “J” key on the Apple Keyboard II) can be accessed as KeyMap[37] in
the returned array. A KeyMap element is TRUE if the corresponding key is
down and FALSE if it isn’t. The maximum number of keys that can be
down simultaneously is two character keys plus any combination of the
five modifier keys.

DESCRIPTION

You can use the GetKeys procedure to determine the current state of the keyboard at any
time. For example, you can determine whether one of the modifier keys is down by itself
or in combination with another key using the GetKeys procedure.

KeyTranslate 2

You can use the KeyTranslate function to convert a virtual key code to a character
code based on a 'KCHR' resource. The KeyTranslate function is also available as the
KeyTrans function.

FUNCTION KeyTranslate (transData: Ptr; keycode: Integer;

VAR state: LongInt): LongInt;

C H A P T E R 2

Event Manager

Event Manager Reference 2-111

transData A pointer to the 'KCHR' resource that you want the KeyTranslate
function to use when converting the key code to a character code.

keycode A 16-bit value that your application should set so that bits 0–6 contain the
virtual key code and bit 7 contains either 1 to indicate an up stroke or 0 to
indicate a down stroke of the key. Bits 8–15 have the same interpretation
as the high byte of the modifiers field of the event record and should be
set according to the needs of your application.

state A value that your application should set to 0 the first time it calls
KeyTranslate or any time your application calls KeyTranslate with a
different 'KCHR' resource. Thereafter, your application should pass the
same value for the state parameter as KeyTranslate returned in the
previous call.

DESCRIPTION

The KeyTranslate function returns a 32-bit value that gives the character code for the
virtual key code specified by the keycode parameter. Figure 2-17 shows the structure of
the 32-bit number that KeyTranslate returns.

Figure 2-17 Structure of the KeyTranslate function result

The KeyTranslate function returns the values that correspond to one or possibly two
characters that are generated by the specified virtual key code. For example, a given
virtual key code might correspond to an alphabetic character with a separate accent
character. For example, when the user presses Option-E followed by N, you can map this
through the KeyTranslate function using the U.S. 'KCHR' resource to produce ´n,
which KeyTranslate returns as two characters in the bytes labeled Character code 1
and Character code 2. If KeyTranslate returns only one character code, it is always in
the byte labeled Character code 2. However, your application should always check both
bytes labeled Character code 1 and Character code 2 in Figure 2-17 for possible values
that map to the virtual key code.

SEE ALSO

For additional information on the 'KCHR' resource and the KeyTranslate function, see
Inside Macintosh: Text.

Reserved 1 Character code 1 Reserved 2 Character code 2

24 2331 16 15 08 7

C H A P T E R 2

Event Manager

2-112 Event Manager Reference

Getting Timing Information 2

You can get the current number of ticks since the system last started up using the
TickCount function. You can use this function to compare the number of ticks that have
expired since a given event or other action occurred.

By using the GetDblTime function, you can get the suggested maximum difference in
ticks that should exist to consider two mouse events a double click. The user can adjust
this value using the Mouse control panel. Using the GetCaretTime function you can get
the suggested maximum difference in ticks that should exist between blinks of the caret
in editable text. The user can adjust this value using the General Controls panel.

TickCount 2

You can use the TickCount function to get the current number of ticks (a tick is
approximately 1/60 of a second) since the system last started up.

FUNCTION TickCount: LongInt;

DESCRIPTION

The TickCount function returns a long integer that indicates the current number of ticks
since the system last started up. You can use this value to compare the number of ticks
that have elapsed since a given event or other action occurred. For example, you could
compare the current value returned by TickCount with the value of the when field of an
event record.

The tick count is incremented during the vertical retrace interrupt, but this interrupt can
be disabled. Your application should not rely on the tick count to increment with absolute
precision. Your application also should not assume that the tick count always increments
by 1; an interrupt task might keep control for more than one tick. If your application
keeps track of the previous tick count and then compares this value with the current tick
count, your application should compare the two values by checking for a “greater than or
equal” condition rather than “equal to previous tick count plus 1.”

� W A R N I N G

Don’t rely on the tick count being exact; it’s usually accurate to within
one tick, but this level of accuracy is not guaranteed. �

ASSEMBLY-LANGUAGE NOTE

The value returned by TickCount is also accessible in the global variable Ticks.

C H A P T E R 2

Event Manager

Event Manager Reference 2-113

GetDblTime 2

To determine whether a sequence of mouse events constitutes a double click, your
application measures the elapsed time (in ticks) between a mouse-up event and a
mouse-down event. If the time between the two mouse events is less than the value
returned by GetDblTime, your application should interpret the two mouse events
as a double click.

FUNCTION GetDblTime: LongInt;

DESCRIPTION

The GetDblTime function returns the suggested maximum elapsed time, in ticks,
between a mouse-up event and a mouse-down event. The user can adjust this value
using the Mouse control panel.

If your application distinguishes a double click of the mouse from a single click, your
application should use the value returned by GetDblTime to make this distinction. If
your application uses TextEdit, the TextEdit procedures automatically recognize and
handle double clicks of text within a TextEdit edit record by appropriately highlighting or
unhighlighting the selection.

ASSEMBLY-LANGUAGE NOTE

The value returned by GetDblTime is also accessible in the system global variable
DoubleTime.

GetCaretTime 2

You can use the GetCaretTime function to get the suggested difference in ticks that
should exist between blinks of the caret (usually a vertical bar marking the insertion
point) in editable text. The user can adjust this value using the General Controls panel.

FUNCTION GetCaretTime: LongInt;

DESCRIPTION

If your application supports editable text, your application should use the value returned
by GetCaretTime to determine how often to blink the caret. If your application uses
only TextEdit, you can use TextEdit procedures to automatically blink the caret at the
time interval that the user specifies in the General Controls panel.

ASSEMBLY-LANGUAGE NOTE

The value returned by GetCaretTime is also accessible in the system global
variable CaretTime.

C H A P T E R 2

Event Manager

2-114 Event Manager Reference

Application-Defined Routine 2
When you use GetSpecificHighLevelEvent, you supply a filter function so
that your application can search for a specific event in the high-level event queue
of your application.

Filter Function for Searching the High-Level Event Queue 2

This section describes the filter function that you can provide to
GetSpecificHighLevelEvent. For example, you might use a filter
function to search for a high-level event sent from a specific application.

MyFilter 2

When you use GetSpecificHighLevelEvent to search the high-level event queue
of your application for a specific event, you supply a pointer to a filter function.
GetSpecificHighLevelEvent calls your filter function once for each event in the
high-level event queue until your filter function returns TRUE or the end of the queue
is reached. Your filter function can examine each event and determine whether that
event is the desired event. If so, your filter function should return TRUE.

Here’s how you declare the filter function MyFilter:

FUNCTION MyFilter (yourDataPtr: Ptr;

 msgBuff: HighLevelEventMsgPtr;

 sender: TargetID): Boolean;

yourDataPtr
Specifies the criteria your filter function should use to select a specific
event. For example, you can specify the yourDataPtr parameter as a
reference constant to search for a particular event, as a pointer to a target
ID record to search for a specific sender of an event, or as an event class to
search for a specific class of event.

msgBuff Contains a pointer to a record of data type HighLevelEventMsg, which
provides: the event record for the high-level event and the reference
constant of the event. The HighLevelEventMsg data type is described in
“The High-Level Event Message Record” on page 2-82.

sender Contains the target ID record of the application that sent the event. The
TargetID data type is described in “The Target ID Record” on page 2-81.

DESCRIPTION

Your filter function can compare the contents of the yourDataPtr parameter with the
contents of the msgBuff and sender parameters. If your filter function finds a match, it
can call AcceptHighLevelEvent, if necessary, and your filter function should return
TRUE. If your filter function does not find a match, it should return FALSE.

C H A P T E R 2

Event Manager

Event Manager Reference 2-115

SEE ALSO

For information about how to specify your filter function to the
GetSpecificHighLevelEvent function, see page 2-92.

Resource 2
This section explains the structure of a 'SIZE' resource and the meaning of each of its
fields. You are responsible for creating the information in this resource.

The Size Resource 2

Every application executing in System 7, as well as every application executing under
MultiFinder, should contain a size ('SIZE') resource. One of the principal functions
of the 'SIZE' resource is to inform the Operating System about the memory size
requirements for the application so that the Operating System can set up an
appropriately sized partition for the application. The 'SIZE' resource is also used to
indicate certain scheduling options to the Operating System, such as whether the
application can accept suspend and resume events. The 'SIZE' resource in System 7
contains additional information indicating whether the application is 32-bit clean,
whether it supports stationery documents, whether it uses TextEdit’s inline input
services, whether the application wishes to receive notification of the termination of
any applications it has launched, and whether the application wishes to receive high-
level events.

A 'SIZE' resource consists of a 16-bit flags field followed by two 32-bit size fields. The
flags field specifies operating characteristics of the application, and the size fields indicate
the minimum and preferred partition sizes for the application. The minimum partition
size is the actual limit below which your application will not run. The preferred partition
size is the memory size at which your application can run most effectively and which the
Operating System attempts to secure upon launching the application. If that amount of
memory is unavailable, the application is placed into the largest contiguous block
available, provided that it is larger than the specified minimum size.

Note
If the amount of available memory is between the minimum and the
preferred sizes, the Finder displays a dialog box asking if the user wants
to run the application using the amount of memory available. If your
application does not have a 'SIZE' resource, it is assigned a default
partition size of 512 KB and the Process Manager uses a default value
of FALSE for all specifications normally defined by constants in the
flags field. �

When you define a 'SIZE' resource, you should give it a resource ID of –1. A user can
modify the preferred size in the Finder’s information window for your application. If the
user does alter the preferred partition size, the Operating System creates a new 'SIZE'
resource having resource ID 0. The Process Manager also creates a new 'SIZE' resource
when the user modifies any of the other settings in the resource.

C H A P T E R 2

Event Manager

2-116 Event Manager Reference

In system software version 7.1 the user can also modify the minimum size in the Finder’s
information window for your application. In version 7.1, if the user alters either the
minimum or the preferred partition size, the Operating System creates two new 'SIZE'
resources, one with resource ID 0 and one with resource ID 1.

At application launch time, the Process Manager looks for a 'SIZE' resource with ID 0
for the preferred partition size; if this resource is not found, it uses your original 'SIZE'
resource with ID –1. In version 7.1, the Process Manager looks for a 'SIZE' resource
with ID 0 for the preferred size and looks for a 'SIZE' resource with ID 1 for the
minimum size; if these resources are not found, it uses your original 'SIZE' resource
with ID –1.

Listing 2-19 shows the structure of the 'SIZE' resource in Rez format. See Listing 2-4 in
“Creating a Size Resource,” beginning on page 2-30 for a sample 'SIZE' resource for
an application.

Listing 2-19 A Rez template for a 'SIZE' resource

type 'SIZE' {

boolean reserved; /*reserved*/

boolean ignoreSuspendResumeEvents, /*ignores suspend-resume events*/

acceptSuspendResumeEvents; /*accepts suspend-resume events*/

boolean reserved; /*reserved*/

boolean cannotBackground, /*can't use background null events*/

canBackground; /*can use background null events*/

boolean needsActivateOnFGSwitch, /*needs activate event following */

/* major switch*/

doesActivateOnFGSwitch; /*activates own windows in */

/* response to OS events*/

boolean backgroundAndForeground, /*app has a user interface*/

onlyBackground; /*app has no user interface*/

boolean dontGetFrontClicks, /*don’t return mouse events */

/* in front window on resume*/

getFrontClicks; /*do return mouse events */

/* in front window on resume*/

boolean ignoreAppDiedEvents, /*applications use this*/

acceptAppDiedEvents; /*app launchers use this*/

boolean not32BitCompatible, /*works with 24-bit addr*/

is32BitCompatible; /*works with 24- or 32-bit addr*/

boolean notHighLevelEventAware, /*can't use high-level events*/

isHighLevelEventAware; /*can use high-level events*/

boolean onlyLocalHLEvents, /*only local high-level events*/

localAndRemoteHLEvents; /*also remote high-level events*/

boolean notStationeryAware, /*can't use stationery documents*/

isStationeryAware; /*can use stationery documents*/

boolean dontUseTextEditServices, /*can't use inline services*/

useTextEditServices; /*can use inline services*/

C H A P T E R 2

Event Manager

Event Manager Reference 2-117

boolean reserved; /*reserved*/

boolean reserved; /*reserved*/

boolean reserved; /*reserved*/

/*memory sizes are in bytes*/

unsigned longint; /*preferred memory size*/

unsigned longint; /*minimum memory size*/

};

The nonreserved bits in the flags field have the following meanings:

Flag descriptions

acceptSuspendResumeEvents
When set, indicates that your application can process suspend and
resume events (which the Operating System sends to your
application before sending it into the background or when bringing
it into the foreground).

Note

If you set the acceptSuspendResumeEvents flag, you should
also set the doesActivateOnFGSwitch flag. �

canBackground When set, indicates that your application wants to receive null event
processing time while in the background. If your application has
nothing to do in the background, you should not set this flag.

doesActivateOnFGSwitch
When set, indicates that your application takes responsibility for
activating and deactivating any windows in response to a suspend
or resume event. If the acceptSuspendResumeEvents flag is set,
if the doesActivateOnFGSwitch flag is not set, and if your
application is suspended, then your application receives an activate
event following the suspend event. However, if you set the
doesActivateOnFGSwitch flag, then your application won’t
receive activate events associated with operating-system events, and
you must take care of activation and deactivation when it receives
the corresponding suspend or resume event. This means that if a
window of your application is frontmost, you should treat
a suspend event as though a deactivate event were received as
well (assuming that both the doesActivateOnFGSwitch and
acceptSuspendResumeEvents flags are set). For example, you
should hide scroll bars, hide any caret, and unhighlight any selected
text if your application moves to the background. If you do not set
this flag, the Process Manager creates an offscreen window to force
the activate and deactivate events to occur.

onlyBackground When set, indicates that your application runs only in the back-
ground. Usually this is because it does not have a user interface
and cannot run in the foreground.

getFrontClicks When set, indicates that your application is to receive the
mouse-down and mouse-up events that are used to bring your
application into the foreground when the user clicks in your

C H A P T E R 2

Event Manager

2-118 Event Manager Reference

application’s frontmost window. Typically, the user simply wants to
bring your application into the foreground, so it is usually not
desirable to receive the mouse events (which would probably move
the insertion point or start drawing immediately, depending on the
application). The Finder is one application, however, that has the
getFrontClicks flag set.
When the user clicks in the front window of your application and
causes a foreground switch, your application receives a resume
event. Your application should activate its front window in response
to the resume event. In this case if your application’s
getFrontClicks flag is not set, your application does not receive
the associated mouse event that caused the foreground switch. If
your application’s getFrontClicks flag is set, your application
does receive the associated mouse event.
Your application always receives the associated mouse event when
the user clicks in one of your application’s windows other than the
front window and causes a foreground switch.
When your application receives a mouse-down event in System 7,
your application can examine bit 0 of the modifiers field of the
event record to determine if the mouse-down event caused a
foreground switch. This information can be especially useful if your
application sets its getFrontClicks flag. For example, your
application can examine bit 0 to determine whether to process the
mouse-down event (probably depending on whether the clicked
item was visible before the foreground switch).

acceptAppDiedEvents
When set, indicates that your application is to be notified whenever
an application launched by your application terminates or crashes.
If the Process Manager is available, your application receives this
information as an Apple event, the Application Died event. See the
chapter “Process Manager” chapter in Inside Macintosh: Processes for
more information about launching applications and receiving
Application Died events.

Note

Some early versions of MultiFinder do not send application-died
events, and your application should not depend on receiving them if
it is running in System 6. These events are provided primarily for
use by debuggers. �

is32BitCompatible
When set, indicates that your application can be run with the 32-bit
Memory Manager. You should not set this flag unless you have
thoroughly tested your application on a 32-bit system (such as
a Macintosh IIci computer running System 7 in 32-bit mode or under
A/UX).

isHighLevelEventAware
When set, indicates that your application can send and receive
high-level events. If this flag is not set, the Event Manager does
not give your application high-level events when you call

C H A P T E R 2

Event Manager

Event Manager Reference 2-119

WaitNextEvent. There is no way to mask out specific types of
high-level events; if this flag is set, your application receives all
types of high-level events sent to your application.
Your application must support the four required Apple events if you
set the isHighLevelEventAware flag. See Inside Macintosh:
Interapplication Communication for information that describes how
to respond to the four required Apple events.

localAndRemoteHLEvents
When set, indicates that your application is to be visible to
applications running on other computers on a network (in addition
to applications running on the local computer). If this flag is not
set, your application does not receive high-level events across
a network.

isStationeryAware
When set, indicates that your application can recognize stationery
documents. If this flag is not set and the user opens a stationery
document, the Finder duplicates the document and prompts the
user for a name for the duplicate document. For information about
how your application can use stationery documents, see the chapter
“Finder Interface” in this book.

 useTextEditServices
When set, indicates that your application can use the inline text
services provided by TextEdit. See Inside Macintosh: Text for
information about the inline input capabilities of TextEdit.

The numbers you specify as your application’s preferred and minimum memory sizes
depend on the particular memory requirements of your application. Your application’s
memory requirements depend on the size of your application’s static heap, dynamic
heap, A5 world, and stack. (See “Introduction to Memory Management” in Inside
Macintosh: Memory for complete details about these areas of your application’s partition.)

The static heap size includes objects that are always present during the execution of the
application—for example, code segments, Toolbox data structures for window records,
and so on.

Dynamic heap requirements depend on how many objects are created on a per-
document basis (which may vary in size proportionally with the document itself)
and the number of objects that are required for specific commands or functions.

The size of the A5 world depends on the amount of global data and the number of
intersegment jumps the application contains.

Finally, the stack contains variables, return addresses, and temporary information. The
application stack size varies among computers, so you should base your values for the
stack size according to the stack size required on a Macintosh Plus (8 KB). The Process
Manager automatically adjusts your requested amount of memory to compensate for the
different stack sizes on different machines. For example, if you request 512 KB, more
stack space (approximately 16 KB) will be allocated on machines with larger default stack
sizes.

C H A P T E R 2

Event Manager

2-120 Summary of the Event Manager

Summary of the Event Manager 2

Pascal Summary 2

Constants 2

CONST {event codes}

nullEvent = 0; {no other pending events}

mouseDown = 1; {mouse button pressed}

mouseUp = 2; {mouse button released}

keyDown = 3; {key pressed}

keyUp = 4; {key released}

autoKey = 5; {key repeatedly held down}

updateEvt = 6; {window needs updating}

diskEvt = 7; {disk inserted}

activateEvt = 8; {activate/deactivate window}

osEvt = 15; {operating-system events }

{ (suspend, resume, mouse-moved)}

kHighLevelEvent = 23; {high-level events }

{ (includes Apple events)}

{event masks}

everyEvent = -1; {every event}

mDownMask = 2; {mouse-down event (bit 1)}

mUpMask = 4; {mouse-up event (bit 2)}

keyDownMask = 8; {key-down event (bit 3)}

keyUpMask = 16; {key-up event (bit 4)}

autoKeyMask = 32; {auto-key event (bit 5)}

updateMask = 64; {update event (bit 6)}

diskMask = 128; {disk-inserted event (bit 7)}

activMask = 256; {activate event (bit 8)}

highLevelEventMask = 1024; {high-level event (bit 10)}

osMask = -32768; {operating-system event (bit 15)}

{message codes for operating-system events}

suspendResumeMessage = $01; {suspend or resume event}

mouseMovedMessage = $FA; {mouse-moved event}

osEvtMessageMask = $FF000000;{can use to extract msg code}

C H A P T E R 2

Event Manager

Summary of the Event Manager 2-121

{flags for suspend and resume events}

resumeFlag = 1; {resume event}

convertClipboardFlag = 2; {Clipboard conversion }

{ required}

{event message masks for keyboard events}

charCodeMask= $000000FF; {use to get character code}

keyCodeMask = $0000FF00; {use to get key code}

adbAddrMask = $00FF0000; {ADB address for ADB keyboard}

{constants corresponding to bits in the modifiers field of event}

activeFlag = 1; {bit 0 of low byte--valid only for }

{ activate and mouse-moved events}

btnState = 128; {bit 7 of low byte is mouse button state}

cmdKey = 256; {bit 0 of high byte}

shiftKey = 512; {bit 1 of high byte}

alphaLock = 1024; {bit 2 of high byte}

optionKey = 2048; {bit 3 of high byte}

controlKey = 4096; {bit 4 of high byte}

{high-level event posting options}

nAttnMsg = $00000001; {give this message priority}

priorityMask = $000000FF; {mask for priority options}

nReturnReceipt = $00000200; {return receipt requested}

systemOptionsMask = $00000F00;

receiverIDisTargetID = $00005000; {ID is port name & location}

receiverIDisSessionID = $00006000; {ID is PPC session ref number}

receiverIDisSignature = $00007000; {ID is creator signature}

receiverIDisPSN = $00008000; {ID is process serial number}

receiverIDMask = $0000F000;

{class and ID values for return receipt}

HighLevelEventMsgClass = 'jaym'; {event class of return receipt}

rtrnReceiptMsgID = 'rtrn'; {event ID of return receipt}

{modifiers values in return receipt}

msgWasNotAccepted = 0; {recipient did not accept }

{ the message}

msgWasFullyAccepted = 1; {recipient accepted the}

{ entire message}

msgWasPartiallyAccepted = 2; {recipient did not accept }

{ the entire message}

C H A P T E R 2

Event Manager

2-122 Summary of the Event Manager

Data Types 2

TYPE

EventRecord =

RECORD

what: Integer; {event code}

message: LongInt; {event message}

when: LongInt; {ticks since startup}

where: Point; {mouse location}

modifiers: Integer; {modifier flags}

END;

KeyMap = PACKED ARRAY[0..127] OF Boolean; {records state of keyboard}

TargetID =

RECORD

sessionID: LongInt; {session reference number (not }

{ used if posting an event)}

name: PPCPortRec; {port name}

location: LocationNameRec; {location name}

recvrName: PPCPortRec; {reserved}

END;

TargetIDPtr = ^TargetID; {pointer to a target ID record}

TargetIDHdl = ^TargetIDPtr; {handle to a target ID record}

HighLevelEventMsg =

RECORD

HighLevelEventMsgHeaderLength: Integer; {reserved}

version: Integer; {reserved}

reserved1: LongInt; {reserved}

theMsgEvent: EventRecord; {event record}

userRefCon: LongInt; {reference constant}

postingOptions: LongInt; {reserved}

msgLength: LongInt; {reserved}

END;

HighLevelEventMsgPtr = ^HighLevelEventMsg;

HighLevelEventMsgHdl = ^HighLevelEventMsgPtr;

GetSpecificFilterProcPtr = ProcPtr;

C H A P T E R 2

Event Manager

Summary of the Event Manager 2-123

EvQEl = {event queue entry}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type (ORD(evType))}

evtQWhat: Integer; {event code}

evtQMessage: LongInt; {event message}

evtQWhen: LongInt; {ticks since startup}

evtQWhere: Point; {mouse location}

evtQModifiers: Integer; {modifier flags}

END;

EvQElPtr = ^EvQEl;

Event Manager Routines 2

Receiving Events

FUNCTION WaitNextEvent (eventMask: Integer; VAR theEvent: EventRecord;
sleep: LongInt; mouseRgn: RgnHandle): Boolean;

FUNCTION EventAvail (eventMask: Integer; VAR theEvent: EventRecord)
: Boolean;

FUNCTION GetNextEvent (eventMask: Integer; VAR theEvent: EventRecord)
: Boolean;

FUNCTION AcceptHighLevelEvent
(VAR sender: TargetID; VAR msgRefcon: LongInt;
msgBuff: Ptr; VAR msgLen: LongInt): OSErr;

FUNCTION GetSpecificHighLevelEvent
(aFilter: GetSpecificFilterProcPtr; yourDataPtr:
UNIV Ptr; VAR err: OSErr)
: Boolean;

PROCEDURE FlushEvents (whichMask: Integer; stopMask: Integer);

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr);

PROCEDURE SystemTask;

FUNCTION SystemEvent (theEvent: EventRecord): Boolean;

FUNCTION GetOSEvent (mask: Integer; VAR theEvent: EventRecord)
: Boolean;

FUNCTION OSEventAvail (mask: Integer; VAR theEvent: EventRecord)
: Boolean;

PROCEDURE SetEventMask (theMask: Integer);

FUNCTION GetEvQHdr : QHdrPtr;

C H A P T E R 2

Event Manager

2-124 Summary of the Event Manager

Sending Events

FUNCTION PostHighLevelEvent (theEvent: EventRecord; receiverID: Ptr;
msgRefcon: LongInt; msgBuff: Ptr;
msgLen: LongInt; postingOptions: LongInt)
: OSErr;

FUNCTION PPostEvent (eventCode: Integer; eventMsg: LongInt;
VAR qEl: EvQElPtr): OSErr;

FUNCTION PostEvent (eventNum: Integer; eventMsg: LongInt): OSErr;

Converting Process Serial Numbers and Port Names

FUNCTION GetProcessSerialNumberFromPortName
(portName: PPCPortRec;
VAR PSN: ProcessSerialNumber): OSErr;

FUNCTION GetPortNameFromProcessSerialNumber
(VAR portName: PPCPortRec;
PSN: ProcessSerialNumber): OSErr;

Reading the Mouse

PROCEDURE GetMouse (VAR mouseLoc: Point);

FUNCTION Button : Boolean;

FUNCTION StillDown : Boolean;

FUNCTION WaitMouseUp : Boolean;

Reading the Keyboard

PROCEDURE GetKeys (VAR theKeys: KeyMap);

{the KeyTranslate function is also available as the KeyTrans function}

FUNCTION KeyTranslate (transData: Ptr; keycode: Integer;
VAR state: LongInt): LongInt;

Getting Timing Information

FUNCTION TickCount : LongInt;

FUNCTION GetDblTime : LongInt;

FUNCTION GetCaretTime : LongInt;

Application-Defined Routine 2

Filter Function for Searching the High-Level Event Queue

FUNCTION MyFilter (yourDataPtr: Ptr;
msgBuff: HighLevelEventMsgPtr;
sender: TargetID): Boolean;

C H A P T E R 2

Event Manager

Summary of the Event Manager 2-125

C Summary 2

Constants 2

enum {

/*event codes*/

nullEvent = 0, /*no other pending events*/

mouseDown = 1, /*mouse button pressed*/

mouseUp = 2, /*mouse button released*/

keyDown = 3, /*key pressed*/

keyUp = 4, /*key released*/

autoKey = 5, /*key repeatedly held down*/

updateEvt = 6, /*window needs updating*/

diskEvt = 7, /*disk inserted*/

activateEvt = 8, /*activate/deactivate window*/

osEvt = 15, /*operating-system events */

/* (suspend, resume, mouse-moved)*/

/*event masks*/

mDownMask = 2, /*mouse-down (bit 1)*/

mUpMask = 4, /*mouse-up (bit 2)*/

keyDownMask = 8, /*key-down (bit 3)*/

keyUpMask = 16, /*key-up (bit 4)*/

autoKeyMask = 32, /*auto-key (bit 5)*/

updateMask = 64, /*update (bit 6)*/

diskMask = 128, /*disk-inserted (bit 7)*/

activMask = 256, /*activate (bit 8)*/

highLevelEventMask = 1024, /*high-level (bit 10)*/

osMask = -32768 /*operating-system (bit 15)*/

};

enum {

everyEvent = -1, /*every event*/

/*event message masks for keyboard events*/

charCodeMask = 0x000000FF, /*use to get character code*/

keyCodeMask = 0x0000FF00, /*use to get key code*/

adbAddrMask = 0x00FF0000, /*ADB address if ADB keyboard*/

osEvtMessageMask = 0xFF000000, /*can use to extract msg code*/

C H A P T E R 2

Event Manager

2-126 Summary of the Event Manager

/*message codes for operating-system events*/

mouseMovedMessage = 0xFA, /*mouse-moved event*/

suspendResumeMessage = 0x01, /*suspend or resume event*/

/*flags for suspend and resume events*/

resumeFlag = 1, /*resume event*/

convertClipboardFlag = 2, /*Clipboard conversion */

/* required*/

/*constants corresponding to bits in the modifiers field of event*/

activeFlag = 1, /*bit 0 of low byte--valid only for */

/* activate and mouse-moved events*/

btnState = 128, /*bit 7 of low byte is mouse button state*/

cmdKey = 256, /*bit 0 of high byte*/

shiftKey = 512, /*bit 1 of high byte*/

alphaLock = 1024, /*bit 2 of high byte*/

optionKey = 2048, /*bit 3 of high byte*/

controlKey = 4096 /*bit 4 of high byte*/

};

enum {

kHighLevelEvent = 23, /*event code for high-level events */

/* (includes Apple events)*/

/*high-level event posting options*/

receiverIDMask = 0x0000F000, /*mask for receiver ID bits*/

receiverIDisPSN = 0x00008000, /*ID is proc serial number*/

receiverIDisSignature = 0x00007000, /*ID is creator signature*/

receiverIDisSessionID = 0x00006000, /*ID is session ref number*/

receiverIDisTargetID = 0x00005000, /*ID is port name & location*/

systemOptionsMask = 0x00000F00,

nReturnReceipt = 0x00000200, /*return receipt requested*/

priorityMask = 0x000000FF, /*mask for priority options*/

nAttnMsg = 0x00000001, /*give this message priority*/

/*class and ID values for return receipt*/

#define HighLevelEventMsgClass 'jaym'

#define rtrnReceiptMsgID 'rtrn'

/*modifiers values in return receipt*/

msgWasPartiallyAccepted = 2,

msgWasFullyAccepted = 1,

msgWasNotAccepted = 0

};

C H A P T E R 2

Event Manager

Summary of the Event Manager 2-127

Data Types 2

struct EventRecord {

short what; /*event code*/

long message; /*event message*/

long when; /*ticks since startup*/

Point where; /*mouse location*/

short modifiers; /*modifier flags*/

};

typedef struct EventRecord EventRecord;

typedef long KeyMap[4]; /*records state of keyboard*/

struct TargetID {

long sessionID; /*session reference number (not */

/* used if posting an event)*/

PPCPortRec name; /*port name*/

LocationNameRec location; /*location name*/

PPCPortRec recvrName; /*reserved*/

};

typedef struct TargetID TargetID;

typedef TargetID *TargetIDPtr, **TargetIDHdl;

struct HighLevelEventMsg {

unsigned short HighLevelEventMsgHeaderLength; /*reserved*/

unsigned short version; /*reserved*/

unsigned long reserved1; /*reserved*/

EventRecord theMsgEvent; /*event record*/

unsigned long userRefCon; /*ref constant*/

unsigned long postingOptions; /*reserved*/

unsigned long msgLength; /*reserved*/

};

typedef struct HighLevelEventMsg HighLevelEventMsg;

typedef HighLevelEventMsg *HighLevelEventMsgPtr, **HighLevelEventMsgHdl;

struct EvQEl { /*event queue entry*/

QElemPtr qLink; /*next queue entry*/

short qType; /*queue type (evType)*/

short evtQWhat; /*event code*/

long evtQMessage; /*event message*/

long evtQWhen; /*ticks since startup*/

C H A P T E R 2

Event Manager

2-128 Summary of the Event Manager

Point evtQWhere; /*mouse location*/

short evtQModifiers; /*modifier flags*/

};

typedef struct EvQEl EvQEl;

typedef EvQEl *EvQElPtr;

typedef pascal Boolean (*GetSpecificFilterProcPtr)
(void *yourDataPtr,
HighLevelEventMsgPtr msgBuff,
const TargetID *sender);

Event Manager Routines 2

Receiving Events

pascal Boolean WaitNextEvent (short eventMask, EventRecord *theEvent,
unsigned long sleep, RgnHandle mouseRgn);

pascal Boolean EventAvail (short eventMask, EventRecord *theEvent);

pascal Boolean GetNextEvent (short eventMask, EventRecord *theEvent);

pascal OSErr AcceptHighLevelEvent
(TargetID *sender, unsigned long *msgRefcon, Ptr
msgBuff, unsigned long *msgLen);

pascal Boolean GetSpecificHighLevelEvent
(GetSpecificFilterProcPtr aFilter,
void *yourDataPtr, OSErr *err);

pascal void FlushEvents (short whichMask, short stopMask);

pascal void SystemClick (const EventRecord *theEvent,
WindowPtr theWindow);

pascal void SystemTask (void);

pascal Boolean SystemEvent (const EventRecord *theEvent);

pascal Boolean GetOSEvent (short mask, EventRecord *theEvent);

pascal Boolean OSEventAvail (short mask, EventRecord *theEvent);

pascal void SetEventMask (short theMask);

#define GetEvQHdr() ((QHdrPtr) 0x014A)

Sending Events

pascal OSErr PostHighLevelEvent
(const EventRecord *theEvent,
unsigned long receiverID,
unsigned long msgRefcon, Ptr msgBuff,
unsigned long msgLen,
unsigned long postingOptions);

C H A P T E R 2

Event Manager

Summary of the Event Manager 2-129

pascal OSErr PPostEvent (short eventCode, long eventMsg, EvQElPtr *qEl)

pascal OSErr PostEvent (short eventNum, long eventMsg);

Converting Process Serial Numbers and Port Names

pascal OSErr GetPortNameFromProcessSerialNumber
(PPCPortPtr portName,
const ProcessSerialNumberPtr pPSN);

pascal OSErr GetProcessSerialNumberFromPortName
(const PPCPortPtr portName,
ProcessSerialNumberPtr pPSN);

Reading the Mouse

pascal void GetMouse (Point *mouseLoc);

pascal Boolean Button (void);

pascal Boolean StillDown (void);

pascal Boolean WaitMouseUp (void);

Reading the Keyboard

pascal void GetKeys (KeyMap theKeys);

{the KeyTranslate function is also available as the KeyTrans function}

pascal long KeyTranslate (const void *transData, short keycode,
long *state);

Getting Timing Information

pascal unsigned long TickCount
(void);

#define GetDblTime() (* (unsigned long*) 0x02F0)

#define GetCaretTime() (* (unsigned long*) 0x02F4)

Application-Defined Routine 2

Filter Function for Searching the High-Level Event Queue

pascal Boolean MyFilter (void *yourDataPtr,
HighLevelEventMsgPtr msgBuff,
const TargetID *sender);

C H A P T E R 2

Event Manager

2-130 Summary of the Event Manager

Assembly-Language Summary 2

Data Structures 2

Event Data Structure

Target ID Data Structure

High-Level Event Message Data Structure

Event Queue Header Data Structure

Trap Macros 2

Trap Macros Requiring Routine Selectors
_OSDispatch

0 what word event code
2 message long event message
6 when long ticks since startup

10 where long mouse location
14 modifiers word modifier flags

0 sessionID long session reference number (not used if posting event)
4 name 68 bytes port name (specified in a PPCPortRec data structure)

72 location 34 bytes location name (specified in a LocationNameRec)
106 recvrName 68 bytes reserved

0 HighLevelEventMsgHeaderLength
word reserved

2 version word reserved
4 reserved1 long reserved
8 theMsgEvent 16 bytes event record

22 userRefCon long reference constant
26 postingOptions long reserved
30 msgLength long reserved

0 qLink long next queue entry
4 qType word queue type
6 evtQWhat word event code
8 evtQMessage long event message

12 evtQWhen long ticks since startup
16 evtQWhere long mouse location
20 evtQModifiers word modifier flags

Selector Routine

$0033 AcceptHighLevelEvent

$0034 PostHighLevelEvent

C H A P T E R 2

Event Manager

Summary of the Event Manager 2-131

Trap Macros Requiring Register Setup

Global Variables 2

$0035 GetProcessSerialNumberFromPortName

$0045 GetSpecificHighLevelEvent

$0046 GetPortNameFromProcessSerialNumber

Trap macro name Registers on entry Registers on exit

_FlushEvents D0: event mask (low-order word)
stop mask (high-order word)

D0: 0 if all events were removed from the
queue, or the event code of the event
that stopped the search (low-order
word)

_GetOSEvent A0:
D0:

address of event record
event mask (low-order word) D0: 0 if GetOSEvent returns any event

other than a null event, or –1 if it
returns a null event (low-order byte)

_OSEventAvail A0:
D0:

address of event record
event mask (low-order word) D0: 0 if OSEventAvail returns any event

other than a null event, or –1 if it
returns a null event (low-order byte)

_PostEvent A0:
D0:

event code (low-order word)
event message (long word) D0: result code (low-order word)

CaretTime The suggested difference in ticks that should exist between blinks of the caret
in editable text.

DoubleTime The suggested maximum difference in ticks that should exist between the
time of a mouse-up event and a mouse-down event for your application to
consider those two mouse events a double click.

EventQueue The header of the event queue.
KeyRepThresh The value of the auto-key rate (the amount of time, in ticks, that must elapse

before the Event Manager generates a subsequent auto-key event).
KeyThresh The value of the auto-key threshold (the amount of time, in ticks, that must

elapse before the Event Manager generates an auto-key event).
ScrDmpEnable A byte that, if set to 0, disables the Event Manager’s processing of

Command–Shift–number key combinations with numbers 3 through 9.
SEvtEnb A byte that, if set to 0, causes the SystemEvent function to always return

FALSE.
SysEvtMask The system event mask of the current application.
Ticks A long integer that indicates the current number of ticks since the system last

started up.

Selector Routine

C H A P T E R 2

Event Manager

2-132 Summary of the Event Manager

Result Codes 2
noErr 0 No error
procNotFound –600 No eligible process with specified process serial number
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
connectionInvalid –609 Connection is invalid
noUserInteractionAllowed –610 Cannot interact directly with user
noPortErr –903 Invalid port name

Contents 3-1

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0

Contents

3 Menu Manager

Introduction to Menus 3-5
Menu and Menu Bar Definition Routines 3-9
The Menu Bar 3-9
Menus 3-11

Menu Items 3-12
Groups of Menu Items 3-14
Keyboard Equivalents for Menu Commands 3-16
Menus Added Automatically by the Menu Manager 3-19
The Apple Menu 3-20
The File Menu 3-22
The Edit Menu 3-24
The Font Menu 3-26
The Size Menu 3-27
The Help Menu 3-29
The Keyboard Menu 3-32
The Application Menu 3-33
Pop-Up Menus 3-33
Hierarchical Menus 3-38

About the Menu Manager 3-39
How the Menu Manager Maintains Information About Menus 3-40
How the Menu Manager Maintains Information About an Application’s
Menu Bar 3-40

Using the Menu Manager 3-41
Creating a Menu 3-42

Creating a Menu Resource 3-43
Creating a Menu Bar Resource 3-49
Setting Up Your Application’s Menu Bar 3-50

Creating a Hierarchical Menu 3-53
Creating a Pop-Up Menu 3-56

C H A P T E R 3

3-2 Contents

Changing the Appearance of Items in a Menu 3-57
Enabling and Disabling Menu Items 3-58
Changing the Text of an Item 3-59
Changing the Font Style of Menu Items 3-60
Changing the Mark of Menu Items 3-61
Changing the Icon or Script Code of Menu Items 3-62

Adding Items to a Menu 3-64
Adding Items to the Help Menu 3-67
Adding Items to the Apple Menu 3-68
Adding Fonts to a Menu 3-69

Handling User Choice of a Menu Command 3-70
Handling Mouse-Down Events in the Menu Bar 3-72
Adjusting the Menus of an Application 3-73
Determining if the User Chose a Keyboard Equivalent 3-77

Responding When the User Chooses a Menu Item 3-78
Handling the Apple Menu 3-80
Handling the Help Menu 3-81
Handling a Size Menu 3-82

Accessing Menus From a Dialog Box 3-84
Writing Your Own Menu Definition Procedure 3-87

Calculating the Dimensions of a Menu 3-89
Drawing Menu Items in a Menu 3-90
Determining Whether the Cursor Is in an Enabled Menu Item 3-92

Menu Manager Reference 3-95
Data Structures 3-95

The Menu Record 3-95
The Menu List 3-97
The Menu Color Information Table Record 3-98

Menu Manager Routines 3-102
Initializing the Menu Manager 3-103
Creating Menus 3-105
Adding Menus to and Removing Menus From the Current Menu
List 3-108
Getting a Menu Bar Description From an 'MBAR' Resource 3-110
Getting and Setting the Menu Bar 3-112
Drawing the Menu Bar 3-113
Responding to the User’s Choice of a Menu Command 3-114
Getting a Handle to a Menu Record 3-122
Adding and Deleting Menu Items 3-124
Getting and Setting the Appearance of Menu Items 3-130
Disposing of Menus 3-140
Counting the Items in a Menu 3-140
Highlighting the Menu Bar 3-141
Recalculating Menu Dimensions 3-142
Managing Entries in the Menu Color Information Table 3-143

Application-Defined Routine 3-148
The Menu Definition Procedure 3-148

C H A P T E R 3

Contents 3-3

Resources 3-151
The Menu Resource 3-151
The Menu Bar Resource 3-155
The Menu Color Information Table Resource 3-155
The Menu Definition Procedure Resource 3-157

Summary of the Menu Manager 3-158
Pascal Summary 3-158

Constants 3-158
Data Types 3-158
Menu Manager Routines 3-159
Application-Defined Routine 3-162

C Summary 3-162
Constants 3-162
Data Types 3-163
Menu Manager Routines 3-164
Application-Defined Routine 3-166

Assembly-Language Summary 3-167
Data Structures 3-167
Global Variables 3-167

Result Codes 3-167

C H A P T E R 3

Introduction to Menus 3-5

Menu Manager 3

You can use the Menu Manager to create and manage the menus in your application.
Menus allow the user to view or choose from a list of choices and commands that your
application provides.

All Macintosh applications should provide these standard menus: the Apple menu, the
File menu, and the Edit menu. If you include an Apple menu as a menu of your
application, the Menu Manager automatically adds the Help and Application menus to
your application’s menu bar; it adds the Keyboard menu if more than one keyboard
layout or input method is installed.

Menus are typically stored as resources. This chapter describes the menu-related
resources. See the chapter “Introduction to the Macintosh Toolbox” in this book for
general information on resources and see the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox for information on Resource Manager routines.
See Macintosh Human Interface Guidelines for additional examples of menus that
incorporate many principles of user interface design. Inside Macintosh: Text contains
further information on localizing your application for worldwide markets.

You can choose to provide help balloons for your application’s menus. See the chapter
“Help Manager” in Inside Macintosh: More Macintosh Toolbox for additional details on
providing help balloons for your application’s menus.

You often present a dialog box to the user as a result of the user’s choice of a menu
command that requires additional information before you can perform the command. See
the chapter “Dialog Manager” later in this book for information on creating dialog boxes
in your application.

For additional information on processing events, see the chapter “Event Manager” earlier
in this book.

This chapter provides an introduction to menus and the menu bar, and it then describes

� various types of menus your application can use

� standard menus

� how to store menus as resources

� how to create menus

� how to create a menu bar

� how to change characteristics of menu items

� how to add items to a menu

Introduction to Menus 3

A menu is a user interface element you can use in your application to allow the user to
view or choose an item from a list of choices and commands that your application
provides. Menus can appear in several different forms: pull-down menus, hierarchical
menus, and pop-up menus.

C H A P T E R 3

Menu Manager

3-6 Introduction to Menus

A pull-down menu is identified by a menu title (a word or an icon) in the menu bar. Your
application can use pull-down menus in the menu bar to allow users to choose a
command or perform an action on a selected object. A pop-up menu is a menu that does
not appear in the menu bar, but appears elsewhere on the screen when the user presses
the mouse button while the cursor is in a particular place. Pop-up menus are most often
accessed from a dialog box. Your application can use pop-up menus to let the user select
one choice from a list of many or to set a specific value. A submenu refers to a menu that
is attached to another menu. A menu to which a submenu is attached is referred to as a
hierarchical menu.

Figure 3-1 shows examples of a pull-down menu, a submenu, and a pop-up menu.

Figure 3-1 A pull-down menu, a submenu, and a pop-up menu

The standard menu bar extends across the top of the startup screen and contains the title
of each available pull-down menu. Your application’s menu bar should always provide at
least the Apple menu, the File menu, and the Edit menu. When you insert the Apple
menu in your application’s menu bar, the Menu Manager automatically adds the Help
and Application menus to your application’s menu bar. It also adds the Keyboard menu
if multiple script systems are installed or if a certain bit is set in the 'itlc' resource.
Your application can include as many other menus as fit on the smallest screen on which
your application runs, and you should create only as many items as are essential to your
application.

If your application uses a menu bar, you should make it always visible and available for
use. If you do not always wish to display the menu bar (for example, if your application
allows the user to view a screen presentation), you can give the user the option of
viewing the presentation on the entire screen without the menu bar showing. However,
you must provide a way, such as a keyboard equivalent for a command, for the user to
access the menu bar or to make the menu bar reappear.

Using menus in your application allows the user to explore many possible choices and
options without having to choose any particular one. By providing help balloons for

Pull-down menu Submenu Pop-up

C H A P T E R 3

Menu Manager

Introduction to Menus 3-7

your menus, you further allow users to learn about the possible actions or consequences
of a particular menu choice without having to choose the menu command to find out
what happens.

Figure 3-2 shows the SurfWriter application’s menu bar with the Edit menu displayed.
This application supports the standard Apple, File, and Edit menus; the Help and
Application menus; and in addition supports two other application-specific menus.

Figure 3-2 The SurfWriter application’s menu bar with the Edit menu displayed

Each menu has a menu title and one or more menu items associated with it. You should
name each menu so that the title describes or relates to the actions the user can perform
from that menu. For example, the Edit menu of a typical application contains commands
that let the user edit the contents of a document.

Your application can disable any menu. The Menu Manager indicates that a menu is
disabled by dimming its menu title. (In Figure 3-2, the Colors menu is disabled.) The
Menu Manager dims all menu items of a disabled menu. The user can still pull down and
examine the items in a disabled menu, but cannot choose any of the items.

Your application can also disable individual menu items. The Menu Manager dims the
appearance of a disabled item and does not highlight it when the user rests the cursor on
that item. If the user releases the mouse button while the cursor is over a disabled menu
item, the Menu Manager reports that the user did not choose a menu command. (You can
determine if this happened, however, by using the MenuChoice function.)

In Figure 3-2, the Paste command is disabled; the SurfWriter application disables the Paste
command if the Clipboard is empty. SurfWriter also disables the Publisher Options
command when the current selection does not contain a publisher or a subscriber. As
explained in the chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox, your
application should provide help balloons for disabled items that describe what the item
normally does and explain why the item is not available at this time.

Menu titles Menu titles

Menu
bar

C H A P T E R 3

Menu Manager

3-8 Introduction to Menus

Note
Although enabled and disabled are the constants you use in a
resource file to display or to dim menus and menu items, you shouldn’t
use these terms in your help balloons or user documentation. Instead use
the terms menus, menu commands, and menu items for those that are
enabled, and use the terms not available and dimmed to distinguish those
that have been disabled. �

The Menu Manager highlights an enabled menu item when the cursor is over it.
Enabled items do not have a dim appearance and can be chosen by the user.

Your application specifies whether menu items are enabled or disabled when it first
defines and creates a menu. You can also disable or enable menu items at any time after
creating a menu. You should enable a menu item whenever your application allows the
user to choose the action associated with that item, and you should disable an item
whenever the user cannot choose that item. For example, if the user selects text and then
presses the mouse button while the cursor is in the menu bar, you should enable the
Copy command in the Edit menu. You should disable the Copy command in the Edit
menu if the user has not selected anything to copy.

Your application can also specify other characteristics of menu items, such as whether the
item has a marking character next to its text (for example, a checkmark) or whether the
item has a keyboard equivalent (for example, Command-C for the Copy command).
“Menu Items” beginning on page 3-12 describes the characteristics of individual menu
items in more detail.

The user typically chooses commands by moving the cursor to the menu bar and
pressing the mouse button while the cursor is over a menu title. When the user presses
the mouse button while the cursor is in the menu bar, your application should call the
MenuSelect function. The MenuSelect function tracks the mouse, displays and
removes menus as the user drags the cursor through the menu bar, highlights menu titles
as the user drags the cursor over them, displays the menu items associated with a
selected menu, highlights enabled menu items as the user drags through a menu, and
handles all user activity until the user releases the mouse button.

The user chooses a menu item by releasing the mouse button while the cursor is over a
particular enabled menu item. When the user chooses a menu item, the Menu Manager
briefly blinks the chosen menu item (to confirm the choice) and then removes the menu
from the display. The Menu Manager leaves the title of the chosen menu highlighted to
provide feedback to the user.

The MenuSelect function returns information that allows your application to determine
which menu item was chosen. Your application then typically responds by performing
the desired command. When your application completes the requested action, your
application should unhighlight the menu title, indicating to the user that the action is
complete.

The user can move the cursor out of the menu (or menu bar) at any time; the Menu
Manager displays any currently visible menu as long as the mouse button is pressed. (If
the cursor is outside of the menu, the Menu Manager removes any highlighting of the
menu item.) If the user releases the mouse button outside of a menu, the MenuSelect

C H A P T E R 3

Menu Manager

Introduction to Menus 3-9

function reports that the user did not choose a menu item, and the Menu Manager
removes any currently visible menu. Your application should not take any action if the
user does not choose a menu item.

Menu and Menu Bar Definition Routines 3
The menu definition procedure and menu bar definition function define the general
appearance and behavior of menus. The Menu Manager uses these routines to display
and perform basic operations on menus and the menu bar.

A menu definition procedure performs all the drawing of menu items within a menu.
When you define a menu, you specify its menu definition procedure. The Menu Manager
uses the specified menu definition procedure to draw the menu items in a menu,
determine which item the user chose from a menu, insert scrolling indicators as items in a
menu, and calculate the menu’s dimensions.

A menu bar definition function draws the menu bar and performs most of the drawing
activities related to the display of menus when the user moves the cursor between them.
Unless you specify otherwise, the Menu Manager uses the standard menu bar definition
function to manage your application’s menu bar. The Menu Manager uses the standard
menu bar definition function to draw the menu bar, clear the menu bar, determine
whether the cursor is in the menu bar or any currently displayed menu, calculate the left
edges of menu titles, highlight a menu title, invert the entire menu bar, erase the
background color of a menu and draw the menu’s structure (shadow), and save or
restore the bits behind a menu.

Apple provides a standard menu definition procedure and standard menu bar definition
function. These definition routines are stored as resources in the System file. The standard
menu definition procedure is the 'MDEF' resource with resource ID 0. The standard
menu bar definition function is the 'MBDF' resource with resource ID 0.

When you define your menus and menu bar, you specify the definition routines that the
Menu Manager should use when managing them. You’ll usually want to use the standard
definition routines for your application. However, if you need a feature not provided by
the standard menu definition procedure (for example, if you want to include more
graphics in your menus), you can choose to write your own menu definition procedure.
See “Writing Your Own Menu Definition Procedure” beginning on page 3-87 for more
information. While the Menu Manager does allow you to specify your own menu bar
definition function, Apple recommends that you use the standard menu bar definition
function.

The Menu Bar 3
Each application has its own menu bar. The menu bar of an application applies to only
that application. You usually define a menu bar for your application by providing a
menu bar ('MBAR') resource that lists the order and resource ID of each menu that
appears in your menu bar. You define the menu title and the individual characteristics of
menu items that appear in a menu by providing a menu ('MENU') resource for each

C H A P T E R 3

Menu Manager

3-10 Introduction to Menus

menu that appears in your menu bar. You use Menu Manager routines to create the
menus and menu bar based on these resource definitions.

Your application can change the enabled state of a menu, add menus to or remove menus
from its menu bar, or change the characteristics of any menu items. Whenever your
application changes the enabled state of a menu or the number of menus in its menu bar,
your application must call the DrawMenuBar procedure to update the menu bar’s
appearance.

The menu bar (as defined by the standard menu bar definition function) is white, with a
height that is tall enough to display menu titles in the height of the system font and
system font size, and with a black lower border that is one pixel tall. The menu bar is as
wide as the screen and always appears on the monitor designated by the user as the
startup screen. (The user selects a startup screen using the Monitors control panel.) The
menu bar appears at the top of the screen, and nothing except the cursor can appear in
front of it. Figure 3-3 shows the menu bar of the SurfWriter application.

Figure 3-3 The menu bar of the SurfWriter application

The menu bar helps to indicate the active application. The active application is the one
whose menu bar is currently showing and whose icon appears as the menu title of the
Application menu.

The titles of menus appear in the menu bar. A menu title is a text string (except for the
Apple, Help, Keyboard, and Application menus, the titles of which contain a small icon).
Menu titles always appear in the system font and system font size (for Roman scripts, the
system font is Chicago and the system font size is 12).

You can insert any number of menu titles in the menu bar; however, less than 10 is
usually optimum. Keep in mind that not all users have the same size monitor. Design
your menu bar so that all titles can fit in the menu bar of the smallest screen on which
your application can run. You should also consider localization issues when designing
the number of menus that fit in your menu bar—not all menu titles might fit in the menu
bar once the menu titles are translated. For example, English text often grows 50 percent
larger when translated to other languages.

Figure 3-4 shows the SurfWriter application’s menu bar with menu titles that have been
localized for another script system.

Figure 3-4 The SurfWriter application’s menu bar localized for another script system

C H A P T E R 3

Menu Manager

Introduction to Menus 3-11

Menus 3
A menu (as defined by the standard menu definition procedure) is a list of menu items
arranged vertically and contained in a rectangle. The rectangle is shaded and can extend
vertically for the length of the screen. If a menu has more items than will fit on the screen,
the standard menu definition procedure adds a downward-pointing triangular indicator
to the last item on the screen, and it automatically scrolls through the additional items
when the user moves the cursor past the last menu item currently showing on the screen.
When the user begins to scroll through the menu, the standard menu definition
procedure adds an upward-pointing triangular indicator to the top item on the screen to
indicate that the user can scroll the menu back to its original position.

Each menu can have color information associated with it. If you do not define the colors
for your menus in your application’s menu color information table, the Menu Manager
uses the default colors for your menus and menu bar. The default colors are black text on
a white background. In most cases the default colors should meet the needs of your
application. “The Menu Color Information Table Record” on page 3-98 and “The Menu
Color Information Table Resource” on page 3-155 give information on how you can
define colors for your application’s menus.

Your application’s menus can contain any number of menu items. “Menu Items”
(the next section) describes the visual variations that you can use when defining your
menu items.

You typically define the order and resource IDs of the menus in your application’s menu
bar in an 'MBAR' resource. You should define your 'MBAR' resource such that the Apple
menu is the first menu in the menu bar. You should define the next two menus as the File
and Edit menus, followed by any other menus that your application uses. You do not
need to define the Keyboard, Help, or Application menus in your 'MBAR' resource; the
Menu Manager automatically adds them to your application’s menu bar if your
application calls the GetNewMBar function and your menu bar includes an Apple menu
or if your application inserts the Apple menu into the current menu list using the
InsertMenu procedure.

You define the menu title and characteristics of each individual menu item in a 'MENU'
resource. “Creating a Menu Resource” on page 3-43 describes the 'MENU' resource in
more detail.

Pop-up menus do not appear in the menu bar but appear elsewhere on the screen. You
often use pop-up menus in a dialog box when you want the user to be able to make a
selection from a large list of choices. For example, rather than displaying the choices
as a number of radio buttons, you can use a pop-up menu to display the choices at the
user’s convenience.

A hierarchical menu refers to either a pull-down or pop-up menu that has a submenu
attached to it. (However, you should avoid attaching a submenu to a pop-up menu
whenever possible, as this can make the interface more complex and less intuitive to
the user.)

C H A P T E R 3

Menu Manager

3-12 Introduction to Menus

“Creating a Pop-Up Menu” on page 3-56 gives additional information about pop-up
menus, and “Creating a Hierarchical Menu” on page 3-53 describes hierarchical menus in
more detail.

Menu Items 3

A menu item can contain text or can be a line (a divider) separating groups of choices. A
divider is always dimmed, and it has no other characteristics associated with it.

Each menu item (other than dividers) can have a number of visual characteristics:

� An icon to the left of the menu item’s text. If you define an icon for a menu item, use
an icon that gives a symbolic representation of the menu item’s meaning or effect. You
can specify an icon, a small icon, a reduced icon, or a color icon as the icon for a menu
item; however, items with small or reduced icons cannot have submenus and cannot
be drawn in a script other than the current system script.

� A checkmark or other marking character to the left of the menu item’s text (and to the
left of the item’s icon, if any). Use such a mark if you need to denote the status of the
menu item or the mode it controls. A menu item can have a mark or a submenu, but
not both.

� The symbol for the Command key () and another 1-byte character to the right of the
menu item’s text (referred to as the keyboard equivalent of a command). Use this if your
application allows the user to invoke the menu command from the keyboard by
pressing the Command key and one or more other keys in combination, just as if the
user had chosen the command from the menu. An item that has a keyboard equivalent
cannot have a submenu, a small icon, or a reduced icon and cannot be drawn in a
script other than the current system script.

� A triangular indicator to the right of the menu item’s text to indicate that the item has
a submenu. A menu item that has a submenu cannot have a keyboard equivalent, a
marking character, a small icon, or a reduced icon and cannot be drawn in a script
other than the current system script.

� A font style—either plain or one of various other styles—for the menu item’s text. You
can set the menu item’s style to bold, italic, underline, outline, shadow, or any
combination of these.

� The text of the menu item. Choose words for menu items that declare the action that
occurs when the user chooses the command (usually verbs, such as Print or Save). You
can also use adjectives if the command changes the attribute of a selected object (for
example, Bold or Italic). Unless you specify otherwise, the text of menu items appears
in the script of the system font and system font size (for Roman scripts, the system font
is Chicago and the system font size is 12 points). If you want a menu item’s text to
appear in a script other than the current system script, you can specify a script code for
the text. The Menu Manager draws the item’s text in the script identified by the script
code if the script for the specified script system is installed. A menu item that is drawn
in another script cannot have a submenu, small icon, or reduced icon.

� Three ellipsis points (...) as the last character in the text of the menu item. Use ellipses
in the text of menu items to indicate that your application displays a dialog box that
requests more information from the user before executing the command. Do not use

C H A P T E R 3

Menu Manager

Introduction to Menus 3-13

ellipses in menu items that display informational dialog boxes that do not require
additional information from the user. In addition, you should not use ellipses if your
application displays a confirmation alert after the user chooses a menu command. For
example, if the user makes changes to a document, then chooses the Close command,
your application can display a confirmation alert box, asking the user whether the
document should be saved before closing. This type of command should not contain
ellipses in its text.
If your application displays a dialog box requesting more information in response to
the choice of a menu command, do include ellipses in the menu item’s text. For
example, the Open command includes ellipses in its text because the user must
provide additional information: the name of the file to open. When you request more
information from the user in a dialog box, you should provide an OK button or its
equivalent in the dialog box that the user can select to perform the command. The
dialog box should also include a Cancel button or its equivalent so that the user can
cancel the command. See the chapter “Dialog Manager” in this book for information
on creating dialog boxes.

� A dimmed appearance. When your application disables a menu item, the Menu
Manager dims the menu item to indicate that the user can’t choose it. Note that the
Menu Manager dims the entire menu item, including any mark or icon, the menu text,
and any keyboard equivalent symbol. Divider lines always have a dimmed
appearance, regardless of whether your application enables them or not. When your
application disables an entire menu, the Menu Manager dims the menu title and all
menu items in that menu.

Figure 3-5 shows two menus with menu items that illustrate many of the characteristics
that you can use when defining your menu items.

Figure 3-5 Two menus with various characteristics

When the primary line direction is right to left (as is the case for non-Roman script
systems such as Arabic) the Menu Manager reverses the order of elements in menu items.
For example, any marking character appears to the far right and any keyboard equivalent
appears to the far left of the menu item’s text.

Divider

Disabled
command

Plain text styleMark
Icon

Italic text style

Keyboard
equivalent

C H A P T E R 3

Menu Manager

3-14 Introduction to Menus

On a monitor that is set to display only black and white, the Menu Manager displays
dividers as dotted lines. In all other cases, the Menu Manager displays dividers as
appropriate, based on the current color table. For example, on a monitor set to display
4-bit color or greater, the Menu Manager typically displays dividers as gray lines.

Your menu can contain as many menu items as you wish. However, only the first
31 menu items can be individually disabled (all menu items past 31 are always enabled
if the menu is enabled and always disabled if the menu is disabled). If your menu items
exceed the length of the screen, the user must scroll to view the additional items. Keep
in mind that the fewer the menu items in a menu, the simpler and clearer the menu is
for the user.

Groups of Menu Items 3

The menu items in a particular menu should be logically related to the title of the menu
and grouped to provide greater ease of use and understanding to the user. You should
separate groups with dividers.

A menu can contain both commands that perform actions and commands that set
attributes. You should use a verb or verb phrase to name commands that perform actions
(for example, Cut, Copy, Paste). You should use an adjective to name commands that set
attributes of a selected object (for example, Bold, Italic, Underline). You should group
menu items by their type: verbs (actions) or adjectives (attributes). Create groups within
each type according to the guidelines described here.

Group action commands that are logically related but independent; this makes your
menus easier to read. For example, the Cut, Copy, Paste, Clear, and Select All commands
in the Edit menu are grouped together; the Create Publisher, Subscribe To, and Publisher
Options commands are grouped together; and the Show Clipboard command is set
off by itself. (Figure 3-5 on page 3-13 shows these commands in the Edit menu of a typical
application.)

Group attribute commands that are interdependent. You typically group a set
of commands that set attributes into either a mutually exclusive group or an
accumulating group.

Group a set of attribute commands together if only one attribute in the group can be in
effect at any one time (a mutually exclusive group). Place a checkmark next to the item that
is currently in effect. If the user chooses a different attribute in the group, move the
checkmark to the newly chosen attribute. For example, Figure 3-6 shows a Colors menu
from the SurfWriter application. The colors listed in the Colors menu form a mutually
exclusive group because only one color can be in effect at any one time. In this example,
green is the color currently in effect. If the user chooses a different color, such as blue, the
SurfWriter application uses the SetItemMark procedure to remove the checkmark from
the Green command and to place a checkmark next to the Blue command.

C H A P T E R 3

Menu Manager

Introduction to Menus 3-15

Figure 3-6 Menu items in a mutually exclusive group

You can also group a set of attribute commands together if a number of the attributes in
the group can be in effect at any one time (an accumulating group). In an accumulating
group, use checkmarks to indicate that multiple attributes are in effect. In this type
of group, you also need to provide a command that cancels all the other attributes. For
example, a Style menu that lets the user choose any combination of font styles should
also include a Plain Text command that cancels all the other attributes. Figure 3-7 shows a
Style menu; in this example, the Bold and Outline attributes are both in effect.

Figure 3-7 Menu items in an accumulating group

You can also use a combination of checkmarks and dashes to help indicate the state of the
user’s content. For example, in a menu that reflects the state of a selection, place a
checkmark next to an item if the attribute applies to the entire selection; place a dash next
to an item if the attribute applies to only part of the selection. Figure 3-8 shows a Style
menu that indicates that the selection contains more than one style. In this figure, the
Bold attribute applies to the entire selection; the Underline attribute applies to only part
of the selection.

Figure 3-8 Use of a checkmark and dash in an accumulating group

C H A P T E R 3

Menu Manager

3-16 Introduction to Menus

Your application should adjust its menus appropriately before displaying its menus.
For example, you should add checkmarks or dashes to items that are attributes as
necessary, based on the state of the user’s document and according to the type of window
that is in the front. See “Adjusting the Menus of an Application” on page 3-73 for more
information.

Another way to show the presence or absence of an attribute is to use a toggled
command. Use a toggled command if the attribute has two states and you want to allow
the user to move between the two states using a single menu command. For example,
your application could provide a Show Borders command when the borders surrounding
publishers and subscribers are not showing in a document. When the user chooses the
Show Borders command, your application should show the borders and change the
menu item to Hide Borders. When the user chooses the Hide Borders command, your
application should hide the borders surrounding any publishers or subscribers and
change the menu item to Show Borders. Use a toggled command only when the wording
of the two versions of the command is not confusing to the user. Choose a verb phrase as
the text of a toggled command; the text should clearly indicate the action your
application performs when the user chooses the item. See “Changing the Text of an Item”
on page 3-59 for further information on providing a toggled command.

Keyboard Equivalents for Menu Commands 3

A menu command can have a keyboard equivalent. The term keyboard equivalent refers
to a keyboard combination, such as Command-C (-C) or any other combination of the
Command key, another key, and one or more modifier keys, that invokes a corresponding
menu command when pressed by the user. For example, if your application supports the
New command in the File menu, your application should perform the same action when
the user presses Command-N as when the user chooses New from the File menu.

The term Command-key equivalent refers specifically to a keyboard equivalent that the
user invokes by holding down the Command key and pressing another key (other than a
modifier key) at the same time. This generates a keyboard event that specifies a 1-byte
character that your application should pass as a parameter to the MenuKey function. The
MenuKey function maps the given 1-byte character to the menu item (if any) with that
Command-key equivalent.

The Menu Manager provides support for Command-key equivalents. If you define a
Command-key equivalent for a menu item, the standard menu definition procedure
draws the Command symbol and the specified 1-byte character to the right of the menu
item’s text (or to the left of the item’s text if the primary line direction is right to left).

You detect a Command-key equivalent of a command by examining the modifiers field
of the event record for a keyboard event. This allows you to determine whether
the Command key was pressed at the same time as the keyboard event. If so, your
application typically calls the MenuKey function, passing as a parameter the character
code that represents the key pressed by the user. The MenuKey function determines if the
1-byte character matches any of the keyboard equivalents defined for your menu items; if
so, MenuKey returns this information to your application. Your application can then

C H A P T E R 3

Menu Manager

Introduction to Menus 3-17

perform the associated menu command, if any. See the chapter “Event Manager” in this
book for additional information about the modifiers field of the event record.

The keyboard layout ('KCHR') resource of some keyboards masks or cancels the effect of
the Shift key when the Command key is also pressed. For example, with a U.S. keyboard
layout, when a user presses Command-S, the character code in the message field of the
event record is $73 (the character code for “s”); when a user presses Command-Shift-S,
the character code in the message field of the event record is also $73. However, not all
'KCHR' resources mask the Shift key in this way.

Furthermore, when your application uses the MenuKey function to process Command-
key equivalents, MenuKey does not distinguish between uppercase and lowercase letters.
The MenuKey function takes the 1-byte character passed to it and calls the UpperText
procedure (which provides localizable uppercase conversion of the character). Thus,
MenuKey translates any lowercase character to uppercase when comparing a keyboard
event to keyboard equivalents. If your application must distinguish between lowercase
and uppercase characters for keyboard equivalents, you need to provide your own
method for handling such keyboard equivalents.

The key you specify for a Command-key equivalent must be a 1-byte character and is
usually a letter (although you can specify 1-byte characters other than letters). For
consistency and to provide greater support for localizing your application, you should
always specify any letters for keyboard equivalents in uppercase when you define your
application’s menu commands.

If you wish to provide other types of keyboard equivalents in addition to Command-key
equivalents, your application must take additional steps to support them. If your
application allows the user to hold down more than one modifier key to invoke a
keyboard equivalent, your application must provide in the menu item a visual indication
that represents this keyboard combination. In most cases your application must use its
own method (other than MenuKey) for mapping the keyboard equivalent to the
corresponding menu item.

If you specify a key other than a letter for a Command-key equivalent or use more than
one modifier key for a keyboard equivalent, you should choose keys and keyboard
combinations that can be easily localized for other regions.

If your application uses other keyboard equivalents, you can examine the state of the
modifier keys and use the KeyTranslate function, if necessary, to help map the
keyboard equivalent to a particular menu item. See the chapter “Event Manager” in this
book for information on the KeyTranslate function, and see the discussion of 'KCHR'
resources in Inside Macintosh: Text for information on how various keyboard combinations
map to specific character codes.

One command that isn’t listed in a menu but can be invoked from the keyboard is the
Command-period (-.) or Cancel command. You detect a Command-period command
in a method similar to the method for detecting other keyboard equivalents—you
examine the modifiers field of a keyboard event to determine whether the Command
key was pressed. In this case, however, if the user pressed the period key in addition to
the Command key, rather than invoking a menu command your application should
cancel the current operation.

C H A P T E R 3

Menu Manager

3-18 Introduction to Menus

You typically define the Command-key equivalents for your application’s menu
commands when you define the menu commands in a 'MENU' resource. The Menu
Manager displays the Command-key equivalent for a menu command (if it has one)
to the right of the menu item’s text (or to the left of the item’s text for right-to-left
script systems).

Apple reserves several keyboard equivalents for common commands. You should use
these keyboard equivalents for commands in the File and Edit menus of your application.

Table 3-1 show the keyboard equivalents for standard commands.

Table 3-1 Reserved keyboard equivalents for all systems

Note
You should use the keyboard equivalents Z, X, C, and V for the editing
commands Undo, Cut, Copy, and Paste in order to provide support for
editing in desk accessories and dialog boxes. �

Apple also reserves several keyboard equivalents for use with worldwide versions of
system software, localized keyboards, and keyboard layouts. Table 3-2 shows these
keyboard equivalents. Your application should not use the keyboard equivalents listed in
Table 3-2 for its own menu commands.

See Inside Macintosh: Text for more discussion of handling keyboard equivalents in other
script systems.

The key combinations listed in Table 3-1 and Table 3-2 are reserved across all
applications. Even if your application doesn’t support one of these menu commands, it
shouldn’t use these keyboard equivalents for another command. This guideline is for the
user’s benefit. Reserving these key combinations provides guaranteed, predictable
behavior across all applications.

Keys Command Menu

-A Select All Edit

-C Copy Edit

-N New File

-O Open… File

-P Print… File

-Q Quit File

-S Save File

-V Paste Edit

-W Close File

-X Cut Edit

-Z Undo Edit

C H A P T E R 3

Menu Manager

Introduction to Menus 3-19

Table 3-2 Reserved keyboard equivalents for worldwide systems

Table 3-3 shows other common keyboard equivalents. These keyboard equivalents are
secondary to the standard keyboard equivalents listed in Table 3-1 and Table 3-2. If your
application doesn’t support one of the functions in Table 3-3, then you can use the
equivalent as you wish.

Table 3-3 Other common keyboard equivalents

You shouldn’t assign keyboard equivalents to infrequently used menu commands. Only
add keyboard equivalents for the commands that your users employ most frequently.

Menus Added Automatically by the Menu Manager 3

In System 7, the Menu Manager may add as many as three additional menus to your
application’s menu bar: the Help menu, the Keyboard menu, and the Application menu.
These menus provide access to system features such as Balloon Help, keyboard layouts,
and application switching. All three of these menus have icons as titles and are
positioned at the right side of the menu bar. (These menus are sometimes referred to as
the system-handled menus.)

The Menu Manager automatically inserts these additional menus in your application’s
current menu list when your application inserts an Apple menu into its menu bar. In this
case, the Menu Manager always displays the Application menu, displays the Help menu
if space is available, and displays the Keyboard menu if multiple script systems are
installed and space is available. The Menu Manager also displays the Keyboard menu if
the smfShowIcon bit is set in the flags byte of the 'itlc' resource.

Keys Action

–Space bar Rotate through enabled script systems

–Option–Space bar Rotate through keyboard layouts or input methods
within the active script system

–modifier key–Space bar Reserved

–Right arrow Change keyboard layout to the current keyboard
layout of the Roman script

–Left arrow Change keyboard layout to the current keyboard
layout of the system script

Keys Command Menu

-B Bold Style

-F Find File

-G Find Again File

-I Italic Style

-T Plain Text Style

-U Underline Style

C H A P T E R 3

Menu Manager

3-20 Introduction to Menus

The Help menu icon or both the Help menu icon and the Keyboard menu icon disappear
from the menu bar if your application inserts a menu whose title extends into the space
occupied by one or both of those icons. This allows your application to reclaim any space
in the menu bar that would have been occupied by one or both of those two menu icons,
if necessary. However, if your application inserts a menu whose title is long enough to
overlap space occupied by the Application menu icon, the overlapping portion of that
title disappears behind the Application menu icon. The Application menu icon is always
displayed in the menu bar.

Because the Menu Manager inserts the Help, Keyboard, and Application menus into your
application’s current menu bar, you should not make any assumptions about the last
menu (or menus) in your menu bar. Apple also reserves the right to add other
system-handled menus to your application’s menu bar; for compatibility you should
define your menu bar such that there is room for the Help, Keyboard, and Application
menus and at least one additional system-handled menu.

Your application does not need to take any action if the user chooses an item from the
Keyboard or Application menu; the Menu Manager performs any appropriate actions for
these two menus. If the user chooses an item that your application added to the Help
menu, your application should perform the corresponding action.

The following sections describe the Help, Keyboard, and Application menus in more
detail, and they also describe other menus in a typical application, including the Apple,
File, and Edit menus.

The Apple Menu 3

You should define the Apple menu as the first menu in your application. The title of the
Apple menu is the Apple icon. The Apple menu of an application typically provides an
About command as the first menu item, followed by a divider, which is followed by a list
of all desktop objects contained in the Apple Menu Items folder. (The phrase desktop
objects refers to applications, desk accessories, documents, folders, and any other item
that can reside in the Apple Menu Items folder.) The items following the divider in the
Apple menu are listed in alphabetical order. Each item below the divider lists a desktop
object and the small icon for that object.

Figure 3-9 shows the Apple menu for the SurfWriter application as it might appear on a
particular user’s system.

To create the items in your application’s Apple menu, define the Apple menu title, the
characteristics of your application’s About command, and the divider following it in a
'MENU' resource.

To insert the items contained in the Apple Menu Items folder into your application’s
Apple menu, use the AppendResMenu or InsertResMenu procedure and specify
'DRVR' as the resource type to add in the parameter theType. If you do this, these
procedures automatically add all items in the Apple Menu Items folder in alphabetical
order to the specified menu.

C H A P T E R 3

Menu Manager

Introduction to Menus 3-21

Figure 3-9 The Apple menu for the SurfWriter application

Note
The Apple Menu Items folder is available in System 7 and later. In System 6,
the AppendResMenu and InsertResMenu procedures add only the desk
accessories in the System file to the specified menu when you specify
'DRVR' as the resource type to add in the parameter theType. �

The user can place any desktop object in the Apple Menu Items folder. When the user
places an item in this folder, the system software automatically adds it to the list of items
in the Apple menu of all open applications.

When the user chooses an item other than your application’s About command from
the Apple menu, your application should call the OpenDeskAcc function. The
OpenDeskAcc function prepares to open the desktop object chosen by the user; for
example, if the user chooses the Alarm Clock desk accessory, the OpenDeskAcc function
prepares to open the Alarm Clock. The OpenDeskAcc function schedules the Alarm
Clock desk accessory for execution and returns to your application. On your application’s
next call to WaitNextEvent, it receives a suspend event, and then
the Alarm Clock desk accessory becomes the foreground process.

If the user chooses a desktop object other than a desk accessory or an application, the
OpenDeskAcc function also takes the appropriate action. For example, as shown in
Figure 3-9, if the user chooses a document called MyTideReport created by the SurfWriter
application, the OpenDeskAcc function prepares to open the SurfWriter application (if it
isn’t already open) and schedules the SurfWriter application for execution. The
SurfWriter application is instructed to open the MyTideReport document when it
becomes the foreground process.

When the user chooses your application’s About command, your application can
display a dialog box or an alert box that contains your application’s name, version
number, copyright information, or other information as necessary. Your application
should provide an OK button in the dialog box; the user clicks the OK button to close
the dialog box.

C H A P T E R 3

Menu Manager

3-22 Introduction to Menus

Figure 3-10 shows the alert box that the SurfWriter application displays when the user
chooses the About command from the application’s Apple menu.

Figure 3-10 Choosing the About command of the SurfWriter application

If your application provides any application-specific Help commands, place these in the
Help menu, not the Apple menu.

The File Menu 3

The standard File menu contains commands related to managing documents. For
example, the user can open, close, save, or print documents from this menu. The user
should also be able to quit your application by choosing Quit from the File menu.

Your application should support the menu commands of the standard File menu. If you
add other commands to your application’s File menu, they should pertain to managing
a document.

Figure 3-11 shows the standard File menu for applications.

Figure 3-11 The standard File menu for an application

C H A P T E R 3

Menu Manager

Introduction to Menus 3-23

Table 3-4 describes the standard commands in the File menu and the actions your
application should take when a user chooses them.

Table 3-4 Actions for standard File menu commands

See Macintosh Human Interface Guidelines for additional commands that you can provide
in the File menu. See the chapter “Introduction to File Management” in Inside Macintosh:
Files for information on how to perform the actions associated with the commands in the
File menu. See the chapter “Standard File Package” in Inside Macintosh: Files for
information on the standard file dialog boxes. See the chapter “Printing Manager” in
Inside Macintosh: Imaging for information on displaying the Page Setup and Print job
dialog boxes.

Command Action

New Open a new, untitled document.

Open... Display the Open dialog box using the Standard File Package.

Close Close the active window (which may be a document window,
modeless dialog box, or other type of window). If the active window
is a document and the document has been changed since the last save,
display a dialog box asking the user if the document should be saved
before closing.

Save Save the active document to a disk, including any changes made to
that document since the last time it was saved. If the user chooses
Save for a new untitled document (one that the user hasn’t named
yet), display the Save dialog box using the Standard File Package.

Save As... Save a copy of the active document under a new name provided by
the user. Display the Save dialog box using the Standard File Package.
After your application saves the document, the document should
remain open and active.

Page Setup... Display the Page Setup dialog box to let the user specify printing
parameters such as the paper size and printing orientation. Your
application can provide other printing options as appropriate. Your
application should save the user’s Page Setup printing preferences for
the document when the user saves the document.

Print... Display the Print job dialog box to let the user specify various
parameters, such as print quality and number of copies. Print the
document if the user clicks the Print button. The options specified in
the Print dialog box apply to only the current printing operation, and
your application should not save these settings with the document or
restore the settings when the user chooses Print again.

Quit Quit your application after performing any necessary cleanup
operations. If any open documents have been changed since the user
last saved them, display the Save dialog box once for each open
document that requires saving. If any background or lengthy
operation is still in progress, notify the user, giving the user the option
to continue and not quit the application.

C H A P T E R 3

Menu Manager

3-24 Introduction to Menus

The New, Open, Close, Save, Print, and Quit commands have the keyboard equivalents
shown in Figure 3-11 on page 3-22. These keyboard equivalents are reserved for these
menu commands; do not assign these keyboard equivalents to any menu command other
than the ones shown in Figure 3-11.

The Edit Menu 3

The standard Edit menu provides commands that let users change or edit the contents of
their documents. It also provides commands that allow users to share data within and
between documents created by different applications using editions or the Clipboard. All
Macintosh applications should support the Undo, Cut, Copy, Paste, and Clear
commands. Use these commands to provide standard text-editing abilities in your
application.

Figure 3-12 shows the standard Edit menu supported by Macintosh applications.

Figure 3-12 The standard Edit menu for an application

The standard editing commands (Undo, Cut, Copy, Paste, and Clear) in your
application’s Edit menu should appear in the order shown in Figure 3-12. Whenever
possible, you should add an additional word or phrase to clarify what action your
application will reverse when the user chooses the Undo command. For example,
Figure 3-12 shows an application’s Edit menu that uses the phrase Undo Typing when
typing was the last action performed by the user. If your application can’t undo the last
operation, you should change the text of the Undo command to Can’t Undo and disable
the menu item. See “Changing the Text of an Item” on page 3-59 for an example of how
to change the text of a menu item.

You can include other commands in your application’s Edit menu if they’re related to
editing or changing the content of your application’s documents. If you add commands
to the Edit menu, add them after the standard menu commands. For example, if
appropriate, your application should support a Select All command. If your application
supports both the Clear and Select All commands, they should appear in the order shown
in Figure 3-12.

C H A P T E R 3

Menu Manager

Introduction to Menus 3-25

Table 3-5 describes the standard commands in the Edit menu and the actions your
application should take when a user chooses them.

Table 3-5 Actions for standard Edit menu commands

The Undo, Cut, Copy, Paste, and Select All commands have the keyboard equivalents
shown in Figure 3-12 on page 3-24. These keyboard equivalents are reserved for these
menu commands; do not assign these keyboard equivalents to any menu command other
than the ones shown in Figure 3-12. See the chapter “Scrap Manager” in Inside Macintosh:
More Macintosh Toolbox for information on copying data to and from the scrap. See the

Command Action

Undo Reverse the effect of the previous operation. You should add the
name of the last operation to the Undo command. For example,
change the item to read Undo Typing if the user just finished
entering some text in a document. If your application cannot
undo the previous operation, disable this menu item and change
the phrase to Can’t Undo.

Cut Remove the data in the current selection, if any. Store the cut
selection in the scrap (on the Clipboard). This replaces the
previous contents of the scrap.

Copy Copy the data in the current selection, if any. Copy the selection
to the scrap (the Clipboard). This replaces the previous contents
of the scrap.

Paste Paste the data from the scrap at the insertion point; this replaces
any current selection.

Clear Remove the data in the highlighted selection; do not copy the
data to the scrap (Clipboard).

Select All Highlight all data in the document.

Create Publisher... Display the Create Publisher dialog box (using the Edition
Manager). Create an edition based on the selected data if the
user clicks the Publish button.

Subscribe To... Display the Subscribe To dialog box (using the Edition
Manager). Allow the user to insert data from an edition if the
user clicks the Subscribe button.

Publisher Options... Display the Publisher Options dialog box (using the Edition
Manager) and allow the user to set or change options associated
with the publisher. Change this menu item to Subscriber
Options if the current selection includes a subscriber. When the
user chooses the Subscriber Options command, display the
Subscriber Options dialog box.

Show Clipboard Display the contents of the Clipboard in a window. Change
this item to Hide Clipboard when the Clipboard window is
showing. When the user chooses Hide Clipboard, hide the
window displaying the Clipboard contents and change the
menu item to Show Clipboard.

C H A P T E R 3

Menu Manager

3-26 Introduction to Menus

chapter “Edition Manager” in Inside Macintosh: Interapplication Communication for
information on supporting the Create Publisher, Subscribe To, and Publisher Options
commands in your application.

The Font Menu 3

You can provide a Font menu to allow the user to choose text fonts. A font is a complete
set of characters created in one typeface and font style. The characters in a font can
appear in many different point sizes, but all have the same design elements.

You should list the names of all currently available fonts in your application’s Font menu.
The currently available fonts are those fonts residing in the Fonts folder of the user’s
System Folder (or in earlier versions of system software, in the user’s System file).

You add fonts to the Font menu using the AppendResMenu or InsertResMenu
procedure. These two procedures add items to the specified menu in alphabetical order.

The user can install a large number of fonts and thereby create a very large Font menu.
Therefore, you should never include other items in the Font menu. Use separate menus to
accommodate lists of attributes such as style and size choices. You can also provide a
Size menu to allow the user to choose a specific point size of a font; the next section
describes the Size menu.

Figure 3-13 shows a typical Font menu. Your application should indicate which typeface
is in use by adding a checkmark to the left of the name of the current font. In Figure 3-13,
the application has placed a checkmark next to Palatino to indicate that Palatino® is the
current font. When the user starts entering text at the insertion point, your application
should display text in the current font.

Figure 3-13 A typical Font menu

In the Font menu, you can use dashes to indicate that the selection contains more than
one font. (Place a checkmark next to an item if the entire selection contains only one font.)
If the current selection contains more than one font, place a dash next to the name of each
font that the selection contains. See “Changing the Mark of Menu Items” on page 3-61 for
information on adding dashes and checkmarks to a menu item.

C H A P T E R 3

Menu Manager

Introduction to Menus 3-27

Figure 3-14 shows the use of dashes to indicate that a selection contains more than one
font. In this figure, part of the selection contains a Helvetica® font and part of the
selection contains a Palatino font.

Figure 3-14 A Font menu showing a selection containing more than one font

The AppendResMenu and InsertResMenu procedures can recognize when an added
font resource is associated with a script other than the current system script (non-Roman
fonts have font numbers greater than $4000). The Menu Manager displays a font name in
its corresponding script if the script system for that font is installed.

You can choose to provide a Size menu and a Style menu in addition to a Font menu.
If you do so, these three menus typically appear in the order Font, Size, Style in
most applications.

The Size Menu 3

Your application can provide a Size menu to allow the user to choose sizes for fonts. Font
sizes are measured in points. A point is a typographical unit of measure equivalent (on
Macintosh computers) to 1/72 of an inch.

Your application should indicate the current point size by adding a checkmark to the
menu item of the current size. You can use dashes if the selection contains more than one
point size.

System 7 supports both bitmapped and TrueType fonts. TrueType fonts can be displayed
in a wider range of point sizes, for example, 12 points, 51 points, 156 points, 578 points,
or greater. Your application should not provide an upper limit for font sizes.

In the Size menu, your application should outline font sizes to indicate which sizes are
directly provided by the current font. If the user chooses a TrueType font, outline all sizes
of that font in the Size menu. If the user chooses a bitmapped font, outline only those
sizes that appear in the Fonts folder. Use plain type for all other font sizes. See the
chapter “Font Manager” in Inside Macintosh: Text for additional information on
supporting fonts in your application.

C H A P T E R 3

Menu Manager

3-28 Introduction to Menus

Figure 3-15 shows a typical Size menu of an application.

Figure 3-15 A typical Size menu

Your application should also provide a method that allows users to choose any point size.
You can add an Other command to the end of the Size menu for this purpose. When the
user chooses this command, display a dialog box that allows the user to choose any
available font size. You can include an editable text item in which the user can type the
desired font size. Figure 3-16 shows a dialog box an application might display when the
user chooses the Other command from the Size menu.

Figure 3-16 A dialog box to select a new point size for a font

Figure 3-17 shows the Other dialog box after the user has entered a new font size
of 31.

C H A P T E R 3

Menu Manager

Introduction to Menus 3-29

Figure 3-17 Entering a new point size for a font

If the user enters a font size not currently in the menu, your application should add a
checkmark to the Other menu command and include the font size as part of the text of
the Other command. You should show the font size in parentheses after the text Other,
as shown in Figure 3-18.

Figure 3-18 The Other command with a font size added to it

If a selection contains more than one nonstandard size, you should include the text
Mixed in parentheses following the word Other. In this case leave the editable text field
of the Other dialog box blank when the user chooses the Other (Mixed) command.

See “Handling a Size Menu” on page 3-82 for more information on how to respond to the
user’s choice of a command from the Size menu. See the chapter “Dialog Manager” for
information on creating a dialog box.

The Help Menu 3

The Help menu is specific to each application, just as the Apple, File, and Edit menus are.
The Help menu items defined by the Help Manager are common to all applications and
give the user access to Balloon Help.

You can add menu items to your application’s Help menu to give your users access
to any online help that your application supplies in addition to help balloons. If you
currently provide your users with help information when they choose the About

C H A P T E R 3

Menu Manager

3-30 Introduction to Menus

command from the Apple menu, you should instead append a command for your own
help to the Help menu. This gives users one consistent place to obtain help information.

When adding your own items to the Help menu, include the name of your application in
the command so that users can easily determine which application the help relates to.

Figure 3-19 shows the Help menu for the SurfWriter application. This application
appends one item to the end of the standard Help menu: SurfWriter Help. When the
user chooses this item, the application provides access to any application-specific
help information.

Figure 3-19 The Help menu of the SurfWriter application

You add items to the Help menu by using the HMGetHelpMenuHandle function and the
AppendMenu procedure. Apple reserves the right to change the number of standard
items in the Help menu. You should always append any additional items to the end. See
“Adding Items to the Help Menu” on page 3-67 for specific examples.

The user turns Balloon Help on or off by choosing Show Balloons or Hide Balloons from
the Help menu. The Help Manager automatically enables or disables Balloon Help when
the user chooses Show Balloons or Hide Balloons from the Help menu. The setting of
help is global and affects all applications.

When the user turns on Balloon Help, the Help Manager displays small help balloons as
the user moves the cursor over areas such as scroll bars, buttons, menus, or rectangular
areas in windows or dialog boxes that have help information associated with them.
Help balloons are rounded-rectangle windows that contain explanatory information for
the user.

The Help Manager provides help balloons for the menu titles of the Apple, Help,
Application, and Keyboard menus. The Help Manager also provides help balloons for
menu items in the Application and Keyboard menus, for any item from the Apple Menu
Items folder in the Apple menu, and for the standard items in the Help menu. The Help
Manager provides these help balloons only if your application uses the standard menu
definition procedure.

Your application should provide the content of help balloons for all other menu items
and menus in your application.

Figure 3-20 shows the default help balloons for the Apple menu title and Application
menu title.

C H A P T E R 3

Menu Manager

Introduction to Menus 3-31

Figure 3-20 Default help balloons for the Apple menu and Application menu

Figure 3-21 shows help balloons for an application’s Cut command when it is enabled
and when it is disabled.

Figure 3-21 Help balloons for different states of the Cut command

Your application can provide the content for help balloons for your menus and menu
items. You define the help balloons for your application using 'hmmu' resources.

For information on how to define the help balloons for your application’s menus
in 'hmmu' resources, see the chapter “Help Manager” in Inside Macintosh: More Macintosh
Toolbox.

C H A P T E R 3

Menu Manager

3-32 Introduction to Menus

The Keyboard Menu 3

The Keyboard menu displays a list of all the keyboard layouts and input methods that
are available for each enabled script system. Each script system has at least one keyboard
layout or input method associated with it. If only the Roman script system and the U.S.
keyboard layout are available, the Menu Manager does not add the Keyboard menu
(unless the smfShowIcon bit is set in the flags byte of the 'itlc' resource). If the user’s
system includes an additional script system or includes additional keyboard layouts for
the Roman script system and the smfShowIcon bit is set in the 'itlc' resource, the
Menu Manager adds the Keyboard menu to your application’s menu
bar as long as your application’s menu bar includes an Apple menu. The Menu
Manager adds the Keyboard menu to the right of the Help menu and to the left of the
Application menu.

Figure 3-22 shows a Keyboard menu as it might appear on a particular user’s system.
System software groups the items in the Keyboard menu by their script systems. For
example, in Figure 3-22 seven script systems are shown: Arabic, Roman, Cyrillic, Hebrew,
Thai, Japanese, and Korean. Two keyboard layouts are available in the user’s system for
the Arabic script system, two keyboard layouts for the Roman script system, one
keyboard layout for the Cyrillic script system, two keyboard layouts for the Hebrew
script system, three keyboard layouts for the Thai script system, two input methods for
the Japanese script system, and one input method for the Korean script system.

Figure 3-22 Accessing the Keyboard menu from an application

MM-05 (MM-05.a)
Figure 3 22 Acccessing the keyboard menu from an application

Active keyboard layout
or input method

Active keyboard layout
Script
boundary

C H A P T E R 3

Menu Manager

Introduction to Menus 3-33

When the user chooses an item from the Keyboard menu, the Menu Manager handles it
appropriately. For example, if the user chooses a different keyboard layout in a different
script, the Menu Manager changes the current keyboard layout and script system to the
item chosen by the user. See Inside Macintosh: Text for further information on supporting
text and handling text in multiple scripts in your application.

The Application Menu 3

The Application menu is the menu farthest to the right in the menu bar; the Application
menu contains the icon of the active application or desk accessory for its menu title.

The Menu Manager automatically appends the Application menu to your application’s
menu bar if your menu bar includes an Apple menu.

When the user chooses an item from the Application menu, the Menu Manager handles
the event as appropriate. For example, if the user chooses the Hide Others command, the
Menu Manager hides the windows of all other open applications. If the user chooses
another application from the Application menu, the Menu Manager sends your
application a suspend event. Your application receives the suspend event the next time it
calls WaitNextEvent, and your application is switched out after handling the suspend
event. (See the chapter “Event Manager” in this book for information about responding
to suspend and resume events.)

Figure 3-23 shows the Application menu for the SurfWriter application as it appears
when both SurfWriter and TeachText are open and the user is currently interacting with
SurfWriter. The checkmark next to the menu item showing SurfWriter’s icon indicates
that SurfWriter is the active application.

Figure 3-23 SurfWriter’s Application menu

Pop-Up Menus 3

You can use pop-up menus to present the user with a list of choices in a dialog box or
window. Pop-up menus are especially useful in dialog boxes that require the user to
select one choice from a list of many or to set a specific value.

In System 7, the standard pop-up menu is implemented by a control definition function.
This section explains how the standard pop-up control definition function provides
support for pop-up menus. The chapter “Control Manager” in this book explains controls
in detail.

C H A P T E R 3

Menu Manager

3-34 Introduction to Menus

A pop-up menu appears as a rectangle with a one-pixel border and a one-pixel drop
shadow. Pop-up menus are identified by a downward-pointing triangle that appears
in the pop-up box. The title of the pop-up menu appears next to the pop-up box.
Figure 3-24 shows a pop-up menu.

Figure 3-24 A pop-up menu

To display a pop-up menu, the user presses the mouse button while the cursor is over the
pop-up title or pop-up box. If the pop-up menu is in a dialog box and your application
uses the Dialog Manager, the Dialog Manager uses the pop-up control definition function
to display the pop-up menu and to handle all user interaction in the pop-up menu. If the
pop-up menu is in one of your application’s windows, your application needs to
determine which control the cursor was in when the user pressed the mouse button. Your
application can then use the Control Manager routines to display the pop-up menu and
to handle user interaction in the control.

Just like MenuSelect, the pop-up control definition function highlights the pop-up
menu title and highlights menu items appropriately as the user drags the cursor through
the menu items. The pop-up control definition function also highlights the default
(current) menu item when the pop-up menu is first displayed and adds the checkmark to
the menu item. Once the user releases the mouse button, the pop-up control definition
function causes the chosen item (if any) to blink, unhighlights the menu title, changes the
text in the pop-up box, and stores the item number of the chosen item as the value of the
control. Your application can use the Control Manager function GetControlValue to
get the menu item chosen by the user.

Figure 3-25 shows a pop-up menu in its closed state (as it appears initially to the user)
and its open state (as it appears when the user presses the mouse button while the cursor
is in the pop-up menu).

Figure 3-25 A pop-up menu in its closed and open states

If you don’t provide a title for a pop-up menu, the current menu item serves as the title.
In most cases you should create pop-up menus that have titles. Choose a title that reflects
the contents of the menu or indicates the purpose of the menu.

Pop-up
title

Pop-up
box

C H A P T E R 3

Menu Manager

Introduction to Menus 3-35

Figure 3-26 shows the process of a user making a selection from a pop-up menu.

Figure 3-26 Making a selection from a pop-up menu

In step 1 in Figure 3-26, the user presses the mouse button while the cursor is over the
pop-up box. When this occurs, your application can use the Dialog Manager or Control
Manager to call the pop-up control definition function. In step 2, the pop-up control
definition function highlights the title of the pop-up menu, removes the downward-
pointing triangle from the pop-up box, adds a checkmark to the current item, highlights
the current item, and displays the contents of the pop-up menu. In step 3, the pop-up
control definition function handles all user interaction, highlighting and unhighlighting
menu items, until the user releases the mouse button. When the user releases the mouse
button, the pop-up control definition function closes the pop-up menu, unhighlights the
pop-up menu title, sets the text of the pop-up box to the item chosen by the user, and
stores the item number of the chosen item as the value of the control. Step 4 shows the
appearance of the closed pop-up menu after the pop-up control definition function
performs these actions.

If your application does not use the standard pop-up control definition function, you
can create your own control definition function and you can choose to use the
PopUpMenuSelect function to help your application handle pop-up menus. In this case,
when the user presses the mouse button when the cursor is in a pop-up menu,
your application should call the PopUpMenuSelect function. Your application must

1. 2.

3. 4.

C H A P T E R 3

Menu Manager

3-36 Introduction to Menus

highlight the pop-up title before calling PopUpMenuSelect and unhighlight it
afterward. The PopUpMenuSelect function displays the pop-up menu and highlights
menu items appropriately as the user drags the cursor through the menu items. Once the
user releases the mouse button, PopUpMenuSelect flashes the chosen item, if any, and
returns information indicating which menu item was chosen to your application. Your
application is responsible for highlighting and unhighlighting the menu title, updating
the text in the pop-up box, and storing any changes to the settings of the menu items if
you use the PopUpMenuSelect function.

Pop-up menus work well when your application needs to present several choices to the
user. Note that pop-up menus hide these choices from the user until the user chooses to
display the pop-up menu. Use pop-up menus when the user doesn’t need to see all the
choices all the time. For example, Figure 3-27 shows a dialog box that uses a pop-up
menu to allow the user to choose one color from a list of many.

Figure 3-27 Choosing one attribute from a list of many

If you need to show only a few choices, you may find that using checkboxes or radio
buttons is more appropriate for your application. For example, in Figure 3-27 the
selection of columns is implemented with radio buttons rather than a pop-up menu.
Whenever possible, you should show all available choices to the user. Note that in this
example the amount of space occupied by the radio buttons is about the same as the
amount of space required for a corresponding pop-up menu.

Use pop-up menus to allow the user to choose one option from a set of many choices.
Don’t use a pop-up menu for multiple-choice lists where the user can make more than
one selection. If you do, the text in the menu box will not fully describe the selections in
effect. For example, don’t use a pop-up menu for font style selections. In a dialog box,
font style selections are more appropriately implemented as checkboxes. Figure 3-28
shows a dialog box that uses checkboxes instead of a pop-up menu to allow the user to
select more than one font style. The Size and Font choices are implemented as pop-up
menus in this example, since the user can choose only one size and one font from a list
of many.

C H A P T E R 3

Menu Manager

Introduction to Menus 3-37

Figure 3-28 A dialog box with checkboxes and pop-up menus

Never use a pop-up menu as a way to provide more commands. Pop-up menus should
not contain actions (verbs) but can contain attributes (adjectives) or settings that allow
the user to choose one from many. For these reasons, you should not use Command-key
equivalents for pop-up menu items.

Your application can also use type-in pop-up menus when appropriate. Use a type-in
pop-up menu to give the user a list of choices and to allow the user to type in an
additional choice. The standard pop-up control definition function that implements
pop-up menus does not provide specific support for type-in menus. You can create your
own control definition function to handle type-in pop-up menus. If you do so, your
type-in pop-up menu should adhere to the guidelines described here. Figure 3-29 shows
a typical type-in pop-up menu in its closed and open states.

Figure 3-29 A type-in pop-up menu in its closed and open states

Your application is responsible for drawing and highlighting the type-in field of the
pop-up menu. Your application does not need to highlight the title of a type-in pop-up
menu; your application should highlight the type-in field instead.

If the user types in a value that is already in the menu, make that item the current item. If
the user types a value that does not match any of the items in the pop-up menu, add the
item to the top of the menu and add a divider below the item to separate it from the rest
of the standard items. Figure 3-30 on the next page shows a type-in pop-up menu with a
user’s choice added to it.

C H A P T E R 3

Menu Manager

3-38 Introduction to Menus

Figure 3-30 A type-in pop-up menu with a user’s choice added

A type-in pop-up menu should allow the user to type in a single additional choice. That
is, a standard type-in pop-up menu does not accumulate the user’s choices in the menu.
For example, if the user types in a value of 13, then types in a new choice, such as 43, the
menu should appear as shown in Figure 3-30, except that the type-in field and menu item
that previously contained 13 is replaced by 43.

A type-in pop-up menu should also allow the user to type in any of the standard values
in the menu or choose any of the standard items in the pop-up menu. If the user types in
or chooses any of the standard items, you should remove any user-specified item
previously added to the menu. For example, as shown in Figure 3-30, the user specified a
nonstandard size of 13. If the user then types in or selects 9, your application should
return the pop-up menu to its standard state, as shown in Figure 3-29 on page 3-37.

Hierarchical Menus 3

A hierarchical menu is a menu that has a submenu attached to it. Hierarchical menus can
be useful when your application needs to offer additional choices to the user without
taking up extra space in the menu bar. If you use a hierarchical menu in your application,
use it to give the user additional choices or to choose attributes, not to choose additional
commands.

In a hierarchical menu, a menu item serves as the title of a submenu; this menu item
contains a triangle to identify that the item has a submenu. The triangle appears in the
location of the keyboard equivalent. The title of a submenu should represent the choices
it contains. Figure 3-31 shows a menu with a submenu whose menu title is Label Style.

When a user drags the cursor through a hierarchical menu and rests the cursor on a menu
item that has a submenu, the Menu Manager displays the submenu after a brief delay.
The title of the submenu remains highlighted while the user browses through the
submenu; the Menu Manager unhighlights the menu title of the submenu when the user
releases the mouse button.

Hierarchical menus are useful for providing lists of related items, such as font sizes and
font styles. Never use more than one level of hierarchical menus (in other words, don’t
attach a submenu to another submenu). You can assign keyboard equivalents to the
menu items of a submenu; however, if you do so, you make it harder for the user to
quickly scan all menus for their keyboard equivalents.

C H A P T E R 3

Menu Manager

About the Menu Manager 3-39

Figure 3-31 A hierarchical menu item and its submenu

About the Menu Manager 3

The Menu Manager, together with the menu definition procedure and menu bar
definition function, provides your application with a convenient way to manage the
menus in your application. The Menu Manager uses two data structures, menu records
and menu lists, to manage menus. The next two sections describe how the Menu
Manager uses these two data structures. “Using the Menu Manager,” which begins on
page 3-41, shows how you can use the Menu Manager to

� define a menu using a 'MENU' resource

� define a menu bar using an 'MBAR' resource

� install your application’s menu bar

� change the appearance of menu items

� add menu items to a menu

� respond to the user when the user chooses a menu item

� handle the Apple and Help menus

� create a pop-up menu

� create a hierarchical menu

� handle access to menus when your application displays a dialog box

� write your own menu definition procedure

C H A P T E R 3

Menu Manager

3-40 About the Menu Manager

How the Menu Manager Maintains Information About Menus 3
The Menu Manager maintains information about menus in menu records. Each menu
record includes certain information about a specific menu, including

� the menu ID of the menu

� the horizontal and vertical dimensions of the menu (in pixels)

� a handle to the menu definition procedure of the menu

� flags indicating whether each item (for the first 31 items) is enabled or disabled and
whether the menu title is enabled or disabled

� the contents of the menu, including the menu title and other data that defines the
menu items

You typically specify most of this information in a menu resource, that is, a resource of
type 'MENU'. When you create a menu, the Menu Manager stores this information in a
menu record. A menu record is a data structure of type MenuInfo. You usually never
need to access the information in the menu record directly; the Menu Manager
automatically updates the menu record when you make any changes to the menu, such
as adding a menu item. See “The Menu Record” beginning on page 3-95 if you need to
access the fields of the menu record directly.

The Menu Manager identifies every menu by a number referred to as a menu ID. You
must assign a menu ID to each menu in your application. Each menu in your application
must have a menu ID that is unique from that of any other menu in your application. You
can use any number greater than 0 for a menu ID of a pull-down or pop-up menu;
submenus of an application can use only menu IDs from 1 through 235; submenus of a
desk accessory must use menu IDs from 236 through 255.

When you create a menu, the Menu Manager creates a menu record for the menu and
returns a handle to that menu record. To refer to a menu, you usually use either the
menu’s menu ID or a handle to the menu’s menu record.

To refer to a menu item, use the menu item’s item number. Item numbers identify items
in menus; items are assigned item numbers starting with 1 for the first menu item in the
menu, 2 for the second menu item in the menu, and so on, up to the number of the last
menu item in the menu.

How the Menu Manager Maintains Information About an
Application’s Menu Bar 3
A menu list contains handles to the menu records of one or more menus (although a
menu list can be empty). The end of a menu list can contain handles to the menu
records of submenus and pop-up menus; the phrase submenu portion of the menu list refers
to this portion of the menu list, which contains information about submenus
and pop-up menus.

When your application initializes the Menu Manager, the Menu Manager allocates the
current menu list, which is initially empty. The contents of the current menu list change
as your application adds menus to or removes menus from it.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-41

The current menu list contains handles to the menu records of all menus in the current
menu bar and the menu records of any submenus or pop-up menus that you have
inserted into the current menu list. Your application typically creates a menu list using
GetNewMBar, and it then sets the current menu list to its newly created menu list using
SetMenuBar. You can insert other menus in the current menu list using the GetMenu
function and InsertMenu procedure.

The Menu Manager displays the menu bar and the titles of all pull-down menus that
are defined in the current menu list when your application calls the DrawMenuBar
procedure. The Menu Manager displays the menus in the menu bar in the same order
that they appear in the current menu list.

The Menu Manager provides routines for adding menus to and removing menus from
the current menu list; your application should never access a menu list directly. To refer
to a menu list, use the handle returned by GetNewMBar or GetMenuBar.

The Menu Manager inserts the Help menu, the Keyboard menu if necessary, and the
Application menu into your application’s menu list if your application calls the
GetNewMBar function and your menu bar includes an Apple menu; your application
then uses SetMenuBar to set the current menu list to the newly created menu list. The
Menu Manager also inserts these menus into your application’s current menu list if your
application inserts the Apple menu into the current menu list using the InsertMenu
procedure. Therefore, you should not make any assumptions about the last menu (or
menus) in your application’s current menu list.

When your application inserts a submenu into the current menu list, the Menu Manager
stores a handle to the menu record of the submenu in the submenu portion of the current
menu list. Similarly, when your application inserts a pop-up menu into the current menu
list, the Menu Manager stores a handle to the menu record of the pop-up menu in the
submenu portion of the current menu list.

Using the Menu Manager 3

You can define your application’s menus and menu bar as resources and use Menu
Manager routines to create and manage them. For example, whenever the user presses
the mouse button while the cursor is in the menu bar, your application should call the
MenuSelect function, allowing the user to choose a command from any menu. The
MenuSelect function handles all user activity until the user releases the mouse button.
The MenuSelect function displays and removes menus as the user drags the cursor
through the menu bar, and it highlights enabled menu items as the user drags through
a menu.

You should provide help balloons for each menu title and menu item of your applica-
tion. You store information and text for help balloons in resources. See the chapter
“Help Manager” in Inside Macintosh: More Macintosh Toolbox for complete and specific
information on how to provide help balloons for the menus of your application. The
BalloonWriter application, available from APDA, can also help you create help balloons
for the menus of your application.

C H A P T E R 3

Menu Manager

3-42 Using the Menu Manager

Your application needs to initialize QuickDraw, the Font Manager, and the Window
Manager before using the Menu Manager. Your application can accomplish this using the
InitGraf, InitFonts, and InitWindows procedures. To initialize the Menu Manager,
use the InitMenus procedure.

If your application uses pop-up menus, use the Gestalt function with the
gestaltPopUpAttr selector to determine if the control definition function for
pop-up menus is available. See Inside Macintosh: Operating System Utilities for information
about the Gestalt function.

To create the pull-down menus in your application’s menu bar, you need to

� create descriptions of each pull-down menu in 'MENU' resources

� create an 'MBAR' resource that lists the order and resource ID of each menu

� use the GetNewMBar function and SetMenuBar procedure to set up your menu bar
and use the DrawMenuBar procedure to draw your menu bar

The next section, “Creating a Menu,” explains these steps in detail.

After creating your application’s menu bar, you can enable or disable your menu items,
add marks such as checkmarks or dashes to menu items, or add items to any of your
menus as needed. See “Enabling and Disabling Menu Items” on page 3-58, “Changing
the Mark of Menu Items” on page 3-61, and “Adding Items to a Menu” beginning on
page 3-64 for information on these topics.

“Handling User Choice of a Menu Command,” beginning on page 3-70, shows how to
handle mouse-down events in the menu bar, adjust the menus of your application, and
determine if the user chose a keyboard equivalent of a command.

“Responding When the User Chooses a Menu Item,” beginning on page 3-78, describes
how your application should respond once the user chooses an item and also shows how
to handle the user’s choice of a command from the Apple and Help menus.

If your application displays dialog boxes, see “Accessing Menus From a Dialog Box”
beginning on page 3-84.

Finally, if your application needs to create submenus or pop-up menus, see “Creating a
Hierarchical Menu” on page 3-53 and “Creating a Pop-Up Menu” on page 3-56.

Creating a Menu 3
You use various Menu Manager routines to set up the menus and the menu bar
for your application. You can use any of these methods to create pull-down menus for
your application:

� You can create descriptions of your application’s menus in 'MENU' resources and
describe your application’s menu bar in an 'MBAR' resource. You use the
GetNewMBar function to read in descriptions of your menu bar and menus and create
a new menu list, use the SetMenuBar procedure to set the current menu list to your
application’s menu list, and use the DrawMenuBar procedure to update the menu bar.

� You can create descriptions of your application’s menus in 'MENU' resources, read
them in using GetMenu, add them to the current menu list using InsertMenu, and
update the menu bar using DrawMenuBar.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-43

� You can use NewMenu to create new empty menus; use AppendMenu,
InsertMenuItem, InsertResMenu, or AppendResMenu to fill the menus with
menu items; add the menus to the current menu list using InsertMenu; and update
the menu bar using DrawMenuBar.

Whenever possible you should define your menus in menu ('MENU') resources and your
menu bar in a menu bar ('MBAR') resource to make your application easier
to localize.

To create a hierarchical menu, you need to create descriptions of the submenu and the
menu to which the submenu is attached. Usually you create the description of both
menus in 'MENU' resources. You typically read in the description of the hierarchical
menu using GetNewMBar (if you also provide an 'MBAR' resource). To read in the
description of the submenu and insert it in the current menu list, use the GetMenu
function and InsertMenu procedure.

To create a pop-up menu, create descriptions of the pop-up menu and its menu items,
create a control that uses the pop-up control definition function, and associate the control
with a window or dialog box. You can display and manage the pop-up menu using the
Dialog Manager or Control Manager routines.

Once the Menu Manager creates a menu for your application, if necessary you can add
additional menu items to the menu using AppendMenu, InsertMenuItem,
InsertResMenu, or AppendResMenu. You can use various Menu Manager routines to
change the appearance of menu items.

The next sections describe how to create 'MENU' and 'MBAR' resources. “Creating a
Hierarchical Menu” on page 3-53 describes how to create a menu that has a submenu,
and “Creating a Pop-Up Menu” on page 3-56 describes how to create pop-up menus.

Creating a Menu Resource 3

Usually you should define your menus in menu ('MENU') resources so that you can
easily localize the menu titles and menu items for other languages, cultures, or regions. A
'MENU' resource defines the menu title of a menu and the characteristics of menu items
in a menu. Listing 3-1 shows a sample 'MENU' resource in Rez format for an
application’s Apple menu. (Rez is a resource compiler available with MPW. You can also
define menus using a resource utility, such as ResEdit, available from APDA.)

Listing 3-1 Rez input for a 'MENU' resource for the Apple menu

#define mApple 128

resource 'MENU' (mApple, preload) { /*resource ID, preload resource*/

mApple, /*menu ID*/

textMenuProc, /*uses standard menu definition */

/* procedure*/

0b1111111111111111111111111111101, /*enable About item, */

/* disable divider, */

/* enable all other items*/

C H A P T E R 3

Menu Manager

3-44 Using the Menu Manager

enabled, /*enable menu title*/

 apple, /*menu title*/

{

/*first menu item*/

"About SurfWriter…", /*text of menu item */

/* (includes ellipsis)*/

/*item characteristics follow*/

noicon, /*icon number (if any) or */

/* script code (if any)*/

nokey, /*keyboard equivalent (if any) */

/* or submenu (if any) or */

/* small or reduced icon (if any)*/

nomark, /*marking character (if any) or */

/* menu ID of submenu (if any)*/

plain; /*style of menu item text*/

/*second menu item*/

"-", /*item text (divider)*/

noicon, nokey, nomark, plain /*item characteristics*/

}

};

You should also define help balloons for each of your application’s menu items and each
menu title when you create your menus. (Figure 3-21 on page 3-31 shows help balloons
for an application’s Cut command.) You define the help balloons for your application’s
menus in 'hmmu' resources. See the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox for examples of how to create 'hmmu' resources.

Listing 3-1 defines the resource ID of the Apple menu as 128. You can use any number
equal to or greater than 128 as a resource ID for a menu. By convention, many
applications use 128 as the resource ID of the first menu in the application’s menu bar
(the Apple menu) and use sequential numbers for the resource IDs of following menus.

Listing 3-1 also defines the menu ID of the Apple menu as 128. Once your application
creates the menu, the Menu Manager uses the defined menu ID to refer to this menu. The
number you define for the menu ID of a menu does not have to match the resource ID of
the menu, but it is usually more convenient to use the same number. You can use any
number greater than 0 for the menu ID of a pull-down or pop-up menu; submenus of an
application can only use menu IDs from 1 through 235; submenus of a desk accessory
must use menu IDs from 236 through 255.

The listing specifies that this menu uses the standard menu definition procedure. If you
choose to create your own menu definition procedure, list its resource ID instead of the
textMenuProc constant.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-45

After the resource ID of the menu definition procedure is a 32-bit number (expressed as
a 31-bit field followed by a Boolean field), where bits 1–31 indicate if the correspond-
ing menu item is disabled or enabled, and bit 0 indicates whether the menu is enabled
or disabled.

The listing specifies in the 31-bit field that the first menu item should be enabled, that the
second menu item should be disabled, and that the following menu items (item numbers
3 through 31) should be enabled when the menu is first created. After creating a menu,
your application can enable or disable menu items using the EnableItem or
DisableItem procedure. If a menu contains more than 31 items, the Menu Manager
automatically enables all items following the 31st item when the menu is enabled. Your
application cannot disable any individual items following the 31st item. However, you
can disable all items, including items after the 31st item, by disabling the entire menu.

Listing 3-1 specifies that the menu title should be enabled when it is first created.
Your application can also disable or enable the menu title using the DisableItem or
EnableItem procedure. When you disable a menu using the DisableItem procedure,
the Menu Manager disables all menu items in the menu (including any items following
the 31st item) and dims the title of the menu.

The resource listing identifies the title of the menu using the constant apple. If you
specify the apple constant as the title, the Menu Manager uses a small Apple icon as the
title of the menu. The Menu Manager uses a color Apple icon if the monitor is set to
display colors. The listing then defines the characteristics of each menu item in the menu.
For each menu item, you need to define the text and any other characteristics of the menu
item. For example, Listing 3-1 defines the first item in the Apple menu as the About
command; note that the text of this menu item specifies three ellipsis points (...). Specify
three ellipsis points following the text of a menu command if your application displays a
dialog box requesting information from the user before performing the command. In
general, you should not use ellipses if your application displays a confirmation alert after
the user chooses a menu command; the About command is an exception to this guideline.

Listing 3-1 defines other characteristics of the About command—it doesn’t have an
icon to the left of the menu item text, it doesn’t have a keyboard equivalent, it doesn’t
have any mark to the left of the menu item text, and the font style of the menu item
text is plain.

By specifying various combinations of values in the icon field and keyboard equivalent
field, you can define an icon (normal, small, reduced, or color), a keyboard equivalent, a
submenu, or the script code of a menu item. Note that some characteristics are mutually
exclusive (for example, an item can have a keyboard equivalent or submenu, but not
both), as described in the following paragraphs. Table 3-6 on page 3-46 summarizes how
the Menu Manager interprets these item characteristics.

C H A P T E R 3

Menu Manager

3-46 Using the Menu Manager

Table 3-6 Specifying submenus, script codes, reduced icons, small icons, and color icons of a
menu item in a menu resource

To assign an icon to a menu item, specify an icon number in place of the noicon
constant. The icon number you specify should be a number from 1 through 255 (or from 1
through 254 for small icons and reduced icons); add 256 to your icon number and use the
result for the resource ID of the color icon ('cicn') resource, icon ('ICON') resource, or
small icon ('SICN') resource that describes the icons for the menu item. You must define
the icon for a menu item in a 'cicn', an 'ICON', or an 'SICN' resource; the Menu
Manager uses only these types of resources for icons you define for your menu items. The
Menu Manager first looks for a 'cicn' resource with the calculated resource ID and
uses that icon if it finds it. If it doesn’t find a 'cicn' resource (or if the computer doesn’t
have Color QuickDraw) and the keyboard equivalent field specifies $1E, the Menu
Manager looks for an 'SICN' resource with the calculated resource ID. Otherwise, the
Menu Manager looks for an 'ICON' resource and plots it in a 32-by-32 bit rectangle,
unless the keyboard equivalent field contains $1D. If the keyboard equivalent field
contains $1D, the Menu Manager reduces the icon to fit in a 16-by-16
bit rectangle.

If you provide an 'ICON' resource and specify the nokey constant or a value greater
than $20 as the keyboard equivalent, the Menu Manager enlarges the rectangle of the
entire menu item to fit the 32-by-32 bit 'ICON' resource. If you specify a value of $1D as
the keyboard equivalent of the menu item, the Menu Manager reduces the 'ICON'
resource to fit in a 16-by-16 bit rectangle. If you provide an 'SICN' resource and specify
a value of $1E as the keyboard equivalent of a menu item, the Menu Manager plots the
small icon in a 16-by-16 bit rectangle. If you provide a 'cicn' resource, the Menu
Manager automatically enlarges the enclosing rectangle of the menu item according to
the rectangle specified in the 'cicn' resource. (For the Apple and Application menus,

Keyboard
equivalent
field Icon field

Marking
character field Description

$1B Menu ID of
submenu

Indicates the item has a submenu. The
marking character field specifies the
menu ID of the submenu.

$1C Script code of item
text

Indicates the item text uses the script
defined by the script code specified in the
icon field.

$1D Icon number of
'ICON'resource

Indicates the item has an icon defined by an
'ICON' resource and that it should be
reduced to fit in a 16-by-16 bit rectangle.

$1E Icon number
of 'SICN'
resource

Indicates the item has an icon defined by an
'SICN' resource.

$00 or >$20 Icon number of
'ICON' or
'cicn' resource

Indicates the item has an icon defined
by an 'ICON' or a 'cicn'resource.
(A value greater than $20 in the
keyboard equivalent field specifies the
item’s keyboard equivalent.)

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-47

the Menu Manager automatically reduces the icon to fit within the enclosing rectangle of
a menu item or uses the appropriate icon from the application’s icon family, such as an
'ics8' resource, if one is available.) See the chapter “Finder Interface” in this book for
details on how to create icons for your application.

To assign a keyboard equivalent to a menu item, specify the 1-byte character that the user
types in addition to the Command key in place of the nokey constant in your resource
definition for the menu item. If your application attaches a submenu to a menu item, then
specify the hierarchicalMenu constant in place of the nokey constant. A menu item
can have either a keyboard equivalent or submenu defined for it, but not both. To
indicate that a menu item has an icon that is defined in an 'SICN' resource, specify $1E
in place of the nokey constant. To indicate that a menu item has an icon that is defined in
an 'ICON' resource and that the Menu Manager should reduce this icon to a 16-by-16 bit
rectangle, specify $1D in place of the nokey constant. Menu items that have small icons
or reduced icons cannot have keyboard equivalents.

To set the script code of a menu item’s text, specify $1C in place of the nokey constant
and define the desired script code in place of the noicon constant. If an item contains
$1C in its keyboard equivalent field and a script code in its icon field, the Menu Manager
draws the item’s text in the script identified by the script code value if the corresponding
script system is installed. If you do not specify a script code for a menu item, the Menu
Manager displays the menu item’s text in the system font of the current system script. For
Roman scripts, the system font is Chicago and the system font size is 12.

To assign a mark that appears to the left of the menu item text and to the left of any
icon, specify the marking character in place of the nomark constant in your resource
definition. If the menu item has a submenu, then specify the menu ID of the submenu in
place of the nomark constant. Submenus of an application must use menu IDs from
1 through 235; submenus of a desk accessory must use menu IDs from 236 through 255.
Note that defining the menu ID of a submenu in a 'MENU' resource does not attach the
submenu to its menu. You must use the GetMenu function and InsertMenu procedure
to do this. “Creating a Hierarchical Menu,” which begins on page 3-53, gives information
on attaching a submenu to its menu.

To assign a font style to a menu item, in your 'MENU' resource use the constants bold,
italic, plain, outline, and shadow to get their corresponding styles.

Listing 3-1 defines the second menu item as a divider. When you use a hyphen as the first
character in the string that defines the text of a menu item, the Menu Manager creates a
divider that extends across the entire width of the menu item. You cannot assign any
other characteristics to a divider.

The 'MENU' resource for the Apple menu does not list any other menu items. Use the
AppendResMenu procedure to add the desktop items to the Apple menu after your
application creates the menu. See “Adding Items to the Apple Menu” on page 3-68 for
more information.

Once you create a menu, you can append additional items to it using the AppendMenu,
InsertMenuItem, InsertResMenu, or AppendResMenu procedure. You can also
change the characteristics of individual menu items using Menu Manager routines. See
“Changing the Appearance of Items in a Menu” on page 3-57 for more information.

C H A P T E R 3

Menu Manager

3-48 Using the Menu Manager

Figure 3-12 on page 3-24 shows a typical Edit menu for an application. Listing 3-2 shows
a 'MENU' resource for this Edit menu.

Listing 3-2 Rez input for a 'MENU' resource for an Edit menu

#define mEdit 130

resource 'MENU' (mEdit, preload) { /*resource ID, preload resource*/

mEdit, /*menu ID*/

textMenuProc, /*uses standard menu definition */

/* procedure*/

0b0000000000000000001001000000000, /*enable/disable first 31 menu */

 /* items as appropriate*/

enabled, /*enable title*/

"Edit", /*text of menu title*/

 { /*menu items*/

"Undo", noicon, "Z", nomark, plain; /*keyboard equivalent Command-Z*/

"-", noicon, nokey, nomark, plain;

"Cut", noicon, "X", nomark, plain; /*keyboard equivalent Command-X*/

"Copy", noicon, "C", nomark, plain; /*keyboard equivalent Command-C*/

"Paste", noicon, "V", nomark, plain; /*keyboard equivalent Command-V*/

"Clear", noicon, nokey, nomark, plain;

"Select All",

noicon, "A", nomark, plain; /*keyboard equivalent Command-A*/

"-", noicon, nokey, nomark, plain;

"Create Publisher…",

noicon, nokey, nomark, plain;

"Subscribe To…",

noicon, nokey, nomark, plain;

"Publisher Options…",

noicon, nokey, nomark, plain;

"-", noicon, nokey, nomark, plain;

"Show Clipboard",

noicon, nokey, nomark, plain

}

};

Listing 3-2 defines the resource ID of the Edit menu as 130, defines the menu ID of the
Edit menu as 130, and specifies that this menu uses the standard menu definition
procedure. The listing defines the initial enabled state of the first 31 menu items and
also specifies that the menu title should be enabled when it is first created.

The resource listing defines the title of the menu, Edit. It then defines the characteristics
of each menu item in the menu. For each menu item, you need to specify the text of the
menu item and any other characteristics of the menu item. For example, Listing 3-2

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-49

defines the first item in the Edit menu as the Undo command with these characteristics:
there is no icon to the left of the menu item text, the menu item has a keyboard equivalent
of Command-Z, it does not have any mark to the left of the menu item text, and the style
of the menu item text is plain. The listing defines the second menu item as a divider line.
It defines the Cut, Copy, and Paste commands; specifies keyboard equivalents for each of
them; and defines the rest of the items in the menu.

Listing 3-3 shows another example of a resource description of a menu, the File menu of a
typical application.

Listing 3-3 Rez input for a 'MENU' resource for a File menu

resource 'MENU' (mFile, preload) {

mFile, textMenuProc,

0b0000000000000000000010000000000,

enabled,

"File",

{

"New", noicon, "N", nomark, plain;

"Open…", noicon, "O", nomark, plain;

"-", noicon, nokey, nomark, plain;

"Close", noicon, "W", nomark, plain;

"Save", noicon, "S", nomark, plain;

"Save As…", noicon, nokey, nomark, plain;

"-", noicon, nokey, nomark, plain;

"Page Setup…", noicon, nokey, nomark, plain;

"Print…", noicon, "P", nomark, plain;

"-", noicon, nokey, nomark, plain;

"Quit", noicon, "Q", nomark, plain

}

};

Creating a Menu Bar Resource 3

You typically define your application’s menu bar using a menu bar ('MBAR') resource.
Listing 3-4 shows an 'MBAR' resource, in Rez format, for a sample application.

Listing 3-4 Rez input for an 'MBAR' resource

#define rMenuBar 128

#define mApple 128

#define mFile 129

#define mEdit 130

C H A P T E R 3

Menu Manager

3-50 Using the Menu Manager

resource 'MBAR' (rMenuBar, preload) {/*resource ID, preload*/

/*menus appear in the order listed here*/

 { mApple, mFile, mEdit }; /*resource IDs for menus in */

/* this menu bar*/

};

Listing 3-4 defines the 'MBAR' resource with resource ID 128. This 'MBAR' resource
defines the order and resource IDs of the menus contained in it; it defines its first
three menus as the menus with resource IDs 128, 129, and 130. The Menu Manager
uses the assigned resource IDs to read in the menus when it creates a menu bar from
an 'MBAR' resource.

Setting Up Your Application’s Menu Bar 3

To create a menu list as defined in an 'MBAR' resource, use the GetNewMBar function.
For each menu defined by the 'MBAR' resource, the GetNewMBar function creates a
menu record for the menu, creates each menu according to its resource definition in its
corresponding 'MENU' resource, and inserts each menu into the new menu list. The
GetNewMBar function returns a handle to the created menu list. For example, this code
creates a menu list for the menu bar defined by the 'MBAR' resource with resource ID
128 (defined by the constant rMenuBar):

CONST

rMenuBar = 128;

VAR

 menuBar: Handle;

 menuBar := GetNewMBar(rMenuBar); {read menus and menu bar }

 { descriptions,create & return }

 { a handle to a new menu list}

Use the SetMenuBar procedure to set the current menu list to the menu list created
by your application and the DrawMenuBar procedure to update the menu bar’s
appearance. For example, Listing 3-5 uses these two routines to set up the application’s
menu bar.

Listing 3-5 Setting up an application’s menus and menu bar

PROCEDURE MyMakeMenus;

VAR

menuBar: Handle;

 BEGIN

{first use the GetNewMBar function to read menus in & create a }

{ new menu list. If you define an Apple menu, the Menu Manager }

{ inserts the Help and Application menus (and Keyboard menu if }

{ necessary) into the newly created menu list}

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-51

menuBar := GetNewMBar(rMenuBar);

IF menuBar = NIL THEN

EXIT(MyMakeMenus);

 SetMenuBar(menuBar); {insert menus into the current menu list}

 DisposHandle(menuBar);

{add desktop items in Apple Menu Items }

{ folder to Apple menu}

 AppendResMenu(GetMenuHandle(mApple), 'DRVR');

 MyAdjustMenus; {adjust items and enabled state of menus}

 DrawMenuBar; {draw the menu bar}

 END;

The code in Listing 3-5 creates the application’s menu bar by reading in the definition
from the 'MBAR' resource with resource ID 128, and it uses SetMenuBar to set the
current menu list to the newly created menu list. The code then adds the desktop
items in the Apple Menu Items folder to the Apple menu using the AppendResMenu
procedure.

You can use the GetMenuHandle function to get a handle to the menu record of
any menu in the current menu list. You supply the menu ID of the desired menu as a
parameter to GetMenuHandle, and GetMenuHandle returns a handle to the menu’s
menu record. Most Menu Manager routines require either a menu ID or a handle to
a menu record as a parameter.

After creating the menu bar and adding any other menus or items as necessary, the code
calls the MyAdjustMenus procedure to adjust the application’s menus—for example,
this procedure sets the enabled and disabled states of menu items in accordance with the
current state of the application. (Listing 3-19 on page 3-74 shows the application-defined
MyAdjustMenus procedure used in Listing 3-5.) After adjusting the menus, the code in
Listing 3-5 uses DrawMenuBar to draw the menus in the menu bar according to their
current enabled state and as they are defined in the current menu list.

Usually you’ll define the menus of your application and its menu bar using 'MENU'
resources and an 'MBAR' resource and using the GetNewMBar function to read the
resource definitions. However, you can choose to read in a 'MENU' resource using the
GetMenu function or to create a new empty menu using NewMenu. You can then insert
a menu into the current menu list using the InsertMenu procedure. See “Creating
Menus” on page 3-105 and “Adding Menus to and Removing Menus From the Current
Menu List” on page 3-108 for information on forming your menus using these routines.

If your application uses a submenu, you need to use the GetMenu function and
InsertMenu procedure to make these menus available to your application. See
“Creating a Hierarchical Menu” on page 3-53 for information on creating submenus.
If your application uses a pop-up menu, you can use the pop-up control definition
function and Dialog Manager or Control Manager routines to create and display
the pop-up menu. See “Creating a Pop-Up Menu” on page 3-56 for information on
creating pop-up menus.

C H A P T E R 3

Menu Manager

3-52 Using the Menu Manager

The Menu Manager creates and initializes your application’s menu color information
table when your application calls GetNewMBar. You can add entries to your application’s
menu color information table if you want to use colors other than the default colors in
your menus and menu bar. You can add entries to this table by providing menu color
information table ('mctb') resources or by using the SetMCEntries procedure.
Usually you should use the default colors to help maintain
a consistent user interface.

If you add menu color entries to your application’s menu color information table and
your application uses more than one menu bar, you need to save a copy of your
application’s menu color information table before changing menu bars. Use the
GetMCInfo function before calling GetNewMBar and call SetMCInfo afterward to
restore the menu color information table. Listing 3-6 shows a routine that saves and
then restores the menu color information table when creating a new menu bar.

Listing 3-6 Saving and restoring menu color information

PROCEDURE MyChangeMenuBarAndSaveColorInfo;

CONST

rMenuBar2 = 129;

VAR

 menu: MenuHandle;

 menuBar: Handle;

 currentMCTable: MCTableHandle;

 newMCTable: MCTableHandle;

 BEGIN

 currentMCTable := GetMCInfo; {save menu color info table}

IF currentMCTable = NIL THEN

 EXIT(MyChangeMenuBarAndSaveColorInfo);

menuBar := GetNewMBar(rMenuBar2);{read menus in & create new menu list}

 IF menuBar = NIL THEN

EXIT(MyChangeMenuBarAndSaveColorInfo);

 newMCTable := GetMCInfo; {get new menu color info table}

IF newMCTable = NIL THEN

 EXIT(MyChangeMenuBarAndSaveColorInfo);

 SetMCInfo(currentMCTable); {restore previous menu color info table}

 SetMenuBar(menuBar); {insert menus into the current menu list}

 DisposHandle(menuBar);

 AppendResMenu(GetMenuHandle(m2Apple), 'DRVR'); {add desktop items from }

{ Apple Menu Items folder to Apple menu}

 MyAdjustMenus; {adjust menu items}

 DrawMenuBar; {draw the menu bar}

 END;

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-53

Creating a Hierarchical Menu 3
A hierarchical menu is a menu that has a submenu attached to one or more of its menu
items. Submenus can be useful when your application needs to offer additional choices to
the user without taking up extra space in the menu bar. If you use a submenu in your
application, use it to give the user additional choices or to choose attributes, not
additional commands.

A menu item of a pull-down menu is the title of the attached submenu. A menu item that
has a triangle facing right in the location of the keyboard equivalent identifies
that a submenu is attached to the menu item. The title of a submenu should represent
the choices it contains. Figure 3-32 shows a menu with a submenu whose menu title is
Label Style.

Figure 3-32 A menu item with a submenu

When a user drags the cursor through a menu and rests it on a menu item with a
submenu attached to it, the Menu Manager displays the submenu after a brief delay.
The title of the submenu remains highlighted while the user browses through the
submenu; the Menu Manager unhighlights the menu title of the submenu when the
user releases the mouse button.

Your application is responsible for placing any marks next to the current choice or
attribute of the submenu. For example, in Figure 3-32 the application placed the
checkmark next to the Numeric menu item to indicate the current choice. If the user
makes a new choice from the menu, your application should update the menu items
accordingly.

You can specify that a particular menu item has a submenu by identifying this
characteristic (using the hierarchicalMenu constant) when you define the menu item
in its 'MENU' resource. You cannot assign keyboard equivalents to a menu item that has
a submenu. (You can define keyboard equivalents for the menu items in the submenu,
but this is not recommended.) You identify the menu ID of the submenu in place of the
marking character in the menu item’s resource description. Thus, a menu item that has a
submenu cannot have a marking character and cannot have a keyboard equivalent.

C H A P T E R 3

Menu Manager

3-54 Using the Menu Manager

To insert a submenu into the current menu list, you must use the InsertMenu
procedure. The GetNewMBar function does not read in the resource descriptions of
any submenus.

Listing 3-7 shows the 'MENU' resource for an application-defined menu called Outline.
The Outline menu contains a number of menu items, including the Label Style menu
item. The description of this menu item contains the constant hierarchicalMenu,
which indicates that the item has a submenu. This menu item description also contains
the menu ID of the submenu (defined by the mSubMenu constant). The menu ID of a
submenu of an application must be from 1 through 235; the menu ID of a submenu of a
desk accessory must be from 236 through 255.

The submenu is defined by the menu with the menu ID specified by the Label Style menu
item. You define the menu items of a submenu in the same way as you would a
pull-down menu (except you shouldn’t define keyboard equivalents for items in a
submenu, and you shouldn’t attach a submenu to another submenu).

Listing 3-7 Rez input for a description of a hierarchical menu with a submenu

#define mOutline 135

#define mSubMenu 181

resource 'MENU' (mOutline, preload) {

mOutline , /*menu ID*/

textMenuProc,

0b0000000000000000000000000010000,

enabled,

"Outline", /*menu title*/

 { /*menu items*/

"Expand", noicon, "E", nomark, plain;

"Expand To…", noicon, nokey, nomark, plain;

"Expand All", noicon, nokey, nomark, plain;

"Collapse", noicon, nokey, nomark, plain;

"-", noicon, nokey, nomark, plain;

/*the Label Style item has a submenu with menu ID mSubMenu*/

"Label Style", noicon, hierarchicalMenu, mSubMenu, plain;

"-", noicon, nokey, nomark, plain;

"Move Left", noicon, "L", nomark, plain;

"Move Right", noicon, "R", nomark, plain;

"Move Up", noicon, "U", nomark, plain;

"Move Down", noicon, "D", nomark, plain

}

};

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-55

resource 'MENU' (mSubMenu , preload) {

mSubMenu , /*menu ID*/

textMenuProc,

0b0000000000000000000000001111111,

enabled,

"Label Style", /*menu title (ignored--defined */

/* by parent menu item text)*/

 { /*menu items*/

"Alphabetic", noicon, nokey, nomark, plain;

"Bullet", noicon, nokey, nomark, plain;

"Chicago", noicon, nokey, nomark, plain;

"Harvard", noicon, nokey, nomark, plain;

"Legal", noicon, nokey, nomark, plain;

"Numeric", noicon, nokey, nomark, plain;

"Roman", noicon, nokey, nomark, plain

}

};

When you use GetNewMBar to read in menu descriptions and create a new menu list,
GetNewMBar records the menu ID of any submenu in the menu record but does not read
in the description of the submenu. To read a description of a submenu, use the GetMenu
function. To actually insert a submenu into the current menu list, you must use the
InsertMenu procedure.

When needed, your application can use the GetMenu function to read a description of
the characteristics of a menu from a 'MENU' resource. The GetMenu function creates a
menu record for the menu, allocating space for the menu record in your application’s
heap. The GetMenu function creates the menu and menu items (and fills in the menu
record) according to its 'MENU' resource. The GetMenu function does not insert the
menu into a menu list. When you’re ready to add it to the current menu list, use the
InsertMenu procedure.

Listing 3-8 uses the GetMenu function to read the description of a submenu and uses the
InsertMenu procedure to insert the menu into the current menu list.

Listing 3-8 Creating a hierarchical menu

PROCEDURE MyMakeSubMenu (subMenuResID: Integer);

VAR

subMenu: MenuHandle;

BEGIN

subMenu := GetMenu(subMenuResID);

InsertMenu(subMenu, -1);

END;

C H A P T E R 3

Menu Manager

3-56 Using the Menu Manager

To insert a submenu into the current menu list using the InsertMenu procedure, specify
–1 in the second parameter to insert the menu into the submenu portion of the menu list.
As the user traverses menu items, if a menu item has a submenu the MenuSelect
function looks in the submenu portion of the menu list for the submenu; it searches for a
menu with a defined menu ID that matches the menu ID specified by the hierarchical
menu item. If it finds a menu with a matching menu ID, it attaches the submenu to the
menu item and allows the user to browse through the submenu.

Creating a Pop-Up Menu 3
In System 7, pop-up menus are implemented as controls. You define the menu items of a
pop-up menu in the same way as in other menus (using a 'MENU' resource), and you
define specific features of the pop-up menu itself (such as the location of the pop-up
menu) in a control that uses the standard pop-up control definition function. Pop-up
menus provide the user with a simple way to select from among a list of choices without
having to move up to the menu bar. They are particularly useful in a dialog box that
requires the user to specify a number of settings or values. Figure 3-33 shows an example
of a pop-up menu in a dialog box.

Figure 3-33 A pop-up menu in a dialog box

To create a pop-up menu, create a control that uses the pop-up control definition
function, define the pop-up menu and its menu items, and associate the control with a
window or dialog box. You can use Dialog Manager or Control Manager routines to
display pop-up menus.

For example, if you define a modal dialog box that contains a pop-up control and use the
Dialog Manager to display and help handle events in the dialog box, the Dialog Manager
automatically uses the pop-up control definition function to draw the control and also to
handle user interaction when the user presses the mouse button while the cursor is over a
pop-up control.

If your application defines a control in one of your application’s windows, you can use
TrackControl and other Control Manager routines to handle the pop-up menu.

The pop-up control definition function draws a box around the pop-up box, draws the
drop shadow, inserts the text into the pop-up box, draws the downward-pointing
triangle, and draws the pop-up title. When a dialog box contains a control that uses the

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-57

pop-up control definition function and the user presses the mouse button while the
cursor is in the pop-up control, the pop-up control definition function highlights the
pop-up menu title, displays the pop-up menu, and handles all user interaction until the
user releases the mouse button. When the user releases the mouse button, the pop-up
control definition function closes the pop-up box, draws the user’s choice in the pop-up
box (or restores the previous item if the user did not make a new choice), stores the user’s
choice as the value of the control, and unhighlights the pop-up menu title. Your
application can use the Control Manager function GetControlValue to get the value of
the control and to determine the currently selected item in the pop-up menu.

To create a pop-up control, create a control and specify that the control uses the pop-up
control definition function by specifying the popupMenuProc constant:

CONST popupMenuProc = 1008; {pop-up menu control}

If you specify popupMenuProc (plus any appropriate variation code) as the procID
field of the resource description of a control, when your application creates the control
(by using the Dialog Manager or by using GetNewControl) the Control Manager creates
the pop-up control, which includes the pop-up title and the pop-up box with a one-pixel
drop shadow. The appearance of the pop-up title and the values in the menu are
controlled by other values stored in the resource (or other parameters passed to
NewControl). See the chapter “Control Manager” in this book for information on
the NewControl function.

If your application does not use the standard pop-up control definition function, you
can create your own control definition function to implement pop-up menus. In this
case you can use the PopUpMenuSelect function to draw the pop-up menu and track
the cursor within the menu. Your application is responsible for highlighting the title of
the pop-up menu before calling PopUpMenuSelect and unhighlighting the title
afterward (to duplicate the behavior of menu titles in the menu bar). Your application
must also set the mark of the items in the pop-up menu as appropriate if you use the
PopUpMenuSelect function.

For more information on creating controls, see the chapter “Control Manager” in this
book. For listings that define the dialog box shown in Figure 3-33, see the chapter “Dialog
Manager” in this book.

Changing the Appearance of Items in a Menu 3
You can change the appearance of an item in a menu using Menu Manager routines. For
example, you can change the font style, text, or other characteristics of menu items. You
can also enable or disable a menu item.

Most of the Menu Manager routines that get or set characteristics of a particular menu
item require three parameters:

� a handle to the menu record of the menu containing the desired menu item

� the number of the menu item

� a variable that either specifies the data to set or identifies where to return information
about that item

C H A P T E R 3

Menu Manager

3-58 Using the Menu Manager

Enabling and Disabling Menu Items 3

Using the EnableItem and DisableItem procedures, you can enable and disable
specific menu items or an entire menu. You pass as parameters to these two procedures a
handle to the menu record that identifies the desired menu and either an item number
that identifies the particular menu item to enable or disable or a value of 0 to indicate that
the entire menu should be enabled or disabled.

Your application should always enable and disable any menu items as appropriate—
according to the user’s content—before calling MenuSelect or MenuKey. For example,
you should enable the Paste command when the scrap contains data that the user can
paste. (Listing 3-19 on page 3-74 shows code that adjusts an application’s menus.)

When you disable or enable an entire menu, call DrawMenuBar to update the menu bar.
The DrawMenuBar procedure draws the menus in the menu bar according to their
current enabled state and as they are defined in the current menu list.

If you disable an entire menu, the Menu Manager dims the menu title at your
application’s next call to DrawMenuBar and dims all items in the menu when it displays
the menu. If you enable an entire menu, the Menu Manager enables only the menu title
and any items that you did not previously disable individually; the Menu Manager does
not enable any item that your application previously disabled by calling DisableItem
with that menu item’s item number. For example, if all items in your application’s Edit
menu are enabled, you can disable the Cut and Copy commands individually using
DisableItem. If you choose to disable the entire menu by passing 0 as the menu item
parameter to DisableItem, the menu and all its items are disabled. If you then enable
the entire menu by passing 0 as the menu item parameter to EnableItem, the menu and
its items are enabled, except for the Cut and Copy commands, which remain disabled. In
this case, to enable the Cut and Copy commands, you must enable each one individually
using EnableItem.

You can use DisableItem to disable items that aren’t appropriate at a given time. For
example, you can disable the Cut and Copy commands when the user has not selected
anything to cut or copy and disable the Paste command when the scrap is empty.

This code enables the File menu, disables the Cut and Copy commands in the Edit menu,
and disables the application-defined menu Colors.

VAR

menu: MenuHandle;

menu := GetMenuHandle(mFile); {get a handle to the File menu}

EnableItem(menu, 0); {enable File menu and any items }

 { not individually disabled}

DrawMenuBar; {update menu bar's appearance}

menu := GetMenuHandle(mEdit); {get a handle to the Edit menu}

DisableItem(menu, iCut); {disable the Cut command}

DisableItem(menu, iCopy); {disable the Copy command}

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-59

menu := GetMenuHandle(mColors);{get a handle to Colors menu}
DisableItem(menu, 0); {disable Colors menu & all }

{ items in it}
DrawMenuBar; {update menu bar's appearance}

If you disable or enable an entire menu, call DrawMenuBar when you need to update the
menu bar’s appearance. If you do not need to update the menu bar immediately, you can
use the InvalMenuBar procedure instead of DrawMenuBar, thus reducing flickering in
the menu bar. Rather than drawing the menu bar twice as in the previous example, you
can use InvalMenuBar instead of DrawMenuBar, causing the Event Manager to redraw
the menu bar the next time it scans for update events. The InvalMenuBar procedure is
available in System 7 and later. See page 3-114 for additional details on the
InvalMenuBar procedure.

Changing the Text of an Item 3

You can get or set the text of a menu item using Menu Manager routines.

To get the text of a menu item, use the GetMenuItemText procedure. For example, you
can use the GetMenuItemText procedure to get the text of a menu item that you added
to a menu using InsertResMenu or AppendResMenu.

To set the text of a menu item, use the SetMenuItemText procedure. You can use
the SetMenuItemText procedure as a convenient way to change the text of a menu
command that allows the user to toggle between two states. For example, if your
application has a menu command that allows the user to either show or hide the
Clipboard window, depending on whether the window is currently showing, you can
change the text of the menu item at the appropriate time using the SetMenuItemText
procedure.

Listing 3-9 changes the text of a menu item from Hide Clipboard to Show Clipboard or
vice versa, based on the state of an application-defined global variable (gToggleState)
that holds the state information.

Listing 3-9 Changing the text of a menu item

PROCEDURE MyToggleHideShow;
VAR

myMenu: MenuHandle;
item: Integer;
itemString: Str255;

BEGIN
myMenu := GetMenuHandle(mEdit);
item := iToggleHideShow;
IF gToggleState = kShow THEN
BEGIN

GetIndString(itemString, kMyStrings, kShowClipboard);
gToggleState := kHide;

END

C H A P T E R 3

Menu Manager

3-60 Using the Menu Manager

ELSE
BEGIN

GetIndString(itemString, kMyStrings, kHideClipboard);
gToggleState := kShow;

END;
SetMenuItemText(myMenu, item, itemString);

END;

Note that if you use the SetMenuItemText procedure, you should define the text of the
menu item in a string resource or string list resource (for example, using an 'STR ' or
'STR#' resource). This makes your application easier to localize.

Changing the Font Style of Menu Items 3

You can change or get the font style of a menu item using the SetItemStyle or
GetItemStyle procedure. To set the style of a menu item, specify a handle to the menu
record of the menu containing the menu item whose style you want to set, specify the
number of the menu item to set, and specify the desired style.

You specify the style using values from the set defined by the Style data type:

TYPE
StyleItem = (bold, italic, underline, outline, shadow,

 condense, extend);
Style = SET OF StyleItem;

You can set the style of a menu item to zero, one, or more than one of the styles defined
by the StyleItem data type. You can set the style of a menu item to the empty set to
obtain the plain font style.

Listing 3-10 shows code that sets the style of menu items listed in an application’s
Style menu.

Listing 3-10 Setting the font style of menu items

VAR
menu: MenuHandle;
itemStyle: Style;

menu := GetMenuHandle(mStyle); {get a handle to the Style menu}
itemStyle := [italic];
SetItemStyle(menu, iItalic, itemStyle);{set to italic style}
itemStyle := [bold];
SetItemStyle(menu, iBold, itemStyle);{set item to bold style}
itemStyle := [bold, Italic];
SetItemStyle(menu, iBoldItal, itemStyle);{bold & italic style}
itemStyle := [];
SetItemStyle(menu, iPlain, itemStyle);{set item to plain style}

To get the style of a menu item, you can use the GetItemStyle procedure.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-61

Changing the Mark of Menu Items 3

You can change or get the mark of a menu item using the SetItemMark or
GetItemMark procedure. To set the mark of a menu item to a checkmark, you
can use either the CheckItem or the SetItemMark procedure.

To set the mark of a menu item, specify a handle to the menu record of the menu
containing the item whose mark you want to set, specify the number of the menu
item to set, and specify the mark to use as the marking character of the menu item.

You typically use checkmarks and dashes in menus that contain commands that set
attributes and that you have grouped in accumulating groups. For example, you use a
combination of checkmarks and dashes in the Style menu to indicate whether the
selection contains more than one style. Figure 3-8 on page 3-15 shows an example of
using checkmarks and dashes in a menu. “Groups of Menu Items” beginning on
page 3-14 gives guidelines for determining how to group your menu items.

You specify the mark of the menu item by passing a character as one of the parameters to
the SetItemMark procedure. You should use only the standard marking characters,
such as the checkmark, diamond, or dash, in your menu items; avoid using other marks
that might confuse the user. You can use the constants listed here to specify that the item
has no mark or to set the marking character to a checkmark or diamond:

CONST noMark = 0; {no marking character}

checkMark = $12; {checkmark}

diamondMark = $13; {diamond symbol}

As another example of the use of marks in menus, Listing 3-11 shows code that sets the
mark of items in an application-defined Directory menu. It sets the marking character of
the menu item of the last directory accessed to a checkmark, sets the marking character of
the second-last directory accessed to the diamond mark, and removes the mark from the
third-last directory accessed.

Listing 3-11 Adding marks to and removing marks from menu items

VAR

menu: MenuHandle;

itemMark: Char;

{get handle to Directory menu}

menu := GetMenuHandle(mDirectory);

itemMark := CHR(checkMark);

SetItemMark(menu, gLastDir, itemMark); {set mark to checkmark}

itemMark := CHR(diamondMark);

SetItemMark(menu, gOldLastDir, itemMark); {set mark to diamond}

itemMark := CHR(noMark);

SetItemMark(menu, gSecondLastDir, itemMark);{remove any mark}

C H A P T E R 3

Menu Manager

3-62 Using the Menu Manager

You can also set the mark of a menu item to a checkmark using the CheckItem
procedure:

VAR
menu: MenuHandle;

{get handle to Directory menu}
menu := GetMenuHandle(mDirectory);
CheckItem(menu, gLastDir, TRUE); {set to checkmark}
CheckItem(menu, gSecondLastDir, FALSE);{remove checkmark or }

{ any other mark}

Changing the Icon or Script Code of Menu Items 3

You can change or get the icon of a menu item using the SetItemIcon or GetItemIcon
procedure. You can also use these procedures to get or set the
script code of a menu item’s text.

To set the script code of a menu item using the SetItemIcon procedure, you need to

� specify a handle to the menu record of the menu containing the item whose script code
you want to set

� specify the number of the menu item to set

� specify the script code

To set a menu item’s script code, you must also define the keyboard equivalent field of
the item to $1C. If an item contains $1C in its keyboard equivalent field and a script code
in its icon field, the Menu Manager draws the item in the script identified by the script
code value if the corresponding script system is installed.

To set the icon of a menu item using the SetItemIcon procedure, you need to

� specify a handle to the menu record of the menu containing the item whose icon you
want to set

� specify the number of the menu item to set

� specify the icon number (the Menu Manager uses the icon number to generate the
resource ID of the icon)

The icon number that you specify to SetItemIcon must be a value from 1 through 255
for color icons or icons, from 1 through 254 for small icons and reduced icons, or 0 to
specify that the item doesn’t have an icon. The Menu Manager adds 256 to the number
you specify and uses this calculated number as the icon’s resource ID. For example, if you
specify the icon number as 5, the Menu Manager uses the Resource Manager to find the
icon with resource ID 261. The Menu Manager first looks for an icon resource of type
'cicn'; if it can’t find one with the calculated resource ID number (or if the computer
doesn’t have Color QuickDraw), it looks for a resource of type 'SICN' if the keyboard
equivalent field contains $1E; otherwise, it looks for an 'ICON' resource.

Use either an 'ICON' or 'SICN' resource if you want to provide only a black-and-white
icon. In addition, provide a 'cicn' resource if you want the Menu Manager to use a
color icon when Color QuickDraw is available. Figure 3-34 shows examples of icons in a
menu item generated from icon resources: an 'SICN' resource, an 'ICON' resource, an
'ICON' resource reduced to fit in a 16-by-16 bit rectangle, and a 'cicn' resource.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-63

Figure 3-34 Icons in menu items

The Menu Manager automatically fits the icon in the menu item according to your
specifications. If the Menu Manager uses a 'cicn' resource, it automatically enlarges the
enclosing rectangle of the menu item according to the rectangle specified in the 'cicn'
resource. If the Menu Manager uses an 'ICON' resource and the item specifies the
nokey constant as the keyboard equivalent, the Menu Manager enlarges the rectangle of
the menu item to fit the 32-by-32 bit 'ICON' resource. You can request that the Menu
Manager reduce an 'ICON' resource to the size of a 16-by-16 bit small icon by specifying
a value of $1D as the item’s keyboard equivalent. To request that the Menu Manager use
an 'SICN' resource instead of an 'ICON' resource, specify a value of $1E as the item’s
keyboard equivalent.

This code sets the icon of a menu item to a specified icon.

VAR

menu: MenuHandle;

itemIcon: Byte;

itemIcon := 5;
menu := GetMenuHandle(mWeather);
{set the icon for this item in the Weather menu}
SetItemIcon(menu, iBeachWeather, itemIcon);

Listing 3-12 shows the Rez description of three menu items, each of which contains icons.
The first menu item has an icon with resource ID 261 (5 plus 256) and is defined by a
resource type of either 'cicn' or 'ICON'. The second menu item has an icon with
resource ID 262 (6 plus 256) and is identified by either a 'cicn' resource or an 'ICON'
resource; however, in this case, the value of $1D requests the Menu Manager to reduce
the 'ICON' resource to a small icon. The third menu item has an icon with resource ID
263 (7 plus 256) and is defined by either a 'cicn' resource or an 'SICN' resource.

Listing 3-12 Specifying icons for menu items

#define mWeather 138

resource 'MENU' (mWeather, preload) {

mWeather,

textMenuProc,

C H A P T E R 3

Menu Manager

3-64 Using the Menu Manager

0b0000000000000000001011101100111,

enabled, “Weather",

 {

"Beach Weather", /*item has icon or color icon */

/* with icon number 5*/

5, nokey, nomark, plain;

"Ski Weather", /*item has reduced icon or color */

/* icon with icon number 6*/

6, $1D, nomark, plain;

"Kite-Flying Weather",/*item has small icon or */

 /* color icon with icon number 7*/

7, $1E, nomark, plain

}

};

See the chapter “Finder Interface” in this book for details on how to create icons.

Adding Items to a Menu 3
Usually you define a menu and all its items in a 'MENU' resource. Occasionally you
might need to add items to a menu after you’ve created it. After creating a menu (using
NewMenu, GetMenu, or GetNewMBar), you can add items to it using the AppendMenu,
InsertMenuItem, AppendResMenu, or InsertResMenu procedure.

You can use AppendResMenu or InsertResMenu to add items that consist of resource
names to a menu. For example, you can use the AppendResMenu procedure to add fonts
to your application’s Font menu or to add all of the desktop items from the Apple Menu
Items folder to your application’s Apple menu. These are common instances when you’ll
need to add items not already defined in a 'MENU' resource to a menu. See “Adding
Fonts to a Menu” on page 3-69 and “Adding Items to the Apple Menu” on page 3-68 for
information on adding names of resources to menus.

If you add items to your application’s Help menu, you’ll need to use AppendMenu or
InsertMenuItem to add the additional items. This section discusses how to add items
using the AppendMenu and InsertMenuItem procedures, and “Adding Items to the
Help Menu” on page 3-67 shows a specific example of adding items to the Help menu.

If you need to add items other than the names of resources to a previously created menu,
you can use the AppendMenu or InsertMenuItem procedure. You can use
AppendMenu to add items to the end of a menu; note that you can add items to only the
end of the menu when using AppendMenu. Use InsertMenuItem to add items after
any given item in a menu. When you add items to a menu using AppendMenu or
InsertMenuItem, you can specify the same characteristics for menu items that are
available to you when defining 'MENU' resources.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-65

You specify a handle to the menu record of the menu to which you want to add the item
or items, and you specify a string describing the items to add as parameters to the
AppendMenu or InsertMenuItem procedure. The string you pass to these procedures
should consist of the text and any characteristics of the menu items. You can specify a
hyphen as the menu item text to create a divider line. You can also use various
metacharacters in the text string to separate menu items and to specify certain
characteristics of the menu items. The metacharacters aren’t displayed in the menu.

Here is a list of the metacharacters you can use in the text string that you specify to the
AppendMenu or InsertMenuItem procedure:

You can specify any, all, or none of these metacharacters in the text string to define the
characteristics of a menu item. Note that the metacharacters that you specify aren’t
displayed in the menu item. (To use any of these metacharacters in the text of a menu
item, first use AppendMenu or InsertMenuItem, specifying at least one character as the
item’s text. Then use the SetMenuItemText procedure to set the item’s text to the
desired string.)

Note
If you add menu items using the AppendMenu or InsertMenuItem
procedure, you should define the text and any marks or keyboard
equivalents in resources for easier localization. �

Listing 3-13 shows a string list ('STR#') resource that stores the text of the menu items
used in the next examples.

Metacharacter Description

; or Return Separates menu items.

^ When followed by an icon number, defines the icon for the item. If the
keyboard equivalent field contains $1C, this number is interpreted as
a script code.

! When followed by a character, defines the mark for the item. If the
keyboard equivalent field contains $1B, this value is interpreted as
the menu ID of a submenu of this menu item.

< When followed by one or more of the characters B, I, U, O, and S,
defines the character style of the item to Bold, Italic, Underline,
Outline, or Shadow, respectively.

/ When followed by a character, defines the keyboard equivalent for the
item. When followed by $1B, specifies that this menu item has a
submenu. To specify that the menu item has a script code, small icon,
or reduced icon, use the SetItemCmd procedure to set the keyboard
equivalent field to $1C, $1D, or $1E, respectively.

(Defines the menu item as disabled.

C H A P T E R 3

Menu Manager

3-66 Using the Menu Manager

Listing 3-13 Rez input for text of menu items

resource 'STR#' (300, "Text for appended menu items") {

{

/*[1]*/

"Just Text";

/*[2]*/

"Pick a Color…";

/*[3]*/

"(^2!=Everything<B/E";

}

);

Here’s code that uses the AppendMenu procedure to append a menu item with no
specific characteristics other than its text to the menu identified by the menu handle in
the myMenu variable. The text for the menu item is “Just Text” as stored in the 'STR#'
resource with resource ID 300.

VAR

myMenu: MenuHandle;

itemString: Str255;

myMenu := GetMenuHandle(mLibrary);

GetIndString(itemString, 300, 1);

AppendMenu(myMenu, itemString);

To insert an item after a given menu item, use the InsertMenuItem procedure. For
example, this code inserts the menu item Pick a Color after the menu item with the item
number specified by the iRed constant. The text for the new menu item consists of the
string “Pick a Color…” as stored in the 'STR#' resource with resource ID 300.

VAR

myMenu: MenuHandle;

itemString: Str255;

myMenu := GetMenuHandle(mColors);

GetIndString(itemString, 300, 2);

InsertMenuItem(myMenu, itemString, iRed);

If you do not explicitly specify a value for an item characteristic in the text string that you
pass to AppendMenu or InsertMenuItem, the procedure assigns the default value for
that characteristic. The Menu Manager defines the default item characteristics as no icon,
no marking character, no keyboard equivalent, and plain text style. AppendMenu and
InsertMenuItem enable the added menu items unless you specify otherwise.

This code appends a menu item with the text “Everything” to the menu identified by the
menu handle in the myMenu variable. The text and other characteristics of this menu item
are stored in the 'STR#' resource shown in Listing 3-13. It also specifies that this menu

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-67

item is disabled, has an icon with resource ID 258 (2 + 256), and has the “=” character as a
marking character; the style of the text is Bold; and the menu item has a keyboard
equivalent of Command-E.

VAR

myMenu: MenuHandle;

itemString: Str255;

myMenu := GetMenuHandle(mLibrary);

GetIndString(itemString, 300, 3);

AppendMenu(myMenu, itemString);

This code appends multiple items to the Edit menu using AppendMenu:

VAR

myMenu: MenuHandle;

myMenu := GetMenuHandle(mEdit);

AppendMenu(myMenu, 'Undo/Z;-;Cut/X;Copy/C;Paste/V');

The InsertMenuItem procedure differs from AppendMenu in how it handles the given
text string when the text string specifies multiple items. The InsertMenuItem
procedure inserts the items in the reverse of their order in the text string. For example,
this code inserts menu items into the Edit menu using InsertMenuItem and is
equivalent to the previous example:

VAR

myMenu: MenuHandle;

myMenu := GetMenuHandle(mEdit);

InsertMenuItem(myMenu, 'Paste/V';Copy/C;Cut/X;-;Undo/Z',0);

Once you’ve added a menu item to a menu, you can change any of its characteristics
using Menu Manager routines, as described in “Changing the Appearance of Items in a
Menu” on page 3-57.

Adding Items to the Help Menu 3

You add items to the Help menu by using the HMGetHelpMenuHandle function and
either the AppendMenu or InsertMenuItem procedure.

The HMGetHelpMenuHandle function returns a copy of the handle to the menu record
of your application’s Help menu. Do not use the GetMenuHandle function to get a
handle to the Help menu, because GetMenuHandle returns a handle to the global Help
menu, not the Help menu that is specific to your application. Once you have a handle to
the Help menu that is specific to your application, you can add items to it using the
AppendMenu procedure or other Menu Manager routines. For example, Listing 3-14 adds
the menu item displayed in Figure 3-19 on page 3-30.

C H A P T E R 3

Menu Manager

3-68 Using the Menu Manager

Listing 3-14 Adding an item to the Help menu

PROCEDURE MyAddHelpItem;

VAR

myMenu: MenuHandle;

myErr: OSErr;

itemString: Str255;

BEGIN

myErr := HMGetHelpMenuHandle(myMenu);

IF myErr = noErr THEN

IF myMenu <> NIL THEN

BEGIN

{get the string (with index kSurfHelp) from the 'STR#' }

{ resource with resource ID kMyStrings}

GetIndString(itemString, kMyStrings, kSurfHelp);

AppendMenu(myMenu, itemString);

END;

END;

When you add items to the Help menu, the Help Manager automatically adds a divider
between the end of the standard Help menu items and your items.

Be sure to use an 'hmnu' resource and specify the kHMHelpMenuID constant as the
resource ID to provide help balloons for items you’ve added to the Help menu. (The Help
Manager automatically creates the help balloons for the Help menu title and the standard
Help menu items.) See the chapter “Help Manager” in Inside Macintosh: More Macintosh
Toolbox for specific information on the 'hmnu' resource.

The Help Manager automatically processes the event when a user chooses any of the
standard menu items in the Help menu. The Help Manager automatically enables and
disables help when the user chooses Show Balloons or Hide Balloons from the Help
menu. The setting of Balloon Help is global and affects all applications. See “Handling
the Help Menu” on page 3-81 for information on responding to the user when the user
chooses one of your appended items.

Adding Items to the Apple Menu 3

To insert the items contained in the Apple Menu Items folder into your application’s
Apple menu, use the AppendResMenu or InsertResMenu procedure and specify
'DRVR' as the resource type. Doing so causes this procedure to automatically add all
items in the Apple Menu Items folder to the specified menu.

The user can place any desktop object in the Apple Menu Items folder. When the user
places an item in this folder, the system software automatically adds it to the list of items
in the Apple menu of all open applications.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-69

After inserting the Apple menu into your application’s menu bar (by using GetNewMBar
or GetMenu and InsertMenu), your application can add items to it. Listing 3-15 shows
code that uses GetMenuHandle to get a handle to the application’s Apple menu. The
code then uses the AppendResMenu procedure, specifying that AppendResMenu should
add all desktop items in the Apple Menu Items folder to the application’s Apple menu.

Listing 3-15 Adding menu items to the Apple menu

VAR

 myMenu: MenuHandle;

 myMenu := GetMenuHandle(mApple);

IF myMenu <> NIL THEN

AppendResMenu(myMenu, 'DRVR');{add desktop items in the }

{ Apple Menu Items folder }

{ to the Apple menu}

Listing 3-16 on page 3-70 shows a complete sample that sets up an application’s menu
bar, adds items to the Apple menu, adds items to the Font menu, and then updates the
appearance of the menu bar.

Adding Fonts to a Menu 3

If your application provides a Font menu, you typically include the description of the
menu in a 'MENU' resource, include a description of your menu bar in an 'MBAR'
resource, and use GetNewMBar to create your menu bar and all menus in the menu bar.
Once you’ve created the menu, you can use AppendResMenu to add the names of all font
resources in the Fonts folder of the System Folder (or in system software versions earlier
than 7.1, in the System file) as menu items in your application’s Font menu. (You can also
use InsertResMenu to insert the fonts into your menu.)

Listing 3-16 on the next page shows how to add names of font resources in the Fonts
folder to an application’s Font menu. The AppendResMenu procedure adds all resources
of the specified type to a given menu. If you specify the resource type 'FONT' or
'FOND', the Menu Manager adds all resources of type 'FOND' and 'FONT' to the menu.
('NFNT' and 'sfnt' resources are specified through 'FOND' resources.)

The AppendResMenu and InsertResMenu procedures perform special processing for
any font resources they find that have font numbers greater than $4000. The Menu
Manager automatically sets the keyboard equivalent field of the menu item to $1C and
stores the script code in the icon field of the menu item for any such 'FOND' resource.
The Menu Manager displays a font name in its corresponding script if the script system
for that font is installed.

C H A P T E R 3

Menu Manager

3-70 Using the Menu Manager

Listing 3-16 Adding font names to a menu

PROCEDURE MyMakeAllMenus;

VAR

 menu: MenuHandle;

 menuBar: Handle;

 BEGIN

{read menus in & create new menu list}

menuBar := GetNewMBar(rMenuBar);

IF menuBar = NIL THEN

EXIT(MyMakeAllMenus);

 SetMenuBar(menuBar); {insert menus into the current menu list}

 DisposHandle(menuBar);

myMenu := GetMenuHandle(mApple);

IF myMenu <> NIL THEN {add desktop items in }

AppendResMenu(myMenu, 'DRVR'); { Apple Menu Items }

{ folder to Apple menu}

myMenu := GetMenuHandle(mFont);

IF myMenu <> NIL THEN

AppendResMenu(myMenu, 'FONT'); {add font names to the }

{ Font menu--this adds all bitmapped and TrueType fonts }

{ in the Fonts folder to the Font menu}

MyAddHelpItem; {add app-specific item to Help menu}

MyAdjustMenus; {adjust menu items}

 DrawMenuBar; {draw the menu bar}

 END;

Your application should indicate the current font to the user by placing the appropriate
mark next to the text of the menu item that lists the font name. (“Changing the Mark of
Menu Items” on page 3-61 explains how to add marks to and remove marks from menu
items; Figure 3-13 on page 3-26 and Figure 3-14 on page 3-27 show examples of typical
Font menus.)

If your application allows the user to change the font style or font size of text, you should
provide separate Size and Style menus. See “Handling a Size Menu” beginning on
page 3-82 for information on providing a Size menu in your application.

Handling User Choice of a Menu Command 3
If the user presses the mouse button while the cursor is in the menu bar, your application
should first adjust its menus (enable or disable menu items and add marks to or remove
marks from any items as appropriate to the user’s context) and then call the
MenuSelect function to allow the user to choose a menu command. The MenuSelect
function handles all user interaction until the user releases the mouse button and returns
a value as its function result that indicates which (if any) menu item the user chose.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-71

For a command with a keyboard equivalent, your application should allow the user to
choose the command by pressing the keys that correspond to the keyboard equivalent
of that menu command. If the user presses the Command key and another key, your
application should adjust its menus and then call the MenuKey function to map this
combination to a keyboard equivalent. The MenuKey function returns as its function
result a value that indicates the corresponding menu and menu item of the keyboard
equivalent.

When the user chooses a menu command, your application should perform the action
associated with that command. The MenuSelect and MenuKey functions highlight the
menu title of the menu containing the chosen menu command. After your application
performs any operation associated with the menu command chosen by the user, your
application should unhighlight the menu title by using the HiliteMenu procedure.

However, if in response to a menu command your application displays a window that
contains editable text (such as a modal dialog box), you should unhighlight the menu
title immediately so that the user can access the Edit menu or other appropriate menus.
In other words, any time the user can use a menu, make sure that the menu title is
not highlighted.

When the user chooses a menu command that involves an operation that takes a long
time, display the animated wristwatch cursor or display a status dialog box to give the
user feedback that the operation is in progress.

If you want the users of your application to be able to record their actions (such as menu
commands, text input, or any sequence of actions) for later playback, your application
should send itself Apple events whenever a user performs a significant action. To do this
for menu commands, your application typically sends itself an Apple event to perform
the action associated with the chosen menu command. For example, when a user chooses
the New command from the File menu, your application can choose to send itself a
Create Element event. Your application then creates the new document in response to this
event. For information on sending Apple events in response to menu commands, see
Inside Macintosh: Interapplication Communication.

The next sections show how your application can

� determine if the user pressed the mouse button while the cursor was in the menu bar

� adjust its menus—enabling and disabling commands according to the current state of
the document—before displaying menus or before responding to the user’s choice of a
keyboard equivalent of a command

� determine if the user chose the keyboard equivalent of a menu command

� respond to the user when the user chooses a menu command

The next sections also show how your application should respond when the user chooses
an item from the Apple or Help menu.

C H A P T E R 3

Menu Manager

3-72 Using the Menu Manager

Handling Mouse-Down Events in the Menu Bar 3

You can determine when the user has pressed the mouse button while the cursor is in the
menu bar by examining the event record for a mouse-down event. You can use the
Window Manager function FindWindow to map the mouse location at the time of the
mouse-down event to a corresponding area of the screen. If the cursor was in the menu
bar, your application should call the MenuSelect function, allowing the user to choose a
menu command.

Listing 3-17 shows an application-defined procedure, DoEvent, that determines whether
a mouse-down event occurred and, if so, calls another application-defined procedure to
handle the mouse-down event. (For a complete discussion of how to handle events, see
the “Event Manager” chapter in this book.)

Listing 3-17 Determining whether a mouse-down event occurred

PROCEDURE DoEvent (event: EventRecord);

BEGIN

CASE event.what OF

mouseDown: {handle mouse-down event}

DoMouseDown(event);

{handle other events appropriately}

END; {of CASE}

END;

Listing 3-18 shows an application-defined procedure, DoMouseDown, that handles
mouse-down events. The DoMouseDown procedure determines where the cursor was
when the mouse button was pressed and then responds appropriately.

Listing 3-18 Determining when the cursor is in the menu bar

PROCEDURE DoMouseDown (event: EventRecord);

VAR

part: Integer;

thisWindow: WindowPtr;

BEGIN

part := FindWindow(event.where, thisWindow);

CASE part OF

inMenuBar:{mouse down in menu bar, respond appropriately}

BEGIN

{adjust marks and enabled state of menu items}

MyAdjustMenus;

{let user choose a menu command if desired}

DoMenuCommand(MenuSelect(event.where));

END;

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-73

{handle other mouse-down events appropriately}

END; {of CASE}

END;

You can use the FindWindow function to map the mouse location at the time the
user pressed the mouse button to general areas of the screen. If the mouse location
is in the menu bar, the FindWindow function returns the constant inMenuBar. In Listing
3-18, if the mouse location associated with the mouse-down event is in the
menu bar, the DoMouseDown procedure first calls another application-defined procedure,
MyAdjustMenus, to adjust the menus. Listing 3-19 shows the MyAdjustMenus
procedure.

The DoMouseDown procedure then calls an application-defined procedure,
DoMenuCommand. The DoMouseDown procedure passes as a parameter to
the DoMenuCommand procedure the value returned from the MenuSelect function.

The MenuSelect function displays menus and handles all user interaction until the user
releases the mouse button. The MenuSelect function returns a long integer indicating
whether the user chose a menu command, and if so, it indicates which menu and which
command the user chose.

Listing 3-24 on page 3-79 shows the DoMenuCommand procedure.

Adjusting the Menus of an Application 3

Your application should always adjust its menus before calling MenuSelect or
MenuKey. For example, you should enable and disable any menu items as necessary
and add checkmarks or dashes to items that are attributes. When you adjust your
application’s menus, you should enable and disable menu items according to the type
of window that is in the front. For example, when a document window is the frontmost
window, you should enable items as appropriate for that document window. When
a modeless dialog box or modal dialog box is the frontmost window, enable those
items as appropriate to that particular dialog box. Listing 3-19 shows an application-
defined routine, MyAdjustMenus, that adjusts the menus of the SurfWriter
application appropriately.

The MyAdjustMenus procedure first determines what kind of window is in front
and then adjusts the application’s menus appropriately. The application-defined
MyGetWindowType procedure returns a value that indicates whether the window
is a document window, a dialog window, or a window belonging to a desk accessory.
It also returns the constant kNil if there isn’t a front window. (See the chapter
“Window Manager” in this book for a listing of the MyGetWindowType procedure.)
The MyAdjustMenus procedure calls other application-defined routines to adjust the
menus as appropriate for the given window type.

C H A P T E R 3

Menu Manager

3-74 Using the Menu Manager

Listing 3-19 Adjusting an application’s menus

PROCEDURE MyAdjustMenus;

VAR

window: WindowPtr;

windowType: Integer;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN {document window is in front, adjust items appropriately}

MyAdjustFileMenuForDocWindow;

MyAdjustEditMenuForDocWindow;

{adjust other menus as needed}

END; {of adjusting menus for a document window}

kMyDialogWindow:

{adjust menus accordingly for any dialog box}

MyAdjustMenusForDialogs;

kDAWindow:{adjust menus accordingly for a DA window}

MyAdjustMenusForDA;

kNil:{adjust menus accordingly when there isn't a front window}

MyAdjustMenusNoWindows;

END; {of CASE}

DrawMenuBar;

END;

Listing 3-20 shows the application-defined procedure
MyAdjustFileMenuForDocWindow. This procedure enables and disables the File menu
for the application’s document window, according to the state of the document. For
example, this application always allows the user to create a new document or open
a file, so the code enables the New and Open menu items. The code also enables the
Close, Save As, Page Setup, Print, and Quit menu items. If the user has modified the
file since last saving it, the code enables the Save command; otherwise, it disables the
Save command.

Listing 3-20 Adjusting the File menu for a document window

PROCEDURE MyAdjustFileMenuForDocWindow;

VAR

window: WindowPtr;

menu: MenuHandle;

myData: MyDocRecHnd;

BEGIN

window := FrontWindow;

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-75

menu := GetMenuHandle(mFile); {get a handle to the File menu}

IF menu = NIL THEN {add your own error handling}

EXIT (MyAdjustFileMenuForDocWindow);

EnableItem(menu, iNew);

EnableItem(menu, iOpen);

EnableItem(menu, iClose);

myData := MyDocRecHnd(GetWRefCon(window));

IF myData^^.windowDirty THEN

EnableItem(menu, iSave)

ELSE

DisableItem(menu, iSave);

EnableItem(menu, iSaveAs);

EnableItem(menu, iPageSetup);

EnableItem(menu, iPrint);

EnableItem(menu, iQuit);

END;

Listing 3-21 shows the application-defined MyAdjustEditMenuForDocWindow
procedure.

Listing 3-21 Adjusting the Edit menu for a document window

PROCEDURE MyAdjustEditMenuForDocWindow;

VAR

window: WindowPtr;

menu: MenuHandle;

selection, undo: Boolean;

isSubscriber: Boolean;

undoText: Str255;

offset: LongInt;

BEGIN

window := FrontWindow;

menu := GetMenuHandle(mEdit); {get a handle to the Edit menu}

IF menu = NIL THEN {add your own error handling}

EXIT (MyAdjustEditMenuForDocWindow);

undo := MyIsLastActionUndoable(undoText);

IF undo THEN {if action can be undone}

BEGIN

SetMenuItemText(menu, iUndo, undoText);

EnableItem(menu, iUndo);

END

C H A P T E R 3

Menu Manager

3-76 Using the Menu Manager

ELSE {if action can't be undone}

BEGIN

SetMenuItemText(menu, iUndo, gCantUndo);

DisableItem(menu, iUndo);

END;

selection := MySelection(window);

IF selection THEN

BEGIN {enable editing items if there's a selection}

EnableItem(menu, iCut);

EnableItem(menu, iCopy);

EnableItem(menu, iCreatePublisher);

END

ELSE

BEGIN {disable editing items if there isn't a selection}

DisableItem(menu, iCut);

DisableItem(menu, iCopy);

DisableItem(menu, iCreatePublisher);

END;

IF GetScrap(NIL, 'TEXT', offset) > 0 THEN

EnableItem(menu, iPaste) {enable if something to paste}

ELSE

DisableItem(menu, iPaste); {disable if nothing to paste}

EnableItem(menu, iSelectAll);

EnableItem(menu, iSubscribeTo);

IF MySelectionContainsSubscriberOrPublisher(isSubcriber) THEN

BEGIN {selection contains a single subscriber or publisher}

IF isSubscriber THEN {selection contains a subscriber}

SetMenuItemText(menu, iPubSubOptions, gSubOptText)

ELSE {selection contains a publisher}

SetMenuItemText(menu, iPubSubOptions, gPubOptText);

EnableItem(menu, iPubSubOptions);

END

ELSE {selection contains either no subscribers or publishers }

 { or contains at least one subscriber and one publisher}

DisableItem(menu, iPubSubOptions);

IF (gPubCount > 0) OR (gSubCount > 0) THEN

EnableItem(menu, iShowHideBorders)

ELSE

DisableItem(menu, iShowHideBorders);

END;

The procedure in Listing 3-21 adjusts the items in the Edit menu as appropriate for a
document window of the application. The code enables the Undo command if the
application can undo the last command, enables the Cut and Copy commands if there’s a
selection that can be cut or copied, enables the Paste command if there’s text data in the

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-77

scrap, and enables the menu items relating to publishers and subscribers appropriately,
according to whether the current selection contains a publisher or subscriber. The
application-defined MySelectionContainsSubscriberOrPublisher function
returns TRUE if the current selection contains a single subscriber or a single publisher and
returns FALSE otherwise. If the MySelectionContainsSubscriberOrPublisher
function returns TRUE, the code sets the text for the Publisher Options (or Subscriber
Options) command and enables the menu item. If the function returns FALSE, the code
disables the Publisher Options (or Subscriber Options) command.

Determining if the User Chose a Keyboard Equivalent 3

Keyboard equivalents of commands allow the user to invoke a menu command from the
keyboard. You can determine if the user chose the keyboard equivalent of a menu
command by examining the event record for a key-down event. If the user pressed the
Command key in combination with another 1-byte character, you can determine if this
combination maps to a Command-key equivalent by using the MenuKey function.

If your application supports keyboard equivalents that use other modifier keys in
addition to the Command key, your application should examine the modifiers
field and take any appropriate action; depending on the modifier keys you use,
your application may or may not be able to use MenuKey to map the key to the
menu command.

Listing 3-22 shows an application-defined procedure, DoEvent, that determines whether
a key-down event occurred and, if so, calls an application-defined routine to handle the
key-down event.

Listing 3-22 Determining when a key is pressed

PROCEDURE DoEvent (event: EventRecord);

BEGIN

CASE event.what OF

keyDown, autoKey: {handle keyboard events}

DoKeyDown(event);

{handle other events appropriately}

END; {of CASE}

END;

If your application determines that the user pressed a key, you need to determine whether
the user chose the keyboard equivalent of a menu command. You can do this by
examining the modifiers field of the event record describing the key-down event. If
the Command key was also pressed, then your application should call the MenuKey
function. The MenuKey function scans the current menu list for a menu item that has a
matching keyboard equivalent and returns the menu and menu item, if any. Although you
should not define the same keyboard equivalent for more than one command, the
MenuKey function scans the menus from right to left, scanning the items from top to
bottom, and returns the first matching keyboard equivalent that it finds.

C H A P T E R 3

Menu Manager

3-78 Using the Menu Manager

If your application uses other keyboard equivalents in addition to Command-key
equivalents, you can examine the state of the modifier keys and use the Event Manager
function KeyTranslate, if necessary, to help map the keyboard equivalent to a
particular menu item. See the discussion of 'KCHR' resources in Inside Macintosh: Text for
information on how various keyboard combinations map to specific character codes.

Listing 3-23 shows an application’s DoKeyDown procedure that handles key-down events
and determines if a keyboard equivalent was pressed.

Listing 3-23 Checking a key-down event for a keyboard equivalent

PROCEDURE DoKeyDown (event: EventRecord);

VAR

key: Char;

BEGIN

key := CHR(BAnd(event.message, charCodeMask));

IF BAnd(event.modifiers, cmdKey) <> 0 THEN

BEGIN {Command key down}

IF event.what = keyDown THEN

BEGIN {first enable/disable/check }

MyAdjustMenus; { menu items properly}

DoMenuCommand(MenuKey(key));{handle the menu command}

END;

END

ELSE

MyHandleKeyDown(event);

END;

Listing 3-23 extracts the pressed key from the message field of the event record and
then examines the modifiers field to determine if the Command key was also pressed.
If so, the application first adjusts its menus and then calls an application-defined
procedure, DoMenuCommand. The DoKeyDown procedure passes as a parameter to
the DoMenuCommand procedure the value returned from the MenuKey function.

Listing 3-24 shows the DoMenuCommand procedure.

Responding When the User Chooses a Menu Item 3
Your application can use the MenuSelect function to determine when the user chooses a
menu command, and your application can use the MenuKey function to determine when
the user presses the keyboard equivalent for a menu command. Both MenuSelect and
MenuKey return a long integer value that indicates which menu and menu item the user
chose.

The MenuSelect and MenuKey functions return the menu ID of the menu in the high
word and the menu item number in the low word of their function result. If the user did
not choose a menu command or if the user pressed a keyboard combination that does

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-79

not map to any keyboard equivalent in your application’s menus, the functions return 0
in the high word and the value of the low word is undefined. The MenuSelect function
also returns 0 in the high word when the user selects an item in the Application or
Keyboard menu. The MenuSelect function (and MenuKey function, if the command has
a keyboard equivalent) returns the kHMHelpMenuID constant in the high word and the
menu item in the low word when the user selects an item that your application appended
to the Help menu.

Listing 3-24 shows an application-defined procedure, DoMenuCommand. This procedure
takes the appropriate action based on which menu command the user chose.

The DoMenuCommand procedure is called by the application after the application
determines that either the user pressed the mouse button while the cursor was in the
menu bar (in which case the application calls MenuSelect to allow the user to choose
a command) or the user pressed the Command key and another key (in which case the
application calls the MenuKey function). In either case, the application passes the
function result returned by MenuSelect or MenuKey as a parameter to the
DoMenuCommand procedure.

Listing 3-24 Responding to the user’s choice of a menu command

PROCEDURE DoMenuCommand (menuResult: LongInt);

VAR

menuID, menuItem: Integer;

BEGIN

menuID := HiWord(menuResult); {get menu ID of menu}

menuItem := LoWord(menuResult); {get menu item number}

CASE menuID OF

 mApple:

MyHandleAppleCommand(menuItem);

mFile:

 MyHandleFileCommand(menuItem);

 mEdit:

MyHandleEditCommand(menuItem);

 mFont:

MyHandleFontCommand(menuItem);

 mSize:

MyHandleSizeCommand(menuItem);

 kHMHelpMenuID:

MyHandleHelpCommand(menuItem);

 mOutline:

MyHandleOutlineCommand(menuItem);

 mSubMenu: {user chose item from submenu}

MyHandleSubLabelStyleCommand(menuItem);

END; {end of CASE menuID}

HiliteMenu(0); {unhighlight what MenuSelect or MenuKey hilited}

END;

C H A P T E R 3

Menu Manager

3-80 Using the Menu Manager

The DoMenuCommand procedure calls other application-defined routines to perform the
requested action. After performing the action associated with the chosen menu item, your
application should use the HiliteMenu procedure to unhighlight the menu title to
indicate that the requested action is complete.

Handling the Apple Menu 3

When the user chooses an item from the Apple menu, the MenuSelect function returns
the menu ID of your application’s Apple menu in the high word and returns the chosen
menu item in the low word of its function result.

If your application provides an About command as the first menu item in the Apple
menu and the user chose this item, you should display your application’s About box.
Otherwise your application should use the GetMenuItemText procedure to get the
menu item text and then call the OpenDeskAcc function, passing the text of the chosen
menu item as a parameter.

Listing 3-25 shows an application-defined procedure, MyHandleAppleCommand, that
the application calls in response to the user’s choice of an item from the Apple menu.

Listing 3-25 Responding to the user’s choice of an item from the Apple menu

PROCEDURE MyHandleAppleCommand (menuItem: Integer);

VAR

itemName: Str255;

daRefNum: Integer;

BEGIN

CASE menuItem OF

iAbout: {bring up alert for About}

 DisplayMyAboutBox;

OTHERWISE

 BEGIN {all non-About items in this menu are desktop items, }

{ for example, DA's, other apps, documents, etc.}

GetMenuItemText(GetMenuHandle(mApple), menuItem,

 itemName);

daRefNum := OpenDeskAcc(itemName);

 END;

 END; {of CASE}

END;

When the user chooses an item other than your application’s About command from
the Apple menu, your application should call the OpenDeskAcc function. The
OpenDeskAcc function prepares to open the desktop object chosen by the user; for
example, if the user chose a document created by the TeachText application, the
OpenDeskAcc function schedules the TeachText application for execution (or prepares to
open it if it isn’t already open) and returns to your application. On your application’s
next call to WaitNextEvent, your application receives a suspend event, and then

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-81

the Process Manager makes TeachText the foreground application and instructs TeachText
to open the chosen document.

Handling the Help Menu 3

Both the MenuSelect and MenuKey functions return the kHMHelpMenuID constant
(–16490) in the high word when the user chooses an appended item from the Help
menu. The item number of the appended menu item is returned in the low word of the
function result.

The DoMenuCommand procedure shown in Listing 3-24 determines which menu
command was chosen by the user. If the user chose a command from the Help menu,
the DoMenuCommand procedure calls the application-defined procedure
MyHandleHelpCommand. Listing 3-26 shows the application-defined procedure
MyHandleHelpCommand. This procedure illustrates how the SurfWriter application
responds to the user’s choice of an item from the application’s Help menu. Note that
you should use the HMGetHelpMenuHandle function, not the GetMenuHandle
function, to get a handle to your application’s Help menu.

Listing 3-26 Responding to the user’s choice of a command from the Help menu

PROCEDURE MyHandleHelpCommand (menuItem: Integer);

VAR

myHelpMenuHdl: MenuHandle;

origHelpItems, numItems: Integer;

myErr: OSErr;

BEGIN

{get handle to your application's Help menu}

myErr := HMGetHelpMenuHandle(myHelpMenuHdl);

IF myErr <> noErr THEN

EXIT(MyHandleHelpCommand);

{count the number of items in the Help menu}

numItems := CountMItems(myHelpMenuHdl);

origHelpItems := numItems - kNumMyHelpItems;

IF menuItem > origHelpItems THEN

BEGIN {user chose an item added by this application}

{adjust this application's global variables that hold item }

{ numbers of the menu items that this application appended}

gMyHelpItem1 := origHelpItems +1;

gMyHelpItem2 := origHelpItems +2;

MyHelp(menuItem);

END;

END;

Apple reserves the right to change the number of standard items in the Help menu. To
determine the number of items in the Help menu, call the CountMItems function.

C H A P T E R 3

Menu Manager

3-82 Using the Menu Manager

Handling a Size Menu 3

Your application can provide a Size menu to let the user choose various sizes of a font.
Your Size menu should also provide the user with a method for specifying a size that
isn’t currently listed in the menu. For example, you can choose to provide an Other
command that displays a dialog box allowing the user to choose a different font size. If
the user chooses a font size not already in the menu, add a checkmark to the Other menu
command and add the chosen size in parentheses to the text of the Other command.

Your application should outline font sizes to indicate which sizes are directly provided by
the current font. For bitmapped fonts, outline only those sizes that actually exist in the
Fonts folder. For TrueType fonts, outline all sizes that the TrueType font supports.

Your application should indicate the current font size to the user by placing a checkmark
next to the text of the menu item that lists the current font size. If the current selection
contains more than one font size, place a dash next to the name of each font size that the
selection contains. (“Changing the Mark of Menu Items” on page 3-61 explains how to
add marks to and remove marks from menu items.)

Figure 3-35 shows a Size menu as it appears after the user chooses a new font size of 31
by using the Other command. In Figure 3-35 the sizes 9, 10, 12, 18, 24, and 36 are the
standard sizes provided by the application. Your application should place a checkmark
next to the Other command to indicate that the current font size is a size other than a
standard size. If the selection contains only one nonstandard size, include the size of the
font in parentheses following the text Other. In Figure 3-35 the current selection contains
a nonstandard size of 31, so the application places the checkmark next to the Other
command and includes 31 in parentheses following the Other text. If the selection
contains multiple nonstandard sizes, include the text Mixed in parentheses following
the word Other. If the selection contains one or more standard sizes and only one
nonstandard size, place a dash next to each standard size that the selection contains
and place a dash next to the Other command with the nonstandard size included in
paretheses in the text of the Other command.

Figure 3-35 A Size menu with user-specified size added

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-83

When the user chooses the Other command, you should display the current font size in a
dialog box and allow the user to choose a new size. Figure 3-16 on page 3-28 shows a
sample dialog box an application might display in response to the user’s choice of the
Other command.

You should always specify the text of the Other command in the plain font style (as
shown in Figure 3-35) and never outlined, regardless of whether the current font is a
TrueType font that supports that size or a bitmapped font that exists at that size in the
Fonts folder.

Listing 3-27 shows an application-defined procedure that handles the user’s choice of an
item in the Size menu shown in Figure 3-35.

Listing 3-27 Handling the Size menu

PROCEDURE MyHandleSizeCommand (menuItem: Integer);

VAR

numItems: Integer;

addItem: Boolean;

itemString: Str255;

itemStyle: Style;

sizeChosen: LongInt;

BEGIN

numItems := CountMItems(GetMenuHandle(mSize));

IF menuItem = numItems THEN

BEGIN {user chose Other command}

{display a dialog box to allow the user to choose any }

{ size. If the user-specified size is not in the menu, }

{ add a checkmark to the Other command and add the }

{ new font size to the text of the Other command}

MyDisplayOtherBox(sizeChosen);

END

ELSE

BEGIN

IF (menuItem = (numItems -2)) OR

(menuItem = (numItems -3)) THEN

DoMakeLargerOrSmaller(menuItem, sizeChosen)

ELSE

BEGIN {user chose size displayed in the menu}

{remove checkmark or dashes from menu items showing }

{ previous size}

MyRemoveMarksFromSizeMenu;

{add checkmark to menu item of new current size}

CheckItem(GetMenuHandle(mSize), menuItem, TRUE);

sizeChosen := MyItemToSize(menuItem);

END;

END;

C H A P T E R 3

Menu Manager

3-84 Using the Menu Manager

{update the document's state or the user's selection as needed}

MyResizeSelection(sizeChosen);

END;

If the user chooses an item from the Size menu, the MyHandleSizeCommand procedure
first counts the current number of items in the menu. If the user chooses the last item in
the menu (the Other command), the procedure displays a dialog box like the one shown
in Figure 3-16 on page 3-28 to let the user choose a size other than the ones currently
shown in the menu. The application-defined function MyDisplayOtherBox also adds a
checkmark to the Other command if the user chose a new size, adds the new size to the
text of the Other command, and returns the chosen size in the sizeChosen variable.

If the user chose the Larger or Smaller command from the Size menu, the code calls an
application-defined routine, DoMakeLargerOrSmaller, to perform the requested
action. The DoMakeLargerOrSmaller procedure also adds a checkmark and adds the
new size to the text of the Other command if the new size does not match any size in
the menu. The procedure returns the chosen size in the sizeChosen variable.

If the user chose any size currently displayed in the menu, the MyHandleSizeCommand
procedure adjusts the marking character of the menu items appropriately. The code
removes the checkmark from the previous menu item and adds a checkmark to the menu
item representing the new size chosen by the user. The code uses an application-defined
function, MyItemToSize, to map the item number of the chosen menu item to a given
size and returns this size in the sizeChosen variable.

The code then uses the application-defined procedure MyResizeSelection to update
the document’s state and resize the user’s selection, if any, to the chosen size.

Accessing Menus From a Dialog Box 3
In System 7, the Menu Manager or your application can allow the user to access selected
menus in the menu bar while interacting with an alert box or a modal dialog box. This
allows users to make menu selections while your application is displaying an alert box or
a modal dialog box. For example, a user might want to turn on Balloon Help for
assistance in figuring out how to respond to an alert box. Similarly, if the modal dialog
box contains several editable text fields, the user might find it simpler to copy text
from one text field and paste it into another. Figure 3-36 shows a modal dialog box
with an editable text field. Note that only the Edit and Help menus are enabled and all
other menus are disabled. This gives the user access to editing commands and also to
Balloon Help.

Note
In System 6, user access to menus in the menu bar is prohibited from an
alert box or a modal dialog box unless your application specifically
allows it. For example, in System 6, your application must provide a
filter procedure to replace the standard filter procedure if you want to
support the keyboard equivalents of the standard Edit menu commands
in a modal dialog box. In System 7, you can let the Menu Manager enable
these commands for you. �

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-85

Figure 3-36 Menu access from a modal dialog box

When your application displays a modeless or movable modal dialog box, your
application should adjust its menus as appropriate for that dialog box. For example,
when a movable modal dialog box is the frontmost window, your application should
enable the Apple menu, enable the Edit menu if your dialog box contains an editable text
item, enable or disable any other menus as needed, and disable any items it added to the
Help menu if the user can’t perform those actions while the dialog box is displayed.

When your application displays an alert box, system software automatically disables all
of your application’s menus except for the Help menu (in which all items are disabled
except for the Show Balloons/Hide Balloons command).

When your application displays a modal dialog box, your application should also enable
and disable its menus as appropriate. For example, you should enable the Edit menu if
your dialog box contains an editable text item and disable any items it added to the Help
menu if the user can’t perform those actions while the dialog box is displayed. If your
application handles access to the menu bar from a modal dialog box, it should disable the
Apple menu or the first item in the Apple menu.

If your application does not specifically handle access to the menu bar from an alert box
or a modal dialog box, in some cases the Menu Manager automatically disables the
appropriate menus for you, as described in the following paragraphs.

When your application displays an alert box or a modal dialog box (that is, a window of
type dBoxProc), the Menu Manager (in conjunction with the Dialog Manager) always
appropriately adjusts the system-handled menus and performs these actions:

1. Disables all menu items in the Help menu except the Show Balloons (or Hide Balloons)
command, which it enables.

2. Disables all menu items in the Application menu.

3. Enables the Keyboard menu if it appears in the menu bar, except for the About
Keyboards command, which it disables.

C H A P T E R 3

Menu Manager

3-86 Using the Menu Manager

In addition, if your application then calls the ModalDialog procedure, the Menu
Manager (in conjunction with the Dialog Manager) performs two other actions:

4. Disables all of your application’s menus.

5. Enables commands with the standard keyboard equivalents Command-X,
Command-C, and Command-V if the modal dialog box contains a visible and active
editable text field. The user can then use either the menu commands or their keyboard
equivalents to cut, copy, and paste text. (The menu item having keyboard equivalent
Command-X must be one of the first five menu items.)

When the user dismisses the modal dialog box, the Menu Manager restores all menus to
the state they were in prior to the appearance of the modal dialog box.

In some cases actions 4 and 5 do not occur when you call ModalDialog. The enabling
and disabling described in steps 4 and 5 do not occur if any of these conditions is true:

� Your application does not have an Apple menu.

� Your application has an Apple menu, but the menu is disabled when the modal dialog
box is displayed.

� Your application has an Apple menu, but the first item in that menu is disabled when
the dialog box is displayed.

Note
If your application already handles access to the menu bar from a
modal dialog box and you do not want the automatic menu enabling and
disabling provided by System 7 to occur, you should ensure that one or
more of those conditions is true when you display a modal
dialog box. �

When your application displays alert boxes or modal dialog boxes with no editable
text items, your application can allow system software to handle menu bar access. In
all other cases, your application should handle its own menu bar access.

System software always leaves the Help, Keyboard, and Application menus and their
commands available when you display movable modal dialog boxes and modeless
dialog boxes. For these types of dialog boxes, you must disable menus as appropriate and
handle menu bar access as appropriate given their contents.

When your application displays a movable modal dialog box (a window of type
movableDBoxProc), your application does not need to adjust the system-handled
menus but should disable all its other menus except the Apple menu and—if your
movable modal dialog box contains editable text items—the Edit menu. Leave the
Apple menu enabled so that the user can use it to open other applications, and leave the
Edit menu enabled so that the user can use the Cut, Copy, and Paste commands within
the editable text item. (You can also leave your Undo and Clear commands enabled;
otherwise, disable all other commands in the Edit menu.)

When your application removes a movable modal dialog box, modeless dialog box, or
modal dialog box with editable text items, your application must restore to their previous
states any menus that it disabled prior to displaying the dialog box. See the chapter
“Dialog Manager” in this book for additional information on dialog boxes.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-87

Writing Your Own Menu Definition Procedure 3
The Menu Manager uses the menu definition procedure and menu bar definition
function to display and perform basic operations on menus and the menu bar. The
menu definition procedure performs all the drawing of menu items within a menu
and performs all the actions that might differ between one type of menu and another. The
menu bar definition function draws the menu bar and performs most of the
drawing activities related to the display of menus when the user moves the cursor
between menus.

Apple provides a standard menu bar definition function, stored as a resource in the
System file. The standard menu bar definition procedure is the 'MBDF' resource with
resource ID 0. When you create your menus and menu bar, by default the Menu Manager
uses the standard menu bar definition function to manage them. Although the Menu
Manager lets you provide your own menu bar definition function, Apple recommends
that you always use the standard menu bar definition function.

The Menu Manager uses the standard menu bar definition function to

� draw the menu bar

� clear the menu bar

� determine if the cursor is in the menu bar or any currently displayed menus

� calculate the left edges of menu titles

� highlight a menu title

� invert the entire menu bar

� erase the background color of a menu and draw the menu’s structure (shadow)

� save or restore the bits behind a menu

Apple provides a standard menu definition procedure, stored as a resource in the System
file. The standard menu definition procedure is the 'MDEF' resource with resource ID 0.
The standard menu definition procedure handles three types of menus: pull-down,
pop-up, and hierarchical; it also implements scrolling in menus. When you define your
menus, you specify the menu definition procedure that the Menu Manager should use
when managing them. You’ll usually want to use the standard definition procedure for
your application. However, if you need a feature not provided by the standard menu
definition procedure (for example, if you want to include more graphics in your menus),
you can write your own menu definition procedure.

The Menu Manager uses the standard menu definition procedure to

� calculate a menu’s dimensions

� draw the menu items in a menu

� highlight and unhighlight menu items as the user moves the cursor between them

� determine which item the user chose from a menu

C H A P T E R 3

Menu Manager

3-88 Using the Menu Manager

If you provide your own menu definition procedure, it should also perform these tasks.
Your menu definition procedure should also support scrolling in menus and color in
menus and provide support for Balloon Help.

If you provide your own menu definition procedure, store it in a resource of type 'MDEF'
and include its resource ID in the description of each menu that uses your own menu
definition procedure. If you create a menu using GetMenu (or GetNewMBar), the Menu
Manager reads the menu definition procedure into memory and stores a handle to it in
the menuProc field of the menu’s menu record.

When your application uses GetMenu (or GetNewMBar) to create a new menu that uses
your menu definition procedure, the Menu Manager creates a menu record for the menu
and fills in the menuID, menuProc, enableFlags, and menuData fields according to
the menu’s resource description. The Menu Manager also reads in the data for each menu
item and stores it as variable data at the end of the menu record. The menu definition
procedure is responsible for interpreting the contents of the data. For example, the
standard menu definition procedure interprets this data as described in “The Menu
Resource” beginning on page 3-151. After reading in a resource description of a menu,
the Menu Manager requests the menu definition procedure to calculate the size of
the menu and to store these values in the menuWidth and menuHeight fields of the
menu’s menu record.

Note that when drawing a menu, the Menu Manager first requests your menu definition
procedure to calculate the dimensions (the menu rectangle) of the menu. Next the Menu
Manager requests the menu bar definition function to draw the structure (shadow) of the
menu and erase the contents of the menu to its background color. Then the Menu
Manager requests your menu definition procedure to draw the items in the menu. As the
user moves the cursor into and out of menu items, the Menu Manager requests your
menu definition procedure to highlight and unhighlight items appropriately. Your menu
definition procedure should also determine when to add scrolling indicators to a menu
and scroll the menu appropriately when the cursor is in a scrolling item. Your menu
definition is responsible for showing and removing any help balloons associated with a
menu item.

When the Menu Manager requests your menu definition procedure to perform an action
on a menu, it provides your procedure with a handle to its menu record. This allows your
procedure to access the data in the menu record and to use any data in the variable data
portion of the menu record to appropriately handle the menu items. However, your
menu definition procedure should not assume that the A5 register is properly set up, so
your procedure can’t refer to any of the QuickDraw global variables.

The Menu Manager passes a value to your menu definition procedure in the message
parameter that indicates the action your menu definition procedure should perform. The
Menu Manager always passes a handle to the menu record of the menu that the
operation should affect in the parameter theMenu. Depending on the requested action,
the Menu Manager passes additional information in other parameters.

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-89

Listing 3-28 shows how you might declare a menu definition procedure.

Listing 3-28 A sample menu definition procedure

PROCEDURE MyMDEF (message: Integer; theMenu: MenuHandle;

VAR menuRect: Rect; hitPt: Point;

VAR whichItem: Integer);

{any support routines used by the main program of your MDEF }

{ go here}

BEGIN

CASE message OF

mDrawMsg:

MyDrawMenu(theMenu, menuRect);

mChooseMsg:

MyChooseItem(theMenu, menuRect, hitPt, whichItem);

mSizeMsg:

MySizeTheMenu(theMenu);

mPopUpMsg:

MyCalcMenuRectForOpenPopUpBox(theMenu, hitPt, menuRect);

END;

END;

The next sections describe in more detail how your menu definition procedure should
respond when it receives the mDrawMsg, mChooseMsg, or mSizeMsg constant in the
message parameter. For a complete description of the menu definition procedure and
the parameters passed to your procedure by the Menu Manager, see “The Menu
Definition Procedure” beginning on page 3-148.

Calculating the Dimensions of a Menu 3

Whenever the Menu Manager creates a menu or needs to calculate the size of a menu that
is managed by your menu definition procedure, the Menu Manager calls your procedure
and specifies the mSizeMsg constant in the message parameter, requesting that your
procedure calculate the size of the menu.

Listing 3-29 on page 3-90 shows an application-defined support routine,
MySizeTheMenu, used by the application’s menu definition procedure. After
calculating the height and width of the menu’s rectangle, the menu definition
procedure stores the values in the menuWidth and menuHeight fields of the
menu’s menu record.

C H A P T E R 3

Menu Manager

3-90 Using the Menu Manager

Listing 3-29 Calculating the size of a menu

PROCEDURE MySizeTheMenu(theMenu: MenuHandle);

VAR

itemDataPtr: Ptr;

numItems: Integer;

BEGIN

HLock(Handle(theMenu));

WITH theMenu^^ DO

BEGIN {menuData points to title of menu and additional item data}

itemDataPtr := @menuData;

{skip past the menu title}

itemDataPtr := POINTER(ORD4(itemDataPtr)+ itemDataPtr^ +1);

END;

numItems := CountMItems(theMenu);

{calculate the height of the menu--each item's height can vary }

{ according to whether the item has an icon or a script code defined. }

{ The height of the menu should not exceed the height of the }

{ screen minus the menu bar height. }

{ Store the height in the menu's menu record}

theMenu^^.menuHeight := MyCalcMenuHeight(itemDataPtr, numItems);

{calculate the width of the menu (the width of the longest item): }

{ for each item calculate the width as }

{ width = iconWidth + markWidth + textWidth + subMenuWidth }

{ + cmdKeyComboWidth }

{ If an item doesn't have a characteristic, use 0 as the width of }

{ that characteristic. }

{ To calculate the width of item's text, must consider script code and }

{ width of the font. }

{ The width of the menu should not exceed the right or left }

{ boundaries of the screen. }

{ Store the width in the menu's menu record}

theMenu^^.menuWidth := MyCalcMenuWidth(itemDataPtr, numItems);

HUnLock(Handle(theMenu));

END;

Drawing Menu Items in a Menu 3

Whenever the user presses the mouse button while the cursor is in the menu title of a
menu managed by your menu definition procedure, the Menu Manager calls the menu
bar definition function to highlight the menu title, draw the structure of the menu, and
erase the contents of the menu to its background color. The Menu Manager then calls
your menu definition procedure and specifies the mDrawMsg constant in the message

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-91

parameter, requesting that your procedure draw the menu items. When your menu
definition procedure receives this constant, it should draw the menu items of the menu
specified by the parameter theMenu inside the rectangle specified by the menuRect
parameter. The Menu Manager sets the current graphics port to the Window Manager
port before calling your menu definition procedure. Your menu definition procedure can
determine how to draw the menu items by examining the data in the menu record.

If your menu definition procedure supports color menus, your procedure should
check the application’s menu color information table for the colors to use to draw
each item. If the application’s menu color information table contains a color entry for
an item, draw the item using that color. If the table does not contain an item entry for
a particular item, use the default item color defined in the menu title entry. If a menu title
entry doesn’t exist, use the default item color defined in the menu bar entry. If the menu
bar entry doesn’t exist, draw the item using black on white.

If your menu definition procedure supports scrolling menus, it should insert scrolling
indicators if necessary when drawing the menu items.

Listing 3-30 shows an application-defined support routine, MyDrawMenu, used by the
application’s menu definition procedure. The MyDrawMenu procedure draws each item
in the menu, according to the item’s defined characteristics. Disabled items should be
drawn using the colors returned by the GetGray function. Pass the RGB color of the
item’s background in the bkgnd parameter to the GetGray function; pass the RGB color
of the item’s enabled text in the fgnd parameter. The GetGray function returns TRUE if
there’s an available color between the two specified colors and returns in the fgnd
parameter the color in which you should draw the item.

Listing 3-30 Drawing menu items

PROCEDURE MyDrawMenu(theMenu: MenuHandle; menuRect: Rect);

VAR

numItems: Integer;

itemRect: Rect;

item: Integer;

currentOffset: LongInt;

nextOffset: LongInt;

BEGIN

numItems := CountMItems(theMenu);

currentOffset := 0;

nextOffset := 0;

FOR item := 1 TO numItems DO

BEGIN

{calculate the enclosing rectangle for this item}

itemRect := MyCalcItemRect(item, menuRect, currentOffset, nextOffset);

{draw the item--index into the item-specific data from the menu record }

{ to get the characteristics of this menu item and draw the item }

C H A P T E R 3

Menu Manager

3-92 Using the Menu Manager

{ according to its defined characteristics. For example, draw the item's }

{ text in its defined style & font of its defined script, draw any icon, }

{ mark, submenu indication, or keyboard equivalent, and draw each }

{ characteristic of the item according to its color entry in the menu's }

{ menu color information table. }

{ Draw disabled items in gray--use the GetGray function to return the }

{ appropriate color. Also draw dividers using the gray color }

{ returned by GetGray}

MyDrawTheItem(item, itemRect, menuRect, currentOffset);

END;

{if your menu supports scrolling, insert scrolling indicators if needed}

MyInsertScrollingArrows(menuRect);

END;

Determining Whether the Cursor Is in an Enabled Menu Item 3

Whenever the user drags the cursor into or out of a menu item of a displayed menu
managed by your menu definition procedure, the Menu Manager calls your procedure
and specifies the mChooseMsg constant in the message parameter, requesting that
your procedure determine whether the cursor is in a menu item and that your procedure
highlight or unhighlight the menu item as appropriate. When your menu definition
procedure receives this constant, it should use the menu rectangle specified in the
menuRect parameter, the mouse location specified in the hitPt parameter, and the item
number specified in the whichItem parameter to determine the proper action
to take.

To see whether the user chose an enabled item, your menu definition procedure should
determine whether the specified mouse location is inside the rectangle specified by the
menuRect parameter, and, if so, it should check whether the menu is enabled. If the
menu is enabled, your menu definition procedure should determine whether the mouse
location specified in the hitPt parameter is in an enabled menu item.

If the mouse location is in an enabled menu item, your menu definition procedure should
unhighlight the item specified by the whichItem parameter, highlight the new item, and
return the new item number in whichItem.

If the mouse location isn’t in an enabled menu item, your menu definition procedure
should unhighlight the item specified by the whichItem parameter and return 0 in
the whichItem parameter.

When your menu definition procedure draws a menu item in its highlighted state in a
color menu, it should reverse the background color and the item color and then draw the
menu item. When your menu definition procedure needs to return a menu item to its
normal (unhighlighted) state, it should reset the background color and item color of that
menu item and draw the menu item.

If your menu definition procedure supports scrolling menus, it should scroll the menu
when the user moves the cursor into the area of the indicator, or when the cursor is
directly above or below the menu. If the user can scroll the menu up (by dragging the

C H A P T E R 3

Menu Manager

Using the Menu Manager 3-93

cursor past the last item to view more items), place a downward-pointing triangular
indicator in place of the last item in the menu. If the user can scroll the menu down
(by dragging the cursor past the first item to view the items originally at the top of
the menu), place an upward-pointing triangular indicator in place of the first item
in the menu.

For all menus, your menu definition procedure should set the global variable
MenuDisable appropriately each time a new item is highlighted. Set MenuDisable to
the menu ID and item number of the last menu item chosen, whether or not it’s disabled.
The MenuChoice function uses the value in MenuDisable to determine if a chosen
menu item is disabled.

Listing 3-31 shows an application-defined support routine, MyChooseItem, used by the
application’s menu definition procedure. This routine determines which item, if any, the
point specified by the hitPt parameter is in. If the item is in an enabled menu item that
is different from the previous item, the MyChooseItem procedure unhighlights the old
item and highlights the new item. However, the MyChooseItem procedure does not
highlight the new item if the item is in a divider or disabled item.

The procedure also removes any help balloons as appropriate and, if Balloon Help is
turned on, displays any help balloon of the new item (for any item other than a divider or
scrolling indicator). The MyChooseItem procedure returns the item number of the new
item in the whichItem parameter or returns 0 if no item is chosen. Although not shown
in the listing, if the item is a disabled item, the procedure returns 0 in the whichItem
parameter and sets the MenuDisable global variable to the menu ID and item number
of the disabled item.

Listing 3-31 Choosing menu items

PROCEDURE MyChooseItem (theMenu: MenuHandle; menuRect: Rect; hitPt: Point;

VAR whichItem: Integer);

VAR

oldWhichItem: Integer;

MenuChoicePtr: ^LongInt;

numItems, item, max: Integer;

itemChosen: Integer;

inScroll: Integer;

currentOffset: LongInt;

nextOffset: LongInt;

BEGIN

oldWhichItem := whichItem;

whichItem := 0;

itemChosen := 0;

MenuChoicePtr := POINTER(kLowMemMenuDisable);

numItems := CountMItems(theMenu);

{find out whether the hitPt is in an item's rectangle, and if so, }

{ determine which item}

C H A P T E R 3

Menu Manager

3-94 Using the Menu Manager

item := 1;

max := numItems + 1;

currentOffset := 0;

nextOffset := 0;

REPEAT

itemRect := MyCalcItemRect(item, menuRect, currentOffset, nextOffset);

IF PtInRect(hitPt, itemRect) THEN {hitPt is in this item}

itemChosen := item;

item := item + 1;

UNTIL (item = MAX) OR (itemChosen <> 0);

IF itemChosen = 0 THEN

BEGIN {the mouse isn't in any item of this menu;unhighlight previous item}

MyNotInMenu(menuRect, oldWhichItem);

END

ELSE

BEGIN {the mouse is in this menu item. }

{ First see if a previous item was highlighted}

IF ((oldWhichItem <> 0) AND (oldWhichItem <> itemChosen)) THEN

BEGIN

{a previous item was highlighted--unhighlight it}

itemRect := MyCalcOldItemRect(oldWhichItem, menuRect);

IF HMGetBalloons THEN {if Balloon Help is on then }

HMRemoveBalloon;{ remove any balloon that might be showing}

MyHighlightItem(itemRect, oldWhichItem, FALSE);

END;

IF HMGetBalloons and MyIsItemDivider(itemChosen) THEN

{Balloon Help is on and item is divider}

HMRemoveBalloon;{remove any balloon that might be showing}

IF MyIsItemEnabled(itemChosen) THEN

BEGIN

{the item is enabled, so highlight the item the cursor is in}

itemRect := MyCalcNewItemRect(itemChosen, menuRect, currentOffset);

{the highlighting routine must also support scrolling correctly }

{ (if the cursor is in a scrolling item, don't highlight the item)}

inScroll := MyIsScrollItem(itemChosen);

MyHighlightItem(itemRect, itemChosen, inScroll);

IF HMGetBalloons AND inScroll THEN

HMRemoveBalloon {remove any balloon that might be showing}

ELSE

BEGIN {display help balloon for this item, if any}

IF HMGetBalloons THEN

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-95

BEGIN

IF StillDown THEN {mouse button is still down in this item}

{this routine sets up the needed parameters and then }

{ calls HMShowMenuBalloon}

MyShowMenuBalloon(itemChosen, itemRect);

END;

END;

END;

END;

END;

Menu Manager Reference 3

This section describes the data structures and routines of the Menu Manager. It also
describes various resources, including the resources you can use to create your menus
and menu bar, the 'MBAR' and 'MENU' resources.

Data Structures 3
This section describes the menu record, menu list, and menu color information table. The
Menu Manager maintains information about the menus in your application in menu
records. The Menu Manager maintains information about all the menus in a menu bar in
a data structure called the menu list.

The Menu Manager stores color information about your application’s menus in a menu
color information table. You can add entries to your application’s menu color information
table if you want to use colors other than the default colors for your menu bar or menus.
You can add entries to this table by using the SetMCEntries procedure or by providing
'mctb' resources.

The Menu Record 3

A menu record contains information about a single menu. Your application should never
manipulate or access the fields of a menu record; instead your application should use
Menu Manager routines to create and manage the menus in your application. To refer to
a menu, use a handle to the menu’s menu record.

The MenuInfo data type defines the menu record. The MenuHandle data type is a
handle to a menu record.

TYPE MenuPtr = ^MenuInfo; {pointer to a menu record}

MenuHandle = ^MenuPtr; {handle to a menu record}

3-96 Menu Manager Reference

C H A P T E R 3

Menu Manager 3

Here is the structure of a menu record:

TYPE MenuInfo = {menu record}

RECORD

menuID: Integer; {number that identifies the menu}

menuWidth: Integer; {width (in pixels) of the menu}

menuHeight: Integer; {height (in pixels) of the menu}

menuProc: Handle; {menu definition procedure}

enableFlags: LongInt; {indicates whether menu and }

{ menu items are enabled}

menuData: Str255; {title of menu}

{itemDefinitions} {variable-length data that }

{ defines the menu items}

END;

Field descriptions

menuID A number that identifies the menu. Each menu in your application
must have a unique menu ID. Your application specifies the menu
ID when you create the menu. Thereafter you can use the menu ID
and the GetMenuHandle function to get a handle to the menu’s
menu record.
When you define hierarchical menus, you must use a number from 1
through 235 for the menu ID of a submenu of an application; use a
number from 236 through 255 for the submenu of a desk accessory.

menuWidth The horizontal dimensions of the menu, in pixels.
menuHeight The vertical dimensions of the menu, in pixels.
menuProc A handle to the menu definition procedure of the menu. The Menu

Manager uses this menu definition procedure to draw the menu.
enableFlags A value that represents the enabled state of the menu title and

the first 31 items in the menu. All menu items greater than 31
are enabled by default and can be disabled only by disabling the
entire menu.

menuData A string that defines the title of the menu. Although the menuData
field is defined by the data type Str255 in the MenuInfo data
structure, the Menu Manager allocates only the storage necessary for
the title: the number of characters in the title of the string plus 1.

itemDefinitions
Variable-length data that defines the characteristics of each menu
item in the menu. If the menu uses the standard menu definition
procedure, this data can be conceptually defined in this manner:

itemData: ARRAY[1..X] OF
 itemString: String; {text of menu item}
 itemIcon: Byte; {icon number minus 256}

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-97

 itemCmd: Char; {keyboard equivalent or }
 { value ($1B) indicating }
 { item has a submenu, or }
 { ($1C) if item has }
 { a script code, or }
 { ($1D) if item's 'ICON' }
 { should be reduced, or }
 { ($1E) if item has an }
 { 'SICN' icon}
 itemMark: Char; {marking character or }
 { menu ID of submenu}
 itemStyle: Style; {style of menu text}
endMarker: Byte; {contains 0 if no }
 { more menu items}

The menu definition procedure maintains the information about the
menu items. You typically define your menu items in 'MENU'
resources, and the Menu Manager stores information describing
your items in the menu’s menu record.

Your application should not directly change the values of any fields in a menu record.
Use Menu Manager routines to change the characteristics of menu items or to make other
changes to a menu.

The Menu List 3

The menu list contains information about the menus in a menu bar, about submenus, and
about pop-up menus. A menu list contains handles to the menu records of zero,
one, or more menus and contains other information that the Menu Manager uses to
manage menus.

The InitMenus procedure creates the current menu list of an application. The current
menu list contains handles to the menu records of all menus currently in the menu bar
and handles to the menu records of any submenus or pop-up menus inserted into the
menu list by your application. The menu bar shows the titles, in order, of all menus
(other than submenus or pop-up menus) in the menu list.

The initial menu list created by InitMenus does not contain handles to any menus. The
Menu Manager dynamically allocates storage in a menu list as menus are added to and
deleted from the menu list.

Your application should not directly change or access the information in a menu list. You
should use Menu Manager routines to create a menu list and to add menus to or remove
menus from the current menu list.

You typically define your application’s menu bar in an 'MBAR' resource and create a
menu list using the GetNewMBar function. The GetNewMBar function returns a handle
to a menu list. You can set the current menu list to the menu list returned by
GetNewMBar using the SetMenuBar procedure.

C H A P T E R 3

Menu Manager

3-98 Menu Manager Reference

The structure of the menu list is private to the Menu Manager. For conceptual purposes,
however, its general structure is defined here.

TYPE DynamicMenuList =

RECORD

lastMenu: Integer; {offset to last pull-down menu}

lastRight: Integer; {pixel location of right edge }

{ of rightmost menu in menu bar}

mbResID: Integer; {upper 13 bits are the resource ID of menu }

{ bar defn function, low 3 bits the variant}

menu: ARRAY[1..X] {variable array with one record for }

OF MenuRec; { each menu}

lastHMenu: Integer; {offset to last submenu or pop-up menu}

menuTitleSave: {handle to bits behind inverted menu title}

pixMapHandle;

hMenu: ARRAY[1..Y] {variable array with one record for }

OF HMenuRec;{ each submenu or pop-up menu}

END;

The Menu Manager dynamically allocates the records that contain handles to the menu
records of menus in the menu bar, submenus, and pop-up menus. These records can be
defined conceptually as the MenuRec and HMenuRec data types. The Menu Manager
uses a data structure similar to that of the MenuRec data type to store information about
pull-down menus in the menu list.

TYPE MenuRec =

RECORD

menuOH: MenuHandle; {handle to menu's menu record}

menuLeft: Integer; {pixel location of left edge }

{ of this menu}

END;

The Menu Manager stores information about submenus and pop-up menus at the end of
a menu list in a data structure similar to that of the HMenuRec data type.

TYPE HMenuRec =

RECORD

menuHOH: MenuHandle; {handle to menu's menu record}

reserved: Integer; {reserved}

END;

The Menu Color Information Table Record 3

Your application’s menu color information table defines the standard color for the menu
bar, titles of menus, text and characteristics of menu items, and background color of a
displayed menu. If you do not add any entries to this table, the Menu Manager draws
your menus using the default colors, black on white. You can add colors to your menus

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-99

by adding entries to your application’s menu color information table by using Menu
Manager routines or by defining these entries in an 'mctb' resource. Note that the menu
color information table uses a format that is different from the standard color table
format.

The Menu Manager maintains information about an application’s menu color
information table as an array of menu color entry records.

TYPE MCTable = ARRAY[0..0] OF MCEntry; {menu color table}

MCTablePtr = ^MCTable; {pointer to a menu color table}

MCTableHandle = ^MCTablePtr;{handle to a menu color table}

A menu color entry is defined by the MCEntry data type.

TYPE MCEntry = {menu color entry}

RECORD

mctID: Integer; {menu ID or 0 for menu bar}

mctItem: Integer; {menu item number or 0 for }

{ menu title}

mctRGB1: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB2: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB3: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB4: RGBColor; {usage depends on mctID and }

{ mctItem}

mctreserved:Integer; {reserved}

END;

MCEntryPtr = ^MCEntry; {pointer to a menu color entry}

The first two fields of a menu color entry record, mctID and mctItem, define whether
the entry is a menu bar entry, a menu title entry, or a menu item entry. The following four
fields specify color information for whatever type of entry the mctID and mctItem fields
describe. The value of the mctID field in the last entry in a menu color information table
is –99, and the rest of the fields of the last entry are reserved. The Menu Manager
automatically creates the last entry in a menu color information table; your application
should not use the value –99 as the menu ID of a menu if you wish to add a menu color
entry for it.

The Menu Manager creates your application’s menu color information table the first
time your application calls InitMenus or InitProcMenu. It creates the menu color
information table as initially empty except for the last entry, which indicates the end
of the table.

C H A P T E R 3

Menu Manager

3-100 Menu Manager Reference

Table 3-7 shows how the Menu Manager interprets the mctID and mctItem fields for
each type of menu color entry in a menu color information table.

Table 3-7 Color information for menu entries

A menu bar entry is defined by a menu color entry record that contains 0 in both the
mctID and mctItem fields. You can define only one menu bar entry in a menu color
information table. If you don’t provide a menu bar entry for your application’s menu
color information table, the Menu Manager uses the standard menu bar colors (black text
on a white background), and it uses the standard colors for the other menu elements. You
can provide a menu bar entry to specify default colors for the menu title, the background
of a displayed menu, the items in a menu, and the menu bar. The color information fields
for a menu bar entry are interpreted as follows:

� mctRGB1 specifies the default color for menu titles. If a menu doesn’t have a menu
title entry, the Menu Manager uses the value in this field as the color of the menu title.

� mctRGB2 specifies the default color for the background of a displayed menu. If a
menu doesn’t have a menu title entry, the Menu Manager uses the value in this field as
the color of the menu’s background when it is displayed.

� mctRGB3 specifies the default color for the items in a displayed menu. If a menu item
doesn’t have a menu item entry or a default color defined in a menu title entry, the
Menu Manager uses the value in this field as the color of the menu item.

� mctRGB4 specifies the default color for the menu bar. If a menu doesn’t have a menu
bar entry (and doesn’t have any menu title entries), the Menu Manager uses the
standard colors for the menu bar.

A menu title entry is defined by a menu color entry record that contains a menu ID in the
mctID field and 0 in the mctItem field. You can define only one menu title entry for each
menu. If you don’t provide a menu title entry for a menu in your application’s menu
color information table, the Menu Manager uses the colors defined by the menu bar
entry. If a menu bar entry doesn’t exist, the Menu Manager uses the standard colors

ID Item RGB1 RGB2 RGB3 RGB4

Menu bar 0 0 Default
menu title
color

Default back-
ground color
of menus

Default
item color

Default bar
color

Menu title N<>0 0 Menu title
color

Bar color Default
item color

Background
color of
menu

Menu item N<>0 M<>0 Mark color Item text
color

Keyboard
equivalent
color

Background
color of
menu

Last entry –99 Reserved Reserved Reserved Reserved Reserved

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-101

(black on white). You can provide a menu title entry to specify a color for the title and
background of a specific menu and a default color for its items. The color information
fields for a menu title entry are interpreted as follows:

� mctRGB1 specifies the color for the menu title of the specified menu. If a menu doesn’t
have a menu title entry, the Menu Manager uses the default value defined
in the menu bar entry.

� mctRGB2 specifies the default color for the menu bar. If a menu color information table
doesn’t have a menu bar entry, the Menu Manager uses the value in this field as the
color of the menu bar. If a menu bar entry already exists, the Menu Manager replaces
the value in the mctRGB2 field of the menu title entry with the value defined in the
mctRGB4 field of the menu bar entry.

� mctRGB3 specifies the default color for the items in the menu. If a menu item doesn’t
have a menu item entry or a default color defined in a menu bar entry, the Menu
Manager uses the value in this field as the color of the menu item.

� mctRGB4 specifies the color for the background of the menu.

A menu item entry is defined by a menu color entry record that contains a menu ID in
the mctID field and an item number in the mctItem field. You can define only one menu
item entry for each menu item. If you don’t provide a menu item entry for an item in
your application’s menu color information table, the Menu Manager uses the colors
defined by the menu title entry (or by the menu bar entry if the menu containing the item
doesn’t have a menu title entry). If neither a menu title entry nor a menu bar entry exists,
the Menu Manager draws the mark, text, and keyboard equivalent in black. You can
provide a menu item entry to specify a color for the mark, text, and keyboard equivalent
of a specific menu item. The color information fields for a menu item entry are
interpreted as follows:

� mctRGB1 specifies the color for the mark of the menu item. If a menu item doesn’t
have a menu item entry, the Menu Manager uses the default value defined in the menu
title entry or the menu bar entry.

� mctRGB2 specifies the color for the text of the menu item. If a menu item doesn’t have
a menu item entry, the Menu Manager uses the default value defined in the menu title
entry or the menu bar entry. The Menu Manager also draws a black-and-white icon of
a menu item using the same color as defined by the mctRGB2 field. (Use a 'cicn'
resource to provide a menu item with a color icon.)

� mctRGB3 specifies the color for the keyboard equivalent of the menu item. If a menu
item doesn’t have a menu item entry, the Menu Manager uses the default value
defined in the menu title entry or the menu bar entry.

� mctRGB4 specifies the color for the background of the menu. If the menu color
information table doesn’t have a menu title entry for the menu this item is in, or
doesn’t have a menu bar entry, the Menu Manager uses the value in this field as the
background color of the menu. If a menu title entry already exists, the Menu Manager
replaces the value in the mctRGB4 field of the menu item entry with the value defined
in the mctRGB4 field of the menu title entry (or with the mctRGB2 field of the menu
bar entry).

C H A P T E R 3

Menu Manager

3-102 Menu Manager Reference

You can use the GetMCInfo function to get a copy of your application’s menu color
information table and the SetMCEntries procedure to set entries of your application’s
menu color information table, or you can provide 'mctb' resources that define the color
entries for your menus.

The GetMenu, GetNewMBar, and ClearMenuBar routines can also modify the entries in
the menu color information table. The GetMenu function looks for an 'mctb' resource
with a resource ID equal to the value in the menuID parameter. If it finds one, it adds the
entries to the application’s menu color information table.

The GetNewMBar function builds a new menu color information table when it creates the
new menu list. If you want to save the current menu color information table, call
GetMCInfo before calling GetNewMBar.

The ClearMenuBar procedure reinitializes both the current menu list and the menu
color information table.

Menu Manager Routines 3
The Menu Manager includes routines for creating menus, changing the characteristics of
menu items, and handling user choice of menu commands. The Menu Manager also
provides routines for adding items to and deleting items from menus, counting the
number of items in a menu, getting a handle to a menu’s menu record, disposing of
menus, calculating the dimensions of a menu, highlighting the menu bar, and managing
entries in your application’s menu color information table.

Some Menu Manager routines can be accessed using more than one spelling of the
routine’s name, depending on the interface files supported by your development
environment. For example, GetMenuHandle is also available as GetMHandle.
Table 3-8 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 3-8 Mapping between new and previous names of Menu Manager routines

New name Previous name

AppendResMenu AddResMenu

DeleteMCEntries DelMCEntries

DeleteMenuItem DelMenuItem

DisposeMCInfo DispMCInfo

GetMenuHandle GetMHandle

GetMenuItemText GetItem

InsertMenuItem InsMenuItem

SetMenuItemText SetItem

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-103

Initializing the Menu Manager 3

You can use the InitMenus procedure to initialize the Menu Manager.

You can use the InitProcMenu procedure to set the current menu list so that it uses a
custom menu bar definition function if necessary.

InitMenus 3

The InitMenus procedure allocates space for your application’s current menu list in
your application’s heap. Your application needs to call InitMenus only once to initialize
the Menu Manager and the current menu list for your application.

PROCEDURE InitMenus;

DESCRIPTION

The InitMenus procedure creates the current menu list with no menus, submenus, or
pop-up menus. InitMenus also creates your application’s menu color information table.
After allocating the menu color information table, InitMenus looks for an 'mctb'
resource with resource ID 0. You can provide an 'mctb' resource with a resource ID of 0
as one of your application’s resources if you want to use colors other than the default
colors for your application’s menu bar and menus. If InitMenus finds and successfully
loads an 'mctb' resource, it adds the information contained in that resource to the menu
color information table (using SetMCEntries).

The InitMenus procedure also draws an empty menu bar.

SPECIAL CONSIDERATIONS

Your application must initalize QuickDraw, the Font Manager, and the Window Manager
(using the InitGraf, InitFonts, and InitWindows procedures) before initializing
the Menu Manager.

SEE ALSO

To set up the menus for your application’s menu bar, use GetNewMBar and
SetMenuBar, described on page 3-111 and page 3-112, respectively. You can also add
menus to the current menu list using the InsertMenu procedure, described on
page 3-108.

To remove all menus from the current menu list, use the ClearMenuBar procedure,
described on page 3-110.

If your application uses its own menu bar definition function, use the InitProcMenu
procedure to set the mbResID field of the current menu list to the resource ID of your
custom 'MBDF' resource.

C H A P T E R 3

Menu Manager

3-104 Menu Manager Reference

See “The Menu Color Information Table Resource” on page 3-155 for a description of the
'mctb' resource.

See the chapter “Window Manager” in this book for a description of the InitWindows
procedure. See Inside Macintosh: Imaging and Inside Macintosh: Text for descriptions of the
InitGraf and InitFonts procedures.

InitProcMenu 3

Apple recommends that you use the standard menu bar definition function. However, if
your application provides its own menu bar definition function, use the InitProcMenu
procedure to set the mbResID field of the current menu list to the resource ID of your
custom 'MBDF' resource.

PROCEDURE InitProcMenu (resID: Integer);

resID The resource ID of your application’s menu bar definition function in the
upper 13 bits of this parameter; the variant in the lower 3 bits. You must
use a resource ID greater than $100.

For resources of type 'MBDF', Apple reserves resource IDs $000 through
$100 for its own use.

DESCRIPTION

The InitProcMenu procedure creates the current menu list if it hasn’t already been
created by a previous call to InitMenus. The InitProcMenu procedure stores the
resource ID that you specify in the mbResID field of the current menu list. The Menu
Manager uses the menu bar definition function referred to in this field to draw the menu
bar and to perform basic operations on menus.

SPECIAL CONSIDERATIONS

The resource ID of your application’s menu bar definition function is maintained in the
current menu list until your application next calls InitMenus; InitMenus initializes the
mbResID field with the resource ID of the standard menu bar definition function. This
can affect applications such as development environments that control other applications
that may call InitMenus.

SEE ALSO

See the description of the InitMenus procedure on page 3-103; you should use
InitMenus if your application uses the standard menu bar definition function.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-105

Creating Menus 3

You can use the NewMenu or GetMenu function to create a pull-down menu, although
you usually create all the menus in your menu bar at once by providing an 'MBAR'
resource and using the GetNewMBar function. See “Getting and Setting the Menu Bar”
on page 3-112 for information on creating a menu bar. You typically use the NewMenu or
GetMenu function to create submenus or pop-up menus.

The NewMenu function creates a menu with the specified title, assigns it the specified
menu ID, and creates a menu record for the menu. Use AppendMenu, InsertMenuItem,
AppendResMenu, or InsertResMenu to add items to menus you create with NewMenu.

The GetMenu function creates a menu with the title, items, and characteristics defined in
a specified 'MENU' resource.

Both NewMenu and GetMenu allocate space in your application’s heap for the menu
record and return a handle to the menu’s newly created menu record.

To add menus created by NewMenu or GetMenu to the current menu list, use the
InsertMenu procedure. To update the menu bar with any new menu titles, use
DrawMenuBar.

NewMenu 3

You can use the NewMenu function to create an empty menu with a specified title and
menu ID. In most cases you should store information about your menus (such as their
titles, items, and characteristics) in resources; use the GetMenu or GetNewMBar function
to create menus from resource definitions.

FUNCTION NewMenu (menuID: Integer; menuTitle: Str255): MenuHandle;

menuID The menu ID of the menu. (Note that this is not the resource ID of a
'MENU' resource.) The menu ID is a number that identifies the menu. Use
positive menu IDs for menus belonging to your application. Use negative
menu IDs for desk accessories (except for submenus of a desk accessory).
Submenus must have menu IDs from 1 through 255. For submenus of an
application, use menu IDs from 1 through 235; for submenus of a desk
accessory, use menu IDs from 236 through 255. Apple reserves the menu
ID of 0.

menuTitle The title of the new menu. Note that in most cases you should store
the titles of menus in resources, so that your menu titles can be more
easily localized.

C H A P T E R 3

Menu Manager

3-106 Menu Manager Reference

DESCRIPTION

The NewMenu function creates a menu with the specified title, assigns it the specified
menu ID, creates a menu record for the menu, and returns a handle to the menu record. It
sets up the menu record to use the standard menu definition procedure (and it reads the
standard menu definition procedure into memory if it isn’t already there). The NewMenu
function does not insert the newly created menu into the current menu list.

After creating a menu with NewMenu, use AppendMenu, InsertMenuItem,
AppendResMenu, or InsertResMenu to add menu items to the menu. To add a menu
created by NewMenu to the current menu list, use the InsertMenu procedure. To update
the menu bar with any new menu titles, use the DrawMenuBar procedure.

SPECIAL CONSIDERATIONS

To release the memory associated with a menu that you created using NewMenu, first
call DeleteMenu to remove the menu from the current menu list and to remove any
entries for this menu in your application’s menu color information table; then call
DisposeMenu to dispose of the menu’s menu record. After disposing of a menu, use
DrawMenuBar to update the menu bar.

If the NewMenu function is unable to create the menu record, it returns NIL as its function
result.

SEE ALSO

For information on how to add items to a menu, see the description of AppendMenu on
page 3-124, InsertMenuItem on page 3-126, AppendResMenu on page 3-128, and
InsertResMenu on page 3-129. For information on InsertMenu, see page 3-108. To
dispose of a menu, see the description of DeleteMenu on page 3-109 and DisposeMenu
on page 3-140.

GetMenu 3

Use the GetMenu function to create a menu with the title, items, and other characteristics
defined in a 'MENU' resource with the specified resource ID. You typically use this
function only when you create submenus; you can create all your pull-down menus at
once using the GetNewMBar function, and you can create pop-up menus using the
standard pop-up control definition function.

FUNCTION GetMenu (resourceID: Integer): MenuHandle;

resourceID The resource ID of the 'MENU' resource that defines the characteristics of
the menu. (You usually use the same number for a menu’s resource ID as
the number that you specify for the menu ID in the menu resource.)

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-107

DESCRIPTION

The GetMenu function creates a menu according to the specified menu resource, and it
also creates a menu record for the menu. It reads the menu definition procedure
(specified in the menu resource) into memory if it isn’t already in memory, and it stores
a handle to the menu definition procedure in the menu record. The GetMenu function
does not insert the newly created menu into the current menu list.

After reading the 'MENU' resource, the GetMenu function searches for an 'mctb'
resource with the same resource ID as the 'MENU' resource. If GetMenu finds this
'mctb' resource, it uses the information in the 'mctb' resource to add entries for this
menu to the application’s menu color information table. The GetMenu function uses
SetMCEntries to add the entries defined by the 'mctb' resource to the application’s
menu color information table. If GetMenu doesn’t find this 'mctb' resource, it uses the
default colors specified in the menu bar entry of the application’s menu color
information, or, if the menu bar entry doesn’t exist, it uses the standard colors for
the menu.

The GetMenu function returns a handle to the menu record of the menu. You can use the
returned menu handle to refer to this menu in most Menu Manager routines. If GetMenu
is unable to read the menu or menu definition procedure from the resource file, GetMenu
returns NIL.

After creating a menu with GetMenu, you can use AppendMenu, InsertMenuItem,
AppendResMenu, or InsertResMenu to add more menu items to the menu if necessary.

To add a menu created by GetMenu to a menu list, use the InsertMenu procedure. To
update the menu bar with any new menu titles, use the DrawMenuBar procedure.

Storing the definitions of your menus in resources (especially menu titles and menu
items) makes your application easier to localize.

� W A R N I N G

Menus in a resource must not be purgeable. �

SPECIAL CONSIDERATIONS

To release the memory associated with a menu that you read from a resource file using
GetMenu, first call DeleteMenu to remove the menu from the menu list and to remove
any menu title entry or menu item entries for this menu in the application’s menu color
information table, then call the Resource Manager procedure ReleaseResource to
dispose of the menu’s menu record. Use DrawMenuBar to update the menu bar.

� W A R N I N G

Call GetMenu only once for a particular menu. If you need the handle of
a menu currently in the menu list, use GetMenuHandle or the Resource
Manager function GetResource. �

C H A P T E R 3

Menu Manager

3-108 Menu Manager Reference

SEE ALSO

For a description of the 'MENU' resource, see “The Menu Resource” on page 3-151; for a
sample 'MENU' resource in Rez format, see Listing 3-2 on page 3-48. For information on
the 'mctb' resource, see “The Menu Color Information Table Resource” on page 3-155.

For details on how to add items to a menu, see the description of AppendMenu on
page 3-124, InsertMenuItem on page 3-126, AppendResMenu on page 3-128, and
InsertResMenu on page 3-129. To remove a menu, see the description of DeleteMenu
on page 3-109. To update the menu bar, use the DrawMenuBar procedure, described on
page 3-113.

Adding Menus to and Removing Menus From the Current Menu List 3

After creating a menu with NewMenu or GetMenu, use the InsertMenu procedure to
insert the menu into the current menu list. Use the DeleteMenu procedure to delete
a menu from the current menu list; use the ClearMenuBar procedure to remove all
menus from the current menu list.

InsertMenu 3

Use the InsertMenu procedure to insert an existing menu into the current menu list.

PROCEDURE InsertMenu (theMenu: MenuHandle; beforeID: Integer);

theMenu A handle to the menu record of the menu. The NewMenu and GetMenu
functions return a handle to a menu record that you can use in this
parameter.

beforeID A number that indicates where in the current menu list the menu should
be inserted. InsertMenu inserts the menu into the current menu list
before the menu whose menu ID equals the number specified in the
beforeID parameter. If the number in the beforeID parameter is 0 (or it
isn’t the ID of any menu in the menu list), InsertMenu adds the new
menu after all others (except before the Help, Keyboard, and Application
menus). If the menu is already in the current menu list or the menu list is
already full, InsertMenu does nothing.

You can specify –1 for the beforeID parameter to insert a submenu into
the current menu list. The submenus in the submenu portion of the menu
list do not have to be currently associated with a hierarchical menu item;
you can store submenus in the menu list and later specify that a menu
item has a submenu if needed. However, note that the MenuKey function
scans all menus in the menu list for keyboard equivalents, including
submenus that are not associated with any menu item. You should not
define keyboard equivalents for submenus that are in the current menu
list but not associated with a menu item.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-109

You can also specify –1 for the beforeID parameter to insert a pop-up
menu into the current menu list. However, if you use the standard
pop-up control definition function, the pop-up control automatically
inserts the menu into the current menu list according to the needs of the
pop-up control.

DESCRIPTION

The InsertMenu procedure inserts into the current menu list the menu identified by the
specified handle to a menu record. To update the menu bar to reflect the new menu, use
DrawMenuBar.

SEE ALSO

For details on how to update your application’s menu bar, see the description of
DrawMenuBar on page 3-113.

DeleteMenu 3

Use the DeleteMenu procedure to delete an existing menu from the current menu list.

PROCEDURE DeleteMenu (menuID: Integer);

menuID The menu ID of the menu to delete from the current menu list. If the menu
list does not contain a menu with the specified menu ID, DeleteMenu
does nothing.

DESCRIPTION

The DeleteMenu procedure deletes the menu identified by the specified menu ID
from the current menu list, and it removes all color entries for that menu from the
application’s menu color information table. DeleteMenu does not release the memory
occupied by the menu’s menu record. To release the memory occupied by the menu’s
associated data structures, use DisposeMenu if you created the menu using NewMenu;
use the Resource Manager procedure ReleaseResource if you created the menu using
GetMenu or you read the resource in using GetNewMBar.

The DeleteMenu procedure first checks the submenu portion of the current menu list for
a menu ID with the specified ID. If it finds such a menu, it deletes that menu and returns.
If DeleteMenu doesn’t find the menu in the submenu portion, it checks the regular
portion of the current menu list. This allows a desk accessory to delete a submenu
without deleting an application’s menu whose menu ID might conflict with the menu ID
defined by a desk accessory.

After deleting a menu, use DrawMenuBar to update the menu bar to reflect the changes
to the current menu list.

C H A P T E R 3

Menu Manager

3-110 Menu Manager Reference

SEE ALSO

For details on how to dispose of a menu’s associated data structures using
DisposeMenu, see “Disposing of Menus” on page 3-140. For information on the
ReleaseResource procedure, see the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.

ClearMenuBar 3

Use the ClearMenuBar procedure to delete all menus from the current menu list.

PROCEDURE ClearMenuBar;

DESCRIPTION

The ClearMenuBar procedure deletes all menus from the current menu list and deletes
all color entries from the application’s menu color information table. ClearMenuBar
does not release the memory occupied by any of the menus’ menu records or the menu
color information table. To release the memory occupied by the data structures associated
with the menus, use DisposeMenu for each menu you created using NewMenu; use
ReleaseResource for each menu you created using GetMenu or if you read the
resource in using GetNewMBar.

After deleting all menus from the current menu list, use DrawMenuBar to update the
appearance of the menu bar.

SEE ALSO

To update your application’s menu bar, see the description of DrawMenuBar on
page 3-113. For information on the ReleaseResource procedure, see the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

Getting a Menu Bar Description From an 'MBAR' Resource 3

You usually create your application’s menu bar by doing the following:

� defining the order and resource ID of your menus in an 'MBAR' resource

� defining the menus in 'MENU' resources

� reading in these descriptions using the GetNewMBar function

� setting the current menu list to the menu list returned by GetNewMBar

� updating the menu bar using DrawMenuBar

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-111

GetNewMBar 3

Use the GetNewMBar function to read in the definition of a menu bar from an 'MBAR'
resource.

FUNCTION GetNewMBar (menuBarID: Integer): Handle;

menuBarID The resource ID of an 'MBAR' resource that specifies the menus for a
menu bar.

DESCRIPTION

The GetNewMBar function reads in the definition of a menu bar and its associated menus
from an 'MBAR' resource. The 'MBAR' resource identifies the order of menus contained
in its menu bar. For each menu, it also specifies the menu’s resource ID. The
GetNewMBar function reads in each menu from the 'MENU' resource with the resource
ID specified in the 'MBAR' resource.

The GetNewMBar function creates a menu list for the menu bar defined by the 'MBAR'
resource and returns a handle to the menu list. (If the resource isn’t already in memory,
GetNewMBar reads it into memory.) If GetNewMBar can’t read the resource,
GetNewMBar returns NIL. GetNewMBar uses GetMenu to read in each individual menu.

After reading in menus from an 'MBAR' resource, use SetMenuBar to make the menu
list created by GetNewMBar the current menu list. Then use DrawMenuBar to update the
menu bar.

To release the memory occupied by the data structures associated with the menus in a
menu list, use DisposeMenu for each menu you created using NewMenu; use the
Resource Manager procedure ReleaseResource for each menu you created using
GetMenu or if you read the resource in using GetNewMBar. To release the memory
occupied by a menu list, use the Memory Manager procedure DisposeHandle.

SPECIAL CONSIDERATIONS

The GetNewMBar function first saves the current menu list and then clears the current
menu list and your application’s menu color information table. It then creates a
new menu list. Before returning a handle to the new menu list, the GetNewMBar function
restores the current menu list to the previously saved menu list, but GetNewMBar does
not restore the previous menu color information table. To save
and then restore your application’s current menu color information table, call the
GetMCInfo function before GetNewMBar and call the SetMCInfo procedure afterward.

While you supply only the resource ID of an 'MBAR' resource to the GetNewMBar
function, your application often needs to use the menu IDs defined in each of your
menus’ 'MENU' resources. Most Menu Manager routines require either a menu ID
or a handle to a menu record to perform operations on a specific menu. For menus in
the current menu list, you can use the GetMenuHandle function to get the handle to
a menu record of a menu with a given menu ID.

C H A P T E R 3

Menu Manager

3-112 Menu Manager Reference

SEE ALSO

For a description of the 'MENU' resource, see “The Menu Resource” on page 3-151; for a
sample 'MENU' resource in Rez format, see Listing 3-2 on page 3-48. For a description of
the 'MBAR' resource, see “The Menu Bar Resource” on page 3-155; for a sample 'MBAR'
resource in Rez format, see Listing 3-4 on page 3-49. For information on the 'mctb'
resource, see “The Menu Color Information Table Resource” on page 3-155. For
information about the Resource Manager, see Inside Macintosh: More Macintosh Toolbox.

Getting and Setting the Menu Bar 3

You can use the GetMenuBar function to get a handle to a copy of the current menu list.
Use the SetMenuBar procedure to set the current menu bar to a menu list previously
returned by GetMenuBar or GetNewMBar. You can get the height of the menu bar using
the GetMBarHeight function.

GetMenuBar 3

Use the GetMenuBar function to get a handle to a copy of the current menu list.

FUNCTION GetMenuBar: Handle;

DESCRIPTION

The GetMenuBar function creates a copy of the current menu list and returns a handle to
the copy. You can save the returned menu list and then add menus to or remove menus
from the current menu list (using InsertMenu, DeleteMenu, or ClearMenuBar). You
can later restore the saved menu list using SetMenuBar.

To release the memory occupied by a saved menu list, use the Memory Manager’s
DisposeHandle procedure.

� W A R N I N G

GetMenuBar doesn’t copy the menu records, just the menu list (which
contains handles to the menu records). Do not dispose of any menus in a
saved menu list if you wish to restore the menu list later. �

SetMenuBar 3

Use the SetMenuBar procedure to set the current menu list to a specified menu list.

PROCEDURE SetMenuBar (menuList: Handle);

menuList A handle to a menu list that specifies the menus for a menu bar. You
should specify a handle returned by GetMenuBar or GetNewMBar.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-113

DESCRIPTION

The SetMenuBar procedure copies the given menu list to the current menu list. As with
GetMenuBar, SetMenuBar doesn’t copy the menu records, just the menu list (which
contains handles to the menu records).

You can use SetMenuBar to restore a menu list that you previously saved using
GetMenuBar or to set the current menu list to a menu list created by GetNewMBar.

The SetMenuBar procedure sets only the current menu list; to update the menu bar
according to the new menu list, use the DrawMenuBar procedure.

GetMBarHeight 3

Use the GetMBarHeight function if you need to determine the current height of the
menu bar. When the Roman script system is the current system script, the menu bar is
20 pixels high. If a non-Roman script is the current system script, the menu bar may be
greater than 20 pixels high to accommodate the current system font.

FUNCTION GetMBarHeight: Integer;

DESCRIPTION

The GetMBarHeight function returns the current height, in pixels, of the menu bar.

Drawing the Menu Bar 3

Whenever your application adds menus to or removes menus from the current menu list,
you should update the titles of the menus in the menu bar using the DrawMenuBar
procedure. If you change the enabled state of a menu, you should call DrawMenuBar to
update the menu title accordingly. Alternatively, you can use the InvalMenuBar
procedure instead of DrawMenuBar to invalidate the menu bar; this causes the Event
Manager to redraw the menu bar as part of its normal processing of update events.

DrawMenuBar 3

Use the DrawMenuBar procedure to draw the menu bar based on the current menu list.

PROCEDURE DrawMenuBar;

DESCRIPTION

The DrawMenuBar procedure draws (or redraws) the menu bar according to the current
menu list. You must call DrawMenuBar to update the menu bar after adding menus to or
deleting menus from the current menu list using InsertMenu or DeleteMenu, after
setting the current menu list using SetMenuBar, after changing the enabled state of a
menu, or after any other routine that changes the current menu list.

C H A P T E R 3

Menu Manager

3-114 Menu Manager Reference

InvalMenuBar 3

Use the InvalMenuBar procedure to invalidate the menu bar.

PROCEDURE InvalMenuBar;

DESCRIPTION

The InvalMenuBar procedure marks the menu bar as changed and in need
of updating. When the Event Manager scans update regions for regions that require
updating, the Event Manager also checks to determine whether the menu bar
requires updating (because of a call to InvalMenuBar). If the menu bar needs updating,
the Event Manager calls the DrawMenuBar procedure to draw the menu bar.

You can use InvalMenuBar instead of DrawMenuBar to minimize blinking in the menu
bar. For example, if you have several application-defined routines that can change the
enabled state of a menu and each calls DrawMenuBar, you can replace the calls to
DrawMenuBar with calls to InvalMenuBar. In this way the menu bar is redrawn only
once instead of multiple times in quick succession. If you need to make immediate
changes to the menu bar, use DrawMenuBar. If you want to redraw the menu bar at most
once each time through your event loop, use InvalMenuBar. The InvalMenuBar
procedure is available only in System 7.

Responding to the User’s Choice of a Menu Command 3

When the user presses the mouse button while the cursor is in the menu bar, your
application should call the MenuSelect function to allow the user to choose a command
from the menu bar. If the user presses the mouse button while the cursor is over a pop-up
menu that does not use the standard pop-up control definition function, your application
should call the PopUpMenuSelect function to allow the user to make a choice from the
pop-up menu.

You should also allow the user to choose a menu command by typing a keyboard
equivalent. When the user presses a key on the keyboard, your application should
determine if the Command key was pressed at the same time, and, if so, your application
should call the MenuKey function to map this keyboard combination to any
corresponding Command-key equivalent.

If the user chooses an item, both the MenuSelect and MenuKey functions highlight the
title of the menu containing the chosen item and report the user’s choice to your
application. Your application should perform the corresponding command and, when
finished, should unhighlight the menu title using the HiliteMenu procedure to indicate
to the user that the command is completed.

If the user releases the mouse button while the cursor is over a disabled item or types the
keyboard equivalent of a disabled item, MenuSelect and MenuKey do not report the
menu ID or menu item of the item. To determine if the user chose a disabled item (for
example, so that your application can provide assistance to the user or explain to the user
why the command is disabled), you can use the MenuChoice function to return the
menu ID and menu item of the disabled menu command.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-115

Your application should adjust its menus before calling MenuSelect or MenuKey. For
example, you should enable or disable menu items as appropriate and add any
applicable checkmarks or dashes to items that show attributes.

MenuSelect 3

Use the MenuSelect function to allow the user to choose a menu item from the menus
in your application’s menu bar.

FUNCTION MenuSelect (startPt: Point): LongInt;

startPt The point (in global coordinates) representing the location of the cursor at
the time the mouse button was pressed.

DESCRIPTION

When the user presses the mouse button while the cursor is in the menu bar, your
application receives a mouse-down event. To handle mouse-down events in the menu
bar, pass the location of the cursor at the time of the mouse-down event as the startPt
parameter to MenuSelect. The MenuSelect function displays and removes menus as
the user moves the cursor over menu titles in the menu bar, and it handles all user
interaction until the user releases the mouse button.

As the user drags the cursor through the menu bar, the MenuSelect function highlights
the title of the menu the cursor is currently over and displays all items in that menu. If
the user moves the cursor so that it is over a different menu, the MenuSelect function
removes the previous menu and unhighlights its menu title.

The MenuSelect function highlights and unhighlights menu items as the user drags the
cursor over the items in a menu. The MenuSelect function highlights a menu item if the
item is enabled and the cursor is currently over it; it removes such highlighting when the
user moves the cursor to another menu item. The MenuSelect function does not
highlight disabled menu items.

If the user chooses an enabled menu item (including any item from a submenu), the
MenuSelect function returns a value as its function result that indicates which menu
and menu item the user chose. The high-order word of the function result contains the
menu ID of the menu, and the low-order word contains the item number of the menu
item chosen by the user. The MenuSelect function leaves the menu title highlighted;
after performing the chosen task your application should unhighlight the menu title
using the HiliteMenu procedure.

If the user chooses an item from a submenu, MenuSelect returns the menu ID of the
submenu in the high-order word and the item chosen by the user in the low-order word
of its function result. The MenuSelect function also highlights the title of the menu in
the menu bar that the user originally displayed in order to begin traversing to the
submenu. After performing the chosen task, your application should unhighlight the
menu title.

C H A P T E R 3

Menu Manager

3-116 Menu Manager Reference

If the user releases the mouse button while the cursor is over a disabled item, in the menu
bar, or outside of any menu, the MenuSelect function returns 0 in the high-order word
of its function result and the low-order word is undefined. If it is necessary for your
application to find the item number of the disabled item, your application can call
MenuChoice to return the menu ID and menu item.

If the user chooses an enabled item in a menu that a desk accessory has inserted into your
application’s menu list, MenuSelect uses the SystemMenu procedure to process this
occurrence and returns 0 to your application in the high-order word.

SPECIAL CONSIDERATIONS

When the MenuSelect function pulls down a menu, it stores the bits behind the menu
as a relocatable object in the application heap of your application.

ASSEMBLY-LANGUAGE INFORMATION

The InitMenus and InitProcMenu procedures initialize the MenuHook and
MBarHook global variables to 0. If you choose, you can store the addresses of routines
that MenuSelect calls in these global variables. The MenuHook global variable contains
the address (if any) of a routine that MenuSelect calls repeatedly while the mouse
button is down. MenuSelect does not pass any parameters to this routine.

The MBarHook global variable contains the address (if any) of a routine that
MenuSelect calls after a menu title is highlighted and the menu rectangle is calculated
but before the menu is drawn. The menu rectangle is the rectangle (in global coordinates)
in which the menu will be drawn. MenuSelect passes a pointer to the menu rectangle
on the stack. If you provide the address of a routine in the MBarHook global variable, it
should normally return 0 in the D0 register, indicating that MenuSelect should
continue; returning 1 causes MenuSelect to cancel its operation and return immediately
to the application.

The MenuSelect function uses the global variable MBarEnable to determine if all
menus in the current menu bar belong to a desk accessory or an application. If the
MBarEnable global variable is nonzero, then all menus in the current menu bar belong
to a desk accessory. If the MBarEnable global variable is 0, then all menus in the current
menu bar belong to an application. If you’re writing a desk accessory, you may need to
set the MBarEnable global variable to a nonzero value; if you’re writing an application,
you should not change the value of the MBarEnable global variable.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID of
the submenu, not the menu to which the submenu is attached.

SEE ALSO

For information on adjusting your application’s menus before calling MenuSelect, see
“Adjusting the Menus of an Application” beginning on page 3-73.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-117

See the description of the HiliteMenu procedure on page 3-119 for details on how to
unhighlight a menu. For information on how to determine if the user chose a disabled
item, see the description of the MenuChoice function on page 3-118.

MenuKey 3

If the user presses another key while holding down the Command key, call the MenuKey
function to determine if the keyboard combination maps to the keyboard equivalent of a
menu item in a menu in the current menu list.

FUNCTION MenuKey (ch: Char): LongInt;

ch The 1-byte character representing the key pressed by the user in
combination with the Command key.

DESCRIPTION

The MenuKey function maps the given character to the menu and menu item with that
keyboard equivalent. The MenuKey function returns as its function result a value that
indicates the menu ID and menu item that has the keyboard equivalent corresponding to
the given character.

The MenuKey function does not distinguish between uppercase and lowercase letters. It
takes the 1-byte character passed to it and calls the UpperText procedure (which
provides localizable uppercase conversion of the character). Thus, MenuKey translates
any lowercase character to uppercase when comparing a keyboard event to keyboard
equivalents. This allows a user to invoke a keyboard equivalent command, such as the
Copy command, by pressing the Command key and “c” or “C”. For consistency between
applications, you should define the keyboard equivalents of your commands so that they
appear in uppercase in your menus.

If the given character maps to an enabled menu item in the current menu list, MenuKey
highlights the menu title of the chosen menu, returns the menu ID in the high-order word
of its function result, and returns the chosen menu item in the low-order word of its
function result. After performing the chosen task, your application should unhighlight
the menu title using the HiliteMenu procedure.

If the given character does not map to an enabled menu item in the current menu list,
MenuKey returns 0 in its high-order word and the low-order word is undefined.

If the given character maps to a menu item in a menu that a desk accessory has inserted
into your application’s menu list, MenuSelect uses the SystemMenu procedure to
process this occurrence and returns 0 to your application in the high-order word.

You should not define menu items with identical keyboard equivalents. The MenuKey
function scans the menus from right to left and the items from top to bottom. If you have
defined more than one menu item with identical keyboard equivalents, MenuKey returns
the first one it finds.

C H A P T E R 3

Menu Manager

3-118 Menu Manager Reference

The MenuKey function first searches the regular portion of the current menu list for a
menu item with a keyboard equivalent matching the given key. If it doesn’t find one
there, it searches the submenu portion of the current menu list. If the given key maps to a
menu item in a submenu, MenuKey highlights the menu title in the menu bar that the
user would normally pull down to begin traversing to the submenu. Your application
should perform the desired command and then unhighlight the menu title.

You shouldn’t assign a Command–Shift–number key sequence to a menu item as its
keyboard equivalent; Command–Shift–number key sequences are reserved for use as
'FKEY' resources. Command–Shift–number key sequences are not returned to your
application, but instead are processed by the Event Manager. The Event Manager invokes
the 'FKEY' resource with a resource ID that corresponds to the number that activates it.

Apple reserves the Command-key codes $1B (Control-[) through $1F (Control-_) to
indicate meanings other than keyboard equivalents. MenuKey ignores these character
codes and returns a function result of 0 if you specify any of these values in the ch
parameter. Your application should not use these character codes for its own use.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID of
the submenu, not the menu to which the submenu is attached.

� W A R N I N G

Do not define a “circular” hierarchical menu—that is, a hierarchical
menu in which a submenu has a submenu whose submenu is
a hierarchical menu higher in the chain. If MenuKey detects a circular
hierarchical menu, it creates a system error with error number 86. �

SEE ALSO

To unhighlight a menu, use the HiliteMenu procedure, described on page 3-119. To
provide support for keyboard equivalents other than Command-key equivalents, see the
discussion of 'KCHR' resources in Inside Macintosh: Text.

MenuChoice 3

If your application needs to find the item number of a disabled menu item that the
user attempted to choose, you can use the MenuChoice function to return the chosen
menu item.

FUNCTION MenuChoice: LongInt;

DESCRIPTION

If the user chooses a disabled menu item, the MenuChoice function returns a value that
indicates which menu and menu item the user chose. The high-order word of the

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-119

function result contains the menu ID of the menu, and the low-order word contains the
item number of the menu item chosen by the user.

The MenuChoice function returns 0 as the low-order word of its function result if the
mouse button was released while the cursor was in the menu bar or outside the menu.

SPECIAL CONSIDERATIONS

The Menu Manager updates the global variable MenuDisable whenever a menu is
displayed. As the user moves the cursor over each item, the Menu Manager calls the
menu definition procedure of the menu to update the MenuDisable global variable to
reflect the current menu ID and menu item. The standard menu definition procedure
updates the global variable MenuDisable appropriately. If your application uses its own
menu definition procedure, your menu definition procedure should support this feature;
if you use a menu definition procedure that does not update the global variable
MenuDisable appropriately, the result returned by MenuChoice is undefined.

HiliteMenu 3

You can use the HiliteMenu procedure to highlight or unhighlight menu titles. For
example, after performing a menu command chosen by the user, use the HiliteMenu
procedure to unhighlight the menu title.

PROCEDURE HiliteMenu (menuID: Integer);

menuID The menu ID of the menu whose title should be highlighted. If the menu
title of the specified menu is already highlighted, HiliteMenu does
nothing. If the menu ID is 0 or the specified menu ID isn’t in the current
menu list, HiliteMenu unhighlights whichever menu title is currently
highlighted (if any).

DESCRIPTION

The MenuSelect and MenuKey functions highlight the title of the menu containing
the item chosen by the user. After performing the chosen task, your application
should unhighlight the menu title by calling HiliteMenu and passing 0 in the
menuID parameter.

The HiliteMenu procedure highlights a menu title by first saving the bits behind the
title rectangle and then drawing the highlighted title. HiliteMenu unhighlights a menu
title by restoring the bits behind the menu title.

The global variable TheMenu contains the ID of the currently highlighted menu in the
menu bar. If the user chooses an item from a submenu, TheMenu contains the menu ID of
the submenu, not the menu to which the submenu is attached.

C H A P T E R 3

Menu Manager

3-120 Menu Manager Reference

SEE ALSO

To highlight the entire menu bar, use the FlashMenuBar procedure, described on
page 3-141.

PopUpMenuSelect 3

To display a pop-up menu without using the standard pop-up control definition
function, use the PopUpMenuSelect function to display the pop-up menu anywhere
on the screen. If your application uses the standard pop-up control definition function,
your application does not need to use PopUpMenuSelect.

FUNCTION PopUpMenuSelect (menu: MenuHandle;

Top: Integer; Left: Integer;

PopUpItem: Integer)

: LongInt;

menu A handle to the menu record of the menu. The NewMenu, GetMenu, and
GetMenuHandle functions return a handle to a specified menu’s menu
record.

Top The top coordinate of the pop-up box when it is closed. This value should
be in global coordinates.

Left The left coordinate of the pop-up box when it is closed. This value should
be in global coordinates.

PopUpItem The item number of the current item minus 1. This value should
correspond to the user’s previous choice from this menu. If the user has
not previously made a choice, this value should be set to the default value.

DESCRIPTION

The PopUpMenuSelect function uses the location specified by the Top and Left
parameters to determine where to display the specified item of the pop-up menu. The
PopUpMenuSelect function displays the pop-up menu so that the menu item specified
in the PopUpItem parameter appears highlighted at the specified location. Figure 3-24 on
page 3-34 shows the pop-up title and pop-up box of a pop-up menu.

The PopUpMenuSelect function highlights and unhighlights menu items and handles
all user interaction until the user releases the mouse button. The PopUpMenuSelect
function returns the menu ID of the chosen menu in the high-order word of its function
result and the chosen menu item in the low-order word.

Your application is responsible for highlighting the pop-up title, setting the mark of the
current menu item appropriately, and drawing the text and downward-pointing
indicator in the pop-up box before calling PopUpMenuSelect. Your application should
also make sure the pop-up menu is in the submenu portion of the current menu list
before calling PopUpMenuSelect. (You can use the InsertMenu procedure and specify
–1 in the beforeID parameter to insert the pop-up menu into the current menu list.)

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-121

After calling PopUpMenuSelect, your application can delete the pop-up menu from the
current menu list or leave it in the current menu list.

Your application is also responsible for storing the current value of the menu item,
drawing the text and downward-pointing indicator in the pop-up box, and
unhighlighting the pop-up title after calling PopUpMenuSelect. If you use the standard
pop-up control definition function, these actions are performed for you by the pop-up
control and your application does not need to call PopUpMenuSelect.

When implementing pop-up menus, you should follow the guidelines for pop-up menus
described in Macintosh Human Interface Guidelines. For example, you should define the
pop-up box of your pop-up menu as a rectangle that is the same height as a menu item,
with a one-pixel drop shadow, and should make the pop-up box wide enough to show
the currently selected item and a downward-pointing indicator.

SystemMenu 3

The MenuSelect and MenuKey functions call the SystemMenu procedure when the
user chooses an item in a menu that belongs to a desk accessory launched in your
application’s partition. Your application should not need to call the SystemMenu
procedure.

PROCEDURE SystemMenu (menuResult: LongInt);

menuResult The value that indicates the menu and menu item chosen by the user. The
menu ID is in the high-order word, and the menu item is in the low-order
word. The menu ID for a menu belonging to a desk accessory is a negative
number.

DESCRIPTION

The SystemMenu procedure directs the desk accessory to perform the appropriate action
for the given menu item by calling the desk accessory’s control routine and passing the
accMenu constant in the csCode parameter. The desk accessory should perform the
desired action and return. See Inside Macintosh: Devices for more information on desk
accessories.

ASSEMBLY-LANGUAGE INFORMATION

If you’re writing a desk accessory, you may need to set the MBarEnable global variable
to appropriate values. If the MBarEnable global variable is nonzero, then all menus in
the current menu bar belong to a desk accessory. If the MBarEnable global variable is 0,
then all menus in the current menu bar belong to an application. If you’re writing an
application, you should not change the value of the MBarEnable global variable.

C H A P T E R 3

Menu Manager

3-122 Menu Manager Reference

SystemEdit 3

When the user chooses one of the standard editing commands in the Edit menu (Undo,
Cut, Copy, Paste, and Clear), call the SystemEdit function to determine whether the
active window belongs to a desk accessory that is launched in your application’s
partition. If so, the SystemEdit function directs the desk accessory to perform the
editing command and returns TRUE. If the active window does not belong to a desk
accessory launched in your application’s partition, SystemEdit returns FALSE and your
application should process the command.

FUNCTION SystemEdit (editCmd: Integer): Boolean;

editCmd The item number of the standard editing command chosen by the user.

Getting a Handle to a Menu Record 3

Most Menu Manager routines that manage menus require that you specify a handle to
the menu record of the menu on which you want to perform an operation. You can use
the HMGetHelpMenuHandle function to get a handle to your application’s Help menu.
Use the GetMenuHandle function to get a handle to the menu record of any of your
application’s other pull-down menus or submenus in the current menu list. For pop-up
menus that use the standard control definition function, you can access the control record
to get the menu’s handle.

GetMenuHandle 3

You can use the GetMenuHandle function to get a handle to the menu record of any of
your application’s menus other than its Help menu. (Use the HMGetHelpMenuHandle
function to get a handle to the menu record of your application’s Help menu.) The
GetMenuHandle function is also available as the GetMHandle function.

FUNCTION GetMenuHandle (menuID: Integer): MenuHandle;

menuID The menu ID of the menu. (Note that this is not the resource ID,
although you often assign the menu ID so that it matches the resource ID.)
You assign a menu ID in the 'MENU' resource of a menu. If you
do not define your menus in 'MENU' resources, you can assign a menu
ID using NewMenu.

DESCRIPTION

The GetMenuHandle function returns a handle to the menu record of the menu having
the specified menu ID. If the menu is in the current menu list, GetMenuHandle returns a
handle to the menu record of the menu as its function result. Otherwise,
GetMenuHandle returns NIL as its function result.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-123

SPECIAL CONSIDERATIONS

To get a handle to a menu record of a pop-up menu that you create using the pop-up
control definition function, dereference the cntrlData field of the pop-up menu’s
control record instead of using GetMenuHandle.

HMGetHelpMenuHandle 3

Use the HMGetHelpMenuHandle function to get a handle to the menu record of your
application’s Help menu.

FUNCTION HMGetHelpMenuHandle (VAR mh: MenuHandle): OSErr;

mh The HMGetHelpMenuHandle function returns a copy of a handle to your
application’s Help menu in this parameter.

DESCRIPTION

The HMGetHelpMenuHandle function returns in the mh parameter a copy of a handle to
the menu record of your application’s Help menu. With this handle, you can append
items to your application’s Help menu by using the AppendMenu procedure or other
related Menu Manager routines. The Help Manager automatically adds the divider that
separates your items from the rest of the Help menu items.

Be sure to define help balloons for your items in the Help menu by creating an 'hmnu'
resource and specifying the kHMHelpMenuID constant as its resource ID.

The Menu Manager functions MenuSelect and MenuKey return a result with the menu
ID in the high-order word and the menu item in the low-order word. The MenuSelect
function (and the MenuKey function, if the user chooses an item with a keyboard
equivalent) returns the kHMHelpMenuID constant in the high-order word when the user
chooses an appended item from the Help menu. The menu item number of the appended
menu item is returned in the low-order word of the function result. Apple reserves the
right to change the number of standard items in the Help menu. To determine the
number of items in the Help menu, call the CountMItems function.

SPECIAL CONSIDERATIONS

Do not use the GetMenuHandle function to get a handle to the menu record of the Help
menu. GetMenuHandle returns a handle to the menu record of the global Help menu,
not the menu record of the Help menu that is specific to your application.

RESULT CODES

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmHelpManagerNotInited –855 Help menu not set up

C H A P T E R 3

Menu Manager

3-124 Menu Manager Reference

SEE ALSO

For examples of how to add items to your application’s Help menu and how to handle
the user’s choice of an item in the Help menu, see Listing 3-14 on page 3-68 and
Listing 3-26 on page 3-81. See the chapter “Help Manager” in Inside Macintosh: More
Macintosh Toolbox for information on creating help balloons for the menus of
your application.

Adding and Deleting Menu Items 3

You can add the names of all resources of a specified type to a menu using the
InsertResMenu or AppendResMenu procedure. You can add menu items that you
define to a menu using the AppendMenu or InsertMenuItem procedure. You can also
delete menu items using the DeleteMenuItem procedure. In most cases you should
not insert or delete individual menu items from an already existing menu unless the user
expects a menu (such as a list of currently open documents) to change.

If you add menu items using the AppendMenu or InsertMenuItem procedure, you
should define in resources the text and other characteristics of the menu items that you
add. This makes your application easier to localize for other regions.

AppendMenu 3

Use the AppendMenu procedure to append one or more items to a menu previously
created using NewMenu, GetMenu, or GetNewMBar.

PROCEDURE AppendMenu (menu: MenuHandle; data: Str255);

menu A handle to the menu record of the menu to which you wish to append
the menu item or items.

data A string that defines the characteristics of the new menu item or items.
Note that in most cases you should store the text of a menu item in a
resource, so that your menu items can be more easily localized. The
AppendMenu procedure appends the menu items in the order in which
they are listed in the data parameter.

DESCRIPTION

The AppendMenu procedure appends any defined menu items to the specified menu. The
menu items are added to the end of the menu. You specify the text of any menu items
and their characteristics in the data parameter. You can embed metacharacters in the
string to define various characteristics of a menu item.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-125

Here are the metacharacters that you can specify in the data parameter:

You can specify any, all, or none of these metacharacters in the text string. The
metacharacters that you specify aren’t displayed in the menu item. (To use any of these
metacharacters in the text of a menu item, first use AppendMenu, specifying at least one
character as the item’s text, and then use the SetMenuItemText procedure to set the
item’s text to the desired string.)

Note
If you add menu items using the AppendMenu procedure, you should
define the text and any marks or keyboard equivalents in resources for
easier localization. �

You can specify the first character that defines the text of a menu item as a hyphen to
create a divider line. The string in the data parameter can be blank (containing one or
more spaces), but it should not be an empty string.

If you do not define a specific characteristic of a menu item, the AppendMenu procedure
assigns the default characteristic to the menu item. If you do not define any characteristic
other than the text for a menu item, the AppendMenu procedure inserts the menu item so
that it appears in the menu as an enabled item, without an icon or a mark, in the plain
character style, and without a keyboard equivalent.

You can use AppendMenu to append items to a menu regardless of whether the menu is
in the current menu list.

SEE ALSO

See “Adding Items to a Menu” on page 3-64 for examples of appending items to a menu.

Metacharacter Description

; or Return Separates menu items.

^ When followed by an icon number, defines the icon for the item. If the
keyboard equivalent field contains $1C, this number is interpreted as
a script code.

! When followed by a character, defines the mark for the item. If the
keyboard equivalent field contains $1B, this value is interpreted as
the menu ID of a submenu of this menu item.

< When followed by one or more of the characters B, I, U, O, and S,
defines the character style of the item to Bold, Italic, Underline,
Outline, or Shadow, respectively.

/ When followed by a character, defines the keyboard equivalent for the
item. When followed by $1B, specifies that this menu item has a
submenu. To specify that the menu item has a script code, small icon,
or reduced icon, use the SetItemCmd procedure to set the keyboard
equivalent field to $1C, $1D, or $1E, respectively.

(Defines the menu item as disabled.

C H A P T E R 3

Menu Manager

3-126 Menu Manager Reference

InsertMenuItem 3

Use the InsertMenuItem procedure to insert one or more items to a menu previously
created using NewMenu, GetMenu, or GetNewMBar.

The InsertMenuItem procedure is also available as the InsMenuItem procedure.

PROCEDURE InsertMenuItem (theMenu: MenuHandle; itemString: Str255;

afterItem: Integer);

theMenu A handle to the menu record of the menu to which you wish to add the
menu item or items.

itemString
A string that defines the characteristics of the new menu items. Note that
in most cases you should store the text of a menu item in a resource, so
that your menu items can be more easily localized. You can specify the
contents of the itemString parameter using metacharacters; the
InsertMenuItem procedure accepts the same metacharacters as the
AppendMenu procedure. However, if you specify multiple items, the
InsertMenuItem procedure inserts the items in the reverse of their order
in the itemString parameter.

afterItem The item number of the menu item after which the new menu items are to
be added. Specify 0 in the afterItem parameter to insert the new items
before the first menu item; specify the item number of a current menu
item to insert the new menu items after it; specify a number greater than
or equal to the last item in the menu to append the new items to the end of
the menu.

DESCRIPTION

The InsertMenuItem procedure inserts any defined menu items to the specified menu.
The menu items are inserted according to the location specified by the afterItem
parameter. You specify the text of any menu items and their characteristics in the
itemString parameter. You can embed metacharacters in the string you specify to
define various characteristics of a menu item. The metacharacters aren’t displayed in
the menu.

Here are the metacharacters you can specify in the itemString parameter:

Metacharacter Description

; or Return Separates menu items.

^ When followed by an icon number, defines the icon for the item. If the
keyboard equivalent field contains $1C, this number is interpreted as
a script code.

! When followed by a character, defines the mark for the item. If the
keyboard equivalent field contains $1B, this value is interpreted as
the menu ID of a submenu of this menu item.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-127

You can specify any, all, or none of these metacharacters in the text string. The
metacharacters that you specify aren’t displayed in the menu item. To use any of these
metacharacters in the text of a menu item, first use InsertMenuItem, specifying at least
one character as the item’s text, and then use the SetMenuItemText procedure to set
the item’s text to the desired string.

Note
If you add menu items using the InsertMenuItem procedure, you
should define the text and any marks or keyboard equivalents in
resources for easier localization. �

You can specify the first character that defines the text of a menu item as a hyphen to
create a divider line. The string in the itemString parameter can be blank (containing
one or more spaces), but it should not be an empty string.

If you do not define a specific characteristic of a menu item, the InsertMenuItem
procedure assigns the default characteristic to the menu item. If you do not define any
characteristic other than the text for a menu item, the InsertMenuItem procedure
inserts the menu item so that it appears in the menu as an enabled item, without an icon
or a mark, in the plain character style, and without a keyboard equivalent.

You can use InsertMenuItem to insert items into a menu regardless of whether the
menu is in the current menu list.

SEE ALSO

See “Adding Items to a Menu” beginning on page 3-64 for examples.

DeleteMenuItem 3

Use the DeleteMenuItem procedure to delete an item from a menu. The
DeleteMenuItem procedure is also available as the DelMenuItem procedure.

PROCEDURE DeleteMenuItem (theMenu: MenuHandle; item: Integer);

Metacharacter Description

< When followed by one or more of the characters B, I, U, O, and S,
defines the character style of the item to Bold, Italic, Underline,
Outline, or Shadow, respectively.

/ When followed by a character, defines the keyboard equivalent for the
item. When followed by $1B, specifies that this menu item has a
submenu. To specify that the menu item has a script code, small icon,
or reduced icon, use the SetItemCmd procedure to set the keyboard
equivalent field to $1C, $1D, or $1E, respectively.

(Defines the menu item as disabled.

C H A P T E R 3

Menu Manager

3-128 Menu Manager Reference

theMenu A handle to the menu record of the menu from which you want to delete
the menu item.

item The item number of the menu item to delete. If you specify 0 or a number
greater than the last item in the menu, DeleteMenuItem does not delete
any item from the menu.

DESCRIPTION

The DeleteMenuItem procedure deletes a specified menu item from a menu. The
DeleteMenuItem procedure also deletes the item’s menu item entry from your
application’s menu color information table (if an entry exists). You should not delete
items from an existing menu unless the user expects the menu (such as a menu that lists
open documents) to change.

AppendResMenu 3

Use the AppendResMenu procedure to search all resource files open to your application
for a given resource type and to append the names of any resources it finds to a specified
menu. The specified menu must have been previously created using NewMenu, GetMenu,
or GetNewMBar.

The AppendResMenu procedure is also available as the AddResMenu procedure.

PROCEDURE AppendResMenu (theMenu: MenuHandle; theType: ResType);

theMenu A handle to the menu record of the menu to which to append the names
of any resources of a given type that AppendResMenu finds.

theType A four-character code that identifies the resource type for which to search.

DESCRIPTION

The AppendResMenu procedure searches all resource files open to your application for
resources of the type defined by the parameter theType. It appends the names of any
resources it finds of the given type to the end of the specified menu. AppendResMenu
appends the names of found resources in alphabetical order; it does not alphabetize items
already in the menu. The AppendResMenu procedure does not add resources with
names that begin with a period (.) or a percent sign (%) to the menu.

The AppendResMenu procedure assigns default characteristics to each menu item. Each
appended menu item appears in the menu as an enabled item, without an icon or a mark,
in the plain character style, and without a keyboard equivalent. To get the name or to
change other characteristics of an item appended by AppendResMenu, use the Menu
Manager routines described in “Getting and Setting the Appearance of Menu Items”
beginning on page 3-130.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-129

If you specify that AppendResMenu add resources of type 'DRVR' to your Apple menu,
AppendResMenu adds the name (and icon) of each item in the Apple Menu Items folder
to the menu.

If you specify that AppendResMenu append resources of type 'FONT' or 'FOND', the
Menu Manager performs special processing for any resources it finds that have font
numbers greater than $4000. If the script system associated with the font name is installed
in the system, AppendResMenu stores information in the itemDefinitions array (in
the itemIcon and itemCmd fields for that item) in the menu’s menu record. This allows
the Menu Manager to display the font name in the correct script.

SPECIAL CONSIDERATIONS

The AppendResMenu procedure calls the Resource Manager procedure SetResLoad
(specifying TRUE in the load parameter) before returning. The AppendResMenu
procedure reads the resource data of the resources it finds into memory. If your
application does not want the Resource Manager to read resource data into memory
when your application calls other routines that read resources, you need to call
SetResLoad and specify FALSE in the load parameter after AppendResMenu returns.

SEE ALSO

Listing 3-15 on page 3-69 shows a sample that adds items from the Apple Menu Items
folder to the Apple menu, and Listing 3-16 on page 3-70 shows a sample that adds font
names to a menu. See Inside Macintosh: More Macintosh Toolbox for information on the
Resource Manager.

InsertResMenu 3

Use the InsertResMenu procedure to search all resource files open to your application
for a given resource type and to insert the names of any resources it finds to a specified
menu. The items are inserted after the specified menu item. The specified menu must
have been previously created using NewMenu, GetMenu, or GetNewMBar.

PROCEDURE InsertResMenu (theMenu: MenuHandle; theType: ResType;

 afterItem: Integer);

theMenu A handle to the menu record of the menu to which to add the names of
any resources of a given type that InsertResMenu finds.

theType A four-character code that identifies the resource type for which to search.

afterItem A number that indicates where in the menu to insert the names of any
resources of the given type that InsertResMenu finds. Specify 0 in the
afterItem parameter to insert the items before the first menu item;
specify the item number of a menu item already in the menu to insert the
items after the specified item number. If you specify a number greater than
or equal to the last item in the menu, the items are inserted at the end of
the menu.

C H A P T E R 3

Menu Manager

3-130 Menu Manager Reference

DESCRIPTION

The InsertResMenu procedure searches all resource files open to your application for
resources of the type defined by the parameter theType. It inserts the names of any
resources it finds of the given type at the specified location in the specified menu.
InsertResMenu adds the names of found resources in alphabetical order; it does not
alphabetize items already in the menu.

The InsertResMenu procedure does not add resources with names that begin with a
period (.) or a percent sign (%) to the menu.

The InsertResMenu procedure assigns default characteristics to each menu item. Each
appended menu item appears in the menu as an enabled item, without an icon or a mark,
in the plain character style, and without a keyboard equivalent. To get the name or to
change other characteristics of an item appended by InsertResMenu, use the Menu
Manager routines described in the next section, “Getting and Setting the Appearance of
Menu Items.”

If you specify that InsertResMenu add resources of type 'DRVR' to your Apple menu,
InsertResMenu adds the name (and icon) of each item in the Apple Menu Items folder
to the menu.

If you specify that InsertResMenu add resources of type 'FONT' or 'FOND', the Menu
Manager performs special processing for any resources it finds that have font numbers
greater than $4000. If the script associated with the font name is currently active,
InsertResMenu stores information in the itemDefinitions array (in the itemIcon
and itemCmd fields for that item) in the menu’s menu record that allows the Menu
Manager to display the font name in the correct script.

SPECIAL CONSIDERATIONS

The InsertResMenu procedure calls the Resource Manager procedure SetResLoad
(specifying TRUE in the load parameter) before returning. The InsertResMenu
procedure reads the resource data of the resources it finds into memory. If your
application does not want the Resource Manager to read resource data into memory
when your application calls other routines that read resources, you need to call
SetResLoad and specify FALSE in the load parameter after InsertResMenu returns.

Getting and Setting the Appearance of Menu Items 3

You can get information about the characteristics of a menu item using Menu Manager
routines. For example, you can get an item’s text, style, mark, keyboard equivalent, script
code, and associated icons. You can also determine if a menu item has a submenu
associated with it and the menu ID of the submenu.

You can set the characteristics of a menu item, including associating a submenu with a
menu item, using Menu Manager routines. Whenever possible, however, you should
define your application’s menu items in 'MENU' resources. This makes your application
easier to localize for other regions.

You can also enable and disable menu items or entire menus using Menu Manager
routines.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-131

EnableItem 3

Use the EnableItem procedure to enable a menu item or a menu.

PROCEDURE EnableItem (theMenu: MenuHandle; item: Integer);

theMenu A handle to the menu record of the menu containing the menu item
to enable.

item The item number of the menu item to enable, or 0 to enable the entire
menu. You cannot individually enable a menu item with an item number
greater than 31.

If you specify 0 in the item parameter, the EnableItem procedure
enables the menu title and all items in the menu that were not previously
individually disabled.

DESCRIPTION

The EnableItem procedure enables a specified menu item so that it no longer appears
dim and so that the user can choose the menu item.

Note that, if you enable a menu, the EnableItem procedure enables the menu title but
only enables those menu items that are not currently disabled as a result of your
application previously calling DisableItem and specifying each item’s item number.
For example, if all items in your application’s Edit menu are enabled, you can disable the
Cut and Copy commands individually using DisableItem. If you choose to disable the
entire menu by passing 0 as the item parameter to DisableItem, the menu and all its
items are disabled. If you then enable the entire menu by passing 0 as the item
parameter to EnableItem, the menu and its items are enabled, except for the Cut and
Copy commands, which remain disabled. In this case, to enable the Cut and Copy
commands you must enable each one individually using EnableItem.

If your application enables a menu using EnableItem, it should call DrawMenuBar to
update the menu bar’s appearance.

SEE ALSO

See “Enabling and Disabling Menu Items” on page 3-58 for examples of enabling items in
a menu.

DisableItem 3

Use the DisableItem procedure to disable a menu item or an entire menu.

PROCEDURE DisableItem (theMenu: MenuHandle; item: Integer);

C H A P T E R 3

Menu Manager

3-132 Menu Manager Reference

theMenu A handle to the menu record of the menu containing the menu item
to disable.

item The item number of the menu item to disable, or 0 to disable the entire
menu. You cannot individually disable a menu item with an item number
greater than 31.

If you specify 0 in the item parameter, the DisableItem procedure
disables the menu title and all items in the menu, including menu items
with item numbers greater than 31.

DESCRIPTION

The DisableItem procedure disables a specified menu item so that it appears dim and
cannot be chosen by the user.

If your application disables a menu using DisableItem, your application should call
DrawMenuBar to update the menu bar’s appearance.

SEE ALSO

See “Enabling and Disabling Menu Items” on page 3-58 for examples of disabling items
in a menu.

GetMenuItemText 3

Use the GetMenuItemText procedure to get the text of a specific menu item. The
GetMenuItemText procedure is also available as the GetItem procedure.

PROCEDURE GetMenuItemText (theMenu: MenuHandle; item: Integer;

VAR itemString: Str255);

theMenu A handle to the menu record of the menu containing the menu item whose
text you wish to get.

item The item number of the menu item. The GetMenuItemText procedure
returns the text of this item.

itemString The GetMenuItemText procedure returns the text of the menu item in
this parameter.

DESCRIPTION

The GetMenuItemText procedure returns the text of the specified menu item in the
itemString parameter. Use other Menu Manager routines to get information about
the other characteristics of a menu item.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-133

SetMenuItemText 3

Use the SetMenuItemText procedure to set the text of a specific menu item to a given
string. The SetMenuItemText procedure is also available as the SetItem procedure.

PROCEDURE SetMenuItemText (theMenu: MenuHandle; item: Integer;

 itemString: Str255);

theMenu A handle to the menu record of the menu containing the menu item whose
text you wish you to set.

item The item number of the menu item. The SetMenuItemText procedure
sets the text of this item.

itemString The SetMenuItemText procedure sets the text of the menu item
according to the string specified in the itemString parameter. The
SetMenuItemText procedure does not recognize metacharacters or set
any other characteristics of the menu item. The itemString parameter
can be blank, but it should not be an empty string.

DESCRIPTION

The SetMenuItemText procedure sets the text of the specified menu item to the text
specified in the itemString parameter. The SetMenuItemText procedure does not
recognize any metacharacters used by the AppendMenu and InsertMenuItem
procedures. Use other Menu Manager routines to set other characteristics of a menu item.

If you set the text of a menu item using the SetMenuItemText procedure, you should
store the text in a string resource so that your application can be more easily localized.

SEE ALSO

See Listing 3-9 on page 3-59 for an example of setting the text of a menu item.

GetItemStyle 3

Use the GetItemStyle procedure to get the style of the text in a specific menu item.

PROCEDURE GetItemStyle (theMenu: MenuHandle; item: Integer;

VAR chStyle: Style);

theMenu A handle to the menu record of the menu containing the menu item whose
style you wish to get.

item The item number of the menu item. The GetItemStyle procedure
returns the style of the text for this item.

C H A P T E R 3

Menu Manager

3-134 Menu Manager Reference

chStyle The GetItemStyle procedure returns the style of the text for this item in
the chStyle parameter. The chStyle parameter is a set defined by the
Style data type.

TYPE
StyleItem = (bold, italic, underline, outline,
 shadow, condense, extend);
Style = SET OF StyleItem;

DESCRIPTION

The GetItemStyle procedure returns the style of the text of the specified menu item in
the chStyle parameter. The returned style can be one or more of the styles defined by
the Style data type, or it is the empty set if the style of the text is Plain.

SetItemStyle 3

Use the SetItemStyle procedure to set the style of the text in a specific menu item.

PROCEDURE SetItemStyle (theMenu: MenuHandle; item: Integer;

chStyle: Style);

theMenu A handle to the menu record of the menu containing the menu item whose
style you wish to set.

item The item number of the menu item. The SetItemStyle procedure sets
the style of the text for this item.

chStyle The SetItemStyle procedure sets the style of the text for this item
according to the style described by the chStyle parameter. The chStyle
parameter is a set defined by the Style data type.

TYPE
StyleItem = (bold, italic, underline, outline,
 shadow, condense, extend);
Style = SET OF StyleItem;

You can set the style to one or more of the styles defined by the Style
data type, or you can set it to Plain by specifying an empty set in the
chStyle parameter.

DESCRIPTION

The SetItemStyle procedure sets the style of the text of the specified menu item to the
style or styles defined by the chStyle parameter.

SEE ALSO

See Listing 3-10 on page 3-60 for examples of setting the style of a menu item.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-135

GetItemMark 3

Use the GetItemMark procedure to get the mark of a specific menu item or the menu ID
of the submenu associated with the menu item.

PROCEDURE GetItemMark (theMenu: MenuHandle; item: Integer;

VAR markChar: Char);

theMenu A handle to the menu record of the menu containing the menu item whose
mark or submenu you wish to get.

item The item number of the menu item. The GetItemMark procedure returns
the mark of this item or, if this item has a submenu associated with it,
returns the menu ID of the submenu in the markChar parameter.

markChar The GetItemMark procedure returns the mark or the submenu of this
item in the markChar parameter. A menu item can have a mark or a
submenu attached to it, but not both. If this menu item has a marking
character, the GetItemMark procedure returns the mark. If this menu
item has a submenu associated with it, the GetItemMark procedure
returns the menu ID of the submenu. If the item doesn’t have a mark or
a submenu, GetItemMark returns 0 in this parameter.

DESCRIPTION

If the item has a mark or submenu, the GetItemMark procedure returns the mark or the
menu ID of the submenu of the specified menu item in the markChar parameter (or 0 if
the item doesn’t have a mark or a submenu).

SetItemMark 3

Use the SetItemMark procedure to set the mark of a specific menu item or to change or
set the submenu associated with a menu item.

PROCEDURE SetItemMark (theMenu: MenuHandle; item: Integer;

markChar: Char);

theMenu A handle to the menu record of the menu containing the menu item whose
mark or submenu you wish to set.

item The item number of the menu item. The SetItemMark procedure sets the
mark or the submenu of this item.

markChar The SetItemMark procedure sets the mark or submenu of this item
according to the information in the markChar parameter.

C H A P T E R 3

Menu Manager

3-136 Menu Manager Reference

To set the mark of a menu item, specify the marking character in the
markChar parameter. You can also use one of these constants to specify
that the item has no mark, has a checkmark as the marking character, or
has the diamond symbol as the marking character:

CONST
noMark = 0; {no marking character}
checkMark = $12; {checkmark}
diamondMark = $13; {diamond symbol}

To set the submenu associated with this menu item, specify the menu ID
of the submenu in the markChar parameter.

DESCRIPTION

The SetItemMark procedure sets the mark or the submenu of the specified menu item.

SEE ALSO

See Listing 3-11 on page 3-61 for examples of setting the mark of a menu item.

CheckItem 3

Use the CheckItem procedure to set the mark of a specific menu item to a checkmark or
to remove a mark from a menu item.

PROCEDURE CheckItem (theMenu: MenuHandle; item: Integer;

checked: Boolean);

theMenu A handle to the menu record of the menu containing the menu item whose
mark you wish to set to a checkmark or whose mark you wish to remove.

item The item number of the menu item.

checked The CheckItem procedure sets or removes the mark of the item according
to the information in the checked parameter.

To set the mark of a menu item to a checkmark, specify TRUE in the
checked parameter. To remove a checkmark or any other mark from a
menu item, specify FALSE in the checked parameter.

DESCRIPTION

The CheckItem procedure sets the mark of the specified menu item to a checkmark or
removes any mark from the menu item.

SEE ALSO

See Listing 3-11 on page 3-61 for examples of setting the mark of a menu item.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-137

GetItemIcon 3

Use the GetItemIcon procedure to get the icon or script code of a specific menu item. If
the menu item’s keyboard equivalent field contains $1C, the returned number represents
the script code of the menu item. Otherwise, the returned number represents the item’s
icon number.

PROCEDURE GetItemIcon (theMenu: MenuHandle; item: Integer;

VAR iconIndex: Byte);

theMenu A handle to the menu record of the menu containing the menu item whose
icon or script code you wish to get.

item The item number of the menu item. The GetItemIcon procedure returns
the icon number or script code of this item.

iconIndex For menu items that do not specify $1C in the keyboard equivalent field,
the GetItemIcon procedure returns the icon number of the item’s icon in
this parameter. The icon number returned in this parameter is a value
from 1 through 255 if the menu item has an icon associated with it and is 0
otherwise. You can add 256 to the icon number to generate the resource ID
of the 'cicn', 'ICON', or 'SICN' resource that describes the icon of the
menu item. For example, if the GetItemIcon procedure returns 5 in this
parameter, then the icon of the menu item is described by an icon resource
with resource ID 261.

For menu items that contain $1C in the keyboard equivalent field, the
GetItemIcon procedure returns the script code of the menu item. The
Menu Manager displays the menu item using this script code if the
corresponding script system is installed.

DESCRIPTION

The GetItemIcon procedure returns the icon number or script code of the specified
menu item in the iconIndex parameter (or 0 if the item doesn’t have an icon or a
script code).

SetItemIcon 3

Use the SetItemIcon procedure to set the icon number or script code of a specific menu
item. Usually you display menu items in the current system script; however, if needed,
you can use the SetItemIcon procedure to set the script code of a menu item. For an
item’s script code to be set, the keyboard equivalent field of the item must contain $1C. If
the keyboard equivalent field contains any other value, the SetItemIcon procedure
interprets the specified number as the item’s icon number.

PROCEDURE SetItemIcon (theMenu: MenuHandle; item: Integer;

iconIndex: Byte);

C H A P T E R 3

Menu Manager

3-138 Menu Manager Reference

theMenu A handle to the menu record of the menu containing the menu item whose
icon (or script code) you wish to set.

item The item number of the menu item. The SetItemIcon procedure sets the
icon (or script code) of this item.

iconIndex If the menu item’s keyboard equivalent field does not contain $1C, the
SetItemIcon procedure sets the icon number of the item’s icon to the
number defined in this parameter. The icon number you specify should be
a value from 1 through 255 (or from 1 through 254 if the item has a small
or reduced icon) or 0 if the item does not have an icon.

The Menu Manager adds 256 to the icon number to generate the resource
ID of the 'cicn' or 'ICON' resource that describes the icon of the menu
item. For example, if you specify 5 as the value of the iconIndex
parameter, when the Menu Manager needs to draw the item, it looks for
an icon resource with resource ID 261.

If the menu item’s keyboard equivalent field contains $1C, the
SetItemIcon procedure sets the script code of the menu item to the
number defined in the iconIndex parameter. The Menu Manager
displays the menu item using the specified script code if the
corresponding script system is installed.

You can specify 0 in the iconIndex parameter to indicate that the item
uses the current system script and does not have an icon number.

DESCRIPTION

The SetItemIcon procedure sets the icon number or script code of the specified menu
item to the value in the iconIndex parameter.

SEE ALSO

See “Changing the Icon or Script Code of Menu Items” beginning on page 3-62 for
examples of setting the icon of a menu item.

GetItemCmd 3

Use the GetItemCmd procedure to get the value of the keyboard equivalent field of a
menu item.

PROCEDURE GetItemCmd (theMenu: MenuHandle; item: Integer;

 VAR cmdChar: Char);

theMenu A handle to the menu record of the menu containing the menu item whose
keyboard equivalent field you wish to get.

item The item number of the menu item. The GetItemCmd procedure returns
the keyboard equivalent field of this item.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-139

cmdChar The value of the item’s keyboard equivalent field. The Menu Manager
uses this value to map keyboard equivalents to menu commands or to
indicate special characteristics of the menu item.

If the cmdChar parameter contains $1B, the menu item has a submenu; a
value of $1C indicates that the item has a script code; a value of $1D
indicates that the Menu Manager reduces the item’s 'ICON' resource; and
a value of $1E indicates that the item has an 'SICN' resource.

DESCRIPTION

The GetItemCmd procedure returns the value in the keyboard equivalent field of the
specified menu item in the cmdChar parameter (or 0 if the item doesn’t have a keyboard
equivalent, submenu, script code, reduced icon, or small icon).

SetItemCmd 3

Use the SetItemCmd procedure to set the value of the keyboard equivalent field of a
menu item. You usually define the keyboard equivalents and other characteristics of your
menu items in 'MENU' resources rather than using the SetItemCmd procedure.

PROCEDURE SetItemCmd (theMenu: MenuHandle; item: Integer;

 cmdChar: Char);

theMenu A handle to the menu record of the menu containing the menu item whose
keyboard equivalent field you wish to set.

item The item number of the menu item. The SetItemCmd procedure sets the
keyboard equivalent field of this item to the value specified in the
cmdChar parameter.

cmdChar The value of the item’s keyboard equivalent field. The Menu Manager
uses this value to map keyboard equivalents to menu commands or to
define special characteristics of the menu item.

To indicate that the menu item has a submenu, specify $1B in the
cmdChar parameter; specify a value of $1C to indicate that the item has a
script code; specify a value of $1D to indicate that the Menu Manager
should reduce the item’s 'ICON' resource to the size of a small icon; and
specify a value of $1E to indicate that the item has an 'SICN' resource.

The values $01 through $1A, as well as $1F and $20, are reserved for use
by Apple. You should not use any of these reserved values in the cmdChar
parameter.

DESCRIPTION

The SetItemCmd procedure sets the value in the keyboard equivalent field of the
specified menu item in the cmdChar parameter (you can specify 0 if the item doesn’t
have a keyboard equivalent, submenu, script code, reduced icon, or small icon). If you

C H A P T E R 3

Menu Manager

3-140 Menu Manager Reference

specify that the item has a submenu, you should provide the menu ID of the submenu as
the item’s marking character. If you specify that the item has a script code, provide the
script code in the icon field of the menu item. If you specify that the item has an 'SICN'
or a reduced'ICON' resource, provide the icon number in the icon field of the item.

Disposing of Menus 3

If you no longer need a menu in the menu list, you can delete the menu using
DeleteMenu. You should then release the memory associated with that menu using
the DisposeMenu procedure if you created the menu using NewMenu; otherwise,
use the Resource Manager procedure ReleaseResource. See the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox for information on the
ReleaseResource routine.

DisposeMenu 3

To release the memory occupied by a menu’s associated data structures, use either the
DisposeMenu procedure or the Resource Manager procedure ReleaseResource.
Use DisposeMenu if you created the menu using NewMenu; use ReleaseResource if
you created the menu using GetMenu or read the resource in using GetNewMBar.

You should delete the menu from the current menu list using DeleteMenu or
ClearMenuBar before calling the DisposeMenu procedure.

PROCEDURE DisposeMenu (theMenu: MenuHandle);

theMenu A handle to the menu record of the menu you wish to dispose of.

DESCRIPTION

The DisposeMenu procedure releases the memory occupied by the specified menu’s
menu record. The handle that you pass in the parameter theMenu is not valid after
DisposeMenu returns.

SEE ALSO

To delete a menu from the current menu list, see the description of the DeleteMenu
procedure on page 3-109.

Counting the Items in a Menu 3

If your application needs to count the number of items in a menu—for example, in a
menu that can contain a variable number of menu items such as the Font menu or Help
menu—use the CountMItems function.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-141

CountMItems 3

You can count the number of items in a menu using the CountMItems function.

FUNCTION CountMItems (theMenu: MenuHandle): Integer;

theMenu A handle to the menu record of the menu whose items your application
needs to count.

DESCRIPTION

The CountMItems function counts the number of items in the specified menu and
returns as its function result the number of items in the menu.

Highlighting the Menu Bar 3

You can highlight (invert) a menu title or the entire menu bar using the FlashMenuBar
procedure. (The HiliteMenu procedure highlights only menu titles.) In most cases
your application should not highlight the menu bar; use HiliteMenu to highlight a
menu title.

The user sets the number of times an enabled menu item flashes using the General
Controls panel. The SetMenuFlash procedure can be used to control the number of
times that menu items blink when the user chooses an enabled menu item; usually you
should not change the setting chosen by the user.

FlashMenuBar 3

Use the FlashMenuBar procedure to highlight (invert) a menu title or the entire menu
bar. You can call FlashMenuBar twice in a row to make the menu bar blink.

PROCEDURE FlashMenuBar (menuID: Integer);

menuID The menu ID of the menu whose title you want to invert. Use 0 in this
parameter to invert the entire menu bar. If the specified menu ID does not
exist in the current menu list, the FlashMenuBar procedure inverts the
entire menu bar.

DESCRIPTION

The FlashMenuBar procedure inverts the title of the specified menu or inverts the menu
bar. To prevent unexpected colors from appearing in the menu bar, you should
not call FlashMenuBar to invert a menu title while the entire menu bar is inverted.

C H A P T E R 3

Menu Manager

3-142 Menu Manager Reference

Only one menu title can be inverted at a time. If no menus are currently highlighted,
calling FlashMenuBar with a specific menu ID inverts the title of that menu. If you call
FlashMenuBar again specifying another menu ID that is different from that of the
previously inverted menu title, FlashMenuBar restores the previously highlighted
menu to normal and then inverts the title of the specified menu.

SEE ALSO

You can also highlight a menu using the HiliteMenu procedure, described on
page 3-119.

SetMenuFlash 3

Use the SetMenuFlash procedure to set the number of times a menu item blinks when
the user chooses an enabled menu item. The user sets this value using the General
Controls panel, and in most cases your application should not change the value set by the
user.

PROCEDURE SetMenuFlash (count: Integer);

count The number of times an enabled menu item should blink when the user
chooses it. This value is initially set to 3 by the General Controls panel. A
count of 0 disables the blinking. Values greater than 3 can be slow and
distracting to the user.

DESCRIPTION

The SetMenuFlash procedure sets the number of times that the Menu Manager causes a
menu item to blink when the user chooses an enabled menu item.

The appearance of blinking in a menu item is determined by the menu’s menu definition
procedure.

ASSEMBLY-LANGUAGE INFORMATION

The global variable MenuFlash contains the current count (number of times) a menu
item blinks when chosen by the user.

Recalculating Menu Dimensions 3

The Menu Manager uses the CalcMenuSize procedure to recalculate the dimensions of
a menu whenever its contents have changed. In most cases your application does not
need to use the CalcMenuSize procedure.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-143

CalcMenuSize 3

The CalcMenuSize procedure recalculates the horizontal and vertical dimensions of
a menu and stores the new values in the menuWidth and menuHeight fields of the
menu record.

PROCEDURE CalcMenuSize (theMenu: MenuHandle);

theMenu A handle to the menu record of the menu whose dimensions need
recalculating.

DESCRIPTION

The CalcMenuSize procedure uses the menu definition procedure of the specified menu
to calculate the dimensions of the menu.

Managing Entries in the Menu Color Information Table 3

The Menu Manager maintains color information about an application’s menus in a menu
color information table. The standard menu definition procedure defines the standard
color for the menu bar, titles of menus, text and characteristics of a menu item, and
background color of a displayed menu. You can change any of these colors by adding
entries to your application’s menu color information table. However, note that in most
cases your application should use the default colors for its menus.

You can provide an 'mctb' resource with resource ID 0 as one of your application’s
resources if you want to use colors other than the default colors for your application’s
menu bar and menus. (Or you can provide an 'mctb' resource with the same resource
ID as a 'MENU' resource to define the color entries for a single menu.) You can also add
entries to or delete entries from your application’s menu color information table using
the SetMCEntries and DeleteMCEntries procedures. You can get information about
an entry using the GetMCEntry function. To get or set your application’s menu color
information table, use the GetMCInfo function or SetMCInfo procedure. To dispose of
your application’s menu color information table, use the DisposeMCInfo procedure.

Note that the menu color information table uses a format that is different from the
standard color table format. “The Menu Color Information Table Record” beginning on
page 3-98 describes the format of the menu color information table in detail.

GetMCInfo 3

Use the GetMCInfo function to get a handle to a copy of your application’s menu color
information table.

FUNCTION GetMCInfo: MCTableHandle;

C H A P T E R 3

Menu Manager

3-144 Menu Manager Reference

DESCRIPTION

The GetMCInfo function creates a copy of your application’s menu color information
table and returns a handle to the copy. If the copy fails, GetMCInfo returns NIL.

SEE ALSO

See “The Menu Color Information Table Record” beginning on page 3-98 for a
description of the format of the menu color information table.

SetMCInfo 3

Use the SetMCInfo procedure to set your application’s menu color information table.

PROCEDURE SetMCInfo (menuCTbl: MCTableHandle);

menuCTbl A handle to a menu color information table.

DESCRIPTION

The SetMCInfo procedure copies the table specified by the menuCTbl parameter
to your application’s menu color information table. If successful, the SetMCInfo
procedure is responsible for disposing of your application’s current menu color
information table, so your application does not need to explicitly dispose of the
current table.

Your application should call the Memory Manager function MemError to determine
whether the SetMCInfo procedure successfully copied the table. If the SetMCInfo
procedure cannot successfully copy the table, it does not dispose of the current menu
color information table and the MemError function returns a nonzero result code. If the
SetMCInfo procedure is able to successfully copy the table, it disposes of the current
menu color information table and the MemError function returns the noErr result code.

If the menu color information table specifies a new menu bar color or new menu title
colors, your application should call DrawMenuBar after calling SetMCInfo.

Note that GetNewMBar does not save your application’s current menu color information
table. If your application changes menu bars, you can save and restore your application’s
current menu color information table by calling GetMCInfo before GetNewMBar and
calling SetMCInfo afterward.

SEE ALSO

See “The Menu Color Information Table Record” beginning on page 3-98 for a
description of the format of the menu color information table. For an example of using
the GetMCInfo and SetMCInfo routines to save and restore menu color information,
see Listing 3-6 on page 3-52. See Inside Macintosh: Memory for information on the
MemError function

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-145

DisposeMCInfo 3

Use the DisposeMCInfo procedure to dispose of a menu color information table. The
DisposeMCInfo procedure is also available as the DispMCInfo procedure.

PROCEDURE DisposeMCInfo (menuCTbl: MCTableHandle);

menuCTbl A handle to a menu color information table.

DESCRIPTION

The DisposeMCInfo procedure disposes of the menu color information table referred to
by the menuCTbl parameter.

GetMCEntry 3

Use the GetMCEntry function to return information about an entry in your application’s
menu color information table. You can get information about the menu bar entry, a menu
title entry, or a menu item entry.

FUNCTION GetMCEntry (menuID: Integer; menuItem: Integer)

 : MCEntryPtr;

menuID The menu ID that the GetMCEntry function should use to return
information about the menu color information table. Specify 0 in the
menuID parameter (and the menuItem parameter) to get the menu bar
entry. Specify the menu ID of a menu in the current menu list in the
menuID parameter and 0 in the menuItem parameter to get a specific
menu title entry. Specify the menu ID of a menu in the current menu list in
the menuID parameter and an item number in the menuItem parameter
to get a specific menu item entry.

menuItem The menu item that the GetMCEntry function should use to return
information about the menu color information table. If you specify 0 in
this parameter, GetMCEntry returns either the menu bar entry or the
menu title entry, depending on the value of the menuID parameter. If you
specify the item number of a menu item in this parameter and the menu
ID of a menu in the current menu list in the menuID parameter,
GetMCEntry returns a specific menu item entry.

DESCRIPTION

The GetMCEntry function returns a menu bar entry, a menu title entry, or a menu item
entry according to the values specified in the menuID and menuItem parameters. If
the GetMCEntry function finds the specified entry in your application’s menu color
information table, it returns a pointer to a record of data type MCEntry. If the specified
entry is not found, GetMCEntry returns NIL.

C H A P T E R 3

Menu Manager

3-146 Menu Manager Reference

� W A R N I N G

The menu color information table is relocatable, so the pointer returned
by the GetMCEntry function may not be valid across routines that may
move or purge memory. Your application should make a copy of the
menu color entry record if necessary. �

SEE ALSO

“The Menu Color Information Table Record” beginning on page 3-98 describes the entries
in a menu color information table.

SetMCEntries 3

Use the SetMCEntries procedure to set entries in your application’s menu color
information table. You can set any or all of your application’s menu item entries and
menu title entries or the menu bar entry.

PROCEDURE SetMCEntries (numEntries: Integer;

menuCEntries: MCTablePtr);

numEntries The number of entries contained in the array of menu color entry records.

menuCEntries
A pointer to an array of menu color entry records. Specify the number of
records in the array in the numEntries parameter.

DESCRIPTION

The SetMCEntries procedure sets any specified menu bar entry, menu title entry, or
menu item entry according to the values specified in the menu color entry records. If
an entry already exists for a specified menu color entry, the SetMCEntries procedure
updates the entry in your application’s menu color information table with the new
values. If the entry doesn’t exist, it is added to your application’s menu color information
table.

If any of the added entries specify a new menu bar color or new menu title colors, your
application should call DrawMenuBar to update the menu bar with the new colors.

SPECIAL CONSIDERATIONS

The SetMCEntries procedure may move or purge memory. Your application should
make sure that the array specified by the menuCEntries parameter is nonrelocatable
before calling SetMCEntries.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-147

SEE ALSO

“The Menu Color Information Table Record” beginning on page 3-98 describes the entries
in a menu color information table.

DeleteMCEntries 3

Use the DeleteMCEntries procedure to delete one or all entries for a specific menu
from your application’s menu color information table. You can delete a menu item entry,
a menu title entry, the menu bar entry, or all menu item entries of a specific menu. The
DeleteMCEntries procedure is also available as the DelMCEntries procedure.

PROCEDURE DeleteMCEntries (menuID: Integer; menuItem: Integer);

menuID The menu ID that the DeleteMCEntries procedure should use to
determine which entry to delete from the menu color information table.
Specify 0 in the menuID parameter (and the menuItem parameter) to
delete the menu bar entry. Specify the menu ID of a menu in the current
menu list in the menuID parameter and 0 in the menuItem parameter to
delete a specific menu title entry. Specify the menu ID of a menu in the
current menu list in the menuID parameter and an item number in the
menuItem parameter to delete a specific menu item entry.

menuItem The menu item that the DeleteMCEntries procedure should use to
determine which entry to delete from the menu color information table. If
you specify 0 in this parameter, DeleteMCEntries deletes either the
menu bar entry or menu title entry, depending on the value of the menuID
parameter. If you specify the item number of a menu item in this
parameter and the menu ID of a menu in the current menu list in the
menuID parameter, DeleteMCEntries deletes a specific menu item
entry. You can also delete all menu item entries for a specific menu from
your application’s menu color information table using this constant:

CONST
mctAllItems = -98; {delete all menu item entries }
 { for the specified menu}

DESCRIPTION

The DeleteMCEntries procedure deletes a menu bar entry, a menu title entry, a menu
item entry, or all menu item entries of a given menu, according to the values specified in
the menuID and menuItem parameters. If the GetMCEntry function does not find the
specified entry in your application’s menu color information table, it does not delete the
entry. Your application should not delete the last entry in your application’s menu color
information table.

If any of the deleted entries changes the menu bar color or a menu title color, your
application should call DrawMenuBar to update the menu bar.

C H A P T E R 3

Menu Manager

3-148 Menu Manager Reference

Application-Defined Routine 3
Apple provides a standard menu definition procedure and standard menu bar definition
function. The Menu Manager uses the menu definition procedure and menu bar
definition function to display and perform basic operations on menus and the menu bar.
Although the Menu Manager allows you to provide your own menu bar definition
function, Apple recommends that you use the standard menu bar definition function.
Similarly, in most cases the standard menu definition procedure should meet the needs of
most applications. However, if your application has special needs, you can choose to
provide your own menu definition procedure. If you do so, define your menu definition
procedure so that it emulates the standard behavior of menus as much as possible. If you
define your own menus, they should follow the guidelines described in this chapter and
in Macintosh Human Interface Guidelines.

The Menu Definition Procedure 3

The Menu Manager uses the menu definition procedure of a menu to draw the menu
items in the menu, to determine which item the user chose from the menu, and to
calculate the menu’s dimensions. If you provide your own menu definition procedure,
it should also perform these tasks.

Apple provides a standard menu definition procedure, stored as a resource in the System
file. The standard menu definition procedure is the 'MDEF' resource with resource ID 0.
When you define your menus, you specify the menu definition procedure the Menu
Manager should use when managing them. You’ll usually want to use the standard menu
definition procedure for your application. However, if you need a feature not provided
by the standard menu definition procedure (for example, if you want to include more
graphics in your menus), you can choose to write your own menu definition procedure.

MyMenuDef 3

You can provide your own menu definition procedure if you need special features in a
menu other than those provided by the standard menu definition procedure. This section
describes how to define your own menu definition procedure, defines the parameters
passed to your procedure by the Menu Manager, and describes the general actions your
procedure should perform.

PROCEDURE MyMenuDef (message: Integer; theMenu: MenuHandle;

VAR menuRect: Rect; hitPt: Point;

VAR whichItem: Integer);

message A number that identifies the operation that the menu definition proce-
dure should perform. The message parameter can contain any one of
these values:

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-149

CONST
 mDrawMsg = 0; {draw the menu}
 mChooseMsg = 1; {tell which item was chosen }
 { and highlight it}
 mSizeMsg = 2; {calculate menu dimensions}
 mPopUpMsg = 3; {calculate rectangle of }
 { the pop-up box}

Your menu definition procedure should not respond to any value other
than the four constants listed above.

theMenu A handle to the menu record of the menu that the operation should affect.

menuRect The rectangle (in global coordinates) in which the menu is located; the
Menu Manager provides this information to the menu definition
procedure only when the value in the message parameter is the
mDrawMsg or mChooseMsg constant.

When the value in the message parameter is the mPopUpMsg constant,
the menu definition procedure should calculate and then return the
dimensions of the pop-up box in this parameter. When the value in the
message parameter is the mSizeMsg constant, the menu definition
procedure should calculate the horizontal and vertical dimensions of the
menu rectangle and store these values in the menuWidth and
menuHeight fields of the menu record.

hitPt A mouse location (in global coordinates). The Menu Manager provides
information in this parameter to the menu definition procedure when the
value in the message parameter is the mChooseMsg or mPopUpMsg
constant. When the menu definition procedure receives the mChooseMsg
constant in the message parameter, it should determine whether the
mouse location specified in the hitPt parameter is in an enabled menu
item and highlight or unhighlight the item specified in the whichItem
parameter appropriately. When the menu definition procedure receives
the mPopUpMsg constant in the message parameter, the hitPt parameter
contains the top-left coordinates of the closed pop-up box, which your
procedure can use to calculate the rectangle of the open pop-up box.

whichItem The item number of the last item chosen from this menu (or 0 if an item
hasn’t been chosen). The Menu Manager provides information in this
parameter to the menu definition procedure when the value in the
message parameter is the mChooseMsg constant. When the menu
definition procedure receives the mChooseMsg constant in the
message parameter, it should determine whether the mouse location
specified in the hitPt parameter is in an enabled menu item. If so, the
menu definition procedure should unhighlight the item specified by
the whichItem parameter, highlight the new item, and return the new
item number in whichItem. If the mouse location isn’t in an enabled
menu item, the menu definition procedure should unhighlight the
item specified by the whichItem parameter and return 0 in the
whichItem parameter.

C H A P T E R 3

Menu Manager

3-150 Menu Manager Reference

DESCRIPTION

The Menu Manager calls your menu definition procedure whenever it needs your
definition procedure to perform a certain action on a specific menu. The action
your menu definition procedure should perform depends on the value of the
message parameter.

If you provide your own menu definition procedure, store it in a resource of type 'MDEF'
and include its resource ID in the description of each menu that uses your own definition
procedure. If you create a menu using GetMenu (or GetNewMBar), the Menu Manager
reads the menu definition procedure into memory and stores a handle to it in the
menuProc field of the menu’s menu record.

If you create a menu using NewMenu, the Menu Manager stores a handle to the standard
menu definition procedure in the menuProc field of the menu’s menu record. In this case
you must replace the value in the menuProc field with a handle to your own procedure
and then call the CalcMenuSize procedure. If your menu definition procedure is in a
resource file, you can get its handle by using the Resource Manager to read it from the
resource file into memory. However, note that you should usually store your menus in
resources (rather than using NewMenu) to make your application easier to localize. See
the “Resource Manager” chapter in Inside Macintosh: More Macintosh Toolbox for
information on the Resource Manager.

The menu definition procedure is responsible for drawing the contents of the menu and
its menu items, determining whether the cursor is in a displayed menu, highlighting and
unhighlighting menu items, and calculating a menu’s dimensions.

When the Menu Manager requests your menu definition procedure to perform an action
on a menu, it provides your procedure with a handle to its menu record. This allows your
procedure to access the data in the menu record and to use any data in the variable data
portion of the menu record to appropriately handle the menu items.

When the Menu Manager creates a menu as a result of an application calling GetMenu or
GetNewMBar, it fills out the menuID, menuProc, enableFlags, menuTitle, and
itemDefinitions fields of the menu record according to its resource definition. If the
menu is managed by your menu definition procedure, the Menu Manager calls your
procedure (specifying mSizeMsg) to calculate and fill in the menuHeight and
menuWidth fields of the menu record. The menu items are described by a variable length
field (itemDefinitions) in the menu record. Your menu definition procedure can
define and use this variable-length data in any manner it chooses.

For pop-up menus that are not implemented as controls, the Menu Manager uses the
menu definition procedure to support pop-up menus. If your menu definition procedure
supports pop-up menus, it should respond appropriately to the mPopUpMsg constant.

The Menu Manager specifies the mPopUpMsg constant in the message parameter and
calls your menu definition procedure whenever it needs to calculate the rectangle
bounded by the pop-up box for a pop-up menu that is managed by your menu definition
procedure. The parameter theMenu contains a handle to the menu record
of the pop-up menu, the hitPt parameter contains the top-left coordinates of the pop-
up box, and whichItem contains the previously chosen item. Your menu definition
procedure should calculate the rectangle in which the pop-up menu is to appear

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-151

and return this rectangle in the menuRect parameter. If the menu is so large that it
scrolls, return the actual top of the menu in the whichItem parameter. For pop-up
menus, your menu definition procedure also must place the pop-up menu’s scrolling
information in the global variables TopMenuItem and AtMenuBottom. Place in
TopMenuItem the pixel value of the top of the scrollable menu, and place in
AtMenuBottom the pixel value of the bottom of the scrollable menu.

Note
Your menu definition procedure should not assume that the A5
register is properly set up, so your procedure can’t refer to any of
the QuickDraw global variables. �

SEE ALSO

For additional information on how your menu definition procedure should respond
when it receives the mDrawMsg, mChooseMsg, or mSizeMsg constant in the message
parameter, see “Writing Your Own Menu Definition Procedure” beginning on page 3-87.

Resources 3
This section describes the menu ('MENU') resource, menu bar ('MBAR') resource, and
menu color information table ('mctb') resource. Usually you should define your menus
using 'MENU' resources, define the menus in your menu bar in an 'MBAR' resource, and
use the GetNewMBar function to read in the descriptions of your menus and menu bar.

If you want to use colors other than the default colors in a menu, you can provide an
'mctb' resource with the same resource ID as its corresponding 'MENU' resource, or
you can provide an 'mctb' resource with resource ID 0 to define colors for all your
menus and your menu bar.

If you choose to provide your own menu definition procedure, you should store your
routine in an 'MDEF' resource.

To create a 'MENU', an 'MBAR', or an 'mctb' resource, either you can specify the
resource description in an input file and compile the resource using a resoure compiler,
such as Rez, or you can directly create your resources in a resource file using a tool such
as ResEdit. This section describes the structures of these resources after they are compiled
by the Rez resource compiler. If you are interested in creating the Rez input files for these
resources, see “Using the Menu Manager,” beginning on page 3-41, for detailed
information.

The Menu Resource 3

You can provide descriptions of your menus in 'MENU' resources and use the GetMenu
function or GetNewMBar function (if you also provide an 'MBAR' resource) to read in the
descriptions of your menus. After reading in the resource description, the Menu Manager
stores the information about specific menus in menu records.

C H A P T E R 3

Menu Manager

3-152 Menu Manager Reference

� W A R N I N G

Menus in a resource must not be purgeable. �

Figure 3-37 shows the format of a compiled 'MENU' resource. See Listing 3-1 on
page 3-43 for a description of a 'MENU' resource in Rez input format.

Figure 3-37 Structure of a compiled menu ('MENU') resource

A compiled version of a 'MENU' resource contains the following elements:

� Menu ID. Each menu in your application should have a unique menu ID. Note that the
menu ID does not have to match the resource ID, although by convention most
applications assign the same number for a menu’s resource ID and menu ID. A
negative menu ID indicates a menu belonging to a desk accessory (except for
submenus of a desk accessory). A menu ID from 1 through 235 indicates a menu (or
submenu) of an application; a menu ID from 236 through 255 indicates a submenu of
a desk accessory. Apple reserves the menu ID of 0.

� Placeholder (two integers containing 0) for the menu’s width and height. After reading
in the resource data, the Menu Manager requests the menu’s menu definition
procedure to calculate the width and height of the menu and to store these values in
the menuWidth and menuHeight fields of the menu record.

� Resource ID of the menu’s menu definition procedure. If the integer 0 appears here (as
specified by the textMenuProc constant in the Rez input file), the Menu Manager
uses the standard menu definition procedure to manage the menu. If you provide your
own menu definition procedure, its resource ID should appear in these bytes. After

2

2

2

2

2

'MENU' resource type Bytes

Menu ID

Placeholder for menu width

Placeholder for menu height

Resource ID of menu definition procedure

Placeholder

Initial enabled state of the menu
and menu items

Variable-length data that
defines the menu items

4

1

Characters of menu title

Length (n) of title

n

variable

1Placeholder

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-153

reading in the menu’s resource data, the Menu Manager reads in the menu definition
procedure, if necessary. The Menu Manager stores a handle to the menu’s menu
definition procedure in the menuProc field of the menu record.

� Placeholder (an integer containing 0).

� The initial enabled state of the menu and first 31 menu items. This is a 32-bit value,
where bits 1–31 indicate if the corresponding menu item is disabled or enabled, and bit
0 indicates whether the menu is enabled or disabled. The Menu Manager
automatically enables menu items greater than 31 when a menu is created.

� The length (in bytes) of the menu title.

� The title of the menu.

� Variable-length data that describes the menu items. If you provide your own menu
definition procedure, you can define and provide this variable-length data according
to the needs of your procedure. The Menu Manager simply reads in the data for each
menu item and stores it as variable data at the end of the menu record. The menu
definition procedure is responsible for interpreting the contents of the data. For
example, the standard menu definition procedure interprets this data according to the
description given in the following paragraphs.

� Placeholder (a byte containing 0) to indicate the end of the menu item definitions.

If you use the standard menu definition procedure, your 'MENU' resource should
describe the menu items in this manner. For each menu item, you need to provide its text,
the icon number, the keyboard equivalent or other value ($1B to indicate the menu item
has a submenu, $1C to indicate a script code other than the system script for the item’s
text, $1D to indicate the item’s icon should be reduced, or $1E to indicate that an 'SICN'
icon should be used), the marking character of the menu item or menu ID of the menu
item’s submenu, and the font style of the menu item’s text. If an item doesn’t have a
particular characteristic, specify 0 for that characteristic. Figure 3-38 shows the
variable-length data portion of a compiled 'MENU' resource that uses the standard menu
definition procedure.

Figure 3-38 The variable-length data that describes menu items as defined by the standard
menu definition procedure

1

Variable-length data in 'MENU' resource
(For each menu item)

Bytes

Text of menu item

 Length (m) of menu item text

Icon number, script code, or 0
Keyboard equivalent, $1B, $1C, $1D, $1E, or 0
Marking character or menu ID of submenu, or 0

Style of the menu item

m

1
1
1
1

C H A P T E R 3

Menu Manager

3-154 Menu Manager Reference

The variable-length data portion of a compiled version of a 'MENU' resource that uses
the standard menu definition procedure contains the following elements:

� Length (in bytes) of the menu item’s text.

� Text of the menu item.

� Icon number, script code, or 0 (as specified by the noicon constant in a Rez input file)
if the menu item doesn’t contain an icon and uses the system script. The icon number
is a number from 1 through 255 (or from 1 through 254 for small or reduced icons). The
Menu Manager adds 256 to the icon number to generate the resource ID of the menu
item’s icon. If a menu item has an icon, you should also provide a 'cicn' or an
'ICON' resource with the resource ID equal to the icon number plus 256. If you want
the Menu Manager to reduce an 'ICON' resource to the size of a small icon, also
provide the value $1D in the keyboard equivalent field. If you provide an 'SICN'
resource, provide $1E in the keyboard equivalent field. Otherwise, the Menu Manager
looks first for a 'cicn' resource with the calculated resource ID and uses that icon. If
you want the Menu Manager to draw the item’s text in a script other than the system
script, specify the script code here and also provide $1C in the keyboard equivalent
field. If the script system for the specified script is installed, the Menu Manager draws
the item’s text using that script. An item that is drawn in a script other than the system
script cannot also have an icon.

� Keyboard equivalent (specified as a 1-byte character), the value $1B (as specified by
the constant hierarchicalMenu in a Rez input file) if the item has a submenu, the
value $1C if the item uses a script other than the system script, or 0 (as specified by the
nokey constant in a Rez input file) if the item has neither a keyboard equivalent nor a
submenu and uses the system script. A menu item can have a keyboard equivalent, a
submenu, a small icon, a reduced icon, or a script code, but not more than one of these
characteristics. For items containing icons, you can provide $1D in this field if you
want the Menu Manager to reduce an 'ICON' resource to the size
of a small icon. Provide $1E if you want the Menu Manager to use an 'SICN' resource
for the item’s icon. The values $01 through $1A as well as $1F and $20 are reserved for
use by Apple; your application should not use any of these reserved values in this
field.

� Marking character, the menu ID of the item’s submenu, or 0 (as specified by the
nomark constant in a Rez input file) if the item has neither a mark nor a submenu. A
menu item can have a mark or a submenu, but not both. Submenus of an application
should have menu IDs from 1 through 235; submenus of a desk accessory should have
menu IDs from 236 through 255.

� Font style of the menu item. The constants bold, italic, plain, outline, and
shadow can be used in a Rez input file to define their corresponding styles.

If you provide your own menu definition procedure, you should use the same format
for your resource descriptions of menus as shown in Figure 3-37. You can use the same
format or a format of your choosing to describe menu items. You can also use bits 1–31
of the enableFlags field of the menu record as you choose; however, bit 0 must still
indicate whether the menu is enabled or disabled.

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-155

The Menu Bar Resource 3

You can describe the order and number of menus in your menu bar in an 'MBAR'
resource, and you can describe your menus in 'MENU' resources. If you do so, you can
use the GetNewMBar function to read in the descriptions of your menus and create a new
menu list. The Menu Manager stores information about your application’s menu bar in a
menu list. Figure 3-39 shows the format of a compiled 'MBAR' resource. (See Listing 3-4
on page 3-49 for a description of an 'MBAR' resource in Rez input format.)

Figure 3-39 Structure of a compiled menu bar ('MBAR') resource

A compiled version of an 'MBAR' resource contains the following elements:

� Number of menus described by this menu bar.

� A variable number (the amount should match the number declared in the first 2 bytes)
of resource IDs; each resource ID should identify a 'MENU' resource.

If you use the GetNewMBar function, the Menu Manager places the menus in the menu
bar according to the order that they appear in the 'MBAR' resource.

The Menu Color Information Table Resource 3

To use colors other than the default colors in a menu, provide a menu color information
table ('mctb') resource with the same resource ID as its corresponding 'MENU'
resource. You can also choose to provide an 'mctb' resource with resource ID 0 to define
colors for all your menus and your menu bar. Note that you should usually use the
default colors provided by the Menu Manager.

The Menu Manager stores color information about your application’s menus and menu
bar in a menu color information table. If you provide an 'mctb' resource with resource
ID 0, the Menu Manager reads the resource in when your application calls InitMenus
and stores the information in your application’s menu color information table. If you
provide an 'mctb' resource with the same resource ID as a 'MENU' resource, when you

'MBAR' resource type Bytes

Number of menus

Resource ID of first menu

Resource ID of second menu

Resource ID of next menu

2

2

2

2

2Resource ID of last menu

C H A P T E R 3

Menu Manager

3-156 Menu Manager Reference

use GetMenu to read in the resource description of the menu (or GetNewMBar to read
in all menus in the menu bar), the Menu Manager also reads in any associated 'mctb'
resource (if it exists). “The Menu Color Information Table Record” beginning on
page 3-98 describes the format of the menu color information table.

Figure 3-40 shows the format of a compiled 'mctb' resource.

Figure 3-40 Structure of a compiled menu color information table ('mctb') resource

A compiled version of an 'mctb' resource contains the following elements:

� a count of the number of menu color entry descriptions

� a variable number of menu color entries

A color entry defines colors for various parts of the menu and menu bar. Figure 3-41 on
the next page shows the format of a compiled menu color entry in an 'mctb' resource.

Each menu color entry in an 'mctb' resource contains the following:

� A menu ID to indicate that this entry is either a menu item entry or menu title entry, 0
to indicate that this entry is a menu bar entry, or –99 to indicate that this is the last
entry in this resource.

� An item number to indicate that this entry is a menu item entry, or 0 to indicate that
this is either a menu title or menu bar entry. Together, the menu ID and menu item
determine how the type of menu color entry is described. See Table 3-7 on page 3-100
for a complete description of how the menu ID and menu item specifications define
the type of menu color entry.

� RGB1: for a menu bar entry, the default color for menu titles; for a menu title entry, the
title color of a specific menu; for a menu item entry, the mark color for a specific item.

� RGB2: for a menu bar entry, the default background color of a displayed menu; for a
menu title entry, the default color for the menu bar; for a menu item entry, the color for
the text of a specific item.

'mctb' resource type Bytes

Number of entries 2

Last color entry

First color entry 28

28

C H A P T E R 3

Menu Manager

Menu Manager Reference 3-157

Figure 3-41 Structure of a menu color entry in an 'mctb' resource

� RGB3: for a menu bar entry, the default color of items in a displayed menu; for a menu
title entry, the default color for items in a specific menu; for a menu item entry, the
color for the keyboard equivalent of a specific item.

� RGB4: for a menu bar entry, the default color of the menu bar; for a menu title entry,
the background color of a specific menu; for a menu item entry, the background color
of a specific menu.

The Menu Definition Procedure Resource 3

If you provide your own menu definition procedure, you should store it in a resource of
type 'MDEF'. Provide as the resource data the compiled or assembled code of your menu
definition procedure. The entry point of your procedure must be at the beginning of the
resource data.

If you define your menus in 'MENU' resources (and use the GetMenu or GetNewMBar
function), you specify the menu definition procedure that the Menu Manager should
use to manage the menu in the 'MENU' resource. If you use the NewMenu function
(instead of 'MENU' resources), your application must explicitly replace the handle to
the standard menu definition procedure in the menuProc field of the menu record with a
handle to the desired menu definition procedure.

Menu color entry Bytes

2ID

Item

RGB4

RGB3

RGB2

RGB1

2

6

6

6

6

C H A P T E R 3

Menu Manager

3-158 Summary of the Menu Manager

Summary of the Menu Manager 3

Pascal Summary 3

Constants 3

CONST

noMark = 0; {menu item doesn't have a marking character}

{values for the message parameter to the menu definition procedure}

mDrawMsg = 0; {draw the menu items of a menu}

mChooseMsg = 1; {highlight or unhighlight a menu item as }

{ appropriate if the cursor is in a menu item}

mSizeMsg = 2; {calculate the dimensions of a menu}

mPopUpMsg = 3; {calculate the open pop-up box rectangle}

textMenuProc = 0; {resource ID of standard menu definition }

{ procedure}

hMenuCmd = 27; {constant ($1B) specified as keyboard equivalent }

{ to indicate a menu item has a submenu}

hierMenu = -1; {constant used with InsertMenu routine to insert }

{ a submenu or pop-up menu into the submenu }

{ portion of the current menu list}

mctAllItems = -98;{search for all items with the given ID}

mctLastIDIndic = -99;{last menu color table entry has this value }

{ in the ID field of the entry}

Data Types 3

TYPE

MenuInfo = {menu record}

RECORD

menuID: Integer; {number that identifies the menu}

menuWidth: Integer; {width (in pixels) of the menu}

menuHeight: Integer; {height (in pixels) of the menu}

menuProc: Handle; {menu definition procedure}

enableFlags:LongInt; {indicates whether menu and }

{ menu items are enabled}

C H A P T E R 3

Menu Manager

Summary of the Menu Manager 3-159

menuData: Str255; {title of menu}

{itemDefinitions} {variable-length data that }

{ defines the menu items}

END;

MenuPtr = ^MenuInfo; {pointer to a menu record}

MenuHandle = ^MenuPtr; {handle to a menu record}

MCEntry = {menu color entry record}

RECORD

mctID: Integer; {menu ID or 0 for menu bar}

mctItem: Integer; {menu item number or 0 for }

{ menu title}

mctRGB1: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB2: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB3: RGBColor; {usage depends on mctID and }

{ mctItem}

mctRGB4: RGBColor; {usage depends on mctID and }

{ mctItem}

mctReserved:Integer; {reserved}

END;

MCEntryPtr = ^MCEntry; {pointer to a menu color entry record}

MCTable = ARRAY[0..0] OF MCEntry; {menu color table}

MCTablePtr = ^MCTable; {pointer to a menu color table}

MCTableHandle = ^MCTablePtr; {handle to a menu color table}

Menu Manager Routines 3

Initializing the Menu Manager

PROCEDURE InitMenus;

PROCEDURE InitProcMenu (resID: Integer);

Creating Menus

FUNCTION NewMenu (menuID: Integer; menuTitle: Str255)
: MenuHandle;

FUNCTION GetMenu (resourceID: Integer): MenuHandle;

C H A P T E R 3

Menu Manager

3-160 Summary of the Menu Manager

Adding Menus to and Removing Menus From the Current Menu List

PROCEDURE InsertMenu (theMenu: MenuHandle; beforeID: Integer);

PROCEDURE DeleteMenu (menuID: Integer);

PROCEDURE ClearMenuBar;

Getting a Menu Bar Description From an 'MBAR' Resource

FUNCTION GetNewMBar (menuBarID: Integer): Handle;

Getting and Setting the Menu Bar

FUNCTION GetMenuBar: Handle;

PROCEDURE SetMenuBar (menuList: Handle);

FUNCTION GetMBarHeight: Integer;

Drawing the Menu Bar

PROCEDURE DrawMenuBar;

PROCEDURE InvalMenuBar;

Responding to the User’s Choice of a Menu Command

FUNCTION MenuSelect (startPt: Point): LongInt;

FUNCTION MenuKey (ch: Char): LongInt;

FUNCTION MenuChoice: LongInt;

PROCEDURE HiliteMenu (menuID: Integer);

FUNCTION PopUpMenuSelect (menu: MenuHandle;
Top: Integer; Left: Integer;
PopUpItem: Integer): LongInt;

PROCEDURE SystemMenu (menuResult: LongInt);

FUNCTION SystemEdit (editCmd: Integer): Boolean;

Getting a Handle to a Menu Record

{some routines have two spellings, see Table 3-8 for the alternate spelling}

FUNCTION GetMenuHandle (menuID: Integer): MenuHandle;

FUNCTION HMGetHelpMenuHandle
(VAR mh: MenuHandle): OSErr;

Adding and Deleting Menu Items

{some routines have two spellings, see Table 3-8 for the alternate spelling}

PROCEDURE AppendMenu (menu: MenuHandle; data: Str255);

PROCEDURE InsertMenuItem (theMenu: MenuHandle; itemString: Str255;
afterItem: Integer);

C H A P T E R 3

Menu Manager

Summary of the Menu Manager 3-161

PROCEDURE DeleteMenuItem (theMenu: MenuHandle; item: Integer);

PROCEDURE AppendResMenu (theMenu: MenuHandle; theType: ResType);

PROCEDURE InsertResMenu (theMenu: MenuHandle; theType: ResType;
afterItem: Integer);

Getting and Setting the Appearance of Menu Items

{some routines have two spellings, see Table 3-8 for the alternate spelling}

PROCEDURE EnableItem (theMenu: MenuHandle; item: Integer);

PROCEDURE DisableItem (theMenu: MenuHandle; item: Integer);

PROCEDURE GetMenuItemText (theMenu: MenuHandle; item: Integer;
VAR itemString: Str255);

PROCEDURE SetMenuItemText (theMenu: MenuHandle; item: Integer;
itemString: Str255);

PROCEDURE GetItemStyle (theMenu: MenuHandle; item: Integer;
VAR chStyle: Style);

PROCEDURE SetItemStyle (theMenu: MenuHandle; item: Integer;
chStyle: Style);

PROCEDURE GetItemMark (theMenu: MenuHandle; item: Integer;
VAR markChar: Char);

PROCEDURE SetItemMark (theMenu: MenuHandle; item: Integer;
markChar: Char);

PROCEDURE CheckItem (theMenu: MenuHandle; item: Integer;
checked: Boolean);

PROCEDURE GetItemIcon (theMenu: MenuHandle; item: Integer;
VAR iconIndex: Byte);

PROCEDURE SetItemIcon (theMenu: MenuHandle; item: Integer;
iconIndex: Byte);

PROCEDURE GetItemCmd (theMenu: MenuHandle; item: Integer;
VAR cmdChar: CHAR);

PROCEDURE SetItemCmd (theMenu: MenuHandle; item: Integer;
cmdChar: CHAR);

Disposing of Menus

PROCEDURE DisposeMenu (theMenu: MenuHandle);

Counting the Items in a Menu

FUNCTION CountMItems (theMenu: MenuHandle): Integer;

Highlighting the Menu Bar

PROCEDURE FlashMenuBar (menuID: Integer);

PROCEDURE SetMenuFlash (count: Integer);

C H A P T E R 3

Menu Manager

3-162 Summary of the Menu Manager

Recalculating Menu Dimensions

PROCEDURE CalcMenuSize (theMenu: MenuHandle);

Managing Entries in the Menu Color Information Table

{some routines have two spellings, see Table 3-8 for the alternate spelling}

FUNCTION GetMCInfo: MCTableHandle;

PROCEDURE SetMCInfo (menuCTbl: MCTableHandle);

PROCEDURE DisposeMCInfo (menuCTbl: MCTableHandle);

FUNCTION GetMCEntry (menuID: Integer; menuItem: Integer)
: MCEntryPtr;

PROCEDURE SetMCEntries (numEntries: Integer;
menuCEntries: MCTablePtr);

PROCEDURE DeleteMCEntries (menuID: Integer; menuItem: Integer);

Application-Defined Routine 3

PROCEDURE MyMenuDef (message: Integer; theMenu: MenuHandle;
VAR menuRect: Rect; hitPt: Point;
VAR whichItem: Integer);

C Summary 3

Constants 3

enum {

#define noMark '\0' /*menu item doesn't have a marking character*/

/*values for the message parameter to the menu definition procedure*/

mDrawMsg = 0, /*draw the menu items of a menu*/

mChooseMsg = 1, /*highlight or unhighlight a menu item as */

/* appropriate if the cursor is in a menu item*/

mSizeMsg = 2, /*calculate the dimensions of a menu*/

mPopUpMsg = 3, /*calculate the open pop-up box rectangle*/

textMenuProc = 0, /*resource ID of standard menu definition */

/* procedure*/

hMenuCmd = 27, /*constant ($1B) specified as keyboard */

/* equivalent to indicate an item has a submenu*/

hierMenu = -1, /*constant used with InsertMenu to insert */

/* a submenu or pop-up menu into the submenu */

/* portion of the current menu list*/

C H A P T E R 3

Menu Manager

Summary of the Menu Manager 3-163

mctAllItems = -98,/*search for all items with the given ID*/

mctLastIDIndic = -99 /*last menu color table entry has this value */

/* in the ID field of the entry*/

};

Data Types 3

struct MenuInfo { /*menu record*/

short menuID; /*number that identifies the menu*/

short menuWidth; /*width (in pixels) of the menu*/

short menuHeight; /*height (in pixels) of the menu*/

Handle menuProc; /*menu definition procedure*/

long enableFlags; /*indicates whether menu and */

/* menu items are enabled*/

Str255 menuData; /*title of menu*/

/*itemDefinitions*/ /*variable-length data that */

/* defines the menu items*/

};

typedef struct MenuInfo MenuInfo; /*pointer to a menu record*/

typedef MenuInfo *MenuPtr, **MenuHandle; /*handle to a menu record*/

struct MCEntry { /*menu color entry record*/

short mctID; /*menu ID or 0 for menu bar*/

short mctItem; /*menu item number or 0 for */

/* menu title*/

RGBColor mctRGB1; /*usage depends on mctID and */

/* mctItem*/

RGBColor mctRGB2; /*usage depends on mctID and */

/* mctItem*/

RGBColor mctRGB3; /*usage depends on mctID and */

/* mctItem*/

RGBColor mctRGB4; /*usage depends on mctID and */

/* mctItem*/

short mctReserved; /*reserved*/

};

typedef struct MCEntry MCEntry;

typedef MCEntry *MCEntryPtr; /*pointer to a menu color entry record*/

/*menu color table*/

typedef MCEntry MCTable[1], *MCTablePtr, **MCTableHandle;

C H A P T E R 3

Menu Manager

3-164 Summary of the Menu Manager

Menu Manager Routines 3

Initializing the Menu Manager

pascal void InitMenus (void);

pascal void InitProcMenu (short resID);

Creating Menus

pascal MenuHandle NewMenu (short menuID, const Str255 menuTitle);

pascal MenuHandle GetMenu (short resourceID);

Adding Menus to and Removing Menus From the Current Menu List

pascal void InsertMenu (MenuHandle theMenu, short beforeID);

pascal void DeleteMenu (short menuID);

pascal void ClearMenuBar (void);

Getting a Menu Bar Description From an 'MBAR' Resource

pascal Handle GetNewMBar (short menuBarID);

Getting and Setting the Menu Bar

pascal Handle GetMenuBar (void);

pascal void SetMenuBar (Handle menuList);

#define GetMBarHeight() (* (short*) 0x0BAA)

Drawing the Menu Bar

pascal void DrawMenuBar (void);

pascal void InvalMenuBar (void);

Responding to the User’s Choice of a Menu Command

pascal long MenuSelect (Point startPt);

pascal long MenuKey (short ch);

pascal long MenuChoice (void);

pascal void HiliteMenu (short menuID);

pascal long PopUpMenuSelect (MenuHandle menu, short top, short left,
short popUpItem);

pascal void SystemMenu (long menuResult);

pascal Boolean SystemEdit (short editCmd);

C H A P T E R 3

Menu Manager

Summary of the Menu Manager 3-165

Getting a Handle to a Menu Record

{some routines have two spellings, see Table 3-8 for the alternate spelling}

pascal MenuHandle GetMenuHandle
(short menuID);

pascal OSErr HMGetHelpMenuHandle
(MenuHandle *mh);

Adding and Deleting Menu Items

{some routines have two spellings, see Table 3-8 for the alternate spelling}

pascal void AppendMenu (MenuHandle menu, ConstStr255Param data);

pascal void InsertMenuItem (MenuHandle theMenu,
ConstStr255Param itemString,
short afterItem);

pascal void DeleteMenuItem (MenuHandle theMenu, short item);

pascal void AppendResMenu (MenuHandle theMenu, ResType theType);

pascal void InsertResMenu (MenuHandle theMenu, ResType theType,
short afterItem);

Getting and Setting the Appearance of Menu Items

{some routines have two spellings, see Table 3-8 for the alternate spelling}

pascal void EnableItem (MenuHandle theMenu, short item);

pascal void DisableItem (MenuHandle theMenu, short item);

pascal void GetMenuItemText (MenuHandle theMenu, short item,
Str255 itemString);

pascal void SetMenuItemText (MenuHandle theMenu, short item,
ConstStr255Param itemString);

pascal void GetItemStyle (MenuHandle theMenu, short item,
Style *chStyle);

pascal void SetItemStyle (MenuHandle theMenu, short item, short chStyle);

pascal void GetItemMark (MenuHandle theMenu, short item,
short *markChar);

pascal void SetItemMark (MenuHandle theMenu, short item,
short markChar);

pascal void CheckItem (MenuHandle theMenu, short item,
Boolean checked);

pascal void GetItemIcon (MenuHandle theMenu, short item,
short *iconIndex);

pascal void SetItemIcon (MenuHandle theMenu, short item,
short iconIndex);

C H A P T E R 3

Menu Manager

3-166 Summary of the Menu Manager

pascal void GetItemCmd (MenuHandle theMenu, short item, short
*cmdChar);

pascal void SetItemCmd (MenuHandle theMenu, short item, short cmdChar);

Disposing of Menus

pascal void DisposeMenu (MenuHandle theMenu);

Counting the Items in a Menu

pascal short CountMItems (MenuHandle theMenu);

Highlighting the Menu Bar

pascal void FlashMenuBar (short menuID);

pascal void SetMenuFlash (short count);

Recalculating Menu Dimensions

pascal void CalcMenuSize (MenuHandle theMenu);

Managing Entries in the Menu Color Information Table

{some routines have two spellings, see Table 3-8 for the alternate spelling}

pascal MCTableHandle GetMCInfo(void);

pascal void SetMCInfo (MCTableHandle menuCTbl);

pascal void DisposeMCInfo (MCTableHandle menuCTbl);

pascal MCEntryPtr GetMCEntry (short menuID, short menuItem);

pascal void SetMCEntries (short numEntries, MCTablePtr menuCEntries);

pascal void DeleteMCEntries (short menuID, short menuItem);

Application-Defined Routine 3

pascal void MyMenuDef (short message, MenuHandle theMenu,
Rect *menuRect, Point hitPt,
short *whichItem);

C H A P T E R 3

Menu Manager

Summary of the Menu Manager 3-167

Assembly-Language Summary 3

Data Structures 3

The Menu Information Data Structure

Global Variables 3

Result Codes 3

0 menuID word number that identifies the menu
2 menuWidth word width (in pixels) of the menu
4 menuHeight word height (in pixels) of the menu
6 menuDefHandle long menu definition procedure

10 menuEnable long enable flags
14 menuData 256 bytes menu title followed by menu item information

AtMenuBottom The pixel value at the bottom of the scrollable menu.
MBarEnable Contains 0 if all menus in the current menu bar belong to an application; contains

a nonzero value if all menus belong to a desk accessory.
MBarHeight Contains current height of the menu bar, in pixels.
MBarHook Address of routine that MenuSelect calls repeatedly while the mouse button

is down.
MenuCInfo Contains a handle to application’s menu color information table.
MenuDisable Contains the menu ID and item number of the last item chosen, regardless of

whether the item was disabled or enabled.
MenuFlash Contains the current count (number of times) a menu item blinks when chosen by

the user.
MenuHook Address of routine that MenuSelect calls after a menu title is highlighted and

the menu rectangle is calculated but before the menu is drawn.
TheMenu Contains the menu ID of the highlighted menu in the menu bar.
TopMenuItem The pixel value at the top of the scrollable menu.

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough room in heap zone
resNotFound –192 Unable to read resource
hmHelpManagerNotInited –855 Help menu not set up

Contents 4-1

C H A P T E R 4

Figure 4-0
Listing 4-0
Table 4-0

Contents

4 Window Manager

Introduction to Windows 4-4
Active and Inactive Windows 4-6
Types of Windows 4-8
Window Regions 4-12
Dialog Boxes and Alert Boxes 4-13
Controls 4-14
Windows on the Desktop 4-15

About the Window Manager 4-16
Graphics Ports 4-17
Window Records 4-19
Color Windows 4-20
Events in Windows 4-21

Using the Window Manager 4-22
Managing Multiple Windows 4-23
Creating a Window 4-25

Defining a Window Resource 4-25
Creating a Window From a Resource 4-27
Positioning a Document Window on the Desktop 4-30

Drawing the Window Contents 4-39
Updating the Content Region 4-40
Maintaining the Update Region 4-41
Handling Events in Windows 4-41

Handling Mouse Events in Windows 4-42
Handling Keyboard Events in Windows 4-47
Handling Update Events 4-48
Handling Activate Events 4-50

Moving a Window 4-53
Zooming a Window 4-53
Resizing a Window 4-57
Closing a Window 4-60

C H A P T E R 4

4-2 Contents

Hiding and Showing a Window 4-62
Window Manager Reference 4-64

Data Structures 4-65
The Color Window Record 4-65
The Window Record 4-69
The Window State Data Record 4-70
The Window Color Table Record 4-71
The Auxiliary Window Record 4-73
The Window List 4-74

Window Manager Routines 4-74
Initializing the Window Manager 4-74
Creating Windows 4-75
Naming Windows 4-85
Displaying Windows 4-86
Retrieving Window Information 4-91
Moving Windows 4-94
Resizing Windows 4-99
Zooming Windows 4-101
Closing and Deallocating Windows 4-103
Maintaining the Update Region 4-106
Setting and Retrieving Other Window Characteristics 4-109
Manipulating the Desktop 4-112
Manipulating Window Color Information 4-114
Low-Level Routines 4-116

Application-Defined Routine 4-120
The Window Definition Function 4-120

Resources 4-124
The Window Resource 4-124
The Window Definition Function Resource 4-127
The Window Color Table Resource 4-127

Summary of the Window Manager 4-130
Pascal Summary 4-130

Constants 4-130
Data Types 4-132
Window Manager Routines 4-134
Application-Defined Routine 4-136

C Summary 4-137
Constants 4-137
Data Types 4-139
Window Manager Routines 4-140
Application-Defined Routine 4-143

Assembly-Language Summary 4-144
Data Types 4-144
Global Variables 4-145

C H A P T E R 4

4-3

Window Manager 4

This chapter describes how your application can use the Window Manager to create and
manage windows.

A Macintosh application uses windows for most communication with the user, from
discrete interactions like presenting and acknowledging alert boxes to open-ended
interactions like creating and editing documents. Users generally type words and
formulas, draw pictures, or otherwise enter data in a window on the screen. Your
application typically lets the user save this data in a file, open saved files, and view
the saved data in a window. See the chapter “Introduction to File Management” in
Inside Macintosh: Files for more information about handling files.

A window can be any size or shape, and the user can display any number of windows,
within the limits of available memory, on the screen at once.

The Window Manager defines a set of standard windows and provides a set of routines
for managing them. The Window Manager helps your application display windows that
are consistent with the Macintosh user interface. See Macintosh Human Interface Guidelines
for a detailed description of windows and their behavior.

You typically store information about your windows in resources. This chapter describes
the standard window resources. For general information on resources, see the chapter
“Introduction to the Macintosh Toolbox” in this book. For information on Resource
Manager routines, see the chapter “Resource Manager” in Inside Macintosh: More
Macintosh Toolbox.

The Window Manager itself depends on QuickDraw, the part of the Macintosh system
software that handles quick manipulation of graphics. QuickDraw supports drawing into
graphics ports, which are individual and complete drawing environments with
independent coordinate systems. Each window represents a graphics port, which is
described in Inside Macintosh: Imaging.

To maintain its windows, your application needs to know what actions the user is taking
on the desktop. It receives this information through events, which are messages that
describe user actions and report on the processing status of your application. This
chapter describes the events that affect window display and considers mouse-down and
keyboard events as they relate to windows. For a complete description of events and how
your application handles them, see the chapter “Event Manager” in this book.

Most document windows contain controls, which are screen images the user manipulates
to control the display or the behavior of the application. This chapter illustrates the
controls most commonly used in windows. For more information on creating and
responding to controls, see the chapter “Control Manager” in this book.

You use the Window Manager to create and display a new window when the user creates
a new document or opens an existing document. When the user clicks or holds down the
mouse button while the cursor is in a window created by your application, you use the
Window Manager to determine the location of the mouse action and to
alter the window display as appropriate. When the user closes a window, you use the
Window Manager to remove the window from the screen.

C H A P T E R 4

Window Manager

4-4 Introduction to Windows

This chapter describes how the Window Manager supports windows and then explains
how you can use the Window Manager to

� create and display windows

� handle events in windows

� change the display when the user moves or resizes windows

� remove windows

Introduction to Windows 4

A window is a user interface element, an area on the screen in which the user can enter
or view information.

The user can have multiple windows on the desktop at once, from a number of different
applications. The user can change the size and location of most windows and can place
windows entirely or partially in front of other windows. Figure 4-1 shows a few windows
on the desktop.

Figure 4-1 Multiple windows

Your application typically creates document windows that allow the user to enter and
display text, graphics, or other information. For an illustration of a document window in
full color, see Plate 1 at the beginning of this book.

C H A P T E R 4

Window Manager

Introduction to Windows 4-5

A document window is a view into the document—if the document is larger than the
window, the window is a view of a portion of the document. Your application can put
one or more windows on the screen, each window showing a view of a document or of
auxiliary information used to process the document.

The Window Manager defines and supports a set of standard window elements through
which the user can manipulate windows. It’s important that your application follow the
standard conventions for drawing, moving, resizing, and closing windows. By presenting
the standard interface, you make experienced users instantly familiar with many aspects
of your application, allowing them to focus on learning its unique features.

Figure 4-2 illustrates a standard document window and its elements.

Figure 4-2 A document window

The title bar displays the name of the window and indicates whether it’s active or not.
The Window Manager displays the title of the window in the center of the title bar, in the
system font and system font size. If the system font is in the Roman script system, the
title bar is 20 pixels high.

When the user creates a new document, you ordinarily display a new document window
with the title “untitled”, spelled in lowercase letters. If the user creates a second new
document window without saving the first, you title the second window “untitled 2”,
with a space between the word and the number. Continue to add 1 to the number in the
title as long as the user continues to create new windows without saving previously
numbered, untitled windows.

When the user opens a saved document, you assign the document’s filename to the
window in which it is displayed.

The user expects to move a window by dragging it by its title bar. You can support
moving the window by calling the Window Manager’s DragWindow procedure, as
described in “Moving a Window” on page 4-53.

Scroll bar

Scroll box

Scroll arrow

Title bar

Size box

Zoom boxClose box

Scroll arrow

C H A P T E R 4

Window Manager

4-6 Introduction to Windows

The close box offers the user a quick way to close a window. You can use the
TrackGoAway function to track mouse activity in the close box and the CloseWindow
and DisposeWindow procedures to close windows. Closing windows is described in
“Closing a Window” beginning on page 4-60.

The zoom box offers the user a quick way to switch between two different window sizes.
You use the TrackBox function to track mouse activity in the zoom box and the
ZoomWindow procedure to zoom windows. Zooming windows is described in “Zooming
a Window” beginning on page 4-53.

The size box lets the user change the size and dimensions of the window. You use the
GrowWindow function to track mouse activity in the size box and the SizeWindow
procedure to resize windows. Sizing windows is described in “Resizing a Window”
beginning on page 4-57.

The scroll bars let the user see different parts of a document that contains more
information than can be displayed at once in the window. Although the Macintosh user
interface guidelines specify that you place scroll bars on the right and lower edges of a
window that needs them, scroll bars are not part of the window structure. You create and
control the scroll bars through the Control Manager, described in the chapter “Control
Manager” in this book.

The content region is the part of the window in which your application displays the
contents of a document, the size box, and the window controls.

The window frame is the part of the window drawn automatically by the Window
Manager—the title bar, including the close box and zoom box, and the window’s outline.

The structure region is the entire screen area occupied by a window, including the frame
and content region. (See Figure 4-10 on page 4-12.)

Active and Inactive Windows 4
The window in which the user is currently working is the active window. The active
window is the frontmost window on the desktop. It is identified visually by the “racing
stripes” in its title bar.

The active window is the target of keyboard activity. It often contains a blinking insertion
point (also called the caret) marking the place where new text or graphics will appear.
When the user selects text in an active window, your application should highlight the
text with inverse video; if the window becomes inactive, you remove the highlighting.
You can use a secondary selection technique, such as an outline, to mark a selection in an
inactive window. You display scroll bars only in the active window. Figure 4-3 illustrates
a sample document window in active and inactive states.

Except for the active window, all document windows on the desktop, whether they
belong to your application or another, are inactive. Your application can process
documents in inactive windows, but only the active window interacts with the user.
For example, if the user chooses Save from the File menu, your application saves
only the document in the active window.

C H A P T E R 4

Window Manager

Introduction to Windows 4-7

Figure 4-3 Active and inactive document windows

To make a window active, the user clicks anywhere in its contents or frame. When
the user activates one of your windows, you call the Window Manager to highlight
the window frame and title bar; you activate the controls and window contents.
As a window becomes active, it appears to the user to move forward, in front of all
other windows.

When the user clicks in an inactive document window, you should make the window
active but not make any selections in the window in response to the click. To make a
selection in the window, the user must click again. This behavior protects the user from
losing an existing selection unintentionally when activating a window.

Note
The Finder makes selections in response to the first click in an inactive
window, because this action is more natural for the way Finder windows
are used. You might find that users expect the first click to cause a
selection in some other special-purpose windows created by your
application. This behavior is seldom appropriate in document
windows. �

When a window that belongs to your application becomes inactive, the Window
Manager redraws the frame, removing the highlighting from the title bar and hiding
the close and zoom boxes. Your application hides the controls and the size box and
removes highlighting from application-controlled elements.

When the user reactivates a window, reinstate the window as it was before it was
deactivated. Draw the scroll box in the same position and restore the insertion point or
highlight the previous selection.

Active document window Inactive document window

C H A P T E R 4

Window Manager

4-8 Introduction to Windows

Types of Windows 4
Because windows have so many uses, their appearances vary. The Window Manager
defines a number of window types that meet the basic needs of most applications. A
window type is the general description of how a window looks and behaves. Some
windows have title bars and others don’t, for example, and windows can have almost
any combination of the window-manipulation elements: close box, zoom box, and
size box.

This section describes the nine basic window types supported by the Window Manager
and their uses. You can create windows of these types by specifying one of the window
type constants: zoomDocProc, dBoxProc, altDBoxProc, plainDBoxProc,
movableDBoxProc, noGrowDocProc, documentProc, zoomNoGrow, and rDocProc.
For instructions for creating windows, see “Creating a Window” beginning on page 4-25.

To give the user maximum flexibility and control, you can use the zoomDocProc
window type for your document windows. A zoomDocProc window supports all of the
window-manipulation elements shown in Figure 4-2 on page 4-5: title bar, close box,
zoom box, and size box. The Window Manager does not necessarily draw the close box
and size box, however. You must call the Window Manager’s DrawGrowIcon procedure
to draw the size box, and you can optionally suppress the close box when you create the
window. For more information on defining a window’s characteristics, see “Creating a
Window” beginning on page 4-25.

Figure 4-4 illustrates a window of type zoomDocProc with a close box, as drawn by the
Window Manager before you add the size box and scroll bars.

Figure 4-4 A window of type zoomDocProc

In most cases, a window of type zoomDocProc should contain both a close box and a
size box. When the related document contains more data than fits in the window, you
activate the scroll bars and adjust them to show where in the document the user is
working. Figure 4-5 illustrates a window of type zoomDocProc with a size box and scroll
bars.

zoomDocProc

C H A P T E R 4

Window Manager

Introduction to Windows 4-9

Figure 4-5 A window of type zoomDocProc, with size box and inactive scroll bars

You also use windows to display alert boxes and dialog boxes. This section describes the
window types used for alert boxes and dialog boxes. For more thorough descriptions of
the different kinds of alert boxes and dialog boxes, see the chapter “Dialog Manager” in
this book.

Alert boxes and fixed-position modal dialog boxes contain no window-manipulation
elements. The user cannot move, resize, zoom, or close them manually. An alert box or a
modal dialog box remains on the screen as the active window until the Dialog Manager
or your application removes it—usually when the user completes the interaction by
clicking one of the buttons. Figure 4-6 illustrates the three window types available for
alert boxes and fixed-position modal dialog boxes.

Figure 4-6 Window types for alert boxes and fixed-position modal dialog boxes

When you want to let the user move a modal dialog box window—in order, for example,
to see text that might be obscured by the window—you can implement a movable modal
dialog box. A movable modal dialog box cannot be resized, closed, or zoomed, but it can
be moved. Figure 4-7 on the next page illustrates the movableDBoxProc window type.
Like a fixed-position modal dialog box, the movable modal dialog box remains active
until the user completes the dialog.

dBoxProc altDBoxProc plainDBoxProc

C H A P T E R 4

Window Manager

4-10 Introduction to Windows

Figure 4-7 A window of type movableDBoxProc

Whenever possible, avoid modal dialog boxes and instead use modeless dialog boxes,
which allow the user to perform other tasks without dismissing the dialog box. Windows
of type noGrowDocProc, used for displaying modeless dialog boxes, can be moved or
closed but not resized or zoomed. You can implement modeless dialog boxes with other
window types if necessary, but it’s easier to conform to the user interface guidelines if
you keep your dialog box windows as simple as possible. Figure 4-8 illustrates the
modeless dialog box window.

Figure 4-8 A window of type noGrowDocProc

The Window Manager also supports a few window types that are seldom used. The
documentProc window type, for example, has a title bar and supports a close box and
size box but no zoom box. The zoomNoGrow window type is virtually never appropriate:
zoomNoGrow supports a close box and a zoom box, but not a size box. The rDocProc
window type is a rounded-corner window with a title bar and a close box; it is used by
desk accessories. Figure 4-9 illustrates these three seldom-used window types.

The window definition function defines the general appearance and behavior of a
window. The system software and various Window Manager routines call a window’s
window definition function when they need to perform certain window-dependent
actions, such as drawing or resizing a window’s frame.

movableDBoxProc

noGrowDocProc

C H A P T E R 4

Window Manager

Introduction to Windows 4-11

Figure 4-9 Seldom-used window types

The Window Manager supplies two standard window definition functions that handle
the nine standard window types. A window definition function draws the window’s
frame, draws the close box and window title (if any), determines which region the cursor
is in within the window, calculates the window’s structure and content regions, draws
the window’s zoom box (if any), draws the window’s size box (if any), and performs any
special initialization or disposal tasks.

A single window definition function can support up to 16 different window types. The
window definition function defines a variation code, an integer from 0 through 15, for
each window type it supports.

A window definition ID is a single value incorporating both the window’s definition
function and its variation code. (The resource ID of the window definition function
is stored in the upper 12 bits of the integer, and the variation code is stored in the
lower 4 bits.) The window-type constants described in this section are in fact window
definition IDs.

You can provide your own window definition function if you need a window with
unusual characteristics, as described in “The Window Definition Function” beginning
on page 4-120. Always be careful to conform window behavior to the guidelines in
Macintosh Human Interface Guidelines.

Constant
Window
definition ID Description

documentProc 0 movable, sizable window, no zoom box

dBoxProc 1 alert box or modal dialog box

plainDBox 2 plain box

altDBoxProc 3 plain box with shadow

noGrowDocProc 4 movable window, no size box or zoom box

movableDBoxProc 5 movable modal dialog box

zoomDocProc 8 standard document window

zoomNoGrow 12 zoomable, nonresizable window

rDocProc 16 rounded-corner window

documentProc zoomNoGrow rDocProc

C H A P T E R 4

Window Manager

4-12 Introduction to Windows

Window Regions 4
The Window Manager recognizes a number of different special-purpose window
regions, which are defined by either the Window Manager or the window definition
functions.

The most obvious window regions are the parts of the visible window that the user
manipulates to control the display. These window regions correspond to the standard
window parts. The drag region is the area occupied by the title bar, except for the close
box and zoom box. (The user moves the window by dragging it by its title bar.) The size
region, close region, and zoom region are the areas occupied by the size box, close box,
and zoom box, respectively.

When the user presses the mouse button while the cursor is in one of your windows, you
use the Window Manager function FindWindow to determine the region in which the
mouse-down event occurred. (The FindWindow function calls the window’s window
definition function, which defines and interprets the window-manipulation regions.)
Depending on the result, you then call the appropriate Window Manager routine or your
own routine for handling the event. For more information about determining where the
cursor is when the user presses the mouse button, see “Handling Mouse Events in
Windows” on page 4-42. For discussions of how to use the Window Manager routines for
moving, sizing, closing, and zooming windows, see “Moving a Window” beginning on
page 4-53 and the sections that follow it.

The Window Manager also makes a broad distinction between the parts of the window
it draws automatically and the parts drawn by your application. The Window Manager
draws the window frame—the title bar, including the close box and zoom box, and
the window’s outline. (The Window Manager also draws the size box, but only when
your application calls the DrawGrowIcon procedure.) Your application is responsible for
drawing the content region—that is, the part of the window in which the contents
of a document, the size box, and the window controls (including the scroll bars)
are displayed.

The entire screen area occupied by a window, including the window outline, title bar, and
content region, is the structure region. Figure 4-10 illustrates the frame, content region,
and structure region of a window.

Figure 4-10 Window frame, content region, and structure region

Frame Content region Structure region+ =

C H A P T E R 4

Window Manager

Introduction to Windows 4-13

The drawing region of a graphics port associated with a window encompasses only the
window’s content region.

As the user creates, moves, resizes, and closes windows on the desktop, portions of
windows may be obscured and uncovered. The Window Manager keeps track of these
changes, accumulating a dynamic region known as the update region for each window.
The update region contains all areas of a window’s content region that need updating.
The Event Manager periodically scans the update regions of all windows on the desktop,
generating update events for windows whose update regions are not empty. When your
application receives an update event, it redraws the update region. Both your application
and the Window Manager can manipulate a window’s update region. The sections
“Updating the Content Region” on page 4-40 and “Maintaining the Update Region” on
page 4-41 describe how the Window Manager and your application track and use the
update region.

Dialog Boxes and Alert Boxes 4
Macintosh applications use alert boxes and dialog boxes to give the user messages and
to solicit information. A text-processing application, for example, might display an
alert box telling the user that a newly inserted graphic does not fit within the page
boundaries. It might display a dialog box in which the user can specify margins, tabs,
and other formatting information. (The chapter “Dialog Manager” in this book explains
how to use the various kinds of alert boxes and dialog boxes.)

Alert boxes and dialog boxes are merely special-purpose windows. You can handle all
alert boxes and most modal dialog boxes through the Dialog Manager, which itself calls
the Window Manager. You supply the Dialog Manager with lists of the items in your alert
boxes and dialog boxes, and the Dialog Manager displays the windows, tells you which
items the user is manipulating, and disposes of the windows when the user is done. Your
application provides the code that responds to the user’s selections in the alert and dialog
boxes.

Although you can specify any window type for your alert boxes and modal dialog boxes,
the Dialog Manager functions that handle alert boxes and modal dialog boxes do not
support window manipulation. You should therefore use one of the window types
without a title bar or size box, most typically the dBoxProc window type, for alert boxes
and modal dialog boxes. (When the user is responding to a modal dialog box,
mouse-down events outside the menu bar or the content region of the dialog box result
only in the sounding of the system alert. Note that the Process Manager does not perform
major switching while the ModalDialog procedure is handling events.)

You use the movableDBox window type for movable modal dialog boxes. As described
in the chapter “Dialog Manager” in this book, your application can use the Dialog
Manager to help handle events in a movable modal dialog box. Your application,
however, must handle window-manipulation events—ordinarily only the moving of the
movable modal dialog box window.

C H A P T E R 4

Window Manager

4-14 Introduction to Windows

Use the noGrowDocProc window type for modeless dialog boxes. You typically use
the Dialog Manager to handle events in a modeless dialog box, much like events in
a movable modal dialog box. Your application handles window-manipulation events in
modeless dialog boxes just as it handles them in document windows.

If you use complex dialog boxes, you might find it’s more efficient to use the Window
Manager and other parts of the Toolbox, instead of the Dialog Manager, to create and
manage your own dialog box windows. Again, see the chapter “Dialog Manager” in this
book for a list of characteristics to consider when evaluating the complexity of a dialog
box and for examples of customized dialog boxes.

Controls 4
Most windows contain controls, which are screen images that the user manipulates to
control the display or the behavior of the application. The most common control in a
document window is the scroll bar, illustrated in Figure 4-11.

Figure 4-11 Scroll bars

You use scroll bars to show the relative position, within the entire document, of the
portion of the document displayed in the window. You should allow the user to drag the
scroll box or click in the gray areas or the scroll arrows to move parts of the document
into and out of the window. You activate scroll bars in a window any time there is more
data than can be shown at one time in the space available.

You use the Control Manager to create, display, and manipulate the scroll bars and any
other controls in your windows. Each control “belongs” to a window and is displayed
within the graphics port that represents that window. For each window your application
creates, the Window Manager maintains a control list, a series of entries pointing to the
descriptions of the controls associated with the window.

Scroll bar

Scroll box

Scroll arrow

Gray area
Scroll box Scroll arrow

Gray area

C H A P T E R 4

Window Manager

Introduction to Windows 4-15

Most alert boxes and dialog boxes contain buttons, rounded rectangles that cause
an immediate or continuous action when clicked, and most dialog boxes contain
additional screen images, like radio buttons, that display and retain settings. Figure 4-12
illustrates a dialog box with buttons, radio buttons, and a number of other controls and
dialog items.

Figure 4-12 Controls in a dialog box

Buttons ordinarily appear only in alert boxes and dialog boxes. Most of the other
elements illustrated in Figure 4-12 appear only in dialog boxes. If you use the Dialog
Manager to create your alert boxes and dialog boxes, it draws your controls for you and
lets you know when the user has clicked one of them. You can, however, call the Control
Manager yourself to display and track buttons and other controls in any windows your
application creates. You can also write your own control definition functions to create and
control other kinds of controls. For a complete description of how to create and support
controls, see the chapter “Control Manager” in this book.

Windows on the Desktop 4
Multiple windows, from different applications, can appear simultaneously on the
desktop. The Window Manager tracks all windows, using its own private data structure
called the window list. Entries appear in the window list in their order on the desktop,
beginning with the frontmost, active window. When the user changes the ordering of
windows on the desktop, the Window Manager generates events telling your application
to activate, deactivate, and redraw windows as necessary. The Window Manager
prevents you from drawing accidentally in the windows of other applications.

Pop-up control

Application-
defined (list)

Button

IconRadio
button

Editable text

Static text

C H A P T E R 4

Window Manager

4-16 About the Window Manager

The user can interact with only one application at a time. The application with which the
user is interacting (that is, the application that owns the window in which the user is
working) is the active application, or foreground process, and the others are inactive
applications, or background processes. One way the user can switch applications is by
clicking in a window that belongs to a background process. The Process Manager then
generates events telling the previously active application that it’s about to be suspended
and telling the newly active application that it can resume processing. (For more infor-
mation about the workings of foreground and background processes and about the
events that support simultaneous running of multiple applications, see the chapter
“Event Manager” in this book.)

Your application is likely to have multiple windows on the desktop at once: one or more
document windows, possibly one or more dialog box windows, and possibly some other
special-purpose windows. The section “Managing Multiple Windows” beginning on
page 4-23 suggests a technique for keeping track of multiple windows.

On the original Macintosh computer, the desktop area was limited to a single screen of
known dimensions. Contemporary systems, however, can support multiple monitors of
various sizes and capabilities. To place its windows in the appropriate place on the
desktop, your application must pay attention to what screen space is available and where
the user is working. For the rules governing window placement, see Macintosh Human
Interface Guidelines. For techniques for managing windows on multiple screens, see
“Positioning a Document Window on the Desktop” beginning on page 4-30.

The entire area of the desktop—that is, the screen area that is not occupied by the menu
bar—is known as the gray region. The Window Manager maintains a pointer to the gray
region in a global variable named GrayRgn; you can retrieve a pointer to the gray region
with the Window Manager function GetGrayRgn.

About the Window Manager 4

The Window Manager provides a complete set of routines for creating, moving, resizing,
and otherwise manipulating windows. It also provides lower-level support by managing
the layering of windows on the desktop and by alerting your application to desktop
changes that affect its windows. Your application and the Window Manager work
together to provide the user with a consistent window interface.

When, for example, the user presses the mouse button while the cursor is in the drag
region of a window’s title bar, you can call the DragWindow procedure, which moves a
dotted outline of the window around the screen in response to mouse movements. When
the user releases the mouse button, DragWindow calls the MoveWindow procedure,
which redraws the window in its new location. If part or all of an inactive window
belonging to your application is exposed by the move, the Window Manager triggers an
update event that tells your application to redraw the exposed region.

Similarly, if the user clicks in an inactive window, you can call the SelectWindow
procedure. SelectWindow adjusts the window highlighting and layering and

C H A P T E R 4

Window Manager

About the Window Manager 4-17

also generates activate events that tell your application which windows to activate
and deactivate.

The Window Manager has built-in support for the nine basic window types described in
“Types of Windows” beginning on page 4-8. When you are using one of these window
types, the Window Manager draws the window’s frame, determines what region of the
window the cursor is in, calculates the window’s structure and content regions, draws
the window’s size box, draws the window’s close box and zoom box, and performs any
special initialization or disposal tasks. If necessary, you can write your own window
definition function to handle other types of windows.

Graphics Ports 4
Each window represents a QuickDraw graphics port, which is a drawing environment
with its own coordinate system. (See Inside Macintosh: Imaging for a complete description
of graphics ports and coordinate systems.) When you create a window, the Window
Manager creates a graphics port in which the window’s contents are displayed.

The location of a window on the screen is defined in global coordinates—that is,
coordinates that reflect the entire potential drawing space. QuickDraw and Color
QuickDraw recognize a coordinate plane whose origin is the upper-left corner of the
main screen, whose positive x-axis extends rightward, and whose positive y-axis extends
downward. In QuickDraw, the horizontal offset is ordinarily labeled h, and the vertical
offset v. Figure 4-13 illustrates the QuickDraw global coordinate system.

Figure 4-13 The QuickDraw global coordinate plane

–6

6

5

4

3

2

1

–1–2–3–4–5–6

654321

–5

–4

–3

–2

–1 x = h

y = v

C H A P T E R 4

Window Manager

4-18 About the Window Manager

Note
The orientation of the vertical axis, while convenient for computer
graphics, differs from mathematical convention. Also, the coordinate
plane is bounded by the limits of QuickDraw coordinates, which range
from –32,768 to 32,767.

QuickDraw stores points and rectangles in its own data structures of
type Point and Rect. In these structures, the vertical coordinate (v)
appears first, followed by the horizontal coordinate (h). Most, but not all,
QuickDraw routines that handle points require you to specify the
coordinates in this order. �

When QuickDraw creates a new graphics port (usually because you’ve created a new
window through the Window Manager), it defines a bounding rectangle for the port, in
global coordinates. Ordinarily, the bounding rectangle represents the entire area of the
screen on which the window appears. The bounding rectangle is stored in the graphics
port data structure, in the bounds field of a structure called a pixel map in Color
QuickDraw and a bitmap in QuickDraw.

The graphics port data structure also includes a field called portRect, which defines
a rectangle to be used for drawing. In a graphics port that represents a window, the
portRect rectangle represents the window’s content region.

Note
When you place a window on the screen, you specify the location of its
content region, in global coordinates. Remember to allow space for
the window’s title bar. On the main screen, remember to leave space for
the menu bar. In the Roman script system, both the standard document
title bar and the menu bar are 20 pixels high. You can determine the
height of the menu bar with the Menu Manager GetMBarHeight
function. You can calculate the height of the title bar by comparing the
top of the window’s structure region with the top of the window’s
content region. See Listing 4-12 on page 4-55 for a sample procedure that
considers the menu bar and title bar when placing a window on the
screen. �

Within the port rectangle, the drawing area is described in local coordinates—that is, in
the coordinate system defined by the port rectangle. You draw into a window in local
coordinates, without regard to the window’s location on the screen (which is described in
global coordinates). Figure 4-14 illustrates the local and global coordinate systems for a
sample window 180 pixels high by 300 pixels wide, placed with its content region
70 pixels down and 60 pixels to the right of the upper-left corner of the screen.

When the Window Manager creates a window, it places the origin of the local coordinate
system at the upper-left corner of the window’s port rectangle. You can redefine
the coordinates of the port rectangle’s upper-left corner with the QuickDraw
procedure SetOrigin.

The Event Manager describes mouse events in global coordinates, and you do most of
your window manipulation in global coordinates. You generally display user data and
manipulate your controls in local coordinates. When you need to convert between the
two, you can call the QuickDraw functions GlobalToLocal and LocalToGlobal,
described in Inside Macintosh: Imaging.

C H A P T E R 4

Window Manager

About the Window Manager 4-19

Figure 4-14 A window’s local and global coordinate systems

Window Records 4

Each window has a number of descriptive characteristics such as a title, control list, and
visibility status. The Window Manager stores this information in a window record,
which is a data structure of type WindowRecord.

The window record includes

� the window’s graphics port data structure

� the window’s class, which specifies whether it was created directly through the
Window Manager or indirectly through the Dialog Manager

� the window title

� a series of flags that specify whether the window is visible, whether it’s highlighted,
whether it has a zoom box, and whether it has a close box

� pointers to the structure, content, and update regions

� a handle to the window’s definition function

� a handle to the window’s control list

� an optional handle to a picture of the window’s contents

� a reference constant field that your application can use as needed

The window record is described in detail in “The Color Window Record” beginning on
page 4-65.

The first field in the window record is the window’s graphics port. The WindowPtr data
type is therefore defined as a pointer to a graphics port.

TYPE WindowPtr = GrafPtr;

(180,300) in local cordinates
(270,360) in global cordinates

(0,0) in global coordinates

(70,60) in global coordinates

(0,0) in local coordinates
(90,60) in global coordinates

h

v

h

v

C H A P T E R 4

Window Manager

4-20 About the Window Manager

You draw into a window by drawing into its graphics port, passing a window pointer to
the QuickDraw drawing routines. You also pass window pointers to most Window
Manager routines.

You don’t usually need to access or directly modify fields in a window record. When you
do, however, you can refer to them through the WindowPeek data type, which is a
pointer to a window record.

TYPE WindowPeek = ^WindowRecord;

The close box, drag region, zoom box, and size box are not included in the window
record because they don’t necessarily have the formal data structure for regions
as defined in QuickDraw. The window definition function determines where these
regions are.

Your application seldom accesses a window record directly; the Window Manager
automatically updates the window record when you make any changes to the window,
such as changing its title. The Window Manager also supplies routines for changing and
reading some parts of the window record.

Color Windows 4
Since the introduction of Color QuickDraw, the Window Manager has supported color
windows. Color windows are displayed in color graphics ports, as described in Inside
Macintosh: Imaging. The color window record is exactly like the window record described
in “Window Records” on page 4-19, except that it contains a color graphics port instead
of a monochrome graphics port.

Whether or not your application uses color explicitly, and whether or not a color monitor
is currently installed, your application should work with color windows whenever Color
QuickDraw is available. Once you have created a window, you can use the window
record and window pointer for a color window interchangeably with the window record
and window pointer for a monochrome window.

On a monitor that is set to display 4-bit color or greater, the Window Manager
automatically displays the window title and parts of the frame and controls in color (or
gray scale, depending on the capabilities of the monitor). The user can adjust these colors
through the Color control panel. Except in unusual circumstances, your application
should not try to change the colors of the window frame. On a monitor that’s set to
display 1-bit color, the Window Manager draws the window title, frame, and controls in
black and white.

Various elements of a window’s colors are controlled by the window color table, which
contains a series of part codes for different window elements and the RGB values
associated with each part.

Because the user can select window display colors for the entire desktop, and because the
Window Manager performs some complex display calculations automatically if you
don’t override it, your application typically uses the default system window color table.

C H A P T E R 4

Window Manager

About the Window Manager 4-21

If your application explicitly controls the colors used in a window, however, you can
define your own window color tables.

You define a window color table for a window by providing a window color table
resource (that is, a resource of type 'wctb') with the same resource ID as the window’s
'WIND' resource. The Window Manager creates a window color table when it creates the
window record. The Window Manager maintains its own linked list, using auxiliary
window records, which associates your application’s windows with their corresponding
window color tables. The window color table and the auxiliary window record are
described in “The Window Color Table Record” beginning on page 4-71 and “The
Auxiliary Window Record” beginning on page 4-73.

Except in unusual circumstances, your application doesn’t need to manipulate window
color tables or the auxiliary window record.

For compatibility with other applications in the shared environment, your application
should not manipulate system color tables directly but should use the Palette Manager, as
described in Inside Macintosh: Imaging. If your application provides its own window and
control definition functions, they should apply the user’s desktop color choices just as the
default definition functions do.

Events in Windows 4
Events are messages that describe user actions and report on the processing status of
your application. The Window Manager generates two kinds of events: activate
events and update events. Activate events tell your application that a specified
window is becoming active or inactive. Update events tell your application that it
must redraw part or all of a window’s content region. The section “Handling Events in
Windows” beginning on page 4-41 describes when these events occur and how your
application responds.

One of the basic functions of the Window Manager is to report where the cursor is
when your application receives a mouse-down event. The Window Manager function
FindWindow tells your application whether the cursor is in a window and, if it’s in
a window, which window it’s in and where in that window (that is, the title bar, the
drag region, and so on). You can use the FindWindow function as a first filter for
mouse-down events, separating events that merely affect the window display from
events that manipulate user data.

The Window Manager also provides a set of routines that help you implement the
standard window-manipulation conventions:

User action Application response

Dragging the title bar Moves the window

Dragging the size box Resizes the window

Clicking the zoom box Toggles the window between two sizes and locations,
known as the user state and the standard state

Clicking the close box Closes the window

C H A P T E R 4

Window Manager

4-22 Using the Window Manager

The next section, “Using the Window Manager,” describes how you can use the Window
Manager to move, resize, zoom, and close windows.

You can call the Control Manager to handle events in window controls, as described in
the chapter “Control Manager” in this book. If you use the Dialog Manager for your alert
boxes and modal dialog boxes, the Dialog Manager handles keyboard activity and mouse
events in these windows. You can also use the Dialog Manager to handle keyboard
activity and mouse events in the content region of movable modal dialog boxes and
modeless dialog boxes. Your application, however, must handle mouse events in the title
bar and close box of a movable modal or modeless dialog box.

When your application is active, a mouse-down event in a window belonging to any
other application, including the Finder, switches your application to the background
(unless there’s an alert box or a modal dialog box pending, in which case the Dialog
Manager merely sounds the system alert).

Using the Window Manager 4

Virtually every Macintosh application uses the Window Manager, both to simplify
the display and management of windows and to retrieve basic information about
user activities.

Your application works in conjunction with the Window Manager to present the standard
user interface for windows. When the user clicks in an inactive window belonging to
your application, for example, you can call the procedure SelectWindow, which
highlights the newly active window, removes the highlighting from the previously active
window, and generates the activate events that trigger the activation and deactivation of
the two affected windows.

Your application can also use Window Manager routines to handle direct window
manipulation. For example, if the user presses the mouse button when the cursor is in the
title bar of a window, you can call the DragWindow procedure to track the mouse and
drag an outline of the window on the screen until the user releases the mouse button.

You typically create windows from window resources, which are resources of type
'WIND'. The Window Manager supports the nine types of windows described in “Types
of Windows” beginning on page 4-8. (You can also write your own window definition
functions to support your own window types. Window definition functions are stored as
resources of type 'WDEF'.) Alert box windows and dialog box windows use alert
('ALRT'), dialog ('DLOG'), and item list ('DITL') resources; the chapter “Dialog
Manager” describes how to create these resources. Most windows contain controls, which
are defined through control ('CNTL') resources; the chapter “Control Manager”
describes how to create control resources.

C H A P T E R 4

Window Manager

Using the Window Manager 4-23

Your application typically uses the Window Manager in conjunction with both the
Control Manager and the Dialog Manager. You use the Control Manager to define, draw,
and manipulate controls in your windows. If your window includes scroll bars, for
example, you can use the TrackControl function to track the mouse while the user
drags the scroll box. You can use the Dialog Manager to create, display, and track events
in alert boxes and dialog boxes.

System 7 provides help balloons for the window frame—that is, the title bar, zoom box,
and close box—of a window created with one of the standard window definition
functions. You should provide help balloons for your window content region—that is, the
size box, controls, and data area—and for the window frames of any window types you
define. See the chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox for a
description of how to use help balloons.

Before using the Window Manager, you must call the procedure InitGraf to initialize
QuickDraw, the procedure InitFonts to initialize the Font Manager, and finally the
procedure InitWindows to initialize the Window Manager.

Managing Multiple Windows 4
Your application is likely to have multiple windows on the desktop at once: one or more
document windows, possibly one or more dialog boxes, and possibly some special-
purpose windows of your own. Only one window is active at a time, however.

When your application receives an event, it responds according to what kind of window
is currently active and where the event occurred. When it receives a mouse-down event
in the content region of an active document window, your application follows its own
conventions: inserting text, making a selection, or adding graphics, for example. When it
receives a mouse-down event in the menu bar, your application enables and disables
menu items as appropriate—which again depends on what kind of window is active and
what is selected in that window. If the user has the insertion point in an editable text field
in a modal dialog box, for example, the only menu item available might be Paste in the
Edit menu—and then only if there is something in the scrap to be pasted.

You can use various strategies for keeping track of different kinds of windows. The
refCon field in the window record is set aside specifically for use by applications.
You can use the refCon field to store different kinds of data, such as a number that
represents a window type or a handle to a record that describes the window.

The sample code in this chapter—excerpts from the SurfWriter application used
throughout this book—uses a hybrid strategy:

� For document windows, the refCon field holds a handle to a document record.

� For modeless or movable modal dialog boxes, the refCon field holds a number that
represents a type of dialog box.

You may well find other approaches more practical.

C H A P T E R 4

Window Manager

4-24 Using the Window Manager

The SurfWriter application stores document information about the user’s data, the
window display, and the file, if any, associated with the data in a document record. The
document record takes this form:

TYPE MyDocRec =

RECORD

editRec: TEHandle; {handle to text being edited}

vScrollBar: ControlHandle; {control handle to the }

{ vertical scroll bars}

hScrollBar: ControlHandle; {control handle to the }

{ horizontal scroll bars}

fileRefNum: Integer; {reference number for file}

fileFSSpec: FSSpec; {FSSpec record for file}

windowDirty: Boolean; {whether data has changed }

{ since last save}

END;

MyDocRecPtr = ^MyDocRec;

MyDocRecHnd = ^MyDocRecPtr;

The SurfWriter application creates a document record every time it creates a document
window, and it stores a handle to the document record in the refCon field of the
window record. (See the chapter “Introduction to File Management” in Inside Macintosh:
Files for a more complete illustration of how to use document records.)

When SurfWriter creates a modeless dialog box or a movable modal dialog box, it stores a
constant that represents that dialog box (that is, it specifies the constant in the dialog
resource, and the Window Manager sets the refCon field to that value when it creates
the window record). For example, a refCon value of 20 might specify a modeless dialog
box that accepts input for the Find command, and a value of 21 might specify a modeless
dialog box that accepts input for the spelling checker.

When SurfWriter receives notification of an event in one of its windows, it first
determines the function of the window and then dispatches the event as appropriate.
Listing 4-1 illustrates an application-defined routine MyGetWindowType that determines
the window’s type.

Note
The MyGetWindowType function determines the type of a window from
among a set of application-defined window types, which reflect the
different kinds of windows the application creates. These window types
are different from the standard window types defined by the definition
functions, which determine how windows look and behave. To find out
which one of the standard window types a window is, call the Window
Manager function GetWVariant. �

The sample code later in this chapter calls the MyGetWindowType function as part of its
event-handling procedure, described in the section “Handling Events in Windows”
beginning on page 4-41.

C H A P T E R 4

Window Manager

Using the Window Manager 4-25

Listing 4-1 Determining the window type

FUNCTION MyGetWindowType (thisWindow: WindowPtr): Integer;

VAR

myWindowType: Integer;

BEGIN

 IF thisWindow <> NIL THEN

 BEGIN

 myWindowType := WindowPeek(thisWindow)^.windowKind;

 IF myWindowType < 0 THEN {window belongs to }

 MyGetWindowType := kDAWindow { a desk accessory}

 ELSE

 IF myWindowType = userKind THEN {document window}

 MyGetWindowType := kMyDocWindow

 ELSE {dialog window}

 MyGetWindowType := GetWRefCon(window); {get dialog ID}

 END

 ELSE

MyGetWindowType := kNil;

END;

Notice that MyGetWindowType checks whether the window belongs to a desk accessory.
This step ensures compatibility with older versions of system software. When your
application is running in System 7, it should receive events only for its own windows and
for windows belonging to desk accessories that were launched in its partition. See Inside
Macintosh: Memory for information about partitions and Inside Macintosh: Processes for
information about launching applications and desk accessories.

Creating a Window 4
You typically specify the characteristics of your windows—such as their initial size,
location, title, and type—in window ('WIND') resources. Once you have defined your
window resources, you can call the function GetNewCWindow (or GetNewWindow) to
create windows.

Defining a Window Resource 4

You typically define a window resource for each type of window that your application
creates. If, for example, your application creates both document windows and
special-purpose windows, you would probably define two window resources. Defining
your windows in window resources lets you localize your window titles for different
languages by changing only the window resources. (You specify the characteristics of
alert boxes and dialog boxes with the alert and dialog resources, described in the chapter
“Dialog Manager” in this book.)

C H A P T E R 4

Window Manager

4-26 Using the Window Manager

Listing 4-2 shows a window resource, in Rez input format, that an application might use
to create a document window. The resource specifies the attributes for windows created
from the resource of type 'WIND' with resource ID 128. The system software loads the
resource into memory immediately after opening the resource file, and the Memory
Manager can purge the memory occupied by the resource.

Listing 4-2 Rez input for a window ('WIND') resource for a document window

#define rDocWindow 128

resource 'WIND' (rDocWindow, preload, purgeable) {

{64, 60, 314, 460}, /*initial window size and location*/

zoomDocProc, /*window definition ID: */

/* incorporates definition function */

/* and variation code*/

invisible, /*window is initially invisible*/

goAway, /*window has close box*/

0x0, /*reference constant*/

"untitled", /*window title*/

staggerParentWindowScreen

/*optional positioning specification*/

};

The four numbers in the first element of this resource specify the upper-left and lower-
right corners, in global coordinates, of a rectangle that defines the initial size and
placement of the window’s content region. Your application can change this rectangle
before displaying the window, either programmatically or through an optional
positioning code described later in this section. When specifying a window’s position on
the desktop, remember to leave room for the window’s frame and, on the main screen,
for the menu bar.

The second element contains the window’s definition ID, which specifies both the
window definition function that will handle the window and an optional variation code
that defines a window type. If you are using one of the standard window types
(described in “Types of Windows” beginning on page 4-8), you need to specify only one
of the window-type constants listed in “The Window Resource” beginning on page 4-124.

The third element in the window resource specifies whether the window is initially
visible or invisible. This element determines only whether the Window Manager displays
the window when it first creates it, not whether the window can be seen on the screen. (A
window entirely covered by other windows, for example, might be “visible,” even
though the user cannot see it.) You typically create new windows in an invisible state,
build the content area of the window, and then display the completed window by calling
ShowWindow to make it visible.

C H A P T E R 4

Window Manager

Using the Window Manager 4-27

The fourth element in the window resource specifies whether the window has a close
box. Only some of the standard window types (zoomDocProc, noGrowDocProc,
documentProc, zoomNoGrow, and rDocProc) support close boxes. The close-box
element has no effect if the second field of the resource specifies a window type that does
not support a close box. The Window Manager draws the close box when it draws the
window frame.

The fifth element in the window resource is a reference constant, in which your
application can store whatever data it needs. When it builds a new window record, the
Window Manager stores in the refCon field whatever value you specify here. You can
also put a placeholder here (such as 0x0, in this example) and then set the refCon field
yourself by calling the SetWRefCon procedure.

The sixth element in the window resource is a string that specifies the window title.

The optional seventh element in the window resource specifies a positioning rule that
overrides the window position specified by the rectangle in the first element. In the
window resource for a document window, you typically specify the positioning constant
staggerParentWindowScreen. For a complete list of the positioning constants and
their effects, see “The Window Resource” beginning on page 4-124.

The positioning constants are convenient when the user is creating a new document or
when you’re handling your own dialog boxes and alert boxes. When you’re creating a
new window to display a previously saved document, however, the new window should
appear, if possible, in the same rectangle as the previous window (that is, the window
used during the last save). For the rules of window placement, see “Positioning a
Document Window on the Desktop” beginning on page 4-30.

Use the function GetNewCWindow or GetNewWindow to create a window from a
'WIND' resource.

Creating a Window From a Resource 4

You typically create a new window every time the user creates a new document, opens a
previously saved document, or issues a command that triggers a dialog box.

You create document windows from a window resource using the function
GetNewCWindow or GetNewWindow. (Whenever Color QuickDraw is available, use
GetNewCWindow to create color windows, whether or not a color monitor is currently
installed. A color window record is the same size as a window record, and
GetNewCWindow returns a pointer of type WindowPtr, so most code can handle color
windows and monochrome windows identically.)

You can allow GetNewCWindow to allocate the memory for your window record. You can
maintain more control over memory use, however, by allocating the memory yourself
from a block allocated for such purposes during your own initialization routine, and then
passing the pointer to GetNewCWindow.

You typically create the scroll bars from control ('CNTL') resources at the time that you
create a document window and then display them when you make the window visible.

C H A P T E R 4

Window Manager

4-28 Using the Window Manager

Listing 4-3 illustrates an application-defined procedure, DoNewCmd, which SurfWriter
calls when the user chooses New from the File menu. Windows are typically invisible
when created and displayed only after all elements are in place.

Listing 4-3 Creating a new window

PROCEDURE DoNewCmd (newDocument: Boolean; VAR window: WindowPtr);

VAR

myData: MyDocRecHnd; {the document's data record}

windStorage: Ptr; {memory for window record}

destRect, {rectangles for creating }

viewRect: Rect; { TextEdit edit record}

good: Boolean; {success flag}

BEGIN

window := NIL; {no window created yet}

good := FALSE; {no success yet}

{allocate memory for window record from previously allocated block}

windStorage := MyPtrAllocationProc;

IF windStorage <> NIL THEN {memory allocation succeeded}

BEGIN {create window}

IF gColorQDAvailable THEN

window := GetNewCWindow(rDocWindow, windStorage, WindowPtr(-1))

ELSE

window := GetNewWindow(rDocWindow, windStorage, WindowPtr(-1));

END;

{create document record}

myData := MyDocRecHnd(NewHandle(SIZEOF(MyDocRec)));

IF (window <> NIL) AND (myData <> NIL) THEN {window record and document }

BEGIN { record both allocated}

SetPort(window); {set current port}

HLock(Handle(myData)); {lock handle to doc record}

SetWRefCon(window, LongInt(myData)); {link document record to window}

WITH window^, myData^^ DO {fill in document record}

BEGIN

MyGetTERect(window, viewRect); {set up a viewRect for TextEdit}

destRect := viewRect;

destRect.right := destRect.left + kMaxDocWidth;

editRec := TENew(destRect, viewRect);

IF editRec <> NIL THEN {it's a good edit record}

BEGIN

good := TRUE; {set success flag}

MyAdjustViewRect(editRec); {set up edit record}

TEAutoView(TRUE, editRec);

END

C H A P T E R 4

Window Manager

Using the Window Manager 4-29

ELSE

good := FALSE; {clear success flag}

IF good THEN

BEGIN {create scroll bars}

vScrollBar := GetNewControl(rVScroll, window);

hScrollBar := GetNewControl(rHScroll, window);

good := (vScrollBar <> NIL) AND (hScrollBar <> NIL);

END;

IF good THEN {it's a good document}

BEGIN

MyAdjustScrollBars(window, FALSE); {adjust scroll bars}

fileRefNum := 0; {no file yet}

windowDirty := FALSE; {no changes yet}

IF newDocument THEN {if it's a new (empty) document, }

ShowWindow(window); { make it visible}

END;

END; {end of WITH statement}

HUnlock(Handle(myData)); {unlock document record}

END; {end of IF (window <> NIL) AND (myData <> NIL)}

IF NOT good THEN

BEGIN

IF windStorage <> NIL THEN {memory for window record was allocated}

DisposePtr(windStorage); {dispose of it}

IF myData <> NIL THEN {memory for document record was allocated}

BEGIN

IF myData^^.editRec <> NIL THEN {edit record was allocated}

TEDispose(myData^^.editRec); {dispose of it}

DisposeHandle(Handle(myData)); {dispose of document record}

END;

IF window <> NIL THEN {window pointer exists, but it's invalid}

CloseWindow(window); {clean up window pointer}

window := NIL; {set window to NIL to indicate failure}

END;

END; {DoNewCmd}

The DoNewCmd procedure first sets the window pointer and success flags to show
that a valid window doesn’t yet exist. Then it calls the application-defined function
MyPtrAllocationProc, which allocates memory for a window record from a block
set aside during program initialization for that purpose. If MyPtrAllocationProc
successfully allocates memory and returns a valid pointer, DoNewCmd creates a window,
specifying the 'WIND' resource with resource ID 128, as specified by the constant
rDocWindow. Using this window resource (defined in Listing 4-2 on page 4-26), the
Window Manager creates an invisible window of type zoomDocProc. Because
the behind parameter to GetNewCWindow or GetNewWindow has the value
WindowPtr(–1), the Window Manager places the new window in front of all others
on the desktop.

C H A P T E R 4

Window Manager

4-30 Using the Window Manager

The DoNewCmd procedure then creates a document record. It locks the document record
in memory while manipulating it, sets the refCon field in the window record so that it
points to the document record, and fills in the document record. While filling in the
document record, DoNewCmd sets up a TextEdit record to hold the user’s data. If that
succeeds, DoNewCmd sets up horizontal and vertical scroll bars. If that succeeds,
DoNewCmd adjusts the scroll bars (see the chapter “Control Manager” in this book for the
application-defined procedure MyAdjustScrollbars) and fills in the remaining parts
of the document record. If the window is being created to display a new document, that
is, if no user data needs to be read from a disk, DoNewCmd calls the ShowWindow
procedure to make the window visible immediately.

If your window resource specifies that a new window is visible, GetNewCWindow
displays the window immediately. If you’re creating a document window, however,
you’re more likely to create the window in an invisible state and then make it visible
when you’re ready to display it.

� If you’re creating a window because the user is creating a new document, you can
display the window immediately by calling the procedure ShowWindow to make the
window frame visible. This change in visibility adds to the update region and triggers
an update event. Your application then invokes its own procedure for drawing the
content region in response to the update event.

� If you’re creating a new window to display a saved document, you must retrieve the
user’s data before displaying it. (See Inside Macintosh: Files for information about
reading saved files.) If possible, the size and location of the window that displays the
document should be the same as when the document was last saved. (See the next
section, “Positioning a Document Window on the Desktop,” for a discussion of
window placement.) Once you have positioned the window and set up its content
region, you can make the window visible by calling ShowWindow, which triggers an
update event. Your application then invokes its own procedure for drawing the
content region.

Positioning a Document Window on the Desktop 4

Your goal in positioning a window on the desktop is to place it where the user expects it.
For a new document, this usually means just below and to the right of the last document
window in which the user was working. For a saved document, it usually means the
location of the document window when the document was last saved (if it was saved on
a computer with the same screen configuration). This section describes the placement of
document windows. The chapter “Dialog Manager” in this book describes the placement
of alert boxes and dialog boxes. See Macintosh Human Interface Guidelines for a complete
description of window placement.

On Macintosh computers with a single screen of known size, positioning windows
is fairly straightforward. You position the first new document window on the upper-left
corner of the desktop. Open each additional new document window with its upper-
left corner slightly below and to the right of the upper-left corner of its predecessor.
Figure 4-15 illustrates how to position multiple documents on a single screen.

C H A P T E R 4

Window Manager

Using the Window Manager 4-31

Figure 4-15 Document window positions on a single screen

If the user closes one or more document windows, display subsequent windows in the
“empty” positions before adding more positions below and to the right. Figure 4-16
illustrates how you fill in an empty position when the user opens a new document after
closing one created earlier.

Figure 4-16 “Filling in” an empty document window position

untitled 4

untitled 5

C H A P T E R 4

Window Manager

4-32 Using the Window Manager

On computers with multiple monitors, window placement depends on a number
of factors:

� the number of screens available and their dimensions

� the location of the main screen—that is, the screen that contains the menu bar

� the location of the screen on which the user was most recently working

In general, you place the first new document window on the main screen, and you place
subsequent document windows on the screen that contains the largest portion of the
most recently active document window. That is, if you display a blank document
window when the user starts up your application, you place the window on the main
screen. If the user moves the window to another screen and then creates another new
document, you place the new document window on the other screen. Although the user
is free to place windows so that they cross screen boundaries, you should never display a
new window that spans multiple screens.

When the user opens a saved document, you replicate the size and location of the
window in which the document was last saved, if possible.

The Window Manager recognizes a set of positioning constants in the window
resource that let you position new windows automatically. You typically use the
constant staggerParentWindowScreen for positioning document windows. The
staggerParentWindowScreen constant specifies the basic guidelines for document
window placement: When creating windows from a template that includes
staggerParentWindowScreen, the Window Manager places the first window in
the upper-left corner of the main screen. It places subsequent windows with their
upper-left corners 20 pixels to the right and 20 pixels below the upper-left corner
of the last window in which the user was working. Figure 4-17 illustrates how
the Window Manager positions a new document window when the
staggerParentWindowScreen specification is in effect and the user has been
working in a window off the main screen.

If the user moves or closes a window that occupies one of the interim positions, and the
window template specifies staggerParentWindowScreen, the Window Manager uses
the “empty” slot for the next new window created before moving further down and to
the right.

For a complete list of the positioning constants and their effects, see “The Window
Resource” beginning on page 4-124.

You can usually use the staggerParentWindowScreen positioning constant when
creating a window that is to display a new document. You must perform your own
window-placement calculations, however, when opening saved documents and when
zooming windows.

When the user saves a document, the document window can be in one of two states: the
user state or the standard state.

C H A P T E R 4

Window Manager

Using the Window Manager 4-33

Figure 4-17 Document window positions on multiple screens

The user state is the last size and location the user established for the window.

The standard state is what your application determines is the most convenient size for
the window, considering the function of the document and the screen space available. For
a more complete description of the standard state, see “Zooming a Window” beginning
on page 4-53. Your application typically calculates the standard state each time the user
zooms to that state.

The user and standard states are stored in the state data record, whose handle appears in
the dataHandle field of the window record.

TYPE WStateData =

RECORD

userState: Rect; {size and location established by user}

stdState: Rect; {size and location established by }

{ application}

END;

When the user saves a document, you must save the user state rectangle and the state of
the window (that is, whether the window is in the user state or the standard state). Then,
when the user opens the document again later, you can replicate the window’s status.
You typically store the state data as a resource in the resource fork of the document file.

This is a story about a wonderful little boy named Atticus Russell

Anderson Kline. He came to live with a couple who had hoped

to have a family for a very long time. Atticus, or Gus, to his friends

made this couple very happy.

C H A P T E R 4

Window Manager

4-34 Using the Window Manager

Listing 4-4 illustrates an application-defined data structure for storing the window’s user
rectangle and state.

Listing 4-4 Application-defined data structure for storing a window’s state data

TYPE MyWindowState =

RECORD

userStateRect: Rect; {user state rectangle}

zoomState: Boolean; {window state: TRUE = standard; }

{ FALSE = user}

END;

MyWindowStatePtr = ^MyWindowState;

MyWindowStateHnd = ^MyWindowStatePtr;

This structure translates into an application-defined resource that is stored in the resource
fork of the document when the user saves the document.

Listing 4-5 shows an application-defined routine for saving a document’s state data. The
SurfWriter application calls the procedure MySaveWindowPosition when the user
saves a document.

Listing 4-5 Saving a document window’s position

PROCEDURE MySaveWindowPosition (myWindow: WindowPtr;

myResFileRefNum: Integer);

VAR

lastWindowState: MyWindowState;

myStateHandle: MyWindowStateHnd;

curResRefNum: Integer;

BEGIN

{Set user state provisionally and determine whether window is zoomed.}

lastWindowState.userStateRect := WindowPeek(myWindow)^.contRgn^^.rgnBBox;

lastWindowState.zoomState := EqualRect(lastWindowState.userStateRect,

 MyGetWindowStdState(myWindow));

{if window is in standard state, then set the window's user state from }

{ the userState field in the state data record}

IF lastWindowState.zoomState THEN {window was in standard state}

lastWindowState.userStateRect := MyGetWindowUserState(myWindow);

curResRefNum := CurResFile; {save the refNum of current resource file}

UseResFile(myResFileRefNum); {set the current resource file}

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState,

 kLastWinStateID));

C H A P T E R 4

Window Manager

Using the Window Manager 4-35

IF myStateHandle <> NIL THEN {a state data resource already exists}

BEGIN {update it}

myStateHandle^^ := lastWindowState;

ChangedResource(Handle(myStateHandle));

END

ELSE {no state data has yet been saved}

BEGIN {add state data resource}

myStateHandle := MyWindowStateHnd(NewHandle(SizeOf(MyWindowState)));

IF myStateHandle <> NIL THEN

BEGIN

myStateHandle^^ := lastWindowState;

AddResource(Handle(myStateHandle), rWinState, kLastWinStateID,

'last window state');

END;

END;

IF myStateHandle <> NIL THEN

BEGIN

UpdateResFile(myResFileRefNum);

ReleaseResource(Handle(myStateHandle));

END;

UseResFile(curResRefNum);

END;

The MySaveWindowPosition procedure first determines whether the window is in the
user state or the standard state by setting its own user state field from the bounding
rectangle of the window’s content region and comparing that rectangle with the user
state stored in the state data record. (If the two match, the window is in the user state; if
not, the standard state.) If the window is in the standard state, the procedure replaces its
own user state data with the rectangle stored in the userState field of the state data
record. The rest of the procedure saves the application-defined state data record in the
resource fork of the document.

When creating a new window to display a saved document, SurfWriter restores the saved
user state data and recalculates the standard state. Before using the saved rectangle,
however, SurfWriter verifies that the location is reachable on the desktop. (If the user
saves a document on a computer equipped with multiple monitors and then opens it
later on a system with only one monitor, for example, the saved window location could
be entirely or partially off the screen.)

Listing 4-6 on the next page shows MySetWindowPosition, the application-
defined routine that SurfWriter calls when the user opens a saved document. The
MySetWindowPosition procedure retrieves the document’s saved state data and
then calls another application- defined routine, MyVerifyPosition, to verify
that the saved location is practical.

C H A P T E R 4

Window Manager

4-36 Using the Window Manager

Listing 4-6 Positioning the window when the user opens a saved document

PROCEDURE MySetWindowPosition (myWindow: WindowPtr);

VAR

myData: MyDocRecHnd;

lastUserStateRect: Rect;

stdStateRect: Rect;

curStateRect: Rect;

myRefNum: Integer;

myStateHandle: MyWindowStateHnd;

resourceGood: Boolean;

savePort: GrafPtr;

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow)); {get document record}

HLock(Handle(myData)); {lock the record while manipulating it}

{open the resource fork and get its file reference number}

myRefNum := FSpOpenResFile(myData^^.fileFSSpec, fsRdWrPerm);

myErr := ResError;

IF myErr <> noErr THEN

Exit(MySetWindowPosition);

{get handle to rectangle that describes document's last window position}

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState,

kLastWinStateID));

IF myStateHandle <> NIL THEN {handle to data succeeded}

BEGIN {retrieve the saved user state}

lastUserStateRect := myStateHandle^^.userStateRect;

resourceGood := TRUE;

END

ELSE

BEGIN

lastUserStateRect.top := 0; {force MyVerifyPosition to calculate }

resourceGood := FALSE; { the default position}

END;

{verify that user state is practical and calculate new standard state}

MyVerifyPosition(myWindow, lastUserStateRect, stdStateRect);

IF resourceGood THEN {document had state resource}

IF myStateHandle^^.zoomState THEN {if window was in standard state }

curStateRect := stdStateRect { when saved, display it in }

{ newly calculated standard state}

ELSE {otherwise, current state is the user state}

curStateRect := lastUserStateRect

ELSE {document had no state resource}

curStateRect := lastUserStateRect; {use default user state}

C H A P T E R 4

Window Manager

Using the Window Manager 4-37

{move window}

MoveWindow(myWindow, curStateRect.left, curStateRect.top, FALSE);

{Convert to local coordinates and resize window.}

GetPort(savePort);

SetPort(myWindow);

GlobalToLocal(curStateRect.topLeft);

GlobalToLocal(curStateRect.botRight);

SizeWindow(myWindow, curStateRect.right, curStateRect.bottom, TRUE);

IF resourceGood THEN {reset user state and standard }

BEGIN { state--SizeWindow may have changed them}

MySetWindowUserState(myWindow, lastUserStateRect);

MySetWindowStdState(myWindow, stdStateRect);

END;

ReleaseResource(Handle(myStateHandle)); {clean up}

CloseResFile(myRefNum);

HUnLock(Handle(myData));

END;

The MyVerifyPosition routine, not shown here, compares the saved location against
available screen space. (See Listing 4-12 on page 4-55 for a strategy for comparing the
saved rectangle with the available screen space.) MyVerifyPosition alters the user
state rectangle, if necessary (using the same size, if possible, but placing it on available
screen space) and calculates a new standard state for displaying the window on the
screen containing the user state.

After determining valid user and standard state rectangles, the procedure
MySetWindowPosition sets a temporary positioning rectangle to the appropriate
size and location, based on the state of the document’s window when the document
was saved. The MySetWindowPosition procedure then calls the Window Manager
procedures MoveWindow and SizeWindow to establish the window’s location and
size before cleaning up.

The SurfWriter application calls MySetWindowPosition from its routine for opening
saved documents, after reading the document’s data from its data fork. Listing 4-7 shows
the application-defined DoOpenFile function that SurfWriter calls when the user opens
a saved document.

Listing 4-7 Opening a saved document

FUNCTION DoOpenFile (mySpec: FSSpec): OSErr;

VAR

myWindow: WindowPtr;

myData: MyDocRecHnd;

myFileRefNum: Integer;

myErr: OSErr;

C H A P T E R 4

Window Manager

4-38 Using the Window Manager

BEGIN

DoNewCmd(FALSE, myWindow); {FALSE tells DoNewCmd not to }

{ show the window}

IF myWindow = NIL THEN

BEGIN

DoOpenFile := kOpenFileError;

Exit(DoOpenFile);

END;

SetWTitle(myWindow, mySpec.name);

{open the file's data fork, passing the file spec-- }

{ FSpOpenDF returns a file reference number}

myErr := FSpOpenDF(mySpec, fsRdWrPerm, myFileRefNum);

IF (myErr <> noErr) AND (myErr <> opWrErr) THEN {open failed}

BEGIN {clean up}

DisposeWindow(myWindow);

DoOpenFile := myErr;

Exit(DoOpenFile);

END;

{get a handle to the window's document record}

myData := MyDocRecHnd(GetWRefCon(myWindow));

myData^^.fileRefNum := myFileRefNum; {save file ref num}

myData^^.fileFSSpec := mySpec; {save fsspec}

myErr := DoReadFile(myWindow); {read file's data}

{retrieve saved state data and establish valid position}

MySetWindowPosition(myWindow);

{MyResizeWindow invalidates the whole portRgn, guaranteeing }

{ an update event--the window's contents are redrawn then}

MyResizeWindow(myWindow);

ShowWindow(myWindow); {show window}

DoOpenFile := myErr;

END;

 DoOpenFile first calls the application-defined procedure DoNewCmd to create a new
window, suppressing the immediate display of the window. (Listing 4-3 on page
page 4-28 illustrates the procedure DoNewCmd.) Then DoOpenFile sets the window
title to the name of the document file and reads in the data. Then it calls
MySetWindowPosition to determine where to place the new window. After
establishing a valid position, DoOpenFile calls the application-defined routine
MyResizeWindow (shown in Listing 4-14 on page 4-59) to set up the content region
in the new dimensions, and then it finally makes the window visible.

C H A P T E R 4

Window Manager

Using the Window Manager 4-39

Drawing the Window Contents 4
Your application and the Window Manager work together to display windows on the
screen. Once you have created a window and made it visible, the Window Manager
automatically draws the window frame in the appropriate location. As the user makes
changes to the desktop, moving and resizing different windows, the Window Manager
alters the window frames as necessary. The window frame includes the window outline,
the title bar, and the close and zoom boxes.

Your application is responsible for drawing the window’s content region. It typically uses
the Control Manager to draw the window controls, uses the Window Manager to draw
the size box, and draws the user data itself. The sample code in this chapter uses the
simple model of a content region that contains only controls, the size box, and a TextEdit
record. (See Inside Macintosh: Text for a description of TextEdit.)

Listing 4-8 illustrates an application-defined procedure that draws the content region of a
window.

Listing 4-8 Drawing a window

PROCEDURE MyDrawWindow (window: WindowPtr);

VAR

myData: MyDocRecHnd;

BEGIN

SetPort(window);

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH window^ DO

BEGIN

EraseRect(portRect); {erase content area}

 UpdateControls(window, visRgn); {draw window controls}

DrawGrowIcon(window); {draw size box}

{update window contents as appropriate to your }

{ application (in this case use TextEdit)}

TEUpdate(portRect, myData^^.editRec);

 END;

HUnLock(Handle(myData));

END;

The MyDrawWindow procedure first sets the current port to the window’s port and gets a
handle to the window’s document record. Using the data in the document record, the
procedure first erases the content region, draws the controls, and draws the size box.
Finally, it draws the user’s data, in this case the contents of a TextEdit edit record.

C H A P T E R 4

Window Manager

4-40 Using the Window Manager

If your application creates a window that contains a static display, you can let the
Window Manager take care of drawing and updating the content region by placing a
handle to a picture in the windowPic field of the window record. See the description
of the SetWindowPic procedure on page 4-110.

Updating the Content Region 4

The Window Manager helps your application keep the window display current by
maintaining an update region, which represents the parts of your content region
that have been affected by changes to the desktop. If a user exposes part of an inactive
window by dragging an active window to a new location, for example, the Window
Manager adds the newly exposed area of the inactive window to that window’s
update region.

Figure 4-18 illustrates how the Window Manager adds part of a window’s content region
to its update region when the user exposes additional content area.

Figure 4-18 Moving one window and adding to another window’s update region

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE
INCLUDING A THOROUGH STUDY OF THE BREEDS

HISTORY OF THE HORSE

THIS ARTICLE PRESENTS A HISTORY OF THE HORSE
INCLUDING A THOROUGH STUDY OF THE BREEDS

HISTORY OF THE HORSE

Update region

C H A P T E R 4

Window Manager

Using the Window Manager 4-41

The Event Manager periodically scans the update regions of all windows on the desktop.
If it finds one whose update region is not empty, it generates an update event for that
window. When your application receives an update event, it redraws as much of the
content area as necessary, as described in the section “Handling Update Events”
beginning on page 4-48.

As the user makes changes to a document, your application must update both the
document data and the document display in the content area of its window. You can
use one of two strategies for updating the display:

� If your application doesn’t require continuous scrolling or rapid response, you can add
changed areas of the content region to the window’s update region. The Event
Manager then sends your application an update event, and your application invokes
its standard update procedure.

� For continuous scrolling and a faster response time, you can draw directly into the
content area of the window.

In either case, your application ultimately draws in the graphics port that represents
the window. You draw controls through the Control Manager, and you draw text
and graphics with the routines described in Inside Macintosh: Text and Inside Macintosh:
Imaging.

Maintaining the Update Region 4
Your application can force and suppress update events by manipulating the update
region, using Window Manager routines provided for this purpose.

Your application usually manipulates the update region, for example, when the user
resizes a window that contains a size box and scroll bars. If the user enlarges the window,
the Window Manager adds the newly exposed area to the window’s update region but
does not add the area formerly occupied by the scroll bars. Before calling the
SizeWindow procedure to resize the window, your application can call the InvalRect
procedure twice to add the scroll bar and size box areas to the update region. The next
time it receives an update event, your application erases the scroll bars and draws
whatever parts of the document content might be visible at that location.

Similarly, you can remove an area from the update region when you know that it is in
fact valid. Limiting the size of the update region decreases time spent redrawing. Listing
4-13 on page 4-58, for example, uses the ValidRect procedure to remove the unaffected
text area from the update region of a window that is being resized.

Handling Events in Windows 4
Your application must be prepared to handle two kinds of window-related events:

� mouse and keyboard events in your application’s windows, which are reported by the
Event Manager in direct response to user actions

� activate and update events, which are generated by the Window Manager and the
Event Manager as an indirect result of user actions

C H A P T E R 4

Window Manager

4-42 Using the Window Manager

In System 7 your application receives mouse-down events if it is the foreground process
and the user clicks in the menu bar, a window belonging to your application, or a
window belonging to a desk accessory that was launched in your application’s partition.
(If the user clicks in a window belonging to another application, the Event Manager
sends your application a suspend event and performs a major switch to the other
application—unless the frontmost window is an alert box or a modal dialog box, in
which case the Dialog Manager merely sounds the system alert, and the Process Manager
retains your application as the foreground process.) When it receives a mouse-down
event, your application first calls the FindWindow function to map the cursor location to
a window region, and then it branches to one of its own routines, as described in the next
section, “Handling Mouse Events in Windows.”

The Event Manager sends your application an update event when changes on the
desktop or in a window require that part or all of a window’s content region be updated.
The Window Manager and your application can both trigger update events by adding
regions that need updating to the update region, as described in the section “Handling
Update Events” beginning on page 4-48.

Your application receives activate events when an inactive window becomes active or an
active window becomes inactive. Activate events are an example of the close cooperation
between your application and the Window Manager. When you receive a mouse-down
event in one of your application’s inactive windows, you can call the SelectWindow
procedure, which removes the highlighting from the previously active window and adds
highlighting to the newly active window. It also generates two activate events: one telling
your application to deactivate the previously active window and one to activate the
newly active window. Your application then activates and deactivates the content
regions, as described in the section “Handling Activate Events” beginning on page 4-50.

When the user first clicks in an inactive window, most applications do not make a
selection or otherwise change the window or document, beyond making the window
active. When your application receives a resume event because the user clicked in one of
its windows, you might not even want to receive the mouse-down event that caused your
application to become the foreground process. You control whether or not you receive
this event through the 'SIZE' resource, described in the chapter “Event Manager”
earlier in this book.

Handling Mouse Events in Windows 4

When your application is active, it receives notice of all keyboard activity and
mouse-down events in the menu bar, in one of its windows, or in any windows
belonging to desk accessories that were launched in its partition.

When it receives a mouse-down event, your application calls the FindWindow function
to map the cursor location to a window region.

The function specifies the region by returning one of these constants:

CONST inDesk = 0; {none of the following}

inMenuBar = 1; {in menu bar}

inSysWindow = 2; {in desk accessory window}

C H A P T E R 4

Window Manager

Using the Window Manager 4-43

inContent = 3; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

inDrag = 4; {in drag (title bar) region}

inGrow = 5; {in size box (active window only)}

inGoAway = 6; {in close box}

inZoomIn = 7; {in zoom box (window in standard state)}

inZoomOut = 8; {in zoom box (window in user state)}

When the user presses the mouse button while the cursor is in a window, FindWindow
not only returns a constant that identifies the window region but also sets a variable
parameter that points to the window.

In System 7, if FindWindow returns inDesk, the cursor is somewhere other than in the
menu bar, one of your windows, or a window created by a desk accessory launched in
your application’s partition. The function may return inDesk if, for example, the cursor
is in the window frame but not in the drag region, close box, or zoom box. FindWindow
seldom returns the value inDesk, and you can generally ignore the rare instances of this
function result.

If the user presses the mouse button with the cursor in the menu bar (inMenuBar),
you call your own routines for displaying menus and allowing the user to choose
menu items.

The FindWindow function returns the value inSysWindow only when the user presses
the mouse button with the cursor in a window that belongs to a desk accessory launched
in your application’s partition. You can then call the SystemClick procedure, passing it
the event record and window pointer. The SystemClick procedure, documented in the
chapter “Event Manager” in this book, makes sure that the event is handled by the
appropriate desk accessory.

The FindWindow function returns one of the other values when the user presses
the mouse button while the cursor is in one of your application’s windows. Your
response depends on whether the cursor is in the active window and, if not, what
kind of window is active.

When you receive a mouse-down event in the active window, you route the event to the
appropriate routine for changing the window display or the document contents. When
the user presses the mouse button while the cursor is in the zoom box, for example, you
call the Window Manager function TrackBox to highlight the zoom box and track the
mouse until the button is released.

When you receive a mouse-down event in an inactive window, your response depends
on what kind of window is active:

� If the active window is a movable modal dialog box, you should sound the system
alert and take no other action. (If the active window is a modal dialog box handled by
the ModalDialog procedure, the Dialog Manager doesn’t pass the event to your
application but sounds the system alert itself.)

C H A P T E R 4

Window Manager

4-44 Using the Window Manager

� If the active window is a document window or a modeless dialog box, you can call
SelectWindow, passing it the window pointer. The SelectWindow procedure
removes highlighting from the previously active window, brings the newly activated
window to the front, highlights it, and generates the activate and update events
necessary to tell all affected applications which windows must be redrawn.

Listing 4-9 illustrates an application-defined procedure that handles mouse-down events.

Listing 4-9 Handling mouse-down events

PROCEDURE DoMouseDown (event: EventRecord);

VAR

part: Integer;

thisWindow: WindowPtr;

BEGIN

part := FindWindow(event.where, thisWindow); {find out where cursor is}

CASE part OF

inMenuBar: {cursor is in menu bar}

BEGIN

{make sure menu items are properly enabled/disabled}

MyAdjustMenus;

{let user choose a menu command}

DoMenuCommand(MenuSelect(event.where));

END;

inSysWindow: {cursor is in a desk accessory window}

SystemClick(event, thisWindow);

inContent: {cursor is in the content region of one }

{ of your application's windows}

IF thisWindow <> FrontWindow THEN {cursor is not in front window}

BEGIN

IF MyIsMovableModal(FrontWindow) THEN {front window is }

SysBeep(30) { movable modal}

ELSE {front window is not movable modal}

SelectWindow(thisWindow); {make thisWindow active}

END

ELSE {cursor is in content region of active window}

DoContentClick(thisWindow, event); {handle event in content region}

inDrag: {cursor is in drag area}

{if a movable modal is active, ignore click in an inactive title bar}

IF (thisWindow <> FrontWindow) AND MyIsMovableModal(FrontWindow) THEN

SysBeep(30)

ELSE

{let Window Manager drag window}

DragWindow(thisWindow, event.where, GetGrayRgn^^.rgnBBox);

inGrow: {cursor is in size box}

DoGrowWindow(thisWindow, event); {change window size}

C H A P T E R 4

Window Manager

Using the Window Manager 4-45

inGoAway: {cursor is in close box}

{call TrackGoAway to handle mouse until button is released}

IF TrackGoAway(thisWindow, event.where) THEN

DoCloseCmd; {handle close window}

inZoomIn, inZoomOut: {cursor is in zoom box}

{call TrackBox to handle mouse until button is released}

IF TrackBox(thisWindow, event.where, part) THEN

DoZoomWindow(thisWindow, part); {handle zoom window}

END; {end of CASE statement}

END; {end of DoMouseDownEvent}

The DoMouseDown procedure first calls FindWindow to map the location of the cursor to
a part of the screen or a region of a window.

If the cursor is in the menu bar, DoMouseDown calls other application-defined procedures
for adjusting and displaying menus and accepting menu choices.

If the cursor is in a window created by a desk accessory, DoMouseDown calls the
SystemClick procedure, which handles mouse-down events for desk accessories from
within applications.

If the cursor is in the content area of a window, DoMouseDown first checks to see whether
the cursor is in the currently active window by comparing the window pointer returned
by FindWindow with the result returned by the function FrontWindow. If
the cursor is in an inactive window, DoMouseDown checks to see if the active window
is a movable modal dialog box. (If the front window is an alert box or a fixed-position
modal dialog box, an application does not receive mouse-down events in other
windows.) If the active window is a movable modal dialog box and the cursor is in
another window, DoMouseDown simply sounds the system alert and waits for another
event. If the active window is not a movable modal dialog box, DoMouseDown
calls SelectWindow to activate the window in which the cursor is located. The
SelectWindow procedure relayers the windows as necessary, adjusts the highlighting,
and sends the application a pair of activate events to deactivate the previously active
window and activate the newly active window. DoMouseDown merely activates
the window in which the cursor is located; it does not make a selection in the newly
activated window in response to the first click in that window.

If the cursor is in the content area of the active window, the DoMouseDown procedure
calls another application-defined procedure (DoContentClick) that handles mouse
events in the content area.

If the cursor is in the drag region of a window, DoMouseDown first checks whether the
drag region is in an inactive window while a movable modal dialog box is active. In
that case, DoMouseDown merely sounds the system alert and waits for another event. In
any other case, DoMouseDown calls the Window Manager procedure DragWindow,
which displays an outline of the window, moves the outline as long as the user continues
to drag the window, and calls MoveWindow to draw the window in its new location
when the user releases the mouse button. After the window is drawn in its new location,
it is the active window, whether or not it was active before.

C H A P T E R 4

Window Manager

4-46 Using the Window Manager

If the cursor is in the size box, DoMouseDown calls another application-defined routine
(DoGrowWindow, shown in Listing 4-13 on page 4-58) that resizes the window.

If the mouse press occurs in the close box, DoMouseDown calls the TrackGoAway
function, which highlights the close box and tracks all mouse activity until the user
releases the mouse button. As long as the user holds down the mouse button and leaves
the cursor in the close box, TrackGoAway leaves the close box highlighted, as illustrated
in Figure 4-19. If the user moves the cursor out of the close box, TrackGoAway removes
the highlighting.

Figure 4-19 The close box with and without highlighting

When the user releases the mouse button, TrackGoAway returns TRUE if the
cursor is still in the close box and FALSE if it is not. If TrackGoAway returns TRUE,
DoMouseDown calls the application-defined procedure DoCloseCmd to close the
window. Listing 4-16 on page 4-60 shows the DoCloseCmd procedure.

If the mouse press occurs in the zoom box, the DoMouseDown procedure first calls
TrackBox, which highlights the zoom box and tracks all mouse activity until the user
releases the mouse button. As long as the user holds down the mouse button and leaves
the cursor in the zoom box, TrackBox leaves the zoom box highlighted, as illustrated in
Figure 4-20. If the user moves the cursor out of the zoom box, TrackBox removes the
highlighting.

When the user releases the mouse button, TrackBox returns TRUE if the cursor is still in
the zoom box and FALSE if it is not. If TrackBox returns TRUE, DoMouseDown calls the
application-defined procedure DoZoomWindow to zoom the window. Listing 4-12 on
page 4-55 shows the DoZoomWindow procedure.

Close box
without highlighting

Close box
with highlighting

C H A P T E R 4

Window Manager

Using the Window Manager 4-47

Figure 4-20 The zoom box with and without highlighting

Handling Keyboard Events in Windows 4

Whenever your application is the foreground process, it receives key-down events
for all keyboard activity, except for the three standard Command–Shift–number key
sequences and any other Command–Shift–number key combinations the user has
installed. (Command–Shift–1 and Command–Shift–2 eject disks, and Command–Shift–3
stores a snapshot of the screen in a TeachText document on the startup volume. Your
application never receives these key combinations, which are handled by the Event
Manager. For more information, see the chapter “Event Manager” in this book.)

In general, the active window is the target of keyboard activity.

When the user presses a key or a combination of keys, your application responds by
inserting data into the document, changing the display, or taking other actions as defined
by your application. To ensure consistent use of and response to keyboard events, follow
the guidelines in Macintosh Human Interface Guidelines. Your application should, for
example, allow the user to choose frequently used menu items by pressing a keyboard
equivalent—usually a combination of the Command key and another key.

When you receive a key-down event, you first check whether the user is holding down
a modifier key (Command, Shift, Control, Caps Lock, and Option, on a standard
keyboard) and another key at the same time. If the Command key and a character key are
held down simultaneously, for example, you adjust your menus, enabling and disabling
items as appropriate, and allow the user to choose the menu item associated with the
Command-key combination.

Typically, your application provides feedback for standard keystrokes by drawing the
character on the screen. It should also recognize arrow keys for moving the cursor within
a text display, and it might add support for function keys or other special keys available
on nonstandard keyboards.

For an example of an application-defined routine for handling keyboard events, see the
chapter “Event Manager” in this book.

Zoom box
without highlighting

Zoom box
with highlighting

C H A P T E R 4

Window Manager

4-48 Using the Window Manager

Handling Update Events 4

The Event Manager sends your application an update event when part or all of your
window’s content region needs to be redrawn. Specifically, the Event Manager checks
each window’s update region every time your application calls WaitNextEvent or
EventAvail (or GetNextEvent) and generates an update event for every window
whose update region is not empty.

The Window Manager typically triggers update events when the moving and relayering
of windows on the screen require that one or more windows be redrawn. If the user
moves a window that covers part of an inactive window, for example, the Window
Manager first calls the window definition function of the inactive window, requesting
that it draw the window frame. It then adds the newly exposed area to the window’s
update region, which triggers an update event asking your application to update the
content region. Your application can also trigger update events itself by manipulating the
update region.

Your application can receive update events when it is in either the foreground or
the background.

The Window Manager ensures that you do not accidentally draw in other windows by
clipping all screen drawing to the visible region of a window’s graphics port. The visible
region is the part of the graphics port that’s actually visible on the screen—that is, the
part that’s not covered by other windows. The Window Manager stores a handle to the
visible region in the visRgn field of the graphics port data structure, which itself is in the
window record.

In response to an update event, your application calls the BeginUpdate procedure,
draws the window’s contents, and then calls the EndUpdate procedure. As illustrated
in Figure 4-21, BeginUpdate limits the visible region to the intersection of the visible
region and the update region. Your application can then update either the visible region
or the entire content region—because QuickDraw limits drawing to the visible region,
only the parts of the window that actually need updating are drawn. The BeginUpdate
procedure also clears the update region. After you’ve updated the window, you call
EndUpdate to restore the visible region in the graphics port to the full visible region.

See Inside Macintosh: Imaging for more information about graphics ports and
visible regions.

C H A P T E R 4

Window Manager

Using the Window Manager 4-49

Figure 4-21 The effects of BeginUpdate and EndUpdate on the visible region and
update region

Visible region limited
to intersection of update
region and visible region

Before screen
change

Before
BeginUpdate

After
BeginUpdate

After
EndUpdate

Appearance
on screen

Window 2’s
visible region

Window 2’s
update region

Update region
empty

Update region
empty

Update region
empty

C H A P T E R 4

Window Manager

4-50 Using the Window Manager

Listing 4-10 illustrates an application-defined procedure, DoUpdate, that handles
an update event.

Listing 4-10 Handling update events

PROCEDURE DoUpdate (window: WindowPtr);

VAR

windowType: LongInt;

BEGIN

{determine type of window as defined by this application}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow: {document window}

BEGIN

BeginUpdate(window);

MyDrawWindow(window);

EndUpdate(window);

END;

OTHERWISE {alert or dialog box}

DoUpdateMyDialog(window);

END; {of CASE}

END;

The DoUpdate procedure first determines whether the window being updated is a
document window or some other application-defined window by calling the
application-defined procedure MyGetWindowType (shown in Listing 4-1 on
page 4-25). If the window is a document window, DoUpdate calls BeginUpdate
to establish the temporary visible region, calls the application-defined procedure
MyDrawWindow (shown in Listing 4-8 on page 4-39) to redraw the content region,
and then calls EndUpdate to restore the visible region.

If the window is an alert box or a dialog box, DoUpdate calls the application-defined
procedure DoUpdateMyDialog, which is not shown here.

Handling Activate Events 4

Your application activates and deactivates windows in response to activate events, which
are generated by the Window Manager to inform your application that a window is
becoming active or inactive. Each activate event specifies the window to be changed and
the direction of the change (that is, whether it is to be activated or deactivated).

Your application often triggers activate events itself by calling the SelectWindow
procedure. When it receives a mouse-down event in an inactive window, for example,
your application calls SelectWindow, which brings the selected window to the front,
removes the highlighting from the previously active window, and adds highlighting to
the selected window. The SelectWindow procedure then generates two activate events:
the first one tells your application to deactivate the previously active window; the
second, to activate the newly active window.

C H A P T E R 4

Window Manager

Using the Window Manager 4-51

When you receive the event for the previously active window, you

� hide the controls and size box

� remove or alter any highlighting of selections in the window

When you receive the event for the newly active window, you

� draw the controls and size box

� restore the content area as necessary, adding the insertion point in its former location
or highlighting any previously highlighted selections

If the newly activated window also needs updating, your application also receives an
update event, as described in the previous section, “Handling Update Events.”

Note
A switch to one of your application’s windows from a different
application is handled through suspend and resume events, not activate
events. See the chapter “Event Manager” in this book for a description of
how your application can share processing time. �

Listing 4-11 illustrates the application-defined procedure DoActivate, which handles
activate events.

Listing 4-11 Handling activate events

PROCEDURE DoActivate (window: WindowPtr; activate: Boolean;

event: EventRecord);

VAR

windowType: Integer;

myData: MyDocRecHnd;

growRect: Rect;

BEGIN

{determine type of window as defined by this application}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyFindModelessDialogBox: {modeless Find dialog box}

DoActivateFindDBox(window, event);

{modeless Check Spelling dialog box}

kMyCheckSpellingModelessDialogBox:

DoActivateCheckSpellDBox(window, event);

kMyDocWindow: {document window}

BEGIN

myData := MyDocRecHnd(GetWRefCon(window)); {get document record}

HLock(Handle(myData)); {lock document record}

WITH myData^^ DO

IF activate THEN {window is becoming active}

C H A P T E R 4

Window Manager

4-52 Using the Window Manager

BEGIN

{restore selections and insert caret--if using }

{ TextEdit, for example, call TEActivate}

TEActivate(editRec);

MyAdjustMenus; {adjust menus for window}

{handle the controls}

docVScroll^^.contrlVis := kControlVisible;

docHScroll^^.contrlVis := kControlVisible;

InvalRect(docVScroll^^.contrlRect);

InvalRect(docHScroll^^.contrlRect);

growRect := window^.portRect;

WITH growRect DO {handle the size box}

BEGIN {adjust for the scroll bars}

top := bottom - kScrollbarAdjust;

left := right - kScrollbarAdjust;

END;

InvalRect(growRect);

END

ELSE {window is becoming inactive}

BEGIN

TEDeactivate(editRec); {call TextEdit to deactivate data}

HideControl(docVScroll); {hide the scroll bars}

HideControl(docHScroll);

DrawGrowIcon(window); {draw the size box}

END;

HUnLock(Handle(myData)); {unlock document record}

END; {of kMyDocWindow statement}

END; {of CASE statement}

END;

The DoActivate procedure first determines the general type of the window; that is,
it calls an application-defined function that returns a constant identifying the type
of the window: a Find dialog box, a Check Spelling dialog box, or a document window.
Listing 4-1 on page 4-25 shows the MyGetWindowType function.

If the target of the activate event is a dialog box window, DoActivate calls other
application-defined routines for activating and deactivating those dialog boxes. The
DoActivateFindDBox and DoActivateCheckSpellDBox routines are not shown
here. (The DoActivate procedure does not check for alert boxes and modal dialog
boxes, because the Dialog Manager’s ModalDialog procedure automatically handles
activate events.)

C H A P T E R 4

Window Manager

Using the Window Manager 4-53

If the target is a document window and the activate event specifies that the window is
becoming active, DoActivate highlights any user selections in the window and draws
the insertion point where appropriate. It then makes the controls visible, adds the area
occupied by the scroll bars to the update region, and adds the area occupied by the size
box to the update region. (Placing window area in the update region guarantees an
update event. When the application receives the update event, it calls the application-
defined procedure DoUpdate to draw the update region, which in this case includes the
size box and scroll bars.)

If the target is a document window, and the activate event specifies that the window
is becoming inactive, the DoActivate procedure calls the TextEdit procedure
TEDeactivate to remove highlighting from user selections, calls the Control Manager
procedure HideControl to hide the scroll bars, and calls the Window Manager
procedure DrawGrowIcon to draw the size box and the outline of the scroll bar area.

Moving a Window 4
When the user drags a window by the title bar (except for the close and zoom box
regions), the window should move, following the cursor as it moves on the
desktop. Your application can easily let the user move the window by calling the
DragWindow procedure.

The DragWindow procedure draws an outline of the window on the screen and
moves the outline as the user moves the mouse. When the user releases the mouse
button, DragWindow calls the MoveWindow function, which redraws the window in
its new location.

For an example of moving a window, see the inDrag case in Listing 4-9 on page 4-44.

Zooming a Window 4
The zoom box allows the user to alternate quickly between two window positions and
sizes: the user state and the standard state.

The user state is the window size and location established by the user. If your application
does not supply an initial user state, the user state is simply the size and location of the
window when it was created, until the user resizes it.

The standard state is the window size and location that your application considers most
convenient, considering the function of the document and the screen space available. In a
word-processing application, for example, a standard-state window might show a
full page, if possible, or a page of full width and as much length as fits on the screen.
If the user changes the page size through Page Setup, the application might adjust the
standard state to reflect the new page size. If your application does not define a standard
state, the Window Manager automatically sets the standard state to the entire gray region
on the main screen, minus a three-pixel border on all sides. (See Macintosh Human
Interface Guidelines for a detailed description of how your application determines where
to open and zoom windows.) The user cannot change a window’s standard state.

C H A P T E R 4

Window Manager

4-54 Using the Window Manager

The user and standard states are stored in a record whose handle appears in the
dataHandle field of the window record.

TYPE WStateData =

RECORD

userState: Rect; {size and location established by user}

stdState: Rect; {size and location established by }

{ application}

END;

The Window Manager sets the initial values of the userState and stdState fields
when it fills in the window record, and it updates the userState field whenever the
user resizes the window. You typically compute the standard state every time the user
zooms to the standard state, to ensure that you’re zooming to an appropriate location.

When the user presses the mouse button with the cursor in the zoom box, the
FindWindow function specifies whether the window is in the user state or the standard
state: when the window is in the standard state, FindWindow returns inZoomIn
(meaning that the window is to be zoomed “in” to the user state); when the window is in
the user state, FindWindow returns inZoomOut (meaning that the window is to be
zoomed “out” to the standard state).

When FindWindow returns either inZoomIn or inZoomOut, your application can call
the TrackBox function to handle the highlighting of the zoom box and to determine
whether the cursor is inside or outside the box when the button is released. If TrackBox
returns TRUE, your application can call the ZoomWindow procedure to resize the window
(after computing a new standard state). If TrackBox returns FALSE, your application
doesn’t need to do anything. Listing 4-9 on page 4-44 illustrates the use of TrackBox in
an event-handling routine.

Listing 4-12 illustrates an application-defined procedure, DoZoomWindow, which an
application might call when TrackBox returns TRUE after FindWindow returns either
inZoomIn or inZoomOut. Because the user might have moved the window to a different
screen since it was last zoomed, the procedure first determines which screen contains the
largest area of the window and then calculates the ideal window size for that screen
before zooming the window.

The screen calculations in the DoZoomWindow procedure depend on the routines for
handling graphics devices that were introduced at the same time as Color QuickDraw.
Therefore, DoZoomWindow checks for the presence of Color QuickDraw before
comparing the window to be zoomed with the graphics devices in the device list. If Color
QuickDraw is not available, DoZoomWindow assumes that it’s running on a computer
with a single screen.

C H A P T E R 4

Window Manager

Using the Window Manager 4-55

Listing 4-12 Zooming a window

PROCEDURE DoZoomWindow (thisWindow: windowPtr; zoomInOrOut: Integer);

VAR

gdNthDevice, gdZoomOnThisDevice: GDHandle;

savePort: GrafPtr;

windRect, zoomRect, theSect: Rect;

sectArea, greatestArea: LongInt;

wTitleHeight: Integer;

sectFlag: Boolean;

BEGIN

GetPort(savePort);

SetPort(thisWindow);

EraseRect(thisWindow^.portRect); {erase to avoid flicker}

IF zoomInOrOut = inZoomOut THEN {zooming to standard state}

BEGIN

IF NOT gColorQDAvailable THEN {assume a single screen and }

BEGIN { set standard state to full screen}

zoomRect := screenBits.bounds;

InsetRect(zoomRect, 4, 4);

WStateDataHandle(WindowPeek(thisWindow)^.dataHandle)^^.stdState

:= zoomRect;

END

ELSE {locate window on available graphics devices}

BEGIN

windRect := thisWindow^.portRect;

LocalToGlobal(windRect.topLeft); {convert to global coordinates}

LocalToGlobal(windRect.botRight);

{calculate height of window's title bar}

wTitleHeight := windRect.top - 1 -

 WindowPeek(thisWindow)^.strucRgn^^.rgnBBox.top;

windRect.top := windRect.top - wTitleHeight;

gdNthDevice := GetDeviceList;

greatestArea := 0; {initialize to 0}

{check window against all gdRects in gDevice list and remember }

{ which gdRect contains largest area of window}

WHILE gdNthDevice <> NIL DO

IF TestDeviceAttribute(gdNthDevice, screenDevice) THEN

IF TestDeviceAttribute(gdNthDevice, screenActive) THEN

BEGIN

{The SectRect routine calculates the intersection }

{ of the window rectangle and this gDevice }

{ rectangle and returns TRUE if the rectangles intersect, }

{ FALSE if they don't.}

C H A P T E R 4

Window Manager

4-56 Using the Window Manager

sectFlag := SectRect(windRect, gdNthDevice^^.gdRect,

 theSect);

{determine which screen holds greatest window area}

{first, calculate area of rectangle on current device}

WITH theSect DO

sectArea := LongInt(right - left) * (bottom - top);

IF sectArea > greatestArea THEN

BEGIN

greatestArea := sectArea; {set greatest area so far}

gdZoomOnThisDevice := gdNthDevice; {set zoom device}

END;

gdNthDevice := GetNextDevice(gdNthDevice);

END; {of WHILE}

{if gdZoomOnThisDevice is on main device, allow for menu bar height}

IF gdZoomOnThisDevice = GetMainDevice THEN

wTitleHeight := wTitleHeight + GetMBarHeight;

WITH gdZoomOnThisDevice^^.gdRect DO {create the zoom rectangle}

BEGIN

{set the zoom rectangle to the full screen, minus window title }

{ height (and menu bar height if necessary), inset by 3 pixels}

SetRect(zoomRect, left + 3, top + wTitleHeight + 3,

 right - 3, bottom - 3);

{If your application has a different "most useful" standard }

{ state, then size the zoom window accordingly.}

{set up the WStateData record for this window}

WStateDataHandle(WindowPeek(thisWindow)^.dataHandle)^^.stdState

 := zoomRect;

END;

END;

END; {of inZoomOut}

{if zoomInOrOut = inZoomIn, just let ZoomWindow zoom to user state}

{zoom the window frame}

ZoomWindow(thisWindow, zoomInOrOut, (thisWindow = FrontWindow));

MyResizeWindow(thisWindow); {application-defined window-sizing routine}

SetPort(savePort);

END; (of DoZoomWindow)

If the user is zooming the window to the standard state, DoZoomWindow calculates a new
standard size and location based on the application’s own considerations, the current
location of the window, and the available screens. The DoZoomWindow procedure always
places the standard state on the screen where the window is currently displayed or, if the
window spans screens, on the screen containing the largest area
of the window.

C H A P T E R 4

Window Manager

Using the Window Manager 4-57

The bulk of the code in Listing 4-12 is devoted to determining which screen should
display the window in the standard state. The sample code shown here establishes
a standard state that simply occupies the gray area on the chosen screen, minus
three pixels on all sides. Your application should establish a standard state appropriate
to its own documents. When calculating the standard state, move the window as little
as possible from the user state. If possible, anchor one corner of the standard state
rectangle to one corner of the user state rectangle.

If the user is zooming the window to the user state, DoZoomWindow doesn’t have to
perform any calculations, because the user state rectangle stored in the state data record
should represent a valid screen location.

After calculating the standard state, if necessary, DoZoomWindow calls the ZoomWindow
procedure to redraw the window frame in the new size and location and then calls the
application-defined procedure MyResizeWindow to redraw the window’s content
region. Listing 4-14 on page 4-59 shows the MyResizeWindow procedure.

Resizing a Window 4
The size box, in the lower-right corner of a window’s content region, allows the user to
change a window’s size.

When the user positions the cursor in the size box and presses the mouse button, your
application can call the Window Manager’s GrowWindow function. This function
displays a grow image—a gray outline of the window’s frame and scroll bar areas, which
expands or contracts as the user drags the size box. The grow image indicates where the
window edges would be if the user released the mouse button at any
given moment.

To avoid unmanageably large or small windows, you supply lower and upper size limits
when you call GrowWindow. The sizeRect parameter to GrowWindow specifies both
the lower and upper size limits in a single structure of type Rect. The values in the
sizeRect structure represent window dimensions, not screen coordinates:

� You supply the minimum vertical measurement in sizeRect.top.

� You supply the minimum horizontal measurement in sizeRect.left.

� You supply the maximum vertical measurement in sizeRect.bottom.

� You supply the maximum horizontal measurement in sizeRect.right.

Most applications specify a minimum size big enough to include all parts of the structure
area and the scroll bars. Because the user cannot move the cursor beyond the edges of the
screen, you can safely set the maximum size to the largest possible rectangle.

When the user releases the mouse button, GrowWindow returns a long integer that
describes the window’s new height (in the high-order word) and width (in the low-order
word). A value of 0 means that the window’s size did not change. When GrowWindow
returns any value other than 0, you call SizeWindow to resize the window.

C H A P T E R 4

Window Manager

4-58 Using the Window Manager

Note
Use the utility functions HiWord and LoWord to retrieve the high-order
and low-order words, respectively. �

When you change a window’s size, you must erase and redraw the window’s scroll bars.

Listing 4-13 illustrates the application-defined procedure DoGrowWindow for tracking
mouse activity in the size box and resizing the window.

Listing 4-13 Resizing a window

PROCEDURE DoGrowWindow (thisWindow: windowPtr;

 event: EventRecord);

VAR

growSize: LongInt;

limitRect: Rect;

oldViewRect: Rect;

locUpdateRgn: RgnHandle;

theResult: Boolean;

myData: MyDocRecHnd;

BEGIN

{set up the limiting rectangle: kMinDocSize = 64 }

{ kMaxDocSize = 65535}

SetRect(limitRect, kMinDocSize, kMinDocSize, kMaxDocSize,

kMaxDocSize);

{call Window Manager to let user drag size box}

growSize := GrowWindow(thisWindow, event.where, limitRect);

IF growSize <> 0 THEN {if user changed size, }

BEGIN { then resize window}

myData := MyDocRecHnd(GetWRefCon(thisWindow));

oldViewRect := myData^^.editRec^^.viewRect;

locUpdateRgn := NewRgn;

{save update region in local coordinates}

MyGetLocalUpdateRgn(thisWindow, locUpdateRgn);

{resize the window}

SizeWindow(thisWindow, LoWord(growSize), HiWord(growSize),

TRUE);

MyResizeWindow(thisWindow);

{find intersection of old viewRect and new viewRect}

theResult := SectRect(oldViewRect,

myData^^.editRec^^.viewRect,

oldViewRect);

{validate the intersection (don't update)}

ValidRect(oldViewRect);

C H A P T E R 4

Window Manager

Using the Window Manager 4-59

{invalidate any prior update region}

InvalRgn(locUpdateRgn);

DisposeRgn(locUpdateRgn);

 END;

END;

When the user presses the mouse button while the cursor is in the size box, the procedure
that handles mouse-down events (DoMouseDown, shown on page 4-44) calls the
application-defined DoGrowWindow procedure. The DoGrowWindow procedure
calls the Window Manager function GrowWindow, which tracks mouse movement as
long as the button is held down. If the user drags the size box before releasing the mouse
button, GrowWindow returns a nonzero value, and DoGrowWindow prepares to resize the
window. First DoGrowWindow saves the current view rectangle in the variable
oldViewRect. It will use this information later, when redrawing the content region of
the window in its new size. The GrowWindow procedure also saves the current update
region, in local coordinates, in the region LocUpdateRgn, so that it can restore the
update region after doing its own update-region maintenance. (This step is necessary
only if an application allows user input to accumulate into the update region, drawing in
response to update events instead of drawing into the window immediately.)

After saving the current view rectangle and the current update region, DoGrowWindow
calls the Window Manager procedure SizeWindow to draw the window in its new
size. The DoGrowWindow procedure then calls the application-defined procedure
MyResizeWindow, which adjusts the window scroll bars and window contents to the
new size. Listing 4-14 illustrates the application-defined MyResizeWindow procedure.

After calling SizeWindow, DoGrowWindow calculates the intersection of the old view
rectangle and the new view rectangle. It uses this area to revalidate unchanged portions
of the window (that is, to remove them from the update region), because the
MyResizeWindow procedure invalidates the entire window (that is, places the entire
window in the update region). This way, only the changed parts of the content area are
redrawn when the application receives its next update event.

Listing 4-14 Adjusting scroll bars and content region when resizing a window

PROCEDURE MyResizeWindow (window: WindowPtr);

BEGIN

WITH window^ DO

 BEGIN

{adjust scroll bars and contents-- }

{ see the chapter “Control Manager” for implementation}

MyAdjustScrollbars(window, TRUE);

MyAdjustTE(window);

{invalidate content region, forcing an update}

InvalRect(portRect);

END;

END; {MyResizeWindow}

C H A P T E R 4

Window Manager

4-60 Using the Window Manager

Listing 4-15 illustrates the application-defined procedure MyGetLocalUpdateRgn,
which supplies a window’s update region in local coordinates. The
MyGetLocalUpdateRgn procedure uses the QuickDraw routines CopyRgn and
OffsetRgn, documented in Inside Macintosh: Imaging.

Listing 4-15 Converting a window region to local coordinates

PROCEDURE MyGetLocalUpdateRgn (window: WindowPtr;

localRgn: RgnHandle);

BEGIN

{save old update region}

CopyRgn(WindowPeek(window)^.updateRgn, localRgn);

WITH window^.portBits.bounds DO

OffsetRgn(localRgn, left, top); {convert to local coords}

END; {MyGetLocalUpdateRgn}

Closing a Window 4
The user closes a window either by clicking the close box, in the upper-left corner of the
window, or by choosing Close from the File menu.

When the user presses the mouse button while the cursor is in the close box, your
application calls the TrackGoAway function to track the mouse until the user releases the
button, as illustrated in Listing 4-9 on page 4-44. If the user releases the button while the
cursor is outside the close box, TrackGoAway returns FALSE, and your application does
nothing. If TrackGoAway returns TRUE, your application invokes its own procedure for
closing a window.

The specific steps you take when closing a window depend on what kind of information
the window contains and whether the contents need to be saved. The sample code in this
chapter recognizes four kinds of windows: the modeless dialog box containing the Find
dialog, the modeless dialog box containing the Spell Check dialog, a standard document
window, and a window associated with a desk accessory that was launched in the
application’s partition.

Listing 4-16 illustrates an application-defined procedure, DoCloseCmd, that determines
what kind of window is being closed and follows the appropriate strategy. The
application calls DoCloseCmd when the user clicks a window’s close box or chooses
Close from the File menu.

Listing 4-16 Handling a close command

PROCEDURE DoCloseCmd;

VAR

myWindow: WindowPtr; {pointer to window's record}

myData: MyDocRecHnd; {handle to a document record}

windowType: Integer; {application-defined window type}

C H A P T E R 4

Window Manager

Using the Window Manager 4-61

BEGIN

myWindow := FrontWindow;

windowType := MyGetWindowType(myWindow);

CASE windowType OF

kMyFindModelessDialog: {for modeless dialog boxes, }

HideWindow(myWindow); { hide window}

kMySpellModelessDialog: {for modeless dialog boxes, }

HideWindow(myWindow); { hide window}

kDAWindow: {for desk accessories, close the DA}

CloseDeskAcc(WindowPeek(myWindow)^.windowKind);

kMyDocWindow: {for documents, handle file first}

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));

MyCloseDocument(myData);

END;

END; {of CASE}

END;

The DoCloseCmd procedure first determines which window is the active window
and then calls the application-defined function MyGetWindowType to identify the
window’s type, as defined by the application. If the window is a modeless dialog box,
MyCloseCmd merely hides the window, leaving the data structures in memory. For
a sample routine that displays a hidden window, see Listing 4-18 on page 4-64.

If the window is associated with a desk accessory, the DoCloseCmd procedure calls
the CloseDeskAcc procedure to close the desk accessory. This case is included
only for compatibility; in System 7 desk accessories are seldom launched in an
application’s partition.

If the window is associated with a document, DoCloseCmd reads the document
record and then calls the application-defined procedure MyCloseDocument to handle
the closing of a document window. Listing 4-17 illustrates the MyCloseDocument
procedure.

Listing 4-17 Closing a document

PROCEDURE MyCloseDocument (myData: MyDocRecHnd);

VAR

title: Str255; {window/document title}

item: Integer; {item in Save Alert dialog box}

docWindow: WindowPtr; {pointer to window record}

event: EventRecord; {dummy record for DoActivate}

myErr: OSErr; {variable for error-checking}

BEGIN

docWindow := FrontWindow;

IF (myData^^.windowDirty) THEN {changed since last save}

C H A P T E R 4

Window Manager

4-62 Using the Window Manager

BEGIN

GetWTitle(docWindow, title); {get window title}

ParamText(title, '', '', ''); {set up dialog text}

{deactivate window before displaying Save dialog}

DoActivate(docWindow, FALSE, event);

{put up Save dialog and retrieve user response}

item := CautionAlert(kSaveAlertID, @MyEventFilter);

IF item = kCancel THEN {user clicked Cancel}

Exit(MyCloseDocument); {exit without closing}

IF item = kSave THEN {user clicked Save}

DoSaveCmd; {save the document}

{otherwise user clicked Don't Save-- }

{ close document in either case}

myErr := DoCloseFile(myData); {close document}

{Add your own error handling.}

END;

{close window whether or not user saved}

CloseWindow(docWindow); {close window}

DisposePtr(Ptr(docWindow)); {dispose of window record}

END;

The MyCloseDocument procedure checks the windowDirty field in the document
record (described in “Managing Multiple Windows” beginning on page 4-23). If the value
of windowDirty is TRUE, MyCloseDocument displays a dialog box giving the user a
chance to save the document before closing the window. The dialog box gives
the user the choices of canceling the close, saving the document before closing
the window, or closing the window without saving the document. If the user
cancels, MyCloseDocument merely exits. If the user opts to save the document,
MyCloseDocument calls the application-defined routine DoSaveCmd, which is
not shown here. (For a description of how to save and close a file, see the chapter
“Introduction to File Management” in Inside Macintosh: Files.) Whether or not the
user saves the document before closing the window, MyCloseDocument closes the
document and finally removes the window from the screen and diposes of the memory
allocated to the window record.

Hiding and Showing a Window 4
Whenever the user clicks a window’s close box, you remove the window from the screen.
Sometimes, however, you might find it’s more efficient to merely hide the window,
instead of removing its data structures.

If your application includes a Find modeless dialog box that searches for a string, for
example, you might want to keep the structures in memory as long as the user is
working. When the user closes the dialog box by clicking the close box, you simply hide
the window by calling the HideWindow procedure. The next time the user chooses the
Find command, your dialog box window is already available, in the same location and
with the same text selected as when it was last used.

C H A P T E R 4

Window Manager

Using the Window Manager 4-63

To reverse the HideWindow procedure, you must call both ShowWindow, which makes
the window visible, and SelectWindow, which makes it the active window. Figure 4-22
illustrates how the three procedures affect the window’s status on the screen.

Figure 4-22 The cumulative effects of HideWindow, ShowWindow, and SelectWindow

Before HideWindow

After HideWindow

After ShowWindow

After SelectWindow

C H A P T E R 4

Window Manager

4-64 Window Manager Reference

The application-defined procedure for closing a window—DoCloseCmd, described
on page 4-60—hides the Find and Spell Check dialog box windows when the
user closes them. Listing 4-18 illustrates a sample application-defined procedure,
DoShowModelessFindDialogBox, for redisplaying the Find dialog box when the
user next chooses the Find command.

Listing 4-18 Showing a hidden dialog box

PROCEDURE DoShowModelessFindDialogBox;

BEGIN

IF gFindDialog = NIL THEN {no Find dialog box exists yet}

BEGIN

{create Find dialog box}

gFindDialog := GetNewDialog(rFindModelessDialog, NIL,

 Pointer(-1));

IF gFindDialog = NIL THEN {creation failed}

Exit(DoShowModelessFindDialogBox); {exit}

{store value that identifies dbox in window refCon field}

SetWRefCon(gFindDialog, LongInt(kMyFindModelessDialog))

ShowWindow(gFindDialog); {make dialog box visible}

END

ELSE {dialog box already exists}

BEGIN

ShowWindow(gFindDialog); {make it visible}

SelectWindow(gFindDialog); {select it}

END;

END;

The DoShowModelessFindDialogBox procedure first checks whether the Find
dialog box already exists. If it doesn’t, then DoShowModelessFindDialogBox creates a
new dialog box through the Dialog Manager. It stores the constant that represents
the Find dialog box in the refCon field of the new window record, makes the window
visible, and draws the dialog box contents. If the Find dialog box already exists,
DoShowModelessFindDialogBox makes the dialog box window visible and selects it.
When the Window Manager then generates an activate event, the application calls its
own procedure to draw the contents.

Window Manager Reference 4

This section describes the Window Manager’s data structures and routines. It also lists
the resources used by the Window Manager and describes the window ('WIND') and
window color table ('wctb') resources.

C H A P T E R 4

Window Manager Reference 4-65

Window Manager 4

Data Structures 4
This section describes the Window Manager data structures: the window record, the
color window record, the state data record, the window color table record, the auxiliary
window record, and the window list.

A window record or color window record describes an individual window. It includes
the record for the graphics port in which the window is displayed.

The state data record stores two rectangles, known as the user state and the standard
state, which define the size and location of the window as specified by the user and by
your application. Your application switches between the two states when the user clicks
the zoom box.

A window color table defines the colors to be used for drawing the window’s frame and
highlighting selected text. Ordinarily, you use the default window color table, which
produces windows in the colors selected by the user through the Color control panel. If
your application has some unusual need to control the frame colors, you can set up your
own window color tables.

The Window Manager uses auxiliary window records to associate a window with its
window color table.

The Window Manager uses the window list to track all of the windows on the desktop.

The Color Window Record 4

The Window Manager maintains a window record or color window record for each
window on the desktop.

The Window Manager supplies routines that let you access the window record as
necessary. Your application seldom changes fields in the window record directly.

The CWindowRecord data type defines the window record for a color window. The
CWindowPeek data type is a pointer to a color window record. The first field in
the window record is in fact the record that describes the window’s graphics port. The
CWindowPtr data type is defined as a pointer to the window’s graphics port.

When Color QuickDraw is not available, you can create monochrome windows using the
parallel data types WindowRecord, WindowPeek, and WindowPtr, described in the next
section, “The Window Record.”

For compatibility, the WindowPtr and WindowPeek data types can point to either a color
window record or a monochrome window record. You use the WindowPtr data type to
specify a window in most Window Manager routines, and you can use it to specify a
graphics port in QuickDraw routines that take the GrafPtr data type. Note that you can
access only the fields of the window’s graphics port, not the rest of the window record,
through the WindowPtr and CWindowPtr data types. You use the WindowPeek and
CWindowPeek data types in low-level Window Manager routines
and in your own routines that access window record fields beyond the graphics port.

C H A P T E R 4

Window Manager

4-66 Window Manager Reference

The routines that manipulate color windows get color information from the window
color tables and the auxiliary window record described in the sections “The Window
Color Table Record” on page 4-71 and “The Auxiliary Window Record” on page 4-73.

TYPE CWindowPtr = ^CGrafPtr;

CWindowPeek = ^CWindowRecord;

TYPE CWindowRecord =

RECORD

port: CGrafPort; {window's graphics port}

windowKind: Integer; {class of the window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition }

{ function}

dataHandle: Handle; {handle to window state }

{ data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: CWindowPeek; {pointer to next window }

{ record in window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your }

{ application}

END;

Field descriptions

port The graphics port record that describes the graphics port in which
the window is drawn.
The graphics port record, which is documented in Inside Macintosh:
Imaging, defines the rectangle in which drawing can occur, the
window’s visible region, the window’s clipping region, and a
collection of current drawing characteristics such as fill pattern, pen
location, and pen size.

windowKind The class of window—that is, how the window was created.
The Window Manager fills in this field when it creates the window
record. It places a negative value in windowKind when the window

C H A P T E R 4

Window Manager

Window Manager Reference 4-67

was created by a desk accessory. (The value is the reference ID of the
desk accessory.) This field can also contain one of two constants:

CONST

dialogKind = 2; {dialog or alert window}

userKind = 8; {window created by an }

{ application}

The value dialogKind identifies all dialog or alert box windows,
whether created by the system software or, indirectly through the
Dialog Manager, by your application. The Dialog Manager uses this
field to help it track dialog and alert box windows.
The value userKind represents a window created directly by your
application.

visible A Boolean value indicating whether or not the window is visible. If
the window is visible, the Window Manager sets this field to TRUE;
if not, FALSE. Visibility means only whether or not the window is to
be displayed, not necessarily whether you can see it on the screen.
(For example, a window that is completely covered by other
windows can still be visible, even if the user cannot see it on the
screen.)

hilited A Boolean value indicating whether the window is highlighted—
that is, drawn with stripes in the title bar. Only the active window is
ordinarily highlighted. When the window is highlighted, the
hilited field contains TRUE; when not, FALSE.

goAwayFlag A Boolean value indicating whether the window has a close box.
The Window Manager fills in this field when it creates the window
according to the information in the 'WIND' resource or the
parameters passed to the function that creates the window.
If the value of goAwayFlag is TRUE, and if the window type
supports a close box, the Window Manager draws a close box when
the window is highlighted.

spareFlag A Boolean value indicating whether the window type supports
zooming. The Window Manager sets this field to TRUE if the
window’s type is one that includes a zoom box (zoomDocProc,
zoomNoGrow, or even modalDBoxProc + zoomDocProc).

strucRgn A handle to the structure region, which is defined in global
coordinates. The structure region is the entire screen area covered by
the window—that is, both the window contents and the window
frame.

contRgn A handle to the content region, which is defined in global
coordinates. The content region is the part of the window that
contains the document, dialog, or other data; the window controls;
and the size box.

updateRgn A handle to the update region, which is defined in global
coordinates. The update region is the portion of the window that
must be redrawn. It is maintained jointly by the Window Manager
and your application. The update region excludes parts of the
window that are covered by other windows.

C H A P T E R 4

Window Manager

4-68 Window Manager Reference

windowDefProc A handle to the definition function that controls the window.
There’s no need for your application to access this field directly.
In Macintosh models that use only 24-bit addressing, this field
contains both a handle to the window’s definition function and the
window’s variation code. If you need to know the variation code,
regardless of the addressing mode, call the GetWVariant function.

dataHandle Usually a handle to a data area used by the window definition
function.
For zoomable windows, dataHandle contains a handle to the
WStateData record, which contains the user state and standard
state rectangles. The WStateData record is described in “The
Window State Data Record” beginning on page 4-70.
A window definition function that needs only 4 bytes of data can
use the dataHandle field directly, instead of storing a handle to the
data. The window definition function that handles rounded-corner
windows, for example, stores the diameters of curvature in the
dataHandle field.

titleHandle A handle to the string that defines the title of the window.
titleWidth The width, in pixels, of the window’s title.
controlList A handle to the window’s control list, which is used by the Control

Manager. (See the chapter “Control Manager” in this book for a
description of control lists.)

nextWindow A pointer to the next window in the window list, that is, the
window behind this window on the desktop. In the window record
for the last window on the desktop, the nextWindow field is set
to NIL.

windowPic A handle to a QuickDraw picture of the window’s contents. The
Window Manager initially sets the windowPic field to NIL. If
you’re using the window to display a stable image, you can use the
SetWindowPic procedure to place a handle to the picture in this
field. When the window’s contents need updating, the Window
Manager then redraws the contents itself instead of generating an
update event.

refCon The window’s reference value field, which is simply storage
space available to your application for any purpose. The sample
code in this chapter uses the refCon field to associate a window
with the data it displays by storing a window type constant in
the refCon field of alert and dialog window records and a handle to
a document record in the refCon field of a document
window record.

Note
The close box, drag region, zoom box, and size box are not included in
the window record because they don’t necessarily have the formal data
structure for regions as defined in QuickDraw. The window definition
function determines where these regions are. �

C H A P T E R 4

Window Manager

Window Manager Reference 4-69

The Window Record 4

If Color QuickDraw is not available, you create windows with a parallel data structure,
the window record. The only difference between a color window record and a window
record is that a color window record points to a color graphics port, which allows full use
of Macintosh computers with color capability, and a window record points to a
monochrome graphics port

The data types that describe window records, WindowRecord, WindowPtr, and
WindowPeek, are parallel to the data types that describe color window records, and the
fields in the monochrome window record are identical to the fields in the color window
record. For a complete description, see “The Color Window Record” beginning on
page 4-65.

TYPE WindowPtr = ^GrafPtr;

WindowPeek = ^WindowRecord;

TYPE WindowRecord = {all fields have same use }

RECORD { as in color window record}

port: GrafPort; {window's graphics port}

windowKind: Integer; {class of the window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition }

{ function}

dataHandle: Handle; {handle to window state }

{ data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: WindowPeek; {pointer to next window }

{ record in window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your }

{ application}

END;

C H A P T E R 4

Window Manager

4-70 Window Manager Reference

The Window State Data Record 4

The zoom box allows the user to alternate quickly between two window positions and
sizes: the user state and the standard state. The Window Manager stores the user state
and your application stores the standard state in the window state data record, whose
handle appears in the dataHandle field of the window record.

The WStateData record data type defines the window state data record.

TYPE WStateDataPtr = ^WStateData;

WStateDataHandle = ^WStateDataPtr;

WStateData =

RECORD

userState: Rect; {size and location established by user}

stdState: Rect; {size and location established by app}

END;

Field descriptions

userState A rectangle that describes the window size and location established
by the user.
The Window Manager initializes the user state to the size and
location of the window when it is first displayed, and then updates
the userState field whenever the user resizes a window. Although
the user state specifies both the size and location of the window, the
Window Manager updates the state data record only when the user
resizes a window—not when the user merely moves a window.

stdState The rectangle describing the window size and location that your
application considers the most convenient, considering the function
of the document, the screen space available, and the position of the
window in its user state. If your application does not define a
standard state, the Window Manager automatically sets the
standard state to the entire gray region on the main screen, minus a
three-pixel border on all sides. The user cannot change a window’s
standard state.
Your application typically calculates and sets the standard state each
time the user zooms to the standard state. In a word- processing
application, for example, a standard state window might show a full
page, if possible, or a page of full width and as much length as fits
on the screen. If the user changes the page size through Page Setup,
the application might adjust the standard state to reflect the new
page size. (See Macintosh Human Interface Guidelines for a detailed
description of how your application determines where to open and
zoom windows.)

The ZoomWindow procedure changes the size of a window according to the values in the
window state data record. The procedure changes the window to the user state when the
user zooms “in” and to the standard state when the user zooms “out.” For a detailed
description of zooming windows, see “Zooming a Window” beginning on page 4-53. For

C H A P T E R 4

Window Manager

Window Manager Reference 4-71

descriptions of the routines you call when zooming windows, see “Zooming Windows”
beginning on page 4-101.

The Window Color Table Record 4

The user controls the colors used for the window frame and text highlighting through the
Color control panel. Ordinarily, your application doesn’t override the user’s color choic-
es, which are stored in a default window color table. If you have some extraordinary
need to control window colors, you can do so by defining window color tables for your
application’s windows.

The Window Manager maintains window color information tables in a data structure of
type WinCTab.

You can define your own window color table and apply it to an existing window through
the SetWinColor procedure.

To establish the window color table for a window when you create it, you provide
a window color table ('wctb') resource with the same resource ID as the 'WIND'
resource that defines the window.

The WCTabPtr data type is a pointer to a window color table record, and the
WTabHandle is a handle to a window color table record.

TYPE WCTabPtr = ^WinCTab;

WCTabHandle = ^WCTabPtr;

The WinCTab data type defines a window color table record.

TYPE WinCTab =

RECORD

wCSeed: LongInt; {reserved}

wCReserved: Integer; {reserved}

ctSize: Integer; {number of entries in table -1}

ctTable: ARRAY[0..4] OF ColorSpec;

{array of color specification }

{ records}

END;

Field descriptions

wCSeed Reserved.
wCReserved Reserved.
ctSize The number of entries in the table, minus 1. If you’re building a

color table for use with the standard window definition function, the
maximum value of this field is 12. Custom window definition
functions can use color tables of any size.

C H A P T E R 4

Window Manager

4-72 Window Manager Reference

ctTable An array of colorSpec records.
In a window color table, each colorSpec record specifies a
window part in the first word and an RGB value in the other
three words:

TYPE ColorSpec =

RECORD

value: Integer; {part identifier}

rgb: RGBColor; {RGB value}

END;

The value field of a colorSpec record specifies a constant that
defines which part of the window the color controls. For the
window color table used by the standard window definition
function, you can specify these values with these meanings:

CONST

wContentColor = 0; {content region background}

wFrameColor = 1; {window outline}

wTextColor = 2; {window title and button }

{ text}

wHiliteColor = 3; {reserved}

wTitleBarColor = 4; {reserved}

wHiliteColorLight = 5; {lightest stripes in }

{ title bar and lightest }

{ dimmed text}

wHiliteColorDark = 6; {darkest stripes in }

{ title bar and }

{ darkest dimmed }

{ text}

wTitleBarLight = 7; {lightest parts of }

{ title bar background}

wTitleBarDark = 8; {darkest parts of }

{ title bar background}

wDialogLight = 9; {lightest element }

{ of dialog box frame}

wDialogDark = 10; {darkest element of }

{ dialog box frame}

wTingeLight = 11; {lightest window tinging}

wTingeDark = 12; {darkest window tinging}

Note

The part codes in System 5 and System 6 are significantly different
from the part codes described here, which apply only to System 7. �

The window parts can appear in any order in the table.
The rgb field of a ColorSpec record contains three words of data
that specify the red, green, and blue values of the color to be used.
The RGBColor data type is defined in Inside Macintosh: Imaging.

C H A P T E R 4

Window Manager

Window Manager Reference 4-73

When your application creates a window, the Window Manager first looks for a resource
of type 'wctb' with the same resource ID as the 'WIND' resource used for the window.
If it finds one, it creates a window color table for the window from the information in that
resource, and then displays the window in those colors. If it doesn’t find a window color
table resource with the same resource ID as your window resource, the Window Manager
uses the default system window color table, read into the heap during application
startup.

After creating a window, you can change the entries in a window’s window color table
with the SetWinColor procedure, described on page 4-114.

See “The Window Color Table Resource” on page 4-127 for a description of the window
color table resource.

The Auxiliary Window Record 4

The auxiliary window record specifies the color table used by a window and contains
reference information used by the Dialog Manager and the Window Manager.

The Window Manager creates and maintains the information in an auxiliary window
record; your application seldom, if ever, needs to access an auxiliary window record.

TYPE AuxWinPtr = ^AuxWinRec;

AuxWinHandle = ^AuxWinPtr;

AuxWinRec =

RECORD

awNext: AuxWinHandle; {handle to next record}

awOwner: WindowPtr; {pointer to window }

{ associated with this }

{ record}

awCTable: CTabHandle; {handle to color table}

dialogCItem: Handle; {storage used by }

{ Dialog Manager}

awFlags: LongInt; {reserved}

awReserved: CTabHandle; {reserved}

awRefCon: LongInt; {reference constant, }

{ for application's use}

END;

Field descriptions

awNext A handle to the next record in the auxiliary window list, used by the
Window Manager to maintain the auxiliary window list as a linked
list. If a window is using the default auxiliary window record, this
value is NIL.

awOwner A pointer to the window that uses this record. The awOwner field of
the default auxiliary window record is set to NIL.

C H A P T E R 4

Window Manager

4-74 Window Manager Reference

awCTable A handle to the window’s color table. Unless you specify otherwise,
this is a handle to the system window color table.

dialogCItem Private storage for use by the Dialog Manager.
awFlags Reserved.
awReserved Reserved.
awRefCon The reference constant, typically used by an application to associate

the auxiliary window record with a document record.

Except in unusual circumstances, your application doesn’t need to manipulate window
color tables or the auxiliary window record.

For compatibility with other applications in the shared environment, your application
should not manipulate system color tables directly but should go through the Palette
Manager, documented in Inside Macintosh: Imaging. If your application provides its own
window and control definition functions, these functions should apply the user’s desktop
color choices the same way the standard window and control definition functions do.

The Window List 4

The Window Manager maintains information about the windows on the desktop in a
private structure called the window list. The window list contains pointers to all windows
on the desktop, both visible and invisible, and contains other information that the
Window Manager uses to maintain the desktop.

Your application should not directly access the information in a window list. The
structure of the window list is private to the Window Manager.

The global variable WindowList contains a pointer to the first window in the
window list.

Window Manager Routines 4
This section describes the complete set of routines for creating, displaying, and managing
windows.

Initializing the Window Manager 4

Before using any other other Window Manager routines, you must initialize the Window
Manager by calling the InitWindows procedure.

As part of initialization, InitWindows creates the Window Manager port, a graphics
port that occupies all of the main screen. The Window Manager port is named
WMgrCPort on Macintosh computers equipped with Color QuickDraw and WMgrPort
on computers with only QuickDraw.

C H A P T E R 4

Window Manager

Window Manager Reference 4-75

Ordinarily, your application does not need to know about the Window Manager port.
If necessary, however, you can retrieve a pointer to it by calling the procedure
GetWMgrPort or GetCWMgrPort. Your application should not draw directly into
the Window Manager port, except through custom window definition functions.

The Window Manager draws your application’s windows into the Window Manager
port. The port rectangle of the Window Manager port is the bounding rectangle of the
main screen (screenBits.bounds). To accommodate systems with multiple monitors,
QuickDraw recognizes a port rectangle of screenBits.bounds as a special case and
allows drawing on all parts of the desktop.

InitWindows 4

The procedure InitWindows initializes the Window Manager for your application.
Before calling InitWindows, you must initialize QuickDraw and the Font Manager by
calling the InitGraf and InitFonts procedures, documented in Inside Macintosh:
Imaging and Inside Macintosh: Text.

PROCEDURE InitWindows;

DESCRIPTION

The InitWindows procedure initializes the Window Manager.

ASSEMBLY-LANGUAGE INFORMATION

When the desktop needs to be redrawn any time after initialization, the Window
Manager checks the global variable DeskHook, which can be used as a pointer to an
application-defined routine for drawing the desktop. This variable is ordinarily set to 0,
but not until after system startup. If you’re displaying windows in code that is to be
executed during startup, set DeskHook to 0. Note that the use of the Window Manager’s
global variables is not guaranteed to be compatible in system software versions later than
System 6.

Creating Windows 4

You can create windows in two ways:

� from a window resource (a resource of type 'WIND'), with the GetNewCWindow and
GetNewWindow functions

� from a collection of window characteristics passed as parameters to the NewCWindow
and NewWindow functions

Creating windows from resources allows you to localize your application for different
languages and to change the characteristics of your windows during application
development by changing only the window resources.

C H A P T E R 4

Window Manager

4-76 Window Manager Reference

All four functions, GetNewCWindow, GetNewWindow, NewCWindow, and NewWindow,
can allocate space in your application’s heap for the new window’s window record. For
more control over memory use, you can allocate the space yourself and pass a pointer
when creating a window. In either case, the Window Manager fills in the data structure
and returns a pointer to it.

GetNewCWindow 4

Use the GetNewCWindow function to create a color window with the properties defined
in the 'WIND' resource with a specified resource ID.

FUNCTION GetNewCWindow (windowID: Integer; wStorage: Ptr;

behind: WindowPtr): WindowPtr;

windowID The resource ID of the 'WIND' resource that defines the properties of
the window.

wStorage A pointer to memory space for the window record.

If you specify a value of NIL for wStorage, the GetNewCWindow
function allocates the window record as a nonrelocatable object in the
heap. You can reduce the chances of heap fragmentation by allocating the
memory your application needs for window records early in your
initialization code. Whenever you need to create a window, you can
allocate memory from your own block and pass a pointer to it in the
wStorage parameter.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1). When you place a window in front of all
others, GetNewCWindow removes the highlighting from the previously
active window, highlights the newly created window, and generates the
appropriate activate events. Note that if you create an invisible window in
front of all others on the desktop, the user sees no active window until you
make the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL.

DESCRIPTION

The GetNewCWindow function creates a new color window from the specified window
resource and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
GetNewCWindow is unable to read the window or window definition function from the
resource file, it returns NIL.

C H A P T E R 4

Window Manager

Window Manager Reference 4-77

The GetNewCWindow function looks for a 'wctb' resource with the same resource ID as
that of the 'WIND' resource. If it finds one, it uses the window color information in the
'wctb' resource for coloring the window frame and highlighting selected text.

If the window’s definition function (specified in the window resource) is not already in
memory, GetNewCWindow reads it into memory and stores a handle to it in the window
record. It allocates space in the application heap for the structure and content regions of
the window and asks the window definition function to calculate those regions.

To create the window, GetNewCWindow retrieves the window characteristics from the
window resource and then calls the NewCWindow function, passing the characteristics
as parameters.

The GetNewCWindow function creates a window in a color graphics port. Before calling
GetNewCWindow, verify that Color QuickDraw is available. Your application typically
sets up its own global variables reflecting the system setup during initialization by calling
the Gestalt function. See Inside Macintosh: Overview for more information about
establishing the local configuration.

SPECIAL CONSIDERATIONS

Note that the GetNewCWindow function returns a value of type WindowPtr, not
CWindowPtr.

If you let the Window Manager create the window record in your application’s heap, call
DisposeWindow to dispose of the window’s window record. If you allocated the
memory for the window record yourself and passed a pointer to the storage to
GetNewCWindow, use the procedure CloseWindow to close the window and the
procedure DisposePtr, documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

See Listing 4-3 on page 4-28 for an example that calls GetNewCWindow to create a new
window from a window resource.

For more information about window characteristics and the window resource, see the
description of NewCWindow beginning on page 4-79 and the description of the 'WIND'
resource in the section “The Window Resource” beginning on page 4-124.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.
See Listing 4-17 on page 4-61 for an example of closing a document window.

C H A P T E R 4

Window Manager

4-78 Window Manager Reference

GetNewWindow 4

Use the GetNewWindow function to create a new window from a window resource
when Color QuickDraw is not available. The GetNewWindow function takes the same
parameters as GetNewCWindow and returns a value of type WindowPtr. The only
difference is that it creates a monochrome graphics port, not a color graphics port.
The window record and graphics port record that describe monochrome and color
graphics ports are the same size and can be used interchangeably in most Window
Manager routines.

FUNCTION GetNewWindow (windowID: Integer; wStorage: Ptr;

behind: WindowPtr): WindowPtr;

windowID The resource ID of the 'WIND' resource that defines the properties of the
window.

wStorage A pointer to memory space for the window record.

If you specify a value of NIL for wStorage, the GetNewWindow function
allocates the window record as a nonrelocatable object in the heap. You
can reduce the chances of heap fragmentation by allocating the memory
your application needs for window records early in your initialization
code. Whenever you need to create a window, you can allocate memory
from your own block and pass a pointer to it in the wStorage parameter.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1). When you place a window in front of all
others, GetNewWindow removes the highlighting from the previously
active window, highlights the newly created window, and generates the
appropriate activate events. Note that if you create an invisible window in
front of all others on the desktop, the user sees no active window until you
make the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL.

DESCRIPTION

Like GetNewCWindow, GetNewWindow creates a new window from a window resource,
but it creates a monochrome window. The GetNewWindow function creates a new
window from the specified window resource and returns a pointer to the newly created
window record. You can use the returned window pointer to refer to this window in most
Window Manager routines. If GetNewWindow is unable to read the window or window
definition function from the resource file, it returns NIL.

If the window’s definition function (specified in the window resource) is not already in
memory, GetNewWindow reads it into memory and stores a handle to it in the window
record. It allocates space in the application heap for the structure and content regions of
the window and asks the window definition function to calculate those regions.

C H A P T E R 4

Window Manager

Window Manager Reference 4-79

To create the window, GetNewWindow retrieves the window characteristics from the
window resource and then calls the function NewWindow, passing the characteristics
as parameters.

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap, call
DisposeWindow to dispose of the window’s window record. If you allocated the
memory for the window record yourself and passed a pointer to GetNewWindow, use the
procedure CloseWindow to close the window and the procedure DisposePtr,
documented in Inside Macintosh: Memory, to dispose of the window record.

SEE ALSO

For more information about window characteristics and the window resource, see the
description of NewWindow beginning on page 4-82 and the description of the 'WIND'
resource in the section “The Window Resource” beginning on page 4-124.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

NewCWindow 4

You can use the NewCWindow function to create a window with a specified list of
characteristics.

FUNCTION NewCWindow (wStorage: Ptr; boundsRect: Rect;

title: Str255; visible: Boolean;

procID: Integer; behind: WindowPtr;

goAwayFlag: Boolean;

refCon: LongInt): WindowPtr;

wStorage A pointer to the window record. If you specify NIL as the value of
wStorage, NewCWindow allocates the window record as a nonrelocatable
object in the application heap. You can reduce the chances of heap
fragmentation by allocating memory from a block of memory reserved for
this purpose by your application and passing a pointer to it in the
wStorage parameter.

boundsRect A rectangle, in global coordinates, specifying the window’s initial size and
location. This parameter becomes the port rectangle of the window’s
graphics port. For the standard window types, the boundsRect field
defines the content region of the window. The NewCWindow function
places the origin of the local coordinate system at the upper-left corner of
the port rectangle.

C H A P T E R 4

Window Manager

4-80 Window Manager Reference

Note

The NewCWindow function actually calls the QuickDraw procedure
OpenCPort to create the graphics port. The bitmap, pen pattern,
and other characteristics of the window’s graphics port are the same
as the default values set by OpenCPort, except for the character font,
which is set to the application font instead of the system font. �

title A string that specifies the window’s title.

If the title is too long to fit in the title bar, the title is truncated. If the
window has a close box, characters are truncated at the end of the title; if
there’s no close box, the title is centered and truncated at both ends.

To suppress the title in a window with a title bar, pass an empty string, not
NIL, in the title parameter.

visible A Boolean value indicating visibility status: TRUE means that the Window
Manager displays the window; FALSE means it does not.

If the value of the visible parameter is TRUE, the Window Manager
draws a new window as soon as the window exists. The Window
Manager first calls the window definition function to draw the window
frame. If the value of the goAwayFlag parameter is also TRUE and the
window is frontmost (that is, if the value of the behind parameter is
Pointer(–1)), the Window Manager instructs the window definition
function to draw a close box in the window frame. After drawing the
frame, the Window Manager generates an update event to trigger your
application’s drawing of the content region.

When you create a window, you typically specify FALSE as the value of
the visible parameter. When you’re ready to display the window, you
call the ShowWindow procedure, described on page 4-88.

procID The window’s definition ID, which specifies both the window definition
function and the variation code within that definition function.

The Window Manager supports nine standard window types, which
are handled by two window definition functions. You can create windows
of the standard types by specifying one of the window definition ID
constants:

CONST

documentProc = 0; {standard document }

{ window, no zoom box}

dBoxProc = 1; {alert box or modal }

{ dialog box}

plainDBox = 2; {plain box}

altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, }

{ no size box or zoom box}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable }

{ window}

rDocProc = 16; {rounded-corner window}

C H A P T E R 4

Window Manager

Window Manager Reference 4-81

For a description of the nine standard window types, see “Types of
Windows” beginning on page 4-8.

You can control the diameter of curvature of rounded-corner windows by
adding an integer to the rDocProc constant, as described in “The
Window Resource” beginning on page 4-124.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1). When you place a new window in front
of all others, NewCWindow removes highlighting from the previously
active window, highlights the newly created window, and generates
activate events that trigger your application’s updating of both windows.
Note that if you create an invisible window in front of all others on the
desktop, the user sees no active window until you make the new window
visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL.

goAwayFlag A Boolean value that determines whether the window has a close box. If
the value of goAwayFlag is TRUE and the window type supports a close
box, the Window Manager draws a close box in the title bar and
recognizes mouse clicks in the close region; if the value of goAwayFlag is
FALSE or the window type does not support a close box, it does not.

refCon The window’s reference constant, set and used only by your application.
(See “Managing Multiple Windows” beginning on page 4-23 for some
suggested ways to use the refCon parameter.)

DESCRIPTION

The NewCWindow function creates a window as specified by its parameters, adds it to the
window list, and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
NewCWindow is unable to read the window definition function from the resource file, it
returns NIL.

The NewCWindow function looks for a 'wctb' resource with the same resource ID as the
'WIND' resource. If it finds one, it uses the window color information in the 'wctb'
resource for coloring the window frame and highlighting.

If the window’s definition function is not already in memory, NewCWindow reads it
into memory and stores a handle to it in the window record. It allocates space for the
structure and content regions of the window and asks the window definition function
to calculate those regions.

Storing the characteristics of your windows as resources, especially window titles and
window items, makes your application easier to localize.

The NewCWindow function creates a window in a color graphics port. Creating color
windows whenever possible ensures that your windows appear on color monitors with
whatever color options the user has selected. Before calling GetNewCWindow, verify that
Color QuickDraw is available. Your application typically sets up its own set of global

C H A P T E R 4

Window Manager

4-82 Window Manager Reference

variables reflecting the system setup during initialization by calling the Gestalt
function. See the chapter Inside Macintosh: Overview for more information about
establishing the local configuration.

Note that the function NewCWindow returns a value of type WindowPtr, not
CWindowPtr.

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap,
call the DisposeWindow procedure to close the window and dispose of its window
record. If you allocated the memory for the window record yourself and passed a
pointer to NewCWindow, use the CloseWindow procedure to close the window and
the DisposePtr procedure, documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

NewWindow 4

Use the NewWindow function to create a new window with the characteristics specified
by a list of parameters when Color QuickDraw is not available. The NewWindow function
takes the same parameters as NewCWindow and, like NewCWindow, returns a WindowPtr
as its function result. The only difference is that NewWindow creates a window in a
monochrome graphics port, not a color graphics port. The window record and graphics
port record that describe monochrome and color graphics ports are the same size and can
be used interchangeably in most Window Manager routines.

FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rect;

title: Str255; visible: Boolean;

theProc: Integer; behind: WindowPtr;

goAwayFlag: Boolean;

refCon: LongInt): WindowPtr;

wStorage A pointer to the window record. If you specify NIL as the value of
wStorage, NewWindow allocates the window record as a nonrelocatable
object in the heap. You can reduce the chances of heap fragmentation by
allocating the storage from a block of memory reserved for this purpose
by your application and passing a pointer to it in the wStorage
parameter.

C H A P T E R 4

Window Manager

Window Manager Reference 4-83

boundsRect A rectangle, in global coordinates, specifying the window’s initial size and
location. This parameter becomes the port rectangle of the window’s
graphics port. For the standard window types, boundsRect defines
the content region of the window. The NewWindow function places
the origin of the local coordinate system at the upper-left corner of the
port rectangle.

Note

The NewWindow function actually calls the QuickDraw procedure
OpenPort to create the graphics port. The bitmap, pen pattern, and
other characteristics of the window’s graphics port are the same as
the default values set by OpenPort, except for the character font,
which is set to the application font instead of the system font. The
coordinates of the graphics port’s port boundaries and visible region
are changed along with its port rectangle. �

title A string that specifies the window’s title.

If the title is too long to fit in the title bar, the title is truncated. If the
window has a close box, characters at the end of the title are truncated; if
there’s no close box, the title is centered and truncated at both ends.

To suppress the title in a window with a title bar, pass an empty string, not
NIL.

visible A Boolean value indicating visibility status: TRUE means that the Window
Manager displays the window; FALSE means it does not.

If the value of the visible parameter is TRUE, the Window Manager
draws a new window as soon as the window exists. The Window
Manager first calls the window definition function to draw the window
frame. If the value of the goAwayFlag parameter (described below) is
also TRUE and the window is frontmost (that is, if the value of the behind
parameter is Pointer(–1)), the Window Manager instructs the window
definition function to draw a close box in the window frame. After
drawing the frame, the Window Manager generates an update event to
trigger your application’s drawing of the content region.

When you create a window, you typically specify FALSE as the value of
the visible parameter. When you’re ready to display the window, you
call the ShowWindow procedure, described on page 4-88.

theProc The window’s definition ID, which specifies both the window definition
function and the variation code for that definition function.

The Window Manager supports nine standard window types, which are
handled by two window definition functions. You can create windows of
the standard types by specifying one of the type constants:

CONST

documentProc = 0; {standard document }

{ window, no zoom box}

dBoxProc = 1; {alert box or modal }

{ dialog box}

plainDBox = 2; {plain box}

C H A P T E R 4

Window Manager

4-84 Window Manager Reference

altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, }

{ no size box or zoom box}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable }

{ window}

rDocProc = 16; {rounded-corner window}

You can control the diameter of curvature of rounded-corner windows by
adding an integer to the rDocProc constant, as described in “The
Window Resource” beginning on page 4-124.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1). When you place a new window in front
of all others, NewWindow removes highlighting from the previously active
window, highlights the newly created window, and generates activate
events that trigger your application’s updating of both windows. Note
that if you create an invisible window in front of all others on the desktop,
the user sees no active window until you make the new window visible
(or make another window active).

To place a new window behind all other windows, specify a value of NIL.

goAwayFlag A Boolean value that determines whether or not the window has a close
box. If the value of goAwayFlag is TRUE and the window type supports a
close box, the Window Manager draws a close box in the title bar and
recognizes mouse clicks in the close region; if the value of goAwayFlag is
FALSE or the window type does not support a close box, it does not.

refCon The window’s reference constant, set and used only by your application.
(See “Managing Multiple Windows” beginning on page 4-23 for some
suggested ways to use the refCon parameter.)

DESCRIPTION

The NewWindow function creates a window as specified by its parameters, adds it to the
window list, and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
NewWindow is unable to read the window definition function from the resource file, it
returns NIL.

If the window’s definition function is not already in memory, NewWindow reads it into
memory and stores a handle to it in the window record. It allocates space for the
structure and content regions of the window and asks the window definition function to
calculate those regions.

Storing the characteristics of your windows as resources, especially window titles and
window items, makes your application easier to localize.

C H A P T E R 4

Window Manager

Window Manager Reference 4-85

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap, call
the DisposeWindow procedure to close the window and dispose of its window record. If
you allocated the memory for the window record yourself and passed a pointer to
NewCWindow, use the CloseWindow procedure to close the window and the
DisposePtr procedure, documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

Naming Windows 4

This section describes the procedures that set and retrieve a window’s title.

SetWTitle 4

Use the SetWTitle procedure to change a window’s title.

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255);

theWindow A pointer to the window’s window record.

title The new window title.

DESCRIPTION

The SetWTitle procedure changes a window’s title to the specified string, both in the
window record and on the screen, and redraws the window’s frame as necessary.

When the user opens a previously saved document, you typically create a new (invisible)
window with the title “untitled” and then call SetWTitle to give the window the
document’s name before displaying it. You also call SetWTitle when the user saves a
document under a new name.

To suppress the title in a window with a title bar, pass an empty string, not NIL.

Always use SetWTitle instead of directly changing the title in a window’s
window record.

C H A P T E R 4

Window Manager

4-86 Window Manager Reference

GetWTitle 4

Use the GetWTitle procedure to retrieve a window’s title.

PROCEDURE GetWTitle (theWindow: WindowPtr; VAR title: Str255);

theWindow A pointer to the window record.

title The window title.

DESCRIPTION

The GetWTitle procedure returns the title of the window in the title parameter.

Your application seldom needs to determine a window’s title. It might need to do so,
however, when presenting user dialog boxes during operations that can affect multiple
files. A spell-checking command, for example, might display a dialog box that lets the
user select from all currently open documents.

When you need to retrieve a window’s title, you should always use GetWTitle instead
of reading the title from a window’s window record.

Displaying Windows 4

This section describes the Window Manager routines that change a window’s display
and position in the window list but not its size or location on the desktop. Note that the
Window Manager automatically draws all visible windows on the screen.

Your application typically uses only a few of the routines described in this section:
DrawGrowIcon, SelectWindow, ShowWindow, and, occasionally, HideWindow.

DrawGrowIcon 4

Use the DrawGrowIcon procedure to draw a window’s size box.

PROCEDURE DrawGrowIcon (theWindow: WindowPtr);

theWindow A pointer to the window record.

DESCRIPTION

The DrawGrowIcon procedure draws a window’s size box or, if the window can’t be
sized, whatever other image is appropriate. You call DrawGrowIcon when drawing the
content region of a window that contains a size box.

The exact appearance and location of the image depend on the window type and the
window’s active or inactive state. The DrawGrowIcon procedure automatically checks
the window’s type and state and draws the appropriate image.

C H A P T E R 4

Window Manager

Window Manager Reference 4-87

In an active document window, DrawGrowIcon draws the grow image in the size box in
the lower-right corner of the window’s graphics port rectangle, along with the lines
delimiting the size box and scroll bar areas. To draw the size box but not the scroll bar
outline, set the clipRgn field in the window’s graphics port to be a 15-by-15 pixel
rectangle in the lower-right corner of the window.

The DrawGrowIcon procedure doesn’t erase the scroll bar areas. If you use
DrawGrowIcon to draw the size box and scroll bar outline, therefore, you should
erase those areas yourself when the window size changes, even if the window
doesn’t contain scroll bars.

In an inactive document window, DrawGrowIcon draws the lines delimiting the size box
and scroll bar areas and erases the size box.

SEE ALSO

See Listing 4-8 on page 4-39 for an example that draws a window’s content region,
including the size box. See Listing 4-11 on page 4-51 for an example that calls
DrawGrowIcon to remove the size-box icon when a window becomes inactive.

SelectWindow 4

Use the SelectWindow procedure to make a window active. The SelectWindow
procedure changes the active status of a window but does not affect its visibility.

PROCEDURE SelectWindow (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The SelectWindow procedure removes highlighting from the previously active window,
brings the specified window to the front, highlights it, and generates the activate events
to deactivate the previously active window and activate the specified window. If the
specified window is already active, SelectWindow has no effect.

Even if the specified window is invisible, SelectWindow brings the window to the
front, activates the window, and deactivates the previously active window. Note that in
this case, no active window is visible on the screen. If you do select an invisible window,
be sure to call ShowWindow immediately to make the window visible (and accessible to
the user).

Call SelectWindow when the user presses the mouse button while the cursor is in the
content region of an inactive window.

C H A P T E R 4

Window Manager

4-88 Window Manager Reference

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls SelectWindow to change
the active window when the user presses the mouse button while the cursor is
in an inactive window.

See Listing 4-18 on page 4-64 for an example that uses SelectWindow and ShowWindow
together to restore a window’s active, visible status after it has
been made invisible with HideWindow.

ShowWindow 4

Use the ShowWindow procedure to make an invisible window visible.

PROCEDURE ShowWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window.

DESCRIPTION

The ShowWindow procedure makes an invisible window visible. If the specified window
is already visible, ShowWindow has no effect. Your application typically creates a new
window in an invisible state, performs any necessary setup of the content region, and
then calls ShowWindow to make the window visible.

When you display a previously invisible window by calling ShowWindow, the Window
Manager draws the window frame and then generates an update event to trigger your
application’s drawing of the content region.

If the newly visible window is the frontmost window, ShowWindow highlights it if
it’s not already highlighted and generates an activate event to make it active. The
ShowWindow procedure does not activate a window that is not frontmost on the desktop.

Note
Because ShowWindow does not change the front-to-back ordering of
windows, it is not the inverse of HideWindow. If you make the frontmost
window invisible with HideWindow, and HideWindow has activated
another window, you must call both ShowWindow and SelectWindow
to bring the original window back to the front. �

SEE ALSO

See Listing 4-16 on page 4-60 for an example that temporarily hides a dialog box
window when the user closes it. See Listing 4-18 on page 4-64 for the example that
calls ShowWindow to display the window again later.

C H A P T E R 4

Window Manager

Window Manager Reference 4-89

HideWindow 4

Use the HideWindow procedure to make a window invisible.

PROCEDURE HideWindow (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The HideWindow procedure make a visible window invisible. If you hide the frontmost
window, HideWindow removes the highlighting, brings the window behind it to
the front, highlights the new frontmost window, and generates the appropriate
activate events.

To reverse the actions of HideWindow, you must call both ShowWindow, to make the
window visible, and SelectWindow, to select it.

SEE ALSO

See Listing 4-16 on page 4-60 for an example that calls HideWindow to temporarily
hide a dialog box window when the user closes it. See Listing 4-18 on page 4-64 for the
companion example that redisplays the window later.

ShowHide 4

Use the ShowHide procedure to set a window’s visibility status.

PROCEDURE ShowHide (theWindow: WindowPtr; showFlag: Boolean);

theWindow A pointer to the window’s window record.

showFlag A Boolean value that determines visibility status: TRUE makes a window
visible; FALSE makes it invisible.

DESCRIPTION

The ShowHide procedure sets a window’s visibility to the status specified by the
showFlag parameter. If the value of showFlag is TRUE, ShowHide makes the window
visible if it’s not already visible and has no effect if it’s already visible. If the value of
showFlag is FALSE, ShowHide makes the window invisible if it’s not already invisible
and has no effect if it’s already invisible.

The ShowHide procedure never changes the highlighting or front-to-back ordering of
windows and generates no activate events.

C H A P T E R 4

Window Manager

4-90 Window Manager Reference

� W A R N I N G

Use this procedure carefully and only in special circumstances where
you need more control than that provided by HideWindow and
ShowWindow. Do not, for example, use ShowHide to hide the active
window without making another window active. �

HiliteWindow 4

Use the HiliteWindow procedure to set a window’s highlighting status.

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: Boolean);

theWindow A pointer to the window’s window record.

fHilite A Boolean value that determines the highlighting status: TRUE highlights
a window; FALSE removes highlighting.

DESCRIPTION

The HiliteWindow procedure sets a window’s highlighting status to the specified state.
If the value of the fHilite parameter is TRUE, HiliteWindow highlights the specified
window; if the specified window is already highlighted, the procedure has no effect.
If the value of fHilite is FALSE, HiliteWindow removes highlighting from the
specified window; if the window is not already highlighted, the procedure has no effect.

Your application doesn’t normally need to call HiliteWindow. To make a window
active, you can call SelectWindow, which handles highlighting for you.

BringToFront 4

Use the BringToFront procedure to bring a window to the front.

PROCEDURE BringToFront (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The BringToFront procedure puts the specified window at the beginning of the
window list and redraws the window in front of all others on the screen. It does
not change the window’s highlighting or make it active.

Your application does not ordinarily call BringToFront. The user interface guidelines
specify that the frontmost window should be the active window. To bring a window to
the front and make it active, call the SelectWindow procedure.

C H A P T E R 4

Window Manager

Window Manager Reference 4-91

SendBehind 4

Use the SendBehind procedure to move one window behind another.

PROCEDURE SendBehind (theWindow, behindWindow: WindowPtr);

theWindow A pointer to the window to be moved.

behindWindow
A pointer to the window that is to be in front of the moved window.

DESCRIPTION

The SendBehind procedure moves the window pointed to by the parameter
theWindow behind the window pointed to by the parameter behindWindow. If the
move exposes previously obscured windows or parts of windows, SendBehind redraws
the frames as necessary and generates the appropriate update events to
have any newly exposed content areas redrawn.

If the value of behindWindow is NIL, SendBehind sends the window to be moved
behind all other windows on the desktop. If the window to be moved is the active
window, SendBehind removes its highlighting, highlights the newly exposed frontmost
window, and generates the appropriate activate events.

Note
Do not use SendBehind to deactivate a window after you’ve made a
new window active with the SelectWindow procedure. The
SelectWindow procedure automatically deactivates the previously
active window. �

Retrieving Window Information 4

This section describes

� the FindWindow function, which maps the cursor location of a mouse-down event to
parts of the screen or regions of a window

� the FrontWindow function, which tells your application which window is active

FindWindow 4

When your application receives a mouse-down event, call the FindWindow function to
map the location of the cursor to a part of the screen or a region of a window.

FUNCTION FindWindow (thePoint: Point;

VAR theWindow: WindowPtr): Integer;

C H A P T E R 4

Window Manager

4-92 Window Manager Reference

thePoint The point, in global coordinates, where the mouse-down event occurred.
Your application retrieves this information from the where field of the
event record.

theWindow A parameter in which FindWindow returns a pointer to the window in
which the mouse-down event occurred, if it occurred in a window. If it
didn’t occur in a window, FindWindow sets theWindow to NIL.

DESCRIPTION

The FindWindow function returns an integer that specifies where the cursor was when
the user pressed the mouse button. You typically call FindWindow whenever you receive
a mouse-down event. The FindWindow function helps you dispatch the event by
reporting whether the cursor was in the menu bar or in a window when the mouse
button was pressed and, if it was in a window, which window and which region of the
window. If the mouse-down event occurred in a window, FindWindow places a pointer
to the window in the parameter theWindow.

The FindWindow function returns an integer that specifies one of nine regions:

CONST inDesk = 0; {none of the following}

inMenuBar = 1; {in menu bar}

inSysWindow = 2; {in desk accessory window}

inContent = 3; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

inDrag = 4; {in drag (title bar) region}

inGrow = 5; {in size box (active window only)}

inGoAway = 6; {in close box}

inZoomIn = 7; {in zoom box (window in standard state)}

inZoomOut = 8; {in zoom box (window in user state)}

The FindWindow function returns inDesk if the cursor is not in the menu bar, a desk
accessory window, or any window that belongs to your application. The FindWindow
function might return this value if, for example, the user presses the mouse button while
the cursor is on the window frame but not in the title bar, close box, or zoom box. When
FindWindow returns inDesk, your application doesn’t need to do anything. In System
7, when the user presses the mouse button while the cursor is on the desktop or in a
window that belongs to another application, the Event Manager sends your application a
suspend event and switches to the Finder or another application.

The FindWindow function returns inMenuBar when the user presses the mouse button
with the cursor in the menu bar. Your application typically adjusts its menus and then
calls the Menu Manager’s function MenuSelect to let the user choose menu items.

The FindWindow function returns inSysWindow when the user presses the mouse
button while the cursor is in a window belonging to a desk accessory that was launched
in your application’s partition. This situation seldom arises in System 7. When the user

C H A P T E R 4

Window Manager

Window Manager Reference 4-93

clicks in a window belonging to a desk accessory launched independently, the Event
Manager sends your application a suspend event and switches to the desk accessory.

If FindWindow does return inSysWindow, your application calls the SystemClick
procedure, documented in the chapter “Event Manager” in this book. The
SystemClick procedure routes the event to the desk accessory. If the user presses
the mouse button with the cursor in the content region of an inactive desk
accessory window, SystemClick makes the window active by sending your applica-
tion and the desk accessory the appropriate activate events.

The FindWindow function returns inContent when the user presses the mouse button
with the cursor in the content area (excluding the size box in an active window) of one of
your application’s windows. Your application then calls its routine for handling clicks in
the content region.

The FindWindow function returns inDrag when the user presses the mouse button with
the cursor in the drag region of a window (that is, the title bar, excluding the close box
and zoom box). Your application then calls the Window Manager’s DragWindow
procedure to let the user drag the window to a new location.

The FindWindow function returns inGrow when the user presses the mouse button with
the cursor in an active window’s size box. Your application then calls its own routine for
resizing a window.

The FindWindow function returns inGoAway when the user presses the mouse
button with the cursor in an active window’s close box. Your application calls the
TrackGoAway function to track mouse activity while the button is down and then
calls its own routine for closing a window if the user releases the button while the
cursor is in the close box.

The FindWindow function returns inZoomIn or inZoomOut when the user presses the
mouse button with the cursor in an active window’s zoom box. Your application calls the
TrackBox function to track mouse activity while the button is down and then calls its
own routine for zooming a window if the user releases the button while the cursor is in
the zoom box.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls FindWindow to determine the
location of the cursor and then dispatches the mouse-down event depending on
the results.

FrontWindow 4

Use the FrontWindow function to find out which window is active.

FUNCTION FrontWindow: WindowPtr;

C H A P T E R 4

Window Manager

4-94 Window Manager Reference

DESCRIPTION

The FrontWindow function returns a pointer to the first visible window in the
window list (that is, the active window). If there are no visible windows, FrontWindow
returns NIL.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls FrontWindow to determine
whether an event occurred in the active window.

See Listing 4-12 on page 4-55 for an example that calls FrontWindow to determine
whether to display a window in front of other windows after changing its size.

See Listing 4-16 on page 4-60 and Listing 4-17 on page 4-61 for examples that call
FrontWindow to determine which window is affected by a user command directed
at the active window.

Moving Windows 4

This section describes the procedures that move windows on the desktop.

To move a window, your application ordinarily needs to call only the DragWindow
procedure, which itself calls the DragGrayRgn function, and the MoveWindow
procedure. The DragGrayRgn function drags a dotted outline of the window on the
screen, following the motion of the cursor, as long as the user holds down the mouse
button. The DragGrayRgn function itself calls the PinRect function to contain the point
where the cursor was when the mouse button was first pressed inside the
available desktop area. When the user releases the mouse button, DragWindow calls
MoveWindow, which moves the window to a new location.

DragWindow 4

When the user drags a window by its title bar, use the DragWindow procedure to move
the window on the screen.

PROCEDURE DragWindow (theWindow: WindowPtr;

startPt: Point; boundsRect: Rect);

theWindow A pointer to the window record of the window to be dragged.

startPt The location, in global coordinates, of the cursor at the time the user
pressed the mouse button. Your application retrieves this point from the
where field of the event record.

C H A P T E R 4

Window Manager

Window Manager Reference 4-95

boundsRect A rectangle, in global coordinates, that limits the region to which a
window can be dragged. If the mouse button is released when the
cursor is outside the limits of boundsRect, DragWindow returns without
moving the window (or, if it was inactive, without making
it the active window).

Because the user cannot ordinarily move the cursor off the desktop,
you can safely set boundsRect to the largest available rectangle (the
bounding box of the desktop region pointed to by the global variable
GrayRgn) when you’re using DragWindow to track mouse movements.
Don’t set the bounding rectangle to the size of the immediate screen
(screenBits.bounds), because the user wouldn’t be able to move
the window to a different screen on a system equipped with
multiple monitors.

DESCRIPTION

The DragWindow procedure moves a dotted outline of the specified window around the
screen, following the movement of the cursor until the user releases the mouse button.
When the button is released, DragWindow calls MoveWindow to move the window to its
new location. If the specified window isn’t the active window (and the Command key
wasn’t down when the mouse button was pressed), DragWindow makes it the active
window by setting the front parameter to TRUE when calling MoveWindow. If the
Command key was down when the mouse button was pressed, DragWindow moves the
window without making it active.

SEE ALSO

The DragWindow procedure calls both MoveWindow and DragGrayRgn, which are
described in this section.

See Listing 4-9 on page 4-44 for an example that calls DragWindow when the user presses
the mouse button while the cursor is in the drag region.

MoveWindow 4

Use the MoveWindow procedure to move a window on the desktop.

PROCEDURE MoveWindow (theWindow: WindowPtr;

hGlobal, vGlobal: Integer;

front: Boolean);

theWindow A pointer to the window record of the window being moved.

hGlobal The new location, in global coordinates, of the left edge of the window’s
port rectangle.

vGlobal The new location, in global coordinates, of the top edge of the window’s
port rectangle.

C H A P T E R 4

Window Manager

4-96 Window Manager Reference

front A Boolean value specifying whether the window is to become the
frontmost, active window. If the value of the front parameter is FALSE,
MoveWindow does not change its plane or status. If the value of the front
parameter is TRUE and the window isn’t active, MoveWindow makes it
active by calling the SelectWindow procedure.

DESCRIPTION

The MoveWindow procedure moves the specified window to the location specified by the
hGlobal and vGlobal parameters, without changing the window’s size. The upper-left
corner of the window’s port rectangle is placed at the point (vGlobal,hGlobal). The
local coordinates of the upper-left corner are unaffected.

Your application doesn’t normally call MoveWindow. When the user drags a window by
dragging its title bar, you can call DragWindow, which in turn calls MoveWindow when
the user releases the mouse button.

DragGrayRgn 4

The DragWindow function calls the DragGrayRgn function to move an outline of a
window around the screen as the user drags a window.

FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point;

limitRect, slopRect: Rect; axis: Integer;

actionProc: ProcPtr): LongInt;

theRgn A handle to the region to be dragged.

startPt The location, in the local coordinates of the current graphics port, of the
cursor when the mouse button was pressed.

limitRect A rectangle, in the local coordinates of the current graphics port, that
limits where the region can be dragged. This parameter works in
conjunction with the slopRect parameter, as illustrated in Figure 4-23 on
page 4-98.

slopRect A rectangle, in the local coordinates of the current graphics port, that gives
the user some leeway in moving the mouse without violating
the limits of the limitRect parameter, as illustrated in Figure 4-23 on
page 4-98. The slopRect rectangle should be larger than the limitRect
rectangle.

axis A constant that constrains the region’s motion. The axis parameter can
have one of these values:

CONST noConstraint = 0; {no constraints}

hAxisOnly = 1; {move on horizontal axis }

{ only}

vAxisOnly = 2; {move on vertical axis }

{ only}

C H A P T E R 4

Window Manager

Window Manager Reference 4-97

If an axis constraint is in effect, the outline follows the cursor’s
movements along only the specified axis, ignoring motion along the other
axis. With or without an axis constraint, the outline appears only when the
mouse is inside the slopRect rectangle.

actionProc A pointer to a procedure that defines an action to be performed repeatedly
as long as the user holds down the mouse button. The procedure can have
no parameters. If the value of actionProc is NIL, DragGrayRgn simply
retains control until the mouse button is released.

DESCRIPTION

The DragGrayRgn function moves a gray outline of a region on the screen, following the
movements of the cursor, until the mouse button is released. It returns the difference
between the point where the mouse button was pressed and the offset point—that is, the
point in the region whose horizontal and vertical offsets from the upper-left corner of the
region’s enclosing rectangle are the same as the offsets of the starting point when the user
pressed the mouse button. The DragGrayRgn function stores the vertical difference
between the starting point and the offset point in the high-order word of the return value
and the horizontal difference in the low-order word.

The DragGrayRgn function limits the movement of the region according to the
constraints set by the limitRect and slopRect parameters:

� As long as the cursor is inside the limitRect rectangle, the region’s outline follows it
normally. If the mouse button is released while the cursor is within this rectangle, the
return value reflects the simple distance that the cursor moved in each dimension.

� When the cursor moves outside the limitRect rectangle, the offset point stops at the
edge of the limitRect rectangle. If the mouse button is released while the cursor
is outside the limitRect rectangle but inside the slopRect rectangle, the return
value reflects only the difference between the starting point and the offset point,
regardless of how far outside of the limitRect rectangle the cursor may have moved.
(Note that part of the region can fall outside the limitRect rectangle, but not the
offset point.)

� When the cursor moves outside the slopRect rectangle, the region’s outline
disappears from the screen. The DragGrayRgn function continues to track the cursor,
however, and if the cursor moves back into the slopRect rectangle, the outline
reappears. If the mouse button is released while the cursor is outside the slopRect
rectangle, both words of the return value are set to $8000. In this case, the Window
Manager does not move the window from its original location.

Figure 4-23 on page 4-98 illustrates how the region stops moving when the offset point
reaches the edge of the limitRect rectangle. The cursor continues to move, but the
region does not.

If the mouse button is released while the cursor is anywhere inside the slopRect
rectangle, the Window Manager redraws the window in its new location, which is
calculated from the value returned by DragGrayRgn.

C H A P T E R 4

Window Manager

4-98 Window Manager Reference

Figure 4-23 Limiting rectangle used by DragGrayRgn

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined
by your application, which will be called by DragGrayRgn as long as the mouse
button is held down. (If there’s an actionProc procedure, it is called first.) If you
want DragGrayRgn to draw the region’s outline in a pattern other than gray, you
can store the pattern in the global variable DragPattern and then invoke the macro
_DragTheRgn. Note that the use of the Window Manager’s global variables is not
guaranteed to be compatible with system software versions later than System 6.

startPt
limitRect

slopRect
theRgn

The user presses the mouse button with the cursor at startPt.

Although the cursor continues to move, the region identified by
theRgn stops when the offset point reaches the edge of the
limitRect rectangle.

C H A P T E R 4

Window Manager

Window Manager Reference 4-99

PinRect 4

The DragGrayRgn function uses the PinRect function to contain a point within a
specified rectangle.

FUNCTION PinRect (theRect: Rect; thePt: Point): LongInt;

theRect The rectangle in which the point is to be contained.

thePt The point to be contained.

DESCRIPTION

The PinRect function returns a point within the specified rectangle that is as close as
possible to the specified point. (The high-order word of the returned long integer is the
vertical coordinate; the low-order word is the horizontal coordinate.)

If the specified point is within the rectangle, PinRect returns the point itself. If not, then

� if the horizontal position is to the left of the rectangle, PinRect returns the left edge as
the horizontal coordinate

� if the horizontal position is to the right of the rectangle, PinRect returns the right
edge minus 1 as the horizontal coordinate

� if the vertical position is above the rectangle, PinRect returns the top edge as the
vertical coordinate

� if the vertical position is below the rectangle, PinRect returns the bottom edge minus
1 as the vertical coordinate

Note
The 1 is subtracted when the point is below or to the right of the
rectangle so that a pixel drawn at that point lies within the rectangle. If
the point is exactly on the bottom or the right edge of the rectangle,
however, 1 should be subtracted but isn’t. �

Resizing Windows 4

This section describes the procedures you can use to track the cursor while the user
resizes a window and to draw the window in a new size.

GrowWindow 4

Use the GrowWindow function to allow the user to change the size of a window. The
GrowWindow function displays an outline (grow image) of the window as the user
moves the cursor to make the window larger or smaller; it handles all user interaction

C H A P T E R 4

Window Manager

4-100 Window Manager Reference

until the user releases the mouse button. After calling GrowWindow, you call the
SizeWindow procedure to change the size of the window.

FUNCTION GrowWindow (theWindow: WindowPtr;

startPt: Point; sizeRect: Rect): LongInt;

theWindow A pointer to the window record of the window to drag.

startPt The location of the cursor at the time the mouse button was first pressed,
in global coordinates. Your application retrieves this point from the where
field of the event record.

sizeRect The limits on the vertical and horizontal measurements of the port
rectangle, in pixels.

Although the sizeRect parameter is in the form of the Rect data
type, the four numbers in the structure represent lengths, not
screen coordinates. The top, left, bottom, and right fields of the
sizeRect parameter specify the minimum vertical measurement
(top), the minimum horizontal measurement (left), the maximum
vertical measurement (bottom), and the maximum horizontal
measurement (right).

The minimum measurements must be large enough to allow a manageable
rectangle; 64 pixels on a side is typical. Because the user cannot ordinarily
move the cursor off the screen, you can safely set
the upper bounds to the largest possible length (65,535 pixels) when
you’re using GrowWindow to follow cursor movements.

DESCRIPTION

The GrowWindow function moves a dotted-line image of the window’s right and lower
edges around the screen, following the movements of the cursor until the mouse button
is released. It returns the new dimensions, in pixels, of the resulting window: the height
in the high-order word of the returned long-integer value and the width in the low-order
word. You can use the functions HiWord and LoWord to retrieve only the high-order and
low-order words, respectively.

A return value of 0 means that the new size is the same as the size of the current
port rectangle.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by GrowWindow as long as the mouse button is
held down. (If there’s an actionProc procedure, the actionProc procedure is called
first.) Note that the use of the Window Manager’s global variables is not guaranteed to be
compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that calls GrowWindow when the user
presses the mouse button while the cursor is in the size box.

C H A P T E R 4

Window Manager

Window Manager Reference 4-101

SizeWindow 4

Use the SizeWindow procedure to set the size of a window.

PROCEDURE SizeWindow (theWindow: WindowPtr; w, h: Integer;

fUpdate: Boolean);

theWindow A pointer to the window record of the window to be sized.

w The new window width, in pixels.

h The new window height, in pixels.

fUpdate A Boolean value that specifies whether any newly created area of the
content region is to be accumulated into the update region (TRUE) or not
(FALSE). You ordinarily pass a value of TRUE to ensure that the area is
updated. If you pass FALSE, you’re responsible for maintaining the
update region yourself. For more information on adding rectangles to and
removing rectangles from the update region, see the description of
InvalRect on page 4-107 and ValidRect on page 4-108.

DESCRIPTION

The SizeWindow procedure changes the size of the window’s graphics port rectangle to
the dimensions specified by the w and h parameters, or does nothing if the values of w
and h are 0. The Window Manager redraws the window in the new size, recentering the
title and truncating it if necessary. Your application calls SizeWindow immediately after
calling GrowWindow, to adjust the window to any changes made by the user through the
size box.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that calls SizeWindow to resize a window
based on the return value of GrowWindow.

Zooming Windows 4

This section describes the procedures you can use to track mouse activity in the zoom box
and to zoom windows.

TrackBox 4

Use the TrackBox function to track the cursor when the user presses the mouse button
while the cursor is in the zoom box.

FUNCTION TrackBox (theWindow: WindowPtr; thePt: Point;

 partCode: Integer): Boolean;

C H A P T E R 4

Window Manager

4-102 Window Manager Reference

theWindow A pointer to the window record of the window in which the mouse button
was pressed.

thePt The location of the cursor when the mouse button was pressed. Your
application receives this point from the where field in the event record.

partCode The part code (either inZoomIn or inZoomOut) returned by the
FindWindow function.

DESCRIPTION

The TrackBox function tracks the cursor when the user presses the mouse button while
the cursor is in the zoom box, retaining control until the mouse button is released. While
the button is down, TrackBox highlights the zoom box while the cursor is in the zoom
region, as illustrated in Figure 4-20 on page 4-47.

When the mouse button is released, TrackBox removes the highlighting from the zoom
box and returns TRUE if the cursor is within the zoom region and FALSE if it is not.

Your application calls the TrackBox function when it receives a result code of either
inZoomIn or inZoomOut from the FindWindow function. If TrackBox returns TRUE,
your application calculates the standard state, if necessary, and calls the ZoomWindow
procedure to zoom the window. If TrackBox returns FALSE, your application
does nothing.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by TrackBox as long as the mouse button is held
down. (If there’s an actionProc procedure, the actionProc procedure is called first.)
Note that the use of the Window Manager’s global variables is not guaranteed to be
compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-12 on page 4-55 for an example that calls TrackBox to track cursor activity
when the user presses the mouse button while the cursor is in the zoom box.

ZoomWindow 4

Use the ZoomWindow procedure to zoom the window when the user has pressed and
released the mouse button with the cursor in the zoom box.

PROCEDURE ZoomWindow (theWindow: WindowPtr;

partCode: Integer; front: Boolean);

theWindow A pointer to the window record of the window to be zoomed.

partCode The result (either inZoomIn or inZoomOut) returned by the
FindWindow function.

C H A P T E R 4

Window Manager

Window Manager Reference 4-103

front A Boolean value that determines whether the window is to be brought to
the front. If the value of front is TRUE, the window necessarily becomes
the frontmost, active window. If the value of front is FALSE, the
window’s position in the window list does not change. Note that if a
window was active before it was zoomed, it remains active even if the
value of front is FALSE.

DESCRIPTION

The ZoomWindow procedure zooms a window in or out, depending on the value of
the partCode parameter. Your application calls ZoomWindow, passing it the part
code returned by FindWindow, when it receives a result of TRUE from TrackBox.
The ZoomWindow procedure then changes the window’s port rectangle to either
the user state (if the part code is inZoomIn) or the standard state (if the part code is
inZoomOut), as stored in the window state data record, described in the section
“Zooming a Window” beginning on page 4-53.

If the part code is inZoomOut, your application ordinarily calculates and sets the
standard state before calling ZoomWindow.

For best results, call the QuickDraw procedure EraseRect, passing the window’s
graphics port as the port rectangle, before calling ZoomWindow.

SEE ALSO

See Listing 4-12 on page 4-55 for an example that calculates and sets the standard state
and then calls ZoomWindow to zoom a window.

Closing and Deallocating Windows 4

This section describes the procedures that track user activity in the close box and that
close and dispose of windows.

When you no longer need a window, call the CloseWindow procedure if you
allocated the memory for the window record or the DisposeWindow procedure if
you did not.

TrackGoAway 4

Use the TrackGoAway function to track the cursor when the user presses the mouse
button while the cursor is in the close box.

FUNCTION TrackGoAway (theWindow: WindowPtr;

thePt: Point): Boolean;

theWindow A pointer to the window record of the window in which the mouse-down
event occurred.

thePt The location of the cursor at the time the mouse button was pressed. Your
application receives this point from the where field of the event record.

C H A P T E R 4

Window Manager

4-104 Window Manager Reference

DESCRIPTION

The TrackGoAway function tracks cursor activity when the user presses the mouse
button while the cursor is in the close box, retaining control until the user releases the
mouse button. While the button is down, TrackGoAway highlights the close box as long
as the cursor is in the close region, as illustrated in Figure 4-19 on page 4-46.

When the mouse button is released, TrackGoAway removes the highlighting from the
close box and returns TRUE if the cursor is within the close region and FALSE if it is not.

Your application calls the TrackGoAway function when it receives a result code of
inGoAway from the FindWindow function. If TrackGoAway returns TRUE, your
application calls its own procedure for closing a window, which can call either the
CloseWindow procedure or the DisposeWindow procedure to remove the window
from the screen. (Before removing a document window, your application ordinarily
checks whether the document has changed since the associated file was last saved.
See the chapter “Introduction to File Management” in Inside Macintosh: Files for a
general discusion of handling files.) If TrackGoAway returns FALSE, your application
does nothing.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by TrackGoAway as long as the mouse button is
held down. (If there’s an actionProc procedure, the actionProc procedure is called
first.) Note that the use of the Window Manager’s global variables is not guaranteed to be
compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls TrackGoAway to track cursor
activity when the user presses the mouse button while the cursor is in the close box.

CloseWindow 4

Use the CloseWindow procedure to remove a window if you allocated memory yourself
for the window’s window record.

PROCEDURE CloseWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window to be closed.

DESCRIPTION

The CloseWindow procedure removes the specified window from the screen and deletes
it from the window list. It releases the memory occupied by all data structures associated
with the window except the window record itself.

C H A P T E R 4

Window Manager

Window Manager Reference 4-105

If you allocated memory for the window record and passed a pointer to it as one of the
parameters to the functions that create windows, call CloseWindow when you’re done
with the window. You must then call the Memory Manager procedure DisposePtr to
release the memory occupied by the window record.

� W A R N I N G

If your application allocated any other memory for use with a window,
you must release it before calling CloseWindow. The Window Manager
releases only the data structures it created.

Also, CloseWindow assumes that any picture pointed to by the window
record field windowPic is data, not a resource, and it calls the
QuickDraw procedure KillPicture to delete it. If your application
uses a picture stored as a resource, you must release the memory it
occupies with the ReleaseResource procedure and set the
windowPic field to NIL before closing the window. �

Any pending update events for the window are discarded. If the window being removed
is the frontmost window, the window behind it, if any, becomes the active window.

SEE ALSO

See Listing 4-17 on page 4-61 for an example that calls CloseWindow to remove a
window from the screen.

See Listing 4-3 on page 4-28 for an example that calls CloseWindow to clean up memory
when an attempt to create a new window fails.

DisposeWindow 4

Use the DisposeWindow procedure to remove a window if you let the Window
Manager allocate memory for the window record.

PROCEDURE DisposeWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window to be closed.

DESCRIPTION

The DisposeWindow procedure removes a window from the screen, deletes it from the
window list, and releases the memory occupied by all structures associated with the
window, including the window record. (DisposeWindow calls CloseWindow and then
releases the memory occupied by the window record.)

C H A P T E R 4

Window Manager

4-106 Window Manager Reference

� W A R N I N G

If your application allocated any other memory for use with a window,
you must release it before calling DisposeWindow. The Window
Manager releases only the data structures it created.

The DisposeWindow procedure assumes that any picture pointed to by
the window record field windowPic is data, not a resource, and it calls
the QuickDraw procedure KillPicture to delete it. If your application
uses a picture stored as a resource, you must release the memory it
occupies with the ReleaseResource procedure and set the
windowPic field to NIL before closing the window. �

Any pending update events for the window are discarded. If the window being removed
is the frontmost window, the window behind it, if any, becomes the active window.

Maintaining the Update Region 4

This section describes the routines you use to update your windows and to maintain
window update regions.

BeginUpdate 4

Use the BeginUpdate procedure to start updating a window when you receive an
update event for that window.

PROCEDURE BeginUpdate (theWindow: WindowPtr);

theWindow A pointer to the window’s window record. Your application gets this
information from the message field in the update event record.

DESCRIPTION

The BeginUpdate procedure limits the visible region of the window’s graphics port to
the intersection of the visible region and the update region; it then sets the window’s
update region to an empty region. After calling BeginUpdate, your application redraws
either the entire content region or only the visible region. In either case, only the parts of
the window that require updating are actually redrawn on the screen.

Every call to BeginUpdate must be matched with a subsequent call to EndUpdate after
your application redraws the content region.

Note
In Pascal, BeginUpdate and EndUpdate can’t be nested. That is,
you must call EndUpdate before the next call to BeginUpdate.

You can nest BeginUpdate and EndUpdate calls in assembly
language if you save and restore the copy of the visRgn, a copy
of which is stored, in global coordinates, in the global variable
SaveVisRgn. �

C H A P T E R 4

Window Manager

Window Manager Reference 4-107

SPECIAL CONSIDERATIONS

If you don’t clear the update region when you receive an update event, the Event
Manager continues to send update events until you do.

SEE ALSO

See Figure 4-21 on page 4-49 for an illustration of how BeginUpdate and EndUpdate
affect the visible region and update region. See Listing 4-10 on page 4-50 for an example
that updates a window.

EndUpdate 4

Use the EndUpdate procedure to finish updating a window.

PROCEDURE EndUpdate (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The EndUpdate procedure restores the normal visible region of a window’s graphics
port. When you receive an update event for a window, you call BeginUpdate, redraw
the update region, and then call EndUpdate. Each call to BeginUpdate must be
balanced by a subsequent call to EndUpdate.

SEE ALSO

See Figure 4-21 on page 4-49 for an illustration of how BeginUpdate and EndUpdate
affect the visible region and update region. See Listing 4-10 on page 4-50 for an example
that updates a window.

InvalRect 4

Use the InvalRect procedure to add a rectangle to a window’s update region.

PROCEDURE InvalRect (badRect: Rect);

badRect A rectangle, in local coordinates, that is to be added to a window’s
update region.

C H A P T E R 4

Window Manager

4-108 Window Manager Reference

DESCRIPTION

The InvalRect procedure adds a specified rectangle to the update region of the
window whose graphics port is the current port. Specify the rectangle in local
coordinates. The Window Manager clips it, if necessary, to fit in the window’s
content region.

Both your application and the Window Manager use the InvalRect procedure.
When the user enlarges a window, for example, the Window Manager uses InvalRect
to add the newly created content region to the update region. Your application uses
InvalRect to add the two rectangles formerly occupied by the scroll bars in the smaller
content area.

InvalRgn 4

Use the InvalRgn procedure to add a region to a window’s update region.

PROCEDURE InvalRgn (badRgn: RgnHandle);

badRgn The region, in local coordinates, that is to be added to a window’s
update region.

DESCRIPTION

The InvalRgn procedure adds a specified region to the update region of the window
whose graphics port is the current port. Specify the region in local coordinates. The
Window Manager clips it, if necessary, to fit in the window’s content region.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that uses InvalRgn to add part of the
window’s content region to the update region.

ValidRect 4

Use the ValidRect procedure to remove a rectangle from a window’s update region.

PROCEDURE ValidRect (goodRect: Rect);

goodRect A rectangle, in local coordinates, to be removed from a window’s
update region.

C H A P T E R 4

Window Manager

Window Manager Reference 4-109

DESCRIPTION

The ValidRect procedure removes a specified rectangle from the update region of the
window whose graphics port is the current port. Specify the region in local coordinates.
The Window Manager clips it, if necessary, to fit in the window’s content region.

Your application uses ValidRect to tell the Window Manager that it has already drawn
a rectangle and to cancel any updates accumulated for that area. You can thereby
improve response time by reducing redundant redrawing.

Suppose, for example, that you’ve resized a window that contains a size box and
scroll bars. Depending on the dimensions of the newly sized window, the new size
box and scroll bar areas may or may not have been accumulated into the window’s
update region. After calling SizeWindow, you can redraw the size box or scroll bars
immediately and then call ValidRect for the areas they occupy. If they were in fact
accumulated into the update region, ValidRect removes them so that you do not have
to redraw them with the next update event.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that uses ValidRect to remove part of the
window’s content region from the update region.

ValidRgn 4

Use the ValidRgn procedure to remove a specified region from a window’s
update region.

PROCEDURE ValidRgn (goodRgn: RgnHandle);

goodRgn A region, in local coordinates, to be removed from a window’s
update region.

DESCRIPTION

The ValidRgn procedure removes a specified region from the update region of the
window whose graphics port is the current port. Specify the region in local coordinates.
The Window Manager clips it, if necessary, to fit in the window’s content region.

Setting and Retrieving Other Window Characteristics 4

This section describes the routines that let you set and retrieve less commonly used fields
in the window record.

C H A P T E R 4

Window Manager

4-110 Window Manager Reference

SetWindowPic 4

Use the SetWindowPic procedure to establish a picture that the Window Manager can
draw in a window’s content region.

PROCEDURE SetWindowPic (theWindow: WindowPtr;

Pic: PicHandle);

theWindow A pointer to a window’s window record.

Pic A handle to the picture to be drawn in the window.

DESCRIPTION

The SetWindowPic procedure stores in a window’s window record a handle to a picture
to be drawn in the window. When the window’s content region must be updated, the
Window Manager then draws the picture or part of the picture, as necessary, instead of
generating an update event.

Note
The CloseWindow and DisposeWindow procedures assume that any
picture pointed to by the window record field windowPic is stored as
data, not as a resource. If your application uses a picture stored as a
resource, you must release the memory it occupies by calling the
Resource Manager’s ReleaseResource procedure and set the
WindowPic field to NIL before you close the window. �

GetWindowPic 4

Use the GetWindowPic function to retrieve a handle to a window’s picture.

FUNCTION GetWindowPic (theWindow: WindowPtr): PicHandle;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWindowPic function returns a handle to the picture to be drawn in a specified
window’s content region. The handle must have been stored previously with the
SetWindowPic procedure.

C H A P T E R 4

Window Manager

Window Manager Reference 4-111

SetWRefCon 4

Use the SetWRefCon procedure to set the refCon field of a window record.

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LongInt);

theWindow A pointer to the window’s window record.

data The data to be placed in the refCon field.

DESCRIPTION

The SetWRefCon procedure places the specified data in the refCon field of the specified
window record. The refCon field is available to your application for any
window-related data it needs to store.

SEE ALSO

See Listing 4-3 on page 4-28 for an example that sets the refCon field. See Listing 4-16 on
page 4-60 for an example that uses the contents of the refCon field.

GetWRefCon 4

Use the GetWRefCon function to retrieve the reference constant from a window’s
window record.

FUNCTION GetWRefCon (theWindow: WindowPtr): LongInt;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWRefCon function returns the long integer data stored in the refCon field of the
specified window record.

SEE ALSO

See the section “Managing Multiple Windows” beginning on page 4-23 for suggested
ways to use the refCon field. See Listing 4-1 on page 4-25 for an example of an
application-defined routine that gets the refCon field.

C H A P T E R 4

Window Manager

4-112 Window Manager Reference

GetWVariant 4

Use the GetWVariant function to retrieve a window’s variation code.

FUNCTION GetWVariant (theWindow: WindowPtr): Integer;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWVariant function returns the variation code of the specified window.
Depending on the window’s window definition function, the result of GetWVariant can
represent one of the standard window types listed in the section “Creating a Window”
beginning on page 4-25 or a variation code defined by your own window definition
function.

SEE ALSO

See “Types of Windows” beginning on page 4-8 for a definition of variation codes. See
“The Window Definition Function” beginning on page 4-120 for a detailed description of
variation codes.

Manipulating the Desktop 4

This section describes the routines that let your application retrieve information about the
desktop and set the desktop pattern. Ordinarily, your application doesn’t need to
manipulate any part of the desktop outside of its own windows.

SetDeskCPat 4

Use the SetDeskCPat procedure to set the desktop pattern on a computer that supports
Color QuickDraw.

PROCEDURE SetDeskCPat (deskPixPat: PixPatHandle);

deskPixPat A handle to a pixel pattern.

DESCRIPTION

The SetDeskCPat procedure sets the desktop pattern to a specified pixel pattern, which
can be drawn in more than two colors. After a call to SetDeskCPat, the desktop is
automatically redrawn in the new pattern. If the specified pattern is a binary pattern
(with a pattern type of 0), it is drawn is the current foreground and background colors. If
the value of the deskPixPat parameter is NIL, SetDeskCPat uses the standard binary
desk pattern (that is, the 'ppat' resource with resource ID 16).

C H A P T E R 4

Window Manager

Window Manager Reference 4-113

Note
For compatibility with other Macintosh applications and the
system software, applications should ordinarily not change the
desktop pattern. �

The Window Manager’s desktop-painting routines can paint the desktop either in the
binary pattern stored in the global variable DeskPattern or in a new pixel pattern. The
desktop pattern used at startup is determined by the value of the parameter-RAM bit flag
called pCDeskPat. If the value of pCDeskPat is 0, the Window Manager uses the new
pixel pattern; if not, it uses the binary pattern stored in DeskPattern. The user can
change the color pattern through the General Controls panel, which changes the value
of pCDeskPat.

GetGrayRgn 4

Use the GetGrayRgn function to retrieve a handle to the current desktop region.

FUNCTION GetGrayRgn: RgnHandle;

DESCRIPTION

The GetGrayRgn function returns a handle to the current desktop region from the global
variable GrayRgn.

The desktop region represents all available screen space, that is, the desktop area
displayed by all monitors attached to the computer. Ordinarily, your application
doesn’t need to access the desktop region directly.

When your application calls DragWindow to let the user drag a window, it can use
GetGrayRgn to set the limiting rectangle to the entire desktop area.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that uses GetGrayRgn to specify the limiting
rectangle when calling DragWindow to let the user move a window.

GetCWMgrPort 4

Use the GetCWMgrPort procedure to retrieve a pointer to the Window Manager port on
a system that supports Color QuickDraw.

PROCEDURE GetCWMgrPort (VAR wMgrCPort: CGrafPtr);

wMgrCPort A parameter in which GetCWMgrPort returns a pointer to the Window
Manager port.

C H A P T E R 4

Window Manager

4-114 Window Manager Reference

DESCRIPTION

The GetCWMgrPort procedure places a pointer to the color Window Manager port in the
parameter wMgrCPort. The GetCWMgrPort procedure is available only on computers
with Color QuickDraw.

The Window Manager port is a graphics port that occupies all of the main screen.
Ordinarily, your application doesn’t need to access the Window Manager port.

Note
Do not change any regions of the Window Manager port. If you do, the
Window Manager might not handle overlapping windows properly. �

GetWMgrPort 4

Use the GetWMgrPort procedure to retrieve a pointer to the Window Manager port on a
system with only the original monochrome QuickDraw.

PROCEDURE GetWMgrPort (VAR wPort: GrafPtr);

wPort A parameter in which GetWMgrPort returns a pointer to the Window
Manager port.

DESCRIPTION

The GetWMgrPort procedure places a pointer to the Window Manager port in the
parameter wPort.

The Window Manager port is a graphics port that occupies all of the main screen.
Ordinarily, your application doesn’t need to access the Window Manager port.

Note
Do not change any regions of the Window Manager port. If you do, the
Window Manager might not handle overlapping windows properly. �

Manipulating Window Color Information 4

This section describes the routines you use for setting and retrieving window color
information. Your application does not normally change window color information.

SetWinColor 4

Use the SetWinColor procedure to set a window’s window color table.

PROCEDURE SetWinColor (theWindow: WindowPtr;

newColorTable: WCTabHandle);

C H A P T E R 4

Window Manager

Window Manager Reference 4-115

theWindow A pointer to the window’s window record.

newColorTable
A handle to a window color table record, which defines the colors for the
window’s new color table.

DESCRIPTION

The SetWinColor procedure sets a window’s color table. If the window has no auxiliary
window record, it creates a new one with the specified window color table and adds it to
the auxiliary window list. If the window already has an auxiliary record, its window
color table is replaced. The Window Manager then redraws the window frame and
highlighted text in the new colors and sets the window’s background color to the new
content color.

If the new color table has the same entries as the default color table, SetWinColor
changes the auxiliary window record so that it points to the default color table.

Window color table resources (resources of type 'wctb') should not be purgeable.

If you specify a value of NIL for the parameter theWindow, SetWinColor changes the
default color table in memory. Your application shouldn’t, however, change the default
color table.

SEE ALSO

For a description of a window color table, see “The Window Color Table Record” on
page 4-71. For a description of the auxiliary window record, see “The Auxiliary Window
Record” on page 4-73. For a description of the 'wctb' resource, see “The Window Color
Table Resource” on page 4-127.

GetAuxWin 4

Use the GetAuxWin function to retrieve a handle to a window’s auxiliary
window record.

FUNCTION GetAuxWin (theWindow: WindowPtr;

VAR awHndl: AuxWinHandle): Boolean;

theWindow A pointer to the window’s window record.

awHndl A handle to the window’s auxiliary window record.

DESCRIPTION

The GetAuxWin function returns a Boolean value that reports whether or not the
window has an auxiliary window record, and it sets the variable parameter awHndl
to the window’s auxiliary window record.

If the window has no auxiliary window record, GetAuxWin places the default window
color table in awHndl and returns a value of FALSE.

C H A P T E R 4

Window Manager

4-116 Window Manager Reference

SEE ALSO

For a description of the auxiliary window record, see “The Auxiliary Window Record” on
page 4-73.

Low-Level Routines 4

This section describes the low-level routines that are called by higher-level Window
Manager routines. Ordinarily, you won’t need to use these routines.

CheckUpdate 4

The Event Manager uses the CheckUpdate function to scan the window list for
windows that need updating.

FUNCTION CheckUpdate (VAR theEvent: EventRecord): Boolean;

theEvent An event record to be filled in if a window needs updating.

DESCRIPTION

The CheckUpdate function scans the window list from front to back, checking for a
visible window that needs updating (that is, a visible window whose update region is not
empty). If it finds one whose window record contains a picture handle, it redraws the
window itself and continues through the list. If it finds a window record whose update
region is not empty and whose window record does not contain a picture handle, it stores
an update event in the parameter theEvent and returns TRUE. If it finds no such
window, it returns FALSE.

The Event Manager is the only software that ordinarily calls CheckUpdate.

ClipAbove 4

The Window Manager uses the ClipAbove procedure to determine the clip region of the
Window Manager port for displaying a window.

PROCEDURE ClipAbove (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The ClipAbove procedure sets the clip region of the Window Manager port to
be the area of the desktop that intersects the current clip region, minus the
structure regions of all the windows in front of the specified window.

C H A P T E R 4

Window Manager

Window Manager Reference 4-117

The ClipAbove procedure retrieves the desktop region from the global
variable GrayRgn.

SaveOld 4

The Window Manager uses the SaveOld procedure to save a window’s current structure
and content regions preparatory to updating the window.

PROCEDURE SaveOld (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The SaveOld procedure saves the specified window’s current structure region and
content region for the DrawNew procedure. Each call to SaveOld must be balanced
by a subsequent call to DrawNew.

DrawNew 4

The Window Manager uses the DrawNew procedure to erase and update changed
window regions.

PROCEDURE DrawNew (window: WindowPeek; update: Boolean);

window A pointer to the window’s complete window record.

update A Boolean value that determines whether the regions are updated.

DESCRIPTION

The DrawNew procedure erases the parts of a window’s structure and content regions
that are part of the window’s former state and part of its new state but not both. That is,

(OldStructure XOR NewStructure) UNION (OldContent XOR NewContent)

If the update parameter is set to TRUE, DrawNew also updates the erased regions.

� W A R N I N G

In Pascal, SaveOld and DrawNew are not nestable. �

ASSEMBLY-LANGUAGE INFORMATION

In assembly language, you can nest SaveOld and DrawNew if you save and restore the
values of the global variables OldStructure and OldContent.

C H A P T E R 4

Window Manager

4-118 Window Manager Reference

PaintOne 4

The Window Manager uses the PaintOne procedure to redraw the invalid, exposed
portions of one window on the desktop.

PROCEDURE PaintOne (window: WindowPeek; clobberedRgn: RgnHandle);

window A pointer to the window’s complete window record.

clobberedRgn
A handle to the region that has become invalid.

DESCRIPTION

The PaintOne procedure “paints” the invalid portion of the specified window and
all windows above it. It draws as much of the window frame as is in clobberedRgn
and, if some content region is exposed, erases the exposed area (paints it with the
background pattern) and adds it to the window’s update region. If the value of the
window parameter is NIL, the window is the desktop, and PaintOne paints it with
the desktop pattern.

ASSEMBLY-LANGUAGE INFORMATION

The global variables SaveUpdate and PaintWhite are flags used by PaintOne.
Normally both flags are set. Clearing SaveUpdate prevents clobberedRgn from being
added to the window’s update region. Clearing PaintWhite prevents clobberedRgn
from being erased before being added to the update region (this is useful, for example, if
the background pattern of the window isn’t the background pattern of the desktop). The
Window Manager sets both flags periodically, so you should clear the appropriate flags
each time you need them to be clear.

PaintBehind 4

The Window Manager uses the PaintBehind procedure to redraw a series of windows
in the window list.

PROCEDURE PaintBehind (startWindow: WindowPeek;

clobberedRgn: RgnHandle);

startWindow
A pointer to the window’s complete window record.

clobberedRgn
A handle to the region that has become invalid.

C H A P T E R 4

Window Manager

Window Manager Reference 4-119

DESCRIPTION

The PaintBehind procedure calls PaintOne for startWindow and all the windows
behind startWindow, clipped to clobberedRgn.

ASSEMBLY-LANGUAGE INFORMATION

Because PaintBehind clears the global variable PaintWhite before calling PaintOne,
clobberedRgn isn’t erased. The PaintWhite global variable is reset
after the call to PaintOne.

CalcVis 4

The Window Manager uses the CalcVis procedure to calculate the visible region
of a window.

PROCEDURE CalcVis (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The CalcVis procedure calculates the visible region of the specified window by starting
with its content region and subtracting the structure region of each window in front of it.

CalcVisBehind 4

The Window Manager uses the CalcVisBehind procedure to calculate the visible
regions of a series of windows.

PROCEDURE CalcVisBehind (startWindow: WindowPeek;

clobberedRgn: RgnHandle);

startWindow
A pointer to a window’s window record.

clobberedRgn
A handle to the desktop region that has become invalid.

DESCRIPTION

The CalcVisBehind procedure calculates the visible regions of the window specified by
the startWindow parameter and all windows behind startWindow that intersect
clobberedRgn. It is called after PaintBehind.

C H A P T E R 4

Window Manager

4-120 Window Manager Reference

Application-Defined Routine 4
This section describes the window definition function. The Window Manager supplies
window definition functions that handle the standard window types described in “Types
of Windows” beginning on page 4-8.

The Window Definition Function 4

If your application defines its own window types, you must supply your own window
definition function to handle them. Store your definition function as a resource of type
'WDEF' with an ID from 128 through 4096. (Window definition function resource IDs 0
and 1 are the default window definition functions; resource IDs 2 through 127 are
reserved by Apple Computer, Inc.)

Your window definition function can support up to 16 variation codes, which are
identified by integers 0 through 15. To invoke your own window type, you specify the
window’s definition ID, which contains the resource ID of the window’s definition
function in the upper 12 bits and the variation code in the lower 4 bits. Thus, for a given
resource ID and variation code, the window definition ID is

(16 * resource ID) + (variation code)

When you create a window, the Window Manager calls the Resource Manager to access
the window definition function. The Resource Manager reads the window definition
function into memory and returns a handle to it. The Window Manager stores this handle
in the windowDefProc field of the window record. (If 24-bit addressing is in effect, the
Window Manager stores the variation code in the lower 4 bits of the windowDefProc
field; if 32-bit addressing is in effect, the Window Manager stores the variation code
elsewhere.) Later, when it needs to perform a type-dependent action on the window, the
Window Manager calls the window definition function and passes it the variation code
as a parameter.

MyWindow 4

The window definition function is responsible for drawing the window frame, reporting
the region where mouse-down events occur, calculating the window’s structure region
and content region, drawing the size box, resizing the window frame when the user
drags the size box, and performing any customized initialization or disposal tasks.

You can give your window definition function any name you wish. It takes four
parameters and returns a result code:

FUNCTION MyWindow (varCode: Integer; theWindow: WindowPtr;

message: Integer; param: LongInt): LongInt;

varCode The window’s variation code.

theWindow A pointer to the window’s window record.

C H A P T E R 4

Window Manager

Window Manager Reference 4-121

message A code for the task to be performed. The message parameter has one of
these values:

CONST

wDraw = 0; {draw window frame}

wHit = 1; {report where mouse-down event }

{ occurred}

wCalcRgns = 2; {calculate strucRgn and contRgn}

wNew = 3; {perform additional }

{ initialization}

wDispose = 4; {perform additional disposal }

{ tasks}

wGrow = 5; {draw grow image during resizing}

wDrawGIcon = 6; {draw size box and scroll bar }

{ outline}

The subsections that follow explain each of these tasks in detail.

param Data associated with the task specified by the message parameter. If the
task requires no data, this parameter is ignored.

Your window definition function performs whatever task is specified by the message
parameter and returns a function result if appropriate. If the task performed requires no
result code, return 0.

The function’s entry point must be at the beginning of the function.

You can set up the various tasks as subroutines inside the window definition function,
but you’re not required to do so.

Drawing the Window Frame 4

When you receive a wDraw message, draw the window frame in the current graphics
port, which is the Window Manager port.

You must make certain checks to determine exactly how to draw the frame. If the value of
the visible field in the window record is FALSE, you should do nothing; otherwise,
you should examine the param parameter and the status flags in the window record:

� If the value of param is 0, draw the entire window frame.

� If the value of param is 0 and the hilited field in the window record is TRUE,
highlight the frame to show that the window is active.
� If the value of the goAwayFlag field in the window record is also TRUE, draw a

close box in the window frame.
� If the value of the spareFlag field in the window record is also TRUE, draw a

zoom box in the window frame.

� If the value of the param parameter is wInGoAway, add highlighting to, or remove
it from, the window’s close box. Figure 4-19 on page 4-46 illustrates the close box
with and without highlighting as drawn by the Window Manager’s window definition
function.

C H A P T E R 4

Window Manager

4-122 Window Manager Reference

� If the value of the param parameter is wInZoom, add highlighting to, or remove it
from, the window’s zoom box. Figure 4-20 on page 4-47 illustrates the zoom box
with and without highlighting as drawn by the Window Manager’s window definition
function.

Note
When the Window Manager calls a window definition function
with a message of wDraw, it stores a value of type Integer in the param
parameter without clearing the high-order word. When processing the
wDraw message, use only the low-order word of the param parameter.

�

The window frame typically but not necessarily includes the window’s title, which
should be displayed in the system font and system font size. The Window Manager
port is already set to use the system font and system font size.

When designing a title bar that includes the window title, allow at least 16 pixels
vertically to support localization for script systems in which the system font can be no
smaller than 12 points.

Note
Nothing drawn outside the window’s structure region is visible. �

Returning the Region of a Mouse-Down Event 4

When you receive a wHit message, you must determine where the cursor was when the
mouse button was pressed. The wHit message is accompanied by the mouse location, in
global coordinates, in the param parameter. The vertical coordinate is in the high-order
word of the parameter, and the horizontal coordinate is in the low-order word. You
return one of these constants:

CONST

wNoHit = 0; {none of the following}

wInContent = 1; {in content region (except grow, if active)}

wInDrag = 2; {in drag region}

wInGrow = 3; {in grow region (active window only)}

wInGoAway = 4; {in go-away region (active window only)}

wInZoomIn = 5; {in zoom box for zooming in (active window }

{ only)}

wInZoomOut = 6; {in zoom box for zooming out (active window }

{ only)}

The return value wNoHit might mean (but not necessarily) that the point isn’t in the
window. The standard window definition functions, for example, return wNoHit if the
point is in the window frame but not in the title bar.

Return the constants wInGrow, wInGoAway, wInZoomIn, and wInZoomOut only if the
window is active—by convention, the size box, close box, and zoom box aren’t drawn if
the window is inactive. In an inactive document window, for example, a mouse-down
event in the part of the title bar that would contain the close box if the window were
active is reported as wInDrag.

C H A P T E R 4

Window Manager

Window Manager Reference 4-123

Calculating Regions 4

When you receive the wCalcRgns message, you calculate the window’s structure and
content regions based on the current graphics port’s port rectangle. These regions, whose
handles are in the strucRgn and contRgn fields of the window record, are in global
coordinates. The Window Manager requests this operation only if the window is visible.

� W A R N I N G

When you calculate regions for your own type of window, do not alter
the clip region or the visible region of the window’s graphics port. The
Window Manager and QuickDraw take care of this for you. Altering the
clip region or visible region may damage other windows. �

Initializing a New Window 4

When you receive the wNew message, you can perform any type-specific initialization
that may be required. If the content region has an unusual shape, for example, you might
allocate memory for the region and store the region handle in the dataHandle field of
the window record. The initialization routine for a standard document window creates
the wStateData record for storing zooming data.

Disposing of a Window 4

When you receive the wDispose message, you can perform any additional tasks
necessary for disposing of a window. You might, for example, release memory that was
allocated by the initialization routine. The dispose routine for a standard document
window disposes of the wStateData record.

Resizing a Window 4

When you receive the wGrow message, draw a grow image of the window. With the
wGrow message you receive a pointer to a rectangle, in global coordinates, whose
upper-left corner is aligned with the port rectangle of the window’s graphics port. Your
grow image should fit inside the rectangle. As the user drags the mouse, the Window
Manager sends repeated wGrow messages, so that you can change your grow image to
match the changing mouse location.

Draw the grow image in the current graphics port, which is the Window Manager port,
in the current pen pattern and pen mode. These are set up (as gray and notPatXor) to
conform to the Macintosh user interface guidelines.

The grow routine for a standard document window draws a dotted (gray) outline of the
window and also the lines delimiting the title bar, size box, and scroll bar areas.

Drawing the Size Box 4

When you receive the wDrawGIcon message, you draw the size box in the content region
if the window is active—if the window is inactive, draw whatever is appropriate to show
that the window cannot currently be sized.

C H A P T E R 4

Window Manager

4-124 Window Manager Reference

Note
If the size box is located in the window frame instead of the content
region, do nothing in response to the wDrawGIcon message, instead
drawing the size box in response to the wDraw message. �

The routine that draws a size box for an active document window draws the size box in
the lower-right corner of the port rectangle of the window’s graphics port. It also draws
lines delimiting the size box and scroll bar areas. For an inactive document window, it
erases the size box and draws the delimiting lines.

Resources 4
This section describes the resources used by the Window Manager:

� the 'WIND' resource, used for describing the characteristics of windows

� the 'WDEF' resource, which holds a window definition function

� the 'wctb' resource, which defines the colors to be used for a window’s frame
and highlighting

The Window Resource 4

You typically define a window resource for each type of window that your application
creates. Figure 4-24 illustrates a compiled 'WIND' resource.

Figure 4-24 Structure of a compiled window ('WIND') resource

Initial rectangle

Window definition ID

Visibility status

Presence of close box

Reference constant

Length (n) of window title

Window title

Positioning specfication

'WIND' resource

8

2

2

2

4

1

n

2

Bytes

C H A P T E R 4

Window Manager

Window Manager Reference 4-125

A compiled version of a window resource contains the vollowing elements:

� The upper-left and lower-right corners, in global coordinates, of a rectangle
that defines the initial size and placement of the window’s content region.
Your application can change this rectangle before displaying the window,
either programmatically or through an optional positioning code described
later in this section.

� The window’s definition ID, which incorporates both the resource ID of the window
definition function that will handle the window and an optional variation code.
Together, the window definition function resource ID and the variation code define a
window type. Place the resource ID of the window definition function in the upper
12 bits of the definition ID. Window definition functions with IDs 0 through 127 are
reserved for use by Apple Computer, Inc. Place the optional variation code in the
lower 4 bits of the definition ID.
If you’re using one of the standard window types (described in “Types of Windows”
beginning on page 4-8), the definition ID is one of the window-type constants:

CONST

documentProc = 0; {movable, sizable window, }

{ no zoom box}

dBoxProc = 1; {alert box or modal dialog box}

plainDBox = 2; {plain box}

altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, no size box or }

{ zoom box}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable window}

rDocProc = 16; {rounded-corner window}

You can also add a zoom box to a movable modal dialog box by specifying the sum
of two constants: movableDBoxProc + zoomDocProc, but a zoom box is not
recommended on any dialog box.
You can control the angle of curvature on a rounded-corner window (window type
rDocProc) by adding one of these integers:

� A specification that determines whether the window is visible or invisible. This
characteristic controls only whether the Window Manager displays the window, not
necessarily whether the window can be seen on the screen. (A visible window entirely
covered by other windows, for example, is “visible” even though the user cannot see
it.) You typically create a new window in an invisible state, build the content area of
the window, and then display the completed window.

Window definition ID
Diameters of
curvature

rDocProc 16, 16

rDocProc + 2 4, 4

rDocProc + 4 6, 6

rDocProc + 6 10, 10

C H A P T E R 4

Window Manager

4-126 Window Manager Reference

� A specification that determines whether or not the window has a close box. The
Window Manager draws the close box when it draws the window frame. The window
type specified in the second field determines whether a window can support a close
box; this field determines whether the close box is present.

� A reference constant, which your application can use for whatever data it needs to
store. When it builds a new window record, the Window Manager stores, in the
refCon field, whatever value you specify in the fifth element of the window resource.
You can also put a placeholder here and then set the refCon field yourself with the
SetWRefCon procedure.

� A string that specifies the window title. The first byte of the string specifies the length
of the string (that is, the number of characters in the title plus 1 byte for the length),
in bytes.

� An optional positioning specification that overrides the window position established
by the rectangle in the first field. The positioning value can be one of the integers
defined by the constants listed here. In these constant names, the terms have the
following meanings:

The seventh element of the resource can contain one of the values specified by
these constants:

CONST noAutoCenter = 0x0000;{use initial }

{ location}

centerMainScreen = 0x280A;{center on main }

{ screen}

alertPositionMainScreen = 0x300A;{place in alert }

{ position on main }

{ screen}

staggerMainScreen = 0x380A;{stagger on main }

{ screen}

centerParentWindow = 0xA80A;{center on parent }

{ window}

center Centered both horizontally and vertically, relative either to a
screen or to another window (if a window to be centered
relative to another window is wider than the window that
preceded it, it is pinned to the left edge; a narrower window
is centered)

stagger Located 10 pixels to the right and 10 pixels below the
upper-left corner of the last window (in the case of staggering
relative to a screen, the first window is placed just below
the menu bar at the left edge of the screen, and subsequent
windows are placed on that screen relative to the
first window)

alert position Centered horizontally and placed in the “alert position”
vertically, that is, with about one-fifth of the window or
screen above the new window and the rest below

parent window The window in which the user was last working

C H A P T E R 4

Window Manager

Window Manager Reference 4-127

alertPositionParentWindow = 0xB00A;{place in alert }

{ position on }

{ parent window}

staggerParentWindow = 0xB80A;{stagger relative }

{ to parent window}

centerParentWindowScreen = 0x680A;{center on parent }

{ window screen}

alertPositionParentWindowScreen

= 0x700A;{place in alert }

{ position on }

{ parent window }

{ screen}

staggerParentWindowScreen = 0x780A;{stagger on parent }

{ window screen}

The positioning constants are convenient when the user is creating new documents or
when you are handling your own dialog boxes and alert boxes. When you are creating
a new window to display a previously saved document, however, you should display
the new window in the same rectangle as the previous window (that is, the window
the document occupied when it was last saved). For more information, see
“Positioning a Document Window on the Desktop” beginning on page 4-30.

Use the GetNewCWindow or GetNewWindow function to read a 'WIND' resource. Both
functions create a new window record and fill it in according to the values specified in a
'WIND' resource.

The Window Definition Function Resource 4

Window definition functions are stored as resources of type 'WDEF'. The 'WDEF'
resource is simply the executable code for the window definition function.

The two standard window definition functions supplied by the Window Manager use
resource IDs 0 and 1.

The Window Color Table Resource 4

You can specify your own window color tables as resources of type 'wctb'.

Ordinarily, you should not define your own window color tables, unless you have some
extraordinary need to control the color of a window’s frame or text highlighting. To
assign a table to a window when you create the window, provide a window color table
('wctb') resource with the same resource ID as the 'WIND' resource from which you
create the window.

The window color table resource is an exact image of the window color table data
structure. Figure 4-25 illustrates the contents of a compiled 'wctb' resource.

C H A P T E R 4

Window Manager

4-128 Window Manager Reference

Figure 4-25 Structure of a compiled window color table ('wctb') resource

A compiled version of a window resource contains the following elements:

� An unused field 6 bytes long.

� An integer that specifies the number of entries in the resource (that is, the number of
color specification records) minus 1.

� A series of color specification records, each of which consists of a 2-byte part identifier
and three 2-byte color values. The part identifier is an integer specified by one of
these constants:

CONST wContentColor = 0; {content region background}

wFrameColor = 1; {window frame}

wTextColor = 2; {window title and button text}

wHiliteColor = 3; {reserved}

wTitleBarColor = 4; {reserved}

wHiliteColorLight = 5; {lightest stripes in title bar }

{ and lightest dimmed text}

wHiliteColorDark = 6; {darkest stripes in title bar }

{ and darkest dimmed text}

wTitleBarLight = 7; {lightest parts of title bar }

{ background}

Unused

Number of entries minus 1

Part identifier

Red value

Green value

Blue value

Part identifier

Red value

Green value

Blue value

'wctb' resource

6

2

2

2

2

2

2

2

2

2

Bytes

C H A P T E R 4

Window Manager

Window Manager Reference 4-129

wTitleBarDark = 8; {darkest parts of title bar }

{ background}

wDialogLight = 9; {lightest element of dialog box }

{ frame}

wDialogDark = 10; {darkest element of dialog box }

{ frame}

wTingeLight = 11; {lightest window tinging}

wTingeDark = 12; {darkest window tinging}

The color values are simply the intensity of the red, green, and blue in each window
part (see Inside Macintosh: Imaging for a description of RGB color).

4-130 Summary of the Window Manager

C H A P T E R 4

Window Manager 4

Summary of the Window Manager 4

Pascal Summary 4

Constants 4

CONST

{window types}

documentProc = 0; {movable, sizable window, no zoom box}

dBoxProc = 1; {alert box or modal dialog box}

plainDBox = 2; {plain box}

altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, no size box or }

{ zoom box}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable window}

rDocProc = 16; {rounded-corner window}

{window kinds}

dialogKind = 2; {dialog or alert box window}

userKind = 8; {window created by the application}

{part codes returned by FindWindow}

inDesk = 0; {none of the following}

inMenuBar = 1; {in menu bar}

inSysWindow = 2; {in desk accessory window}

inContent = 3; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

inDrag = 4; {in drag (title bar) region}

inGrow = 5; {in size box (active window only)}

inGoAway = 6; {in close box}

inZoomIn = 7; {in zoom box (window in standard state)}

inZoomOut = 8; {in zoom box (window in user state)}

{axis constraints on DragGrayRgn}

noConstraint = 0; {no constraints}

hAxisOnly = 1; {move on horizontal axis only}

vAxisOnly = 2; {move on vertical axis only}

C H A P T E R 4

Window Manager

Summary of the Window Manager 4-131

{window definition function task codes}

wDraw = 0; {draw window frame}

wHit = 1; {report where mouse-down occurred}

wCalcRgns = 2; {calculate strucRgn and contRgn}

wNew = 3; {perform additional initialization}

wDispose = 4; {perform additional disposal tasks}

wGrow = 5; {draw grow image during resizing}

wDrawGIcon = 6; {draw size box and scroll bar outline}

{window definition function wHit return codes}

wNoHit = 0; {none of the following}

wInContent = 1; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

wInDrag = 2; {in drag (title bar) region}

wInGrow = 3; {in size box (active window only)}

wInGoAway = 4; {in close box}

wInZoomIn = 5; {in zoom box (window in standard state)}

wInZoomOut = 6; {in zoom box (window in user state)}

{window color information table part codes}

wContentColor = 0; {content region background}

wFrameColor = 1; {window outline}

wTextColor = 2; {window title and button text}

wHiliteColor = 3; {reserved}

wTitleBarColor = 4; {reserved}

wHiliteColorLight = 5; {lightest stripes in title bar }

{ and lightest dimmed text}

wHiliteColorDark = 6; {darkest stripes in title bar }

{ and darkest dimmed text}

wTitleBarLight = 7; {lightest parts of title bar background}

wTitleBarDark = 8; {darkest parts of title bar background}

wDialogLight = 9; {lightest element of dialog box frame}

wDialogDark = 10; {darkest element of dialog box frame}

wTingeLight = 11; {lightest window tinging}

wTingeDark = 12; {darkest window tinging}

{resource ID of desktop pattern}

deskPatID = 16;

C H A P T E R 4

Window Manager

4-132 Summary of the Window Manager

Data Types 4

TYPE CWindowPtr = CGrafPtr;

CWindowPeek = ^CWindowRecord;

CWindowRecord =

RECORD

port: CGrafPort; {window's graphics port}

windowKind: Integer; {class of window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition function}

dataHandle: Handle; {handle to window state data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: CWindowPeek; {pointer to next window record in }

{ window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your application}

END;

WindowPtr = GrafPtr;

WindowPeek = ^WindowRecord;

WindowRecord =

RECORD {all fields have same use as }

{ in color window record}

port: GrafPort; {window's graphics port}

windowKind: Integer; {class of window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition function}

dataHandle: Handle; {handle to window state data record}

C H A P T E R 4

Window Manager

Summary of the Window Manager 4-133

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: WindowPeek; {pointer to next window record in }

{ window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your application}

END;

WStateDataPtr = ^WStateData;

WStateDataHandle = ^WStateDataPtr;

WStateData = {zoom state data record}

RECORD

userState: Rect; {size and location established by user}

stdState: Rect; {size and location established by application}

END;

WCTabPtr = ^WinCTab;

WCTabHandle = ^WCTabPtr;

WinCTab = {window color information table}

RECORD

wCSeed: LongInt; {reserved}

wCReserved: Integer; {reserved}

ctSize: Integer; {number of entries in table -1}

ctTable: ARRAY [0..4] OF ColorSpec;

{array of color specification records}

END;

ColorSpec =

RECORD

value: Integer; {part identifier}

rgb: RGBColor; {RGB value}

END;

AuxWinHandle= ^AuxWinPtr;

AuxWinPtr = ^AuxWinRec;

AuxWinRec = {auxiliary window record}

RECORD

awNext: AuxWinHandle; {handle to next record}

awOwner: WindowPtr; {pointer to window}

awCTable: CTabHandle; {handle to color table}

dialogCItem: Handle; {storage used by Dialog Manager}

C H A P T E R 4

Window Manager

4-134 Summary of the Window Manager

awFlags: LongInt; {reserved}

awReserved: CTabHandle; {reserved}

awRefCon: LongInt; {reference constant, for }

{ use by application}

END;

Window Manager Routines 4

Initializing the Window Manager

PROCEDURE InitWindows;

Creating Windows

FUNCTION GetNewCWindow (windowID: Integer; wStorage: Ptr;
behind: WindowPtr): WindowPtr;

FUNCTION GetNewWindow (windowID: Integer; wStorage: Ptr;
behind: WindowPtr): WindowPtr;

FUNCTION NewCWindow (wStorage: Ptr; boundsRect: Rect;
title: Str255; visible: Boolean;
procID: Integer; behind: WindowPtr;
goAwayFlag: Boolean;
refCon: LongInt): WindowPtr;

FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rect;
title: Str255; visible: Boolean;
theProc: Integer; behind: WindowPtr;
goAwayFlag: Boolean;
refCon: LongInt): WindowPtr;

Naming Windows

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255);

PROCEDURE GetWTitle (theWindow: WindowPtr; VAR title: Str255);

Displaying Windows

PROCEDURE DrawGrowIcon (theWindow: WindowPtr);

PROCEDURE SelectWindow (theWindow: WindowPtr);

PROCEDURE ShowWindow (theWindow: WindowPtr);

PROCEDURE HideWindow (theWindow: WindowPtr);

PROCEDURE ShowHide (theWindow: WindowPtr; showFlag: Boolean);

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: Boolean);

PROCEDURE BringToFront (theWindow: WindowPtr);

PROCEDURE SendBehind (theWindow, behindWindow: WindowPtr);

C H A P T E R 4

Window Manager

Summary of the Window Manager 4-135

Retrieving Window Information

FUNCTION FindWindow (thePoint: Point;
VAR theWindow: WindowPtr): Integer;

FUNCTION FrontWindow : WindowPtr;

Moving Windows

PROCEDURE DragWindow (theWindow: WindowPtr;
startPt: Point; boundsRect: Rect);

PROCEDURE MoveWindow (theWindow: WindowPtr;
hGlobal, vGlobal: Integer; front: Boolean);

FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point;
limitRect, slopRect: Rect; axis: Integer;
actionProc: ProcPtr): LongInt;

FUNCTION PinRect (theRect: Rect; thePt: Point): LongInt;

Resizing Windows

FUNCTION GrowWindow (theWindow: WindowPtr;
startPt: Point; sizeRect: Rect): LongInt;

PROCEDURE SizeWindow (theWindow: WindowPtr; w, h: Integer;
fUpdate: Boolean);

Zooming Windows

FUNCTION TrackBox (theWindow: WindowPtr; thePt: Point;
partCode: Integer): Boolean;

PROCEDURE ZoomWindow (theWindow: WindowPtr;
partCode: Integer; front: Boolean);

Closing and Deallocating Windows

FUNCTION TrackGoAway (theWindow: WindowPtr; thePt: Point): Boolean;

PROCEDURE CloseWindow (theWindow: WindowPtr);

PROCEDURE DisposeWindow (theWindow: WindowPtr);

Maintaining the Update Region

PROCEDURE BeginUpdate (theWindow: WindowPtr);

PROCEDURE EndUpdate (theWindow: WindowPtr);

PROCEDURE InvalRect (badRect: Rect);

PROCEDURE InvalRgn (badRgn: RgnHandle);

PROCEDURE ValidRect (goodRect: Rect);

PROCEDURE ValidRgn (goodRgn: RgnHandle);

C H A P T E R 4

Window Manager

4-136 Summary of the Window Manager

Setting and Retrieving Other Window Characteristics

PROCEDURE SetWindowPic (theWindow: WindowPtr; Pic: PicHandle);

FUNCTION GetWindowPic (theWindow: WindowPtr): PicHandle;

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LongInt);

FUNCTION GetWRefCon (theWindow: WindowPtr): LongInt;

FUNCTION GetWVariant (theWindow: WindowPtr): Integer;

Manipulating the Desktop

PROCEDURE SetDeskCPat (deskPixPat: PixPatHandle);

FUNCTION GetGrayRgn : RgnHandle;

PROCEDURE GetCWMgrPort (VAR wMgrCPort: CGrafPtr);

PROCEDURE GetWMgrPort (VAR wPort: GrafPtr);

Manipulating Window Color Information

PROCEDURE SetWinColor (theWindow: WindowPtr;
newColorTable: WCTabHandle);

FUNCTION GetAuxWin (theWindow: WindowPtr;
VAR awHndl: AuxWinHandle): Boolean;

Low-Level Routines

FUNCTION CheckUpdate (VAR theEvent: EventRecord): Boolean;

PROCEDURE ClipAbove (window: WindowPeek);

PROCEDURE SaveOld (window: WindowPeek);

PROCEDURE DrawNew (window: WindowPeek; update: Boolean);

PROCEDURE PaintOne (window: WindowPeek; clobberedRgn: RgnHandle);

PROCEDURE PaintBehind (startWindow: WindowPeek;
clobberedRgn: RgnHandle);

PROCEDURE CalcVis (window: WindowPeek);

PROCEDURE CalcVisBehind (startWindow: WindowPeek;
clobberedRgn: RgnHandle);

Application-Defined Routine 4

The Window Definition Function

FUNCTION MyWindow (varCode: Integer; theWindow: WindowPtr;message:
Integer; param: LongInt): LongInt;

C H A P T E R 4

Window Manager

Summary of the Window Manager 4-137

C Summary 4

Constants 4

enum {

/*window types*/

documentProc = 0, /*movable, sizable window, no zoom box*/

dBoxProc = 1, /*alert box or modal dialog box*/

plainDBox = 2, /*plain box*/

altDBoxProc = 3, /*plain box with shadow*/

noGrowDocProc = 4, /*movable window, no size box or zoom box*/

movableDBoxProc = 5, /*movable modal dialog box*/

zoomDocProc = 8, /*standard document window*/

zoomNoGrow = 9, /*zoomable, nonresizable window*/

rDocProc = 16, /*rounded-corner window*/

/*window kinds*/

dialogKind = 2, /*dialog or alert box window*/

userKind = 8, /*window created by the application*/

/*part codes returned by FindWindow*/

inDesk = 0, /*none of the following*/

inMenuBar = 1, /*in menu bar*/

inSysWindow = 2, /*in desk accessory window*/

inContent = 3, /*anywhere in content region except size box if*/

/* window is active, anywhere including */

/* size box if window is inactive*/

inDrag = 4, /*in drag (title bar) region*/

inGrow = 5, /*in size box (active window only)*/

inGoAway = 6, /*in close box*/

inZoomIn = 7, /*in zoom box (window in standard state)*/

inZoomOut = 8 /*in zoom box (window in user state)*/

};

enum {

/*axis constraints on DragGrayRgn*/

noConstraint = 0, /*no constraints*/

hAxisOnly = 1, /*move on horizontal axis only*/

vAxisOnly = 2 /*move on vertical axis only*/

};

C H A P T E R 4

Window Manager

4-138 Summary of the Window Manager

enum {

/*window definition function task codes*/

wDraw = 0, /*draw window frame*/

wHit = 1, /*report where mouse-down occurred*/

wCalcRgns = 2, /*calculate strucRgn and contRgn*/

wNew = 3, /*perform additional initialization*/

wDispose = 4, /*perform additional disposal tasks*/

wGrow = 5, /*draw grow image during resizing*/

wDrawGIcon = 6, /*draw size box and scroll bar outline*/

/*window definition function wHit return codes*/

wNoHit = 0, /*none of the following*/

wInContent = 1, /*in content region (except grow, if active)*/

wInDrag = 2, /*in drag region*/

wInGrow = 3, /*in grow region (active window only)*/

wInGoAway = 4, /*in go-away region (active window only)*/

wInZoomIn = 5, /*in zoom box for zooming in (active window */

/* only)*/

wInZoomOut = 6, /*in zoom box for zooming out (active window */

/* only)*/

deskPatID = 16, /*resource ID of desktop pattern*/

/*window color information table part codes*/

wContentColor = 0, /*the background of the window's */

/* content region*/

wFrameColor = 1, /*the window outline*/

wTextColor = 2, /*window title and text in buttons*/

wHiliteColor = 3, /*reserved*/

wTitleBarColor = 4, /*reserved*/

wHiliteColorLight = 5, /*lightest stripes in title bar */

/* and lightest dimmed text*/

wHiliteColorDark = 6, /*darkest stripes in title bar */

/* and darkest dimmed text*/

wTitleBarLight = 7, /*lightest parts of title bar background*/

wTitleBarDark = 8, /*darkest parts of title bar background*/

wDialogLight = 9, /*lightest element of dialog box frame*/

wDialogDark = 10, /*darkest element of dialog box frame*/

wTingeLight = 11, /*lightest window tinging*/

wTingeDark = 12 /*darkest window tinging*/

};

C H A P T E R 4

Window Manager

Summary of the Window Manager 4-139

Data Types 4

struct CWindowRecord {

CGrafPort port; /*window's graphics port*/

short windowKind; /*class of the window*/

Boolean visible; /*visibility*/

Boolean hilited; /*highlighting*/

Boolean goAwayFlag; /*presence of close box*/

Boolean spareFlag; /*presence of zoom box*/

RgnHandle strucRgn; /*handle to structure region*/

RgnHandle contRgn; /*handle to content region*/

RgnHandle updateRgn; /*handle to update region*/

Handle windowDefProc; /*handle to window definition */

/* function*/

Handle dataHandle; /*handle to window state data record*/

StringHandle titleHandle; /*handle to window title*/

short titleWidth; /*title width in pixels*/

ControlHandle controlList; /*handle to control list*/

struct CWindowRecord *nextWindow; /*next window in window list*/

PicHandle windowPic; /*handle to optional picture*/

long refCon; /*storage available to your */

/* application*/

};

typedef struct CWindowRecord CWindowRecord;

typedef CWindowRecord *CWindowPeek;

struct WindowRecord {

GrafPort port; /*window's graphics port*/

short windowKind; /*class of the window*/

Boolean visible; /*visibility*/

Boolean hilited; /*highlighting*/

Boolean goAwayFlag; /*presence of close box*/

Boolean spareFlag; /*presence of zoom box*/

RgnHandle strucRgn; /*handle to structure region*/

RgnHandle contRgn; /*handle to content region*/

RgnHandle updateRgn; /*handle to update region*/

Handle windowDefProc; /*handle to window definition */

/* function*/

Handle dataHandle; /*handle to window state data record*/

StringHandle titleHandle; /*handle to window title*/

short titleWidth; /*title width in pixels*/

ControlHandle controlList; /*handle to window's control list*/

struct WindowRecord *nextWindow; /*next window in window list*/

C H A P T E R 4

Window Manager

4-140 Summary of the Window Manager

PicHandle windowPic; /*handle to optional picture*/

long refCon; /*reference constant*/

};

typedef struct WindowRecord WindowRecord;

typedef WindowRecord *WindowPeek;

struct WStateData {

Rect userState; /*user state*/

Rect stdState; /*standard state*/

};

typedef struct WStateData WStateData;

typedef WStateData *WStateDataPtr, **WStateDataHandle;

struct AuxWinRec {

 struct AuxWinRec **awNext; /*handle to next record*/

 WindowPtr awOwner; /*pointer to window */

 CTabHandle awCTable; /*handle to color table*/

 Handle dialogCItem; /*storage used by Dialog Manager*/

 long awFlags; /*reserved*/

 CTabHandle awReserved; /*reserved*/

 long awRefCon; /*reference constant, for use by */

/* application*/

};

typedef struct AuxWinRec AuxWinRec;

typedef AuxWinRec *AuxWinPtr, **AuxWinHandle;

struct WinCTab {

long wCSeed; /*reserved*/

short wCReserved; /*reserved*/

short ctSize; /*number of entries in table —1*/

ColorSpec ctTable[5]; /*array of color specification records*/

};

typedef struct WinCTab WinCTab;

typedef WinCTab *WCTabPtr, **WCTabHandle;

Window Manager Routines 4

Initializing the Window Manager

pascal void InitWindows(void);

C H A P T E R 4

Window Manager

Summary of the Window Manager 4-141

Creating Windows

pascal WindowPtr GetNewCWindow
(short windowID, void *wStorage,
WindowPtr behind);

pascal WindowPtr GetNewWindow
(short windowID, void *wStorage,
WindowPtr behind);

pascal WindowPtr NewCWindow (void *wStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short procID, WindowPtr behind,
Boolean goAwayFlag, long refCon);

pascal WindowPtr NewWindow (void *wStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short theProc, WindowPtr behind,
Boolean goAwayFlag, long refCon);

Naming Windows

pascal void SetWTitle (WindowPtr theWindow, ConstStr255Param title);

pascal void GetWTitle (WindowPtr theWindow, Str255 title);

Displaying Windows

pascal void DrawGrowIcon (WindowPtr theWindow);

pascal void SelectWindow (WindowPtr theWindow);

pascal void ShowWindow (WindowPtr theWindow);

pascal void HideWindow (WindowPtr theWindow);

pascal void ShowHide (WindowPtr theWindow, Boolean showFlag);

pascal void HiliteWindow (WindowPtr theWindow, Boolean fHilite);

pascal void BringToFront (WindowPtr theWindow);

pascal void SendBehind (WindowPtr theWindow, WindowPtr behindWindow);

Retrieving Mouse Information

pascal short FindWindow (Point thePoint, WindowPtr *theWindow);

pascal WindowPtr FrontWindow (void);

Moving Windows

pascal void DragWindow (WindowPtr theWindow, Point startPt,
const Rect *boundsRect);

pascal void MoveWindow (WindowPtr theWindow, short hGlobal,
short vGlobal, Boolean front);

C H A P T E R 4

Window Manager

4-142 Summary of the Window Manager

pascal long DragGrayRgn (RgnHandle theRgn, Point startPt,
const Rect *boundsRect,
const Rect *slopRect,
short axis, DragGrayRgnProcPtr actionProc);

pascal long PinRect (const Rect *theRect, Point *thePt);

Resizing Windows

pascal long GrowWindow (WindowPtr theWindow, Point startPt,
const Rect *bBox);

pascal void SizeWindow (WindowPtr theWindow, short w, short h,
Boolean fUpdate);

Zooming Windows

pascal Boolean TrackBox (WindowPtr theWindow, Point thePt,
short partCode);

pascal void ZoomWindow (WindowPtr theWindow, short partCode,
Boolean front);

Closing and Deallocating Windows

pascal Boolean TrackGoAway (WindowPtr theWindow, Point thePt);

pascal void CloseWindow (WindowPtr theWindow);

pascal void DisposeWindow (WindowPtr theWindow);

Maintaining the Update Region

pascal void BeginUpdate (WindowPtr theWindow);

pascal void EndUpdate (WindowPtr theWindow);

pascal void InvalRect (const Rect *badRect);

pascal void InvalRgn (RgnHandle badRgn);

pascal void ValidRect (const Rect *goodRect);

pascal void ValidRgn (RgnHandle goodRgn);

Setting and Retrieving Other Window Characteristics

pascal void SetWindowPic (WindowPtr theWindow, PicHandle pic);

pascal PicHandle GetWindowPic
(WindowPtr theWindow);

pascal void SetWRefCon (WindowPtr theWindow, long data);

pascal long GetWRefCon (WindowPtr theWindow);

pascal short GetWVariant (WindowPtr theWindow);

C H A P T E R 4

Window Manager

Summary of the Window Manager 4-143

Manipulating the Desktop

pascal void SetDeskCPat (PixPatHandle deskPixPat);

#define GetGrayRgn() (* (RgnHandle* 0X09EE))

pascal void GetCWMgrPort (CGrafPtr *wMgrCPort);

pascal void GetWMgrPort (GrafPtr *wPort);

Manipulating Window Color Information

pascal void SetWinColor (WindowPtr theWindow,
WCTabHandle newColorTable);

pascal Boolean GetAuxWin (WindowPtr theWindow, AuxWinHandle *awHndl);

Low-Level Routines

pascal Boolean CheckUpdate (EventRecord *theEvent);

pascal void ClipAbove (WindowPeek window;)

pascal void SaveOld (WindowPeek window);

pascal void DrawNew (WindowPeek window, Boolean update);

pascal void PaintOne (WindowPeek window, RgnHandle clobberedRgn);

pascal void PaintBehind (WindowPeek startWindow,
RgnHandle clobberedRgn);

pascal void CalcVis (WindowPeek window);

pascal void CalcVisBehind (WindowPeek startWindow,
RgnHandle clobberedRgn);

Application-Defined Routine 4

The Window Definition Function

pascal long MyWindow (short varCode, WindowPtr theWindow,
short message, long param);

C H A P T E R 4

Window Manager

4-144 Summary of the Window Manager

Assembly-Language Summary 4

Data Types 4

Window Record and Color Window Record Data Structure

Window State Data Structure

Window Color Information Table Data Structure

Auxiliary Window Record Data Structure

0 windowPort 108 bytes window’s graphics port
108 windowKind word how window was created
110 wVisible byte visibility status
111 wHilited byte highlighted status
112 wGoAway byte presence of close box
113 wZoom byte presence of zoom box
114 structRgn long handle to structure region
118 contRgn long handle to content region
122 updateRgn long handle to update region
126 windowDef long handle to window definition function
130 wDataHandle long handle to window state data record
134 wTitleHandle long handle to window’s title
138 wTitleWidth word title width in pixels
140 wControlList long handle to window’s control list
144 nextWindow long pointer to next window in window list
148 windowPic long handle to picture for updates
152 wRefCon long reference constant field

0 userState 8 bytes user state rectangle
8 stdState 8 bytes standard state rectangle

0 ctSeed long ID number for table
4 ctFlags word flags word
6 ctSize word number of entries minus 1
8 ctTable variable a series of color specification records (8 bytes each)

0 awNext long handle to next window in chain
4 awOwner long pointer to associated window record
8 awCTable long handle to window color information table

12 dialogCItem long handle to dialog color structures
16 awFlags long handle for QuickDraw
20 awResrv long reserved
24 awRefCon long user constant

C H A P T E R 4

Window Manager

Summary of the Window Manager 4-145

Global Variables 4

AuxWinHead Handle to beginning of auxiliary window list.
CurActivate Pointer to window to receive activate event.
CurDeactive Pointer to window to receive deactivate event.
DeskHook Address of procedure for painting desktop.
DeskPattern Pattern in which desktop is painted (8 bytes).
DragHook Address of optional procedure to execute during TrackGoAway, TrackBox,

DragWindow, GrowWindow, and DragGrayRgn.
DragPattern Pattern of dragged region’s outline (8 bytes).
GrayRgn Handle to desktop region.
OldContent Handle to saved content region.
OldStructure Handle to saved structure region.
PaintWhite Flag indicating whether to paint window white before update event (2 bytes).
SaveUpdate Flag indicating whether to generate update events (2 bytes).
SaveVisRgn Handle to saved visible region.
WindowList Pointer to first window in window list.
WMgrPort Pointer to Window Manager port.

Contents 5-1

C H A P T E R 5

Figure 5-0
Listing 5-0
Table 5-0

Contents

5 Control Manager

Introduction to Controls 5-4
Buttons 5-5
Checkboxes 5-5
Radio Buttons 5-6
Pop-Up Menus 5-6
Scroll Bars 5-7
Other Controls 5-11
Active and Inactive Controls 5-11
The Control Definition Function 5-14

About the Control Manager 5-14
Using the Control Manager 5-15

Creating and Displaying a Control 5-15
Creating a Button, Checkbox, or Radio Button 5-17
Creating Scroll Bars 5-21
Creating a Pop-Up Menu 5-25
Updating a Control 5-29

Responding to Mouse Events in a Control 5-30
Determining a Mouse-Down Event in a Control 5-31
Tracking the Cursor in a Control 5-35

Determining and Changing Control Settings 5-37
Scrolling Through a Document 5-43

Scrolling in Response to Events in the Scroll Box 5-53
Scrolling in Response to Events in Scroll Arrows and Gray Areas 5-57
Drawing a Scrolled Document Inside a Window 5-62

Moving and Resizing Scroll Bars 5-65
Defining Your Own Control Definition Function 5-71

Control Manager Reference 5-72
Data Structures 5-72

The Control Record 5-73
The Auxiliary Control Record 5-76

C H A P T E R 5

5-2 Contents

The Pop-Up Menu Private Data Record 5-77
The Control Color Table Record 5-77

Control Manager Routines 5-80
Creating Controls 5-81
Drawing Controls 5-85
Handling Mouse Events in Controls 5-88
Changing Control Settings and Display 5-93
Determining Control Values 5-102
Removing Controls 5-108

Application-Defined Routines 5-109
Defining Your Own Control Definition Function 5-109
Defining Your Own Action Procedures 5-115

Resources 5-117
The Control Resource 5-118
The Control Color Table Resource 5-121
The Control Definition Function 5-123

Summary of the Control Manager 5-124
Pascal Summary 5-124

Constants 5-124
Data Types 5-126
Control Manager Routines 5-127
Application-Defined Routines 5-129

C Summary 5-129
Constants 5-129
Data Types 5-131
Control Manager Routines 5-132
Application-Defined Routines 5-134

Assembly-Language Summary 5-134
Data Structures 5-134
Global Variables 5-135

C H A P T E R 5

5-3

Control Manager 5

This chapter describes how your application can use the Control Manager to create
and manage controls. Controls are onscreen objects that the user can manipulate with the
mouse. By manipulating controls, the user can take an immediate action or change
settings to modify a future action. For example, a scroll bar control allows a user to
immediately change the portion of the document that your application displays, whereas
a pop-up menu control for baud rate might allow the user to change the rate by which
your application handles subsequent data transmissions.

Read this chapter to learn how and when to implement controls. Virtually all applica-
tions need to implement controls, at least in the form of scroll bars for document
windows. You use Control Manager routines, resources, and data structures to imple-
ment scroll bars in your application’s document windows.

The other standard Macintosh controls are buttons, checkboxes, radio buttons, and
pop-up menus. You can use the Control Manager to create and manage these controls,
too. Alternatively, you can use the Dialog Manager to implement these controls in alert
boxes and dialog boxes more easily. (You typically use an alert box to warn a user of
an unusual situation, and you typically use a dialog box to ask the user for information
necessary to carry out a command.) The chapter “Dialog Manager” in this book describes
in detail how to implement controls in alert and dialog boxes. However, in certain
situations—for instance, when you need to implement highly complex dialog boxes—
you may want to use Control Manager routines to manage these types of controls
directly; read this chapter for information on how to do so.

For scrolling lists of graphic or textual information (similar to the list of files that system
software presents after the user chooses the Open command from the File menu), your
application can use the List Manager to implement the scroll bars. See the chapter “List
Manager” in Inside Macintosh: More Macintosh Toolbox for more information.

The Control Manager offers routines for automatically handling user-generated
mouse events in controls and redrawing controls in response to update events. For
further information about events and event handling, see the chapter “Event Manager”
in this book.

You typically use a control resource—a resource of type 'CNTL'—to specify the type,
size, location, and other attributes of a control. See the chapter “Introduction to the
Macintosh Toolbox” in this book for general information about resources; detailed
information about the Resource Manager and its routines is provided in the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

Every control you create must be associated with a particular window. All of the controls
for a window are stored in a control list referenced by the window’s window record. See
the chapter “Window Manager” in this book for general information about windows.
(When you use the Dialog Manager to implement a control, the Dialog Manager
associates it with its respective dialog box or alert box, as described in the chapter
“Dialog Manager.”)

C H A P T E R 5

Control Manager

5-4 Introduction to Controls

This chapter provides an introduction to the use of controls, and then discusses how
you can

� create and display controls

� determine whether mouse-down events have occurred in controls

� respond to mouse-down events in controls

� change the settings in controls

� use scroll bars to move a document in a window

� move and resize controls for a window

� define your own control definition function to create nonstandard controls

Introduction to Controls 5

The Control Manager provides several standard controls. Figure 5-1 illustrates these
standard controls: buttons, checkboxes, radio buttons, pop-up menus, and scroll bars.
You can also design and implement your own custom controls.

Figure 5-1 Standard controls provided by the Control Manager

Buttons, checkboxes, and radio buttons are the simplest controls. They consist of only a
title and an outline shape, and they respond to only mouse clicks. A pop-up menu is
slightly more complex. This control has a menu attached to its title, and it must respond
when the user drags the cursor across the menu. A scroll bar, because it consists of
different parts that behave differently, is the most complex of the standard controls. Even
though a scroll bar has several parts, it is still only one control.

The Control Manager displays these standard controls in colors that provide aesthetic
consistency across all monitors, from black-and-white displays to 8-bit color displays.
To ensure consistency across applications, you generally shouldn’t change the default

Button

Checkbox

Radio buttons

Pop-up menu

Scroll bar

C H A P T E R 5

Control Manager

Introduction to Controls 5-5

colors of controls, although the Control Manager does allow you to do so with the
SetControlColor procedure (described on page 5-101) or the control color table
resource (described on page 5-121).

Standard controls and common custom controls are described in the next
several sections.

Buttons 5
Buttons appear on the screen as rounded rectangles with a title centered inside. When the
user clicks a button, your application should perform the action described by the button
title. Typically, buttons allow the user to perform actions instantaneously—for example,
completing the operations defined by a dialog box or acknowledging an error message in
an alert box.

Make your buttons large enough to surround their titles. In every window or dialog box
in which you display buttons, you should designate one button as the default button by
drawing a thick black outline around it (as shown in Figure 5-2). Your application should
respond to key-down events involving the Enter and Return keys as if the user had
clicked the default button. (In your alert boxes, the Dialog Manager automatically
outlines the default button; you must outline the default button in your dialog boxes.)

Figure 5-2 A default button

You normally use buttons in alert boxes and dialog boxes. See the chapter “Dialog
Manager” for additional details about where to display buttons, what to title them, how
to respond to events involving them, and how to draw an outline around them.

Checkboxes 5
Checkboxes provide alternative choices. Typically you use checkboxes in dialog boxes so
that users can specify information necessary for completing a command. Checkboxes act
like toggle switches, turning a setting either off or on. Use checkboxes to indicate one or
more options that must be either off or on. A checkbox appears as a small square with a
title alongside it; use the Control Manager procedure SetControlValue to place an X
in the box when the user selects it by clicking it on and to remove the X when the user
deselects it by clicking it off. Figure 5-3 shows a selected checkbox.

Figure 5-3 A selected checkbox

C H A P T E R 5

Control Manager

5-6 Introduction to Controls

When you design a dialog box, you can include any number of checkboxes—including
only one. Checkboxes are independent of each other, even when they offer related
options. Within a dialog box, it’s a good idea to group sets of related checkboxes and to
provide some visual demarcation between different groups.

Each checkbox has a title. It can be very difficult to title the option in an unambiguous
way. The title should reflect two clearly opposite states. For example, in a Finder’s Info
window, a checkbox provides the option to lock a file. The checkbox is titled simply
Locked. The clearly opposite state, when the option is off, is unlocked.

If you can’t devise a checkbox title that clearly implies an opposite state, you might be
better off using two radio buttons. With two radio buttons, you can use two titles, thereby
clarifying the states.

Checkboxes are frequently used in dialog boxes to set or modify future actions instead of
specifying actions to be taken immediately. See the chapter “Dialog Manager” in this
book for a detailed discussion of how and where to display checkboxes in dialog boxes.

Radio Buttons 5
Like checkboxes, radio buttons retain and display an on-or-off setting. You organize
radio buttons in a group to offer a choice among several alternatives—typically, inside a
dialog box. Radio buttons are small circles; when the user clicks a radio button to turn it
on, use the Control Manager procedure SetControlValue to fill the radio button with
a small black dot. The user can have only one radio button setting in effect at one time. In
other words, radio buttons are mutually exclusive. However, the Control Manager cannot
determine how your radio buttons are grouped; therefore, when the user turns on one
radio button, it is up to your application to use SetControlValue to turn off the others
in that group.

A set of radio buttons normally has two to seven items; each set must always have at
least two radio buttons. Each set of radio buttons must have a label that identifies the
kind of choices the group offers. Also, each button must have a title that identifies what
the radio button does. This title can be a few words or a phrase. A set of radio buttons is
never dynamic—that is, its contents should never change according to the context. (If you
need to display more than seven items, or if the items change as the context changes, you
should use a pop-up menu instead.)

Radio buttons represent choices that are related but not necessarily opposite. For
example, a pair of radio buttons may provide a choice between using the modem port or
the printer port, as shown in Figure 5-1 on page 5-4. If more than one set of radio buttons
is visible at one time, you need to demarcate the sets from one another. For example, you
can draw a dotted line around a set of radio buttons to separate it from other elements in
a dialog box.

Pop-Up Menus 5
Pop-up menus, introduced in the chapter “Menu Manager” in this book, provide the
user with a simple way to choose from among a list of choices without having to move
the cursor to the menu bar. As an alternative to a group of radio buttons, a pop-up menu

C H A P T E R 5

Control Manager

Introduction to Controls 5-7

is particularly useful for specifying a group of settings or values that number five or
more, or whose settings or values might change. Like the items in a set of radio buttons,
the items in a pop-up menu are mutually exclusive—that is, only one choice from the
menu can be in effect at any time. Figure 5-8 on page 5-12 illustrates the choices available
in a pop-up menu that has been selected by the user.

Never use a pop-up menu as a way to provide the user with commands. Pop-up
menus should not list actions (that is, verbs); instead, they should list attributes (that
is, adjectives) or settings from which the user can choose one option.

Scroll Bars 5
Scroll bars change what portion of a document the user can view within the document’s
window. A scroll bar is a light gray rectangle with scroll arrows at each end. Inside the
scroll bar is a square called the scroll box. The rest of the scroll bar is called the gray area.
Windows can have a horizontal scroll bar, a vertical scroll bar, or both. A vertical scroll
bar lies along the right side of a window. A horizontal scroll bar runs along the bottom of
a window. Figure 5-4 shows the parts of a scroll bar.

Figure 5-4 A vertical scroll bar

If the user drags the scroll box, clicks a scroll arrow, or clicks anywhere in the gray area,
your application “moves” the document accordingly; use Control Manager routines as
appropriate to move the scroll box. Figure 5-5 illustrates, and the next few sections
explain, several key behaviors of a scroll bar.

A scroll bar represents the entire document in one dimension, top to bottom or right to
left. The scroll box shows the position, relative to the whole document, of the visible
portion of the document. If the scroll box is halfway between the top and bottom of the
scroll bar, then what the user sees should be about halfway through the document. Use
the SetControlValue or SetControlMaximum procedure to move the scroll box
whenever your application resizes a window and whenever it scrolls through a
document for any reason other than responding to the user dragging the scroll box.

Scroll arrow

Gray area

Scroll box

Gray area

Scroll arrow

C H A P T E R 5

Control Manager

5-8 Introduction to Controls

After the user drags the scroll box, the Control Manager redraws the scroll box in its new
position. You then use the GetControlValue function to determine the position of the
scroll box, and you display the appropriate portion of the document. By dragging the
scroll box, the user can move quickly through the document. For example, to see the
beginning of the document, the user drags the scroll box to the top of the scroll bar. Your
application then scrolls to the top of the document.

At either end of the scroll bar are scroll arrows that indicate the direction of movement
through the document. For instance, when the user clicks the top scroll arrow, your
application needs to move toward the beginning of the document. Thus, the document
moves down, seemingly in the opposite direction. By clicking the scroll arrow, the user
tells your application, “Show me more of the document that’s hidden in this direction.”

Your application uses the SetControlValue procedure to move the scroll box in the
direction of the arrow being clicked. In this way, the scroll box continues to represent
the approximate position of the visible part of the document in relation to the whole
document. For example, when the user clicks the top scroll arrow, you move the
document down to bring more of the top of the document into view, and you move the
scroll box up, as illustrated in Figure 5-5.

Figure 5-5 Using the scroll box and scroll arrows

Scroll box
direction

Document
scroll direction

Scroll box
direction

Document
scroll direction

C H A P T E R 5

Control Manager

Introduction to Controls 5-9

Each click of a scroll arrow should move the document a distance of one unit in the
chosen direction. Your application determines what one unit equals. For example, a word
processor should move one line of text for each click in the arrow. A spreadsheet should
move one row or one column, depending on the direction of the arrow. To ensure smooth
scrolling effects, it’s usually best to specify the same size units within a document. When
the user holds down the mouse button while the cursor is in a scroll arrow, your
application should continuously scroll through the document in the indicated direction
until the user releases the mouse button or your application has scrolled as far as
possible.

The rest of the area within the scroll bar—excluding the scroll box and the scroll arrows—
is called the gray area. When the user clicks the gray area of a scroll bar, your application
should move the displayed area of the document by an entire window of information
minus one scroll unit. For example, if the window displays 15 lines of text and the user
clicks the gray area below the scroll box, your application should move the document up
14 lines so that the bottom line of the previous view appears at the top of the new view.
(This retained line helps the user see the newly displayed material in context.) You must
also move the scroll box an appropriate distance in that direction. For example, when the
user clicks the gray area below the scroll box, move the document view by one window
toward the bottom of the document and use SetControlValue to move the scroll box
accordingly.

When your application scrolls through a document—for example, when the user
manipulates a scroll bar—your application must move the document’s coordinate space
in relation to the window’s coordinate space. Your application uses the scroll box to
indicate the location of the top of the displayed portion of the document relative to the
rest of the document.

For example, if a text window contains 15 lines of text and the user scrolls 30 lines from
the top of the document, the scroll box should be set to a value of 30. The window
displays all of the lines between line 30 and line 45, as shown in Figure 5-6 on the next
page. The scroll box always indicates the displacement between the beginning of the
document and the top of the displayed portion of the document.

To prevent the user from scrolling past the edge of the document and seeing a blank
window, you should—for a vertical scroll bar—allow the document to scroll no farther
than the length of the document minus the height of the window, excluding the
15-pixel-deep region for the horizontal scroll bar at the bottom edge of the window.
Likewise, for a horizontal scroll bar, you should allow the document to scroll no farther
than the width of the document minus the width of the window—here, too, excluding
the 15-pixel-wide region for the vertical scroll bar at the right edge of the window.

C H A P T E R 5

Control Manager

5-10 Introduction to Controls

Figure 5-6 Spatial relations between a document and a window, and their representation by
a scroll bar

For example, the document shown in Figure 5-6 is 105 lines long. So that the last 15 lines
will fill the window when the user scrolls to the end of the document, the application
does not scroll beyond 90 lines. Because the user has scrolled to line 30 of a maximum
90 lines, the scroll box appears a third of the way down the scroll bar.

“Scrolling Through a Document” beginning on page 5-43 describes in detail how to scroll
through a document in a window.

0

30

45

90

105

0

30

90

Scroll bar
values

Scroll box

Document
space

Window
space

Maximum
scrolling value

End of
document

C H A P T E R 5

Control Manager

Introduction to Controls 5-11

Other Controls 5
If you need controls other than the standard ones provided by the Control Manager,
you can design and implement your own. Typically, the only types of controls you
might need to implement are sliders or dials. Sliders and dials (which differ only in
appearance) are similar to scroll bars in that they graphically represent a range of
values that a user can set. Use an indicator—such as a sliding switch or a dial needle—
to indicate the current setting for the control and to let the user set its value. (For scroll
bars, the scroll box is the indicator.)

If you want to display a value not under the user’s direct control (for example, the
amount of free space remaining on a disk), you should use a status bar or other type
of graphic instead of a slider or dial.

Figure 5-7 illustrates several custom controls, which are used for purposes such as setting
the speaker volume, the gray-scale saturation level, and the relative position
of a slide within a presentation. As in this figure, be sure to include meaningful labels
that indicate the range and the direction of your control’s indicator.

Figure 5-7 Custom slider controls

A scroll bar is a slider representing the entire contents of a window, and the user uses the
scroll box to move to a specific location in that content. Don’t use scroll bars to represent
any other concept (for instance, changing a setting). Otherwise, your departure from the
consistent Macintosh interface might confuse the user.

Active and Inactive Controls 5
You can make a control become either active or inactive. Figure 5-8 on the next page
shows how the TrackControl function (which you use in response to a mouse-down
event in a control) gives visual feedback when the user moves the cursor to an active
control and presses the mouse button. In particular, TrackControl responds to mouse-
down events in active controls by

� displaying buttons in inverse video

� drawing checkboxes and radio buttons with heavier lines

� highlighting the titles of and displaying the items in pop-up menus

� highlighting scroll arrows

� moving outlines of scroll boxes when users drag them

C H A P T E R 5

Control Manager

5-12 Introduction to Controls

Figure 5-8 Visual feedback for user selection of active controls

Your application, in turn, should respond appropriately to mouse events involving active
controls. Most often, your application waits until the user releases the mouse button
before taking any action; as long as the user holds down the mouse button when the
cursor is over a control, you typically let TrackControl react to the mouse-down event;
TrackControl then informs your application the moment the user releases the mouse
button when the cursor is over an active control.

As soon as the user releases the mouse button, your application should

� perform the task identified by the button title when the cursor is over an active button

� toggle the value of the checkbox when the cursor is over an active checkbox (The
Control Manager then draws or removes the checkmark, as appropriate.)

� turn on the radio button and turn off all other radio buttons in the group when the
cursor is over an active radio button

� use the new setting chosen by the user when the cursor is over an active pop-up menu

� show more of the document in the direction of the scroll arrow when the cursor is over
the scroll arrow or gray area of an active scroll bar, and move the scroll box
accordingly

� determine where the user has dragged the scroll box when the cursor is over the scroll
box and then display the corresponding portion of the document

Sometimes your application should respond even before the user releases the mouse
button—that is, your application should undertake some continuous action as long as the

Button

Checkbox

Radio buttons

Pop-up menu

Scroll arrow

Scroll box

C H A P T E R 5

Control Manager

Introduction to Controls 5-13

user holds down the mouse button when the cursor is in an active control. Most typically,
when the user moves the cursor to a scroll arrow or gray area and then holds down the
mouse button, your application should continuously scroll through the document until
the user releases the mouse button or until the user can’t scroll any farther. To perform
this kind of action, you define an action procedure and specify it to TrackControl;
TrackControl calls your action procedure as long as the user holds down the mouse
button.

Whenever it is inappropriate for your application to a respond to a mouse-down event in
a control, you should make it inactive. An inactive control is one that the user can’t use
because it has no meaning or effect in the current context—for example, the scroll bars
in an empty window. The Control Manager continues to display an inactive control so
that it remains visible, but in a manner that indicates its state to the user. As shown in
Figure 5-9, the Control Manager dims inactive buttons, checkboxes, radio buttons, and
pop-up menus, and it lightens the gray area and removes the scroll box from inactive
scroll bars.

Figure 5-9 Inactive controls

You can use the HiliteControl procedure to make any control inactive and then active
again. Except for scroll bars (which you should hide using the HideControl procedure),
you should use HiliteControl to make all other controls inactive when their windows
are not frontmost. You typically use controls other than scroll bars in dialog boxes. See
the chapter “Dialog Manager” in this book for a discussion of how to make buttons, radio
buttons, checkboxes, and pop-up menus inactive and active.

You make scroll bars inactive when the document is smaller than the window in which
you display it. To make a scroll bar inactive, you typically use the SetControlMaximum
procedure to make the scroll bar’s maximum value equal to its minimum value, in which
case the Control Manager automatically makes the scroll bar inactive. To make it active
again, you typically use SetControlMaximum to make its maximum value larger than
its minimum value.

Button

Checkbox

Radio buttons

Pop-up menu

Scroll bar

C H A P T E R 5

Control Manager

5-14 About the Control Manager

The Control Definition Function 5

A control definition function determines how a control generally looks and behaves.
Various Control Manager routines call a control definition function whenever they need
to perform some control-dependent action, such as drawing the control on the screen.

Control definition functions are stored as resources of type 'CDEF'. The System file
includes three standard control definition functions, stored with resource IDs of 0, 1,
and 63. The 'CDEF' resource with resource ID 0 defines the look and behavior of
buttons, checkboxes, and radio buttons; the 'CDEF' resource with resource ID 1 defines
the look and behavior of scroll bars; and the 'CDEF' resource with resource ID 63 defines
the look and behavior of pop-up menus. (If you want to define nonstandard controls,
you’ll have to write control definition functions for them, as described in “Defining Your
Own Control Definition Function” beginning on page 5-109.)

Just as a window definition function can describe variations of the same basic window, a
control definition function can use a variation code to describe variations of the same
basic control. You specify a particular control with a control definition ID. The control
definition ID is an integer that contains the resource ID of the control definition function
in its upper 12 bits and a variation code in its lower 4 bits. For a given resource ID and
variation code, the control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control
definition function with resource ID 0; because they have variation codes of 0, 1,
and 2, respectively, their respective control definition IDs are 0, 1, and 2.

 You can use these constants to define the controls provided by the standard control
definition functions:

The control definition function for scroll bars figures out whether a scroll bar is vertical or
horizontal from a rectangle you specify when you create the control.

About the Control Manager 5

You can use the Control Manager to

� create and dispose of controls

� display, update, and hide controls

Constant
Control
definition ID Control

pushButProc 0 Button

checkBoxProc 1 Checkbox

radioButProc 2 Radio button

scrollBarProc 16 Scroll bar

popupMenuProc 1008 Pop-up menu

C H A P T E R 5

Control Manager

Using the Control Manager 5-15

� change the size, location, and appearance of controls

� monitor and respond to the user’s operation of a control

� determine and change the settings and other attributes of a control

Your application performs these actions by calling the appropriate Control Manager
routines. The Control Manager carries out the actual operations, but it’s up to you to
decide when, where, and how to carry these out.

Using the Control Manager 5

To implement a control, you generally

� use a control resource (that is, a resource of type 'CNTL') to describe the control

� create and display the control

� determine when the user presses, clicks, or holds down the mouse button while the
cursor is in the control

� respond as appropriate to events involving the control—for example, by displaying a
different portion of the document when the user manipulates a scroll bar

� respond as appropriate to other events in windows that include controls—for example,
by moving and resizing a scroll bar when the user resizes a window, or by hiding one
window’s scroll bars when the user makes a different window active

These tasks are explained in greater detail in the rest of this chapter.

Before using the Control Manager, you must initialize QuickDraw, the Font Manager, and
the Window Manager, in that order, by using the InitGraf, InitFonts, and
InitWindows procedures. (See Inside Macintosh: Imaging for information about
InitGraf and InitFonts; see the chapter “Window Manager” in this book for
information about InitWindows.)

Creating and Displaying a Control 5
To create a control in one of your application’s windows, use the GetNewControl or
NewControl function. You should usually use GetNewControl, which takes
information about the control from a control resource (that is, a 'CNTL' resource) in a
resource file. Like window resources, control resources isolate descriptive information
from your application code for ease of modification—especially for translation to other
languages. The rest of this section describes how to use GetNewControl. Although it’s
generally not recommended, you can also use the NewControl function and pass it the
necessary descriptive information in individual parameters instead of using a control
resource. The NewControl function is described on page 5-82.

When you use GetNewControl, you pass it the resource ID of the control resource, and
you pass it a pointer to a window. The function then creates a data structure (called a
control record) of type ControlRecord from the information in the control resource,
adds the control record to the control list for your window, and returns as its function

C H A P T E R 5

Control Manager

5-16 Using the Control Manager

result a handle to the control. (You use a control’s handle when referring to the control in
most other Control Manager routines; when you create scroll bars or pop-up menus for a
window, you should store their handles in one of your application’s own data structures
for later reference.)

When you specify in the control resource that a control is initially visible and you use the
GetNewControl function, the Control Manager uses the control’s control definition
function to draw the control inside its window. The Control Manager draws the control
immediately, without using your window’s standard updating mechanism. If you specify
that a control is invisible, you can use the ShowControl procedure when you want to
draw the control. Again, the Control Manager draws the control without using your
window’s standard updating mechanism. (Of course, even when the Control Manager
draws the control, it might be completely or partially obscured from the user by
overlapping windows or other objects.)

When your application receives an update event for a window that contains controls, you
use the UpdateControls procedure in your application’s standard window- updating
code to redraw all the controls in the update region of the window.

Note
When you use the Dialog Manager to implement buttons, radio buttons,
checkboxes, or pop-up menus in alert boxes and dialog boxes, Dialog
Manager routines automatically use Control Manager routines to create
and update these controls for you. If you implement any controls other
than buttons, radio buttons, checkboxes, and pop-up menus in alert or
dialog boxes—and whenever you implement any controls (scroll bars, for
example) in your application’s windows—you must explicitly use either
the GetNewControl or the NewControl function to create the controls.
You must always use the UpdateControls procedure to update
controls you put in your own windows. �

When you use the Window Manager procedure DisposeWindow or CloseWindow to
remove a window, either procedure automatically removes all controls associated with
the window and releases the memory they occupy.

When you no longer need a control in a window that you want to keep, you can use the
DisposeControl procedure, described on page 5-108, to remove it from the screen,
delete it from its window’s control list, and release the control record and all other
associated data structures from memory. You can use the KillControls procedure,
described on page 5-108, to dispose of all of a window’s controls at once.

The next section, “Creating a Button, Checkbox, or Radio Button,” provides a general
discussion of the control resource as well as a more detailed description of the use of the
control resource to specify buttons, checkboxes, and radio buttons in your application’s
windows. The two following sections, “Creating Scroll Bars” (beginning on page 5-21)
and “Creating a Pop-Up Menu” (beginning on page 5-25), describe those elements of the
control resource that differ from the control resources for buttons, checkboxes, and radio
buttons. “Updating a Control” beginning on page 5-29 then offers an example of how
you can use the UpdateControls procedure within your window-updating code.

C H A P T E R 5

Control Manager

Using the Control Manager 5-17

Note
For the Control Manager to draw a control properly inside a window, the
window must have its upper-left corner at local coordinates (0,0). If you
use the QuickDraw procedure SetOrigin to change a window’s local
coordinate system, be sure to change it back—so that the upper-left
corner is again at (0,0)—before drawing any of its controls. Because
many Control Manager routines can (at least potentially) redraw a
control, the safest policy after changing a window’s local coordinate
system is to change the coordinate system back before calling any
Control Manager routine. �

Creating a Button, Checkbox, or Radio Button 5

Figure 5-10 shows a simple example of a button placed in a window of type
noGrowDocProc—which you normally use to create a modeless dialog box.
Although you usually use the Dialog Manager to create dialog boxes and their
buttons, sometimes you might use the Window Manager and the Control Manager
instead. The chapter “Dialog Manager” in this book explains why the use of the
Window and Control Managers is sometimes preferable for this purpose.

Figure 5-10 A button in a simple window

Listing 5-1 shows an application-defined routine, MyCreatePlaySoundsWindow, that
uses the GetNewControl function to create the button shown in Figure 5-10.

Listing 5-1 Creating a button for a window

FUNCTION MyCreatePlaySoundsWindow: OSErr;
VAR

myWindow: WindowPtr;
BEGIN

MyCreatePlaySoundsWindow := noErr;
myWindow := GetNewWindow(rPlaySoundsModelessWindow, NIL, POINTER(-1));
IF myWindow <> NIL THEN
BEGIN

{use the window's refCon to identify this window}
SetWRefCon(myWindow, LongInt(kMyPlaySoundsWindow));

C H A P T E R 5

Control Manager

5-18 Using the Control Manager

SetPort(myWindow);
gMyPlayButtonCtlHandle := GetNewControl(rPlayButton, myWindow);
IF (gMyPlayButtonCtlHandle = NIL) THEN

MyCreatePlaySoundsWindow := kControlErr;
END
ELSE

MyCreatePlaySoundsWindow := kNoSoundWindow;
END;

The MyCreatePlaySoundsWindow routine begins by using the Window Manager
function GetNewWindow to create a window; a pointer to that window is passed to
GetNewControl. Note that, as explained in the chapter “Dialog Manager” in this book,
you could create a modeless dialog box more easily by using the Dialog Manager
function GetNewDialog and specifying its controls in an item list ('DITL') resource.

For the resource ID of a control resource, the MyCreatePlaySoundsWindow routine
defines an rPlayButton constant, which it passes to the GetNewControl function.
Listing 5-2 shows how this control resource appears in Rez input format.

Listing 5-2 Rez input for a control resource

resource 'CNTL' (rPlayButton, preload, purgeable) {
{87, 187, 107, 247}, /*rectangle*/
0, /*initial setting*/
visible, /*make control visible*/
1, /*maximum setting*/
0, /*minimum setting*/
pushButProc, /*control definition ID*/
0, /*reference value*/
"Play" /*title*/

};

You supply the following information in the control resource for a button, checkbox,
radio button, or scroll bar:

� a rectangle, specified by coordinates local to the window, that determines the control’s
size and location

� the initial setting for the control

� a constant (either visible or invisible) that specifies whether the control should
be drawn on the screen immediately

� the maximum setting for the control

� the minimum setting for the control

� the control definition ID

� a reference value, which your application may use for any purpose

� the title of the control; or, for scroll bars, an empty string

C H A P T E R 5

Control Manager

Using the Control Manager 5-19

As explained in “Creating a Pop-Up Menu” beginning on page 5-25, the values you
supply in a control resource for a pop-up menu differ from those you specify for other
buttons, checkboxes, radio buttons, and scroll bars.

Buttons are drawn to fit the rectangle exactly. To allow for the tallest characters in
the system font, there should be at least a 20-point difference between the top and bottom
coordinates of the rectangle. Listing 5-2 uses a rectangle with coordinates (87,187,107,247)
to describe the size and location of the control within the window. Remember that the
Control Manager will not draw controls properly unless the upper-left corner of the
window coincides with the coordinates (0,0).

In Listing 5-2, the initial and minimum settings for the button are 0 and the maximum
setting is 1. In control resources for buttons, checkboxes, and radio buttons, supply these
values as the initial settings:

� For buttons, which don’t retain a setting, specify a value of 0 for the initial and
minimum settings and 1 for the maximum setting.

� For checkboxes and radio buttons, which retain an on-or-off setting, specify a value of
0 when you want to the control to be initially off. To turn a checkbox or radio button
on, assign it an initial setting of 1. In response, the Control Manager places an X in a
checkbox or a black dot in a radio button.

Because the visible identifier is specified in this example, the control is drawn
immediately in its window. If you use the invisible identifier, your control is not
drawn until your application uses the ShowControl procedure. When you want to
make a visible control invisible, you can use the HideControl procedure.

In Listing 5-2, the maximum setting for the button is 1, which you, too, should specify in
your control resources as the maximum setting for buttons, checkboxes, and radio
buttons. In Listing 5-2, the minimum setting for the button is 0, which you, too, should
specify in your control resources as the minimum setting for buttons, checkboxes, and
radio buttons.

In Listing 5-2, the pushButProc constant is used to specify the control definition ID. Use
the checkBoxProc constant to specify a checkbox and the radioButProc constant to
specify a radio button.

Listing 5-2 specifies a reference value of 0. Your application can use this value for any
purpose (except when you add the popupUseAddResMenu variation code to the
popupMenuProc control definition function, as described in “Creating a Pop-Up Menu”
beginning on page 5-25).

Finally, the string "Play" is specified as the title of the control. Buttons, checkboxes,
and radio buttons require a title that communicates their purpose to the user. (The
chapter “Dialog Manager” in this book offers extensive guidelines on appropriate titles
for buttons.)

When specifying a title, make sure it fits in the control’s rectangle; otherwise, the
Control Manager truncates the title. For example, it truncates the titles of checkboxes
and radio buttons on the right in Roman scripts, and it centers and truncates both ends of
button titles.

C H A P T E R 5

Control Manager

5-20 Using the Control Manager

If you localize your application for use with worldwide versions of system software, the
titles may become longer or shorter. Translated text is often 50 percent longer than U.S.
English text. You may need to resize your controls to accommodate the translated text.

By default, the Control Manager displays control titles in the system font. To make it
easier to localize your application for use with worldwide versions of system software,
you should not change the font. Do not use a smaller font, such as 9-point Geneva; some
script systems, such as KanjiTalk, require 12-point fonts. You can spare yourself future
localization effort by leaving all control titles in the system font.

Follow book-title style when you capitalize control titles. In general, capitalize one-word
titles and capitalize nouns, adjectives, verbs, and prepositions of four or more letters in
multiple-word titles. You usually don’t capitalize words such as in, an, or and. For
capitalization rules, see the Apple Publications Style Guide, available from APDA.

The Control Manager allows button, checkbox, and radio button titles of multiple lines.
When specifying a multiple-line title, end each line with the ASCII character code $0D
(carriage return). If the control is a button, each line is horizontally centered, and the
font leading is inserted between lines. (The height of each line is equal to the distance
from the ascent line to the descent line plus the leading of the font used. Be sure to make
the total height of the rectangle greater than the number of lines times this height.) If
the control is a checkbox or a radio button, the text is justified as appropriate for the
user’s current script system, and the checkbox or button is vertically centered within
its rectangle.

Figure 5-11 shows the Play Sounds window with four additional controls: radio buttons
titled Droplet, Quack, Simple Beep, and Wild Eep.

Figure 5-11 Radio buttons in a simple window

Only one of these radio buttons can be on at a time. Listing 5-3 initially sets the Droplet
radio button to 1, turning it on by default. This listing also shows the control resources
for the other buttons, all initially set to 0 to turn them off.

For a checkbox or a radio button, always allow at least a 16-point difference between the
top and bottom coordinates of its rectangle to accommodate the tallest characters in the
system font.

C H A P T E R 5

Control Manager

Using the Control Manager 5-21

Listing 5-3 Rez input for the control resources of radio buttons

resource 'CNTL' (cDroplet, preload, purgeable) {

{13, 23, 31, 142},/*rectangle of control*/

1, /*initial setting*/

visible, /*make control visible*/

1, /*maximum setting*/

0, /*minimum setting*/

radioButProc, /*control definition ID*/

0, /*reference value*/

"Droplet" /*control title*/

};

resource 'CNTL' (cQuack, preload, purgeable) {

{31, 23, 49, 142},/*rectangle of control*/

0, /*initial setting*/

visible, 1, 0, radioButProc, 0, "Quack"};

resource 'CNTL' (cSimpleBeep, preload, purgeable) {

{49, 23, 67, 142},/*rectangle of control*/

0, /*initial setting*/

visible, 1, 0, radioButProc, 0, "Simple Beep"};

resource 'CNTL' (cWildEep, preload, purgeable) {

{67, 23, 85, 142},/*rectangle of control*/

0, /*initial setting*/

visible, 1, 0, radioButProc, 0, "Wild Eep"};

Creating Scroll Bars 5

When you define the control resource for a scroll bar, specify the scrollBarProc
constant for the control definition ID. Typically, you make the scroll bar invisible and
specify an initial value of 0, a minimum value of 0, and a maximum value of 0, and you
supply an empty string for the title.

After you create a window, use the GetNewControl function to create the scroll bar
you’ve defined in the control resource and to attach that scroll bar to the window. Use the
MoveControl, SizeControl, SetControlMaximum, and SetControlValue
procedures to adjust the location, size, and settings of the scroll bars, and then use the
ShowControl procedure to display the scroll bars.

In your window-handling code, make the maximum setting the maximum area you want
to allow the user to scroll. Most applications allow the user to drag the size box and click
the zoom box to change the size of windows, and they allow the user to add information
to and remove it from documents. To allow users to perform these actions, your
application needs to calculate a changing maximum setting based upon the document’s
current size and its window’s current size. For new documents that have no content to

C H A P T E R 5

Control Manager

5-22 Using the Control Manager

scroll to, assign an initial value of 0 as the maximum setting in the control resource; the
control definition function automatically makes a scroll bar inactive when its minimum
and maximum settings are identical. Thereafter, your window-handling routines should
set and maintain the maximum setting, as described in “Determining and Changing
Control Settings” beginning on page 5-37.

By convention, a scroll bar is 16 pixels wide, so there should be a 16-point difference
between the left and right coordinates of a vertical scroll bar’s rectangle and between the
top and bottom coordinates of a horizontal scroll bar’s rectangle. (If you don’t provide a
16-pixel width, the Control Manager scales the scroll bar to fit the width you specify.) A
standard scroll bar should be at least 48 pixels long, to allow room for the scroll arrows
and scroll box.

The Control Manager draws lines that are 1 pixel wide for the rectangle enclosing the
scroll bar. As shown in Figure 5-12, the outside lines of a scroll bar should overlap the
lines that the Window Manager draws for the window frame.

Figure 5-12 How a scroll bar should overlap the window frame

To determine the rectangle for a vertical scroll bar, perform the following calculations and
use their results in your control resource. (Do not include the area of the title bar in your
calculations.)

� top coordinate = combined height of any items above the scroll bar – 1

� left coordinate = width of window – 15

� bottom coordinate = height of window – 14

� right coordinate = width of window + 1

16 pixels

1-pixel overlap

(–1,285)

1-pixel overlap

(0,300)

C H A P T E R 5

Control Manager

Using the Control Manager 5-23

To determine the rectangle for a horizontal scroll bar, perform the following calculations
and use their results in your control resource.

� top coordinate = height of window – 15

� left coordinate = combined width of any items to the left of the scroll bar – 1

� bottom coordinate = height of window + 1

� right coordinate = width of window – 14

The top coordinate of a vertical scroll bar is –1, and the left coordinate of a horizontal
scroll bar is –1, unless your application uses part of the window’s typical scroll bar areas
(in particular, those areas opposite the size box) for displaying information or specifying
additional controls. For example, your application may choose to display the current
page number of a document in the lower-left corner of the window—that is, in a small
area to the left of its window’s horizontal scroll bar. See Macintosh Human Interface
Guidelines for a discussion of appropriate uses of a window’s scroll bar areas for
additional items and controls.

Just as the maximum settings of a window’s scroll bars change when the user resizes the
document’s window, so too do the scroll bars’ coordinate locations change when the user
resizes the window. Although you must specify an initial maximum setting and location
in the control resource for a scroll bar, your application must be able to change them
dynamically—typically, by storing handles to each scroll bar in a document record when
you create a window, and then by using Control Manager routines to change control
settings (as described in “Determining and Changing Control Settings” beginning on
page 5-37) and sizes and locations of controls (as described in “Moving and Resizing
Scroll Bars” beginning on page 5-65).

Listing 5-4 shows a window resource (described in the chapter “Window Manager” in
this book) for creating a window, and two control resources for creating the window’s
vertical and horizontal scroll bars. The rectangle for the initial size and shape of the
window is specified in global coordinates, of course, and the rectangles for the two scroll
bars are specified in coordinates local to the window.

Listing 5-4 Rez input for resources for a window and its scroll bars

/*initial window*/

resource 'WIND' (rDocWindow, preload, purgeable) {

{64, 60, 314, 460}, /*initial rectangle for window*/

zoomDocProc, invisible, goAway, 0x0, "untitled"

};

/*initial vertical scroll bar*/

resource 'CNTL' (rVScroll, preload, purgeable) {

{-1, 385, 236, 401}, /*initial rectangle for control*/

/*initial setting, visibility, max, min, ID, refcon, title*/

0, invisible, 0, 0, scrollBarProc, 0, ""

};

C H A P T E R 5

Control Manager

5-24 Using the Control Manager

/*initial horizontal scroll bar*/

resource 'CNTL' (rHScroll, preload, purgeable) {

{235, -1, 251, 386}, /*initial rectangle for control*/

/*initial setting, visibility, max, min, ID, refcon, title*/

0, invisible, 0, 0, scrollBarProc, 0, ""

};

Listing 5-5 shows an application-defined procedure called DoNew that uses the
GetNewWindow and GetNewControl functions to create a window and its scroll bars
from the resources in Listing 5-4.

Listing 5-5 Creating a document window with scroll bars

PROCEDURE DoNew (newDocument: Boolean; VAR window: WindowPtr);

VAR

good: Boolean;

windStorage: Ptr;

myData: MyDocRecHnd;

BEGIN

{use GetNewWindow or GetNewCWindow to create the window here}

myData := MyDocRecHnd(NewHandle(SIZEOF(MyDocRec))); {create document rec}

{test for errors along the way; if there are none, create the scroll }

{ bars and save their handles in myData}

IF good THEN

BEGIN {create the vertical scroll bar and save its handle}

myData^^.vScrollBar := GetNewControl(rVScroll, window);

{create the horizontal scroll bar and save its handle}

myData^^.hScrollBar := GetNewControl(rHScroll, window);

good := (vScrollBar <> NIL) AND (hScrollBar <> NIL);

END;

IF good THEN

BEGIN {adjust size, location, settings, and visibility of scroll bars}

MyAdjustScrollBars(window, FALSE);

{perform other initialization here}

IF NOT newDocument THEN

ShowWindow(window);

END;

{clean up here}

END; {DoNew}

The DoNew routine uses Window Manager routines to create a window; its window
resource specifies that the window is invisible. The window resource specifies an initial
size and location for the window, but because the window is invisible, this window is not
drawn.

C H A P T E R 5

Control Manager

Using the Control Manager 5-25

Then DoNew creates a document record and stores a handle to it in the myData variable.
The SurfWriter sample application uses this document record to store the data that the
user creates in this window—as well as handles to the scroll bars that it creates. The
SurfWriter sample application later uses these control handles to handle scrolling
through the document and to move and resize the scroll bars when the user resizes the
window. (See the chapter “Window Manager” in this book for more information about
creating such a document record.)

To create scroll bars, DoNew uses GetNewControl twice—once for the vertical scroll bar
and once for the horizontal scroll bar. The GetNewControl function returns a control
handle; DoNew stores these handles in the vScrollBar and hScrollBar fields of its
document record for later reference.

Because the window and the scroll bars are invisible, nothing is drawn onscreen
yet for the user. Before drawing the window and its scroll bars, DoNew calls
another application-defined procedure, MyAdjustScrollBars. In turn,
MyAdjustScrollBars calls other application-defined routines that move and
resize the scroll bars to fit the window and then calculate the maximum settings of
these controls. (Listing 5-14 on page 5-39 shows the MyAdjustScrollBars procedure.)

After creating the window and its scroll bars, and then sizing and positioning them
appropriately, DoNew uses the Window Manager procedure ShowWindow to display the
window with its scroll bars.

Creating a Pop-Up Menu 5

The values you specify in a control resource for a pop-up menu differ from those you
specify for other controls. The control resource for a pop-up menu contains the
following information:

� a rectangle, specified by coordinates local to the window, that determines the size and
location of the pop-up title and pop-up box

� the alignment of the pop-up title with the pop-up box

� a constant (either visible or invisible) that specifies whether the control should
be drawn on the screen immediately

� the width of the pop-up title

� the resource ID of the 'MENU' resource describing the pop-up menu items

� the control definition ID

� a reference value, which your application may use for any purpose

� the title of the control

Figure 5-13 on the next page shows a pop-up menu; Listing 5-6 shows the control
resource that creates this pop-up menu. (The chapter “Menu Manager” in this book
recommends typical uses of pop-up menus and describes the relation between pop-up
menus and menus you display in the menu bar.)

C H A P T E R 5

Control Manager

5-26 Using the Control Manager

Figure 5-13 A pop-up menu

Listing 5-6 Rez input for the control resource of a pop-up menu

resource 'CNTL' (kPopUpCNTL, preload, purgeable) {

{90, 18, 109, 198}, /*rectangle of control*/

popupTitleLeftJust, /*title position*/

visible, /*make control visible*/

50, /*pixel width of title*/

kPopUpMenu, /*'MENU' resource ID*/

popupMenuCDEFProc, /*control definition ID*/

0, /*reference value*/

"Speed:" /*control title*/

};

Listing 5-6 specifies a rectangle with the coordinates (90,18,109,198). Figure 5-14
illustrates the rectangle for this pop-up menu.

Figure 5-14 Dimensions of a sample pop-up menu

Listing 5-6 uses the popupTitleLeftJust constant to specify the position of the
control title. Specify any combination of the following constants (or their values) to
inform the Control Manager where and how to draw the pop-up menu’s title:

Setting Constant Description

$0000 popupTitleLeftJust Place title left of the pop-up box

$0001 popupTitleCenterJust Center title over the pop-up box

$00FF popupTitleRightJust Place title right of the pop-up box

$0100 popupTitleBold Use boldface font style

$0200 popupTitleItalic Use italic font style

Pop-up
title

Pop-up box

50 pixels
(Title width)

(109,198)
(Lower-right corner of
enclosing rectangle)

(90,18) (Upper-left corner of enclosing rectangle)

C H A P T E R 5

Control Manager

Using the Control Manager 5-27

If GetNewControl completes successfully, it sets the value of the contrlValue field
of the control record by assigning to that field the item number of the first menu item.
When the user chooses a different menu item, the Control Manager changes the
contrlValue field to that item number.

When you create pop-up menus, your application should store the handles for them; for
example, in a record pointed to by the refCon field of a window record or a dialog
record. (See the chapters “Window Manager” and “Dialog Manager” in this book for
more information about the window record and the dialog record.) Storing these handles,
as shown in the following code fragment, allows your application to respond later to
users’ choices in pop-up menus:

myData: MyDocRecHnd;

window: WindowPtr;

myData^^.popUpControlHandle := GetNewControl(kPopUpCNTL, window);

Listing 5-6 specifies 50 pixels (in place of a maximum setting) as the width of the control
title. After it creates the control, the Control Manager sets the maximum value in the
pop-up menu’s control record to the number of items in the pop-up menu. Figure 5-14
illustrates this title width for the pop-up menu.

Listing 5-6 uses a kPopUpMenu constant to specify the resource ID of a 'MENU' resource
(in place of a minimum setting for the control). (See the chapter “Menu Manager” in this
book for a description of the 'MENU' resource type.) After it creates the control, the
Control Manager assigns 1 as the minimum setting in the pop-up menu’s control record.

IMPORTANT

When using the ResEdit application, version 2.1.1, you must use the
same resource ID when specifying the menu resource and the control
resource that together define a pop-up menu. �

You can also specify a different control definition ID by adding any or all of the following
constants (or the variation codes they represent) to the popupMenuProc constant:

CONST popupFixedWidth = $0001; {use fixed-width control}

popupUseAddResMenu = $0004; {use resource for menu items}

popupUseWFont = $0008; {use window font}

The reference value that you specify in the control resource (and stored by the Control
Manager in the contrlRfCon field of the control record) is available for your
application’s use. However, if you specify popupUseAddResMenu as a variation code,

Setting Constant Description

$0400 popupTitleUnderline Use underline font style

$0800 popupTitleOutline Use outline font style

$1000 popupTitleShadow Use shadow font style

$2000 popupTitleCondense Use condensed characters

$4000 popupTitleExtend Use extended characters

$8000 popupTitleNoStyle Use monostyle font

C H A P T E R 5

Control Manager

5-28 Using the Control Manager

the Control Manager coerces the value in the contrlRfCon field of the control record
to the type ResType and then uses AppendResMenu to add items of that type to the
pop-up menu. For example, if you specify a reference value of LongInt('FONT') as the
reference value, the control definition function appends a list of the fonts installed
in the system to the menu associated with the pop-up menu. After the control has been
created, your application can use the control record’s contrlRfCon field for whatever
use it requires. You can determine which menu item is currently chosen by calling
GetControlValue.

Whenever the pop-up menu is redrawn, its control definition function calls the Menu
Manager procedure CalcMenuSize. This procedure recalculates the size of the
menu associated with the control (to allow for the addition or deletion of items in the
menu). The pop-up control definition function may also update the width of the pop-
up menu to the sum of the width of the pop-up title, the width of the longest item in the
menu, the width of the downward-pointing arrow, and a small amount of white space.
As previously described, your application can override this behavior by adding the
variation code popupFixedWidth to the pop-up control definition ID.

You should not use the Menu Manager function GetMenuHandle to obtain a handle to
a menu associated with a pop-up control. If necessary, you can obtain the menu handle
(and the menu ID) of a pop-up menu by dereferencing the contrlData field of the
pop-up menu’s control record. The contrlData field of a control record is a handle to a
block of private information. For pop-up menu controls, this field is a handle to a pop-up
private data record, which is described on page 5-77.

Constant Description

popUpFixedWidth Uses a constant control width. If your application specifies
this value, the pop-up control definition function does not
resize the control horizontally to fit long menu items. The
width of the pop-up box is set to the width of the control,
minus the width of the pop-up title your application
specifies when it creates the control. If a menu item in a
pop-up box does not fit in the space provided, the text is
truncated to fit, and three ellipsis points (...) are appended
at the end. If you do not specify this variation code, the
pop-up control definition function may resize the control
horizontally.

popupUseAddResMenu Gets menu items from a resource other than the 'MENU'
resource. If your application specifies this value when
creating a pop-up menu, the control definition function
interprets the value in the contrlRfCon field of the control
record as a value of type ResType. The control definition
function uses the Menu Manager procedure
AppendResMenu to add resources of that type to the menu.

popupUseWFont Uses the font of the specified window. If your application
specifies this value, the pop-up control definition function
draws the pop-up menu title using the font and size of
the window containing the control instead of using the
system font.

C H A P T E R 5

Control Manager

Using the Control Manager 5-29

Updating a Control 5

Your program should use the UpdateControls procedure upon receiving an update
event for a window that contains controls such as scroll bars. (Window Manager routines
such as SelectWindow, ShowWindow, and BringToFront do not automatically
call UpdateControls to display the window’s controls. Instead, they merely add
the appropriate regions to the window’s update region. This in turn generates an
update event.)

Note
The Dialog Manager automatically updates the controls you use in alert
boxes and dialog boxes. �

When your application receives an update event for a window that contains controls, use
the UpdateControls procedure in your window-updating code to redraw all the
controls in the update region of the window. Call UpdateControls after using the
Window Manager procedure BeginUpdate and before using the Window Manager
procedure EndUpdate.

When you call UpdateControls, you pass it parameters specifying the window to
be updated and the window area that needs updating. Use the visible region of
the window’s graphics port, as referenced in the port’s visRgn field, to specify the
window’s update region.

Listing 5-7 shows an application-defined routine, DoUpdate, that responds to an update
event. The DoUpdate routine calls the Window Manager procedure BeginUpdate. To
redraw this portion of the window, DoUpdate then calls another of its own procedures,
MyDrawWindow.

Listing 5-7 Responding to an update event for a window

PROCEDURE DoUpdate (window: WindowPtr);
VAR

windowType: Integer;
BEGIN

windowType := MyGetWindowType(window);
CASE windowType OF
kMyDocWindow:

BEGIN
BeginUpdate(window);
MyDrawWindow(window);
EndUpdate(window);

END; {of updating document windows}
{handle other window types——modeless dialogs, etc.——here}
END; {of windowType CASE}

END; {of DoUpdate}

Listing 5-8 illustrates how the SurfWriter sample application updates window controls
and other window contents by using its own application-defined routine,

C H A P T E R 5

Control Manager

5-30 Using the Control Manager

MyDrawWindow. To draw only those controls in the window’s update region,
MyDrawWindow calls UpdateControls. To draw the size box in the lower-right corner
of the window, MyDrawWindow calls the Window Manager procedure DrawGrowIcon.
Finally, MyDrawWindow redraws the appropriate information contained in the user’s
document. Because the SurfWriter application uses TextEdit for all text editing in the
window contents, Listing 5-8 calls the TextEdit procedure TEUpdate. (TextEdit is
described in detail in Inside Macintosh: Text.)

Listing 5-8 Redrawing the controls in the update region

PROCEDURE MyDrawWindow (window: WindowPtr);

VAR

myData: MyDocRecHnd;

BEGIN {draw the contents of the window}

SetPort(window);

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH window^ DO

BEGIN

EraseRect(portRect);

UpdateControls(window, visRgn);

DrawGrowIcon(window);

TEUpdate(portRect, myData^^.editRec); {redraw text}

END;

HUnLock(Handle(myData));

END; {MyDrawWindow}

For more information about updating window contents, see the chapter “Window
Manager” in this book.

Responding to Mouse Events in a Control 5
The Control Manager provides several routines to help you detect and respond to mouse
events involving controls. For mouse events in controls, you generally perform the
following tasks:

1. In your event-handling code, use the Window Manager function FindWindow to
determine the window in which the mouse-down event occurred.

2. If the mouse-down event occurred in the content region of your application’s active
window, use the FindControl function to determine whether the mouse-down event
occurred in an active control and, if so, which control.

3. Call TrackControl to handle user interaction for the control for as long as the user
holds the mouse button down. For scroll arrows and the gray areas of scroll bars, you
must define an action procedure for TrackControl to use. This action procedure
should cause the document to scroll as long as the user holds down the mouse button.

C H A P T E R 5

Control Manager

Using the Control Manager 5-31

For pop-up menus, you pass Pointer(-1) in a parameter to TrackControl to
use the action procedure defined in the pop-up control definition function. For the
scroll box in scroll bars and for the other standard controls, you pass NIL in a
parameter to TrackControl to get the Control Manager’s standard response to
mouse-down events.

4. When TrackControl reports that the user has released the mouse button with the
cursor in a control, respond appropriately. This may require you to use other Control
Manager routines, such as GetControlValue and SetControlValue, to determine
and change control settings.

These and other routines for responding to events involving controls are described in the
next several sections.

Note
The Dialog Manager procedure ModalDialog automatically calls
FindWindow, FindControl, and TrackControl for mouse-down
events in the controls of alert and modal dialog boxes. You can use the
Dialog Manager function DialogSelect, which automatically calls
FindWindow, FindControl, and TrackControl, to help you handle
mouse events in your movable modal and modeless dialog boxes. �

Determining a Mouse-Down Event in a Control 5

When your application receives a mouse-down event, use the Window Manager function
FindWindow to determine the window in which the event occurred. If the cursor was in
the content region of your application’s active window when the user pressed the mouse
button, use the FindControl function to determine whether the mouse-down event
occurred in an active control and, if so, which control.

When the mouse-down event occurs in a visible, active control, FindControl returns a
handle to that control as well as a part code identifying the control’s part. (Note that
when the mouse-down event occurs in an invisible or inactive control, or when the cursor
is not in a control, FindControl sets the control handle to NIL and returns 0 as its part
code.)

A simple control such as a button or checkbox might have just one “part”; a more
complex control can have as many parts as are needed to define how the control operates.
A scroll bar has five parts: two scroll arrows, the scroll box, and the two gray areas on
either side of the scroll box. Figure 5-4 on page 5-7 shows the five parts of a scroll bar.

A part code is an integer from 1 through 253 that identifies a part of a control. To allow
different parts of a multipart control to respond to mouse events in different ways, many
of the Control Manager routines accept a part code as a parameter or return one as
a result. Part codes are assigned to a control by its control definition function. The
standard control definition functions define the following part codes. Also listed are the
constants you can use to represent them.

The pop-up control definition function does not define part codes for pop-up menus.
Instead (as explained in “Creating a Pop-Up Menu” beginning on page 5-25), your
application should store the handles for your pop-up menus when you create them.
Your application should then test the handles you store against the handles returned

C H A P T E R 5

Control Manager

5-32 Using the Control Manager

by FindControl before responding to users’ choices in pop-up menus; this is described
in more detail later in the next section.

Listing 5-9 illustrates an application-defined procedure, DoMouseDown, that an
application might call in response to a mouse-down event. The DoMouseDown routine
first calls the Window Manager function FindWindow, which returns two values: a
pointer to the window in which the mouse-down event occurred and a constant that
provides additional information about the location of that event. If FindWindow returns
the inContent constant, then the mouse-down event occurred in the content area of one
of the application’s windows.

Listing 5-9 Detecting mouse-down events in a window

PROCEDURE DoMouseDown (event: EventRecord);

VAR

part: Integer;

thisWindow: WindowPtr;

BEGIN {handle mouse-down event}

part := FindWindow(event.where, thisWindow);

CASE part OF

inMenuBar:

; {mouse-down in menu bar, respond appropriately here}

inContent:

IF thisWindow <> FrontWindow THEN

{mouse-down in an inactive window; use SelectWindow }

{ to make it active here}

ELSE {mouse-down in the active window}

DoContentClick(thisWindow, event);

Constant Part code Control part

inButton 10 Button

inCheckBox 11 Entire checkbox or radio button

inUpButton 20 Up scroll arrow for a vertical scroll bar, left scroll
arrow for a horizontal scroll bar

inDownButton 21 Down scroll arrow for a vertical scroll bar, right scroll
arrow for a horizontal scroll bar

inPageUp 22 Gray area above scroll box for a vertical scroll
bar, gray area to left of scroll box for a horizontal
scroll bar

inPageDown 23 Gray area below scroll box for a vertical scroll bar,
gray area to right of scroll box for a horizontal
scroll bar

inThumb 129 Scroll box

C H A P T E R 5

Control Manager

Using the Control Manager 5-33

{handle other cases here}

END; {of CASE statement}

END; {DoMouseDown}

In Listing 5-9, when FindWindow reports a mouse-down event in the content region of a
window containing controls, DoMouseDown calls another application-defined procedure,
DoContentClick, and passes it the window pointer returned by the FindWindow
function as well as the event record.

Listing 5-10 shows an application-defined procedure, DoContentClick, that uses this
information to determine whether the mouse-down event occurred in a control.

Listing 5-10 Detecting mouse-down events in a pop-up menu and a button

PROCEDURE DoContentClick (window: WindowPtr; event: EventRecord);

VAR

mouse: Point;

control: ControlHandle;

part: Integer;

windowType: Integer;

BEGIN

windowType := MyGetWindowType(window); {get window type}

CASE windowType OF

kPlaySoundsModelessDialogBox:

BEGIN

SetPort(window);

mouse := event.where; {get the mouse location}

GlobalToLocal(mouse); {convert to local coordinates}

part := FindControl(mouse, window, control);

IF control = gSpeedPopUpControlHandle THEN

{mouse-down in Modem Speed pop-up menu}

DoPopUpMenu(mouse, control);

CASE part OF

inButton: {mouse-down in Play button}

DoPlayButton(mouse, control);

inCheckBox: {mouse-down in checkbox}

DoDrumRollCheckBox(mouse, control);

OTHERWISE

;

END; {of CASE for control part codes}

END; {of kPlaySoundsModelessDialogBox case}

C H A P T E R 5

Control Manager

5-34 Using the Control Manager

{handle other window types, such as document windows, here}

END; {of CASE for window types}

END; {of DoContentClick}

Figure 5-15 shows the Play Sounds window; DoContentClick uses the FindControl
function to determine whether the mouse-down event occurred in the pop-up menu, the
Play button, or the Add Drum Roll checkbox.

First, however, DoContentClick uses the event record to determine the cursor location,
which is specified in global coordinates. Because the FindControl function expects the
cursor location in coordinates local to the window, DoContentClick uses the
QuickDraw procedure GlobalToLocal to convert the point stored in the where field of
the event record to coordinates local to the current window. The GlobalToLocal
procedure takes one parameter, a point in global coordinates—where the upper-left
corner of the entire bit image is coordinate (0,0). See Inside Macintosh: Imaging for more
information about the GlobalToLocal procedure.

Figure 5-15 Three controls in a window

When it calls FindControl, DoContentClick passes the cursor location in the
window’s local coordinates as well as the pointer returned earlier by the FindWindow
function (shown in Listing 5-9 on page 5-32).

If the cursor is in a control, FindControl returns a handle to the control and a part code
indicating the control part. Because the pop-up control definition function does
not define control parts, DoContentClick tests the control handle returned by
FindControl against a pop-up menu’s control handle that the application stores
in its own global variable. If these are handles to the same control, DoContentClick
calls another application-defined routine, DoPopUpMenu.

After checking whether FindControl returns a control handle to a pop-up menu,
DoContentClick uses the part code that FindControl returns to determine whether
the cursor is in one of the other two controls. If FindControl returns the inButton
constant, DoContentClick calls another application-defined routine, DoPlayButton.
If FindControl returns the inCheckBox constant, DoContentClick calls another
application-defined routine, DoDrumRollCheckBox.

As described in the next section, all three of these application-defined routines—
DoPopUpMenu, DoPlayButton, and DoDrumRollCheckBox—in turn use the

C H A P T E R 5

Control Manager

Using the Control Manager 5-35

TrackControl function to follow and respond to the user’s mouse movements in
the control reported by FindControl.

Tracking the Cursor in a Control 5

After using the FindControl function to determine that the user pressed the mouse
button when the cursor was in a control, use the TrackControl function first to follow
and respond to the user’s mouse movements, and then to determine which control part
contains the cursor when the user releases the mouse button.

Generally, you use TrackControl after using the FindControl function to determine
that the mouse-down event occurred in a control. You pass to TrackControl the control
handle returned by the FindControl function, and you also pass to TrackControl the
same point you passed to FindControl (that is, a point in coordinates local to the
window).

The TrackControl function follows the movements of the cursor in a control and
provides visual feedback until the user releases the mouse button. The visual feedback
given by TrackControl depends on the control part in which the mouse-down event
occurred. When highlighting the control is appropriate—in a button, for example—
TrackControl highlights the control part (and removes the highlighting when the user
releases the mouse button). When the user presses the mouse button while the cursor is
in an indicator (such as the scroll box of a scroll bar) and then moves the mouse,
TrackControl responds by dragging a dotted outline of the indicator. Figure 5-8 on
page 5-12 illustrates how TrackControl provides visual feedback.

You can also use an action procedure to undertake additional actions as long as the user
holds down the mouse button. For example, if the user is working in a text document and
holds down the mouse button while the cursor is in a scroll arrow, your action procedure
should continuously scroll through the document one line (or some equivalent measure)
at a time until the user releases the button or reaches the end of the document. You pass a
pointer to this procedure to TrackControl. (“Scrolling in Response to Events in Scroll
Arrows and Gray Areas” beginning on page 5-57 describes how to do this.)

The TrackControl function returns the control’s part code if the user releases
the mouse button while the cursor is inside the control part, or 0 if the user releases the
mouse button while the cursor is outside the control part. Unless TrackControl returns
0 as its function result, your application should then respond as appropriate to
a mouse-up event in that control part. When TrackControl returns 0 as its function
result, your application should do nothing.

Listing 5-11 on the next page shows an application-defined procedure, DoPlayButton,
that uses TrackControl to track mouse-down events in the Play button shown in
Figure 5-15. The DoPlayButton routine passes, to TrackControl, the control handle
returned by FindControl. The DoPlayButton routine also passes to TrackControl
the same cursor location it passed to FindControl (that is, a point in local coordinates).
Because buttons don’t need an action procedure, NIL is passed as the final parameter
to TrackControl.

C H A P T E R 5

Control Manager

5-36 Using the Control Manager

Listing 5-11 Using the TrackControl function with a button

PROCEDURE DoPlayButton (mouse: Point; control: ControlHandle);

BEGIN

IF TrackControl(control, mouse, NIL) <> 0 THEN {user clicks Play}

BEGIN

IF gPlayDrumRoll = TRUE THEN {user clicked Play Drum Roll checkbox }

DoPlayDrumRoll; { so play a drum roll first}

SysBeep(30); {always play system alert sound when user clicks Play}

END;

END;

When the user presses the mouse button when the cursor is in the Play button,
TrackControl inverts the Play button. If the user releases the mouse button after
moving the cursor outside the control part, TrackControl stops inverting the
button and returns the value 0, in which case DoPlayButton does nothing.

If, however, the user releases the mouse button with the cursor in the Play button,
TrackControl stops inverting the Play button and returns the value for the inButton
constant. Then DoPlayButton calls the Sound Manager procedure SysBeep to play the
system alert sound (which is described in the chapter “Dialog Manager” in this book).
Before releasing the mouse button, the user can move the cursor away from the control
part and then return to it, and TrackControl will still return the part code when the
user releases the mouse button.

For buttons, checkboxes, radio buttons, and the scroll box in a scroll bar, your application
typically passes NIL to TrackControl to use no action procedure. However,
TrackControl still responds visually to mouse events in active controls. That is, when
the user presses the mouse button with the cursor over a control whose action procedure
is set to NIL, TrackControl changes the control’s display appropriately until the user
releases the mouse button.

For scroll arrows and for the gray areas of a scroll box, you need to define your own
action procedures. You pass a pointer to the action procedure as one of the parameters to
TrackControl, as described in “Scrolling in Response to Events in Scroll Arrows and
Gray Areas” beginning on page 5-57.

For a pop-up menu, you must pass Pointer(-1) to TrackControl for its action
procedure; this causes TrackControl to use the action procedure defined in the pop-up
control definition function.

Listing 5-10 on page 5-33 calls an application-defined routine, DoPopUpMenu, when
FindControl reports a mouse-down event in a pop-up menu. Listing 5-12 shows how
DoPopUpMenu uses TrackControl to handle user interaction in the pop-up menu. By
passing Pointer(-1) to TrackControl, DoPopUpMenu uses the action procedure
defined in the pop-up control definition function.

C H A P T E R 5

Control Manager

Using the Control Manager 5-37

Listing 5-12 Using TrackControl with a pop-up menu

PROCEDURE DoPopUpMenu (mouse: Point; control: ControlHandle);

VAR

menuItem: Integer;

part: Integer;

BEGIN

part := TrackControl(control, mouse, Pointer(-1));

menuItem := GetControlValue(control);

IF menuItem <> gCurrentItem THEN

BEGIN

gCurrentItem := menuItem;

SetMyCommunicationSpeed; {use speed stored in gCurrentItem}

END;

END; {of DoPopUpMenu}

The action procedure for pop-up menus highlights the pop-up menu title, displays the
pop-up menu, and handles all user interaction while the user drags up and down the
menu. When the user releases the mouse button, the action procedure closes the pop-up
box, draws the user’s choice in the pop-up box (or restores the previous item if the user
doesn’t make a new choice), and removes the highlighting of the pop-up title. The
pop-up control definition function then changes the value of the contrlValue field of
the control record to the number of the menu item chosen by the user.

Because buttons do not retain settings, responding to them is very straightforward: when
the user clicks a button, your application should immediately undertake the action
described by the button’s title. For pop-up menus and other types of controls, you must
determine their current settings before responding to the user’s action. For example,
before responding, you need to know which item the user has chosen in a pop-up menu,
whether a checkbox is checked, or how far the user has moved the scroll box. The action
you take may, in turn, involve changing other control settings. Determining and changing
control settings are described in the next section.

After learning how to determine and change control settings, see “Scrolling Through a
Document” beginning on page 5-43 for a detailed discussion of how to respond to mouse
events in scroll bars.

Determining and Changing Control Settings 5
Using either the control resource or the parameters to the NewControl function, your
application specifies a control’s various default values—such as its current setting and
minimum and maximum settings—when it creates the control.

When the user clicks a control, however, your application often needs to determine
the current setting and other possible values of that control. When the user clicks a
checkbox, for example, your application must determine whether the box is checked
before your application can decide whether to clear or draw a checkmark inside the
checkbox. When the user moves the scroll box, your application needs to determine what
part of the document to display.

C H A P T E R 5

Control Manager

5-38 Using the Control Manager

Applications must adjust some controls in response to events other than mouse events in
the controls themselves. For example, when the user resizes a window, your application
must use the Control Manager procedures MoveControl and SizeControl to move
and resize the scroll bars appropriately.

Your application can use the GetControlValue function to determine the current
setting of a control, and it can use the GetControlMaximum function to determine a
control’s maximum setting.

You can use the SetControlValue procedure to change the control’s setting and
redraw the control accordingly. You can use the SetControlMaximum procedure to
change a control’s maximum setting and to redraw the indicator or scroll box to reflect
the new setting.

In response to user action involving a control, your application often needs to change the
setting and possibly redraw the control. When the user clicks a checkbox, for example,
your application must determine whether the checkbox is currently selected or not, and
then switch its setting. When you use SetControlValue to switch a checkbox setting,
the Control Manager either draws or removes the X inside the checkbox, as appropriate.
When the user clicks a radio button, your application must determine whether the radio
button is already on and, if not, turn the previously selected radio button off and turn the
newly selected radio button on.

Figure 5-15 on page 5-34 shows a checkbox in the Play Sounds window. When the user
clicks the checkbox to turn it on, the application adds a drum roll to the sound it plays
whenever the user clicks the Play button.

Listing 5-13 shows the application-defined routine DoDrumRollCheckBox, which
responds to a click in a checkbox. This routine uses the GetControlValue function to
determine the last value of the checkbox and then uses the SetControlValue
procedure to change it. The GetControlValue function returns a control’s current
setting, which is stored in the contrlValue field of the control record. The
SetControlValue procedure sets the contrlValue field to the specified value and
redraws the control to reflect the new setting. (For checkboxes and radio buttons, the
value 1 fills the control with the appropriate mark, and the value 0 removes the mark. For
scroll bars, SetControlValue redraws the scroll box at the appropriate position along
the scroll bar. For a pop-up menu, SetControlValue displays in its pop-up box the
name of the menu item corresponding to the specified value.)

Listing 5-13 Responding to a click in a checkbox

PROCEDURE DoDrumRollCheckBox (mouse: Point; control: ControlHandle);

VAR

checkbox:Integer;

BEGIN

IF TrackControl(control, mouse, NIL) <> 0 THEN {user clicks checkbox}

BEGIN

checkbox := GetControlValue(control); {get last value of checkbox}

checkbox := 1 - checkbox; {toggle value of checkbox}

C H A P T E R 5

Control Manager

Using the Control Manager 5-39

SetControlValue(control, checkbox); {set checkbox to new value}

IF checkbox = 1 THEN {the checkbox is checked}

gPlayDrumRoll := TRUE {play a drum roll next time user clicks Play}

ELSE

gPlayDrumRoll := FALSE;

END;

END;

The DoDrumRollCheckBox routine uses TrackControl to determine which control
the user selects. When TrackControl reports that the user clicks the checkbox,
DoDrumRollCheckBox uses GetControlValue to determine whether the user last
selected the checkbox (that is, whether the control has a current setting of 1) or deselected
it (in which case, the control has a current setting of 0). By subtracting the control’s
current setting from 1, DoDrumRollCheckBox toggles to a new setting
and then uses SetControlValue to assign this new setting to the checkbox. The
SetControlValue procedure changes the current setting of the checkbox and redraws
it appropriately, by either drawing an X in the box if the new setting of the control is 1 or
removing the X if the new setting of the control is 0.

Listing 5-4 on page 5-23 shows the control resources that specify a window’s scroll bars,
and Listing 5-5 on page 5-24 shows an application’s DoNew routine for creating a
document window with these scroll bars. This routine uses the GetNewControl
function to create the scroll bars and then calls an application-defined routine,
MyAdjustScrollBars. Listing 5-14 shows MyAdjustScrollBars, which in turn
calls other application-defined routines that determine the proper sizes, locations,
and maximum settings of the scroll bars.

Listing 5-14 Adjusting scroll bar settings and locations

PROCEDURE MyAdjustScrollBars (window: WindowPtr;
resizeScrollBars: Boolean);

VAR
myData: MyDocRecHnd;

BEGIN
myData := MyDocRecHnd(GetWRefCon(window));
HLock(Handle(myData));
WITH myData^^ DO
BEGIN

HideControl(vScrollBar); {hide the vertical scroll bar}
HideControl(hScrollBar); {hide the horizontal scroll bar}
IF resizeScrollBars THEN {move and size if needed}

MyAdjustScrollSizes(window);
MyAdjustScrollValues(window, NOT resizeScrollBars);
ShowControl(vScrollBar); {show the vertical scroll bar}
ShowControl(hScrollBar); {show the horizontal scroll bar}

END;
HUnLock(Handle(myData));

END; {of MyAdjustScrollbars}

C H A P T E R 5

Control Manager

5-40 Using the Control Manager

When calling the DoOpen routine to open an existing document in a window,
SurfWriter also uses this MyAdjustScrollBars procedure to size and adjust the
scroll bars. When the user changes the window’s size, the SurfWriter application
uses MyAdjustScrollBars again.

The MyAdjustScrollBars routine begins by getting a handle to the window’s
document record, which stores handles to the scroll bars as well as other relevant data
about the document. (See the chapter “Window Manager” in this book for information
about creating your application’s own document record for a window.)

Before making any adjustments to the scroll bars, MyAdjustScrollBars passes the
handles to these controls to the Control Manager procedure HideControl, which makes
the controls invisible. The MyAdjustScrollBars routine then calls another
application-defined procedure, MyAdjustScrollSizes (shown in Listing 5-24 on
page 5-67), to move and resize the scroll bars appropriately. After calling yet another
application-defined procedure, MyAdjustScrollValues, to set appropriate current
and maximum settings for the scroll bars, MyAdjustScrollBars uses the Control
Manager procedure ShowControl to display the scroll bars in their new locations.

Listing 5-15 shows how the MyAdjustScrollValues procedure calls another
application-defined routine, MyAdjustHV, which uses Control Manager routines to
assign appropriate settings to the scroll bars.

Listing 5-15 Assigning settings to scroll bars

PROCEDURE MyAdjustScrollValues (window: WindowPtr);

VAR

myData: MyDocRecHnd;

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH myData^^ DO

BEGIN

MyAdjustHV(TRUE, vScrollBar, editRec);

MyAdjustHV(FALSE, hScrollBar, editRec);

END;

HUnLock(Handle(myData));

END; {of MyAdjustScrollValues}

To prevent the user from scrolling past the edge of the document and seeing a blank
window, you should limit the scroll bars’ maximum settings, as illustrated in Figure 5-6
on page 5-10. If the window is larger than the document (which can easily happen with
small documents on large monitors), your application should make the maximum scroll
bar settings identical to their minimum settings. In this case, the Control Manager then
makes the scroll bars inactive, which is appropriate when all the information fits in
the window.

C H A P T E R 5

Control Manager

Using the Control Manager 5-41

Listing 5-16 shows the application-defined MyAdjustHV procedure, used for adjusting
the current and maximum settings for a scroll bar. When passed TRUE in the isVert
parameter, MyAdjustHV calculates and adjusts the maximum and current settings for the
vertical scroll bar; when passed FALSE, it calculates and adjusts those settings for the
horizontal scroll bar.

In this example, the document consists of monostyled text stored in a TextEdit edit
record. The viewRect field of a TextEdit edit record specifies the rectangle where the text
is visible; because viewRect already excludes the scroll bar regions, MyAdjustHV does
not need to subtract the scroll bar regions from the window height or width when
calculating the maximum settings for these scroll bars. (For more information about
TextEdit in general and the edit record in particular, see Inside Macintosh: Text.)

Listing 5-16 Adjusting the maximum and current settings for a scroll bar

PROCEDURE MyAdjustHV (isVert: Boolean; control: ControlHandle;

 editRec: TEHandle);

VAR

oldValue, oldMax, width: Integer;

max, lines, value: Integer;

BEGIN

{calculate new maximum and current settings for the vertical or }

{ horizontal scroll bar}

oldMax := GetControlMaximum(control);

oldValue := GetControlValue(control);

MyGetDocWidth(width);

IF isVert THEN {adjust max setting for the vertical scroll bar}

BEGIN

lines := editRec^^.nLines;

{since nLines isn't right if the last character is a carriage }

{ return, check for that case}

IF Ptr(ORD(editRec^^.hText^) + editRec^^.teLength - 1)^ = kCRChar THEN

lines := lines + 1;

max := lines - ((editRec^^.viewRect.bottom - editRec^^.viewRect.top)

 DIV editRec^^.lineHeight);

END

ELSE {adjust max setting for the horizontal scroll bar}

max := width - (editRec^^.viewRect.right - editRec^^.viewRect.left);

IF max < 0 THEN

max := 0; {check for negative settings}

SetControlMaximum(control, max); {set the max value of the control}

IF isVert THEN {adjust current setting for vertical scroll bar}

value := (editRec^^.viewRect.top - editRec^^.destRect.top)

 DIV editRec^^.lineHeight

C H A P T E R 5

Control Manager

5-42 Using the Control Manager

ELSE {adjust current setting for the horizontal scroll bar}

value := editRec^^.viewRect.left - editRec^^.destRect.left;

IF value < 0 THEN

value := 0

ELSE IF value > max THEN

value := max; {don't allow current setting to be greater than the }

{ maximum setting}

SetControlValue(control, value);

END; {of MyAdjustHV}

The MyAdjustHV routine first uses the GetControlMaximum and GetControlValue
functions to determine the maximum and current settings for the scroll bar
being adjusted.

Then MyAdjustHV calculates a new maximum setting for the case of a vertical scroll bar.
Because the window displays a text-only document, MyAdjustHV uses the nLines field
of the edit record to determine the total number of lines in—and hence, the length of—
the document. Then MyAdjustHV subtracts the calculated height of the window from the
length of the document, and makes this value the maximum setting for the vertical scroll
bar.

To calculate the total height in pixels of the window, MyAdjustHV begins by subtracting
the top coordinate of the view rectangle from its bottom coordinate. (The upper-left
corner of a window is normally at point [0,0]; therefore the vertical coordinate of a
point at the bottom of a rectangle has a larger value than a point at the top of the
rectangle.) Then MyAdjustHV divides the pixel height of the window by the value of
the edit record’s lineHeight field, which for monostyled text specifies the document’s
line height in pixels. By dividing the window height by the line height of the text,
MyAdjustHV determines the window’s height in terms of lines of text.

The MyAdjustHV routine uses another application-defined routine, MyGetDocWidth,
to determine the width of the document. To calculate the width of the window,
MyAdjustHV subtracts the left coordinate of the view rectangle from its right coordinate.
By subtracting the window width from the document width, MyAdjustHV derives the
maximum setting for the horizontal scroll bar.

For both vertical and horizontal scroll bars, MyAdjustHV assigns a maximum setting of 0
whenever the window is larger than the document—for instance, when a window is
created for a new document that contains no data yet. In this case, MyAdjustHV assigns
the same value, 0, to both the maximum and current settings for the scroll bar. The
standard control definition function for scroll bars automatically makes a scroll bar
inactive when its minimum and maximum settings are identical. This is entirely
appropriate, because whenever the user has nowhere to scroll, the scroll bar should be
inactive. When you make the maximum setting exceed the minimum, the control
definition function makes the scroll bar active again.

The MyAdjustHV routine then uses the Control Manager procedure
SetControlMaximum to assign the newly calculated maximum settings to either
scroll bar. The SetControlMaximum procedure revises the control to reflect the new
maximum setting; for example, if the user deletes a large portion of the document,

C H A P T E R 5

Control Manager

Using the Control Manager 5-43

thereby reducing the maximum setting, SetControlMaximum moves the scroll box
to indicate the new position relative to the smaller document.

When the user adds information to or removes information from a document or adjusts
its window size, your application may need to adjust the current setting of the scroll bar
as well. The MyAdjustHV routine calculates a new current setting for the control and
then uses SetControlValue to assign that setting to the control as well as to reposition
the scroll box accordingly.

The destination rectangle, specified in the destRect field of the edit record, is the
rectangle in which the text is drawn, whereas the view rectangle is the rectangle in which
the text is actually visible. By subtracting the top coordinate of the destination rectangle
from the top coordinate of the view rectangle, and dividing the result by the line height,
MyAdjustHV derives the number of the line currently displayed at the top of the
window. This is the line number MyAdjustHV uses for the current setting of the vertical
scroll bar.

To derive the current setting of the horizontal scroll bar in terms of pixels, MyAdjustHV
subtracts the left coordinate of the destination rectangle from the left coordinate of the
view rectangle.

Scrolling Through a Document 5
Earlier sections of this chapter explain how to create scroll bars, determine when a
mouse-down event occurs in a scroll bar, track user actions in a scroll bar, and determine
and change scroll bar settings. This section discusses how your application actually
scrolls through documents in response to users’ mouse activity in the scroll bars. For
example, your application scrolls toward the bottom of the document under the
following conditions:

� When the user drags the scroll box to the bottom of the vertical scroll bar, your
application should display the end of the user’s document.

� When the user clicks the gray area below the scroll box, your application should move
the document up to display the next window of information toward the bottom of the
document, and it should use SetControlValue to move the scroll box.

� When the user clicks the down scroll arrow, your application should move the
document up by one line (or by some similar measure) and bring more of the bottom
of the document into view, and it should use SetControlValue to move the
scroll box.

As a first step, your application must determine the distance by which to scroll. When the
user drags a scroll box to a new location on the scroll bar, you scroll a corresponding
distance to a new location in the document.

When the user clicks a scroll arrow, your application determines an appropriate amount
to scroll. In general, a word processor scrolls vertically by one line of text and horizon-
tally by the average character width, and a database or spreadsheet scrolls by one field.
Graphics applications should scroll to display an entire object when possible. (Typically,
applications convert these distances to pixels when using Control Manager, QuickDraw,
and TextEdit routines.)

C H A P T E R 5

Control Manager

5-44 Using the Control Manager

When the user clicks a gray area of a scroll bar, your application should scroll by a
distance of just less than the height or width of the window. To determine this height and
width, you can use the contrlOwner field of the scroll bar’s control record. This field
contains a pointer to the window record. When you scroll by a distance of one window, it
is best to retain part of the previous window. This retained portion helps the user place
the material in context. For example, if the user scrolls down by a distance of one
window in a text document, the line at the top of the window should be the one that
previously appeared at the bottom of the window.

The scrolling direction is determined by whether the scrolling distance is expressed as a
positive or negative number. When the user scrolls down or to the right, the scrolling
distance is a negative number; when the user scrolls up or to the left, the scrolling
distance is a positive number. For example, when the user scrolls from the beginning of a
document to a line located 200 pixels down, the scrolling distance is –200 pixels on the
vertical scroll bar. When the user scrolls from there back to the start of the document, the
scrolling distance is 200 pixels.

Determining the scrolling distance is only the first step. In brief, your application should
take the following steps to scroll through a document in response to the user’s
manipulation of a scroll bar.

1. Use the FindControl, GetControlValue, and TrackControl functions to help
calculate the scrolling distance.

2. If you are scrolling for any reason other than the user dragging the scroll box, use the
SetControlValue procedure to move the scroll box a corresponding amount.

3. Use a routine—such as the QuickDraw procedure ScrollRect or the TextEdit
procedure TEPinScroll—to move the bits displayed in the window by the
calculated scrolling distance. Then either use a call that generates an update event
or else directly call your application’s DoUpdate routine, which should perform
the rest of these steps.

4. Use the UpdateControls procedure to update the scroll bars and then call the
Window Manager procedure DrawGrowIcon to redraw the size box.

5. Use the QuickDraw procedure SetOrigin to change the window origin by an
amount equal to the scroll bar settings so that the upper-left corner of the document
lies at (0,0) in the window’s local coordinate system. (You perform this step so that
your application’s document-drawing routines can draw in the correct area of the
window.)

6. Call your application’s routines for redrawing the document inside the window.

7. Use the SetOrigin procedure to reset the window origin to (0,0) so that future
Window Manager and Control Manager routines draw in the correct area of the
window.

8. Return to your event loop.

These steps are explained in greater detail in the rest of this section.

C H A P T E R 5

Control Manager

Using the Control Manager 5-45

Note
It is not necessary to use SetOrigin as described in the rest of this
chapter. This procedure merely helps you to offset the window origin
by the scroll bars’ current settings when you update the window, so
that you can locate objects in a document using a coordinate system
where the upper-left corner of the document is always at (0,0). As an
alternative to this approach, your application can leave the upper-left
corner of the window (called the window origin) located at (0,0) and
instead offset the items in your document by an amount equal to the
scroll bars’ settings. The QuickDraw procedures OffsetRect,
OffsetRgn, SubPt, and AddPt, which are described in Inside Macintosh:
Imaging, are useful if you pursue this alternate approach. �

When the user saves a document, your application should store the data in your own
application-defined data structures. (For example, the sample code in this chapter
stores a handle to a TextEdit edit record in a document record. The edit record contains
information about the text, such as it length and its own local coordinate system, and
a handle to the text itself.) You typically store information about the objects your
application displays onscreen by using coordinates local to the document, where the
upper-left corner of the document is located at (0,0).

The left side of Figure 5-16 on the next page illustrates a case in which the user has just
opened an existing document, and the SurfWriter sample application displays the top of
the document. In this example, the document consists of 35 lines of monostyled text, and
the line height throughout is 10 pixels. Therefore, the document is 350 pixels long. When
the user first opens the document, the window origin is identical to the upper-left point
of the document’s space: both are at (0,0).

In this example, the window displays 15 lines of text, which amount to 150 pixels. Hence,
the maximum setting for the scroll bar is 200 because the vertical scroll bar’s maximum
setting is the length of the document minus the height of its window.

Imagine that the user drags the scroll box halfway down the vertical scroll bar. Because
the user wishes to scroll down, the SurfWriter application must move the text of the
document up so that more of the bottom of the document shows. Moving a document up
in response to a user request to scroll down requires a scrolling distance with a negative
value. (Likewise, moving a document down in response to a user request to scroll up
requires a scrolling distance with a positive value.)

Using FindControl, TrackControl, and GetControlValue, the SurfWriter
application determines that it must move the document up by 100 pixels—that is,
by a scrolling distance of –100 pixels. (Using FindControl, TrackControl, and
GetControlValue to determine the scrolling distance is explained in detail in
“Scrolling in Response to Events in the Scroll Box” beginning on page 5-53.)

C H A P T E R 5

Control Manager

5-46 Using the Control Manager

Figure 5-16 Moving a document relative to its window

The SurfWriter application then uses the QuickDraw procedure ScrollRect to shift
the bits displayed in the window by a distance of –100 pixels. The ScrollRect
procedure moves the document upward by 100 pixels (that is, by 10 lines); 5 lines from
the bottom of the previous window display now appear at the top of the window,
and the SurfWriter application adds the rest of the window to an update region for
later updating.

The ScrollRect procedure doesn’t change the coordinate system of the window;
instead it moves the bits in the window to new coordinates that are still in the window’s
local coordinate system. For purposes of updating the window, you can think of this
as changing the coordinates of the entire document, as illustrated in the right side of
Figure 5-16.

The ScrollRect procedure takes four parameters: a rectangle to scroll, a horizontal
distance to scroll, a vertical distance to scroll, and a region handle. Typically, when
specifying the rectangle to scroll, your application passes a value representing the content
region minus the scroll bar regions, as shown in Listing 5-17.

(0,0)

(150,0)

(350,0)

(0,0)

(150,0)

(250,0)

(—100,0)

When the user first opens a document After the application moves the document
 vertically by —100 pixels

Update
region

C H A P T E R 5

Control Manager

Using the Control Manager 5-47

Listing 5-17 Using ScrollRect to scroll the bits displayed in the window

PROCEDURE DoGraphicsScroll (window: WindowPtr;

 hDistance, vDistance: Integer);

VAR

myScrollRect: Rect;

updateRegion: RgnHandle;

BEGIN

{initially, use the window's portRect as the rectangle to scroll}

myScrollRect := window^.portRect;

{subtract vertical and horizontal scroll bars from rectangle}

myScrollRect.right := myScrollRect.right - 15;

myScrollRect.bottom := myScrollRect.bottom - 15;

updateRegion := NewRgn; {always initialize the update region}

ScrollRect(myScrollRect, hDistance, vDistance, updateRegion);

InvalRgn(updateRegion);

DisposeRgn(updateRegion);

END; {of DoGraphicsScroll}

IMPORTANT

You must first pass a horizontal distance as a parameter to ScrollRect
and then pass a vertical distance. Notice that when you specify a point in
the QuickDraw coordinate system, the opposite is true: you name the
vertical coordinate first and the horizontal coordinate second. �

Although each scroll bar is 16 pixels along its shorter dimension, the
DoGraphicsScroll procedure shown in Listing 5-17 subtracts only 15 pixels
because the edge of the scroll bar overlaps the edge of the window frame, leaving
only 15 pixels of the scroll bar in the content region of the window.

The bits that ScrollRect shifts outside of the rectangle specified by myScrollRect are
not drawn on the screen, and they are not saved—it is your application’s responsibility to
keep track of this data.

The ScrollRect procedure shifts the bits a distance of hDistance pixels horizontally
and vDistance pixels vertically; when DoGraphicsScroll passes positive values in
these parameters, ScrollRect shifts the bits in the myScrollRect parameter to the
right and down, respectively. This is appropriate when the user intends to scroll left or
up, because when the SurfWriter application finishes updating the window, the user sees
more of the left and top of the document, respectively. (Remember: to scroll up or left,
move the document down or right, both of which are in the positive direction.)

When DoGraphicsScroll passes negative values in these parameters, ScrollRect
shifts the bits in the myScrollRect parameter to the left or up. This is appropriate when
the user intends to scroll right or down, because when the SurfWriter application finishes
updating the window, the user sees more of the right and the bottom of the document.
(Remember: to scroll down or right, move the document up or left, both of which are in
the negative direction.)

C H A P T E R 5

Control Manager

5-48 Using the Control Manager

In Figure 5-16, the SurfWriter application determines a vertical scrolling distance of –100,
which it passes in the vDistance parameter as shown here:

ScrollRect(myScrollRect, 0, –100, updateRegion);

If, however, the user were to move the scroll box back to the beginning of the document
at this point, the SurfWriter application would determine that it has a distance of
100 pixels to scroll up, and it would therefore pass a positive value of 100 in the
vDistance parameter.

After using ScrollRect to move the bits that already exist in the window, the
SurfWriter application should draw the bits in the update region of the window by using
its standard window-updating code.

As previously explained, ScrollRect in effect changes the coordinates of the document
relative to the local coordinates of the window. In terms of the window’s local coordinate
system, the upper-left corner of the document is now at (–100, 0), as shown on the right
side of Figure 5-16. To facilitate updating the window, the SurfWriter application uses the
QuickDraw procedure SetOrigin to change the local coordinate system of the window
so that the SurfWriter application can treat the upper-left corner of the document as again
lying at (0,0).

The SetOrigin procedure takes two parameters: the first is a new horizontal coordinate
for the window origin, and the second is a new vertical coordinate for the window origin.

IMPORTANT

Like ScrollRect, SetOrigin requires you to pass a horizontal
coordinate and then a vertical coordinate. Notice that when you
specify a point in the QuickDraw coordinate system, the opposite
is true: you name the vertical coordinate first and the horizontal
coordinate second. �

Any time you are ready to update a window (such as after scrolling it), you can use
GetControlValue to determine the current setting of the horizontal scroll bar and
pass this value as the new horizontal coordinate for the window origin. Then use
GetControlValue to determine the current setting of the vertical scroll bar and pass
this value as the new vertical coordinate for the window origin. Using SetOrigin in this
fashion shifts the window’s local coordinate system so that the upper-left corner of the
document is always at (0,0) when you redraw the document within its window.

For example, after the user manipulates the vertical scroll bar to move (either up or
down) to a location 100 pixels from the top of the document, the SurfWriter application
makes the following call:

SetOrigin(0, 100);

Although the scrolling distance was –100, which is relative, the current setting for the
scroll bar is now at 100. (Because you specify a point in the QuickDraw coordinate
system by its vertical coordinate first and then its horizontal coordinate, the order of
parameters to SetOrigin may be initially confusing.)

C H A P T E R 5

Control Manager

Using the Control Manager 5-49

The left side of Figure 5-17 shows how the SurfWriter application uses the SetOrigin
procedure to move the window origin to the point (100,0) so that the upper-left corner of
the document is now at (0,0) in the window’s local coordinate system. This restores the
document’s original coordinate space and makes it easier for the application to draw in
the update region of the window.

Figure 5-17 Updating the contents of a scrolled window

After restoring the document’s original coordinates, the SurfWriter application updates
the window, as shown on right side of Figure 5-17. The application draws lines 16
through 24, which it stores in its document record as beginning at (160,0) and ending
at (250,0).

To review what has happened up to this point: the user has dragged the scroll box
one-half of the distance down the vertical scroll bar; the SurfWriter application
determines that this distance amounts to a scroll distance of –100 pixels; the SurfWriter
application passes this distance to ScrollRect, which shifts the bits in the window
100 pixels upward and creates an update region for the rest of the window; the
SurfWriter application passes the vertical scroll bar’s current setting (100 pixels) in a
parameter to SetOrigin so that the document’s local coordinates are used when the
update region of the window is redrawn; and, finally, the SurfWriter application draws
the text in the update region of the window.

However, the window origin cannot be left at (100,0); instead, the SurfWriter application
must use SetOrigin to reset it to (0,0) after performing its own drawing, because the

After the application restores the document’s
original coordinates

After the application updates the window’s
contents

(100,0)

(250,0)

(350,0)

(0,0)

Update
region

(100,0)

(250,0)

(350,0)

(0,0)

C H A P T E R 5

Control Manager

5-50 Using the Control Manager

Window and Control Managers always assume the window’s upper-left point is at (0,0)
when they draw in a window. Figure 5-18 shows how the application uses SetOrigin to
set the window origin back to (0,0) at the conclusion of its window-updating routine.
After the update, the application begins processing events in its event loop again.

Figure 5-18 Restoring the window origin to (0,0)

The left side of Figure 5-19 illustrates what happens when the user scrolls all the way
to the end of the document—a distance of another 10 lines, or 100 pixels. After the
SurfWriter application calls ScrollRect, the bottom 5 lines from the previous window
display appear at the top of the new window and the bottom of the window becomes
a new update region. Because the user has scrolled a total distance of 200 pixels, the
application uses SetOrigin to change the window origin to (200,0), as shown on the
right side of Figure 5-19.

The left side of Figure 5-20 shows the SurfWriter application drawing in the update
region of the window; the right side of the figure shows the SurfWriter application
restoring the window origin to (0,0).

After the application restores the window
origin to (0,0)

(150,0)

(250,0)

(—100,0)

(0,0)

C H A P T E R 5

Control Manager

Using the Control Manager 5-51

Figure 5-19 Scrolling to the end of a document

Figure 5-20 Updating a window’s contents and returning the window origin to (0,0)

(200,0)

(350,0)

(0,0)

After the application moves the document
vertically by another —100 pixels

 After the application restores the document’s
 original coordinates

(0,0)

(150,0)

(—200,0)

Update
region

Update
region

After the application updates the window’s
contents

(200,0)

(350,0)

(0,0)

After the application restores the window
origin to (0,0)

(0,0)

(150,0)

(—200,0)

C H A P T E R 5

Control Manager

5-52 Using the Control Manager

How your application determines a scrolling distance and how it then moves the bits in
the window by this distance are explained in greater detail in the next two sections,
“Scrolling in Response to Events in the Scroll Box” and “Scrolling in Response to Events
in Scroll Arrows and Gray Areas.” “Drawing a Scrolled Document Inside a Window,”
which follows these two sections, describes what your application should do in its
window-updating code to draw in a window that has been scrolled. You can find more
detailed information about the SetOrigin and ScrollRect procedures in Inside
Macintosh: Imaging.

So far, this discussion has assumed that you are scrolling in response to the user’s
manipulation of a scroll bar. Most of the time, the user decides when and where to scroll.
However, in addition to user manipulation of scroll bars, there are four cases in which
your application must scroll through the document. Your application design must take
these cases into account.

� When your application performs an operation whose side effect is to make a new
selection or move the insertion point, you should scroll to show the new selection. For
example, when the user invokes a search operation, your application locates the
desired text. If this text appears in a part of the document that isn’t currently visible,
you should scroll to show the selection. Such scrolling might also be necessary after
the user invokes a paste operation. If the insertion point appears after the end of
whatever was pasted, scroll until the selection and the new insertion point are visible.

� When the user enters information from the keyboard at the edge of a window, you
should scroll to incorporate and display the new information. The user’s focus will be
on the new information, so it doesn’t make sense to maintain the document’s position
and record the new information out of the user’s view. In general, a word processor
scrolls one line of text, and a database or spreadsheet scrolls one field. Graphics
applications should scroll to display an entire object when possible. Otherwise,
determine how quickly your application can redraw the window contents during
scrolling and adjust the scrolling to minimize blinking and redrawing. Try to ensure
that the scrolling is sufficiently fast so as not to annoy users but not so fast as to
confuse them.

� When the user moves the cursor past the edge of the window while holding down the
mouse button to make an extended selection, you should scroll the window in the
direction of cursor movement. The rate of scrolling can be the same as if the user were
holding down the mouse button on the corresponding scroll arrow. In some cases it
makes sense to vary the scrolling speed so that it is faster as the user moves the cursor
farther away from the edge of the window.

� Sometimes the user selects something, scrolls to a new location, and then tries to
perform an operation on the selection. In this case, you should scroll so that the
selection is showing before your application performs the operation. Showing the
selection makes it clear to the user what is being changed.

When designing the document-scrolling routines for your application, also try to keep
the following user interface guidelines in mind:

� Whenever your application scrolls automatically, avoid unnecessary scrolling. Users
want to control the position of documents, so your application should move a
document only as much as necessary. Thus, if part of a selection is already showing in
a window, don’t scroll at all. One exception to this rule is when the hidden part of the

C H A P T E R 5

Control Manager

Using the Control Manager 5-53

selection is more important than the visible part; then scroll to show the important
part. For example, suppose a user selects a large block of text and only the bottom is
currently visible. If the user then types a character, your application must scroll to the
location of the newly typed characters so that they are visible.

� If your application can scroll in one orientation to reveal the selection, don’t scroll in
both orientations. That is, if you can scroll vertically to show the selection, don’t also
scroll horizontally.

� When you can show context on either side of a selection, it’s useful to do so. It’s
also better to position a selection somewhere near the middle of a window than
against a corner. When the selection is too large to fit in the window, it’s helpful to
display unselected information at either the beginning or the end of the selection
to provide context.

Scrolling in Response to Events in the Scroll Box 5

“Responding to Mouse Events in a Control” beginning on page 5-30 describes in
general how to use FindControl and TrackControl in your event-handling code.
Listing 5-18 shows how to use these routines to respond in particular to mouse events
in a scroll bar.

Listing 5-18 Responding to mouse events in a scroll bar

PROCEDURE DoContentClick (window: WindowPtr; event: EventRecord);

VAR

mouse: Point;

control: ControlHandle;

part: Integer;

myData: MyDocRecHnd;

oldSetting: Integer;

scrollDistance: Integer;

windowType: Integer;

BEGIN

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

mouse := event.where;

GlobalToLocal(mouse); {convert to local coordinates}

part := FindControl(mouse, window, control);

CASE part OF

{handle all other parts first; handle scroll bar parts last}

inThumb: {mouse-down in scroll box}

C H A P T E R 5

Control Manager

5-54 Using the Control Manager

BEGIN {get scroll bar setting}

oldSetting := GetControlValue(control);

{let user drag scroll box around}

part := TrackControl(control, mouse, NIL);

{until user releases mouse button}

IF part = inThumb THEN

BEGIN {get new distance to scroll}

scrollDistance := oldSetting - GetControlValue(control);

IF scrollDistance <> 0 THEN

IF control = myData^^.vScrollBar THEN

TEPinScroll(0, scrollDistance *

myData^^.editRec^^.lineHeight,

myData^^.editRec);

ELSE

TEPinScroll(scrollDistance, 0, myData^^.editRec);

END; {of handling mouse-up in scroll box}

END; {of handling mouse-down in scroll box}

inUpButton, inDownButton, inPageUp, in PageDown:

{mouse-down in scroll arrows or gray areas}

IF control = myData^^.vScrollBar THEN

{handle vertical scroll}

part := TrackControl(control, mouse, @MyVerticalActionProc)

ELSE {handle horizontal scroll}

part := TrackControl(control, mouse, @MyHorzntlActionProc);

OTHERWISE ;

END; {of CASE part}

HUnLock(Handle(myData));

END; {of kMyDocWindowType}

{handle other window types here}

END; {of CASE windowType}

END;

When the user presses the mouse button while the cursor is in a visible, active scroll box,
FindControl returns as its result the part code for a scroll box. That part code and the
constant you can use to represent it are listed here:

As shown in Listing 5-18, when FindControl returns the value for inThumb, your
application should immediately call GetControlValue to determine the current setting
of the scroll bar. If the user drags the scroll box, you subtract from this setting the new
current setting that becomes available when the user releases the mouse button, and you
use this result for your scrolling distance.

Constant Part code Control part

inThumb 129 Scroll box

C H A P T E R 5

Control Manager

Using the Control Manager 5-55

After using GetControlValue to determine the current setting of the scroll bar, use
TrackControl to follow the movements of the cursor inside the scroll box and to drag a
dotted outline of the scroll box in response to the user’s movements.

When the user releases the mouse button, TrackControl returns inThumb if the cursor
is still in the scroll box or 0 if the cursor is outside the scroll box. When TrackControl
returns 0, your application does nothing. Otherwise, your application again uses
GetControlValue to calculate the distance to scroll.

Calculate the distance to scroll by calling GetControlValue and subtracting the new
current setting of the scroll bar from its previous setting, which you determine by calling
GetControlValue before the user releases the mouse button. If this distance is not 0,
you should move the bits in the window by this distance and update the contents of the
rest of the window.

Before scrolling, you must determine if the scroll bar is a vertical scroll bar or a horizon-
tal scroll bar. As previously explained in this chapter, you should store handles to your
scroll bars in a document record, one of which you create for every document. By
comparing the field containing the vertical scroll bar handle, you can determine whether
the control handle returned by FindControl is the handle to the vertical scroll bar. If so,
the user has moved the scroll box of the vertical scroll box. If not, the user has moved the
scroll box of the horizontal scroll bar.

After determining which scroll bar contains the scroll box that the user has dragged, you
move the document contents of the window by the appropriate scrolling distance. That
is, for a positive scrolling distance in the vertical scroll bar, move the bits in the window
down by that distance. When you update the window, this displays more lines from the
top of the document—which is appropriate when the user moves the scroll box up. For a
positive scrolling distance in the horizontal scroll bar, move the bits in the window to the
right by that distance. When you update the window, this displays more lines from the
left side of the document—which is appropriate when the user moves the scroll box to the
left. (Remember: to scroll up or left, move the document down or right, both of which are
in the positive direction.)

For a negative scrolling distance in the vertical scroll bar (such as that shown in
Figure 5-16 on page 5-46), move the bits in the window up by that distance. When you
update the window, this displays more lines from the bottom of the document—which
is appropriate when the user moves the scroll box down. For a negative scrolling distance
in the horizontal scroll bar, move the bits in the window to the left by that distance. When
you update the window, this displays more lines from the right side of the document—
which is appropriate when the user moves the scroll box to the right. (Remember: to scroll
down or right, move the document up or left, both of which are in the negative
direction.)

The previous examples in this chapter have shown an application that uses a TextEdit
edit record to store monostyled text created by the user. For simple text-handling
needs, TextEdit provides many routines that simplify your work; for example, the
TEPinScroll procedure scrolls through the text in the view rectangle of an edit record
by the number of pixels specified by your application; TEPinScroll stops scrolling
when the last line scrolls into the view rectangle.

C H A P T E R 5

Control Manager

5-56 Using the Control Manager

The TEPinScroll procedure takes three parameters: the number of pixels to move the
text horizontally, the number of pixels to move the text vertically, and a handle to an edit
record. Positive values in the first two parameters move the text right and down,
respectively, and negative values move the text left and up.

The DoContentClick procedure, illustrated in Listing 5-18 on page 5-53, passes the
scrolling distance in the second parameter of TEPinScroll for a vertical scroll bar, and
it passes the scrolling distance in the first parameter for a horizontal scroll bar.

Listing 5-16 on page 5-41 shows an application-defined routine, MyAdjustHV, called by
the SurfWriter sample application whenever it creates, opens, or resizes a window. This
routine defines the current and maximum settings for a vertical scroll bar in terms of lines
of text.

The DoContentClick procedure on page 5-53 uses GetControlValue to determine
the control’s current setting—which for the vertical scroll bar DoContentClick
calculates as some number of lines. When determining the vertical scroll bar’s scrolling
distance, DoContentClick again calculates a value representing some number of lines.

However, TEPinScroll expects pixels, not lines, to be passed in its parameters. There-
fore, DoContentClick multiplies the scrolling distance (which it calculates as some
number of lines of text) by the line height (which is maintained in the edit record for
monostyled text as some number of pixels). In this way, DoContentClick passes a
scrolling distance—in terms of pixels—to TEPinScroll, as shown in this code fragment.

IF control = myData^^.vScrollBar THEN

TEPinScroll(0, scrollDistance * myData^^.editRec^^.lineHeight,

myData^^.editRec);

Figure 5-16 on page 5-46 illustrates a scrolling distance of –10 lines. If the line height
is 10 pixels, the SurfWriter application passes –100 as the second parameter to
TEPinScroll.

The TEPinScroll procedure adds the scrolled-away area to the update region and
generates an update event so that the text in the edit record’s view rectangle can be
updated. In its code that handles update events for windows, the SurfWriter sample
application then uses the TEUpdate procedure—as described in “Drawing a Scrolled
Document Inside a Window” beginning on page 5-62— for its windows that include
TextEdit edit records.

To learn more about TEPinScroll, the TextEdit edit record, and other facilities offered
by TextEdit, see Inside Macintosh: Text.

The QuickDraw procedure ScrollRect is a more general-purpose routine for moving
bits in a window when scrolling. If you use ScrollRect to scroll the bits displayed
in the window, you should define a routine like DoGraphicsScroll, shown in
Listing 5-17 on page 5-47, and use it instead of TEPinScroll, which is used in
Listing 5-18 on page 5-53.

The ScrollRect procedure returns in the updateRegion parameter the area that
needs to be updated. The DoGraphicsScroll procedure shown in Listing 5-17 on
page 5-47 then uses the QuickDraw procedure InvalRgn to add this area to the update

C H A P T E R 5

Control Manager

Using the Control Manager 5-57

region, forcing an update event. In your code for handling update events, you draw in
the area of the window from which ScrollRect has moved the bits, as described in
“Drawing a Scrolled Document Inside a Window” beginning on page 5-62.

When a mouse-down event occurs in the scroll arrows or gray areas of the vertical
scroll bar, the DoContentClick routine in Listing 5-18 on page 5-53 calls
TrackControl and passes it a pointer to an application-defined action procedure
called MyVerticalActionProc. For the horizontal scroll bar, DoContentClick
calls TrackControl and passes it a pointer to an action procedure called
MyHorzntlActionProc. These action procedures are described in the next section.

Scrolling in Response to Events in Scroll Arrows and Gray Areas 5

With each click in a scroll arrow, your application should scroll by a distance of one
unit (that is, by a single line, character, cell, or whatever your application deems
appropriate) in the chosen direction. When the user holds the mouse button down
while the cursor is in a scroll arrow, your application should scroll continuously by single
units until the user releases the mouse button or until your application has scrolled as far
as possible in the document.

With each click in a gray area, your application should scroll in the appropriate direction
by a distance of just less than the height or width of one window to show part of the
previous window (thus placing the newly displayed material in context). When the user
holds the mouse button down while the cursor is in a gray area, your application should
scroll continuously in units of this distance until the user releases the mouse button or
until your application has scrolled as far as possible in the document.

When your application finishes scrolling, it should use SetControlValue to move the
scroll box accordingly.

As previously described in this chapter, you use FindControl to determine when a
mouse-down event has occurred in a control in one of your windows, and you use
TrackControl to follow the movements of the cursor inside the control, to give the user
visual feedback, and then to inform your application when the user releases the mouse
button.

When a mouse-down event occurs in the scroll arrows or the gray areas of an active scroll
bar, FindControl returns as its result the appropriate part code. The part codes for the
scroll arrows and gray areas, and the constants you can use to represent them, are listed
here:

Constant Part code Control part

inUpButton 20 Up scroll arrow for a vertical scroll bar, left scroll arrow
for a horizontal scroll bar

inDownButton 21 Down scroll arrow for a vertical scroll bar, right scroll
arrow for a horizontal scroll bar

inPageUp 22 Gray area above scroll box for a vertical scroll bar, gray
area to left of scroll box for a horizontal scroll bar

inPageDown 23 Gray area below scroll box for a vertical scroll bar, gray
area to right of scroll box for a horizontal scroll bar

C H A P T E R 5

Control Manager

5-58 Using the Control Manager

When FindControl returns one of these part codes, your application should
immediately call TrackControl. As long as the user holds down the mouse button
while the cursor is in a scroll arrow, TrackControl highlights the scroll arrow,
as shown in Figure 5-8 on page 5-12. When the user releases the mouse button,
TrackControl removes the highlighting.

For all of the other standard controls, as well as for the scroll box in a scroll bar, your
application doesn’t respond until TrackControl reports a mouse-up event in the same
control part where the mouse-down event initially occurred. However, for scroll arrows
and gray areas, your application must respond by scrolling the document before
TrackControl reports that the user has released the mouse button. When you call
TrackControl for scroll arrows and gray areas, you must define an action procedure
that scrolls appropriately until TrackControl reports that the user has released the
mouse button.

When the user releases the mouse button or moves the cursor away from the scroll arrow
or gray area, TrackControl returns as its result one of the previously listed values that
represent the control part. As shown in Listing 5-18 on page 5-53, the DoContentClick
procedure tests for the part codes inUpButton, inDownButton, inPageUp, and
inPageDown to determine when a mouse-down event occurs in a
scroll arrow or a gray area.

When the user presses or holds down the mouse button while the cursor is in either
the scroll arrow or the gray area of the vertical scroll bar, DoContentClick calls
TrackControl and passes it a pointer to an application-defined action procedure
called MyVerticalActionProc. For the horizontal scroll bar, DoContentClick
calls TrackControl and passes it a pointer to an action procedure called
MyVerticalActionProc. In turn, TrackControl calls these action procedures to
scroll continuously until the user releases the mouse button.

Note
As an alternative to passing a pointer to your action procedure
in a parameter to TrackControl, you can use the SetControlAction
procedure to store a pointer to the action procedure in the
contrlAction field in the control record. When
you pass Pointer(–1) instead of a procedure pointer to
TrackControl, TrackControl uses the action procedure
pointed to in the control record. �

Listing 5-19 shows two sample action procedures: MyVerticalActionProc—which
responds to mouse events in the scroll arrows and gray areas of a vertical scroll bar—
and MyHorzntlActionProc—which responds to those same events in a horizontal
scroll bar. When TrackControl calls these action procedures, it passes a control handle
and an integer representing the part of the control in which the mouse event occurred.
Both MyVerticalActionProc and MyHorzntlActionProc use the constants
inUpButton, inDownButton, inPageUp, and inPageDown to test for the control part
passed by TrackControl.

C H A P T E R 5

Control Manager

Using the Control Manager 5-59

Listing 5-19 Action procedures for scrolling through a text document

PROCEDURE MyVerticalActionProc (control: ControlHandle; part: Integer);

VAR

scrollDistance: Integer;

window: WindowPtr;

myData: MyDocRecHnd;

BEGIN

IF part <> 0 THEN

BEGIN

window := control^^.contrlOwner; {get the control's window}

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

CASE part OF

inUpButton, inDownButton: {get one line to scroll}

scrollDistance := 1;

inPageUp, inPageDown: {get the window's height}

BEGIN

scrollDistance := (myData^^.editRec^^.viewRect.bottom -

myData^^.editRec^^.viewRect.top)

DIV myData^^.editRec^^.lineHeight;

{subtract 1 line so user sees part of previous window}

scrollDistance := scrollDistance - 1;

END;

END; {of part CASE}

IF (part = inDownButton) OR (part = inPageDown) THEN

scrollDistance := -scrollDistance;

MyMoveScrollBox(control, scrollDistance);

IF scrollDistance <> 0 THEN {scroll by line or by window}

TEPinScroll(0, scrollDistance * myData^^.editRec^^.lineHeight,

myData^^.editRec);

HUnLock(Handle(myData));

END;

END; {of MyVerticalActionProc}

PROCEDURE MyHorzntlActionProc (control: ControlHandle; part: Integer);

VAR

scrollDistance: Integer;

window: WindowPtr;

myData: MyDocRecHnd;

BEGIN

IF part <> 0 THEN

BEGIN

window := control^^.contrlOwner; {get the control's window}

C H A P T E R 5

Control Manager

5-60 Using the Control Manager

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

CASE part OF

inUpButton, inDownButton: {get a few pixels}

scrollDistance := kButtonScroll;

inPageUp, inPageDown: {get a window's width}

scrollDistance := myData^^.editRec^^.viewRect.right -

 myData^^.editRec^^.viewRect.left;

END; {of part CASE}

IF (part = inDownButton) OR (part = inPageDown) THEN

scrollDistance := -scrollDistance;

MyMoveScrollBox(control, scrollDistance);

IF scrollDistance <> 0 THEN

TEPinScroll(scrollDistance, 0, myData^^.editRec);

HUnLock(Handle(myData));

END;

END; {of MyHorzntlActionProc}

Each action procedure begins by determining an appropriate scrolling distance. For
the scroll arrows in a vertical scroll bar, MyVerticalActionProc defines the
scrolling distance as one line. For the gray areas in a vertical scroll bar,
MyVerticalActionProc determines the scrolling distance in lines by dividing the
window height by the line height; the window height is determined by subtracting
the bottom coordinate of the view rectangle (defined in the edit record) from its top
coordinate. Then MyVerticalActionProc subtracts 1 from this distance so that
when the user presses the mouse button while the cursor is in a gray area,
MyVerticalActionProc scrolls one line less than the total number of lines in
the window.

The MyVerticalActionProc procedure later multiplies these line distances by the
line height to derive pixel distances to pass in parameters to TEPinScroll. Also,
MyVerticalActionProc turns these distances into negative values when the
mouse-down event occurs in the lower scroll arrow or in the gray area below the
scroll box.

For the scrolling distance of the scroll arrows in horizontal scroll bars,
MyHorzntlActionProc uses a predetermined pixel distance—roughly the
document’s average character width. For the scrolling distance of the gray areas
MyHorzntlActionProc uses the window width (which is derived by
subtracting the left coordinate of the view rectangle from its right coordinate). The
MyHorzntlActionProc routine turns these distances into negative values when
the mouse-down event occurs in the right scroll arrow or in the gray area to the
right of the scroll box.

After calling MyMoveScrollBox, an application-defined routine that moves the scroll
box, both action procedures use TEPinScroll to move the text displayed in the window
by the scrolling distance. (In this example, the SurfWriter application is

C H A P T E R 5

Control Manager

Using the Control Manager 5-61

scrolling a simple monostyled text document stored as a TextEdit edit record. For
a discussion of using the more general-purpose QuickDraw scrolling routine
ScrollRect, see the previous section, “Scrolling in Response to Events in the Scroll
Box” beginning on page 5-53.)

The TEPinScroll procedure automatically creates an update region and invokes an
update event. In its window-updating code, the SurfWriter application uses the
TEUpdate procedure to draw the text in the update region, as shown in Listing 5-23 on
page 5-65.

The action procedures continue moving the text by the specified distances over and over
until the user releases the mouse button and TrackControl completes. If there is no
more area to scroll through, TEPinScroll automatically stops scrolling, as your
application should if you implement your own scrolling routine.

Listing 5-20 shows how the application-defined procedure MyMoveScrollBox uses
GetControlValue, GetControlMaximum, and SetControlValue to move the scroll
box an appropriate distance while the action procedures scroll through the document.
The MyMoveScrollBox procedure uses GetControlMaximum to determine the
maximum scrolling distance, GetControlValue to determine the current setting for the
scroll box, and SetControlValue to assign the new setting and move the scroll box.
Use of the SetControlMaximum and SetControlValue routines is described in
“Determining and Changing Control Settings” beginning on page 5-37;
GetControlMaximum is described in detail on page 5-104.

Listing 5-20 Moving the scroll box from the action procedures

PROCEDURE MyMoveScrollBox (control: ControlHandle;

 scrollDistance: Integer);

VAR

oldSetting, setting, max: Integer;

BEGIN

oldSetting := GetControlValue(control); {get last setting}

max := GetControlMaximum(control); {get maximum setting}

{subtract action procs' scroll amount from last setting to get new setting}

setting := oldSetting - scrollDistance;

IF setting < 0 THEN

setting := 0

ELSE IF setting > max THEN

setting := max;

SetControlValue(control, setting); {assign new current setting}

END; {of MyMoveScrollBox}

The previous two sections have described how to move the bits displayed in the window;
the next section describes how to draw into the update region.

C H A P T E R 5

Control Manager

5-62 Using the Control Manager

Drawing a Scrolled Document Inside a Window 5

The previous two sections have described how to use the QuickDraw procedure
ScrollRect and the TextEdit procedure TEPinScroll in response to the user
manipulating any of the five parts of a scroll bar. After using these or your own routines
for moving the bits in your window, your application must draw into the update region.
Typically, you use your own window-updating code for this purpose.

Both InvalRect and TEPinScroll, which are used in the examples shown earlier in
this chapter, create update regions that cause update events. As described in the chapters
“Window Manager” and “Event Manager” in this book, your application should draw in
the update regions of your windows when it receives update events. If you create your
own scrolling routine to use instead of ScrollRect or TEPinScroll, you should
guarantee that it generates an update event or that it explicitly calls your own
window-updating routine.

Listing 5-21 shows an application-defined routine, DoUpdate, that the SurfWriter
application calls whenever it receives an update event. In this procedure, the application
tests for two different types of windows: windows containing graphics objects and
windows containing text created with TextEdit routines.

Listing 5-21 An application-defined update routine

PROCEDURE DoUpdate (window: WindowPtr);

VAR

windowType: Integer;

BEGIN

windowType := MyGetWindowType(window);

CASE windowType OF

kMyGraphicsWindow: {window containing graphics objects}

BEGIN

BeginUpdate(window);

MyDrawGraphicsWindow(window);

EndUpdate(window);

END; {of updating graphics windows}

kMyDocWindow: {window containing TextEdit text}

BEGIN

BeginUpdate(window);

MyDrawWindow(window);

EndUpdate(window);

END; {of updating TextEdit document windows}

{handle other window types——modeless dialogs, etc.——here}

END; {of windowType CASE}

END; {of DoUpdate}

C H A P T E R 5

Control Manager

Using the Control Manager 5-63

In this example, when the window requiring updating is of type kMyGraphicsWindow,
DoUpdate uses another application-defined routine called MyDrawGraphicsWindow.
When the window requiring updating is of type kMyDocWindow, DoUpdate uses
another application-defined routine—namely, MyDrawWindow. Listing 5-22 shows
the MyDrawGraphicsWindow routine and Listing 5-23 on page 5-65 shows the
MyDrawWindow routine.

Before drawing into the scrolled-away portion of the window, both of these routines
use the QuickDraw, Window Manager, and Control Manager routines necessary for
updating windows. (“Updating a Control” beginning on page 5-29 describes the
UpdateControls procedure; see the chapter “Window Manager” in this book for a
detailed description of how to use the rest of these routines to update a window.)

Listing 5-22 Redrawing a window containing graphics objects

PROCEDURE MyDrawGraphicsWindow (window: WindowPtr);

VAR

myData: MyDocRecHnd;

i: Integer;

BEGIN

SetPort(window);

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH window^ DO

BEGIN

EraseRect(portRect);

UpdateControls(window, visRgn);

DrawGrowIcon(window);

SetOrigin(GetControlValue(myData^^.hScrollBar),

 GetControlValue(myData^^.vScrollBar));

i := 1;

WHILE i <= myData^^.numObjects DO

DrawMyObjects(portRect, myData^^.numObjects[i]);

i := i + 1;

END; {of WHILE}

SetOrigin(0, 0);

END;

HUnLock(Handle(myData));

END; {of MyDrawGraphicsWindow}

The MyDrawGraphicsWindow routine uses the QuickDraw procedure SetOrigin to
change the window origin by an amount equal to the scroll bar settings, so that the
upper-left corner of the document lies at (0,0) in the window’s local coordinate system.
The SurfWriter sample application performs this step so that its own drawing routines
can draw into the correct area of the window.

C H A P T E R 5

Control Manager

5-64 Using the Control Manager

Notice that MyDrawGraphicsWindow calls SetOrigin only after calling the necessary
Window Manager and Control Manager routines, because the Window Manager and
Control Manager always expect the window origin to be at (0,0).

By using SetOrigin to change the window origin, MyDrawGraphicsWindow can treat
the objects in its document as being located in a coordinate system where the upper-left
corner of the document is always at (0,0). Then MyDrawGraphicsWindow calls another
of its own routines, DrawMyObjects, to draw the objects it has stored in its document
record for the window.

After performing all its own drawing in the window, MyDrawGraphicsWindow again
uses SetOrigin—this time to reset the window origin to (0,0) so that future Window
Manager and Control Manager routines will draw into the correct area of the window.

Figure 5-16 through Figure 5-20 earlier in this chapter help to illustrate how to use
SetOrigin to offset the window’s coordinate system so that you can treat the objects
in your document as fixed in the document’s own coordinate space. However, it is not
necessary for your application to use SetOrigin. Your application can leave the
window’s coordinate system fixed and instead offset the items in your document by the
amount equal to the scroll bar settings. The QuickDraw procedures OffsetRect,
OffsetRgn, SubPt, and AddPt, which are described in Inside Macintosh: Imaging,
are useful if you pursue this approach.

Note
The SetOrigin procedure does not move the window’s clipping region.
If you use clipping regions in your windows, use the QuickDraw
procedure GetClip to store your clipping region immediately after your
first call to SetOrigin. Before calling your own window-drawing
routine, use the QuickDraw procedure ClipRect to define a new
clipping region—to avoid drawing over your scroll bars, for example.
After calling your own window-drawing routine, use the QuickDraw
procedure ClipRect to restore the original clipping region. You
can then call SetOrigin again to restore the window origin to (0,0) with
your original clipping region intact. See Inside Macintosh:
Imaging for detailed descriptions of clipping regions and of these
QuickDraw routines. �

The previous examples in this chapter have shown an application that uses a TextEdit
edit record to store the information created by the user. For simple text-handling
needs, TextEdit provides many routines that simplify your work; for example, the
TEPinScroll procedure (used in Listing 5-18 on page 5-53 and Listing 5-19 on
page 5-59) resets the view rectangle of text stored in an edit record by the amount of
pixels specified by the application. The TEPinScroll procedure then generates an
update event for the window. The TextEdit procedure TEUpdate should then be called in
an application’s update routine to draw the update region of the scrolled window.

Listing 5-23 shows an application-defined procedure, MyDrawWindow, that uses
TEUpdate to update the text in windows of type kMyDocWindow. The TEUpdate
procedure manages all necessary shifting of coordinates during window updating, so
MyDrawWindow does not have to call SetOrigin as it does when it uses ScrollRect.

C H A P T E R 5

Control Manager

Using the Control Manager 5-65

Listing 5-23 Redrawing a window after scrolling a TextEdit edit record

PROCEDURE MyDrawWindow (window: WindowPtr);

VAR

myData: MyDocRecHnd;

BEGIN

SetPort(window);

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH window^ DO

BEGIN

EraseRect(portRect);

UpdateControls(window, visRgn);

DrawGrowIcon(window);

TEUpdate(portRect, myData^^.editRec);

END;

HUnLock(Handle(myData));

END; {of MyDrawWindow}

Moving and Resizing Scroll Bars 5
As described earlier in “Creating Scroll Bars” beginning on page 5-21, your application
initially defines the location of a scroll bar within a window—and the size of the scroll
bar—by specifying a rectangle in a control resource or in a parameter to NewControl.
However, your application must be able to size and move the scroll bar dynamically in
response to the user’s resizing of your windows.

The chapter “Window Manager” in this book describes how to size windows when
your application opens them and how to resize them—for example, in response to
the user dragging the size box or clicking the zoom box. This section describes how to
move and resize your scroll bars so that they fit properly on the right and bottom edges
of your windows.

When resizing your windows, your application should perform the following steps to
adjust each scroll bar.

1. Resize the window.

2. Use the HideControl procedure to make each scroll bar invisible.

3. Use the MoveControl procedure to move the vertical scroll bar to the right edge of
the window, and use the MoveControl procedure to move the horizontal scroll bar to
the bottom edge of the window.

4. Use the SizeControl procedure to lengthen or shorten each scroll bar, so that each
extends to the size box in the lower-right corner of the window.

5. Recalculate the maximum settings for the scroll bars and use SetControlMaximum to
update the settings and to redraw the scroll boxes appropriately. (Remember, you
derive a scroll bar’s maximum setting by subtracting the length or width of its
window from the length or width of the document.)

C H A P T E R 5

Control Manager

5-66 Using the Control Manager

6. Use the ShowControl procedure to make each scroll bar visible in its new location.

Figure 5-21 illustrates how to move and resize scroll bars in a resized window; if your
application neglected to use the HideControl procedure, the user would see each of
these steps as it took place.

Figure 5-21 Moving and resizing scroll bars

A window before the user resizes it

A window after the application
calls MoveControl twice

A window after the application
calls SizeControl and SetControlMaximum
for each scroll bar, then calls its update routine

A window after the application
uses SizeWindow

C H A P T E R 5

Control Manager

Using the Control Manager 5-67

Listing 5-14 on page 5-39 shows an application-defined routine, MyAdjustScrollBars,
that is called when the user opens a new window, opens an existing document in a
window, or resizes a window.

When it creates a window, MyAdjustScrollBars stores handles to each scroll bar
in a document record. By dereferencing the proper fields of the document record,
MyAdjustScrollBars passes handles for the vertical and horizontal scroll bars to
the HideControl procedure, which makes the scroll bars invisible. By making the scroll
bars invisible until it has finished manipulating them, MyAdjustScrollBars ensures
that the user won’t see the scroll bars blinking in different locations onscreen.

When MyAdjustScrollBars needs to adjust the size or location of either of the scroll
bars, it calls another application-defined routine, MyAdjustScrollSizes, which is
shown in Listing 5-24.

Listing 5-24 Changing the size and location of a window’s scroll bars

CONST

kScrollbarWidth = 16; {conventional width}

kScrollbarAdjust = kScrollbarWidth - 1; {to align with window frame}

kScrollTweek = 2; {to align scroll bars with size box}

PROCEDURE MyAdjustScrollSizes (window: WindowPtr);

VAR

teRect: Rect;

myData: MyDocRecHnd;

teTop, teRight, teBottom,teLeft: Integer;

BEGIN

MyGetTERect(window, teRect); {calculate the teRect based on the }

{ portRect, adjusted for the scroll bars}

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH window^.portRect DO

BEGIN

teTop := top;

teRight := right;

teBottom := bottom;

teLeft := left;

END;

WITH myData^^ DO

BEGIN

editRec^^.viewRect := teRect; {set the viewRect}

MyAdjustViewRect(editRec); {snap to nearest line}

{move the controls to match the new window size}

MoveControl(vScrollBar, teRight - kScrollbarAdjust, -1);

C H A P T E R 5

Control Manager

5-68 Using the Control Manager

SizeControl(vScrollBar, kScrollbarWidth, (teBottom - teTop) -

(kScrollbarAdjust - kScrollTweek));

MoveControl(hScrollBar, -1, teBottom - kScrollbarAdjust);

SizeControl(hScrollBar, (teRight - teLeft) -

(kScrollbarAdjust - kScrollTweek), kScrollbarWidth);

END;

HUnLock(Handle(myData));

END; {of MyAdjustScrollSizes}

The MyAdjustScrollSizes routine uses the boundary rectangle of the window’s
content region—which is stored in the portRect field of the window record—to
determine the size of the window. To move the scroll bars to the edges of the window,
MyAdjustScrollSizes uses the MoveControl procedure.

The MoveControl procedure takes three parameters: a handle to the control being
moved, the horizontal coordinate (local to the control’s window) for the new location of
the upper-left corner of the control’s rectangle, and the vertical coordinate for that new
location. The MoveControl procedure moves the control to this new location and
changes the rectangle specified in the controlRect field of the control’s control record.

In Listing 5-24, MyAdjustScrollSizes passes to MoveControl the handles to the
scroll bars. (The SurfWriter sample application stores the handle in its document record
for the window.)

Figure 5-22 illustrates the location of a vertical scroll bar before it is moved to a new
location within its resized window.

To determine a new horizontal (that is, left) coordinate of the upper-left corner of the
vertical scroll bar, MyAdjustScrollSizes subtracts 15 from the right coordinate of
the window. As shown in Figure 5-23, this puts the right edge of the 16-pixel-wide scroll
bar directly over the 1-pixel-wide window frame on the right side of the window.

In Listing 5-24 on page 5-67, MyAdjustScrollSizes specifies –1 as the vertical (that is,
top) coordinate of the upper-left corner of the vertical scroll bar. As shown in Figure 5-23,
this places the top edge of the scroll bar directly over the 1-pixel-wide line at the bottom
of the title bar. (The bottom line of the title bar has a vertical value of –1 in the window’s
local coordinate system.)

The MyAdjustScrollSizes routine specifies –1 as the horizontal coordinate of the
upper-left corner of the horizontal scroll bar; this puts the left edge of the horizontal
scroll bar directly over the 1-pixel-wide window frame. (The left edge of the window
frame has a horizontal value of –1 in the window’s local coordinate system.)

To fit your scroll bars inside the window frame properly, you should set the top
coordinate of a vertical scroll bar at –1 and the left coordinate of a horizontal scroll bar
at –1, unless your application uses part of the window’s scroll regions opposite the size
box for displaying information or additional controls. For example, you may choose to
display the current page number of the document in the lower-left corner of a window. In
this case, specify a left coordinate so that the horizontal scroll bar doesn’t obscure
this area.

C H A P T E R 5

Control Manager

Using the Control Manager 5-69

Figure 5-22 A vertical scroll bar before the application moves it within a resized window

Figure 5-23 A vertical scroll bar after the application moves its upper-left point

16 pixels

1 pixel

(–1,270)

(–1,285)

(0,300)

16 pixels

1-pixel overlap

(–1,285)

1-pixel overlap

(0,300)

C H A P T E R 5

Control Manager

5-70 Using the Control Manager

See Macintosh Human Interface Guidelines for a discussion of appropriate uses of a
window’s scroll areas for items other than scroll bars.

To determine a new vertical coordinate for the upper-left corner of the horizontal scroll
bar, MyAdjustScrollSizes subtracts 15 from the bottom coordinate of the window;
this puts the bottom edge of the scroll bar directly over the window frame at the bottom
of the window.

The MoveControl procedure moves the upper-left corner of a scroll bar so that it’s in the
proper location within its window frame. To make the vertical scroll bar fit the height of
the window, and to make the horizontal scroll bar fit the width of the window,
MyAdjustScrollSizes then uses the SizeControl procedure.

The SizeControl procedure takes three parameters: a handle to the control being sized,
a width in pixels for the control, and a height in pixels for the control. When resizing a
vertical scroll bar, you adjust its height; when resizing a horizontal scroll bar, you adjust
its width.

When using SizeControl to adjust the vertical scroll bar, MyAdjustScrollSizes
passes a constant representing 16 pixels for the vertical scroll bar’s width, which is the
conventional size.

To determine the proper height for this scroll bar, MyAdjustScrollSizes first derives
the height of the window by subtracting the top coordinate of the window’s rectangle
from its bottom coordinate. Then MyAdjustScrollSizes subtracts 13 pixels from this
window height and passes the result to SizeControl as the height of the vertical scroll
bar. The MyAdjustScrollSizes routine subtracts 13 pixels from the window height to
leave room for the 16-pixel-high size box (at the bottom of the window) minus three
1-pixel overlaps: one at the top of the window frame, one at the top of the size box, and
one at the bottom of the size box.

When using SizeControl to adjust the horizontal scroll bar, MyAdjustScrollSizes
passes a constant representing 16 pixels—the conventional height of the horizontal scroll
bar. To determine the proper width of this scroll bar, MyAdjustScrollSizes first
derives the width of the window by subtracting the left coordinate of the window’s
rectangle from its right coordinate. From this window width, MyAdjustScrollSizes
then subtracts 13 pixels to allow for the size box (just as it does when determining the
height of the vertical scroll bar).

When MyAdjustScrollSizes completes, it returns to MyAdjustScrollBars,
which then uses another of its own routines, MyAdjustScrollValues. In
turn, MyAdjustScrollValues calls MyAdjustHV (shown in Listing 5-16 on page 5-41),
which recalculates the maximum settings for the scroll bars and uses
SetControlMaximum to update the maximum settings and redraw the scroll
boxes appropriately.

When MyAdjustHV completes, it eventually returns to the SurfWriter application’s
MyAdjustScrollBars procedure, which then uses the ShowControl procedure
to make the newly adjusted scroll bars visible again.

C H A P T E R 5

Control Manager

Using the Control Manager 5-71

Defining Your Own Control Definition Function 5
The Control Manager allows you to implement controls other than the standard ones
(buttons, checkboxes, radio buttons, pop-up menus, and scroll bars). To implement
nonstandard controls, you must define your own control definition functions. Typically,
the only types of controls you might need to implement are sliders or dials, which are
similar to scroll bars in that they graphically represent a range of values the user can set.
As scroll bars have scroll boxes, your sliders and dials should have indicators for setting
values and indicating current settings.

Dials and sliders display the value, magnitude, or position of something, typically in
some pseudo-analog form—for instance, the position of a sliding switch, the reading on a
scale, or the angle of a needle on a gauge; the setting may be displayed digitally as well.
The user should be able to change the control’s setting by dragging its indicator.

Figure 5-24 illustrates a control supported by an application-defined control definition
function. This control might be used to play back a sound or a QuickTime movie. The
application might wish to define the control so that it plays the sound or movie at normal
speed when the user clicks the control part on the left. The application might
use the indicator along the slider to show what portion of the entire sound or movie
sequence is currently playing. The application also allows the user to move quickly
forward and backward through the sequence by dragging the indicator. Finally, the
application might wish to define the two control parts on the far right so that they play
backward (that is, “rewind”) and play forward quickly (that is, “fast forward”),
respectively, when the user clicks them.

Figure 5-24 A custom control

Note
When you design a dial or slider, be sure to include meaningful labels
that indicate to users the range and the direction of the indicator. �

Rather than create such a control yourself, you might be tempted to use a scroll bar for
this purpose. Do not do so. Using a scroll bar for any purpose other than scrolling
through a window compromises the consistency of the Macintosh interface.

To define your own nonstandard control, you must write a control definition function,
compile it as a resource of type 'CDEF', and include it in your resource file. (For more
information about creating resources, see the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.)

C H A P T E R 5

Control Manager

5-72 Control Manager Reference

When you use Control Manager routines, they in turn call your control definition
function as necessary. For example, for the control in Figure 5-24 to work properly, its
control definition function must be able to

� draw the control—including repositioning its indicator, making it inactive or active,
and highlighting its control parts appropriately when mouse events occur in them

� determine when a mouse-down event occurs in a control part

� calculate the region of the control and its indicator

� move the indicator and update the control record with a new setting

You can also use your control definition function to modify or expand certain Control
Manager behaviors; for example, you can implement your own manner of dragging an
indicator, and you can perform your own type of control initialization.

For details about writing a control definition function, see “Defining Your Own Control
Definition Function” beginning on page 5-109.

Control Manager Reference 5

This section describes the data structures, routines, and resources that are specific to the
Control Manager.

The “Data Structures” section shows the data structures for the control record, the
auxiliary control record, the pop-up menu private data record, and the control color table
record. The “Control Manager Routines” section describes Control Manager routines for
creating controls, drawing controls, handling mouse events in controls, changing control
settings and display, determining control settings, and removing controls. The
“Application-Defined Routines” section describes the control definition function, which
you need to provide when defining your own controls. The “Application-Defined
Routines” section also describes the action procedure, which defines an action to be
performed repeatedly as long as the user holds down the mouse button while the cursor
is in a control. The “Resources” section describes the control resource and the control
color table resource.

Data Structures 5
This section describes the control record, the auxiliary control record, the pop-up menu
private data record, and the control color table record.

Your application doesn’t specifically create the control record, the auxiliary control
record, or the pop-up menu private data record; rather, your application simply
creates any necessary resources and uses the appropriate Control Manager routines.
The Control Manager creates these records as necessary.

C H A P T E R 5

Control Manager Reference 5-73

Control Manager 5

You can use Control Manager routines to change values in the control record, or you
can access and change its fields yourself; normally, you don’t change the values in
the auxiliary control record. However, both the control record and the auxiliary
control record have fields in which your application can store information as you
deem appropriate.

You can obtain the menu handle and the menu ID of the menu associated with a pop-up
menu by dereferencing the contrlData field of the control record, which, for pop-up
menu controls, contains a handle to a pop-up private data record. This record contains
the menu handle and the menu ID for the associated menu.

You use a control color table record only when you want to use nonstandard colors for a
control that you create while your application is running. Your application probably
shouldn’t ever create a control color table record because you should use the system’s
default colors to ensure consistency of the interface across applications.

The Control Record 5

When you create a control, the Control Manager incorporates the information you specify
(either in the control resource or in the parameters of the NewControl function) into a
control record, which is a data structure of type ControlRecord. The Control Manager
functions you use for creating a control, GetNewControl and NewControl, return a
handle to a newly allocated control record. Thereafter, your application normally refers to
the control by this handle, because most other Control Manager routines expect a control
handle as their first parameter.

You can use Control Manager routines to determine and change several of the values in
the control record, or you can access and change its fields yourself.

TYPE ControlRecord =

PACKED RECORD

nextControl: ControlHandle; {next control}

contrlOwner: WindowPtr; {control's window}

contrlRect: Rect; {rectangle}

contrlVis: Byte; {255 if visible}

contrlHilite: Byte; {highlight state}

contrlValue: Integer; {control's current setting}

contrlMin: Integer; {control's minimum setting}

contrlMax: Integer; {control's maximum setting}

contrlDefProc: Handle; {control definition function}

contrlData: Handle; {data used by contrlDefProc}

contrlAction: ProcPtr; {action procedure}

contrlRfCon: LongInt; {control's reference value}

contrlTitle: Str255; {control's title}

END;

C H A P T E R 5

Control Manager

5-74 Control Manager Reference

Field descriptions

nextControl A handle to the next control associated with this control’s window.
All the controls belonging to a given window are kept in a linked
list, beginning in the controlList field of the window record and
chained together through the nextControl fields of the individual
control records. The end of the list is marked by a NIL value; as new
controls are created, they’re added to the beginning of the list.

contrlOwner A pointer to the window to which this control belongs.
contrlRect The rectangle that completely encloses the control, in the local

coordinates of the control’s window. You can use the MoveControl
and SizeControl procedures to change the rectangle stored in this
field.

contrlVis The invisible/visible state for the control. When the value of this
field is 0, the Control Manager does not draw the control (its state is
invisible); when the value of this field is 255, the Control Manager
draws the control (its state is visible). Note that even when a control
is visible, it might still be obscured from sight by an overlapping
window or some other object. You can use the HideControl
procedure to change this field from visible to invisible, and you can
use the ShowControl procedure to change this field from invisible
to visible.

contrlHilite Specifies whether and how the control is to be displayed, indicating
whether it’s active or inactive and, if active, whether it’s selected.
The value of 0 signifies an active control that is not selected. A value
from 1 through 253 signifies a part code designating the part of
the (active) control to highlight, indicating that the user is pressing
the mouse button while the cursor is in that part. The value
255 signifies that the control is to be made inactive and drawn
accordingly. The HiliteControl procedure lets you change the
value of this field.

contrlValue The control’s current setting. For buttons, checkboxes, and radio
buttons, 0 means the control is off and 1 means it’s on. For scroll bars
and other sliders, contrlValue may take any value within the
range specified in the contrlMin and contrlMax fields. For
pop-up menus, this value is the item number of the menu item
chosen by the user; if the user hasn’t chosen a menu item, it is the
item number of the first menu item. For other controls, you can use
this field as you wish. You can use the GetControlValue function
to determine the value of this field, and you can use the
SetControlValue procedure to change the value of this field.

contrlMin The control’s minimum possible setting. For on-and-off controls—
like checkboxes and radio buttons—this value should be 0 (meaning
that the control is off). For scroll bars and other sliders, this can be
any appropriate minimum value. For controls—like buttons—
that don’t retain a setting, this value should be 0. For pop-up menus,
the Control Manager sets this field to 1. For other
controls, you can use this field as you wish. You can use the
GetControlMinimum function to determine the value of this field,
and you can use the SetControlMinimum procedure to change the
value of this field.

C H A P T E R 5

Control Manager

Control Manager Reference 5-75

contrlMax The control’s maximum possible setting. For on-and-off controls like
checkboxes and radio buttons, this value should be 1 (meaning that
the control is on). For scroll bars and other sliders, this can be any
appropriate maximum value. When you make the maximum setting
of a scroll bar equal to its minimum setting, the control definition
function automatically makes the scroll bar inactive. When you
make the maximum setting exceed the minimum, the control
definition function makes the scroll bar active again. For controls—
like buttons—that don’t retain a setting, this value should be 1. For
pop-up menus, the Control Manager sets this value to the number of
items in the menu. For other controls, you can use this field as you
wish. You can use the GetControlMaximum function to determine
the value of this field, and you can use the SetControlMaximum
procedure to change the value of this field.

contrlDefProc A handle to the control definition function for this type of
control. When you create a control, you identify its type with
a control definition ID, which is converted into a handle to the
control definition function and stored in this field. Thereafter,
the Control Manager uses this handle to access the definition
function; you should never need to refer to this field directly.

Note

In systems running in 24-bit mode, the high-order byte of the
contrlDefProc field contains the variant, which the Control
Manager gets from the control definition ID. �

contrlData Reserved for use by the control definition function, typically to hold
additional information specific to a particular control type. For
example, the control definition function for scroll bars uses this field
for a handle to the region containing the scroll box. (If no more than
4 bytes of additional information are needed, the definition function
may store the information directly in the contrlData field rather
than using a handle.) The control definition function for pop-up
menus uses this field to store a pop-up private data record, which is
described on page 5-77.

contrlAction A pointer to the control’s action procedure, if any. The
TrackControl function may call this procedure to respond to
the user’s dragging of the control, and this procedure responds
by repeatedly performing some action as long as the user holds
down the mouse button. See the description of TrackControl
on page 5-90 for more information about the action procedure.
You can use the GetControlAction function to determine the
current value of this field and the SetControlAction procedure
to change it.

contrlRfCon The control’s reference value, which your application may use
for any purpose. You can use the GetControlReference
function to determine the current value of this field and the
SetControlReference procedure to change it.

contrlTitle The control title, if any. You can use the GetControlTitle
procedure to determine the current value of this field and the
SetControlTitle procedure to change it.

C H A P T E R 5

Control Manager

5-76 Control Manager Reference

The Auxiliary Control Record 5

For drawing all controls on systems running in 32-bit mode (which users can select using
the Memory control panel), and for drawing controls that use colors other than the
system default, the Control Manager creates and maintains a linked list of auxiliary
control records, beginning in the global variable AuxCtlHead. (There is only one global
list for all controls in all windows, not a separate one for each window. Each window
record, by contrast, has a handle to the list of its own controls.)

An auxiliary control record is a data structure of type AuxCtlRec. Your application
doesn’t create and generally shouldn’t manipulate an auxiliary control record for a
control; rather, you let the Control Manager create and manipulate the auxiliary control
record. To create controls using colors other than the system default colors, use the
SetControlColor procedure (described on page 5-101) or create a control color table
resource (described on page 5-121) and let the Control Manager create the necessary
auxiliary control records. There is, however, a field in the auxiliary control record that
you can use to store information as you see fit; to get a handle to the auxiliary control
record for a control, you can use the GetAuxiliaryControlRecord function
(described on page 5-107).

Each auxiliary control record is relocatable and resides in your application heap. Here is
how an auxiliary control record is defined:

TYPE AuxCtlRec =

RECORD

acNext: AuxCtlHandle; {handle to next AuxCtlRec}

acOwner: ControlHandle; {handle to this record's control}

acCTable: CCTabHandle; {handle to control color table }

{ record}

acFlags: Integer; {reserved}

acReserved: LongInt; {reserved for future use}

acRefCon: LongInt; {for use by application}

END;

Field descriptions

acNext A handle to the next record in the auxiliary control list.
acOwner The handle of the control to which this auxiliary record belongs;

used as an ID field.
acCTable The handle to a control color table record. (The control color table

record is described on page 5-77.)
acFlags Reserved for use by the Control Manager.
acReserved Reserved for future expansion.
acRefCon A reference value, which your application may use for any purpose.

On systems using 32-bit mode, every control has its own auxiliary record, and
the acCTable field contains a handle to the default control color table unless
your application uses the SetControlColor procedure or creates a control color
table resource.

C H A P T E R 5

Control Manager

Control Manager Reference 5-77

When drawing a control, the standard control definition functions search the linked list of
auxiliary control records for the auxiliary control record whose acOwner field points to
the control being drawn. If the standard control definition functions find an auxiliary
control record for the control, they use the control color table specified in the acCTable
field. If the standard control definition functions do not find an auxiliary control record
for the control, they use the default system colors.

The Pop-Up Menu Private Data Record 5

You can obtain the menu handle and the menu ID of the menu associated with a pop-up
menu by dereferencing the contrlData field of the pop-up menu’s control record. The
contrlData field of a control record is a handle to a block of private information. For
pop-up menu controls, this field is a handle to a pop-up private data record, which is a
data structure of type popupPrivateData.

TYPE popupPrivateData =

RECORD

mHandle: MenuHandle; {handle to menu record}

mID: Integer; {menu ID}

mPrivate: ARRAY[0..0] OF SignedByte; {reserved}

END;

Field descriptions

mHandle Contains a handle to the menu.
mID The menu ID of the menu.
mPrivate Reserved.

You can use the standard pop-up control definition function to manage pop-up menus.
For information on creating pop-up menus, see “Creating a Pop-Up Menu” beginning on
page 5-25. See the chapter “Menu Manager” in this book for additional information.

The Control Color Table Record 5

By creating a control color table record and using the SetControlColor procedure
(described on page 5-101), your application can draw a control that uses colors other than
the system default. (Alternatively, you can use nonstandard colors for a control you
define in a control resource by creating a control color table resource—described on
page 5-121—with the same resource ID as the control resource.) Be aware that controls in
nonstandard colors may initially confuse your users.

A control color table record is a data structure of type CtlCTab; it is defined as follows:

TYPE CtlCTab =

RECORD

ccSeed: LongInt; {reserved; set to 0}

ccRider: Integer; {reserved; set to 0}

C H A P T E R 5

Control Manager

5-78 Control Manager Reference

ctSize: Integer; {number of ColorSpec records in next }

{ field; 3 for standard controls}

ctTable: ARRAY[0..3] OF ColorSpec;

END;

Field descriptions

ccSeed Reserved in control color tables; set to 0.
ccRider Reserved in control color tables; set to 0.
ctSize The number of ColorSpec records in the next field. For controls

drawn with the standard definition procedure, this field is always 3,
because a standard control has three parts: frame, control body, and
scroll box for scroll bars, and frame, control body, and text for other
controls. If you want to supply ColorSpec records for additional
parts, you must define your own controls, as described in “Defining
Your Own Control Definition Function” beginning on page 5-109.

ctTable An array of ColorSpec records. Each ColorSpec record describes
the color of a different control part. Here is how a ColorSpec
record is defined:

TYPE ColorSpec =

RECORD

partIdentifier: Integer; {control part}

partRGB: RGBColor; {color of part}

END;

The partIdentifier field of the ColorSpec record holds an
integer that associates an RGBColor record with a particular part of
the control.
Three ColorSpec records are used to describe the parts of buttons,
checkboxes, and radio buttons. Here are the constants that are used
in the partIdentifier fields of the three ColorSpec records
used to describe these controls:

{for buttons, checkboxes, and radio buttons}

CONST cFrameColor = 0; {frame color}

cBodyColor = 1; {fill color for body of }

{ control}

cTextColor = 2; {text color}

When highlighted, buttons exchange their body and text colors;
checkboxes and radio buttons change their appearance without
changing colors. All three types indicate deactivation by dimming
their text with no change in colors.

C H A P T E R 5

Control Manager

Control Manager Reference 5-79

A number of ColorSpec records are used to describe the parts
of scroll bars. Here are the constants that are used in the
partIdentifier fields of the ColorSpec records used to describe
the colors in scroll bars:

CONST
cFrameColor = 0; {Used to produce foreground color for scroll arrows }

{ & gray area}
cBodyColor = 1; {Used to produce colors in the scroll box}
cArrowsColorLight = 5; {Used to produce colors in arrows & scroll bar }

{ background color}
cArrowsColorDark = 6; {Used to produce colors in arrows & scroll bar }

{ background color}
cThumbLight = 7; {Used to produce colors in scroll box}
cThumbDark = 8; {Used to produce colors in scroll box}
cHiliteLight = 9; {Use same value as wHiliteColorLight in 'wctb'}
cHiliteDark = 10; {Use same value as wHiliteColorDark in 'wctb'}
cTitleBarLight = 11; {Use same value as wTitleBarLight in 'wctb'}
cTitleBarDark = 12; {Use same value as wTitleBarDark in 'wctb'}
cTingeLight = 13; {Use same value as wTingeLight in 'wctb'}
cTingeDark = 14; {Use same value as wTingeDark in 'wctb'}

When highlighted, scroll arrows are filled with the foreground color.
A deactivated scroll bar shows no scroll box and displays its gray
areas in a solid background color with no pattern.
The ColorSpec records for a control can appear in any order. If you
include a part identifier that is not found, the Control Manager uses
the first ColorSpec record with an identifiable part. If you do not
specify a part identifier, the Control Manager uses the default color
for that part.
The partRGB field of the ColorSpec record specifies an RGBColor
record, which in turn specifies the red, green, and blue values for the
part’s color. Use three 16-bit unsigned integers to give the intensity
values for the three additive primary colors. Here is how the
RGBColor record is defined:

TYPE RGBColor =
RECORD

red: Integer; {red value for control part}
green: Integer; {green value for control part}
blue: Integer; {blue value for control part}

END;

When you create a control color table record, your application should not deallocate it if
another control is still using it.

When drawing a control, the standard control definition functions search the linked list of
auxiliary control records for the record whose acOwner field points to that control.
If a standard control definition function finds such a record, it uses the color table
designated by that record; otherwise, it uses the default system colors. Each control using

C H A P T E R 5

Control Manager

5-80 Control Manager Reference

colors other than the system default has its own auxiliary control record, even if that
control uses the same control color table record as another control; two or more auxiliary
records can share the same control color table record. (Auxiliary control records are
described on page 5-76.)

If you create a control definition function (as explained in “Defining Your Own Control
Definition Function” beginning page 5-109), you can use color tables of any desired size
and define their contents in any way you wish, except that part indices 1 through 127 are
reserved for system definition. Any such nonstandard control definition function should
bypass the defaulting mechanism by allocating an explicit auxiliary record for every
control it creates.

Control Manager Routines 5
This section describes the Control Manager routines for creating controls, drawing
controls, tracking mouse events within controls, changing control display, determining
control values, and removing controls.

Some Control Manager routines can be accessed using more than one spelling of
the routine’s name, depending on the interface files supported by your development
environment. For example, SetControlValue is also available as SetCtlValue.
Table 5-1 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 5-1 Mapping between new and previous names of Control Manager routines

New name Previous name

GetAuxiliaryControlRecord GetAuxCtl

GetControlAction GetCtlAction

GetControlMaximum GetCtlMax

GetControlMinimum GetCtlMin

GetControlReference GetCRefCon

GetControlTitle GetCTitle

GetControlValue GetCtlValue

GetControlVariant GetCVariant

SetControlAction SetCtlAction

SetControlColor SetCtlColor

SetControlMaximum SetCtlMax

SetControlMinimum SetCtlMin

SetControlReference SetCRefCon

SetControlTitle SetCTitle

UpdateControls UpdtControl

C H A P T E R 5

Control Manager

Control Manager Reference 5-81

Creating Controls 5

To create a control, you should generally use the GetNewControl function, which takes
information about the control from a control resource. Like menu resources, control
resources isolate descriptive information from your application code, making your
application easier to modify or translate. However, you can also use the NewControl
function—for which you pass descriptive information in parameters—to create controls.

Both GetNewControl and NewControl return a handle to the control record of the
newly created control. Thereafter, your application normally refers to the control by this
handle, because most other Control Manager routines expect a control handle as their
first parameter. When you create scroll bars and pop-up menus, you should store their
handles in one of your application’s own data structures for later reference.

When you use the Dialog Manager to implement buttons, radio buttons, checkboxes, and
pop-up menus in alert boxes and dialog boxes, the Dialog Manager automatically uses
the Control Manager to create these controls for you. If you implement other controls in
alert or dialog boxes, and whenever you implement controls—such as scroll bars—in
your application’s windows, you must use either GetNewControl or NewControl to
create these controls.

GetNewControl 5

To create a control from a description in a control resource ('CNTL'), use the
GetNewControl function.

FUNCTION GetNewControl (controlID: Integer; owner: WindowPtr)

: ControlHandle;

controlID The resource ID of a control resource.

owner A pointer to the window in which you want to attach the control.

DESCRIPTION

The GetNewControl function creates a control record from the information in the
specified control resource, adds the control record to the control list for the specified
window, and returns as its function result a handle to the control. You use this handle
when referring to the control in most other Control Manager routines. After making a
copy of the control resource, GetNewControl releases the memory occupied by the
original control resource before returning.

If you provide a control color table resource with the same resource ID as the control
resource, GetNewControl creates an auxiliary control record that uses the colors you
specify in your control color table resource. If you don’t provide a control color table,
GetNewControl creates an auxiliary control record that uses the default control color
table if the computer is running in 32-bit mode.

C H A P T E R 5

Control Manager

5-82 Control Manager Reference

The control resource specifies the rectangle for the control, its initial setting, its visibility
state, its maximum and minimum settings, its control definition ID, a reference value,
and its title (if any). After you use GetNewControl to create the control, you can change
the current setting, the maximum setting, the minimum setting, the reference value, and
the title by using, respectively, the SetControlValue, SetControlMaximum,
SetControlMinimum, SetControlReference, and SetControlTitle procedures.
You can use the MoveControl and SizeControl procedures to change the control’s
rectangle. You can use the GetControlValue, GetControlMaximum,
GetControlMinimum, GetControlReference, and GetControlTitle functions to
determine the control values.

If the control resource specifies that the control should be visible, the Control Manager
draws the control. If the control resource specifies that the control should initially be
invisible, you can use the ShowControl procedure to make the control visible.

If GetNewControl can’t read the control resource from the resource file,
GetNewControl returns NIL.

SEE ALSO

See Listing 5-1 on page 5-17 and Listing 5-5 on page 5-24 for examples of how to use
GetNewControl to create, respectively, a button and a scroll bar. For information about
windows’ control lists, see the chapter “Window Manager” in this book.

NewControl 5

To create a control, you can use the NewControl function, which accepts in its
parameters the information that describes the control. Generally, you should instead use
the GetNewControl function to create a control. The GetNewControl function takes
information about the control from a control resource, and as a result your application is
easier to modify or translate into other languages.

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect;

title: Str255; visible: Boolean;

value: Integer; min: Integer; max: Integer;

procID: Integer; refCon: LongInt)

: ControlHandle;

theWindow A pointer to the window in which you want to attach the control. All
coordinates pertaining to the control are interpreted in this window’s local
coordinate system.

boundsRect The rectangle, specified in the given window’s local coordinates, that
encloses the control and thus determines its size and location.

C H A P T E R 5

Control Manager

Control Manager Reference 5-83

title For controls that need a title—such as buttons, checkboxes, radio buttons,
and pop-up menus—the string for that title. For controls that don’t use
titles, pass an empty string.

visible The visible/invisible state for the control. If you pass TRUE in this
parameter, NewControl draws the control immediately, without using
your window’s standard updating mechanism. If you pass FALSE, you
must later use the ShowControl procedure to display the control.

value The initial setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 0 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, pass 0 in
this parameter for a control that is off, and pass 1 for a control that is on.
For controls—such as scroll bars and sliders—that can take a range of
settings, specify whatever value is appropriate within that range.

min The minimum setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 0 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, use 0
(meaning “off”) for the minimum value. For controls—such as scroll bars
and sliders—that can take a range of settings, specify whatever minimum
value is appropriate.

max The maximum setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 1 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, use 1
(meaning “on”) for the maximum value. For controls—such as scroll bars
and sliders—that can take a range of settings, specify whatever maximum
value is appropriate. When you make the maximum setting of a scroll bar
equal to its minimum setting, the control definition function automatically
makes the scroll bar inactive; when you make the maximum setting
exceed the minimum, the control definition function makes the scroll bar
active again.

procID The control definition ID, which leads to the control definition function for
this type of control. The control definition function is read into memory if
it isn’t already in memory. The control definition IDs and their constants
for the standard controls are listed here. (You can also define your own
control definition function and specify it the procID parameter.)

CONST

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

 useWFont = 8; {add to above to display }

 { title in window font}

scrollBarProc = 16; {scroll bar}

 popupMenuProc = 1008; {pop-up menu}

popupFixedWidth = $0001; {add to popupMenuProc to }

 { use a fixed-width ctrl}

popupUseAddResMenu = $0004; {add to popupMenuProc to }

C H A P T E R 5

Control Manager

5-84 Control Manager Reference

 { specify a value of }

 { type ResType in the }

 { contrlRfCon field of }

 { the control record; }

 { Menu Manager adds }

 { resources of this type }

 { to the menu}

popupUseWFont = $0008; {add to popupMenuProc to }

 { display in window font}

refCon The control’s reference value, which is set and used only by
your application.

DESCRIPTION

The NewControl function creates a control record from the information you specify in
its parameters, adds the control record to the control list for the specified window, and
returns as its function result a handle to the control. You use this handle when referring
to the control in most other Control Manager routines.

The NewControl function creates an auxiliary control record that uses the default
control color table if the computer is running in 32-bit mode.

If you need to use colors other than the default colors for the control, create a control
color table record and use the SetControlColor procedure.

When specifying the rectangle in the boundsRect parameter, keep the following
guidelines in mind:

� Buttons are drawn to fit the rectangle exactly. To accommodate the tallest characters in
the system font, allow at least a 20-point difference between the top and bottom
coordinates of the rectangle.

� For checkboxes and radio buttons, there should be at least a 16-point difference
between the top and bottom coordinates.

� By convention, scroll bars are 16 pixels wide, so there should be a 16-point difference
between the left and right (or top and bottom) coordinates. (If there isn’t, the scroll bar
is scaled to fit the rectangle.) A standard scroll bar should be at least 48 pixels long, to
allow room for the scroll arrows and scroll box.

The Control Manager displays control titles in the system font. When specifying a title for
the control in the title parameter, make sure the title fits in the control’s rectangle;
otherwise, NewControl truncates the title. For example, NewControl truncates the
titles of checkboxes and radio buttons on the right in Roman scripts, and it centers and
truncates both ends of the button titles.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes, and
radio buttons. When specifying a multiple-line title, separate the lines with the ASCII
character code $0D (carriage return). If the control is a button, each line is horizontally
centered, and the font leading is inserted between lines. (The height of each line is equal
to the distance from the ascent line to the descent line plus the leading of the font used.

C H A P T E R 5

Control Manager

Control Manager Reference 5-85

Be sure to make the total height of the rectangle greater than the number of lines times
this height.) If the control is a checkbox or a radio button, the text is justified as
appropriate for the user’s current script system, and the checkbox or button is vertically
centered within its rectangle.

After you use NewControl to create the control, you can change the current setting,
the maximum setting, the minimum setting, the reference value, and the title by using,
respectively, the SetControlValue, SetControlMaximum, SetControlMinimum,
SetControlReference, and SetControlTitle procedures. You can use the
MoveControl and SizeControl procedures to change the control’s rectangle. You
can use the GetControlValue, GetControlMaximum, GetControlMinimum,
GetControlReference, and GetControlTitle functions to determine the
control values.

SPECIAL CONSIDERATIONS

The title of a button, checkbox, radio button, or pop-up menu normally appears in the
system font, which in Roman script systems is 12-point Chicago. Do not use a smaller
font; some script systems, such as KanjiTalk, require 12-point fonts. You should generally
use the system font in your controls; doing so will simplify localization effort. However,
if you absolutely need to display a control title in the font currently associated with the
window’s graphics port, you can add the popupUseWFont constant to the pop-up menu
control definition ID or add the useWFont constant to the other standard control
definition IDs.

SEE ALSO

For information about windows’ control lists, see the chapter “Window Manager” in
this book. Control definition IDs for other controls are discussed in “Defining Your Own
Control Definition Function” beginning on page 5-109.

Drawing Controls 5

If you specify that a control is initially visible (either in the control resource or in a
parameter to NewControl), the Control Manager draws the control inside its window
when you call either the GetNewControl or the NewControl function. In either case,
the Control Manager draws the control immediately, without using your window’s
standard updating mechanism. If you specify that a control is invisible, you can use the
ShowControl procedure when you want to draw the control.

Note that even a visible control might be completely or partially obscured by overlapping
windows or other objects.

When your application receives an update event for a window that contains controls,
use UpdateControls to redraw the necessary controls in the updated window. Note
that the Dialog Manager automatically draws and updates controls in alert boxes and
dialog boxes.

C H A P T E R 5

Control Manager

5-86 Control Manager Reference

ShowControl 5

To draw a control that is currently invisible, you can use the ShowControl procedure.

PROCEDURE ShowControl (theControl: ControlHandle);

theControl A handle to the control you want to make visible.

DESCRIPTION

If the specified control is invisible, the ShowControl procedure makes it visible and
immediately draws the control within its window without using your window’s
standard updating mechanism. If the control is already visible, ShowControl has
no effect.

You can make a control invisible in several ways:

� You can specify that it’s invisible in its control resource.

� You can specify that it’s invisible in a parameter to the NewControl function.

� You can use the HideControl procedure to change a visible control into an
invisible one.

� You can directly change the contrlVis field of the control’s control record.

SPECIAL CONSIDERATIONS

The ShowControl procedure draws the control in its window, but the control can still be
completely or partially obscured by overlapping windows or other objects.

SEE ASO

Listing 5-14 on page 5-39 illustrates the use of ShowControl to redisplay scroll bars after
moving and resizing them.

UpdateControls 5

To update controls in a window, you can use the UpdateControls procedure. The
UpdateControls procedure is also available as the UpdtControl procedure.

PROCEDURE UpdateControls (theWindow: WindowPtr;

 updateRgn: RgnHandle);

theWindow A pointer to the window containing the controls to update.

updateRgn The update region within the specified window.

C H A P T E R 5

Control Manager

Control Manager Reference 5-87

DESCRIPTION

The UpdateControls procedure draws those controls that are in the specified update
region. This procedure is faster than the DrawControls procedure, which draws all of
the controls in a window. By contrast, UpdateControls draws only those controls in
the update region.

Your application should call UpdateControls upon receiving an update event for a
window that contains controls. Window Manager routines such as SelectWindow,
ShowWindow, and BringToFront do not automatically call DrawControls to display
the window’s controls. They just add the appropriate regions to the window’s update
region, generating an update event.

In response to an update event, you normally call UpdateControls after using the
Window Manager procedure BeginUpdate and before using the Window Manager
procedure EndUpdate. You should set the updateRgn parameter to the visible region of
the window’s port, as specified in the port’s visRgn field.

SPECIAL CONSIDERATIONS

If your application draws parts of a control outside of its rectangle, UpdateControls
might not redraw it.

The Dialog Manager handles update events for controls in alert boxes and dialog boxes.

SEE ALSO

Listing 5-8 on page 5-30 illustrates the use of UpdateControls. The BeginUpdate and
EndUpdate procedures are described in the chapter “Window Manager” in this book.
See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes.

DrawControls 5

Although you should generally use the UpdateControls procedure to update controls
in a window, you can instead use the DrawControls procedure.

PROCEDURE DrawControls (theWindow: WindowPtr);

theWindow A pointer to a window whose controls you want to display.

DESCRIPTION

The DrawControls procedure draws all controls currently visible in the specified
window. The controls are drawn in reverse order of creation; thus, in case of overlapping
controls, the control created first appears frontmost in the window.

C H A P T E R 5

Control Manager

5-88 Control Manager Reference

Because the UpdateControls procedure redraws only those controls that need
updating, your application should generally use it instead of DrawControls upon
receiving an update event for a window that contains controls.

You should call either DrawControls or UpdateControls after calling the Window
Manager procedure BeginUpdate and before calling EndUpdate.

SPECIAL CONSIDERATIONS

The Dialog Manager automatically draws and updates controls in alert boxes and
dialog boxes.

Window Manager routines such as SelectWindow, ShowWindow, and BringToFront
do not automatically update the window’s controls. They just add the appropriate
regions to the window’s update region, generating an update event.

SEE ALSO

See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes. See the chapter “Window Manager” in this book
for more information about Window Manager routines.

Draw1Control 5

Although you should generally use the UpdateControls procedure to update controls,
you can use the Draw1Control procedure to update a single control.

PROCEDURE Draw1Control (theControl: ControlHandle);

theControl A handle to the control you want to draw.

DESCRIPTION

The Draw1Control procedure draws the specified control if it’s visible within its
window. The UpdateControls procedure automatically calls Draw1Control.

Handling Mouse Events in Controls 5

When the user presses the mouse button, your application receives a mouse-down event.
Use the Window Manager function FindWindow to determine which window contains
the cursor. If the mouse-down event occurred in the content region of your application’s
active window, use the FindControl function to determine whether the cursor was
in an active control and, if so, which control. To follow and respond to the cursor
movements in that control, and then to determine in which part of the control the
mouse-up event occurs, use the TrackControl function.

C H A P T E R 5

Control Manager

Control Manager Reference 5-89

FindControl 5

To determine whether a mouse-down event has occurred in a control and, if so, in which
part of that control, use the FindControl function.

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr;

 VAR theControl: ControlHandle): Integer;

thePoint A point, specified in coordinates local to the window, where the
mouse-down event occurred.

theWindow A pointer to the window in which the mouse-down event occurred.

theControl A handle to the control in which the mouse-down event occurred.

DESCRIPTION

When the user presses the mouse button while the cursor is in a visible, active control,
FindControl returns as its function result a part code identifying the control’s part; the
function also returns a handle to the control in the parameter theControl. The part
codes that FindControl returns, and the constants you can use to represent them, are
listed here:

CONST inButton = 10; {button}

inCheckBox = 11; {checkbox or radio button}

inUpButton = 20; {up arrow for a vertical scroll }

{ bar, left arrow for a horizontal }

{ scroll bar}

inDownButton = 21; {down arrow for a vertical scroll }

{ bar, right arrow for a }

{ horizontal scroll bar}

inPageUp = 22; {gray area above scroll box for a }

{ vertical scroll bar, gray area }

{ to left of scroll box for a }

{ horizontal scroll bar}

inPageDown = 23; {gray area below scroll box for a }

{ vertical scroll bar, gray area }

{ to right of scroll box for a }

{ horizontal scroll bar}

inThumb = 129; {scroll box}

The pop-up control definition function does not define part codes for pop-up menus.
Instead, your application should store the handles for your pop-up menus when you
create them. Your application should then test the handles you store against the handles
returned by FindControl before responding to users’ choices in pop-up menus.

If the mouse-down event occurs in an invisible or inactive control, or if it occurs outside a
control, FindControl sets theControl to NIL and returns 0 as its function result.

C H A P T E R 5

Control Manager

5-90 Control Manager Reference

When a mouse-down event occurs, your application should call FindControl after
using the Window Manager function FindWindow to ascertain that a mouse-down event
has occurred in the content region of a window containing controls.

Before calling FindControl, use the GlobalToLocal procedure to convert the point
stored in the where field (which describes the location of the mouse-down event) of the
event record to coordinates local to the window. Then, when using FindControl, pass
this point in the parameter thePoint.

In the parameter theWindow, pass the window pointer returned by the FindWindow
function.

After using FindControl to determine that a mouse-down event has occurred in
a control, you generally use the TrackControl function, which automatically
follows the movements of the cursor and responds as appropriate until the user releases
the mouse button.

SPECIAL CONSIDERATIONS

The Dialog Manager automatically calls FindControl and TrackControl for
mouse-down events inside controls of alert boxes and dialog boxes.

The FindControl function also returns NIL in the parameter theControl and 0 as
its function result if the window is invisible or if it doesn’t contain the given point.
(However, FindWindow won’t return a window pointer to an invisible window or to one
that doesn’t contain the point where the mouse-down event occurred. As long as you call
FindWindow before FindControl, this situation won’t arise.)

SEE ALSO

Listing 5-10 on page 5-33 illustrates the use of FindControl for detecting mouse-down
events in a pop-up menu and a button; Listing 5-18 on page 5-53 illustrates its use for
detecting mouse-down events in scroll bars.

The FindWindow function is described in the chapter “Window Manager” in this book.
The GlobalToLocal procedure is described in Inside Macintosh: Imaging.

The event record is described in the chapter “Event Manager” in this book. See the
chapter “Dialog Manager” in this book for more information about including controls in
alert boxes and dialog boxes.

TrackControl 5

To follow and respond to cursor movements in a control and then to determine the
control part in which the mouse-up event occurs, use the TrackControl function.

FUNCTION TrackControl (theControl: ControlHandle;

 thePoint: Point; actionProc: ProcPtr)

 : Integer;

C H A P T E R 5

Control Manager

Control Manager Reference 5-91

theControl A handle to the control in which a mouse-down event occurred.

thePoint A point, specified in coordinates local to the window, where the
mouse-down event occurred.

actionProc The action procedure. Typically, you should set this parameter to NIL
for buttons, checkboxes, radio buttons, and the scroll box of a scroll bar;
set this parameter to Pointer(-1) for pop-up menus; and set this
parameter to the pointer to an action procedure for scroll arrows and
gray areas of scroll bars, as well as for any other controls that require
you to define additional actions to take while the user holds down the
mouse button.

DESCRIPTION

The TrackControl function follows the user’s cursor movements in a control and
provides visual feedback until the user releases the mouse button. The visual feedback
given by TrackControl depends on the control part in which the mouse-down event
occurs. When highlighting is appropriate, for example, TrackControl highlights the
control part (and removes the highlighting when the user releases the mouse button).
When the user holds down the mouse button while the cursor is in an indicator (such as
the scroll box of a scroll bar) and moves the mouse, TrackControl responds by
dragging a dotted outline of the indicator.

The TrackControl function returns as its function result the control’s part code if the
user releases the mouse button while the cursor is inside the control part, or 0 if the user
releases the mouse button while the cursor is outside the control part. For control parts,
the TrackControl function returns the same values (represented by the constants
inButton, inCheckBox, inUpButton, inDownButton, inPageUp, inPageDown, and
inThumb) returned by the FindControl function, as described on page 5-89.

When TrackControl returns a value other than 0 as its function result, your applica-
tion should respond as appropriate to a mouse-up event in that control part. When
TrackControl returns 0 as its function result, your application should do nothing.

If the user releases the mouse button when the cursor is in an indicator such as a scroll
box, TrackControl calls the control’s control definition function to reposition the
indicator. The control definition function for scroll bars, for example, responds to the user
dragging a scroll box by redrawing the scroll box, calculating the control’s current setting
according to the new relative position of the scroll box, and storing the current setting in
the control record. Thus, if the minimum and maximum settings are 0 and 10, and the
scroll box is in the middle of the scroll bar, 5 is stored as the current setting. For a scroll
bar, your application must then respond by scrolling to the corresponding relative
position in the document.

Generally, you use TrackControl after using the FindControl function. In the
parameter theControl of TrackControl, pass the control handle returned by the
FindControl function, and in the parameter thePoint, supply the same point you
passed to FindControl (that is, a point in coordinates local to the window).

C H A P T E R 5

Control Manager

5-92 Control Manager Reference

While the user holds down the mouse button with the cursor in one of the standard con-
trols, TrackControl performs the following actions, depending on the value you pass
in the parameter actionProc. (For other controls, what you pass in this parameter de-
pends on how you define the control.)

� If you pass NIL in the actionProc parameter, TrackControl uses no action
procedure and therefore performs no additional actions beyond highlighting the
control or dragging the indicator. This is appropriate for buttons, checkboxes, radio
buttons, and the scroll box of a scroll bar.

� If you pass a pointer to an action procedure in the actionProc parameter, you must
provide the procedure, and it must define some action that your application repeats as
long as the user holds down the mouse button. This is appropriate for the scroll
arrows and gray areas of a scroll bar.

� If you pass Pointer(–1) in the actionProc parameter, TrackControl looks in
the contrlAction field of the control record for a pointer to the control’s action
procedure. This is appropriate when you are tracking the cursor in a pop-up menu.
(You can use the GetControlAction function to determine the value of this field,
and you can use the SetControlAction procedure to change this value.) If the
contrlAction field of the control record contains a procedure pointer,
TrackControl uses the action procedure it points to; if the field of the control record
also contains the value Pointer(–1), TrackControl calls the control’s control
definition function to perform the necessary action; you may wish to do this if you
define your own control definition function for a custom control. If the field of the
control record contains the value NIL, TrackControl performs no action.

SPECIAL CONSIDERATIONS

When you need to handle events in alert and dialog boxes, Dialog Manager routines
automatically call FindControl and TrackControl.

ASSEMBLY-LANGUAGE INFORMATION

The TrackControl function invokes the Window Manager function DragGrayRgn, so
you can use the global variables DragHook and DragPattern.

SEE ALSO

See “Defining Your Own Action Procedures” beginning on page 5-115 for information
about an action procedure to specify in the actionProc parameter. See “Defining Your
Own Control Definition Function” beginning on page 5-109 for information about
creating a control definition function.

Listing 5-11 on page 5-36, Listing 5-12 on page 5-37, Listing 5-13 on page 5-38,
and Listing 5-18 on page 5-53 illustrate the use of TrackControl for responding to
mouse-down events in, respectively, a button, a pop-up menu, a checkbox, and a
scroll bar.

See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes.

C H A P T E R 5

Control Manager

Control Manager Reference 5-93

TestControl 5

The TestControl function is called by the FindControl and TrackControl
functions—normally you won’t need to call it yourself. However, should you ever need
to determine the control part in which a mouse-down event occurred, you can use the
TestControl function.

FUNCTION TestControl (theControl: ControlHandle; thePt: Point)

 : Integer;

theControl A handle to the control in which the mouse-down event occurred.

thePt The point, in a window’s local coordinates, where the mouse-down
event occurred.

DESCRIPTION

When the control specified by the parameter theControl is visible and active,
TestControl tests which part of the control contains the point specified by the
parameter thePt. For its function result, TestControl returns the part code of the
control part, or 0 if the point is outside the control.

If the control is invisible or inactive, TestControl returns 0.

Changing Control Settings and Display 5

In response to user actions, you often need to change the settings, highlight states, sizes,
and locations of your controls. Whenever your application calls the TrackControl
function, the Control Manager automatically manipulates control display as appropriate
as the user presses and releases the mouse button. For example, TrackControl calls the
HiliteControl procedure to highlight buttons; for scroll bars, TrackControl calls
the DragControl procedure to move an outline of the scroll box in a scroll bar and the
SetControlValue procedure to change the scroll bar’s current setting and redraw the
scroll box in its new location. (Note that the Dialog Manager automatically calls
TrackControl for controls in alert boxes and dialog boxes. See the chapter “Dialog
Manager” in this book for more information.)

When the user releases the mouse button while the cursor is in a control, your application
often needs to change its setting. When the user clicks a checkbox, for example, your
application must change its setting to on or off, and the Control Manager automatically
draws or removes an X in the checkbox.

There are other instances when you must change the settings and display of a control. For
example, when the user changes the size of a window that contains a scroll bar, you need
to resize and move the scroll bar accordingly.

For controls whose values the user can set, you can use the SetControlValue
procedure to change the control’s setting and redraw the control accordingly. When
you need to change the maximum setting of a scroll bar or a dial, you can use the

C H A P T E R 5

Control Manager

5-94 Control Manager Reference

SetControlMaximum procedure; if you need to change the minimum setting, you
can use the SetControlMinimum procedure. If you need to change a control title,
you can use the SetControlTitle procedure. You can use the HideControl
procedure to make a control invisible. When you need to make a control inactive
(such as when its window is not frontmost) or in any other way change the highlighting
of a control, you can use the HiliteControl procedure.

To move a scroll bar, you use the MoveControl and SizeControl procedures.

Although it’s not recommended, you can also change a control’s default colors to those of
your own choosing by using the SetControlColor procedure.

To invoke a continuous action while the user holds down the mouse button, you
can specify an action procedure (described in “Defining Your Own Action Procedures”
beginning on page 5-115) in a parameter to TrackControl. Under certain circum-
stances, you can use the SetControlAction procedure to change the control’s action
procedure, though you should rarely if ever need to.

SetControlValue 5

To change the current setting of a control and redraw it accordingly, you can use the
SetControlValue procedure. The SetControlValue procedure is also available as
the SetCtlValue procedure.

PROCEDURE SetControlValue (theControl: ControlHandle;

theValue: Integer);

theControl A handle to the control whose current setting you wish to change.

theValue The new setting for the control.

DESCRIPTION

The SetControlValue procedure changes the contrlValue field of the control record
to the specified value and redraws the control to reflect the new setting. For checkboxes
and radio buttons, the value 1 fills the control with the appropriate mark, and 0 removes
the mark. For scroll bars, SetControlValue redraws the scroll box where appropriate.

If the specified value is less than the minimum setting for the control,
SetControlValue sets the control to its minimum setting; if the value is greater
than the maximum setting, SetControlValue sets the control to its maximum.

When you create a control, you specify an initial setting either in the control resource or
in the value parameter of the NewControl function. To determine a control’s current
setting before changing it in response to a user’s click in that control, use the
GetControlValue function.

C H A P T E R 5

Control Manager

Control Manager Reference 5-95

SEE ALSO

Listing 5-13 on page 5-38 illustrates the use of SetControlValue to change the setting
of a checkbox. Listing 5-16 on page 5-41 and Listing 5-20 on page 5-61 illustrate the use of
SetControlValue to change the setting of a scroll bar.

SetControlMinimum 5

To change the minimum setting of a control and redraw its indicator or scroll box
accordingly, you can use the SetControlMinimum procedure. The
SetControlMinimum procedure is also available as the SetCtlMin procedure.

PROCEDURE SetControlMinimum (theControl: ControlHandle;

 minValue: Integer);

theControl A handle to the control whose minimum setting you wish to change.

minValue The new minimum setting.

DESCRIPTION

The SetControlMinimum procedure changes the contrlMin field of the control record
to the setting you specify in the minValue parameter and redraws its indicator
or scroll box to reflect its new range.

When you create a control, you specify an initial minimum setting either in the control
resource or in the min parameter of the NewControl function. To determine a control’s
current minimum setting, use the GetControlMinimum function.

SetControlMaximum 5

To change the maximum setting of a control and redraw its indicator or scroll
box accordingly, you can use the SetControlMaximum procedure. The
SetControlMaximum procedure is also available as the SetCtlMax procedure.

PROCEDURE SetControlMaximum (theControl: ControlHandle;

 maxValue: Integer);

theControl A handle to the control whose maximum setting you wish to change.

maxValue The new maximum setting.

DESCRIPTION

The SetControlMaximum procedure changes the contrlMax field of the control record
to the setting you specify in the maxValue parameter and redraws its indicator
or scroll box to reflect its new range.

C H A P T E R 5

Control Manager

5-96 Control Manager Reference

When you create a control, you specify an initial maximum setting either in the control
resource or in the max parameter of the NewControl function. To determine a control’s
current maximum setting, use the GetControlMaximum function.

When you set the maximum setting of a scroll bar equal to its minimum setting, the
control definition function makes the scroll bar inactive; when you make the maximum
setting exceed the minimum, the control definition function makes the scroll bar active
again.

SEE ALSO

Listing 5-16 on page 5-41 illustrates the use of SetControlMaximum to specify the
maximum setting for a scroll bar.

SetControlTitle 5

To change the title of a control and redraw the control accordingly, use the
SetControlTitle procedure. The SetControlTitle procedure is also available as
the SetCTitle procedure.

PROCEDURE SetControlTitle (theControl: ControlHandle;

title: Str255);

theControl A handle to a control, the title of which you want to change.

title The new title for the control.

DESCRIPTION

The SetControlTitle procedure changes the contrlTitle field of the control record
to the given string and redraws the control, using the system font for the
control title.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes, and
radio buttons. When specifying a multiple-line title, separate the lines with the ASCII
character code $0D (carriage return). If the control is a button, each line is horizontally
centered, and the font leading is inserted between lines. (The height of each line is equal
to the distance from the ascent line to the descent line plus the leading of the font used.
Be sure to make the total height of the rectangle greater than the number of lines times
this height.) If the control is a checkbox or a radio button, the text is justified as
appropriate for the user’s current script system, and the checkbox or button is vertically
centered within its rectangle.

When you create a control, you specify an initial title either in the control resource or in
the title parameter of the NewControl function. To determine a control’s current title,
use the GetControlTitle procedure.

C H A P T E R 5

Control Manager

Control Manager Reference 5-97

HideControl 5

To make a control invisible, before adjusting its size and location, for example, use the
HideControl procedure.

PROCEDURE HideControl (theControl: ControlHandle);

theControl A handle to the control you want to hide.

DESCRIPTION

The HideControl procedure makes the specified control invisible by changing the value
of the contrlVis field of the control record and removing the control from the screen.
To fill the region previously occupied by the control, HideControl uses the background
pattern of the window’s graphics port. It also adds the control’s rectangle to the
window’s update region, so that anything else that was previously obscured by the
control will reappear on the screen. If the control is already invisible, HideControl has
no effect.

To make the control visible again, you can use the ShowControl procedure.

SPECIAL CONSIDERATIONS

The MoveControl and SizeControl procedures both call HideControl and
ShowControl automatically. However, so that the control will not blink on the screen
when you make both of these calls, you should use HideControl to make the control
invisible until you are finished manipulating it, and then use ShowControl.

SEE ALSO

Listing 5-14 on page 5-39 illustrates the use of HideControl before adjusting scroll bar
settings and locations.

MoveControl 5

To move a control within its window, you can use the MoveControl procedure.

PROCEDURE MoveControl (theControl: ControlHandle;

 h: Integer; v: Integer);

theControl A handle to the control you wish to move.

h The horizontal coordinate (local to the control’s window) of the new
location of the upper-left corner of the control’s rectangle.

v The vertical coordinate (local to the control’s window) of the new
location of the upper-left corner of the control’s rectangle.

C H A P T E R 5

Control Manager

5-98 Control Manager Reference

DESCRIPTION

The MoveControl procedure moves the control to the new location specified by the h
and v parameters, using them to change the rectangle specified in the contrlRect field
of the control’s control record. When the control is visible, MoveControl first hides it
and then redraws it at its new location.

For example, if the user resizes a document window that contains a scroll bar, your
application can use MoveControl to move the scroll bar to its new location.

SEE ALSO

Listing 5-24 on page 5-67 illustrates the use of MoveControl to change the location of a
scroll bar.

SizeControl 5

To change the size of a control’s rectangle, use the SizeControl procedure.

PROCEDURE SizeControl (theControl: ControlHandle;

 h: Integer; v: Integer);

theControl A handle to the control you wish to resize.

w The new width, in pixels, of the resized control.

h The new height, in pixels, of the resized control.

DESCRIPTION

The SizeControl procedure changes the rectangle specified in the contrlRect field of
the control’s control record. The lower-right corner of the rectangle is adjusted so
that it has the width and height specified by the w and h parameters; the position of the
upper-left corner is not changed. If the control is currently visible, it’s first hidden and
then redrawn in its new size. The SizeControl procedure uses HideControl, which
changes the window’s update region.

SEE ALSO

Listing 5-24 on page 5-67 illustrates the use of SizeControl to change the size of a scroll
bar.

HiliteControl 5

If you need to change the highlighting of a control, you can use the HiliteControl
procedure.

PROCEDURE HiliteControl (theControl: ControlHandle;

 hiliteState: Integer);

C H A P T E R 5

Control Manager

Control Manager Reference 5-99

theControl A handle to the control.

hiliteState
A value from 0 through 255 to signify the highlighting of the control.
The value of 0 signifies no highlighting for the active control. A value from
1 through 253 signifies a part code designating the part of the (active)
control to highlight. (Part codes are explained in the description of
FindControl on page 5-89.) The value 255 signifies that the control is to
be made inactive and drawn accordingly.

DESCRIPTION

The HiliteControl procedure calls the control definition function to redraw the
control with the highlighting specified in the hiliteState parameter. The
HiliteControl procedure uses the value in this parameter to change the value
of the contrlHilite field of the control’s control record.

Except for scroll bars (which you should hide using the HideControl procedure), you
should use HiliteControl to make all controls inactive when their windows are not
frontmost. The TrackControl function automatically uses the HiliteControl
procedure as appropriate; when you use TrackControl, you don’t need to call
HiliteControl.

SPECIAL CONSIDERATIONS

The value 254 should not be passed in the hiliteState parameter; this value is
reserved for future use.

SEE ALSO

The chapter “Dialog Manager” in this book provides several examples of the use of
HiliteControl.

DragControl 5

If you need to draw and move an outline of a control or its indicator (such as the scroll
box of a scroll bar) while the user drags it, you can use the DragControl procedure.

PROCEDURE DragControl (theControl: ControlHandle;

 startPt: Point;

 limitRect: Rect; slopRect: Rect;

 axis: Integer);

theControl A handle to the control to drag.

startPt The location of the cursor, expressed in the local coordinates of the
control’s window, at the time the user first presses the mouse button.

C H A P T E R 5

Control Manager

5-100 Control Manager Reference

limitRect A rectangle—which should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag
the control’s outline.

slopRect A rectangle that allows some extra space for the user to move the mouse
while still constraining the control within the rectangle specified in the
limitRect parameter.

axis The axis along which the user may drag the control’s outline. The
following list shows the constants you can use—and the values they
represent—for constraining the motion along an axis:

CONST

noConstraint = 0; {no constraint}

 hAxisOnly = 1; {drag along horizontal axis only}

vAxisOnly = 2; {drag along vertical axis only}

DESCRIPTION

The DragControl procedure moves a dotted outline of the control around the screen,
following the movements of the cursor until the user releases the mouse button. When
the user releases the mouse button, DragControl calls MoveControl. In turn,
MoveControl moves the control to the location to which the user dragged it.

The TrackControl function automatically uses the DragControl procedure as
appropriate; when you use TrackControl, you don’t need to call DragControl.

The startPt, limitRect, slopRect, and axis parameters have the same meaning as
for the Window Manager function DragGrayRgn.

SPECIAL CONSIDERATIONS

Before tracking the cursor, DragControl calls the control definition function. If you
define your own control definition function, you can specify custom dragging behavior.

ASSEMBLY-LANGUAGE INFORMATION

Like TrackControl, DragControl invokes the Window Manager function
DragGrayRgn, so you can use the global variables DragHook and DragPattern.

SEE ALSO

For information about creating your own control definition functions, see “Defining Your
Own Control Definition Function” beginning on page 5-109. See the description of the
DragGrayRgn function in the chapter “Window Manager” in this book for a more
complete discussion of the startPt, limitRect, slopRect, and axis parameters,
which are used identically in the DragControl function.

C H A P T E R 5

Control Manager

Control Manager Reference 5-101

SetControlColor 5

To draw a control using colors other than the default colors used by system software, you
can use the SetControlColor procedure. The SetControlColor procedure is also
available as the SetCtlColor procedure.

PROCEDURE SetControlColor (theControl: ControlHandle;

newColorTable: CCTabHandle);

theControl A handle to the control whose colors you wish to change.

newColorTable
A handle to a control color table record.

DESCRIPTION

The SetControlColor procedure changes the color table for the specified control. If the
control currently has no auxiliary control record, SetControlColor creates one that
includes the control color table record specified in the parameter newColorTable and
adds the auxiliary control record to the head of the auxiliary control list. If there
is already an auxiliary record for the control, SetControlColor replaces its color
table with the contents of the control color table record specified in the parameter
newColorTable.

To use nonstandard colors for a control, you must create a control color table, either by
creating a color control table record and calling SetControlColor or by creating a
control color table resource. Generally, you use SetControlColor when you create
a control using NewControl and want to use nonstandard colors for it or when you
change any control’s colors after you’ve created it. When you want to use nonstandard
colors for those controls you create in a control ('CNTL') resource, you should create a
control color table ('cctb') resource with the same resource ID as the control resource.

A control whose colors you set with SetControlColor should initially be invisible.
After using SetControlColor to set the control’s colors, use the ShowControl
procedure to make the control visible.

SPECIAL CONSIDERATIONS

On color monitors, the Control Manager automatically draws controls so that they match
the colors of the controls used by system software. Be aware that nonstandard colors in
your controls may initially confuse your users.

When you create a control color table record, your application should not deallocate it if
another control is still using it.

C H A P T E R 5

Control Manager

5-102 Control Manager Reference

SetControlAction 5

If you set the action procedure to Pointer(-1) when you use TrackControl, you can
use the SetControlAction procedure to set or change the action procedure. The
SetControlAction procedure is also available as the SetCtlAction procedure.

PROCEDURE SetControlAction (theControl: ControlHandle;

 actionProc: ProcPtr);

theControl A handle to the control whose action procedure you wish to change.

actionProc A pointer to an action procedure defining what action your application
takes while the user holds down the mouse button.

DESCRIPTION

The SetControlAction procedure changes the contrlAction field of the control’s
control record to point to the action procedure specified in the actionProc parameter. If
the cursor is in the specified control, TrackControl calls this action procedure
when user holds down the mouse button. You must provide the action procedure, and it
must define some action to perform repeatedly as long as the user holds down the mouse
button. (The TrackControl function always highlights and drags the control
as appropriate.)

SPECIAL CONSIDERATIONS

The value in the contrlAction field of the control’s control record is used
by TrackControl only if you set the action procedure to TrackControl to
Pointer(–1).

An action procedure is usually specified in a parameter to TrackControl; you generally
don’t need to call SetControlAction to change it.

SEE ALSO

Action procedures are described in “Defining Your Own Action Procedures” beginning
on page 5-115.

Determining Control Values 5

Your application sets a control’s various values—such as current setting, minimum and
maximum settings, title, reference value, and action procedure—when it creates the
control. When the user clicks a control, however, your application often needs to
determine the current setting and other possible values of that control. When the user
clicks a checkbox, for example, your application must determine whether the box is
checked before deciding whether to draw a checkmark inside the checkbox or remove the
checkmark.

C H A P T E R 5

Control Manager

Control Manager Reference 5-103

You can use the GetControlValue, GetControlTitle, GetControlMinimum,
GetControlMaximum, GetControlAction, and GetControlReference routines to
determine, respectively, a control’s current setting, title, minimum setting, maximum
setting, action procedure, and reference value. To get a handle to a control’s auxiliary
control record, you can use the GetAuxiliaryControlRecord function; your
application can use the acRefCon field of an auxiliary control record for any purpose. To
determine the variation code that is specified in the control definition function for a
particular control, you can use the GetControlVariant function. This section also
includes a description of the SetControlReference procedure, which allows your
application to change its reference value for a control.

GetControlValue 5

To determine a control’s current setting, use the GetControlValue function. The
GetControlValue function is also available as the GetCtlValue function.

FUNCTION GetControlValue (theControl: ControlHandle): Integer;

theControl A handle to a control.

DESCRIPTION

The GetControlValue function returns as its function result the specified control’s
current setting, which is stored in the contrlValue field of the control record.

When you create a control, you specify an initial setting either in the control resource or
in the value parameter of the NewControl function. You can change the setting by
using the SetControlValue procedure.

SEE ALSO

Listing 5-12 on page 5-37 and Listing 5-13 on page 5-38 illustrate the use of
GetControlValue for determining the current setting of, respectively, a pop-up
menu and a checkbox. Listing 5-16 on page 5-41, Listing 5-18 on page 5-53, and
Listing 5-20 on page 5-61 illustrate the use of this function for determining the
current setting of a scroll bar.

GetControlMinimum 5

To determine a control’s minimum setting, use the GetControlMinimum function. The
GetControlMinimum function is also available as the GetCtlMin function.

FUNCTION GetControlMinimum (theControl: ControlHandle): Integer;

theControl A handle to the control whose minimum value you wish to determine.

C H A P T E R 5

Control Manager

5-104 Control Manager Reference

DESCRIPTION

The GetControlMinimum function returns as its function result the specified control’s
minimum setting, which is stored in the contrlMin field of the control record.

When you create a control, you specify an initial minimum setting either in the control
resource or in the min parameter of the NewControl function. You can change the
minimum setting by using the SetControlMinimum procedure.

GetControlMaximum 5

To determine a control’s maximum setting, use the GetControlMaximum function. The
GetControlMaximum function is also available as the GetCtlMax function.

FUNCTION GetControlMaximum (theControl: ControlHandle): Integer;

theControl A handle to the control whose maximum value you wish to determine.

DESCRIPTION

The GetControlMaximum function returns as its function result the specified control’s
maximum setting, which is stored in the contrlMax field of the control record.

When you create a control, you specify an initial maximum setting either in the control
resource or in the max parameter of the NewControl function. You can change the
maximum setting by using the SetControlMaximum procedure.

SEE ALSO

Listing 5-16 on page 5-41 and Listing 5-20 on page 5-61 illustrate the use of
GetControlMaximum for determining the maximum scrolling distance of a scroll bar.

GetControlTitle 5

To determine the title of a control, use the GetControlTitle procedure. The
GetControlTitle procedure is also available as the GetCTitle procedure.

PROCEDURE GetControlTitle (theControl: ControlHandle;

VAR title: Str255);

theControl A handle to the control whose title you want to determine.

title The title of the control.

C H A P T E R 5

Control Manager

Control Manager Reference 5-105

DESCRIPTION

The GetControlTitle procedure returns the specified control title, which is stored in
the contrlTitle field of the control record.

When you create a control, you specify an initial title either in the control resource or in
the title parameter of the NewControl function. You can change the title by using the
SetControlTitle procedure.

GetControlReference 5

To determine a control’s current reference value, use the GetControlReference
function. The GetControlReference function is also available as the GetCRefCon
function.

FUNCTION GetControlReference (theControl: ControlHandle): LongInt;

theControl A handle to the control whose current reference value you wish
to determine.

DESCRIPTION

The GetControlReference function returns as its function result the current reference
value for the specified control.

When you create a control, you specify an initial reference value, either in the control
resource or in the refCon parameter of the NewControl function. The reference value is
stored in the contrlRfCon field of the control record. You can use this field for any
purpose, and you can use the SetControlReference procedure, described next, to
change this value.

SetControlReference 5

To change a control’s current reference value, use the SetControlReference
procedure. The SetControlReference procedure is also available as the SetCRefCon
procedure.

PROCEDURE SetControlReference (theControl: ControlHandle;

 data: LongInt);

theControl A handle to the control whose reference value you wish to change.

data The new reference value for the control.

C H A P T E R 5

Control Manager

5-106 Control Manager Reference

DESCRIPTION

The SetControlReference procedure sets the control’s reference value to the value
you specify in the data parameter.

When you create a control, you specify an initial reference value, either in the
control resource or in the refCon parameter of the NewControl function. The
reference value is stored in the contrlRfCon field of the control record; you can
use the GetControlReference function to determine the current value. You
can use this value for any purpose.

GetControlAction 5

To get a pointer to the action procedure stored in the contrlAction field
of the control’s control record, use the GetControlAction function. The
GetControlAction function is also available as the GetCtlAction function.

FUNCTION GetControlAction (theControl: ControlHandle): ProcPtr;

theControl A handle to a control.

DESCRIPTION

The GetControlAction function returns as its function result whatever value is
stored in the contrlAction field of the control’s control record. This field specifies
the action procedure that TrackControl uses if you set its actionProc parameter to
Pointer(-1). The action procedure should define an action to take in response to the
user’s holding down the mouse button while the cursor is in the control. You can use
the SetControlAction procedure to change this action procedure.

SEE ALSO

For information about defining an action procedure, see “Defining Your Own Action
Procedures” beginning on page 5-115.

GetControlVariant 5

To determine the variation code specified in the control definition function for a
particular control, you can use the GetControlVariant function. The
GetControlVariant function is also available as the GetCVariant function.

FUNCTION GetControlVariant (theControl: ControlHandle): Integer;

theControl A handle to the control whose variation code you wish to determine.

C H A P T E R 5

Control Manager

Control Manager Reference 5-107

DESCRIPTION

The GetControlVariant function returns as its function result the variation code for
the specified control.

SEE ALSO

Variation codes are described in “The Control Definition Function” on page 5-14.

GetAuxiliaryControlRecord 5

 Use the GetAuxiliaryControlRecord function to get a handle to a control’s
auxiliary control record. The GetAuxiliaryControlRecord function is also
available as the GetAuxCtl function.

FUNCTION GetAuxiliaryControlRecord (theControl: ControlHandle;

VAR acHndl: AuxCtlHandle)

: Boolean;

theControl A handle to a control.

acHndl A handle to the auxiliary control record for the control.

DESCRIPTION

In its acHndl parameter, the GetAuxiliaryControlRecord function returns a handle
to the auxiliary control record for the specified control. Your application typically doesn’t
need to access an auxiliary control record unless you need its acRefCon field, which
your application can use for any purpose.

The value that GetAuxiliaryControlRecord returns for a function result depends on
the control’s color control table, as described here:

� If your application has changed the default control color table for the given control
(either by using the SetControlColor procedure or by creating its own control color
table), the function returns TRUE.

� If your application has not changed the default control color table, the function
returns FALSE.

� If you set the parameter theControl to NIL, the Dialog Manager ensures that
the control uses the default color table, and GetAuxiliaryControlRecord
returns TRUE.

C H A P T E R 5

Control Manager

5-108 Control Manager Reference

Removing Controls 5

When you use the Window Manager procedures DisposeWindow and CloseWindow to
remove a window, they automatically remove all controls associated with the window
and release the memory the controls occupy.

When you no longer need a control in a window that you want to keep, you can use the
DisposeControl procedure to remove the control from the window’s control list and
release the memory it occupies. You can use the KillControls procedure to dispose of
all of a window’s controls at once.

DisposeControl 5

To remove a particular control from a window that you want to keep, use the
DisposeControl procedure.

PROCEDURE DisposeControl (theControl: ControlHandle);

theControl A handle to the control you wish to remove.

DESCRIPTION

The DisposeControl procedure removes the specified control from the screen, deletes
it from its window’s control list, and releases the memory occupied by the control record
and any data structures associated with the control.

SPECIAL CONSIDERATIONS

The Window Manager procedures CloseWindow and DisposeWindow automatically
dispose of all controls associated with the given window.

SEE ALSO

To remove all of the controls in a window, use the KillControls procedure, described
next. The CloseWindow and DisposeWindow procedures are described in the chapter
“Window Manager” in this book.

KillControls 5

To remove all of the controls in a particular window that you want to keep, use the
KillControls procedure.

PROCEDURE KillControls (theWindow: WindowPtr);

theWindow A pointer to the window containing the controls to remove.

C H A P T E R 5

Control Manager

Control Manager Reference 5-109

DESCRIPTION

The KillControls procedure disposes of all controls associated with the specified
window by calling the DisposeControl procedure for each control.

SPECIAL CONSIDERATIONS

The Window Manager procedures CloseWindow and DisposeWindow automatically
dispose of all controls associated with the given window.

SEE ALSO

The CloseWindow and DisposeWindow procedures are described in the chapter
“Window Manager” in this book.

Application-Defined Routines 5
This section describes how to create your own control definition function—declared
here as MyControl—which your application needs to provide when defining new,
nonstandard controls. This section also describes action procedures—declared here
as MyAction and MyIndicatorAction—which define additional actions to be
performed repeatedly as long as the user holds down the mouse button while the
cursor is in a control. For example, you need to define an action procedure for scrolling
through a document while the user holds down the mouse button and the cursor is
in a scroll arrow.

Defining Your Own Control Definition Function 5

In addition to the standard controls (buttons, checkboxes, radio buttons, pop-up menus,
and scroll bars), the Control Manager allows you to define new, nonstandard controls as
appropriate for your application. For example, you can define a three-way selector
switch, a memory-space indicator that looks like a thermometer, or a thruster control for
a spacecraft simulator. Controls and their indicators may occupy regions of any shape, as
permitted by QuickDraw.

To define your own type of control, you write a control definition function, compile it as a
resource of type 'CDEF', and store it in your resource file. (See the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox for more information about creating
resources.) Whenever you create a control, you specify a control definition ID, which the
Control Manager uses to determine the control definition function. The control definition
ID is an integer that contains the resource ID of the control definition function in its
upper 12 bits and a variation code in its lower 4 bits. Thus, for a given resource ID and
variation code

control definition ID = 16 x resource ID + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control
definition function with resource ID 0. Because they have variation codes of 0, 1,
and 2, respectively, their respective control definition IDs are 0, 1, and 2.

C H A P T E R 5

Control Manager

5-110 Control Manager Reference

You can define your own variation codes, which various Control Manager routines pass
to your control definition function. This allows you to use one 'CDEF' resource to handle
several variations of the same general control.

The Control Manager calls the Resource Manager to access your control definition
function with the given resource ID. The Resource Manager reads your control definition
function into memory and returns a handle to it. The Control Manager stores this handle
in the contrlDefProc field of the control record. In 24-bit addressing mode, the
variation code is placed in the high-order byte of this field; in 32-bit mode, the variation
code is placed in the most significant byte of the acReserved field in the control’s
AuxCtlRec record. Later, when various Control Manager routines need to perform a
type-dependent action on the control, they call your control definition function and pass
it the variation code as a parameter.

If you create a control definition function, you can use control color table records of
any desired size and define their contents in any way you wish, except that part indices
1 through 127 are reserved for system definition. Note that in this case, you should
allocate explicit auxiliary records for every control you create.

MyControl 5

If you wish to define new, nonstandard controls for your application, you must write a
control definition function and store it in a resource file as a resource of type 'CDEF'.
Here’s how you would declare a procedure named MyControl:

FUNCTION MyControl (varCode: Integer; theControl: ControlHandle;

message: Integer; param: LongInt): LongInt;

varCode The variation code for this control. To derive the control definition ID for
the control, add this value to the result of 16 multiplied by the resource ID
of the 'CDEF' resource containing this function. The variation code
allows you to specify several control definition IDs within one 'CDEF'
resource, thereby defining several variations of the same basic control.

theControl A handle to the control that the operation will affect.

message A value (from the following list) that specifies which operation your
function must undertake.

CONST drawCntl = 0; {draw the control or its part}

testCntl = 1; {test where mouse button }

{ is pressed}

calcCRgns = 2; {calculate region for }

{ control or indicator in }

{ 24-bit systems}

initCntl = 3; {peform any additional }

{ control initialization}

C H A P T E R 5

Control Manager

Control Manager Reference 5-111

dispCntl = 4; {perform any additional }

{ disposal actions}

 posCntl = 5; {move indicator and }

{ update its setting}

 thumbCntl = 6; {calculate parameters for }

{ dragging indicator}

dragCntl = 7; {perform any custom dragging }

{ of control or its indicator}

autoTrack = 8; {execute action procedure }

{ specified by your function}

calcCntlRgn = 10; {calculate region for control}

calcThumbRgn = 11; {calculate region for }

{ indicator}

param A value whose meaning depends on the operation specified in the
message parameter.

DESCRIPTION

The Control Manager calls your control definition function under various circumstances;
the Control Manager uses the message parameter to inform your control definition
function what action it must perform. The data that the Control Manager passes in the
param parameter, the action that your control definition function must undertake, and
the function result that your control definition function returns all depend on the value
that the Control Manager passes in the message parameter. The rest of this section
describes how to respond to the various values that the Control Manager passes in the
message parameter.

Drawing the Control or Its Part 5

When the Control Manager passes the value for the drawCntl constant in the message
parameter, the low word in the param parameter has one of the following values:

� the value 0, indicating the entire control

� the value 129, signifying an indicator that must be moved

� any other value, indicating a part code for the control (Don’t use part code 128, which
is reserved for future use, or part code 129, which the Control Manager uses to signify
an indicator that must be moved.)

Note
For the drawCntl message, the high-order word of the param
parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter. �

If the specified control is visible, your control definition function should draw the control
(or the part specified in the param parameter) within the control’s rectangle. If the
control is invisible (that is, if its contrlVis field is set to 0), your control definition
function does nothing.

C H A P T E R 5

Control Manager

5-112 Control Manager Reference

When drawing the control or its part, take into account the current values of its
contrlHilite and contrlValue fields of the control’s control record.

If the part code for your control’s indicator is passed in param, assume that the indicator
hasn’t moved; the Control Manager, for example, may be calling your control definition
function so that you may simply highlight the indicator. However, when your applica-
tion calls the SetControlValue, SetControlMinimum, and SetControlMaximum
procedures, they in turn may call your control definition function to redraw the
indicator. Since these routines have no way of determining what part code you chose
for your indicator, they all pass 129 in param, meaning that you should move your
indicator. Your control definition function must detect this part code as a special case and
remove the indicator from its former location before drawing it. If your control has more
than one indicator, you should interpret 129 to mean all indicators.

When passed the value for the drawCntl constant in the message parameter, your
control definition function should always return 0 as its function result.

Testing Where the Mouse-Down Event Occurs 5

To request your control definition function to determine whether a specified point is
in a visible control, the FindControl function sends the value for the testCntl
constant in the message parameter. In this case, the param parameter specifies a point
(in coordinates local to the control’s window) as follows:

� The point’s vertical coordinate is contained in the high-order word of the long integer.

� The point’s horizontal coordinate is contained in the low-order word.

When passed the value for the testCntl constant in the message parameter, your
control definition function should return the part code of the part that contains the
specified point; it should return 0 if the point is outside the control or if the control
is inactive.

Calculating the Control and Indicator Regions 5

When the Control Manager passes the value for the calcCRgns constant in the message
parameter, your control definition function should calculate the region occupied by either
the control or its indicator. The Control Manager passes a QuickDraw region handle in
the param parameter; it is this region that you calculate. If the high-order bit of param is
set, the region requested is that of the control’s indicator; otherwise, the region requested
is that of the entire control. Your control definition function should clear the high bit of
the region handle before calculating the region.

When the Control Manager passes the value for the calcCntlRgn constant in the
message parameter, your control definition function should calculate the region passed
in the param parameter for the specified control. When the Control Manager passes the
value for the calcThumbRgn constant, calculate the region occupied by the indicator.

When passed the values for the calcCRgns, calcCntlRgn, and calcThumbRgn
constants, your control definition function should always return 0, and it should express
the region in the local coordinate system of the control’s window.

C H A P T E R 5

Control Manager

Control Manager Reference 5-113

IMPORTANT

The Control Manager passes the calcCRgns constant when the 24-bit
Memory Manager is in operation. When the 32-bit Memory Manager is
in operation, the Control Manager instead passes the calcCntlRgn
constant or the calcThumbRgn constant. Your control definition
function should respond to all three constants. �

Performing Any Additional Initialization 5

After initializing fields of a control record as appropriate when creating a new control,
the Control Manager passes initCntl in the message parameter to give your control
definition function the opportunity to perform any type-specific initialization you may
require. For example, if you implement the control’s action procedure in its control
definition function, you’ll need to store Pointer(–1) in the contrlAction field of the
control’s control record. Then, in a call to TrackControl for this control, you would
pass Pointer(–1) in the actionProc parameter of TrackControl.

The standard control definition function for scroll bars allocates space for a region to hold
the scroll box and stores the region handle in the contrlData field of the new control
record.

When passed the value for the initCntl constant in the message parameter, your
control definition function should ignore the param parameter and return 0 as a
function result.

Performing Any Additional Disposal Actions 5

The DisposeControl procedure passes dispCntl in the message parameter to give
your control definition function the opportunity to carry out any additional actions when
disposing of a control. For example, the standard definition function for scroll bars
releases the memory occupied by the scroll box region, whose handle is kept in the
contrlData field of the control’s control record.

When passed the value for the dispCntl constant in the message parameter, your
control definition function should ignore the param parameter and return 0 as a
function result.

Moving the Indicator 5

When a mouse-up event occurs in the indicator of a control, the TrackControl function
calls your control definition function and passes posCntl in the message parameter. In
this case, the param parameter contains a point (in coordinates local to the control’s
window) that specifies the vertical and horizontal offset, in pixels, by which your control
definition function should move the indicator from its current position. Typically, this is
the offset between the points where the cursor was when the user pressed and released
the mouse button while dragging the indicator. The offset point is specified as follows:

� The point’s vertical offset is contained in the high-order word of the param parameter.

� The point’s horizontal offset is contained in the low-order word.

C H A P T E R 5

Control Manager

5-114 Control Manager Reference

Your definition function should calculate the control’s new setting based on the
given offset and then, to reflect the new setting, redraw the control and update the
contrlValue field in the control’s control record. Your control definition function
should ignore the param parameter and return 0 as a function result.

Note that the SetControlValue, SetControlMinimum, and SetControlMaximum
procedures do not call your control definition function with the posCntl message;
instead, they pass the drawCntl message.

Calculating Parameters for Dragging the Indicator 5

When the Control Manager passes the value for thumbCntl in the message parameter,
your control definition function should respond by calculating values (analogous to
the limitRect, slopRect, and axis parameters of DragControl) that constrain
how the indicator is dragged. The param parameter contains a pointer to the following
data structure:

RECORD

limitRect,slopRect: Rect;

axis: Integer;

END;

On entry, the field param^.limitRect.topLeft contains the point where the
mouse-down event first occurred. Your definition function should store the appropriate
values into the fields of the record pointed to by param; they’re analogous to the
similarly named parameters to the Window Manager function DragGrayRgn.

Performing Custom Dragging 5

The Control Manager passes dragCntl in the message parameter to give your control
definition function the opportunity to specify its own method for dragging a control (or
its indicator).

The param parameter specifies whether the user is dragging an indicator or the
whole control:

� A value of 0 means the user is dragging the entire control.

� Any nonzero value means the user is dragging only the indicator.

If you want to use the Control Manager’s default method of dragging (which is to call
DragControl to drag the control or the Window Manager function DragGrayRgn to
drag its indicator), return 0 as the function result for your control definition function.

If your control definition function returns any nonzero result, the Control Manager does
not drag your control, and instead your control definition function must drag the
specified control (or its indicator) to follow the cursor until the user releases the mouse
button, as follows:

� If the user drags the entire control, your definition function should use the
MoveControl procedure to reposition the control to its new location after the user
releases the mouse button.

C H A P T E R 5

Control Manager

Control Manager Reference 5-115

� If the user drags the indicator, your definition function must calculate the control’s
new setting (based on the pixel offset between the points where the cursor was when
the user pressed and released the mouse button while dragging the indicator) and
then, to reflect the new setting, redraw the control and update the contrlValue field
in the control’s control record. Note that, in this case, the TrackControl function
returns 0 whether or not the user changes the indicator’s position. Thus, you must
determine whether the user has changed the control’s setting, for instance, by
comparing the control’s value before and after the call to TrackControl.

Executing an Action Procedure 5

You can design a control whose action procedure is specified by your control definition
function. When you create the control, your control definition function must first respond
to the initCntl message by storing Pointer(–1) in the contrlAction field of the
control’s control record. (As previously explained, the Control Manager sends the
initCntl message to your control definition function after initializing
the fields of a new control record.) Then, when your application passes Pointer(–1)
in the actionProc parameter to the TrackControl function, TrackControl
calls your control definition function with the autoTrack message. The param
parameter specifies the part code of the part where the mouse-down event occurs.
Your control definition function should then use this information to respond as an action
procedure would.

Note
For the autoTrack message, the high-order word of the param
parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter. �

ASSEMBLY-LANGUAGE INFORMATION

The function’s entry point must be at the beginning.

SEE ALSO

The TrackControl function is described on page 5-90; creating an action procedure is
described in the next section.

Defining Your Own Action Procedures 5

When a mouse-down event occurs in a control, the TrackControl function responds as
appropriate by highlighting the control or dragging the indicator as long as the user
holds down the mouse button. You can define other actions to be performed repeatedly
during this interval. To do so, define your own action procedure and point to it in the
actionProc parameter of the TrackControl function.

When calling your action procedure for a control part other than an indicator,
TrackControl passes your action procedure (1) a handle to the control and (2) the
control’s part code. Your action procedure should then respond as appropriate. For

C H A P T E R 5

Control Manager

5-116 Control Manager Reference

example, if the user is working in a text document and holds down the mouse button
while the cursor is in the lower scroll arrow, your application should scroll continuously
one line at a time until the user releases the mouse button or reaches the end of
the document.

For a control part other than an indicator, you declare an action procedure that takes two
parameters: a handle to the control in which the mouse-down event occurred and an
integer that represents the part of the control in which the mouse-down event occurred.
Such an action procedure is declared as MyAction in the following section.

If the mouse-down event occurs in an indicator, your action procedure should take no
parameters, because the user may move the cursor outside the indicator while dragging
it. Such an action procedure, declared here as MyIndicatorAction, is described on
page 5-117.

Because it will be called with either zero or two parameters, according to whether the
mouse-down event occurred in an indicator or elsewhere, your action procedure can be
defined for only one case or the other. The only way to specify actions in response to all
mouse-down events in a control, regardless of whether they’re in an indicator, is to define
your own control definition function, as described in “Defining Your Own Control
Definition Function” beginning on page 5-109.

MyAction 5

Here’s how to declare an action procedure for a control part other than an indicator if you
were to name the procedure MyAction:

PROCEDURE MyAction (theControl: ControlHandle; partCode: Integer);

theControl A handle to the control in which the mouse-down event occurred.

partCode When the cursor is still in the control part where mouse-down event first
occurred, this parameter contains that control’s part code. When the
user drags the cursor outside the original control part, this parameter
contains 0.

DESCRIPTION

Your procedure can perform any action appropriate for the control part. For example,
when a mouse-down event occurs in a scroll arrow or gray area of a scroll bar,
TrackControl calls your action procedure and passes it the part code and a handle
to the scroll bar. Your action procedure should examine the part code to determine
the part of the control in which the mouse-down event occurred. Your action
procedure should then scroll up or down a line or page as appropriate and then call
the SetControlValue procedure to change the control’s setting and redraw the
scroll box.

C H A P T E R 5

Control Manager

Control Manager Reference 5-117

ASSEMBLY-LANGUAGE INFORMATION

If you store a pointer to a procedure in the global variable DragHook, your procedure is
called repeatedly (with no parameters) as long as the user holds down the mouse button.
The TrackControl function invokes the Window Manager function DragGrayRgn,
which calls the DragHook procedure. The DragGrayRgn function uses the pattern
stored in the global variable DragPattern for the dragged outline of the indicator.

SEE ALSO

Listing 5-19 on page 5-59 illustrates a pair of action procedures for scrolling through a
text document. As an alternative to passing a pointer to your action procedure in a
parameter to TrackControl, you can use the SetControlAction procedure to
store a pointer to the action procedure in the contrlAction field in the control record.
When you pass Pointer(–1) instead of a procedure pointer to TrackControl,
TrackControl uses the action procedure pointed to in the control record.

MyIndicatorAction 5

Here’s how to declare an action procedure for an indicator if you were to name the
procedure MyIndicatorAction:

PROCEDURE MyIndicatorAction;

DESCRIPTION

Your procedure can perform any action appropriate for the control part. For example, if
your application plays music while displaying a volume control slider, your application
should change the volume in response to the user’s action in the slider switch.

SEE ALSO

See the MyAction procedure described on page 5-116 for other considerations.

Resources 5
This section describes the control ('CNTL') resource and the control color table ('cctb')
resource. You can use the control resource to define a control and use the control color
table resource to change the default colors of a control’s parts.

C H A P T E R 5

Control Manager

5-118 Control Manager Reference

The Control Resource 5

You can use a control resource to define a control. A control resource is a resource of
type 'CNTL'. All control resources must have resource ID numbers greater than 128.
Use the GetNewControl function (described on page 5-81) to create a control defined in
a control resource. The Control Manager uses the information you specify to create a
control record in memory. (The control record is described on page 5-73.)

This section describes the structure of this resource after it is compiled by the Rez
resource compiler, available from APDA. The format of a Rez input file for a control
resource differs from its compiled output form, which is illustrated in Figure 5-25. If you
are concerned only with creating a control resource, see “Creating and Displaying a
Control” beginning on page 5-15.

Figure 5-25 Structure of a compiled control ('CNTL') resource

The compiled version of a control resource contains the following elements:

� The rectangle, specified in coordinates local to the window, that encloses the control;
this rectangle encloses the control and thus determines its size and location.

� The initial setting for the control.
� For controls—such as buttons—that don’t retain a setting, this value should be 0.
� For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

a value of 0 in this element indicates that the control is initially off; a value of 1
indicates that the control is initially on.

� For controls—such as scroll bars and dials—that can take a range of settings,
whatever initial value is appropriate within that range is specified in this element.

Rectangle

Initial setting

Visibility

Minimum setting

Control definition ID

Reference value

Title

Maximum setting

8

2

1

2

2

2

4

Variable

'CNTL' resource type Bytes

Fill 1

C H A P T E R 5

Control Manager

Control Manager Reference 5-119

� For pop-up menus, a combination of values instructs the Control Manager where
and how to draw the control title. Appropriate values, along with the constants
used to specify them in a Rez input file, are listed here:

CONST popupTitleBold = $00000100; {boldface font style}

popupTitleItalic = $00000200; {italic font style}

popupTitleUnderline = $00000400; {underline font }

{ style}

popupTitleOutline = $00000800; {outline font style}

popupTitleShadow = $00001000; {shadow font style}

popupTitleCondense = $00002000; {condensed text}

popupTitleExtend = $00004000; {extended text}

popupTitleNoStyle = $00008000; {monostyle text}

popupTitleLeftJust = $00000000; {place title left }

{ of pop-up box}

popupTitleCenterJust = $00000001; {center title over }

{ pop-up box}

popupTitleRightJust = $000000FF; {place title right }

{ of pop-up box}

� The visibility of the control. If this element contains the value TRUE, GetNewControl
draws the control immediately, without using the application’s standard updating
mechanism for windows. If this element contains the value FALSE, the application
must use the ShowControl procedure (described on page 5-86) when it’s prepared to
display the control.

� Fill. This should be set to 0.

� The maximum setting for the control.
� For controls—such as buttons—that don’t retain a setting, this value should be 1.
� For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

this element should contain the value 1 (meaning “on”).
� For controls—such as scroll bars and dials—that can take a range of settings, this

element can contain whatever maximum value is appropriate; when the application
makes the maximum setting of a scroll bar equal to its minimum setting, the control
definition function automatically makes the scroll bar inactive, and when the
application makes the maximum setting exceed the minimum, the control definition
function makes the scroll bar active again.

� For pop-up menus, this element contains the width, in pixels, of the control title.

� The minimum setting for the control.
� For controls—such as buttons—that don’t retain a setting, this value should be 0.
� For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

the value 0 (meaning “off”) should be set in this element.
� For controls—such as scroll bars and dials—that can take a range of settings, this

element contains whatever minimum value is appropriate.
� For pop-up menus, this element contains the resource ID of the 'MENU' resource

that describes the menu items.

C H A P T E R 5

Control Manager

5-120 Control Manager Reference

� The control definition ID, which the Control Manager uses to determine the control
definition function for this control. “Defining Your Own Control Definition Function”
beginning on page 5-109 describes how to create control definition functions and their
corresponding control definition IDs. The following list shows the control definition ID
numbers—and the constants that represent them in Rez input files—for the standard
controls.

CONST

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

useWFont = 8; {when added to above, shows }

{ title in the window font}

scrollBarProc = 16; {scroll bar}

popupMenuProc = 1008; {pop-up menu}

popupFixedWidth = $0001; {add to popupMenuProc to }

{ use fixed-width control}

popupUseAddResMenu = $0004; {add to popupMenuProc to }

{ specify a value of type }

{ ResType in the contrlRfCon }

{ field of the control }

{ record; Menu Manager }

{ adds resources of this }

{ type to the menu}

popupUseWFont = $0008; {if added to popupMenuProc, }

{ shows title in window font}

Note

The title of a button, checkbox, radio button, or pop-up menu normally
appears in the system font, which in Roman script systems is 12-point
Chicago. Do not use a smaller font; some script systems, such as
KanjiTalk, require 12-point fonts. You should generally use the system
font in your controls; doing so will simplify localization effort. However,
if you absolutely need to display a control title in the font currently
associated with the window’s graphics port, you can add the
popupUseWFont constant to the pop-up menu control definition
ID or add the useWFont constant to the other standard control
definition IDs. �

� The control’s reference value, which is set and used only by the application (except
when the application adds the popupUseAddResMenu variation code to the
popupMenuProc control definition ID, as described in “Creating a Pop-Up Menu”
beginning on page 5-25).

C H A P T E R 5

Control Manager

Control Manager Reference 5-121

� For controls—such as buttons, checkboxes, radio buttons, and pop-up menus—that
need a title, the string for that title; for controls that don’t use titles, an empty string.

After you use GetNewControl to create the control, you can change the current setting,
the maximum setting, the minimum setting, the reference value, and the title by using,
respectively, the SetControlValue, SetControlMaximum, SetControlMinimum,
SetControlReference, and SetControlTitle routines. You can use the
MoveControl and SizeControl procedures to change the control’s rectangle. You
can use the GetControlValue, GetControlMaximum, GetControlMinimum,
GetControlReference, and GetControlTitle routines to determine the
control values.

The Control Color Table Resource 5

On color monitors, the Control Manager automatically draws control parts so that they
match the colors of the controls used by system software.

If you feel absolutely compelled to use nonstandard colors, the Control Manager
allows you to do so. Your application can specify these by creating a control color table
('cctb') resource; you must give the control color table resource for a control the
same resource ID as its control ('CNTL') resource, which is described on page 5-118.
When you call the GetNewControl function to create the control, the Control Manager
automatically attempts to load a control color table resource with the same resource ID as
the control resource specified to GetNewControl. The Control Manager also creates
an auxiliary control record for the control; the auxiliary control record is described
on page 5-76.

Note
Using nonstandard colors in your controls may initially confuse
your users. �

Generally, you use a control color table resource for a control that you define in a control
resource. To change a control’s colors, or to use nonstandard colors in a control
you create using NewControl, create a control color table record and use the
SetControlColor procedure. The control color table record is described on page 5-77;
the SetControlColor procedure is described on page 5-101.

A control color table resource is of type 'cctb'. All control color table resources must
have resource ID numbers greater than 128. Figure 5-26 on the next page shows the
format of a control color table resource. Note that DisposeControl does not delete
a control color table resource; therefore, you should make each control color table
resource purgeable.

C H A P T E R 5

Control Manager

5-122 Control Manager Reference

Figure 5-26 Structure of a compiled control color table ('cctb') resource

You define a control color table resource by specifying these elements in a resource with
the 'cctb' resource type:

� Reserved. Should always be set to 0.

� Reserved. Should always be set to 0.

� Number of control parts. For standard controls other than scroll bars, this should be
set to 3, because these controls consist of a frame, a control body, and text. For scroll
bars, this should be set to 12. A scroll bar consists of a frame, a body, and scroll box;
each part of a scroll bar has various highlight and tinge colors associated with it. To
create a control with more parts, you must create your own control definition function
(as described in “Defining Your Own Control Definition Function” beginning on
page 5-109) that recognizes additional parts.

� First part identifier. A value or constant that identifies the control’s part to color. The
part identifiers can be listed in any order. The scroll bar control definition function
may use more than one part identifier to produce the actual colors used for each part
of the scroll bar.

CONST

cFrameColor = 0; {frame color; for scroll bars, used to produce }

{ foreground color for scroll arrows & gray area}

cBodyColor = 1; {body color; for scroll bars, used to produce }

{ colors in the scroll box}

cTextColor = 2; {text color; unused for scroll bars}

Reserved

Reserved

Number of control parts

Red component

Green component

Blue component

First part identifer

4

2

2

2

2

2

2

'cctb' resource type Bytes

Red component

Green component

Blue component

Last part identifier 2

2

2

2

C H A P T E R 5

Control Manager

Control Manager Reference 5-123

cArrowsColorLight = 5; {Used to produce colors in arrows & scroll bar }

{ background color}

cArrowsColorDark = 6; {Used to produce colors in arrows & scroll bar }

{ background color}

cThumbLight = 7; {Used to produce colors in scroll box}

cThumbDark = 8; {Used to produce colors in scroll box}

cHiliteLight = 9; {Use same value as wHiliteColorLight in 'wctb'}

cHiliteDark = 10; {Use same value as wHiliteColorDark in 'wctb'}

cTitleBarLight = 11; {Use same value as wTitleBarLight in 'wctb'}

cTitleBarDark = 12; {Use same value as wTitleBarDark in 'wctb'}

cTingeLight = 13; {Use same value as wTingeLight in 'wctb'}

cTingeDark = 14; {Use same value as wTingeDark in 'wctb'}

� Red component. An integer that represents the intensity of the red component of
the color to use when drawing this part of the control. In this and the next two
elements, use 16-bit unsigned integers to give the intensity values of three additive
primary colors.

� Green component. An integer that represents the intensity of the green component of
the color to use when drawing this part of the control.

� Blue component. An integer that represents the intensity of the blue component of the
color to use when drawing this part of the control.

� Part identifier and red, green, and blue components for the next control part. You can
list parts in any order in this resource. If the application specifies a part identifier that
cannot be found, the Control Manager uses the colors for the control’s first identifiable
part. If a part is not listed in the control color table, the Dialog Manager draws it in its
default color.

The Control Definition Function 5

The resource type for a control definition function is 'CDEF'. The resource data is
the compiled or assembled code of the function. See “Defining Your Own Control
Definition Function” beginning on page 5-109 for information about creating a control
definition function.

C H A P T E R 5

Control Manager

5-124 Summary of the Control Manager

Summary of the Control Manager 5

Pascal Summary 5

Constants 5

CONST

{control definition IDs}

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

useWFont = 8; {add to above to display control title in }

{ the window font}

scrollBarProc = 16; {scroll bar}

popupMenuProc = 1008; {pop-up menu}

popupMenuCDEFproc = popupMenuProc; {synonym for compatibility}

{pop-up menu CDEF variation codes}

popupFixedWidth = $0001; {add to popupMenuProc to use }

{ fixed-width control}

popupUseAddResMenu = $0004; {add to popupMenuProc to specify a }

{ value of type ResType in the }

{ contrlRfCon field of the control }

{ record; Menu Manager adds }

{ resources of this type to the menu}

popupUseWFont = $0008; {add to popupMenuProc to show control }

{ title in the window font}

{part codes}

inButton = 10; {button}

inCheckBox = 11; {checkbox or radio button}

inUpButton = 20; {up arrow for a vertical scroll bar, }

{ left arrow for a horizontal scroll bar}

inDownButton = 21; {down arrow for a vertical scroll bar, }

{ right arrow for a horizontal scroll bar}

inPageUp = 22; {gray area above scroll box for a }

{ vertical scroll bar, gray area to }

{ left of scroll box for a horizontal }

{ scroll bar}

C H A P T E R 5

Control Manager

Summary of the Control Manager 5-125

inPageDown = 23; {gray area below scroll box for a }

{ vertical scroll bar, gray area to }

{ right of scroll box for a horizontal }

{ scroll bar}

inThumb = 129; {scroll box (or other indicator)}

{pop-up title characteristics}

popupTitleBold = $00000100; {boldface font style}

popupTitleItalic = $00000200; {italic font style}

popupTitleUnderline = $00000400; {underline font style}

popupTitleOutline = $00000800; {outline font style}

popupTitleShadow = $00001000; {shadow font style}

popupTitleCondense = $00002000; {condensed characters}

popupTitleExtend = $00004000; {extended characters}

popupTitleNoStyle = $00008000; {monostyled text}

popupTitleLeftJust = $00000000; {place title left of pop-up box}

popupTitleCenterJust = $00000001; {center title over pop-up box}

popupTitleRightJust = $000000FF; {place title right of pop-up box}

{axis constraints for DragControl procedure}

noConstraint = 0; {no constraint}

hAxisOnly = 1; {drag along horizontal axis only}

vAxisOnly = 2; {drag along vertical axis only}

{constants for the message parameter in a control definition function}

drawCntl = 0; {draw the control or its part}

testCntl = 1; {test where mouse button is pressed}

calcCRgns = 2; {calculate region for control or indicator in }

{ 24-bit systems}

initCntl = 3; {peform any additional control initialization}

dispCntl = 4; {take any additional disposal actions}

posCntl = 5; {move indicator and update its setting}

thumbCntl = 6; {calculate parameters for dragging indicator}

dragCntl = 7; {perform any custom dragging of control or }

{ its indicator}

autoTrack = 8; {execute action procedure specified by your }

{ function}

calcCntlRgn = 10; {calculate region for control}

calcThumbRgn = 11; {calculate region for indicator}

{part identifiers for ColorSpec records in a control color table resource}

cFrameColor = 0; {frame color; for scroll bars, also fore- }

{ ground color for scroll arrows and gray area}

C H A P T E R 5

Control Manager

5-126 Summary of the Control Manager

cBodyColor = 1; {for scroll bars, background color for }

{ scroll arrows and gray area; for other }

{ controls, the fill color for body of control}

cTextColor = 2; {text color; unused for scroll bars}

cThumbColor = 3; {Reserved}

Data Types 5

TYPE ControlPtr = ^ControlRecord;

ControlHandle = ^ControlPtr;

ControlRecord =

PACKED RECORD

nextControl: ControlHandle; {next control}

contrlOwner: WindowPtr; {control's window}

contrlRect: Rect; {rectangle}

contrlVis: Byte; {255 if visible}

contrlHilite: Byte; {highlight state}

contrlValue: Integer; {control's current setting}

contrlMin: Integer; {control's minimum setting}

contrlMax: Integer; {control's maximum setting}

contrlDefProc: Handle; {control definition function}

contrlData: Handle; {data used by contrlDefProc}

contrlAction: ProcPtr; {action procedure}

contrlRfCon: LongInt; {control's reference value}

contrlTitle: Str255; {control's title}

END;

AuxCtlPtr = ^AuxCtlRec;

AuxCtlHandle = ^AuxCtlPtr;

AuxCtlRec =

RECORD

acNext: AuxCtlHandle; {handle to next AuxCtlRec}

acOwner: ControlHandle; {handle to this record's control}

acCTable: CCTabHandle; {handle to color table record}

acFlags: Integer; {reserved}

acReserved: LongInt; {reserved for future use}

acRefCon: LongInt; {for use by application}

END;

C H A P T E R 5

Control Manager

Summary of the Control Manager 5-127

CCTabPtr = ^CtlCTab;

CCTabHandle = ^CCTabPtr;

CtlCTab =

RECORD

ccSeed: LongInt; {reserved; set to 0}

ccRider: Integer; {reserved; set to 0}

ctSize: Integer; {number of ColorSpec records in next }

{ field; 3 for standard controls}

ctTable: ARRAY[0..3] OF ColorSpec;

END;

Control Manager Routines 5

Creating Controls

FUNCTION GetNewControl (controlID: Integer; owner: WindowPtr)
: ControlHandle;

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect;
title: Str255; visible: Boolean;
value: Integer; min: Integer; max: Integer;
procID: Integer; refCon: LongInt)
: ControlHandle;

Drawing Controls

{UpdateControls is also spelled as UpdtControl}

PROCEDURE ShowControl (theControl: ControlHandle);

PROCEDURE UpdateControls (theWindow: WindowPtr; updateRgn: RgnHandle);

PROCEDURE DrawControls (theWindow: WindowPtr);

PROCEDURE Draw1Control (theControl: ControlHandle);

Handling Mouse Events in Controls

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr;
VAR theControl: ControlHandle): Integer;

FUNCTION TrackControl (theControl: ControlHandle; thePoint: Point;
actionProc: ProcPtr): Integer;

FUNCTION TestControl (theControl: ControlHandle; thePt: Point)
: Integer;

C H A P T E R 5

Control Manager

5-128 Summary of the Control Manager

Changing Control Settings and Display

{some routines have 2 spellings——see Table 5-1 for the alternate spellings}

PROCEDURE SetControlValue (theControl: ControlHandle; theValue: Integer);

PROCEDURE SetControlMinimum (theControl: ControlHandle; minValue: Integer);

PROCEDURE SetControlMaximum (theControl: ControlHandle; maxValue: Integer);

PROCEDURE SetControlTitle (theControl: ControlHandle; title: Str255);

PROCEDURE HideControl (theControl: ControlHandle);

PROCEDURE MoveControl (theControl: ControlHandle; h: Integer;
v: Integer);

PROCEDURE SizeControl (theControl: ControlHandle; w: Integer; h:
Integer);

PROCEDURE HiliteControl (theControl: ControlHandle;
hiliteState: Integer);

PROCEDURE DragControl (theControl: ControlHandle; startPt: Point;
limitRect: Rect; slopRect: Rect;
axis: Integer);

PROCEDURE SetControlColor (theControl: ControlHandle; newColorTable:
CCTabHandle);

PROCEDURE SetControlAction (theControl: ControlHandle;
actionProc: ProcPtr);

Determining Control Values

{some routines have 2 spellings——see Table 5-1 for the alternate spellings}

FUNCTION GetControlValue (theControl: ControlHandle): Integer;

FUNCTION GetControlMinimum (theControl: ControlHandle): Integer;

FUNCTION GetControlMaximum (theControl: ControlHandle): Integer;

PROCEDURE GetControlTitle (theControl: ControlHandle; VAR title: Str255);

FUNCTION GetControlReference
(theControl: ControlHandle): LongInt;

PROCEDURE SetControlReference
(theControl: ControlHandle; data: LongInt);

FUNCTION GetControlAction (theControl: ControlHandle): ProcPtr;

FUNCTION GetControlVariant (theControl: ControlHandle): Integer;

FUNCTION GetAuxiliaryControlRecord
(theControl: ControlHandle;
VAR acHndl: AuxCtlHandle): Boolean;

Removing Controls

PROCEDURE DisposeControl (theControl: ControlHandle);

PROCEDURE KillControls (theWindow: WindowPtr);

C H A P T E R 5

Control Manager

Summary of the Control Manager 5-129

Application-Defined Routines 5

Defining Your Own Control Definition Function
FUNCTION MyControl (varCode: Integer; theControl: ControlHandle;

message: Integer; param: LongInt) : LongInt;

Defining Your Own Action Procedures

PROCEDURE MyAction (theControl: ControlHandle; partCode: Integer);

PROCEDURE MyIndicatorAction;

C Summary 5

Constants 5

enum {

/*control definition IDs*/

pushButProc = 0, /*button*/

checkBoxProc = 1, /*checkbox*/

radioButProc = 2, /*radio button*/

useWFont = 8, /*add to above to display control */

/* title in the window font*/

scrollBarProc = 16, /*scroll bar*/

popupMenuProc = 1008, /*pop-up menu*/

/*pop-up menu CDEF variation codes*/

popupFixedWidth = 1 << 0, /*add to popupMenuProc to use */

/* use fixed-width control*/

popupUseAddResMenu = 1 << 2, /*add to popupMenuProc to specify a */

/* value of type ResType in the */

/* contrlRfCon field of the control */

/* record; Menu Manager adds */

/* resources of this type to the menu*/

popupUseWFont = 1 << 3 /*add to popupMenuProc to display */

/* control title in the window font*/

};

C H A P T E R 5

Control Manager

5-130 Summary of the Control Manager

enum {

/*part codes*/

inButton = 10, /*button*/

inCheckBox = 11, /*checkbox or radio button*/

inUpButton = 20, /*up arrow for a vertical scroll bar, */

/* left arrow for a horizontal scroll bar*/

inDownButton = 21, /*down arrow for a vertical scroll bar, */

/* right arrow for a horizontal scroll bar*/

inPageUp = 22, /*gray area above scroll box for a */

/* vertical scroll bar, gray area to */

/* left of scroll box for a horizontal */

/* scroll bar*/

inPageDown = 23, /*gray area below scroll box for a */

/* vertical scroll bar, gray area to */

/* right of scroll box for a horizontal */

/* scroll bar*/

inThumb = 129 /*scroll box (or other indicator)*/

};

enum {

/*pop-up title characteristics*/

popupTitleBold = 1 << 8, /*boldface font style*/

popupTitleItalic = 1 << 9, /*italic font style*/

popupTitleUnderline = 1 << 10, /*underline font style*/

popupTitleOutline = 1 << 11, /*outline font style*/

popupTitleShadow = 1 << 12, /*shadow font style*/

popupTitleCondense = 1 << 13, /*condensed text*/

popupTitleExtend = 1 << 14, /*extended text*/

popupTitleNoStyle = 1 << 15 /*monostyled text*/

};

enum {

/*pop-up title characteristics*/

popupTitleLeftJust = 0x00000000, /*place title left of pop-up box*/

popupTitleCenterJust = 0x00000001, /*center title over pop-up box*/

popupTitleRightJust = 0x000000FF, /*place title right of pop-up box*/

/*axis constraints for DragControl procedure*/

noConstraint = 0, /*no constraint*/

hAxisOnly = 1, /*constrain movement to horizontal axis only*/

vAxisOnly = 2, /*constrain movement to vertical axis only*/

C H A P T E R 5

Control Manager

Summary of the Control Manager 5-131

/*constants for the message parameter in a control definition function*/

drawCntl = 0, /*draw the control or control part*/

testCntl = 1, /*test where mouse button was pressed*/

calcCRgns = 2, /*calculate region for control or indicator in */

/* 24-bit systems*/

initCntl = 3, /*do any additional control initialization*/

dispCntl = 4, /*take any additional disposal actions*/

posCntl = 5, /*move indicator and update its setting*/

thumbCntl = 6, /*calculate parameters for dragging indicator*/

dragCntl = 7, /*peform any custom dragging of control or */

/* its indicator*/

autoTrack = 8, /*execute action procedure specified by your */

/* function*/

calcCntlRgn = 10, /*calculate region for control*/

calcThumbRgn = 11, /*calculate region for indicator*/

/*part identifiers for ColorSpec records in a control color table resource*/

cFrameColor = 0, /*frame color; for scroll bars, also foreground */

/* color for scroll arrows and gray area*/

cBodyColor = 1, /*for scroll bars, background color for scroll */

/* arrows and gray area; for other controls, */

/* the fill color for body of control*/

cTextColor = 2, /*text color; for scroll bars, unused*/

cThumbColor = 3 /*Reserved*/

};

Data Types 5

struct ControlRecord {

struct ControlRecord **nextControl; /*next control*/

WindowPtr contrlOwner; /*control's window*/

Rect contrlRect; /*rectangle*/

unsigned char contrlVis; /*255 if visible*/

unsigned char contrlHilite; /*highlight state*/

short contrlValue; /*control's current setting*/

short contrlMin; /*control's minimum setting*/

short contrlMax; /*control's maximum setting*/

Handle contrlDefProc; /*control definition function*/

Handle contrlData; /*data used by contrlDefProc*/

ProcPtr contrlAction; /*action procedure*/

long contrlRfCon; /*control's reference value*/

Str255 contrlTitle; /*control's title*/

};

C H A P T E R 5

Control Manager

5-132 Summary of the Control Manager

typedef struct ControlRecord ControlRecord;

typedef ControlRecord *ControlPtr, **ControlHandle;

struct AuxCtlRec {

Handle acNext; /*handle to next AuxCtlRec*/

ControlHandle acOwner; /*handle to this record's control*/

CCTabHandle acCTable; /*handle to color table record*/

short acFlags; /*reserved*/

long acReserved; /*reserved for future use*/

long acRefCon; /*for use by application*/

};

typedef struct AuxCtlRec AuxCtlRec;

typedef AuxCtlRec *AuxCtlPtr, **AuxCtlHandle;

struct CtlCTab {

long ccSeed; /*reserved; set to 0*/

short ccRider; /*reserved; set to 0*/

short ctSize; /*number of ColorSpec records in next */

/* field; 3 for standard controls*/

ColorSpec ctTable[4];

};

typedef struct CtlCTab CtlCTab;

typedef CtlCTab *CCTabPtr, **CCTabHandle;

Control Manager Routines 5

Creating Controls

pascal ControlHandle GetNewControl
(short controlID, WindowPtr owner);

pascal ControlHandle NewControl
(WindowPtr theWindow, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short value, short min, short max,
short procID, long refCon);

Drawing Controls

/*UpdateControls is also spelled as UpdtControl*/

pascal void ShowControl (ControlHandle theControl);

pascal void UpdateControls (WindowPtr theWindow, RgnHandle updateRgn);

pascal void DrawControls (WindowPtr theWindow);

pascal void Draw1Control (ControlHandle theControl);

C H A P T E R 5

Control Manager

Summary of the Control Manager 5-133

Handling Mouse Events in Controls

pascal short FindControl (Point thePoint, WindowPtr theWindow,
ControlHandle *theControl);

pascal short TrackControl (ControlHandle theControl, Point thePoint,
ProcPtr actionProc);

pascal short TestControl (ControlHandle theControl, Point thePt);

Changing Control Settings and Display
/*some routines have 2 spellings——see Table 5-1 for the alternate spellings*/

pascal void SetControlValue (ControlHandle theControl, short theValue);

pascal void SetControlMinimum
(ControlHandle theControl, short minValue);

pascal void SetControlMaximum
(ControlHandle theControl, short maxValue);

pascal void SetControlTitle (ControlHandle theControl,
ConstStr255Param title);

pascal void HideControl (ControlHandle theControl)

pascal void MoveControl (ControlHandle theControl, short h, short v);

pascal void SizeControl (ControlHandle theControl, short w, short h);

pascal void HiliteControl (ControlHandle theControl, short hiliteState);

pascal void DragControl (ControlHandle theControl, Point startPt,
const Rect *limitRect,
const Rect *slopRect, short axis);

pascal void SetControlAction (ControlHandle theControl, ProcPtr actionProc)

pascal void SetControlColor (ControlHandle theControl,
CCTabHandle newColorTable);

Determining Control Values
/*some routines have 2 spellings——see Table 5-1 for the alternate spellings*/

pascal short GetControlValue
(ControlHandle theControl);

pascal short GetControlMinimum
(ControlHandle theControl);

pascal short GetControlMaximum
(ControlHandle theControl);

pascal void GetControlTitle (ControlHandle theControl, Str255 title);

pascal long GetControlReference
(ControlHandle theControl);

pascal void SetControlReference
(ControlHandle theControl, long data);

pascal ProcPtr GetControlAction
 (ControlHandle theControl);

C H A P T E R 5

Control Manager

5-134 Summary of the Control Manager

pascal short GetControlVariant
(ControlHandle theControl);

pascal Boolean GetAuxiliaryControlRecord
(ControlHandle theControl,
AuxCtlHandle *acHndl);

Removing Controls

pascal void DisposeControl (ControlHandle theControl);

pascal void KillControls (WindowPtr theWindow);

Application-Defined Routines 5

Defining Your Own Control Definition Function

pascal long MyControl (short varCode, ControlHandle theControl,
short message, long param);

Defining Your Own Action Procedures

pascal void MyAction (ControlHandle theControl, short partCode);

pascal void MyIndicatorAction;

Assembly-Language Summary 5

Data Structures 5

ControlRecord Data Structure

0 nextControl long handle to next control in control list
4 contrlOwner long pointer to this control’s window
8 contrlRect 8 bytes control’s rectangle

16 contrlVis 1 byte value of 255 if control is visible
17 contrlHilite 1 byte highlight state
18 contrlValue word control’s current setting
20 contrlMin word control’s minimum setting
22 contrlMax word control’s maximum setting
24 contrlDefProc long handle to control definition function
28 contrlData long data used by control definition function
32 contrlAction long address of action procedure
36 contrlRfCon long control’s reference value
40 contrlTitle 256 bytes control title (preceded by length byte)

C H A P T E R 5

Control Manager

Summary of the Control Manager 5-135

AuxCtlRec Data Structure

Global Variables 5

0 acNext long handle to next AuxCtlRec record in control list
4 acOwner long handle to this record’s control
8 acCTable long handle to color table for this control

12 acFlags word miscellaneous flags
14 acReserved long reserved for use by Apple Computer, Inc.
18 acRefCon long for use by application

AuxCtlHead First in a linked list of auxiliary control records
AuxWinHead Contains a pointer to the linked list of auxiliary control records
DragHook Address of procedure to execute during TrackControl and DragControl
DragPattern Pattern of dragged region’s outline (8 bytes)

Contents 6-1

C H A P T E R 6

Figure 6-0
Listing 6-0
Table 6-0

Contents

6 Dialog Manager

Introduction to Alerts and Dialog Boxes 6-6
Types of Alerts 6-8
Types of Dialog Boxes 6-9

Modal Dialog Boxes 6-10
Movable Modal Dialog Boxes 6-11
Modeless Dialog Boxes 6-12

Items in Alert and Dialog Boxes 6-13
Events in Alert and Dialog Boxes 6-14
Alert Boxes, Dialog Boxes, and the Window Manager 6-15
About the Dialog Manager 6-16

Using the Dialog Manager 6-17
Creating Alert Sounds and Alert Boxes 6-18
Creating Dialog Boxes 6-23
Providing Items for Alert and Dialog Boxes 6-26

Item Types 6-30
Display Rectangles 6-32
Enabled and Disabled Items 6-36
Resource IDs for Items 6-36
Titles for Buttons, Checkboxes, and Radio Buttons 6-37
Text Strings for Static Text and Editable Text Items 6-40
Pop-Up Menus as Items 6-42
Keyboard Navigation Among Items 6-44

Manipulating Items 6-44
Changing Static Text 6-46
Getting Text From Editable Text Items 6-48
Adding Items to an Existing Dialog Box 6-51

Using an Application-Defined Item to Draw the Bold Outline for a
Default Button 6-56

C H A P T E R 6

6-2 Contents

Displaying Alert and Dialog Boxes 6-61
Positioning Alert and Dialog Boxes 6-62
Deactivating Windows Behind Alert and Modal Dialog Boxes 6-64
Displaying Modeless Dialog Boxes 6-66
Adjusting Menus for Modal Dialog Boxes 6-68
Adjusting Menus for Movable Modal and Modeless Dialog Boxes 6-73
Displaying Multiple Alert and Dialog Boxes 6-74
Displaying Alert and Dialog Boxes From the Background 6-74
Including Color in Your Alert and Dialog Boxes 6-75

Handling Events in Alert and Dialog Boxes 6-77
Responding to Events in Controls 6-78
Responding to Events in Editable Text Items 6-79
Responding to Events in Alert Boxes 6-81
Responding to Events in Modal Dialog Boxes 6-82
Writing an Event Filter Function for Alert and Modal Dialog
Boxes 6-86
Responding to Mouse Events in Modeless and
Movable Modal Dialog Boxes 6-89
Responding to Keyboard Events in Modeless and
Movable Modal Dialog Boxes 6-94
Responding to Activate and Update Events in Modeless and Movable
Modal Dialog Boxes 6-97
Closing Dialog Boxes 6-100

Dialog Manager Reference 6-101
Data Structure 6-101

The Dialog Record 6-101
Dialog Manager Routines 6-102

Initializing the Dialog Manager 6-102
Creating Alerts 6-105
Creating and Disposing of Dialog Boxes 6-113
Manipulating Items in Alert and Dialog Boxes 6-120
Handling Text in Alert and Dialog Boxes 6-129
Handling Events in Dialog Boxes 6-135

Application-Defined Routines 6-143
Resources 6-147

The Dialog Resource 6-148
The Alert Resource 6-150
The Item List Resource 6-151
The Dialog Color Table Resource 6-156
The Alert Color Table Resource 6-157
The Item Color Table Resource 6-158

Summary of the Dialog Manager 6-165
Pascal Summary 6-165

Constants 6-165
Data Types 6-166
Dialog Manager Routines 6-166
Application-Defined Routines 6-168

C H A P T E R 6

Contents 6-3

C Summary 6-168
Constants 6-168
Data Types 6-169
Dialog Manager Routines 6-170
Application-Defined Routines 6-172

Assembly-Language Summary 6-172
Data Structures 6-172
Global Variables 6-172

C H A P T E R 6

6-5

Dialog Manager 6

This chapter describes how your application can use the Dialog Manager to alert users to
unusual situations and to solicit information from users. For example, in some situations
your application might not be able to carry out a command normally, and in other
situations the user must specify multiple parameters before your application can execute
a command. For circumstances like these, the Macintosh user interface includes these two
features:

� alerts—including alert sounds and alert boxes—which warn the user whenever an
unusual or potentially undesirable situation occurs within your application

� dialog boxes, which allow the user to provide additional information or to modify
settings before your application carries out a command

Read this chapter to learn how and when to implement alerts and dialog boxes. For
example, your application can use the Dialog Manager to ask the user whether to save
new or altered documents before quitting and, if the situation arises, to inform the user
that there is insufficient disk space to save the file.

Virtually all applications need to implement alerts and dialog boxes. To avoid needless
development effort, use the Dialog Manager to implement alerts and to create most
dialog boxes. It is possible, however—and sometimes desirable—to bypass the Dialog
Manager and instead use Window Manager, Control Manager, QuickDraw, and Event
Manager routines to create or respond to events in complex dialog boxes. Even if you
decide not to use the Dialog Manager, read this chapter for information about effective
human interface design and localization issues regarding dialog boxes.

To use this chapter, you should be familiar with resources, the Event Manager, the
Window Manager, and the Control Manager.

You typically use resources to specify the items you wish to display in alert boxes and
dialog boxes; for example, you specify the size, location, and appearance of a dialog
box in a dialog resource—a resource of type 'DLOG'. See the chapter “Introduction to the
Macintosh Toolbox” in this book for general information about resources; detailed
information about the Resource Manager and its routines is provided in the chapter
“Resource Manager” of Inside Macintosh: More Macintosh Toolbox.

The Dialog Manager offers routines that handle most of the events relating to alerts
and dialog boxes, but your application still needs to handle a few additional events
as described in “Writing an Event Filter Function for Alert and Modal Dialog Boxes”
beginning on page 6-86. See the chapter “Event Manager” in this book for general
information about events and event handling.

The Dialog Manager uses the Window Manager to display your alert boxes and dialog
boxes. Although the Dialog Manager uses most of the Window Manager routines
necessary to activate and update your alert and dialog boxes, your application needs
to use Window Manager routines if it creates certain types of dialog boxes—such as
modeless dialog boxes—as explained in this chapter. See the chapter “Window Manager”
in this book for general information about windows.

The Dialog Manager uses the Control Manager to create and display buttons, radio
buttons, checkboxes, and pop-up menus and to handle events in them. Generally, you
shouldn’t use any other controls—such as scroll bars—in your dialog boxes. If you need

C H A P T E R 6

Dialog Manager

6-6 Introduction to Alerts and Dialog Boxes

to implement a more complex control, see the chapter “Control Manager” in this book.
Buttons are the only controls you should use in alert boxes.

If you include editable text items in your dialog boxes, the Dialog Manager uses TextEdit
to handle associated editing tasks. For general information on TextEdit, see the chapter
“TextEdit” in Inside Macintosh: Text.

This chapter provides a brief introduction to the concepts and functions of alerts and
dialog boxes, and then it discusses how you can

� create and display alerts and dialog boxes

� include controls, informative text, editable text fields, and similar items in your alert
boxes and dialog boxes

� respond to events in your alert boxes and dialog boxes

Introduction to Alerts and Dialog Boxes 6

The behaviors and uses of alerts differ from those of dialog boxes. Important distinctions
also exist between different types of alerts and between different types of dialog boxes.
You choose among these according to the user’s current situation.

Your application should give an alert to report an error or to issue a warning to the
user. An alert can simply play a sound (called an alert sound) for the user, it can display
an alert box that contains a message and requires an acknowledgment from the user,
or it can play an alert sound and simultaneously display an alert box. Alert boxes are
special windows that contain informative text, buttons, and, generally, icons. They
may also contain pictures. As shown in Figure 6-1, an alert box typically consists of
text describing why the alert appears and buttons requiring the user to acknowledge
or rectify the problem.

Figure 6-1 An alert box used by the Finder

By requiring the user to click a button, an alert box obliges the user to acknowledge the
alert box before proceeding. To assist the user who isn’t sure how to respond when an
alert box appears, your application specifies a preferred button—which invokes a
preferred action—for every alert box. The Dialog Manager draws a bold outline around
the preferred button so that it stands out from the other buttons in the alert box. The
outlined button is also the alert box’s default button; if the user presses the Return key or

C H A P T E R 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-7

the Enter key, the Dialog Manager acts as if the user had clicked this preferred button. For
example, if the user presses the Return or Enter key in response to the alert box shown in
Figure 6-1, the Dialog Manager inverts the OK button for 8 ticks and informs the Finder
that the OK button has been selected; then the Finder responds by deleting the item
contained in the Trash.

Use a dialog box when your application needs more information to carry out a com-
mand. Commands in menus normally act on only one object. If the user chooses a
command that your application cannot perform until the user supplies more informa-
tion, use a dialog box to elicit the information from the user. If a command brings up
a dialog box, indicate this to your user by placing three ellipsis points (...) after the
command’s name in the menu.

A dialog box is a special window that typically resembles a form on which the user
checks boxes and fills in blanks. Figure 6-2 shows a typical dialog box.

Figure 6-2 A typical dialog box

Although an alert typically requires only an acknowledgment to proceed from the user, a
dialog box ordinarily requires the user to supply information—for instance, by entering
text or by clicking a checkbox—necessary for completing the command. When you create
a dialog box that carries out a command, you normally provide OK and Cancel buttons.
When the user clicks the OK button, your application should perform the command
according to the information that the user supplied in the dialog box. When the user
clicks the Cancel button, your application should revoke the command and retract all of
its actions as though the user had never given the command. Instead of using an OK
button, you might use a button that describes the action to be performed; for example,
you might use a Search button in a Search command’s dialog box or a Remove button in
a Remove command’s dialog box. For simplicity, this chapter refers to the button that
performs the action described in the dialog box as the OK button. You may even provide
more than one button that performs the command, each in a slightly different way. For
example, in a Change command’s dialog box, you might include a Change Selection
button to replace only the current selection and a Change All button to replace all
occurrences throughout the entire document.

You can use any or all of the following elements in the dialog boxes you create:

� informative or instructional text

� rectangles in which text may be entered (initially blank or containing default text that
can be edited)

C H A P T E R 6

Dialog Manager

6-8 Introduction to Alerts and Dialog Boxes

� controls

� graphics (icons or QuickDraw pictures)

� other items as defined by your application

Types of Alerts 6
Every user of every application is liable to do something that the application won’t
understand or can’t cope with in a normal manner. Alerts give your application a way
to respond to these situations in a consistent manner. There are two major categories
of alerts: alert sounds and alert boxes.

The system alert sound is a sound resource stored in the System file. This sound is
played whenever system software or your application uses the Sound Manager
procedure SysBeep. The Sound control panel allows the user to select which sound
is played as the system alert sound. You can also provide your own alert sound to use
in place of the system alert sound.

Use an alert sound for errors that are both minor and immediately obvious. For example,
if the user tries to backspace past the left boundary of a text field, your application might
play the alert sound instead of displaying an alert box. Your application can base its
response on the number of consecutive times an alert condition recurs; the first time,
your application might simply play a sound, and thereafter it might present an alert box.
Your application can define different responses for each one of four alert stages.

An alert box is primarily a one-way communication from your application to the user;
the only way the user can respond is by clicking buttons. Therefore, your alert boxes
should contain buttons, but usually they should not contain editable text fields, radio
buttons, or checkboxes—items that are typically displayed in dialog boxes.

There are three standard kinds of alert boxes: note alerts, caution alerts, and stop alerts.
They are distinguished by the icons displayed in their upper-left corners.

Use a note alert to inform users of a situation that won’t have any disastrous
consequences if left as is. Usually this type of alert simply offers information, and the
user responds by clicking the OK button. Occasionally, as shown in Figure 6-3, a note
alert may ask a simple question and provide a choice of responses.

Figure 6-3 A note alert

C H A P T E R 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-9

Use a caution alert to alert the user to an operation that may have undesirable results if
it’s allowed to continue. As shown in Figure 6-4, you should give the user the choice of
whether to continue the action (by clicking the OK button) or to stop the action (by
clicking the Cancel button).

Figure 6-4 A caution alert

Use a stop alert to inform the user that a problem or situation is so serious that the
action cannot be completed. Stop alerts, as illustrated in Figure 6-5, typically have only
a single button (OK), because all the user can do is acknowledge that the action cannot be
completed.

Figure 6-5 A stop alert

You can also create custom alert boxes containing in the upper-left corners either your
own icons or blank spaces. Plate 2 at the front of this book illustrates an alert box that
the SurfWriter application displays when the user chooses the About command from the
Apple menu. After reading the information in this alert box, the user clicks the OK button
to dismiss it.

Types of Dialog Boxes 6
Dialog boxes should always require information from the user as well as communicate
information to the user. That is, the purpose of a dialog box is to carry on a dialog
between the user and your application—typically, in preparation for the execution of
a command. Your dialog boxes can include editable text fields and controls such as
checkboxes and radio buttons. With these, the user supplies the information your
application needs to carry out the command. There are three types of dialog boxes: modal
dialog boxes, movable modal dialog boxes, and modeless dialog boxes. These
are described in the next three sections.

C H A P T E R 6

Dialog Manager

6-10 Introduction to Alerts and Dialog Boxes

Modal Dialog Boxes 6

Before allowing the user to proceed with any other work, many dialog boxes require the
user to click a button. The only response a user receives when clicking outside the dialog
box is an alert sound. This type is called a modal dialog box because it puts the user in
the state or “mode” of being able to work only inside the dialog box. Also called a
fixed-position modal dialog box (to differentiate it from a movable modal dialog box),
this type of dialog box looks like an alert box that includes other types of controls in
addition to buttons. Figure 6-6 shows the modal dialog box that SurfWriter displays after
the user chooses the Spell Check command.

Figure 6-6 A modal dialog box

IMPORTANT

Because the user must explicitly dismiss a modal dialog box before doing
anything else, you should use a modal dialog box only when it’s
essential for the user to complete an operation before performing any
other work. Fixed-position modal dialog boxes restrict the user’s
freedom of action; therefore, use them sparingly. As a rule of thumb,
use a modeless dialog box whenever possible, use a movable modal
dialog box whenever you can’t use a modeless dialog box, and use a
fixed-position modal dialog box only when you can’t implement the
dialog box as modeless or movable. �

A modal dialog box usually has at least two buttons: OK and Cancel. When the user
clicks the OK button, your application should perform the command according to the
information provided by the user and then remove the modal dialog box. You can give
the OK button a more descriptive title if you wish. When the user clicks the Cancel
button, your application should revoke any actions it took since displaying the modal
dialog box, and then it should remove the modal dialog box. Always label this button
“Cancel.” Your dialog boxes can have additional buttons as well; these may or may not
dismiss the dialog box.

Every dialog box you create should have a default button—that is, one whose action is
invoked when the user presses the Return or Enter key. Unless you provide your own
event filter function, the Dialog Manager treats the first item you specify in a description
of a dialog box as the default button (that is, so long as the first item is a button). You use

C H A P T E R 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-11

an event filter function, described in “Writing an Event Filter Function for Alert and
Modal Dialog Boxes” beginning on page 6-86, to supplement the Dialog Manager’s
ability to handle events; for example, an event filter function can also test for disk-
inserted events and can allow background applications to receive update events. If you
provide your own event filter function, it should test for key-down events involving the
Return and Enter keys and respond as if the default button were clicked. The default
button should invoke the preferred action, and you should try to design the preferred
action to be safe—that is, so that it doesn’t cause loss of data.

Although the Dialog Manager draws bold outlines around default buttons in alert
boxes, it does not draw bold outlines around those in dialog boxes. To indicate the
preferred action, your application should outline the default button. “Using an
Application-Defined Item to Draw the Bold Outline for a Default Button” beginning on
page 6-56 shows a method you can use to outline a button. If you don’t outline a
button in a dialog box, none should be the default button, and you must ensure in your
event filter function that pressing the Return or Enter key has no effect.

Movable Modal Dialog Boxes 6

The user sometimes needs to see windows obscured by an overlying modal dialog box.
In this case, you should use a movable modal dialog box instead of a fixed-position
modal dialog box. The movable modal dialog box is a modal dialog box that has a title
bar so that the user can move the box by dragging its title bar.

The movable modal dialog box contains no close box and should contain no zoom box.
These visual clues indicate that the user can move the dialog box, but that the dialog
box is modal—that is, the user must respond to the dialog box before performing any
other work in your application. If the user clicks another window belonging to your
application, it should play the system alert sound. Your application removes a movable
modal dialog box only after the user clicks one of its buttons. Unlike regular modal
dialog boxes, however, this type of dialog box allows the user to bring another
application to the front by clicking one of its windows or by choosing the application
name from the Application or Apple menu.

Figure 6-7 shows the movable modal dialog box that the Finder displays after the user
chooses the Find command from the File menu.

Figure 6-7 A movable modal dialog box

C H A P T E R 6

Dialog Manager

6-12 Introduction to Alerts and Dialog Boxes

It’s important to consider whether you can use a modeless dialog box instead of a modal
or a movable modal dialog box—especially to preserve the user’s ability to perform any
task in any order.

Movable modal dialog boxes should generally respond like modal dialog boxes. Note,
however, that users should be able to switch between your application and another
application (thereby sending your application to the background) when you display a
movable modal dialog box—an action users cannot perform with modal dialog boxes.
For example, Macintosh system software uses several movable modal dialog boxes to
show that the Finder is busy with a time-consuming operation (such as file copying), yet
a user can still switch the Finder to the background.

Modeless Dialog Boxes 6

Other dialog boxes do not require the user to respond before doing anything else; these
are called modeless dialog boxes. Whenever possible, you should try to implement your
dialog boxes as modeless. As shown in Figure 6-8, a modeless dialog box looks like a
document window. The user should be able to move it, make it inactive and active again,
and close it like any document window. Unlike a document window, it consists mostly of
buttons and other controls instead of text, and it contains no scroll bars and no size box.
(A modeless dialog box should not have a size box or scroll bars; if you need these
features, use the Window Manager to create a window.)

Figure 6-8 A modeless dialog box

When you display a modeless dialog box, you must allow the user to perform other
operations—such as working in document windows—without dismissing the dialog box.
When a user clicks a button in a modeless dialog box, your application should not
remove it; instead, the dialog box should remain on the desktop so that the user can
perform the command again. Because of the difficulty in revoking the last action invoked
from a modeless dialog box, it typically does not have a Cancel button, although it may
have a Stop button. A Stop button in a modeless dialog box is useful for halting long
printing or searching operations, for example.

When finished with a modeless dialog box, the user can click its close box or choose
Close from the File menu (when the dialog box is the active window). Your application
should then remove the modeless dialog box. A modeless dialog box is also dismissed
implicitly when the user chooses Quit. It’s usually helpful to the user for your application
to remember the contents of the dialog box after it’s dismissed. This way, when the user
invokes the dialog box again, even after the user closes and reopens your application,
you can restore the dialog box exactly as it was.

C H A P T E R 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-13

Items in Alert and Dialog Boxes 6
All dialog boxes and alert boxes contain items—such as icons, text, controls, and
QuickDraw pictures. You use resources called item lists to specify which items you want
to appear in your alert boxes and dialog boxes. You can even define your own items—
for example, a picture whose appearance changes. Figure 6-9 illustrates most of these
item types.

Figure 6-9 Typical items in a dialog box

Your application enables or disables the items it includes in its dialog and alert boxes. An
enabled item is one for which the Dialog Manager reports user events involving that
item; for example, the Dialog Manager reports to the application when a user clicks the
enabled Cancel button shown in Figure 6-9. A disabled item is one for which the Dialog
Manager does not report events. For example, the Dialog Manager does not report to the
application when the user clicks or drags the static text item “Save this document as” in
Figure 6-9 because that item is disabled.

Don’t confuse a disabled item with an inactive control. When you don’t want the
Control Manager to display visual responses to mouse events in a control, you make
it inactive by using the Control Manager procedure HiliteControl. For example,
until the user types a filename, the Save button in Figure 6-9 is inactive. The Control
Manager displays an inactive control in a way (such as by dimming it) that shows it’s
inactive. The Dialog Manager makes no visual distinction between a disabled item and
an enabled item; the Dialog Manager simply doesn’t inform your application when the
user clicks a disabled item.

You should use HiliteControl to dim a control in dialog box whenever the user can’t
use that control. For example, Figure 6-8 shows a modeless dialog box with a dimmed

Pop-up control Application-defined (list)

Button

IconRadio
Button

Editable text

Static
text

C H A P T E R 6

Dialog Manager

6-14 Introduction to Alerts and Dialog Boxes

Stop button. The Stop button is dimmed because it has no effect until the user clicks the
Search button. When the user initiates the search operation by clicking the Search button,
the Stop button becomes active, and the Search button is dimmed.

You should use the Control Manager procedure HiliteControl to make the buttons
and other controls inactive in a modeless or movable modal dialog box when you
deactivate it. The HiliteControl procedure dims inactive buttons, radio buttons,
checkboxes, and pop-up menus to indicate to the user that clicking these items has no
effect while the dialog box is in the background. When you activate the dialog box again,
use HiliteControl to make the controls active again.

You store information about all dialog or alert box items in an item list resource. When
you use Dialog Manager routines to invoke alert boxes or create dialog boxes, the
Dialog Manager gets most of the descriptive information about them from resources.
The Dialog Manager calls the Resource Manager to read into memory what it needs
from the resource file.

Events in Alert and Dialog Boxes 6
Handling events in an alert box is very simple: after you invoke an alert box, the Dialog
Manager handles most events for you by automatically calling the ModalDialog
procedure.

To handle events in a modal dialog box, your application must explicitly call the
ModalDialog procedure after displaying the dialog box.

In either case, when an enabled item is clicked, the Dialog Manager returns the
item number. You’ll then do whatever is appropriate in response to that click. For
mouse-down events outside the alert box or modal dialog box, the ModalDialog
procedure plays the system alert sound and gets the next event.

The Dialog Manager automatically removes an alert box when the user clicks any
enabled item. For a modal dialog box, your application should continue calling
ModalDialog until the user selects the OK or Cancel button, and then—after
responding appropriately to the user’s selection—your application should remove
the dialog box.

When it receives an event, ModalDialog passes the event to an event filter function
before handling the event itself. You should provide an event filter function as a
secondary event-handling loop for events that ModalDialog doesn’t handle. For both
alert and modal dialog boxes, you should provide a simple event filter function that
performs the following tasks:

� return TRUE and the item number for the default button if the user presses the Return
or Enter key

� return TRUE and the item number for the Cancel button if the user presses the Esc
key or the Command-period key combination

� update your windows in response to update events (this also allows background
applications to receive update events) and return FALSE

� return FALSE for all events that your event filter function doesn’t handle

C H A P T E R 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-15

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor within an
application-defined item.

For your application’s modeless and movable modal dialog boxes, you can pass events to
the IsDialogEvent function, or you can use your own event-handling code to
learn whether the events need to be handled as part of a dialog box. If they do, call
the DialogSelect function to assist you in handling them instead of calling the
ModalDialog procedure. Your application should not remove a modeless dialog box
unless the user clicks its close box or chooses Close from the File menu when the
modeless dialog box is the active window. Your application should remove a movable
modal dialog box only after the user clicks one of its enabled buttons.

Instead of using the IsDialogEvent or DialogSelect function to handle events
within modeless and movable modal dialog boxes, you can use Control Manager,
Window Manager, and TextEdit routines (such as FindWindow, BeginUpdate,
EndUpdate, FindControl, TrackControl, and TEClick) to handle these events
without the aid of the Dialog Manager.

Alert Boxes, Dialog Boxes, and the Window Manager 6
The Dialog Manager uses the Window Manager to draw your alert boxes and dialog
boxes. You can use Window Manager or QuickDraw routines to manipulate an alert
box or a dialog box just like any other window—showing it, hiding it, moving it, and
resizing it.

The Dialog Manager gets most of the descriptive information about alerts and dialog
boxes from resources in a resource file. An alert resource is a resource that describes an
alert, and a dialog resource is a resource that describes a dialog box. Both are analogous
to a window resource. (In addition to providing information that the Dialog Manager
passes to the Window Manager, you also include in your alert resources and dialog
resources additional information that the Dialog Manager alone uses. These resources are
described more fully in “Creating Alert Sounds and Alert Boxes” beginning on page 6-18
and “Creating Dialog Boxes” beginning on page 6-23.)

When you create an alert box, the Dialog Manager always passes to the Window
Manager the dBoxProc window definition ID for the alert box; this is so that all alert
boxes have the same standard appearance and behavior. The Window Manager always
displays an alert box in front of all other windows. Because an alert box requires the user
to respond before doing anything else, and the response dismisses the alert box, your
application typically won’t need to use any Window Manager or QuickDraw routines to
manipulate an alert box.

The GetNewDialog function for creating dialog boxes is similar to the Window Manager
function GetNewWindow. When you call GetNewDialog to create a
dialog box, you supply the same information as when you create a window with
GetNewWindow. For example, you use a resource to specify the window definition ID,
which determines how the dialog box looks and behaves, and a rectangle that defines
the dimensions of the dialog box’s graphics port. As for any window, you specify the

C H A P T E R 6

Dialog Manager

6-16 Introduction to Alerts and Dialog Boxes

plane of the dialog box (which, by convention, should initially be frontmost), and you
specify whether it is initially visible or invisible. If you create a dialog box that is initially
invisible—for example, if you need to set a control’s value before displaying it—you use
the Window Manager procedure ShowWindow to display the dialog box.

The Dialog Manager creates the dialog window by calling the Window Manager function
NewCWindow and then setting the window class in the window record to indicate that it’s
a dialog box. The Dialog Manager procedures for disposing of a dialog box,
CloseDialog and DisposeDialog, are analogous to the Window Manager procedures
CloseWindow and DisposeWindow.

When you create a dialog box (as described in “Creating Dialog Boxes” beginning on
page 6-23), use the window definition ID of dBoxProc for modal dialog boxes. Use
the noGrowDocProc window definition ID for modeless dialog boxes. (If your dialog
box absolutely needs a size box or scroll bars, you should use the Window Manager
to create the window instead of using the Dialog Manager.) And finally, use the
movableDBoxProc window definition ID to create movable modal dialog boxes.

The Dialog Manager provides routines for handling most events in alert boxes and dialog
boxes. For example, your application does not need to use such routines as the Window
Manager function FindWindow and the Control Manager function TrackControl to
determine when and where a mouse-down event occurs within an alert box’s buttons.
The Dialog Manager tells you which button the user clicks, and your application needs
only to respond appropriately to the click. The Dialog Manager also automatically
handles update and activate events for your alert boxes and dialog boxes. “Handling
Events in Alert and Dialog Boxes” beginning on page 6-77 describes in detail how to use
the Dialog Manager to help your application handle events.

About the Dialog Manager 6
The Dialog Manager greatly simplifies the task of creating alert boxes and simple modal
dialog boxes. Whenever you need to create an alert box, you’ll save yourself much effort
by relying on the Dialog Manager. (If you need only to play the system alert sound
without ever displaying an alert box for an error condition, you can use the Sound
Manager procedure SysBeep instead of using the Dialog Manager. See Inside Macintosh:
Sound for more information about the SysBeep procedure.)

You may find, however, that the advantages of using the Dialog Manager begin to
diminish for dialog boxes if you make them very complex. For complex modal dialog
boxes (particularly those containing multipart controls or multiple application-defined
items) and for many movable modal and modeless dialog boxes, you may find it more
convenient to implement your own dialog boxes using the Window Manager to create
standard windows and using the Control Manager, QuickDraw, and the Event Manager
to handle the tasks assumed by the Dialog Manager.

There are two main issues to consider when deciding whether to use the Dialog Manager:

� whether to use the Window Manager and the Control Manager instead of the Dialog
Manager to create a dialog box

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-17

� whether to use the Event Manager, Window Manager, Control Manager, and TextEdit
instead of the Dialog Manager to handle events

You may, for example, want to create complex dialog boxes by using the Dialog Manager,
but then use the Event Manager, Window Manager, Control Manager, and TextEdit to
handle events inside your normal event loop. With regard to movable modal and
modeless dialog boxes, the sample code in this chapter illustrates such a hybrid
approach: it uses the Dialog Manager to create the dialog boxes, but it uses normal
event-handling code to determine an appropriate action according to which type of
window is frontmost. When a modeless or movable modal dialog box is in front, this
chapter illustrates how to take actions specific to that dialog box.

If you draw your own dialog box in a standard window without using the Dialog
Manager, you won’t be able to use Dialog Manager routines to help handle events,
but in return you’ll be able to update the window more quickly and extend its event
handling more easily. Here are some situations that tend to diminish the advantages
of using the Dialog Manager to create dialog boxes or handle events involving them:

� The dialog box contains more than 20 items.

� You need a multipart control, such as a scroll bar.

� You need to move items offscreen and onscreen.

� You need to display a moving indicator, such as a progress indicator.

� You need to display a list in the dialog box. (For more information on lists, see the
chapter “List Manager” in Inside Macintosh: More Macintosh Toolbox.)

� You need to display text in a font other than the system font.

� Your application must respond to events other than mouse-down events, key-down
events inside editable text items, and a few key-down events for keyboard equivalents
when your application displays the dialog box.

If none of these situations applies to the dialog box you want to create, then you should
definitely use the Dialog Manager. If only one situation applies, you should probably use
the Dialog Manager. If two or more of these situations apply, you may find that it is better
to create and manage a standard window that operates like a dialog box instead of using
the Dialog Manager to create or manage it.

Using the Dialog Manager 6

You can use the Dialog Manager to

� alert users to critical situations

� carry on a dialog with users when your application needs their input

With Dialog Manager routines, you invoke alert boxes or create dialog boxes in windows
whose contents are, in turn, managed by the Dialog Manager. The Dialog Manager
automatically handles update events, activate events, cursor tracking, and most
text-editing tasks for your alert and dialog boxes.

C H A P T E R 6

Dialog Manager

6-18 Using the Dialog Manager

To implement alerts and dialog boxes, you generally

� create an alert resource or a dialog resource in a resource file

� create another resource to specify a list of items—such as controls, informative text,
and pictures—to be displayed in the alert box or dialog box

� create and display the alert box or dialog box

� respond as appropriate to events relating to your alert or dialog box

� close the dialog box when you are finished with it (for alert boxes, the Dialog Manager
automatically performs this for you)

These tasks are explained in greater detail in the rest of this chapter.

Before using the Dialog Manager, you must initialize QuickDraw, the Font Manager, the
Window Manager, the Menu Manager, and TextEdit, in that order. Then initialize the
Dialog Manager by using the InitDialogs procedure.

The Dialog Manager uses the system alert sound for signaling the user during various
alert stages. If you want to use alert sounds other than the system alert sound, write
your own sound procedure (as illustrated in Listing 6-3 on page 6-22) and call the
ErrorSound procedure to make it the current sound procedure.

If you want to display static text or editable text in a font other than the system font, you
can use the SetDialogFont procedure. However, there are a number of caveats
regarding this procedure. For descriptions of these caveats, see “Special Considerations”
in the description of SetDialogFont on page 6-105.

System 7 and earlier versions of the Communications Toolbox add several new routines
(namely, AppendDITL, ShortenDITL, and CountDITL) that make it easier for you
to add items to, remove items from, and count the number of items in a dialog box.
Before calling these routines, you should make sure that they are available by using the
Gestalt function with the gestaltDITLExtAttr selector. Test the bit field indicated
by the gestaltDITLExtPresent constant in the response parameter. If the bit is set,
then AppendDITL, ShortenDITL, and CountDITL are available.

CONST gestaltDITLExtPresent= 0; {if this bit is set, then }

{ AppendDITL, ShortenDITL, }

{ & CountDITL are available}

The Gestalt function is described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities.

Creating Alert Sounds and Alert Boxes 6
To create an alert, use one of these functions: NoteAlert, CautionAlert, StopAlert,
and Alert. Icons associated with the first three functions appear in the upper-left corner
of the alert boxes, as previously shown in Figure 6-3, Figure 6-4, and Figure 6-5. The
Alert function allows you to display your own icon or to have no icon at all in the
upper-left corner of the alert box.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-19

These functions take descriptive information about the alert from an alert resource that
you provide. An alert resource has the resource type 'ALRT'. When you call one of these
functions, you pass it the resource ID of the alert resource and a pointer to an event filter
function. These functions create and display an alert box. When the user clicks a button
in an alert box, these functions return the button’s item number and close the alert box, at
which time you respond appropriately to the user’s click, as described in “Responding to
Events in Alert Boxes” beginning on page 6-81.

Here’s an example of how to create the caution alert shown in Figure 6-10.

VAR

myAlertItem: Integer;

myAlertItem := CautionAlert(kSaveAlertID, @MyEventFilter);

Figure 6-10 An alert box to save changes to a document

You should specify a pointer to an event filter function when you call the Alert,
StopAlert, CautionAlert, and NoteAlert functions. You should provide an event
filter function as a secondary event-handling loop for events that ModalDialog doesn’t
handle. In this example, a pointer to MyEventFilter is specified for the event filter
function. You can use the standard event filter function by passing NIL in this parameter.
The standard event filter function allows users to press the Return or Enter key in lieu of
clicking the default button. As described in “Writing an Event Filter Function for Alert
and Modal Dialog Boxes” beginning on page 6-86, your application should provide a
simple event filter function that also allows background applications to receive update
events. You can use the same event filter function in most or all of your alert boxes and
modal dialog boxes.

Continuing with the previous example, an application-defined constant
(kSaveAlertID) specifies the resource ID of an alert resource in a parameter to
the CautionAlert function. Listing 6-1 shows how this alert resource appears
in Rez input format. (Rez is the resource compiler provided with Apple’s Macintosh
Programmer’s Workshop [MPW], available from APDA.)

Listing 6-1 Rez input for an alert resource

resource 'ALRT' (kSaveAlertID, purgeable) { /*alert resource*/

{94, 80, 183, 438}, /*rectangle for alert box*/

kSaveAlertDITL, /*use the 'DITL' with res ID 200*/

C H A P T E R 6

Dialog Manager

6-20 Using the Dialog Manager

{ /*alert stages, starting with #4; at each */

/* stage, make OK the default, display the */

/* alert box, & play the system alert sound*/

OK, visible, sound1, /*4th consecutive error*/

OK, visible, sound1, /*3rd consecutive error*/

OK, visible, sound1, /*2nd consecutive error*/

OK, visible, sound1, /*1st error*/

},

alertPositionParentWindow /*place over document window*/

};

An alert resource contains the following information:

� a rectangle, given in global coordinates, that determines the alert box’s dimensions
and, optionally, its position; these coordinates specify the upper-left and lower-right
corners of the alert box

� the resource ID of the item list for the alert box

� the actions to be taken at each of four alert stages

� as an option, a constant (either alertPositionParentWindow,
alertPositionMainScreen, or alertPositionParentWindowScreen)
that tells the Dialog Manager where to position the alert box (available only to
applications running in System 7)

In Listing 6-1, the coordinates (94,80,183,438) specify the dimensions of the alert box, and
the alertPositionParentWindow constant causes the Dialog Manager to place the
alert box just below the title bar of the user’s document window. If you don’t supply a
positioning constant, the Dialog Manager places the alert box at the global coordinates
you specify for the alert box’s rectangle. The positioning constants for alert boxes are
explained in “Positioning Alert and Dialog Boxes” beginning on page 6-62.

In Listing 6-1, the application-defined constant kSaveAlertDITL represents the
resource ID for the item list resource. “Providing Items for Alert and Dialog Boxes”
beginning on page 6-26 describes how to create an item list resource.

Your application can base its response on the number of consecutive times an alert
condition recurs. In Listing 6-1, the alert resource specifies that each consecutive time
the user repeats the action that invokes this caution alert, the Dialog Manager should
perform the following: outline the OK button and treat it as the default button, display
the alert box (that is, make it “visible”), and play a single system alert sound.

Your application can define different responses for each of four stages of an alert. This is
most appropriate for stop alerts—those that signify that an action cannot be completed—
especially when that action has a high probability of being accidental (for example, when
the user chooses the Cut command when no text is selected). Under such a circumstance,
your application might simply play the system alert sound the first two times the user
makes the mistake, and for subsequent mistakes it might also present an alert box. Every
consecutive occurrence of the mistake after the fourth alert stage is treated as a
fourth-stage alert.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-21

For example, a user might try to paste a graphic outside the page margins of a simple
page-layout program; the first time the user tries this, the application—using the Dialog
Manager—may simply play the system alert sound for the user. If the user repeats the
mistake, the application may play the system alert sound again. But when the user
repeats the error for the third consecutive time, the application may display an alert box
like the one shown in Figure 6-11. If the user makes the same mistake immediately after
dismissing this alert box, the alert box reappears, and it continues doing so until the user
corrects or abandons the improper action.

Figure 6-11 An alert box displayed only during the third and fourth alert stages

Listing 6-2 shows the alert resource used to specify the stop alert displayed in
Figure 6-11. Notice that the fourth alert stage is listed first, and the first alert stage is
listed last. At the third alert stage, the application displays an alert box but does not
play the system alert sound. If the user repeats the mistake a fourth consecutive time,
the application plays the system alert sound and displays the alert box as well.

Listing 6-2 Specifying different alert responses according to alert stage

resource 'ALRT' (kStopAlertID, purgeable) { /*alert resource*/

{40, 40, 127, 353}, /*rectangle for alert box*/

kStopAlertDITL, /*use the 'DITL' with res ID 300*/

{ /*alert stages, starting with #4*/

OK, visible, sound1, /*4th err: show alert box, play alert sound*/

OK, visible, silent, /*3rd err: show alert box, don't play sound*/

OK, invisible, sound1, /*2nd err: play sound, don't show alert box*/

OK, invisible, sound1, /*1st err: play sound, don't show alert box*/

},

alertPositionParentWindow /*place over document window*/

};

The actions for each alert stage are specified by the following three pieces of information:

� Which button is the default button—the OK button (that is, the first item in the item
list resource) or the Cancel button (that is, the second item in the item list resource).
The Dialog Manager automatically draws a bold outline around the default button,
and when the user presses the Return or Enter key, the Dialog Manager treats—or
your event filter function should treat—that keyboard event as a click in the default

C H A P T E R 6

Dialog Manager

6-22 Using the Dialog Manager

button. The OK and Cancel buttons are described in detail in “Providing Items for
Alert and Dialog Boxes” beginning on page 6-26. At each alert stage, you can change
the default button, although it’s difficult to imagine a scenario where changing the
default button would be helpful to the user. In the previous example, the OK button is
the default.

� Whether the alert box is to be displayed. If you specify the visible constant for
an alert stage, the alert box is displayed; if you specify the invisible constant, it is
not. In Listing 6-2, the alert box is not displayed the first two consecutive times the
user repeats the mistake, but it is displayed for all subsequent consecutive times.

� Which of four possible sounds (if any) should be emitted at this stage of the alert. In
the previous example, the first, second, and fourth alert stages play a single system
alert sound, but the third stage plays no sound.

By default, the Dialog Manager uses the system alert sound. The sound1 constant, used
in Listing 6-2, tells the Dialog Manager to play the system alert sound once; you can also
specify the sound2 and sound3 constants, which cause the Dialog Manager to play the
system alert sound two and three times, respectively, each time at the same pitch and
with the same duration. The volume of the sound depends on the current speaker
volume setting, which the user can adjust in the Sound control panel. If the user has set
the speaker volume to 0, the menu bar blinks once in place of each sound that the user
would otherwise hear.

If you want the Dialog Manager to play sounds other than the system alert sound, write
your own sound procedure and then call ErrorSound and pass it a pointer to your
sound procedure. The ErrorSound procedure (described on page 6-104) makes your
sound procedure the current sound procedure. For example, you might create a sound
procedure named MyAlertSound, as shown in Listing 6-3.

Listing 6-3 Creating your own sound procedure for alerts

PROCEDURE MyAlertSound (soundNo: Integer);

BEGIN

CASE soundNo OF

0: PlayMyWhisperAlert; {sound for silent constant in alert resources}

1: PlayMyBellAlert; {sound for sound1 constant in alert resources}

2: PlayMyDrumAlert; {sound for sound2 constant in alert resources}

3: PlayMyTrumpetAlert; {sound for sound3 constant in alert resources}

OTHERWISE ;

END; {of CASE}

END;

For each of the four alert stages that can be reported in the soundNo parameter, your
procedure can emit any sound that you define.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-23

As previously explained, the dimensions of the rectangle you specify in the alert resource
determine the dimensions of the alert box. You can also let the rectangle coordinates
serve as global coordinates that position the alert box, or you can let the Dialog Manager
automatically locate it for you according to three standard positions. Listing 6-2 on
page 6-21, for example, uses the alertPositionParentWindow constant to position
the alert box over the document window where the user is working. For details about
these standard positions, see “Positioning Alert and Dialog Boxes” beginning on
page 6-62.

Creating Dialog Boxes 6
To create a dialog box, use the GetNewDialog or NewDialog function. You should
usually use GetNewDialog, which takes information about the dialog box from a
dialog ('DLOG') resource in a resource file. Like window resources, dialog resources
isolate descriptive information from your application code for ease of modification
or translation to other languages. The rest of this section describes how to use
GetNewDialog. Although it’s generally not recommended, you can also use the
NewDialog or NewColorDialog function and pass it the necessary descriptive
information in individual parameters instead of using a dialog resource. See page 6-118
for a description of NewDialog and page 6-115 for a description of NewColorDialog.

The GetNewDialog function creates a data structure (called a dialog record) of type
DialogRecord from the information in the dialog resource and returns a pointer to it. A
dialog record includes a window record. When you use GetNewDialog, the Dialog
Manager sets the windowKind field in the window record to dialogKind. As explained
in “Displaying Alert and Dialog Boxes” beginning on page 6-61, you can use this pointer
with Window Manager or QuickDraw routines to display and manipulate the dialog box.

When you use GetNewDialog, you pass it the resource ID of the dialog resource, an
optional pointer to the memory to use for the dialog record, and the window pointer
Pointer(-1), which causes the Window Manager to display the dialog box in front of
all other windows.

If you pass NIL for the memory pointer, the dialog record is allocated in your
application’s heap. Passing NIL is appropriate for modal dialog boxes and movable
modal dialog boxes, but—if you are creating a modeless dialog box—this can cause your
heap to become fragmented. In the case of modeless dialog boxes, therefore, you should
allocate your own memory as you would for a window; allocating window memory is
described in the chapter “Window Manager” in this book.

Here’s an example of how to create the dialog box shown in Figure 6-12.

VAR

theDialog: DialogPtr;

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

C H A P T E R 6

Dialog Manager

6-24 Using the Dialog Manager

Figure 6-12 A simple modal dialog box

This example uses an application-supplied constant (kSpellCheckID) to specify the
resource ID number of a dialog resource. Listing 6-4 shows how this dialog resource
appears in Rez input format.

Listing 6-4 Rez input for a dialog resource

resource 'DLOG' (kSpellCheckID, purgeable) { /*dialog resource*/

{62, 184, 216, 448}, /*rectangle for dialog box*/

dBoxProc, /*window definition ID for modal dialog box*/

visible, /*display this dialog box immediately*/

noGoAway, /*don't draw a close box*/

0x0, /*initial refCon value of 0*/

kSpellCheckDITL, /*use item list with res ID 400*/

"Spellcheck Options", /*title if this were a modeless dialog box*/

alertPositionParentWindow /*place over document window*/

};

The dialog resource contains the following information:

� a rectangle, given in global coordinates, that determines the dialog box’s
dimensions and, optionally, position; these coordinates specify the upper-left
and lower-right corners

� the window definition ID, which specifies the window definition function and
variation code for the type of dialog box

� a constant (either visible or invisible) that specifies whether the dialog box
should be drawn on the screen immediately

� a constant (either noGoAway or goAway); use goAway only to specify a close box in
the title bar of a modeless dialog box

� a reference value of type LongInt, which your application may use for any purpose

� the resource ID of the item list resource for the dialog box

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-25

� a text string used for the title of a modeless or movable modal dialog box

� as an option, a constant (either alertPositionParentWindow,
alertPositionMainScreen, or alertPositionParentWindowScreen) that
tells the Dialog Manager how to position the dialog box (available only to applications
running in System 7)

In the example, a rectangle with coordinates (62,184,216,448) specifies the dimensions of
the dialog box, and the alertPositionParentWindow constant causes the Dialog
Manager to place the dialog box just below the title bar of the user’s document window.
If you don’t supply a positioning constant, the Dialog Manager places the dialog box at
the global coordinates you specify for the dialog box’s rectangle. Positioning constants for
dialog boxes are explained in “Positioning Alert and Dialog Boxes” beginning on
page 6-62.

In the example, the dBoxProc window definition ID is used. Use the following window
definition IDs for specifying dialog box types:

In each case, the Dialog Manager uses the Window Manager to draw the appropriate
window frame. Figure 6-6 on page 6-10 shows an example of a modal dialog box drawn
with the dBoxProc window definition ID, Figure 6-7 on page 6-11 shows an example of a
movable modal dialog box drawn with the movableDBoxProc window definition ID,
and Figure 6-8 on page 6-12 illustrates a modeless dialog box drawn with the
noGrowDocProc window definition ID.

Listing 6-4 specifies the visible constant so that the dialog box is drawn immediately. If
you use the invisible constant, the dialog box is not drawn until your application uses
the Window Manager procedure ShowWindow to display the dialog box.

Use the goAway constant only with modeless dialog boxes. For modal dialog boxes and
movable modal dialog boxes, use the noGoAway constant, as shown in the example.

Notice that because the example does not make use of the reference constant, 0 (0x0) is
provided as a filler. However, you may wish to make use of this constant. For example,
your application can store a number that represents a dialog box type, or it can store
a handle to a record that maintains state information about the dialog box or other
window types, as explained in the chapter “Window Manager” in this book. You can use
the Window Manager procedure SetWRefCon at any time to change this value in the
dialog record for a dialog box, and you can use the GetWRefCon function to determine
its current value.

Listing 6-4 uses an application-defined constant that specifies the resource ID for the item
list. The next section, “Providing Items for Alert and Dialog Boxes,” describes how to
create an item list.

Window definition ID Dialog box type

dBoxProc Modal dialog box

movableDBoxProc Movable modal dialog box

noGrowDocProc Modeless dialog box

C H A P T E R 6

Dialog Manager

6-26 Using the Dialog Manager

Supply a text string in your dialog resource when you want a modeless dialog box or a
movable modal dialog box to have a title. You can specify an empty string for a title bar
that contains no text. The example specifies the string “Spellcheck Options” for code
readability but, because the example creates a modal dialog box, no title bar is displayed.

You can let the Dialog Manager automatically locate the dialog box according
to three standard positions. Listing 6-4 on page 6-24, for example, specifies the
alertPositionParentWindow constant to position the dialog box over the
document window where the user is working. For details on these standard positions,
see “Positioning Alert and Dialog Boxes” beginning on page 6-62.

Providing Items for Alert and Dialog Boxes 6
You use an item list ('DITL') resource to store information about all the items (text,
controls, icons, or pictures) in an alert or dialog box. As described in “Creating Alert
Sounds and Alert Boxes” beginning on page 6-18 and “Creating Dialog Boxes” beginning
on page 6-23, you specify the resource ID of the item list resource in the alert ('ALRT')
resource or dialog ('DLOG') resource.

Within an item list resource for an alert box or a dialog box, you specify its static text,
buttons, and the resource IDs of icons and QuickDraw pictures. In addition, you can
specify checkboxes, radio buttons, editable text, and the resource IDs of other types of
controls (such as pop-up menus) in an item list resource for a dialog box.

Figure 6-13 shows an example of an alert box displayed by the SurfWriter application
when the user chooses the About command from the Apple menu. To display its own
icon in the upper-left corner of the alert box, the application uses the Alert function. An
alert resource with resource ID 128 is passed in a parameter to the Alert function.
The alert resource in turn specifies an item list resource with resource ID 128. The item
list resource specifies an OK button, some static text, and an icon, whose resource ID is
128. (It’s customary to assign the same resource ID to the item list resource and to either
its alert resource or dialog resource, but it’s not necessary to do so.)

In this example, when the user chooses the About command, the SurfWriter application
uses the Alert function to display the alert.

itemHit := Alert(kAboutBoxID, @MyEventFilter);

The Alert function in this example displays the alert box defined by the alert resource
represented by the kAboutBoxID resource ID. As explained in “Responding to Events in
Alert Boxes” beginning on page 6-81, the Alert function handles most user actions
while the alert box is displayed. When the user clicks any button in an alert box, Alert
removes the alert box and returns to your application the item number of the selected
button. The application-defined function MyEventFilter that is pointed to in this
example allows background applications to receive update events for their windows.

Listing 6-5 shows the resources, in Rez input format, that the Alert function uses to
display the alert box shown in Figure 6-13.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-27

Figure 6-13 Relationship of various resources to an alert box

Listing 6-5 Rez input for providing an alert box with items

define kAboutBoxID 128 /*resource ID for About SurfWriter alert box*/

define kAboutBoxDITL 128 /*resource ID for item list*/

define kSurfWriterIconID 128 /*resource ID for 'ICON' resource*/

define kSurfWriterColorIconID 128 /*resource ID for 'cicn' resource*/

define kAboutBoxHelp 128 /*resource ID for 'hdlg' resource*/

resource 'ALRT' (kAboutBoxID, purgeable) { /*About SurfWriter alert box*/

{40, 40, 156, 309}, /*rectangle for alert box*/

kAboutBoxDITL, /*use item list resource with ID 128*/

{ /*identical alert stage responses*/

OK, visible, silent,

OK, visible, silent,

OK, visible, silent,

OK, visible, silent,

},

alertPositionMainScreen /*display on the main screen*/

};

'ALRT' 128

Uses 'DITL' 128
'DITL' 128

OK button

Static text
'cicn' 128

Icon
(Uses 'ICON' 128)

Alert resource

Item list resource

Icon and color icon resources

'ICON' 128

C H A P T E R 6

Dialog Manager

6-28 Using the Dialog Manager

resource 'DITL' (kAboutBoxDITL, purgeable) { /*items for About SW alert box*/

/*ITEM NO. 1*/

{ {86, 201, 106, 259}, /*display rectangle for item*/

Button { /*the item is a button*/

enabled, /*enable item to return click*/

"OK" /*title for button is "OK"*/

},

/*ITEM NO. 2*/

{10, 20, 42, 52}, /*display rectangle for item*/

Icon { /*the item is an icon*/

disabled, /*don't return clicks on this item*/

kSurfWriterIconID /*use 'ICON' & 'cicn' resources */

/* with resource IDs of 128*/

},

/*ITEM NO. 3*/

{10, 78, 74, 259}, /*display rectangle for the item*/

StaticText { /*the item is static text*/

disabled, /*don't return clicks on this item*/

"SurfWriter 3.0\n"/*text string to display*/

"A Swell Text Processor \n\n "

"©My Company, Inc. 1992"

},

/*ITEM NO. 4*/

{0, 0, 0, 0}, /*help items get an empty rectangle*/

HelpItem { /*invisible item for reading in help balloons*/

disabled, /*don't return clicks on this item*/

HMScanhdlg /*scan resource type 'hdlg' for help balloons*/

{kAboutBoxHelp} /*get 'hdlg' with resource ID 128*/

}

}

};

data 'ICON' (kSurfWriterIconID, purgeable) {

/*icon data for black-and-white icon for About SurfWriter goes here*/

};

data 'cicn' (kSurfWriterColorIconID, purgeable) {

/*icon data for color icon for About SurfWriter goes here*/

};

Items are usually referred to by their positions in the item list resource. For example, the
Alert function returns 1 when the user clicks the OK button in the alert box created in
Listing 6-5. The Dialog Manager returns 1 because the OK button is the first item in the
list. (Responding to the item numbers returned by Alert and other Dialog Manager
functions is explained in “Handling Events in Alert and Dialog Boxes” beginning on
page 6-77.) Similarly, when you use a Dialog Manager routine to manipulate an item, you
specify it by its item number, an integer that corresponds to an item’s position in its item
list resource.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-29

IMPORTANT

Item list resources should always be marked as purgeable. �

The Dialog Manager also calls the Resource Manager to read in any individual items
as necessary.

When you create a dialog box or an alert box, the Dialog Manager creates a dialog record.
The Dialog Manager then reads in the item list resource and stores a handle to it in the
items field of the dialog record. Because the Dialog Manager always makes a copy of the
item list resource and uses that copy, several independent dialog boxes may share
the same item list resource. As explained in “Adding Items to an Existing Dialog Box”
beginning on page 6-51, you can use the AppendDITL and ShortenDITL procedures
to modify or customize copies of a shared item list resource for use in individual
dialog boxes.

As an alternative to using a dialog resource, you can read in a dialog’s item list resource
directly and then pass a handle to it along with other information to NewDialog, which
creates the dialog box. Remember, however, that it is easier to localize your application if
you use a dialog resource and the GetNewDialog function.

An item list resource contains the following information for each item:

� a display rectangle

� the type of item (as described in the next section)

� a constant (either enabled or disabled) that instructs the Dialog Manager whether
to report events for that item

� either a text string or a resource ID, as appropriate for the type of item

The display rectangle determines the size and location of the item. Specify the display
rectangle in coordinates local to the alert or dialog box. For example, in Listing 6-5 the
first item is displayed in a rectangle specified by the coordinates (86,201,106,259), which
place the item in the lower-right corner of this alert box. More information about display
rectangles and their placement is provided in “Display Rectangles” beginning on
page 6-32.

In an item list resource, you can specify controls, text, icons, pictures, and other items that
you define. In Listing 6-5, the first item’s type is specified by the Button constant. Item
types and their constants are described in the next section.

For each item in the item list resource, you must also instruct the Dialog Manager
whether to report to your application when the item is clicked. In Listing 6-5, the first
item is enabled, because the enabled constant is specified. “Enabled and Disabled
Items” on page 6-36 explains when and how to enable items.

Depending on the type of item in the list, you usually provide a text string or a resource
ID for the item. In Listing 6-5, the string OK is specified as the button title for the first
item. “Resource IDs for Items” beginning on page 6-36 explains what titles and resources
are appropriate for the various item types.

The information that you provide in an item list resource is described more fully in the
next several sections.

C H A P T E R 6

Dialog Manager

6-30 Using the Dialog Manager

Item Types 6

The following list shows the types of items you can include in alert and dialog boxes and
the constants for specifying them in a Rez input file.

The chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox describes how to
create and use items of type HelpItem to provide help balloons for your alert and dialog
boxes. When you specify a help item, make it the last item in the list, as shown in Listing
6-5 on page 6-27.

The chapter “Finder Interface” in this book describes icon ('ICON') resources and color
icon ('cicn') resources. Inside Macintosh: Imaging describes 'PICT' resources.

The chapter “Control Manager” in this book describes how to create a control with
a 'CNTL' resource. Pop-up menus are easily implemented as controls. “Pop-Up Menus
as Items” beginning on page 6-42 illustrates how to include pop-up menus in your
dialog boxes.

Be aware that alert boxes should contain only buttons (which the user clicks to dismiss
the alert box), static text, icons, and pictures. If you need to present other items, you
should create a dialog box.

The first item in an alert box’s item list resource should be the OK button; if a Cancel
button is necessary, it should be the second item. The Dialog Manager provides these
constants for the first two item numbers:

CONST ok = 1;

cancel = 2;

As described in “Creating Alert Sounds and Alert Boxes” beginning on page 6-18, you
define within the alert resource whether the OK or the Cancel button is the default button
for each alert stage. The Dialog Manager automatically draws a bold outline around the
button that you specify and, if the user presses the Return key or Enter key, the Dialog

Constant Description

Button A button control

CheckBox A checkbox control (use in dialog boxes only)

Control A control defined in a 'CNTL' resource file (use in dialog
boxes only)

EditText An editable text item (use in dialog boxes only)

HelpItem An invisible item that makes the Help Manager associate help
balloons with the other items defined in the item list resource

Icon An icon whose black-and-white version is stored in an 'ICON'
resource and whose color version is stored in a 'cicn' resource
with the same resource ID as the 'ICON' resource

Picture A QuickDraw picture stored in a 'PICT' resource

RadioButton A radio button control (use in dialog boxes only)

StaticText Static text; that is, text that cannot be edited

UserItem An application-defined item (use in dialog boxes only)

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-31

Manager responds—or your event filter function should respond—as if the default
button were clicked. (“Writing an Event Filter Function for Alert and Modal Dialog
Boxes” beginning on page 6-86 describes event filter functions.)

The Dialog Manager does not draw a bold outline around the default button for dialog
boxes. “Using an Application-Defined Item to Draw the Bold Outline for a Default
Button” beginning on page 6-56 shows how your application can outline the default
button in a dialog box. You should normally give every dialog box a default button—that
is, one whose action is invoked when the user presses the Return or Enter key. “Writing
an Event Filter Function for Alert and Modal Dialog Boxes” beginning on page 6-86
shows how to test for these key-down events and respond as if the user had clicked the
default button. If you don’t provide your own event filter function, the Dialog Manager
treats the first item in an item list resource as the default button. That is, although the
Dialog Manager doesn’t draw a bold outline around the button in a dialog box, the
Dialog Manager does return its item number to your application when the user presses
the Return or Enter key.

Don’t set a default button to perform a dangerous action—for example, one that causes
a loss of user data. If none of the possible actions is safe, don’t display a default border
around any button and provide an event filter function that ignores the Return and Enter
keys. This protects users from accidentally damaging their work by pressing Return or
Enter out of habit. However, you should try to design a safe action that the user can
invoke with a default button, such as a Save button. Figure 6-14 illustrates an alert box
that provides a default button for a safe action.

Figure 6-14 A safe default button in an alert box

Provide a Cancel button whenever you can, and in your event filter function, map the
Command-period key combination and the Esc (Escape) key to the Cancel button.

Don’t display a bold outline around any button if you use the Return key in editable text
items, because using the same key for two different purposes confuses users and makes
the interface less predictable.

A button that
causes data loss

Buttons that are safe
for data

C H A P T E R 6

Dialog Manager

6-32 Using the Dialog Manager

Display Rectangles 6

As previously mentioned, the display rectangle determines the location of an item within
an alert box or a dialog box. Use the alert or dialog box’s local coordinates to specify the
display rectangle.

For controls, the display rectangle becomes the control’s enclosing rectangle. To match
a control’s enclosing rectangle to its display rectangle, specify an enclosing rectangle
in the control resource that is identical to the one you specify for the display rectangle in
the item list resource. (The control resource is described in the chapter “Control
Manager” in this book.)

Note
Note that, when an item is a control defined in a control ('CNTL')
resource, the rectangle added to the update region is the rectangle
defined in the control resource, not the display rectangle defined in
the item list resource. �

For an editable text item, the display rectangle becomes the TextEdit destination rectangle
and its view rectangle. Word wrapping occurs within display rectangles that are large
enough to contain multiple lines of text, and the text is clipped if there’s more than will fit
in the rectangle. The Dialog Manager uses the QuickDraw procedure FrameRect to
draw a rectangle three pixels outside the display rectangle. For more detailed information
about TextEdit, see the chapter “TextEdit” in Inside Macintosh: Text.

For a static text item, the Dialog Manager draws the text within the display rectangle just
as it draws editable text items, except that the Dialog Manager doesn’t draw a frame
rectangle outside the display rectangle.

For an icon or a QuickDraw picture larger than its display rectangle, the Dialog Manager
scales the icon or picture to fit the display rectangle.

Although the procedure for an application-defined item can draw outside the item’s
display rectangle, this is not recommended, because if the Dialog Manager receives
an update event involving an area outside the display rectangle but inside the area where
you draw your application-defined item, the Dialog Manager won’t call your draw
procedure.

Note
A click anywhere in the display rectangle is considered a click in that
item. If display rectangles overlap, a click in the overlapping area
is considered a click in whichever item appears first in the item list
resource. �

You should display items in functional and consistent locations, both within your
application and across all applications that you develop. In alert boxes and in most dialog
boxes, place the OK button in the lower-right corner and place the Cancel
button to its left. Figure 6-15 shows the recommended location of buttons and text
in an alert box.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-33

Figure 6-15 The consistent spacing of buttons and text in an alert box

Generally, you should use distances of 13 and 23 white pixels to separate the items in
dialog boxes and alert boxes. (When separating the default button from the window
edges and other items, don’t count the pixels that make up its bold outline.) However, be
aware that the Window Manager adds 3 white pixels inside the window frame when it
draws alert boxes and modal dialog boxes. Therefore, specify display rectangle locations
as follows when you use tools like Rez and ResEdit:

� Place the display rectangle for the lower-right button 10 pixels from the right edge and
10 pixels from the bottom edge of the alert or modal dialog box; align the display
rectangles for other bottommost and rightmost items with this button.

� Place the display rectangle for the upper-left icon (or similar item) 10 pixels from the
top edge and 20 pixels from the left of the alert or modal dialog box; align the display
rectangles for other topmost and leftmost items with this item. The Dialog Manager
automatically places the caution, note, and stop alert icons in this position when you
use the CautionAlert, NoteAlert, and StopAlert functions. When you use the
Alert function, you must specify the icon and the location.

� Place the other elements in the alert or modal dialog box 13 or 23 pixels apart, as
shown in Figure 6-15.

For example, the rectangle for the alert box in Figure 6-15 has a specified height of
85 pixels. The display rectangle for the Save button has a bottom coordinate of 75, and the
display rectangle for the static text item has a top coordinate of 10. The Window Manager
adds 3 white pixels at the top of the alert box and 3 pixels at the bottom, so
the alert box contains 13 white pixels below the Save button and 13 white pixels above
the static text display rectangle. Listing 6-6 shows how the locations for these display
rectangles are specified in a Rez input file.

23
pixels

13 pixels

13
pixels

13 pixels

13 pixels

23
pixels

13
pixels

C H A P T E R 6

Dialog Manager

6-34 Using the Dialog Manager

Listing 6-6 Rez input for consistent spacing of display rectangles

resource 'DITL' (200, purgeable) {

{ {55, 288, 75, 348}, Button {enabled, "Save"},

{55, 215, 75, 275}, Button {enabled, "Cancel"},

{55, 72, 75, 156}, Button {enabled, "Don't Save"},

{10, 75, 42, 348}, StaticText {disabled,

"Save changes to the SurfWriter document “^0” before"

" closing?"}

}

};

When specifying display rectangle locations for items in movable modal and modeless
dialog boxes, use the full distance of either 13 or 23 pixels to separate items from the
window edges. For example, if the items in Figure 6-15 were placed in a modeless dialog
box, the top coordinate of the Save button’s display rectangle should be 52 instead of 55,
and its bottom coordinate would be 72 instead of 75.

As explained in the previous section, the default button can be any button; its assign-
ment is secondary to the consistent placement of buttons. This rule keeps the OK button
and the Cancel button consistently placed. Otherwise, the buttons would keep changing
location depending on the default choice.

The Western reader’s eye tends to move from the upper-left area of the alert or dialog box
to the lower-right area. For Western versions of your software, use the upper-left area for
elements (such as the alert icon) that convey the initial impression that you want to make.
Place the buttons that a user clicks in the lower-right area.

The alignment of the items in an alert box or a dialog box may vary with localization.
Although in Roman script systems these items are generally aligned left to right, items
in Arabic or Hebrew script systems should generally be aligned right to left, because
Arabic and Hebrew are written from right to left. The TextEdit procedure TESetJust,
described in the chapter “TextEdit” in Inside Macintosh: Text, controls the alignment of
interface elements.

When line alignment is right to left, as in Hebrew and Arabic, the Control Manager
transposes checkboxes—and radio buttons—and their titles. That is, checkboxes and
radio buttons appear to the right of the text instead of to the left, as in Roman script
systems. Therefore, when you create checkboxes, radio buttons, and static text items
that need to align, make sure that their display rectangles are the same size.

The dialog box at the top of Figure 6-16 shows several checkboxes and radio buttons with
display rectangles of different sizes. The next dialog box in the figure illustrates what
happens to the alignment of these items after the Control Manager transposes
the controls with their titles.

The bottom two dialog boxes in Figure 6-16 illustrate how the Control Manager displays
properly sized items when transposing the controls with their titles.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-35

Figure 6-16 Incorrectly and correctly sized display rectangles for alternate script systems

A dialog box containing
display rectangles of
different sizes

The same dialog box
after the Control
Manager transposes
checkboxes and radio
buttons with their titles

A dialog box containing
display rectangles of the
same sizes

The same dialog box
after the Control
Manager transposes
checkboxes and radio
buttons with their titles

C H A P T E R 6

Dialog Manager

6-36 Using the Dialog Manager

Enabled and Disabled Items 6

For each item in an item list resource, include one of these two constants to specify in a
Rez input file whether the Dialog Manager should inform your application of events
involving that item:

Generally, you should enable only controls. In particular, you should enable buttons,
radio buttons, and checkboxes so that your application knows when they’ve been clicked.
You typically disable editable text and static text items. You normally disable editable text
items because you use the Dialog Manager function GetDialogItemText to read the
information in the items only after the user clicks the OK button. (Listing 6-12 on
page 6-49 illustrates how to use the GetDialogItemText function for this purpose.)
You should use static text items only for providing information; users don’t expect to
click them. Likewise, you typically disable icons and pictures that merely provide
information; if you use an icon or a picture as a buttonlike control to receive input,
however, you must enable it. If you create an application-defined item such as a moving
indicator to display information, you typically disable it. If you create an application-
defined item such as a buttonlike control to receive input, you must enable it.

Don’t confuse disabling an item with using the Control Manager procedure
HiliteControl to make a control inactive. When you don’t want the Control Manager
to respond to clicks in a control, you make it inactive; when you don’t want the Dialog
Manager to report clicks in a control, you make it disabled.

The Control Manager displays an inactive control in a way (dimmed, for example) that
shows it’s inactive, whereas the Dialog Manager makes no visual distinction between a
disabled item and an enabled item. Figure 6-17 shows the difference between an inactive
and an active control. The Control Manager procedure HiliteControl has been used
to dim the inactive Eject button. If a user clicks this button, the Control Manager does not
respond. However, when a user clicks the active Desktop button, the Control Manager
inverts the button for 8 ticks.

Buttons and other controls are generally enabled, and disabling them does not alter their
appearance; the enabled radio button in Figure 6-17 would appear the same if it were
disabled. Because the static text reading “Save this document as” in Figure 6-17 is not
a control, the application doesn’t need to respond clicks in the text. Therefore, the
application has disabled it; however, the static text would have the same appearance
if the application were to enable it.

Resource IDs for Items 6

The final element for an item in an item list resource is usually either a text string or a
resource ID. The choice depends on the type of item.

Constant Description

enabled Informs your application about events involving this item

disabled Doesn’t inform your application about events involving this item

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-37

Figure 6-17 Inactive controls and disabled items

Provide a resource ID for icons, QuickDraw pictures, and controls other than buttons,
checkboxes, and radio buttons. For an icon, provide the ID of an 'ICON' resource; for
a QuickDraw picture, the ID of a 'PICT' resource; and for a control (including a pop-
up menu), the ID of a 'CNTL' resource. In Listing 6-5 on page 6-27, the resource ID of 128
specifies which 'ICON' (and 'cicn') resources to use for the second item in the item
list resource.

For a button, checkbox, radio button, static text item, and editable text item, supply a text
string as the final element for the item in its item list resource. The next several sections
provide guidelines for the text that you should provide.

For your own application-defined items, supply neither a title nor a resource ID.
Listing 6-15 on page 6-57 shows an item list resource that includes an application-
defined item.

Titles for Buttons, Checkboxes, and Radio Buttons 6

For a button, checkbox, or radio button, provide a text string for the control’s title as the
final element for the item when you specify it in the item list. In Listing 6-5 on page 6-27,
the string OK specifies the button title for the first item in the item list resource.

Use book-title capitalization for these items. In general, this means that you capitalize
one-word titles and, in multiple-word titles, words of four or more letters. Usually you
don’t capitalize words such as in, an, or and. The rules for capitalization of titles appear in
the Apple Publications Style Guide, which is available from APDA.

As explained in the chapter “Control Manager” in this book, the title of a checkbox
should reflect two clearly opposite states, because a checkbox should allow the user to
turn a particular setting either on or off. The opposites should be expressed in an equal
sense in either state. If you can’t devise a checkbox title that clearly implies its opposite
state, you might be better off using radio buttons. With radio buttons, you can use two

Disabled item

Enabled item

Active control

Inactive control

C H A P T E R 6

Dialog Manager

6-38 Using the Dialog Manager

titles, thereby clarifying the states. Radio buttons should represent related, but not
necessarily opposite, choices. Give each radio button a title consisting of a word or a
phrase that identifies what the button does. Remember that, as described in the chapter
“Control Manager” in this book, the radio buttons in a group are mutually exclusive:
only one button in that group can be on at one time.

Whenever possible, title a button with a verb describing the action that the button
performs. A user typically reads the text in an alert box or a dialog box until it becomes
familiar and then relies on visual cues, such as button titles or positions, to respond.
Buttons such as Save, Quit, or Erase Disk allow users to identify and click the correct
button quickly. These titles are often more clear and precise than OK, Yes, and No. If the
action can’t be condensed into a word or two, OK and Cancel or Yes and No may serve
the purpose. If you use these generic titles, be sure to phrase the wording in the dialog
box so that the action the button initiates is clear. Figure 6-18 shows a dialog box with
appropriate OK and Cancel buttons.

Figure 6-18 A dialog box with OK and Cancel buttons

Cancel means “dismiss this operation with no side effects.” It does not mean “I’ve read
this dialog box” or “stop what you’re doing regardless.” When users click the Cancel
button in your alert boxes, modal dialog boxes, and movable modal dialog boxes, your
application should revoke any actions it took since displaying the alert or dialog box and
then remove the box.

Your application should not remove a modeless dialog box when the user clicks a button;
rather, you should remove the dialog box when the user clicks its close box or chooses
Close from the File menu while the modeless dialog box is active.

When it is impossible to return to the state that existed before an operation began, don’t
use a Cancel button. You can use Stop or OK, which are useful in different situations. A
Stop button may leave the results of a partially complete task intact, whereas a Cancel
button always returns the application and its documents to their previous state. Use OK
for a button that closes the alert box, modal dialog box, or movable modal dialog box and
accepts any changes made while the dialog box was displayed.

Because of the difficulty in revoking the last action invoked from a modeless dialog box,
these dialog boxes typically don’t have Cancel buttons, although they may have Stop
buttons. For example, the movable modal dialog box shown in Figure 6-19 uses a Stop

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-39

button; clicking the button halts the current file copy operation but leaves intact the
copies that were previously made.

Figure 6-19 A movable modal dialog box with a Stop button

In an alert box that requires confirmation, use a button title that describes the result of
accepting the message in the alert box. For example, if an alert box asks “Revert to the
last saved version of the document,” use a Revert button rather than an OK button. Try to
use a verb in the button title; as in the Revert button in Figure 6-20, use the same verb
that you use in your alert message.

Figure 6-20 An alert box with a Revert button

If the alert box presents the user with a situation in which no alternative actions are
available, give the box a single button that’s titled OK. You should interpret the user’s
clicking this button to mean “I’ve read the alert box.”

A modal dialog box usually cuts the user off from the task. That is, when making choices
in a modal dialog box, the user can’t see the area of the document that changes. The user
sees the changes only after dismissing the dialog box. If the changes aren’t appropriate,
then the user has to repeat the entire operation. To provide better feedback to the user,
you need to give the user a way to see what the changes will be. Therefore, any selection
made in a modal dialog box should immediately update the document contents, or you
should provide a sample area in the dialog box that reflects how the user’s selections will
change the document. In the case of immediate document updating, the OK button
means “accept this change” and the Cancel button means “undo all changes made
through this dialog box.”

The Dialog Manager displays button titles (as well as all other control titles) in the system
font. To make it easier to localize your application, you should not change
the font.

C H A P T E R 6

Dialog Manager

6-40 Using the Dialog Manager

Text Strings for Static Text and Editable Text Items 6

For an editable text item, if you want the item to display only a blinking cursor, specify
an empty string as the item’s final element in the item list resource or specify a string if
you want to display some default text.

For a static text item, supply a text string as its final element when you specify it in the
item list resource. In the third item in Listing 6-5, the text string SurfWriter 3.0
\nA Swell Text Processor \n\n©My Company, Inc. 1992 specifies the alert
box’s message.

Whenever you provide static text items in alert and dialog boxes, ensure that the
messages make sense to the user. Use simple, nontechnical language and don’t provide
system-oriented information to which the user can’t respond.

Whenever applicable, state the name of the document or application in your alert or
dialog box. For example, the alert box in Figure 6-20 on page 6-39 shows both the name of
the application (SurfWriter) and the name of the document (My Window). This kind of
message helps users who are working with several documents or applications at once
to make decisions about each one individually. “Changing Static Text” beginning on
page 6-46 describes how to use the ParamText procedure to supply the names of
document windows to your alert and dialog boxes dynamically.

Use icons and pictures whenever possible. Images can describe some error situations
better than words, and familiar icons help users distinguish their alternatives better.
However, because experience has shown that it is nearly impossible to create icons that
are comprehensible or inoffensive across all international markets, you should be
prepared to localize any icons or pictures you use. See the chapter “Icons” in Macintosh
Human Interface Guidelines for more information about creating appropriate icons.

For your static text items, it’s generally better to be polite than abrupt, even if it
means lengthening your message. Your message should be helpful, and it may offer
constructive suggestions, but it should not appear to give orders. Its focus should be
to help the user perform the task, not to give an interesting but academic description
of the task itself.

When you localize your application for use with other languages, the text may become
longer or shorter. Translated text is often 50 percent longer than U.S. English text. You
may need to resize your display rectangles and your alert and dialog boxes to
accommodate the translated text.

By default, the Dialog Manager displays static text items in the system font. To make it
easier to localize your application, you should not change the font. Do not use a smaller
font, such as 9-point Geneva; some script systems such as KanjiTalk require 12-point
fonts. You will save yourself future localization effort by leaving all the text in your alert
and dialog boxes in the system script.

In alert boxes, try to include information that tells the user how to resolve the problem at
hand. Never refer the user to external documentation for further clarification.

Stop alerts typically report errors to the user. A good error message explains what
went wrong, why it went wrong, and what the user can do about it. Express this
information in the user’s vocabulary, not in your programming vocabulary.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-41

Figure 6-21 shows an example of a very poor alert message—the information is expressed
in the programmer’s vocabulary, and the user is offered no clue about
how to remedy the problem.

Figure 6-21 An obscure and useless alert message

Figure 6-22 shows a somewhat better alert message. Although the vocabulary is less
technical, no remedy to the problem is offered.

Figure 6-22 A less obscure alert message

Figure 6-23 illustrates a good alert message. The message is specific, it’s expressed in
nontechnical terms, it explains why the error occurred, and it suggests a solution to
the problem.

Figure 6-23 A clear and helpful alert message

The best way to make an alert message understandable is to think carefully through the
error condition itself. Can the application handle this without an error? Is the message
specific enough so that the user can fix the situation? What are the recommended
solutions?

C H A P T E R 6

Dialog Manager

6-42 Using the Dialog Manager

Pop-Up Menus as Items 6

You can use pop-up menus to present the user with a list of mutually exclusive choices in
a dialog box. Figure 6-24 illustrates a typical use of pop-up menus in a dialog box. As
explained in the chapter “Control Manager” in this book, pop-up menus are especially
useful as an alternative to radio buttons when the user must make one choice from a list
of many or set a specific value, or when you must present a variable list of choices. The
pop-up menu in Figure 6-24 allows the application to present a choice of modem speeds
that vary according to the modem type in the user’s computer.

Figure 6-24 A pop-up menu in a dialog box

In System 7, pop-up menus are implemented as controls. To display a pop-up menu in a
dialog box, you

� define specific features of the pop-up menu in a control that uses the standard pop-up
control definition function (described in the chapter “Control Manager” in this book)

� define the menu items of a pop-up menu just as you define items in other menus
(using GetMenu or NewMenu, as described in the chapter “Menu Manager” in
this book)

� specify the pop-up menu in the dialog box’s item list resource

Using the pop-up control definition function, the Dialog Manager automatically draws
the pop-up box and its drop shadow, inserts the text into the pop-up box, draws a
downward-pointing triangle, and draws the pop-up menu’s title. When the user moves
the cursor to a pop-up menu and presses the mouse button, the pop-up control definition
function highlights the pop-up menu title, displays the pop-up menu, and handles all
user interaction until the user releases the mouse button. When the user releases the
mouse button, the pop-up control definition function closes the pop-up box, draws the
user’s choice in the pop-up box (or restores the previous item if the user doesn’t make a
new choice), and removes the highlighting from the pop-up menu title. The control
definition function then sets the value of the control to the item selected by the user. Your
application can use the Control Manager function GetControlValue
to get the number of the currently selected item.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-43

The modal dialog box shown in Figure 6-24 is created by defining a dialog resource that
describes the dialog box and by defining an item list resource that describes the dialog
items, including a control whose 'CNTL' resource uses the standard pop-up control
definition function. Listing 6-7 shows the dialog resource and item list resource for this
modal dialog box.

Listing 6-7 Rez input for a dialog resource and an item list resource for a dialog box that
includes a pop-up menu

resource 'DLOG' (kModemDialog, purgeable) {

{62, 184, 216, 416}, dBoxProc, visible, noGoAway, 0x0,

kModemDialogDITL, "", alertPositionMainScreen

};

resource 'DITL' (kModemDialogDITL, purgeable) {

{ {123, 152, 144, 222}, Button {enabled, "OK"},

{123, 69, 144, 139}, Button {enabled, "Cancel"},

{13, 70, 33, 204}, StaticText {enabled, "Modem Setup"},

{41, 23, 61, 64}, StaticText {enabled, "Port:"},

{41, 67, 59, 186}, RadioButton {enabled, "Modem Port"},

{59, 67, 77, 186}, RadioButton {enabled, "Printer Port"},

{90,18,109,198}, Control {disabled, kPopUpCNTL},

{123, 152, 144, 222}, UserItem {disabled} /*outline OK button*/

{0,0,0,0}, HelpItem {disabled, HMScanhdlg{kModemHelp}}

/*Balloon Help*/

}

};

Listing 6-8 shows the 'CNTL' and 'MENU' resources for the Speed pop-up menu shown
in Figure 6-24. Notice that the display rectangle specified for the control in the item list
resource is the same as the enclosing rectangle specified in the control resource. See the
chapter “Control Manager” in this book for a complete description of how to specify
values for a pop-up menu’s control resource.

Listing 6-8 Rez input for a control resource and a menu resource for a pop-up menu

resource 'CNTL' (kPopUpCNTL, preload, purgeable) {

{90, 18, 109, 198}, /*enclosing rectangle of control*/

popupTitleLeftJust, /*title position*/

visible, /*make control visible*/

50, /*pixel width of title*/

kPopUpMenu, /*'MENU' resource ID*/

popupMenuCDEFProc, /*pop-up control definition ID*/

0, /*reference value*/

"Speed:" /*control title*/

};

C H A P T E R 6

Dialog Manager

6-44 Using the Dialog Manager

resource 'MENU' (kPopUpMenu, preload, purgeable) {

mPopUp, textMenuProc,

0b1111111111111111111111111111111,

enabled, "Speed",

{

"300 bps", noicon, nokey, nomark, plain;

"1200 bps", noicon, nokey, nomark, plain;

"2400 bps", noicon, nokey, nomark, plain;

"9600 bps", noicon, nokey, nomark, plain;

"19200 bps", noicon, nokey, nomark, plain

}

};

Keyboard Navigation Among Items 6

Your dialog boxes may have several items, such as editable text items and scrolling lists,
that can accept input from the keyboard. You need to give users a visual cue indicating
which item is currently accepting input from the keyboard. Each item type has its own
distinct indicator. The Dialog Manager automatically displays a blinking cursor in an
editable text item to indicate that it is accepting keyboard input. You can also use the
SelectDialogItemText procedure (explained on page 6-131) to indicate a selected
text range within an editable text item.

When a scrolling list is accepting keyboard input, you should indicate it by a rectangular
border of two black pixels, separated from the list by one pixel of white space. In
Figure 6-25, the AppleTalk Zones scrolling list is the item currently accepting keyboard
input in the Chooser dialog box. See the chapter “List Manager” in Inside Macintosh:
More Macintosh Toolbox for details about creating lists in dialog boxes.

Because all typing goes to the active window, there should be only one active area and
only one indicator at any time. If only one element in a dialog box can accept keyboard
input and that element is a scrolling list, it’s not necessary to place a border around it.

The Dialog Manager automatically handles mouse-down events and keyboard events
for the Tab key. Thus, the user can select any item that accepts keyboard input by clicking
the desired item or by pressing the Tab key to cycle through the available items. When
the user presses the Tab key, the Dialog Manager accepts the changes made to the current
item and selects the next item—as listed in the item list—that accepts keyboard input.
When the user clicks another item, the Dialog Manager accepts the changes made to the
current item and selects the newly clicked item.

Manipulating Items 6
In many cases, you won’t have to make any changes to alerts or dialog boxes after you
define them in your resource file. However, if you should want to modify an item, you
can use several Dialog Manager routines to do so.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-45

Figure 6-25 A selected scrolling list

For example, you can use the ParamText procedure to supply text strings (such as
document titles) to alert and dialog boxes dynamically. For most other types of item
manipulation, you must first call the GetDialogItem procedure to get the information
about the item. You then use other routines to manipulate that item. For example, you
can use the SetDialogItem procedure to change the item, or—to get a text string that
the user has entered in an editable text item after clicking the OK button—you can use
the GetDialogItemText procedure.

The Dialog Manager routines for manipulating items are summarized in the
following list.

Routine Description

AppendDITL Adds items to a dialog box.

CountDITL Counts the number of items in a dialog box.

FindDialogItem Finds an item that contains a specified point within a
dialog box.

GetAlertStage Returns the stage of the last occurrence of an alert.

GetDialogItem Returns the item type, the display rectangle, and the
control handle or application-defined procedure of a
given item in a dialog box.

GetDialogItemText Returns the text of a given editable text or static
text item.

HideDialogItem Hides the given item.

ParamText Substitutes up to four different text strings in static
text items.

ResetAlertStage Resets the stage of the last occurrence of an alert.

C H A P T E R 6

Dialog Manager

6-46 Using the Dialog Manager

The next several sections describe the most frequently used of these routines. The next
section, “Changing Static Text,” explains the use of the ParamText procedure to
manipulate the text in static text items. “Getting Text From Editable Text Items”
beginning on page 6-48 describes how to use the GetDialogItemText procedure
to determine what the user types in an editable text item. Using the AppendDITL
procedure is explained in “Adding Items to an Existing Dialog Box” beginning on
page 6-51. “Using an Application-Defined Item to Draw the Bold Outline for a Default
Button” beginning on page 6-56 describes how to use SetDialogItem to install
application-defined items. For additional information about all of the previously listed
routines, see “Manipulating Items in Alert and Dialog Boxes” beginning on page 6-120
and “Handling Text in Alert and Dialog Boxes” beginning on page 6-129.

Changing Static Text 6

As previously explained, it is often useful to state the name of a document in an alert box
or a dialog box. For example, Figure 6-26 shows an alert box that an application might
display when the user closes a window that contains unsaved changes.

Figure 6-26 An alert box that displays a document name

You can use the ParamText procedure to supply the names of document windows to
your alert and dialog boxes dynamically, as illustrated in the application-defined routine
MyCloseDocument shown in Listing 6-9.

SelectDialogItemText Selects the text of an editable text item.

SetDialogItem Sets the item type and the display rectangle of an item,
or (for application-defined items) the draw procedure
of an item.

ShortenDITL Removes items from a dialog box.

ShowDialogItem Redisplays the item previously hidden by
HideDialogItem.

Routine Description

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-47

Listing 6-9 Using the ParamText procedure to substitute text strings

PROCEDURE MyCloseDocument (myData: MyDocRecHnd);

VAR

title: Str255;

item: Integer;

docWindow: WindowPtr;

event: EventRecord; {dummy parameter for calling DialogSelect}

myErr: OSErr;

BEGIN

docWindow := FrontWindow; {point to active window}

IF (myData^^.windowDirty) THEN {document has been changed}

BEGIN

GetWTitle(docWindow, title); {get title of window}

MyStringCheck(title);

ParamText(title, '', '', ''); {pass the title in 1st parameter}

DoActivate(docWindow, FALSE, event); {deactivate the active window}

item := CautionAlert(kSaveAlertID, @MyEventFilter); {display alert box}

IF item = kCancel THEN

Exit(MyCloseDocument);

IF item = kSave THEN

DoSaveCmd; {save the document}

myErr := DoCloseFile(myData); {close the file}

END; {let click in Don't Save fall through}

CloseWindow(docWindow);

DisposPtr(Ptr(docWindow));

END;

In this example, the Window Manager function FrontWindow returns a pointer to
the active window. Another Window Manager function, GetWTitle, returns the title
of that window. The MyCloseDocument routine passes this string to the ParamText
procedure, which takes four text strings as parameters. In this example, only one string is
needed (the window title), which is passed in the first parameter; empty strings are
passed for the remaining three parameters.

You can use ParamText to supply up to four text strings for a single alert or dialog box.
In the item list resource for the alert or dialog box, specify where each of these strings
should go by inserting the special characters ^0 through ^3 in any of the items where
you can specify text. The ParamText procedure dynamically replaces ^0 with the string
you pass in its first parameter, ^1 with the string in the second parameter, and so forth,
when you display the alert or dialog box.

C H A P T E R 6

Dialog Manager

6-48 Using the Dialog Manager

IMPORTANT

To avoid recursion problems in versions of system sofware earlier than
7.1, you have to ensure that you do not include the characters ^0 through
^3 in any strings you pass to ParamText. This is why
MyCloseDocument uses another application-defined routine,
MyStringCheck, to filter these characters out of the window titles
passed to ParamText. �

Listing 6-10 shows a portion of an item list resource. When the application calls
CautionAlert, the Dialog Manager uses the first parameter passed previously to the
ParamText procedure to replace the characters ^0 in the static text with the title of the
document window.

Listing 6-10 Specifying where ParamText should substitute text in an alert box message

resource 'DITL' (kSaveAlertID, purgeable) {

{ /*Save button information goes here*/

/*Cancel button information goes here*/

/*Don't Save button information goes here*/

{10, 75, 42, 348},

StaticText { /*ask the user to save changes to the document--*/

disabled, /* filename inserted with ParamText*/

"Save changes to the SurfWriter document “^0” before closing?"

},

/*help item information goes here*/

}

};

Getting Text From Editable Text Items 6

The application displaying the modeless dialog box shown in Figure 6-27 uses the
GetDialogItem and GetDialogItemText procedures after the user clicks the Change
button.

Figure 6-27 Two editable text items in a modeless dialog box

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-49

This dialog box prompts the user for two text strings: one to search for and another
to take the place of the first string. Listing 6-11 shows the item list resource for this
dialog box. The fifth item in the list is the editable text item where the user enters the text
string being sought; the sixth item is the item where the user enters the replacement
text string.

Listing 6-11 Specifying editable text items in an item list

resource 'DITL' (kGlobalChangesDITL, purgeable) {

{ /*ITEM NO. 1*/

{70, 213, 90, 271}, Button {enabled,"Change"},

/*ITEM NO. 2*/

{70, 142, 90, 200}, Button {enabled,"Stop"},

/*ITEM NO. 3*/

{10, 23, 27, 98}, StaticText {disabled, "Find What:"},

/*ITEM NO. 4*/

{40, 23, 57, 98}, StaticText {disabled,"Change To:"},

/*ITEM NO. 5*/

{10, 117, 27, 271}, EditText {disabled, ""},

/*ITEM NO. 6*/

{40, 117, 57, 271}, EditText {disabled, ""}

/*ITEM NO. 7: for drawing outline around Change button*/

{63, 205, 97, 278}, UserItem {disabled, },

/*ITEM NO. 8: help item goes here*/

}

};

Listing 6-12 shows how the application handles a click in the Change button.
(Subsequent sections of this chapter explain how to handle events in a modeless
dialog box.)

Listing 6-12 Getting the text entered by the user in an editable text item

PROCEDURE MyHandleModelessDialogs(theEvent: EventRecord);

VAR

myDialog: DialogPtr;

itemHit, itemType: Integer;

searchStringHandle: Handle;

replaceStringHandle: Handle;

searchString: Str255;

replaceString: Str255;

itemRect: Rect;

C H A P T E R 6

Dialog Manager

6-50 Using the Dialog Manager

BEGIN

{use DialogSelect, then determine whether the event occurred }

{ in the Global Changes dialog box; if so, respond to mouse }

{ clicks as follows}

CASE itemHit OF

kChange: {user clicked the Change button}

BEGIN

GetDialogItem(myDialog, kFind, itemType,

 searchStringHandle, itemRect);

GetDialogItemText(searchStringHandle, searchString);

GetDialogItem(myDialog, kReplace, itemType,

 replaceStringHandle, itemRect);

GetDialogItemText(replaceStringHandle, replaceString);

{get a handle to the Stop button}

GetDialogItem(myDialog, kStop, itemType,

 itemHandle, itemRect);

{make the Stop button active during the operation}

HiliteControl(ControlHandle(itemHandle), 0);

{get a handle to the Change button}

GetDialogItem(myDialog, kChange, itemType,

 itemHandle, itemRect);

{make the Change button inactive during the operation}

HiliteControl(ControlHandle(itemHandle), 255);

DoReplace(searchString, replaceString);

{when the operation is complete, dim Stop and make }

{ Change active here}

END;

kStop: {user clicked the Stop button}

BEGIN

{cancel operation, then make Stop button }

{ inactive and Change button active again}

END;

END;

END;

In Listing 6-12, when the user clicks the Change button, the GetDialogItem procedure
returns a handle to the item containing the search string. Because this is a handle to an
editable text item, the application can pass the handle to the GetDialogItemText
procedure, which then returns the item’s text string in its second parameter. These two
procedures are then used to get the string in the item containing the replacement string.
These two strings are then passed to an application-defined routine that replaces all

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-51

instances of the first string with the characters of the second string. Note that when the
user clicks Change, the Control Manager procedure HiliteControl is used to make the
Stop button active and to make the Change button inactive—that is, dimmed. This
indicates that the user can use the Stop button but not the Change button while the
change operation is taking place.

Adding Items to an Existing Dialog Box 6

You can dynamically add items to and remove items from a dialog box by using the
AppendDITL and ShortenDITL procedures. When you create a dialog box, the Dialog
Manager creates a dialog record. The Dialog Manager then reads in the item list resource
and stores a handle to it in the items field of the dialog record. Because every dialog box
you create has its own dialog record, you can define dialog boxes whose items are
defined by the same item list resource. The AppendDITL and ShortenDITL procedures
are especially useful if several dialog boxes share the same item list resource and you
want to add or remove items as appropriate for individual dialog boxes.

When you call the AppendDITL procedure, you specify a dialog box, and you specify a
new item list resource to append to the dialog box’s existing item list resource. You also
specify where the Dialog Manager should display the new items. You can use one of
these constants to designate where AppendDITL should display the appended items:

CONST overlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}

TYPE DITLMethod = Integer;

Figure 6-28 illustrates an existing dialog box and a pair of items to be appended.

Figure 6-28 An existing dialog box and items to append

Initial dialog box Items to be appended

(0,0)

(90,0)

(0,0)

(90,0)

(0,200) (0,120)

C H A P T E R 6

Dialog Manager

6-52 Using the Dialog Manager

If you specify the overlayDITL constant, AppendDITL superimposes the appended
items over the dialog box. That is, AppendDITL interprets the coordinates of the display
rectangles for the appended items (as specified in their item list resource) as local
coordinates within the dialog box. Figure 6-29 shows the result of overlaying the items
upon the dialog box illustrated in Figure 6-28.

Figure 6-29 The dialog box after items are overlaid

If you specify the appendDITLRight constant, AppendDITL appends the items to the
right side of the dialog box, as illustrated in Figure 6-30, by positioning the display
rectangles of the appended items relative to the upper-right coordinate of the dialog box.
The AppendDITL procedure automatically expands the dialog box to accommodate the
new dialog items.

Figure 6-30 The dialog box after items are appended to the right

If you specify the appendDITLBottom constant, AppendDITL appends the items to the
bottom of the dialog box, as illustrated in Figure 6-31, by positioning the display
rectangles of the appended items relative to the lower-left coordinate of the dialog box.
The AppendDITL procedure automatically expands the dialog box to accommodate the
new dialog items.

(0,0)

(90,0)

(0,120) (0,200)

(0,0)

(90,0)

(0,200) (0,320)

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-53

Figure 6-31 The dialog box after items are appended to the bottom

As an alternative to passing the overlayDITL, appendDITLRight, or
appendDITLBottom constant, you can pass a negative number to AppendDITL, which
appends the items relative to an existing item in the dialog box. The absolute value of this
number is interpreted as the item in the dialog box relative to which the new items are to
be positioned. For example, if you pass –2 to AppendDITL, the display rectangles of the
appended items are offset from the upper-left corner of item number 2 in the dialog box.
Figure 6-12 on page 6-24 shows a simple dialog box with two checkboxes. Figure 6-32
shows the same dialog box after an additional item is appended relative to the first
checkbox, so that the new item appears between the two existing checkboxes.

Figure 6-32 A dialog box with an item appended relative to an existing item

The application-defined routine called DoSpellBoxWithSpanish, which is shown in
Listing 6-13 on the next page, illustrates the use of the AppendDITL procedure to add the
new item.

(0,0)

(90,0)

(180,0)

(0,120) (0,200)

C H A P T E R 6

Dialog Manager

6-54 Using the Dialog Manager

Listing 6-13 Appending an item to an existing dialog box

FUNCTION DoSpellBoxWithSpanish: OSErr;

VAR

theDialog: DialogPtr;

myNewItem: Handle;

docWindow: WindowPtr;

event: EventRecord;

BEGIN

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

IF theDialog <> NIL THEN

BEGIN

myNewItem := GetResource('DITL', kSpanishDITL);

IF myNewItem <> NIL THEN

BEGIN

AppendDITL(theDialog, myNewItem, kAppendItem); {kAppendItem = -3}

ReleaseResource(myNewItem);

docWindow := FrontWindow; {get the front window}

{if there's a front window, deactivate it}

IF docWindow <> NIL THEN

DoActivate(docWindow, FALSE, event);

ShowWindow(theDialog); {show dialog box with appended item}

MyAdjustMenus; {adjust menus as needed}

REPEAT

ModalDialog(@MyEventFilter, itemHit);

{handle clicks in checkboxes here}

UNTIL ((itemHit = kSpellCheck) OR (itemHit = kCancel));

{handle clicks in buttons here}

DisposeDialog(theDialog);

DoSpellBoxWithSpanish := kSuccess;

END

ELSE

DoSpellBoxWithSpanish := kFailed;

END

ELSE DoSpellBoxWithSpanish := kFailed;

END;

The DoSpellBoxWithSpanish routine uses GetNewDialog to create a dialog box.
As you’ll see in Listing 6-14, the dialog resource passed to GetNewDialog has a resource
ID of 402, and this dialog resource in turn specifies an item list resource with resource ID
402. The DoSpellBoxWithSpanish routine then uses the Resource Manager function
GetResource to obtain a handle to a second item list resource; this item list resource
contains the “Include Spanish Dictionary” checkbox. By setting a value of –3 in the last
parameter of AppendDITL, the DoSpellBoxWithSpanish routine appends the items in

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-55

the second item list resource relative to item number 3 (the “Ignore Words in All Caps”
checkbox) in the dialog box. Listing 6-14 shows the dialog resource for the dialog box, its
regular item list resource, and the item list resource that AppendDITL adds to it.

Listing 6-14 Rez input for a dialog box and the item appended to it

define kSpellCheckID 402 /*resource ID for Spell Check dialog box*/

define kSpellCheckDITL 402 /*resource ID for item list resource*/

define kSpanishDITL 257 /*resource ID for item list resource to append*/

define kAppendHelp 257 /*resource ID for 'hdlg' for appended item*/

resource 'DLOG' (kSpellCheckID, purgeable) {/*Spell Check dialog box*/

{62, 184, 216, 448},

dBoxProc, /*make it modal*/

invisible, /*make it initially invisible*/

noGoAway, 0x0, kSpellCheckDITL, "Spellcheck Options",

alertPositionParentWindow /*place over the document window*/

};

resource 'DITL' (kSpellCheckDITL, purgeable) {

/*items for Spell Check dialog box*/

/*ITEM NO. 1, the "Spell Check" button, goes here*/

/*ITEM NO. 2, the "Cancel" button, goes here*/

/*ITEM NO. 3*/

{48, 23, 67, 202}, CheckBox {enabled, "Ignore Words in All Caps"},

/*ITEM NO. 4*/

{83, 23, 101, 196}, CheckBox {enabled, "Ignore Slang Terms"},

/*static text, help item, etc. go here*/

};

/*add this item list resource to Spell Check dialog box only when */

/* Spanish language dictionary is installed*/

resource 'DITL' (kSpanishDITL, purgeable) {

{ {18, 0, 36, 209},CheckBox {enabled,"Include Spanish Dictionary"},

{0,0,0,0}, HelpItem {disabled, HMScanAppendhdlg{kAppendHelp}} /*help*/

}

};

The dialog resource specifies that the dialog box is invisible so that the application
can add the new item to the dialog box before displaying it. In Listing 6-13, the
DoSpellBoxWithSpanish routine uses the Window Manager procedure
ShowWindow to display the dialog box after its new item has been appended.
(“Displaying Alert and Dialog Boxes” beginning on page 6-61 describes more fully
how to display dialog boxes.)

C H A P T E R 6

Dialog Manager

6-56 Using the Dialog Manager

The appended item list resource includes a help item that causes the Help Manager to
use the help resource associated with that item list resource in addition to the help
resource originally associated with the dialog box. See the chapter “Help Manager” in
Inside Macintosh: More Macintosh Toolbox for information about using the
HMScanAppendhdlg identifier in a help item.

Listing 6-13 uses the Resource Manager procedure ReleaseResource. The
AppendDITL procedure modifies the contents of the dialog box (for instance, by
enlarging it). To use an unmodified version of the dialog box at a later time, your
application needs to use ReleaseResource to release the memory occupied by the
appended item list. Otherwise, if your application calls AppendDITL to add items to that
dialog box again, the dialog box will remain modified by your previous call—for
example, it will still be longer at the bottom if you previously used the
appendDITLBottom constant.

When you can call the ShortenDITL procedure to remove items from the end of a
dialog item list, you specify a pointer to the dialog box and the number of items to
remove from the end of the item list. Note that ShortenDITL does not automatically
resize the dialog box; you can use the Window Manager procedure SizeWindow if you
need to resize the dialog box. You can use the CountDITL function to determine the
number of items in the item list resource for a dialog box.

Using an Application-Defined Item to Draw the Bold Outline
for a Default Button 6
You can define your own type of item for dialog boxes. You might wish, for example,
to display a clock with the current time in a dialog box. You can also use application-
defined items to draw a bold outline around the default button in a dialog box.

You should not use application-defined items in an alert box because they add
unnecessary programming complications. If you need an application-defined item,
use a dialog box instead.

To define your own item, include an item of type UserItem in your item list resource;
it should have a display rectangle, but no text and no resource ID associated with
it. The dialog resource that uses this item list resource must specify the invisible
constant. This makes the dialog box invisible while you install a draw procedure for your
application-defined item. After installing the procedure that draws the application-
defined item, you display the dialog box by using the Window Manager procedure
ShowWindow.

For example, Figure 6-32 on page 6-53 illustrates a dialog box that outlines the default
button (Spell Check). To outline the button, the application must add an item of type
UserItem to the item list resource for that dialog box.

So that an application-defined drawing procedure can draw a border around the Spell
Check button, the item list resource in Listing 6-15 specifies a larger display rectangle for
the application-defined item than for the Spell Check button.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-57

Listing 6-15 Rez input for an application-defined item in an item list

resource 'DITL' (kSpellCheckDITL, purgeable) {

/*ITEM NO. 1: OK button--the default*/

{ {123, 170, 144, 254}, Button {enabled,"Spell Check"},

/*ITEMs 2-5 go here: Cancel button, two checkboxes, and static text*/

/*ITEM NO. 6: application-defined item*/

{115, 164, 152, 260}, /*6th item*/

UserItem { /*draw procedure for item draws an outline*/

disabled, /*1st item lies inside this--1st is enabled*/

}

}

};

The application-defined item is disabled because the Spell Check button, which lies
within the application-defined item, is enabled. Because the Spell Check button is listed
before the application-defined item in this item list resource, the Dialog Manager reports
when the user clicks the Spell Check button. However, note that when application-
defined items are enabled, the Dialog Manager reports their item numbers when the
user clicks them.

Note
Although the draw procedure for an application-defined item can draw
outside the item’s display rectangle, this is not recommended because
if the Dialog Manager receives an update event involving an area outside
the display rectangle but inside the area where you draw
your application-defined item, the Dialog Manager won’t call your
draw procedure. �

Listing 6-14 on page 6-55 shows the dialog resource for the dialog box. Notice that the
invisible constant in the dialog resource specifies that the dialog box should initially
be invisible.

You must provide a procedure that draws your application-defined item. Your draw
procedure must have two parameters: a dialog pointer and an item number from the
dialog box’s item list resource. For example, this is how you should declare the draw
procedure if you were to name it MyDrawDefaultButtonOutline:

PROCEDURE MyDrawDefaultButtonOutline (theDialog: DialogPtr;

 theItem: Integer);

The parameter theDialog is a pointer to the dialog box containing the application-
defined item. (If your procedure draws in more than one dialog box, this parameter tells
your procedure which dialog box to draw in.) The parameter theItem is a number
corresponding to the position of an item in the item list resource for the dialog box. (In
case the procedure draws more than one item, this parameter tells the procedure which
one to draw.)

C H A P T E R 6

Dialog Manager

6-58 Using the Dialog Manager

To install this draw procedure, use the GetDialogItem and SetDialogItem
procedures. Use GetDialogItem to return a handle to the application-defined item
specified in the item list resource. Then use SetDialogItem to replace this handle
with a pointer to your draw procedure. When calling your draw procedure, the Dialog
Manager sets the current port to the dialog box’s graphics port. The Dialog Manager then
calls your procedure to draw the application-defined item as necessary—for instance,
when you display the dialog box and whenever the Dialog Manager receives an update
event for the dialog box.

Listing 6-16 illustrates how to install the procedure that draws a bold outline. In this
listing, GetDialogItem gets a handle to the application-defined item (which is
the sixth item in the item list resource from Listing 6-15). The procedure pointer
@MyDrawDefaultButtonOutline, which is coerced to a handle, is then passed
to SetDialogItem, which sets the draw procedure into the dialog record.

Listing 6-16 Installing the draw procedure for an application-defined item

FUNCTION DisplayMyDialog (VAR theDialog: DialogPtr): OSErr;

VAR

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

docWindow: WindowPtr;

event: EventRecord;

BEGIN

{begin by creating an invisible dialog box}

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

IF theDialog <> NIL THEN

BEGIN

{get a handle to the application-defined item (i.e., userItem)}

GetDialogItem(theDialog, kUserItem, itemType, itemHandle, itemRect);

{install the drawing procedure for the application-defined item}

SetDialogItem(theDialog, kUserItem, itemType,

 Handle(@MyDrawDefaultButtonOutline), itemRect);

docWindow := FrontWindow; {get the front window}

{if there's a front window, deactivate it}

IF docWindow <> NIL THEN

DoActivate(docWindow, FALSE, event);

ShowWindow(theDialog); {display the dialog box}

MyAdjustMenus; {adjust menus as needed}

DisplayMyDialog := kSuccess;

END

ELSE DisplayMyDialog := kFailed;

{call ModalDialog and handle events in dialog box here}

END;

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-59

Use the Window Manager procedure ShowWindow to display the previously invisible
dialog box. When ShowWindow is called in this example, a bold outline is drawn inside
the application-defined item and around the Spell Check button.

Listing 6-17 shows a procedure that draws a bold outline around a button of any size and
shape. This procedure can be used to draw the outline around the Spell Check button
from the previous example.

Listing 6-17 Creating a draw procedure that draws a bold outline around the default button

PROCEDURE MyDrawDefaultButtonOutline(theDialog: DialogPtr; theItem: Integer);

CONST

kButtonFrameInset = -4;

kButtonFrameSize = 3;

kCntrActivate = 0;

VAR

itemType: Integer; {returned item type}

itemRect: Rect; {returned display rectangle}

itemHandle: Handle; {returned item handle}

curPen: PenState;

buttonOval: Integer;

fgSaveColor: RGBColor;

bgColor: RGBColor;

newfgColor: RGBColor;

newGray: Boolean;

oldPort: WindowPtr;

isColor: Boolean;

targetDevice: GDHandle;

BEGIN

{get the default button & draw a bold border around it}

GetDialogItem(theDialog, kDefaultButton, itemType, itemHandle, itemRect);

GetPort(oldPort);

SetPort(ControlHandle(itemHandle)^^.contrlOwner);

GetPenState(curPen);

PenNormal;

InsetRect(itemRect, kButtonFrameInset, kButtonFrameInset);

FrameRoundRect(itemRect, 16, 16);

buttonOval := (itemRect.bottom - itemRect.top) DIV 2 + 2;

IF ((CGrafPtr(ControlHandle(itemHandle)^^.contrlOwner)^.portVersion) =

 kIsColorPort) THEN

isColor := TRUE

ELSE

isColor := FALSE;

IF (ControlHandle(itemHandle)^^.contrlHilite <> kCntrlActivate) THEN

C H A P T E R 6

Dialog Manager

6-60 Using the Dialog Manager

BEGIN {control is dimmed, so draw gray default button outline}

newGray := FALSE;

IF isColor THEN

BEGIN

GetBackColor(bgColor);

GetForeColor(fgSaveColor);

newfgColor := fgSaveColor;

{get the device on which this dialog box is displayed}

targetDevice :=

 MyGetDeviceFromRect(ControlHandle(itemHandle)^^.contrlRect);

{use the gray defined by the display device}

newGray := GetGray(targetDevice, bgColor, newfgColor);

END;

IF newGray THEN

RGBForeColor(newfgColor)

ELSE

PenPat(gray);

PenSize(kButtonFrameSize, kButtonFrameSize);

FrameRoundRect(itemRect, buttonOval, buttonOval);

IF isColor THEN

RGBForeColor(fgSaveColor);

END

ELSE {control is active, so draw default button outline in black}

BEGIN

PenPat(black);

PenSize(kButtonFrameSize, kButtonFrameSize);

FrameRoundRect(itemRect, buttonOval, buttonOval);

END;

SetPenState(curPen);

SetPort(oldPort);

END;

Listing 6-17 uses GetDialogItem to get the Spell Check button and then uses
several QuickDraw routines to draw a black outline around that button’s display
rectangle when the button is active. If the button is inactive (that is, dimmed),
MyDrawDefaultButtonOutline draws a gray outline.

Before drawing a gray outline, MyDrawDefaultButtonOutline determines whether
the dialog box uses a color graphics port. As explained in “Including Color in Your Alert
and Dialog Boxes” beginning on page 6-75, you can supply a dialog box with a color
graphics port by creating a dialog color table ('dctb') resource with the same resource
ID as the dialog resource. If the dialog box uses a color graphics port,
MyDrawDefaultButtonOutline uses the Color QuickDraw function GetGray to
return a blended gray based on the foreground and background colors. Then

C H A P T E R 6

Using the Dialog Manager 6-61

Dialog Manager 6

MyDrawDefaultButtonOutline uses this gray for outlining the dimmed default
button. Otherwise, MyDrawDefaultButtonOutline uses the QuickDraw procedure
PenPat to draw a gray outline on black-and-white monitors.

Displaying Alert and Dialog Boxes 6
You typically define alerts and dialog boxes in resources, as described in “Creating Alert
Sounds and Alert Boxes” beginning on page 6-18 and in “Creating Dialog Boxes”
beginning on page 6-23. To create an alert or a dialog box, you use a Dialog Manager
function—such as Alert or GetNewDialog—that incorporates information from your
item list resource and from your alert resource or dialog resource into a data structure,
called a dialog record, in memory. The Dialog Manager creates a dialog record, which is a
data structure of type DialogRecord, whenever your application creates an alert or a
dialog box.

The Dialog Manager automatically displays alert boxes at the appropriate alert stages; it
also automatically displays those dialog boxes that you specify as visible in their dialog
resources. But you must use a Window Manager routine such as ShowWindow to display
dialog boxes that you specify as invisible in their dialog resources.

When you use a function that creates an alert (namely, Alert, StopAlert, NoteAlert,
or CautionAlert), the Dialog Manager automatically displays the alert box at the alert
stages that you specify with the visible constant in your alert resource. You do not use
any routines other than the Alert, StopAlert, NoteAlert, and CautionAlert
functions to display an alert box.

When you specify the visible constant in a dialog resource, the Dialog Manager
immediately displays the dialog box when you use the GetNewDialog function. If
you instead specify the invisible constant so that the dialog box is initially invisible
when you call GetNewDialog, use the Window Manager procedure ShowWindow
to display it. This is useful if you need to manipulate a dialog item dynamically using
GetDialogItem and SetDialogItem before you display the dialog box. For example,
if you want to install an application-defined draw procedure for a dialog box, you specify
the invisible constant in a dialog resource, pass the resource ID of that dialog resource
in a parameter to GetNewDialog, use GetDialogItem and SetDialogItem to install
the application-defined draw procedure, then call ShowWindow to display the dialog box,
as previously shown in Listing 6-16 on page 6-58.

You should always specify Pointer(-1) as a parameter to GetNewDialog to display a
dialog box as the active (that is, frontmost) window.

You should perform the following tasks in conjunction with displaying an alert box or a
dialog box:

� Specify an appropriate screen position at which to display the alert box or dialog box.

� Deactivate the frontmost window (if one exists) before displaying an alert box or a
modal dialog box.

� Determine whether you’ve already created a modeless dialog box and, if so, select it
instead of creating a new instance of it.

� Adjust your menus appropriately for a modal dialog box with editable text items and
for any movable modal and modeless dialog box you wish to display.

C H A P T E R 6

Dialog Manager

6-62 Using the Dialog Manager

The DialogSelect function uses the QuickDraw procedure SetPort to make the alert
or dialog box the current graphics port. The ModalDialog procedure and the functions
that create alert boxes use DialogSelect to respond to update and activate events. You
can also use DialogSelect to respond to update and activate events in your modeless
and movable modal dialog boxes. In response to update events, you can instead use the
UpdateDialog function, which also makes the dialog box the current graphics port.
In these cases, it’s generally not necessary for your application to call SetPort when
displaying, updating, or activating alert boxes and dialog boxes. See Inside Macintosh:
Imaging for more information about SetPort.

These and other related issues are explained in detail in the next several sections of
this chapter.

Positioning Alert and Dialog Boxes 6

As previously described in “Creating Alert Sounds and Alert Boxes” beginning on
page 6-18 and “Creating Dialog Boxes” beginning on page 6-23, you specify a rectangle in
every alert resource and dialog resource. The dimensions of this rectangle determine the
dimensions of the alert box or dialog box. You can also let the rectangle coordinates serve
as the global coordinates that determine the position of the alert box or dialog box, or you
can let the Dialog Manager automatically locate it for you according to three standard
positions. To specify these standard positions in System 7, your application can use the
following constants in the Rez input files for alert resources and dialog resources:

If your application positions alert or dialog boxes on its own, don’t use these
constants, because your code may conflict with the Dialog Manager. If you do use
these constants, use them to specify the positions of both alert boxes and dialog boxes.

The next three figures illustrate various alert boxes that might appear when the user is
working on two monitors: a 12-inch monitor (the main screen) that displays the menu bar
and a full-page monitor that displays a document window. These figures show where the
Dialog Manager places an alert box according to the position specified in
the alert resource.

Figure 6-33 shows an alert box displayed in response to an error made by the
user while working on a document; the alert resource specifies the
alertPositionParentWindow constant, which tells the Dialog Manager to
position the alert box over the frontmost window so that the window’s title bar
appears. This position is appropriate for an alert box or a dialog box that relates
directly to the frontmost window. You should always try to position alert boxes
and dialog boxes where the user is working.

Constant Description

alertPositionParentWindow Position the alert or dialog box over the
frontmost window

alertPositionMainScreen Position the alert or dialog box on
the main screen

alertPositionParentWindowScreen Position the alert or dialog box on
the screen containing the frontmost
window

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-63

Figure 6-33 An alert box in front of a document window

Not all alert boxes or dialog boxes relate to the frontmost window. Some may relate
only to actions the user performs on the main screen. For example, Figure 6-34
illustrates an alert box displayed when the user chooses the About command from
the Apple menu. For an alert box or dialog box such as this, you should specify the
alertPositionMainScreen constant in the alert or dialog resource. Figure 6-34 shows
how the Dialog Manager centers such an alert box near the top of the main screen.

Figure 6-34 An alert box on the main screen

C H A P T E R 6

Dialog Manager

6-64 Using the Dialog Manager

Sometimes you may need to display an alert box or a dialog box that applies neither to
the frontmost window nor to an action performed on the main screen. To catch the user’s
attention, you should position such an alert or dialog box on the screen where the user is
working. For example, if you need to alert the user that available disk space is low, you
should specify the alertPositionParentWindowScreen constant. Figure 6-35 shows
how the Dialog Manager displays such an alert box or dialog box when a document
window appears on a screen other than the main screen.

Figure 6-35 An alert box in the alert position of the document window screen

If you don’t specify a positioning constant, the Dialog Manager uses the rectangle
coordinates in your alert resource or dialog resource as global coordinates specifying
where to position your alert or dialog box. If you wish to specify the position yourself in
this manner, you should generally try to center alert and dialog boxes between the left
and right margins of the screen or the window where the user is working, whichever is
most appropriate. If you don’t use the positioning constants, you should also place the
tops of alert and dialog boxes (including the title bars of modeless and movable modal
dialog boxes) below the menu bar. You can use the GetMBarHeight function, described
in the chapter “Menu Manager” in this book, to determine the height of the menu bar.

Deactivating Windows Behind Alert and Modal Dialog Boxes 6

For alert and modal dialog boxes, the ModalDialog procedure traps all events before
they are passed to your event loop, which normally handles activate events for your
windows. Thus, if a window is active, you must explicitly deactivate it before displaying
an alert box or a modal dialog box.

Your modeless dialog boxes and movable modal dialog boxes never use the
ModalDialog procedure. Therefore, you do not have to deactivate the frontmost
window explicitly before displaying a modeless or a movable modal dialog box.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-65

Instead, the Event Manager continues sending your application activate events for
your windows as needed, which you typically handle in your normal event loop. (The
chapters “Event Manager” and “Window Manager” in this book explain how to
activate and deactivate windows.)

Plate 2 at the front of this book shows an alert box that an application displays when the
user chooses the About command in the Apple menu. Listing 6-18 shows an application-
defined routine, ShowMyAboutBox, that displays this alert box.

Listing 6-18 Deactivating the front window before displaying an alert box

PROCEDURE ShowMyAboutBox;

VAR

itemHit: Integer;

docWindow: WindowPtr;

event: EventRecord;

BEGIN

docWindow := FrontWindow; {get the front window}

{if there's a front window, deactivate it}

IF docWindow <> NIL THEN

DoActivate(docWindow, FALSE, event);

{then show the alert box}

itemHit := Alert(kAboutBoxID, @MyEventFilter);

END;

The ShowMyAboutBox routine uses the Window Manager function FrontWindow. If
FrontWindow returns a valid pointer, ShowMyAboutBox calls its DoActivate
procedure to deactivate that window before calling the Alert function to display the
alert box. When the user clicks the OK button, the alert box is dismissed. The Event
Manager then sends the application update events so that it can update the contents of
any windows as appropriate, and the Event Manager sends the application an activate
event so that it can activate the previously frontmost window again. The application
handles these events in its normal event loop.

If your application does not display an alert box during certain alert stages, use the
GetAlertStage function to test for those stages before deactivating the active window.
The GetAlertStage function returns the last occurrence of an alert as a number from
0 to 3. Figure 6-36 shows an alert box that appears only after the user repeats an error
three consecutive times.

Figure 6-36 An alert box displayed only after the third alert stage

C H A P T E R 6

Dialog Manager

6-66 Using the Dialog Manager

Listing 6-19 shows how you might use GetAlertStage to determine if such an alert
needs to be displayed before deactivating the document window.

Listing 6-19 Using GetAlertStage to determine when to deactivate the front window

PROCEDURE MyAlert;

VAR

itemHit: Integer;

alertStage: Integer;

docWindow: WindowPtr;

event: EventRecord;

BEGIN

docWindow := FrontWindow;

alertStage := GetAlertStage;

IF (alertStage >= 2) AND (docWindow <> NIL) THEN {at 3rd alert stage, }

DoActivate(docWindow, FALSE, event); { deactivate front window & }

itemHit := StopAlert(kStopAlertID, @MyEventFilter); { display alert box}

END;

Displaying Modeless Dialog Boxes 6

For a modeless dialog box, check to make sure it isn’t already open before you create and
display it. For example, the modeless dialog box shown in Figure 6-37 should appear
when the user chooses the Global Changes command. After invoking this command, the
user may select another window, thereby deactivating the modeless dialog box.

Figure 6-37 A modeless dialog box for changing text in a document

So as not to create multiple versions of this dialog box whenever the user chooses the
Global Changes command, the application-defined routine DoGlobalChangesDialog,
shown in Listing 6-20, checks whether the dialog box already exists.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-67

Listing 6-20 Ensuring that the modeless dialog box isn’t already open before creating it

FUNCTION DoGlobalChangesDialog: OSErr;

BEGIN

DoGlobalChangesDialog := kSuccess; {assume success}

IF gChangeDialogPtr = NIL THEN {it doesn't exist, so create it}

BEGIN

gChangeDialogPtr := GetNewDialog(kGlobalChangesDlog, NIL, Pointer(-1));

IF gChangeDialogPtr = NIL THEN {handle failure}

BEGIN

DoGlobalChangesDialog := kFailed;

EXIT(DoShowModelessFindDialogBox);

END;

{set window refCon to store value that identifies the dbox}

SetWRefCon(gChangeDialogPtr, LongInt(kGlobalChangesDlog));

END

ELSE {it does exist, so display and select it}

BEGIN

ShowWindow(gChangeDialogPtr); {it's hidden; so show it}

SelectWindow(gChangeDialogPtr);{bring it to the front}

END;

MyAdjustMenus; {adjust the menus}

END;

In this example, a pointer to the modeless dialog box is stored in a global variable. If
the global variable does not contain a pointer, DoGlobalChangesDialog uses
GetNewDialog to create and draw the dialog box. Later, if the user decides to close the
modeless dialog box, the application merely hides it so that when the user needs it again,
DoGlobalChangesDialog can display the dialog box in the same location and with the
same text selected as when the user last used it. Hiding this dialog box is illustrated later
in Listing 6-30 on page 6-94.

If the dialog box has already been created, DoGlobalChangesDialog uses the Window
Manager procedures ShowWindow to make the dialog box visible and SelectWindow to
make it active.

Finally, DoGlobalChangesDialog uses the application-defined routine
MyAdjustMenus to adjust the menus as appropriate for the modeless dialog box.

Listing 6-34 on page 6-98 illustrates an application-defined routine,
DoActivateGlobalChangesDialog, that handles activate events for this
modeless dialog box. The DoActivateGlobalChangesDialog routine in
turn uses DialogSelect, which sets the graphics port to the modeless dialog
box whenever the user makes it active.

C H A P T E R 6

Dialog Manager

6-68 Using the Dialog Manager

Adjusting Menus for Modal Dialog Boxes 6

The Dialog Manager and the Menu Manager interact to provide various degrees of access
to the menus in your menu bar. For alert boxes and modal dialog boxes without editable
text items, you can simply allow system software to provide the appropriate access to
your menu bar.

When your application displays either an alert box or a modal dialog box (that is, a
window of type dBoxProc), these actions occur:

1. System software disables all menu items in the Help menu, except the Show Balloons
(or Hide Balloons) command, which system software enables.

2. System software disables all menu items in the Application menu.

3. If the Keyboard menu appears in the menu bar, system software enables that menu but
disables the About Keyboards command.

When your application displays an alert box or calls the ModalDialog procedure
for a modal dialog box (described in “Responding to Events in Modal Dialog Boxes”
beginning on page 6-82), the Dialog Manager determines whether any of the following
cases is true:

� Your application does not have an Apple menu.

� Your application has an Apple menu, but the menu is disabled when the dialog box
is displayed.

� Your application has an Apple menu, but the first item in that menu is disabled when
the dialog box is displayed.

If none of these cases is true, system software behaves as follows:

1. The Menu Manager disables all of your application’s menus.

2. If the modal dialog box contains a visible and active editable text field—and if the
menu bar contains a menu having commands with the standard keyboard equivalents
Command-X, Command-C, and Command-V—then the Menu Manager enables
those three commands and the menu that contains them. The user can then use either
the menu commands or their keyboard equivalents to cut, copy, and paste text.
(The menu item having keyboard equivalent Command-X must be one of the first
five menu items.)

When your application displays alert boxes and modal dialog boxes with no editable text
items, it can safely allow system software to handle menu bar access as described in steps
1 and 2.

However, because system software cannot handle the Undo or Clear command (or any
other context-appropriate command) for you, your application should handle its own
menu bar access for modal dialog boxes with editable text items by performing the
following tasks:

� disable the Apple menu or the first item in the Apple menu (typically, your
application’s About command) in order to take control of its menu bar access
when displaying a modal dialog box

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-69

� disable all of its menus except the Edit menu, as well as any inappropriate commands
in the Edit menu

� use the Dialog Manager procedures DialogCut, DialogCopy, DialogPaste,
and DialogDelete to support the Cut, Copy, Paste, and Clear commands in editable
text items

� provide your own code for supporting the Undo command

� enable your application’s items in the Help menu as appropriate (system software
disables all items except the Hide Balloons/Show Balloons command)

You don’t need to do anything else for the system-handled menus—namely, Application,
Keyboard, and Help. System software handles these menus for you automatically.

The DialogCut, DialogCopy, DialogPaste, and DialogDelete procedures are
described beginning on page 6-132. Your application can test whether a dialog box is the
front window when handling mouse-down events in the Edit menu and then call these
routines as appropriate.

Figure 6-38 illustrates how an application disables all of its own menus except its Edit
menu when displaying a modal dialog box containing editable text items. Access to the
Edit menu benefits the user who instead of typing prefers copying from and pasting into
editable text items.

Figure 6-38 Menu access when displaying a modal dialog box

Listing 6-21 on the next page shows an application-defined routine, MyAdjustMenus,
that the SurfWriter application calls to adjust its menus after it displays a window or
dialog box, but before it calls ModalDialog to handle events in a modal dialog box.
When MyAdjustMenus determines that the frontmost window is a modal dialog box
containing an editable text item, it calls another application-defined routine,
MyAdjustMenusForDialogs, which adjusts the menus appropriately. Listing 6-22 on
the next page shows the MyAdjustMenusForDialogs routine.

C H A P T E R 6

Dialog Manager

6-70 Using the Dialog Manager

Listing 6-21 Adjusting menus for various windows

PROCEDURE MyAdjustMenus;

VAR

window: WindowPtr;

windowType: Integer;

menu: MenuHandle;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow: {document window is in front}

MyAdjustMenusForDocWindows;

kMyDialogWindow: {a dialog box is in front}

MyAdjustMenusForDialogs;

kDAWindow: {adjust menus accordingly for a DA window}

MyAdjustMenusForDA;

kNil: {there isn't a front window}

MyAdjustMenusNoWindows;

END; {of CASE}

DrawMenuBar; {redraw menu bar}

END;

The MyAdjustMenusForDialogs routine in Listing 6-22 first determines what type of
dialog box is in front: modal, movable modal, or modeless. For modal dialog boxes,
MyAdjustMenusForDialogs disables the Apple menu so that the application can take
control of its menus away from the Dialog Manager. The MyAdjustMenusForDialogs
routine then uses the Menu Manager routines GetMenuHandle and DisableItem to
disable all other application menus except the Edit menu. (To provide help balloons that
explain why these menus are unavailable to the user, MyAdjustMenusForDialogs uses
the Help Manager procedure HMSetMenuResID to reassign help resources to these
menus; see the chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox for
more information.)

Listing 6-22 Disabling menus for a modal dialog box with editable text items

PROCEDURE MyAdjustMenusForDialogs;

VAR

window: WindowPtr;

windowType: Integer;

myErr: OSErr;

menu: MenuHandle;

BEGIN

window := FrontWindow;

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-71

windowType := MyGetWindowType(window);

CASE windowType OF

kMyModalDialogs:

BEGIN

menu := GetMenuHandle(mApple); {get handle to Apple menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0); {disable Apple menu to get control of menus}

myErr := HMSetMenuResID(mFile, kFileHelpID); {set up help balloons}

menu := GetMenuHandle(mFile); {get handle to File menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0); {disable File menu}

myErr := HMSetMenuResID(mFile, kFileHelpID); {set up help balloons}

IF myErr <> NoErr THEN

EXIT(MyAdjustMenusForDialogs);

menu := GetMenuHandle(mTools); {get handle to Tools menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0); {disable Tools menu}

myErr := HMSetMenuResID(mTools, kToolsHelpID); {help balloons}

IF myErr <> NoErr THEN

EXIT(MyAdjustMenusForDialogs);

MyAdjustEditMenuForModalDialogs;

END; {of kMyModalDialogs CASE}

kMyGlobalChangesModelessDialog:

; {adjust menus here as needed}

kMyMovableModalDialog:

; {adjust menus here as follows: }

{ disable all menus except Apple, then }

{ call MyAdjustEditMenuForModalDialogs for editable text items}

END; {of CASE}

END;

To adjust the items in the Edit menu, MyAdjustMenusForDialogs calls another
application-defined routine, MyAdjustEditMenuForModalDialogs, which is
shown in Listing 6-23 on the next page. The MyAdjustEditMenuForModalDialogs
routine uses application-defined code to implement the Undo command; uses the
Menu Manager procedure EnableItem to enable the Cut, Copy, Paste, and Clear
commands when appropriate; and disables the commands that support Edition
Manager capabilities. Remember that your application should use the Dialog Manager
procedures DialogCut, DialogCopy, DialogPaste, and DialogDelete to support
the Cut, Copy, Paste, and Clear commands in editable text items.

C H A P T E R 6

Dialog Manager

6-72 Using the Dialog Manager

Listing 6-23 Adjusting the Edit menu for a modal dialog box

PROCEDURE MyAdjustEditMenuForModalDialogs;

VAR

window: WindowPtr;

menu: MenuHandle;

selection, undo: Boolean;

offset: LongInt;

undoText: Str255;

BEGIN

window := FrontWindow;

menu := GetMenuHandle(mEdit); {get a handle to the Edit menu}

IF menu = NIL THEN {add your own error handling}

EXIT (MyAdjustEditMenuForModalDialogs);

undo := MyIsLastActionUndoable(undoText);

IF undo THEN {if action can be undone}

BEGIN

EnableItem(menu, iUndo);

SetMenuItemText(menu, iUndo, undoText);

END

ELSE {if action can't be undone}

BEGIN

SetMenuItemText(menu, iUndo, gCantUndo);

DisableItem(menu, iUndo);

END;

selection := MySelection(window);

IF selection THEN

BEGIN {enable editing items if there's a selection}

EnableItem(menu, iCut);

EnableItem(menu, iCopy);

END

ELSE

BEGIN {disable editing items if there isn't a selection}

DisableItem(menu, iCut);

DisableItem(menu, iCopy);

END;

IF MyGetScrap(NIL, 'TEXT', offset) > 0 THEN

EnableItem(menu, iPaste) {enable if something to paste}

ELSE

DisableItem(menu, iPaste);{disable if nothing to paste}

DisableItem(menu, iSelectAll);

DisableItem(menu, iCreatePublisher);

DisableItem(menu, iSubscribeTo);

DisableItem(menu, iPubSubOptions);

END;

END;

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-73

See the chapter “Menu Manager” in this book for more information on menus and the
menu bar.

When the user dismisses the alert box or modal dialog box, the Menu Manager restores
all menus to their state prior to the appearance of the alert or modal dialog box—unless
your application handles its own menu bar access, in which case you must restore the
menus to their previous states. You can use a routine similar to MyAdjustMenus, shown
in Listing 6-21 on page 6-70, to adjust the menus appropriately according to the type of
window that becomes the frontmost window.

Adjusting Menus for Movable Modal and Modeless Dialog Boxes 6

Although it always leaves the Help, Keyboard, and Application menus and their
commands enabled, system software does nothing else to manage the menu bar when
you display movable modal and modeless dialog boxes. Instead, your application should
allow or deny access to the rest of your menus as appropriate to the context. For example,
if your application displays a modeless dialog box for a search-and-replace command,
you should allow access to the Edit menu to assist the user with the editable text items,
and you should allow use of the File menu so that the user can open another file to be
searched. However, you should disable other menus if their commands cannot be used
inside the active modeless dialog box.

When creating a modeless dialog box, your application should perform the following
tasks:

� disable only those menus whose commands are invalid in the current context

� if the modeless dialog box includes editable text items, use the Dialog Manager
procedures DialogCut, DialogCopy, DialogPaste, and DialogDelete to
support the Cut, Copy, Paste, and Clear commands in editable text items

When your application creates a movable modal dialog box, it should perform the
following tasks:

� leave the Apple menu enabled so that the user can open other applications with it

� if your movable modal dialog box contains editable text items, leave the Edit menu
enabled but use the Dialog Manager procedures DialogCut, DialogCopy,
DialogPaste, and DialogDelete to support the Cut, Copy, Paste, and
Clear commands

� disable all of your other menus

Listing 6-21 on page 6-70 shows an application-defined routine, MyAdjustMenus, that
SurfWriter uses to adjust its menus after it displays a window or dialog box. You can use
a similar routine to adjust your menus as appropriate given the nature of the active
window, movable modal dialog box, or modeless dialog box.

C H A P T E R 6

Dialog Manager

6-74 Using the Dialog Manager

Displaying Multiple Alert and Dialog Boxes 6

You should generally present the user with only one modal dialog box or alert box at a
time. Sometimes, you may need to present a modal dialog box and an alert box on the
screen at one time. For example, when the user saves a file with the same name as
another file, the Standard File Package displays an alert box on top of the standard file
dialog box. The alert box asks the user whether to replace the existing file.

Avoid closing a modal dialog box and immediately displaying another modal dialog
box or an alert box in response to a user action. This situation creates a “tunneling modal
dialog box” effect that might confuse the user. Missing the content of the previous
modal dialog box and unable to return to it, the user has difficulty predicting what will
happen next.

 However, the user should never see more than one modal dialog and one alert box on
the screen simultaneously. You can present multiple simultaneous modeless dialog boxes,
just as you can present multiple document windows.

When you remove an alert box or a modal dialog box that overlies the default button
of a previous alert box, the Dialog Manager doesn’t redraw that button’s bold outline.
Therefore, you should not use an alert box if you need to display another overlapping
alert box or dialog box. Instead, you should create a modal dialog box, and you must
provide it with an application-defined item that draws the bold outline around the
default button. The ModalDialog procedure then causes the item to be redrawn after an
update event.

In System 7, the Window Manager automatically dims the window frame of a dialog box
when you deactivate it to display an alert box, another modal dialog box, or a window.
When you deactivate a dialog box, you should use the Control Manager procedure
HiliteControl to make the controls of a dialog box inactive. You should also draw the
outline of the default button of a deactivated dialog box in gray instead of black. Listing
6-16 on page 6-58 shows an application-defined procedure that draws a gray outline
when the default button is inactive; Listing 6-34 on page 6-98 shows how to use
HiliteControl to make buttons inactive and active in response to activate events for a
dialog box.

Displaying Alert and Dialog Boxes From the Background 6

If you ever need to display an alert box or a modal dialog box while your application is
running in the background or is otherwise invisible to the user, you should use the
Notification Manager to post a notification to the user. For example, if your application
performs lengthy background tasks such as printing many documents or transferring
large amounts of data to other computers, you might wish to inform the user that the
operation is completed. In these cases, you should post a notification request to notify the
user when the operation is completed. Then the Notification Manager automatically
displays an alert box containing whatever message you specify; you do not need to use
the Dialog Manager to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from your
application to the user. There is no provision for carrying information back from the user

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-75

to your application while it is in the background (although it is possible for your applica-
tion to determine if the notification was received). If you need to solicit information from
the user, use the Notification Manager to ask the user to bring your application to the
foreground. The user can then respond to your alert box or modal dialog box. See the
chapter “Notification Manager” in Inside Macintosh: Processes for information about the
Notification Manager.

Including Color in Your Alert and Dialog Boxes 6

On color monitors, the Dialog Manager automatically adds color to your alert and dialog
boxes so that they match the colors of the windows, alert boxes, and dialog boxes used by
system software. These colors provide aesthetic consistency across all monitors, from
black-and-white displays to 8-bit color displays. On a color monitor, for example, the
racing stripes in the title bar of a modeless dialog box are gray, the close box and window
frame are in color, and the buttons and text are black.

When you create alert and dialog resources, your application’s alert and dialog boxes use
the system’s default colors. With the following exceptions, creating alert and dialog
resources is typically all you need to do to provide color for your alert and dialog boxes:

� When you need to include a color version of an icon in an alert box or a dialog box,
you must create a resource of type 'cicn' with the same resource ID as the
black-and-white 'ICON' resource specified in the item list resource. Plate 2 at the front
of this book shows an alert box that includes a color icon.

� If you use GetNewDialog or NewDialog to create a dialog box and you need to
produce a blended gray color for outlining the inactive (that is, dimmed) default
button, you must create a dialog color table ('dctb') resource with the same
resource ID as the dialog resource.

“Using an Application-Defined Item to Draw the Bold Outline for a Default Button”
beginning on page 6-56 explains how to create a draw routine that outlines the default
button of a dialog box. If you deactivate a dialog box, you should dim its buttons and use
gray to draw the outline for the default button. Because GetNewDialog and NewDialog
supply black-and-white graphics ports for dialog boxes, you can create a dialog color
table resource for the dialog box to force the Dialog Manager to supply a color graphics
port. Then you can use a blended gray color for the outline for the default button.
(NewColorDialog supplies a color graphics port.)

Even when you create a dialog color table resource for drawing a gray outline, you
should not change the system’s default colors. Listing 6-24 shows a dialog color table
resource that leaves the default colors intact but forces the Dialog Manager to supply a
color graphics port.

Listing 6-24 Rez input for a dialog color table resource using the system’s default colors

data 'dctb' (kGlobalChangesDialog, purgeable) {

$"0000 0000 0000 FFFF" /*use default colors*/

};

C H A P T E R 6

Dialog Manager

6-76 Using the Dialog Manager

By using the system’s default colors, you ensure that your application’s interface is
consistent with that of the Finder and other applications. However, if you feel absolutely
compelled to break from this consistency, the Dialog Manager offers you the ability to
specify colors other than the default colors. Be aware, however, that nonstandard colors
in your alert and dialog boxes may initially confuse your users.

Also be aware that despite any changes you make, users can alter the colors of alert and
dialog boxes anyway by changing the settings in the Color control panel.

Your application can specify its own colors in an alert color table ('actb') resource with
the same resource ID as the alert resource or in a dialog color table ('dctb') resource
with the same resource ID as the dialog resource. Both of these resources have exactly the
same format as a window color table ('wctb') resource, described in the chapter
“Window Manager” in this book.

� W A R N I N G

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not specify colors for these elements if you wish
to maintain backward compatibility. �

You don’t have to call any new routines to change the colors used in alert or dialog boxes.
When you call the GetNewDialog function, for example, the Dialog Manager
automatically attempts to load a dialog color table resource with the same resource ID
as the dialog resource.

Likewise, you can change the system default colors for controls and the color, style,
typeface, and size of text used in an alert box or a dialog box by creating an item color
table ('ictb') resource with the same resource ID as the item list resource. You don’t
have to call any routines to create color items. When you use the GetNewDialog
function, the Dialog Manager looks first for an item color table resource with the same
resource ID as that of the item list resource.

Note
If you want to provide an item color table resource for an alert box or
a dialog box, you must create an alert color table resource or a dialog
color table resource, even if the item color table resource has no actual
color information and describes only static text and editable text style
changes. You cannot use an item color table resource to set the font on
computers that do not support Color QuickDraw. Also, be aware that
changing the default system font makes your application more difficult
to localize. �

Even if you provide your own 'dctb', 'actb', or 'ictb' resources, you do not
need to test whether your application is running on a computer that supports Color
QuickDraw in order to use these resources.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-77

Handling Events in Alert and Dialog Boxes 6
The next two sections explain how the Dialog Manager uses the Control Manager to
handle events in controls automatically and how it uses TextEdit to handle events in
editable text items automatically. The information in these two sections, “Responding to
Events in Controls” and “Responding to Events in Editable Text Items,” applies to all
alert boxes and all types of dialog boxes: modal, modeless, and movable modal.

To display and handle events in alert boxes, you can use the Dialog Manager functions
Alert, NoteAlert, CautionAlert, and StopAlert. The Dialog Manager handles all
of the events generated by the user until the user clicks a button (typically the OK or
Cancel button). When the user clicks a button, the alert box functions invert the button
that was clicked, close the alert box, and report the user’s selection to your application.
Your application is responsible for performing the appropriate action associated with that
button. This is described in detail in “Responding to Events in Alert Boxes” beginning on
page 6-81.

For modal dialog boxes, you use the ModalDialog procedure. The Dialog Manager
handles most of the user interaction until the user selects an item. The ModalDialog
procedure then reports that the user selected an enabled item, and your application is
responsible for performing the action associated with that item. Your application
typically calls ModalDialog repeatedly, responding to clicks on enabled items as
reported by ModalDialog, until the user clicks OK or Cancel. This is described in detail
in “Responding to Events in Modal Dialog Boxes” beginning on page 6-82.

For alert boxes and modal dialog boxes, you should also supply an event filter function
as one of the parameters to the alert box functions or the ModalDialog procedure. As
the user interacts with the alert or modal dialog box, these routines pass events to your
event filter function before handling each event. Your event filter function can handle any
events not handled by the Dialog Manager or, if necessary, can choose to handle events
normally handled by the Dialog Manager. This is described in detail in “Writing an Event
Filter Function for Alert and Modal Dialog Boxes” beginning on page 6-86.

To handle events in modeless or movable modal dialog boxes, you can use the
IsDialogEvent function to determine whether the event occurred while a dialog box
was the frontmost window. For every type of event that occurs when the dialog box is
active (including null events), IsDialogEvent returns TRUE; otherwise, it returns
FALSE. When IsDialogEvent returns TRUE, you can use the DialogSelect function
to handle key-down events in editable text items automatically, to handle update and
activate events automatically, and to report the enabled items that the user clicks. You
then respond appropriately to clicks in your active items.

Alternatively, you can handle events in modeless and movable modal dialog boxes much
as you handle events in other windows. That is, when you receive an event you can first
determine the type of event that occurred and then take the appropriate action according
to which window is in front. If a modeless or movable modal dialog box is in front, you
can provide code that takes any actions specific to that dialog box and call the
DialogSelect function to handle any events that your code doesn’t handle. The
sections “Responding to Mouse Events in Modeless and Movable Modal Dialog Boxes”

C H A P T E R 6

Dialog Manager

6-78 Using the Dialog Manager

beginning on page 6-89, “Responding to Keyboard Events in Modeless and Movable
Modal Dialog Boxes” beginning on page 6-94, and “Responding to Activate and Update
Events in Modeless and Movable Modal Dialog Boxes” beginning on page 6-97 all take
this alternate approach.

Responding to Events in Controls 6

The Dialog Manager greatly simplifies the work necessary for you to implement buttons,
checkboxes, pop-up menus, and radio buttons. For alert boxes and all types of dialog
boxes—modal, modeless, and movable modal—the Dialog Manager uses Control
Manager routines to display controls automatically, highlight controls appropriately, and
report to your application when mouse-down events occur within controls. For example,
when the user moves the cursor to an enabled button and holds down the mouse button,
the Dialog Manager uses the Control Manager function TrackControl to invert the
button. When the user releases the mouse button with the enabled button still inverted,
the Dialog Manager uses TrackControl to report which item was clicked. Your
application then responds appropriately—for example, by performing the operation
associated with the OK button, by deselecting any other radio button when a radio
button is clicked, or by canceling the current operation when the Cancel button is clicked.

For clicks in checkboxes, pop-up menus, and radio buttons, your application usually uses
the Control Manager routines GetControlValue and SetControlValue
to get and appropriately set the items’ values. The chapter “Control Manager” in this
book explains these routines in detail, but this chapter also offers examples of how
to use these routines in your alert and dialog boxes. Because the Control Manager does
not know how radio buttons are grouped, it doesn’t automatically turn one off when
the user clicks another one. Instead, it’s up to your application to handle this by using the
GetControlValue and SetControlValue routines.

When the user clicks the OK button, your application performs whatever action is
necessary according to the values returned by GetControlValue for each of the various
checkboxes and radio buttons displayed in your alert or dialog box.

When ModalDialog and DialogSelect call TrackControl, they do not allow you to
specify any special action procedures necessary for anything more complex than a
button, radio button, or checkbox. If you need a more complex control that, for example,
measures how long the user holds down the mouse button or how far the user has
moved an indicator, you can create your own control (or picture or application-defined
item that draws a control-like object) in your dialog box. If you use the ModalDialog
procedure, you must then provide an event filter function that appropriately handles
events within that item, and if you use the DialogSelect function, you must test for
and respond to those events yourself. Alternatively, you can use Window Manager
routines to display an appropriate window and then use the Control Manager to create
and manage such complex controls yourself. See the chapters “Window Manager” and
“Control Manager” in this book for more information.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-79

Responding to Events in Editable Text Items 6

When the user enters or edits text in an editable text item in your dialog boxes, the Dialog
Manager calls TextEdit to handle the events automatically. (You generally shouldn’t
include editable text items in alert boxes.) You typically disable editable text items
because you generally don’t need to be informed every time the user types a character or
clicks one of them. Instead you need to determine the text only when the OK button is
clicked. As illustrated in Listing 6-12 on page 6-49, use GetDialogItemText to
determine the final value of the editable text item after the user clicks the OK button.

When you use the ModalDialog procedure to handle events in modal dialog boxes and
when you use the DialogSelect function for modeless or movable modal dialog boxes,
the Dialog Manager calls TextEdit to handle keystrokes and mouse actions within
editable text items, so that

� when the user clicks the item, a blinking vertical bar appears that indicates an
insertion point where text may be entered

� when the user drags over text in the item, the text is highlighted; when the user
double-clicks a word, the word is highlighted; the highlighted selection is then
replaced by what the user types

� when the user holds down the Shift key while clicking or dragging, the highlighted
selection is extended or shortened appropriately

� when the user presses the Backspace key, the highlighted selection or the character
preceding the insertion point is deleted

� when the user presses the Tab key, the cursor automatically advances to the next
editable text item in the item list resource, wrapping around to the first if there are no
more items

If your modeless or movable modal dialog box contains any editable text items, call
DialogSelect even when WaitNextEvent returns FALSE. This is necessary because
the DialogSelect function calls the TEIdle procedure to make the text cursor blink
within your editable text items during null events; otherwise, the text cursor will not
blink. Listing 6-25 illustrates an application-defined routine, DoIdle, that calls
DialogSelect whenever the application receives null events while its modeless
dialog box is the frontmost window.

Listing 6-25 Using DialogSelect during null events

PROCEDURE DoIdle (event: EventRecord);

VAR

window: WindowPtr;

windowType: Integer;

itemHit: Integer;

result: Boolean;

BEGIN

window := FrontWindow;

{determine which type of window--document, }

C H A P T E R 6

Dialog Manager

6-80 Using the Dialog Manager

{ modeless dialog box, etc.--is in front}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow: {document window is frontmost}

; {see examples in "Event Manager" chapter}

kMyGlobalChangesModelessDialog: {modeless dialog is frontmost}

result := DialogSelect(event, window, itemHit);

END; {of CASE}

END;

Generally, your application should handle menu bar access when you display dialog
boxes containing editable text items. Leave your Edit menu enabled, and use the
DialogCut, DialogCopy, DialogPaste, and DialogDelete procedures to support
the Cut, Copy, Paste, and Clear commands and their keyboard equivalents. You should
also provide your own code to support the Undo command. “Adjusting Menus for
Modal Dialog Boxes” beginning on page 6-68 and “Adjusting Menus for Movable Modal
and Modeless Dialog Boxes” on page 6-73 describe how to allow users to access your Edit
menu when you display dialog boxes.

If you don’t supply your own event filter function and the user presses the Return or
Enter key while a modal dialog box is onscreen, the Dialog Manager treats the event as a
click on the default button (that is, the first item in the list) regardless of whether the
dialog box contains an editable text item. If your event filter function responds to the user
pressing Return and Enter by moving the cursor in editable text items, don’t display a
bold outline around any buttons. If your event filter function responds to the user
pressing Return and Enter as if the user clicks the default button, then you should
display a bold outline around the default button. See “Writing an Event Filter Function
for Alert and Modal Dialog Boxes” beginning on page 6-86 for an example of how to map
the Return and Enter keys to the default button in your dialog boxes.

Initially, an editable text item may contain default text or no text. You can provide default
text either by specifying a text string as the last element for that item in the item list
resource or by using the SetDialogItemText procedure, which is described on
page 6-131.

When a dialog box that contains editable text items is first displayed, the insertion
point usually appears in the first editable text item in the item list resource. You may
instead want to use the SelectDialogItemText procedure so that the dialog box
appears with text selected, or so that an insertion point or a text selection reappears if
the user makes an error while entering text. For example, the user who accidentally types
nonnumeric input when a number is required can be given the opportunity to type the
entry again. The SelectDialogItemText procedure is described in detail on
page 6-131.

By default, the Dialog Manager displays editable text items in the system font. To
maintain visual consistency across applications for your users and to make it easier to
localize your application, you should not change the font or font size.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-81

Responding to Events in Alert Boxes 6

After displaying an alert box or playing an alert sound, the Alert, StopAlert,
CautionAlert, and NoteAlert functions call the ModalDialog procedure to handle
events automatically for you.

The ModalDialog procedure, in turn, gets each event by calling the Event Manager
function GetNextEvent. If the event is a mouse-down event outside the content region
of the alert box, ModalDialog emits the system alert sound and gets the next event.

The Alert, StopAlert, CautionAlert, and NoteAlert functions continue calling
ModalDialog until the user selects an enabled control (typically a button). At this time
these functions remove the alert box from the screen and return the item number of the
selected control. Your application then responds as appropriate for a click on this item.

For example, the code that supports the alert box displayed in Figure 6-39 must respond
to three different events—one for each button that the user may click.

Figure 6-39 Three buttons for which CautionAlert reports events

Listing 6-9 on page 6-47 shows an application-defined routine, named
MyCloseDocument, for the Close command. If the document has been modified
since the last save, MyCloseDocument displays the alert box illustrated in Figure 6-39
before closing the window. After MyCloseDocument displays the caution alert, it
tests for the item number that CautionAlert returns after it removes the alert box.
If the user clicks the Save button, CautionAlert returns its item number, and
MyCloseDocument calls other application-defined routines to save the file, close the file,
and close the window. If the user clicks the Don’t Save button, MyCloseDocument closes
the window without saving the file. The only other possible response is for the user to
click the Cancel button, in which case MyCloseDocument does nothing—the Dialog
Manager removes the alert box, and MyCloseDocument simply leaves the document
window as it is.

The standard event filter function allows users to press the Return or Enter key in lieu of
clicking the default button. When one of these keys is pressed, the standard event filter
function returns TRUE to ModalDialog, which in turn causes Alert, StopAlert,
CautionAlert, and NoteAlert to return the item number of the default button. When
you write your own event filter function, it should emulate the standard filter function by
responding in this way to keyboard events involving the Return and Enter keys.

C H A P T E R 6

Dialog Manager

6-82 Using the Dialog Manager

For events inside the alert box, ModalDialog passes the event to an event filter function
before handling the event. The event filter function provides a secondary event-handling
loop for handling events that ModalDialog doesn’t handle and for overriding events
that ModalDialog would otherwise handle. You should provide a simple event filter
function for every alert box and modal dialog box in your application.

You specify a pointer to your event filter function in the second parameter to the Alert,
StopAlert, CautionAlert, and NoteAlert functions. In the MyCloseDocument
routine shown on page 6-47, a pointer to the MyEventFilter function is specified. In
most cases, you can use the same event filter function in every one of your alert and
modal dialog boxes. An example of a simple event filter function that allows background
applications to receive update events and performs the other necessary event handling is
provided in “Writing an Event Filter Function for Alert and Modal Dialog Boxes”
beginning on page 6-86.

Unless your event filter function handles the event in its own way and returns TRUE,
ModalDialog handles the event inside the alert box as follows:

� In response to an activate or update event for the alert box, ModalDialog activates or
updates its window.

� If the user presses the mouse button while the cursor is in a control, the Control
Manager function TrackControl tracks the mouse. If the user releases the
mouse button while the cursor is in an enabled control, Alert, StopAlert,
CautionAlert, and NoteAlert remove the alert box and return the control’s
item number. (Generally, buttons should be the only controls you use in alert boxes.)

� If the user presses the mouse button while the cursor is in any enabled item other than
a control, Alert, StopAlert, CautionAlert, and NoteAlert remove the alert box
and return the item number. (Generally, button controls should be the only enabled
items in alert boxes.)

� If the user presses the mouse button while the cursor is in a disabled item, or if it is
in no item, or if any other event occurs, Alert, StopAlert, CautionAlert, and
NoteAlert do nothing.

Responding to Events in Modal Dialog Boxes 6

Call the ModalDialog procedure immediately after displaying a modal dialog box.
This procedure repeatedly handles events inside the modal dialog box until an event
involving an enabled item—such as a click in a radio button—occurs. If the event is a
mouse-down event outside the content region of the dialog box, ModalDialog emits the
system alert sound and gets the next event. After receiving an event involving an enabled
item, ModalDialog returns the item number. Normally you then do whatever is
appropriate in response to an event in that item. Your application should continue calling
ModalDialog until the user selects the OK or Cancel button, at which point your
application should close the dialog box.

For example, if the user clicks a radio button, your application should get the value
of that button, turn off any other selected radio button within its group, and call
ModalDialog again to get the next event. If the user clicks the Cancel button, your
application should restore the user’s work to its state just before the user invoked the
dialog box, and then your application should remove the dialog box from the screen.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-83

Note
Do not use ModalDialog for modeless or movable modal
dialog boxes. �

The code that supports the modal dialog box shown in Figure 6-40 must respond to
events in four controls: two checkboxes and two buttons.

Figure 6-40 Four items for which ModalDialog reports events

Listing 6-26 illustrates an application-defined routine, MySpellCheckDialog, that
responds to events in these four controls.

Listing 6-26 Responding to events in a modal dialog box

FUNCTION MySpellCheckDialog: OSErr;

VAR

docWindow: WindowPtr;

ignoreCapsCheck: Boolean;

ignoreSlangCheck: Boolean;

spellDialog: DialogPtr;

itemHit, itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

capsVal: Integer;

slangVal: Integer;

event: EventRecord;

BEGIN

capsVal := 0;

slangVal := 0;

ignoreCapsCheck := FALSE;

ignoreSlangCheck := FALSE;

MySpellCheckDialog := kSuccess;{assume success}

docWindow := FrontWindow; {get front window}

IF docWindow <> NIL THEN

C H A P T E R 6

Dialog Manager

6-84 Using the Dialog Manager

DoActivate(docWindow, FALSE, event); {deactivate document window}

spellDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

IF spellDialog = NIL THEN

BEGIN

MySpellCheckDialog := kFailed;

Exit(MySpellCheckDialog);

END;

MyAdjustMenus; {adjust menus as needed}

GetDialogItem(spellDialog, kUserItem, itemType, itemHandle, itemRect);

SetDialogItem(spellDialog, kUserItem, itemType,

 Handle(@MyDrawDefaultButtonOutline), itemRect);

ShowWindow(spellDialog); {show dialog box with default button outlined}

REPEAT

ModalDialog(@MyEventFilter, itemHit); {get events}

IF itemHit = kAllCaps THEN {user clicked Ignore Words in All Caps}

BEGIN

{get the control handle to the checkbox}

GetDialogItem(spellDialog, kAllCaps, itemType, itemHandle,

 itemRect);

{get the last value of the checkbox}

capsVal := GetControlValue(ControlHandle(itemHandle));

{toggle the value of the checkbox}

capsVal := 1 - capsVal;

{set the checkbox to the new value}

SetControlValue(ControlHandle(itemHandle), capsVal);

END;

IF itemHit = kSlang THEN {user clicked Ignore Slang Terms}

BEGIN

{get checkbox's handle, get its value, toggle it, then reset it}

GetDialogItem(spellDialog, kSlang, itemType, itemHandle, itemRect);

slangVal := GetControlValue(ControlHandle(itemHandle));

slangVal := 1 - slangVal;

SetControlValue(ControlHandle(itemHandle), slangVal);

END;

UNTIL ((itemHit = kSpellCheck) OR (itemHit = kCancel));

DisposeDialog(spellDialog); {close the dialog box}

IF itemHit = kSpellCheck THEN {user clicked Spell Check button}

BEGIN

IF capsVal = 1 THEN {user wants to ignore all caps}

ignoreCapsCheck := TRUE;

IF slangVal = 1 THEN {user wants to ignore slang}

ignoreSlangCheck := TRUE;

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-85

{now start the spell check}

SpellCheckMyDoc(ignoreCapsCheck, ignoreSlangcheck);

END;

END;

The MySpellCheckDialog routine calls ModalDialog immediately after using
GetNewDialog to create and display the dialog box. The MySpellCheckDialog
routine repeatedly responds to events in the two checkboxes until the user clicks either
the Spell Check or the Cancel button. When the user clicks either of the checkboxes
(which are the third and fourth items in the item list resource), MySpellCheckDialog
uses the GetDialogItem procedure to get a handle to the checkbox. The
MySpellCheckDialog routine coerces this handle to a control handle and passes
it to the Control Manager function GetControlValue to get the last value of the control
(1 if the checkbox was selected or 0 if it was unselected). Subtracting this
value from 1, MySpellCheckDialog derives a new value for the control. Then
MySpellCheckDialog passes this value to the Control Manager procedure
SetControlValue to set the new value. The Control Manager responds by drawing
an X in the box if the value of the control is 1 or removing the X if the value of the
control is 0.

As soon as the user clicks the Spell Check or Cancel button (which are the first and
second items in the item list resource), MySpellCheckDialog stops responding to
events in the checkboxes. This routine uses the DisposeDialog procedure (which is
explained in “Closing Dialog Boxes” beginning on page 6-100) to remove the dialog box.
If the user clicks the Cancel button, MySpellCheckDialog does no further processing
of the information in the dialog box. If, however, the user clicks the Spell Check button,
MySpellCheckDialog calls another application-defined routine, SpellCheckMyDoc,
to check the document for spelling errors according to the preferences that the user
communicated in the checkboxes.

For events inside the dialog box, ModalDialog passes the event to an event filter
function before handling the event. In this example, the application specifies a pointer to
its own event filter function, MyEventFilter. As described in the next section, your
application should provide an event filter function. You can use the same event filter
function in most or all of your alert and modal dialog boxes.

Unless your event filter function handles the event and returns TRUE, ModalDialog
handles the event as follows:

� In response to an activate or update event for the dialog box, ModalDialog activates
or updates its window.

� If the user presses the mouse button while the cursor is in an editable text item,
ModalDialog responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If a key-down event occurs and
there’s an editable text item, text entry and editing are handled as described in
“Responding to Events in Editable Text Items” beginning on page 6-79. If the editable
text item is enabled, ModalDialog returns its item number after it receives either the
mouse-down or key-down event. Normally, editable text items are disabled, and you
use the GetDialogItemText procedure to read the information in the items only
after the user clicks the OK button. Listing 6-12 on page 6-49 illustrates this technique.

C H A P T E R 6

Dialog Manager

6-86 Using the Dialog Manager

� If the user presses the mouse button while the cursor is in a control, ModalDialog
calls the Control Manager function TrackControl. If the user releases the mouse
button while the cursor is in an enabled control, ModalDialog returns the control’s
item number. Your application should respond appropriately; for example, Listing 6-26
uses an application-defined routine that checks the spelling of a document when the
user clicks the Spell Check button.

� If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, ModalDialog returns the item’s number, and your application should
respond appropriately. Generally, only controls should be enabled. If your application
creates a complex control—such as one that measures how far a dial is moved—your
application must provide an event filter function to handle mouse events in that item.

� If the user presses the mouse button while the cursor is in a disabled item or in no
item, or if any other event occurs, ModalDialog does nothing.

Writing an Event Filter Function for Alert and Modal Dialog Boxes 6

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. In early versions of Macintosh system
software, when a single application controlled the computer, the standard event filter
function for alert boxes and most modal dialog boxes was usually sufficient. However,
because the standard event filter function does not permit background applications to
receive or respond to update events, it is no longer sufficient.

Thus, your application should provide a simple event filter function that performs these
functions and also allows inactive windows to receive update events. You can use the
same event filter function in most or all of your alert and modal dialog boxes.

You can also use your event filter function to handle other events that ModalDialog
doesn’t handle—such as the Command-period key-down event, disk-inserted events,
keyboard equivalents, and mouse-down events (if necessary) for application-defined
items that you provide.

For example, the standard event filter function ignores key-down events for the
Command key. When your application allows the user to access your menus after you
display a dialog box, your event filter function should handle keyboard equivalents for
menu commands and return TRUE.

At a minimum, your event filter function should perform the following tasks:

� return TRUE and the item number for the default button if the user presses the Return
or Enter key

� return TRUE and the item number for the Cancel button if the user presses the Esc key
or the Command-period key combination

� update your windows in response to update events (this also allows background
applications to receive update events) and return FALSE

� return FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor in an application-

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-87

defined item. For example, if you provide an application-defined item that requires you
to measure how long the user holds down the mouse button or how far the user drags
the cursor, use the event filter function to handle events inside that item.

If it seems that you will spend time replicating much of your primary event loop in this
event filter function, you might consider handling all the events in your main event loop
instead of using the Dialog Manager’s Alert, NoteAlert, StopAlert, and
CautionAlert functions or ModalDialog procedure.

Your own event filter function should have three parameters and return a Boolean value.
For example, this is how to declare an event filter function named MyEventFilter:

FUNCTION MyEventFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

After receiving an event that it does not handle, your function should return FALSE.
When your function returns FALSE, ModalDialog handles the event, which you pass
in the parameter theEvent. (Your function can also change the event to simulate a
different event and return FALSE, which passes the altered event to the Dialog Manager
for handling.) If your function does handle the event, your function should return TRUE
as a function result and, in the itemHit parameter, the number of the item that it
handled. The ModalDialog procedure and, in turn, the Alert, NoteAlert,
StopAlert, and CautionAlert functions then return this item number in their own
itemHit parameter.

Because ModalDialog calls the GetNextEvent function with a mask that excludes
disk-inserted events, your event filter function can call the Event Manager procedure
SetSystemEventMask to accept disk-inserted events. See the chapter “Event Manager”
in this book for a discussion about handling disk-inserted events.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. Your event filter function should always
check whether the Return key or Enter key was pressed and, if so, return the item
number of the default button in the itemHit parameter and a function result of TRUE.
Your event filter function should also check whether the Esc key was pressed and, if so,
return the item number for the Cancel button in the itemHit parameter and a function
result of TRUE. Your event filter function should also respond to the Command-period
key-down event as if the user had clicked the Cancel button.

To give visual feedback indicating which item has been selected, you should invert
buttons that are activated by keyboard equivalents for all alert and dialog boxes. A
good rule of thumb is to invert a button for 8 ticks, long enough to be noticeable but
not so long as to be annoying. The Control Manager performs this action whenever
a user clicks a button, and your application should do this whenever a user presses the
keyboard equivalent of a button click.

For modal dialog boxes that contain editable text items, your application should handle
menu bar access to allow use of your Edit menu and its Cut, Copy, Paste, Clear, and
Undo commands, as explained in “Adjusting Menus for Modal Dialog Boxes” beginning

C H A P T E R 6

Dialog Manager

6-88 Using the Dialog Manager

on page 6-68. Your event filter function should then test for and handle mouse-down
events in the menu bar and key-down events for keyboard equivalents of Edit menu
commands. Your application should respond to users’ choices from the Edit menu by
using the procedures DialogCut, DialogCopy, DialogPaste, and DialogDelete to
support the Cut, Copy, Paste, and Clear commands.

Listing 6-27 shows MyEventFilter, which begins by handling update events in
windows other than the alert or dialog box. (By responding to update events for your
application’s own inactive windows in this way, you allow ModalDialog to perform
a minor switch when necessary so that background applications can update their
windows, too.)

Next, MyEventFilter handles activate events. This event filter function then handles
key-down events for the Return and Enter keys as if the user had clicked the default
button, and it handles key-down events for the Esc key as if the user had clicked the
Cancel button. (See Inside Macintosh: Text for information about character codes for the
Return, Enter, and Esc keys.) Your event filter function can then include tests for other
events, such as disk-inserted events and keyboard equivalents.

Listing 6-27 A typical event filter function for alert and modal dialog boxes

FUNCTION MyEventFilter(theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

VAR

key: Char;

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

finalTicks: LongInt;

BEGIN

MyEventFilter := FALSE; {assume Dialog Mgr will handle it}

IF (theEvent.what = updateEvt) AND

(WindowPtr(theEvent.message) <> theDialog) THEN

DoUpdate(WindowPtr(theEvent.message)) {update the window behind}

ELSE IF (theEvent.what = activateEvt) AND (WindowPtr(theEvent.message)

<> theDialog) THEN

DoActivate(WindowPtr(theEvent.message),

 (BAnd(theEvent.modifiers, activeFlag) <> 0), theEvent)

ELSE

CASE theEvent.what OF

keyDown, autoKey: {user pressed a key}

BEGIN

key := Char(BAnd(theEvent.message, charCodeMask));

IF (key = Char(kReturnKey)) OR (key = Char(kEnterKey)) THEN

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-89

BEGIN {respond as if user clicked Spell Check}

GetDialogItem(theDialog, kSpellCheck, itemType, itemHandle,

 itemRect);

{invert the Spell Check button for user feedback}

HiliteControl(ControlHandle(itemHandle), inButton);

Delay(kVisualDelay, finalTicks); {invert button for 8 ticks}

HiliteControl(ControlHandle(itemHandle), 0);

myEventFilter := TRUE; {event's being handled}

itemHit := kSpellCheck; {return the default button}

END;

IF (key = Char(kEscapeKey)) OR {user pressed Esc key}

(Boolean(BAnd(theEvent.modifiers, cmdKey)) AND

(key = Char(kPeriodKey))) THEN {user pressed Cmd-pd}

BEGIN {handle as if user clicked Cancel}

GetDialogItem(theDialog, kCancel, itemType, itemHandle,

 itemRect);

{invert the Cancel button for user feedback}

HiliteControl(ControlHandle(itemHandle), inButton);

Delay(kVisualDelay, finalTicks); {invert button for 8 ticks}

HiliteControl(ControlHandle(itemHandle), 0);

MyEventFilter := TRUE; {event's being handled}

itemHit := kCancel; {return the Cancel button}

END; {of Cancel}

{handle any other keyboard equivalents here}

END; {of keydown, autokey}

{handle disk-inserted and other events here, as needed}

OTHERWISE

END; {of CASE}

END;

To use this event filter function for an alert box, the application specifies a pointer to
MyEventFilter when it calls one of the Alert functions, as shown in Listing 6-19 on
page 6-66. To use this event filter function for a modal dialog box, the application
specifies a pointer to MyEventFilter when it calls ModalDialog, as shown in
Listing 6-26 on page 6-83.

Responding to Mouse Events in Modeless and
Movable Modal Dialog Boxes 6

To handle events in modeless and movable modal dialog boxes, you can use the
IsDialogEvent function to determine when events occur while a dialog box is the
frontmost window. For such events, you can then use the DialogSelect function to
handle key-down events in editable text items automatically, to handle update and
activate events automatically, and to report the enabled items that the user clicks. You
must also use additional Toolbox routines to handle other types of keyboard events and
other events in the dialog box.

C H A P T E R 6

Dialog Manager

6-90 Using the Dialog Manager

� W A R N I N G

The IsDialogEvent and DialogSelect functions are unreliable
when running in versions of system software previous to System 7. �

Alternatively, and probably most efficiently, your application can respond to events in
modeless and movable modal dialog boxes by first determining the type of event that
occurred and then taking the appropriate action according to which type of window is
in front. If a modeless or movable modal dialog box is in front, you can provide code
that takes any actions specific to that dialog box. You can then use the DialogSelect
function instead of the Control Manager functions FindControl and TrackControl to
handle mouse events in your dialog boxes. The DialogSelect function also handles
update events, activate events, and events in editable text items. (If your modeless or
movable modal dialog box contains editable text items, you should call DialogSelect
during null events to cause the text cursor to blink.)

If you choose to determine whether events involve movable modal or modeless dialog
boxes without the aid of the IsDialogEvent function, your application should be
prepared to handle the following mouse events:

� clicks in the menu bar, which your application has adjusted as appropriate for the
dialog box. Be sure to use the procedures DialogCut, DialogCopy, DialogPaste,
and DialogDelete to support the Cut, Copy, Paste, and Clear commands in editable
text items in your dialog boxes.

� clicks in the content region of an active movable modal or modeless dialog box. You
can use the DialogSelect function to aid you in handling the event.

� clicks in the content region of an inactive modeless dialog box. In this case, your
application should make the modeless dialog box active by making it the front-
most window.

� clicks in the content region of an inactive window whenever a movable modal or
modeless dialog box is active. For movable modal dialog boxes, your application
should emit the system alert sound, whereas for modeless dialog boxes, your
application should bring the inactive window to the front.

� mouse-down events in the drag region (that is, the title bar) of an active movable
modal or modeless dialog box. Your application should use the Window Manager
procedure DragWindow to move the dialog box in response to the user’s actions.

� mouse-down events in the drag region of an inactive window when a movable
modal dialog box is active. Your application should not move the inactive window
in response to the user’s actions. Instead, your application should play the system alert
sound.

� clicks in the close box of a modeless dialog box. Your application should dispose of or
hide the modeless dialog box, whichever action is more appropriate.

Figure 6-41 shows a simple modeless dialog box with editable text items.

Listing 6-28 illustrates an application-defined procedure that handles mouse-down
events for all windows, including the modeless dialog box shown in Figure 6-41.

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-91

Figure 6-41 A modeless dialog box for which DialogSelect reports events

Listing 6-28 Handling mouse-down events for all windows

PROCEDURE DoMouseDown (event: EventRecord);
VAR

part: Integer;
thisWindow: WindowPtr;

BEGIN
{find general location of the cursor at the time of mouse-down event}
part := FindWindow(event.where, thisWindow);
CASE part OF {take action based on the cursor location}
inMenuBar: ; {cursor in menu bar; respond with Menu Manager routines}
inSysWindow: ; {cursor in a DA; use SystemClick here}
inContent: {cursor in the content area of one of this app's windows}

IF thisWindow <> FrontWindow THEN
BEGIN {mouse-down in a window other than the front }

{ window--make the clicked window the front window, }
{ unless the front window is a movable modal dialog box}

IF MyIsMovableModal(FrontWindow) THEN
SysBeep(30) {emit system alert sound}

ELSE
SelectWindow(thisWindow);

END
ELSE {mouse-down in the content area of front window}

DoContentClick(thisWindow, event);
inDrag: {handle mouse-down in drag area}

IF (thisWindow <> FrontWindow) AND (MyIsMovableModal(FrontWindow))
THEN

SysBeep(30) {emit system alert sound}
ELSE
 DragWindow(thisWindow, event.where, GetGrayRgn^^.rgnBBox);

 inGrow: ; {handle mouse-down in zoom box here}
inGoAway: {handle mouse-down in close box here}

 IF TrackGoAway(thisWindow, event.where) THEN
DoCloseCmd;

 inZoomIn, inZoomOut: ; {handle zoom box region for standard windows}
END; {end of CASE}

END; {of DoMouseDown}

C H A P T E R 6

Dialog Manager

6-92 Using the Dialog Manager

The DoMouseDown routine first uses the Window Manager function FindWindow to
determine approximately where the cursor is when the mouse button is pressed. When
the user presses the mouse button while the cursor is in the content area of a window,
DoMouseDown first checks whether the mouse-down event occurs in the currently active
window by comparing the window pointer returned by FindWindow with that returned
by the Window Manager function FrontWindow.

When the mouse-down event occurs in an inactive window, DoMouseDown uses another
application-defined routine, MyIsMovableModal, to check whether the active window
is a movable modal dialog box. If so, DoMouseDown plays the system alert sound.
Otherwise, DoMouseDown uses the Window Manager procedure SelectWindow
to make the selected window active. (Although not illustrated in this book, the
MyIsMovableModal routine uses the Window Manager function GetWVariant to
determine whether the variation code for the front window is movableDBoxProc. If so,
MyIsMovableModal returns TRUE.) See the chapter “Window Manager” in this book for
more information about the SelectWindow and GetWVariant routines.

As in this example, you must ensure that the movable dialog box is modal within your
application. That is, the user should not be able to switch to another of your application’s
windows while the movable modal dialog box is active. Instead, your application should
emit the system alert sound. Notice as well that when the mouse-down event occurs in
the drag region of any window, DoMouseDown checks whether the drag region belongs
to an inactive window while a movable modal dialog box is active. If it does,
DoMouseDown again plays the system alert sound. (However, by clicking other applica-
tions’ windows or by selecting other applications from the Application and Apple menus,
users should be able to switch your application to the background when you display a
movable modal dialog box—an action users cannot perform with fixed- position modal
dialog boxes.)

If a user presses the mouse button while the cursor is in the content region of the active
window, DoMouseDown calls another application-defined routine, DoContentClick,
to further handle mouse events. Listing 6-29 shows how this routine in turn uses the
DialogSelect function to handle the mouse-down event after the application
determines that it occurs in the modeless dialog box shown in Figure 6-41 on page 6-91.

Listing 6-29 Using the DialogSelect function for responding to mouse-down events

PROCEDURE DoContentClick (thisWindow: windowPtr; event: EventRecord);

VAR

itemHit: Integer;

refCon: Integer;

BEGIN

windowType := MyGetWindowType(thisWindow);

CASE windowType OF

kMyDocWindow: ;

{handle clicks in document window here; see the chapter "Control }

{ Manager" for sample code for this case}

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-93

kGlobalChangesID: {user clicked Global Changes dialog box}

BEGIN

IF DialogSelect(event, DialogPtr(thisWindow), itemHit) THEN

BEGIN

IF itemHit = kChange THEN {user clicked Change}

; {use GetDialogItem and GetDialogItemText to get }

{ the text strings and replace one string with the }

{ other here}

IF itemHit = kStop THEN {user clicked Stop}

; {stop making changes here}

END;

END; {of CASE for kGlobalChangesID}

{handle other window types here}

END; {of CASE}

END;

In this example, when the user clicks the Change button, DialogSelect returns its item
number. Within the user’s document, the application then performs a global search and
replace. (Listing 6-12 on page 6-49 illustrates how an application can use the
GetDialogItem and GetDialogItemText procedures for this purpose.) Generally,
only controls should be enabled in a dialog box; therefore, your application normally
responds only when DialogSelect returns TRUE after the user clicks an enabled
control. For example, if the event is an activate or update event for a dialog box,
DialogSelect activates or updates it and returns FALSE, so your application does not
need to respond to the event.

At this point, you may also want to check for and respond to any special events that you
do not wish to pass to DialogSelect or that require special processing before you pass
them to DialogSelect. You would need to do this, for example, if the dialog box needs
to respond to disk-inserted events.

IMPORTANT

When DialogSelect calls TrackControl, it does not allow you to
specify any action procedures necessary for a more complex control—
for example, a control that measures how long the user holds down
the mouse button or one that measures how far the user has moved
an indicator. For instances like this, you can create a picture or an
application-defined item that draws a control-like object; you must then
test for and respond to those events yourself before passing events to
DialogSelect. Or, you can use the Control Manager functions
FindControl and TrackControl to process the mouse events inside
the controls of your dialog box. �

Listing 6-28 on page 6-91 calls one of its application-defined routines, DoCloseCmd,
whenever the user clicks the close box of the active window. If the active window is a
modeless dialog box, you might find it more efficient to hide the window rather than
remove its data structures. Listing 6-30 shows how you can use the Window Manager
routine HideWindow to hide the Global Changes modeless dialog box when the user

C H A P T E R 6

Dialog Manager

6-94 Using the Dialog Manager

clicks its close box. The next time the user chooses the Global Changes command, the
dialog box is already available, in the same location and with the same text selected as
when it was last used. (Listing 6-20 on page 6-67 illustrates how first to create and later
redisplay this modeless dialog box.)

Listing 6-30 Hiding a modeless dialog box in response to a Close command

PROCEDURE DoCloseCmd;

VAR

myWindow: WindowPtr;

myData: MyDocRecHnd;

windowType: Integer;

BEGIN

myWindow := FrontWindow;

windowType := MyGetWindowType(myWindow);

CASE windowType OF

kMyGlobalChangesModelessDialog:

HideWindow(myWindow);

kMySpellModelessDialog:

HideWindow(myWindow);

kMyDocWindow:

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));

MyCloseDocument(myData);

END; {of kMyDocWindow case}

kDAWindow:

CloseDeskAcc(WindowPeek(myWindow)^.windowKind);

END; {of CASE}

END;

Responding to Keyboard Events in Modeless and
Movable Modal Dialog Boxes 6

If you adopt the previously described strategy of determining—without the aid of the
IsDialogEvent function—whether events involve movable modal or modeless dialog
boxes, your application should be prepared to handle the following keyboard events:

� keyboard equivalents, such as Command-C to copy, to which your application should
respond appropriately

� key-down events for the Return and Enter keys, to which your application should
respond as if the user had clicked the default button

� key-down events for the Esc or Command-period keystrokes, to which your
application should respond as if the user had clicked the Cancel button

� key-down and auto-key events in editable text items, for which your application can
use the DialogSelect function, which in turn calls TextEdit to handle keystrokes
within editable text items automatically

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-95

Listing 6-31 illustrates how an application can check for keyboard equivalents whenever
it receives key-down events. If the user holds down the Command key while pressing
another key, the application calls another of its application-defined procedures,
DoMenuCommand, which handles keyboard equivalents for menu commands. See the
chapter “Menu Manager” in this book for an example of a DoMenuCommand procedure.
Remember that when a movable modal dialog box or a modeless dialog box is active,
your application should adjust the menus appropriately, and use the procedures
DialogCut, DialogCopy, DialogPaste, and DialogDelete to support the Cut,
Copy, Paste, and Clear commands in editable text items.

Listing 6-31 Checking for key-down events involving the Command key

PROCEDURE DoKeyDown (event: EventRecord);

VAR

key: Char;

BEGIN

key := CHR(BAnd(event.message, charCodeMask));

IF BAnd(event.modifiers, cmdKey) <> 0 THEN

BEGIN {Command key down}

IF event.what = keyDown THEN

BEGIN

MyAdjustMenus; {adjust the menus as needed}

DoMenuCommand(MenuKey(key)); {handle the menu command}

END;

END

ELSE

MyHandleKeyDown(event);

END;

After determining that a key-down event does not involve a keyboard equivalent, Listing
6-31 calls another of its own routines, MyHandleKeyDown, which is shown
in Listing 6-32.

Listing 6-32 Checking for key-down events in a modeless dialog box

PROCEDURE MyHandleKeyDown (event: EventRecord);

VAR

window: WindowPtr;

windowType: Integer;

BEGIN

window := FrontWindow;

{determine the type of window--document, modeless, etc.}

C H A P T E R 6

Dialog Manager

6-96 Using the Dialog Manager

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN {key-down in doc window}

BEGIN {handle keystrokes in document window here}

END

ELSE {key-down in modeless dialog box}

MyHandleKeyDownInModeless(event, windowType);

END;

The MyHandleKeyDown routine determines what type of window is active when
the user presses a key. If a modeless dialog box is the frontmost window,
MyHandleKeyDown automatically calls another application-defined routine,
MyHandleKeyDownInModeless, to respond to key-down events in modeless dialog
boxes. The MyHandleKeyDownInModeless routine is shown in Listing 6-33.

Listing 6-33 Responding to key-down events in a modeless dialog box

PROCEDURE MyHandleKeyDownInModeless(event: EventRecord; windowType: Integer);

VAR

key: Char;

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

finalTicks: LongInt;

handled: Boolean;

item: Integer;

theDialog: DialogPtr;

BEGIN

handled := FALSE;

theDialog := FrontWindow;

CASE windowType OF

kGlobalChangesID: {key-down in Global Changes dialog box}

BEGIN

key := Char(BAnd(event.message, charCodeMask));

IF (key = Char(kReturnKey)) OR (key = Char(kEnterKey)) THEN

BEGIN {respond as if user clicked Change}

GetDialogItem(theDialog, kChange, itemType, itemHandle,

 itemRect);

{invert the Change button for 8 ticks for user feedback}

HiliteControl(ControlHandle(itemHandle), inButton);

Delay(kVisualDelay, finalTicks);

HiliteControl(ControlHandle(itemHandle), 0);

{use GetDialogItem and GetDialogItemText to get the text }

{ strings and replace one string with the other here}

handled := TRUE; {event's been handled}

END;

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-97

IF (key = Char(kEscapeKey)) OR {user pressed Esc key}

(Boolean(BAnd(event.modifiers, cmdKey)) AND

(key = Char(kPeriodKey))) THEN {user typed Cmd-pd}

BEGIN {handle as if user clicked Stop}

GetDialogItem(theDialog, kStop, itemType, itemHandle,

 itemRect);

{invert the Stop button for 8 ticks for user feedback}

HiliteControl(ControlHandle(itemHandle), inButton);

Delay(kVisualDelay, finalTicks);

HiliteControl(ControlHandle(itemHandle), 0);

{cancel the current operation here}

handled := TRUE; {event's been handled}

END;

IF NOT handled THEN {let DialogSelect handle keydown events in }

{ editable text items}

handled := DialogSelect(event, theDialog, item);

END; {of case kGlobalChangesID}

{handle other modeless and movable modal dialog boxes here}

END; {of CASE}

END;

When MyHandleKeyDownInModeless determines that the front window is the Global
Changes modeless dialog box, it checks whether the user pressed Return or Enter. If so,
MyHandleKeyDownInModeless responds as if the user had clicked the default button:
Change. The MyHandleKeyDownInModeless routine uses the Control Manager
procedure HiliteControl to highlight the Change button for 8 ticks. (Listing 6-27 on
page 6-88 illustrates how to use HiliteControl to highlight the button from within a
modal dialog box’s event filter function.)

When the user presses Esc or Command-period, MyHandleKeyDownInModeless
responds as if the user had clicked the Cancel button.

Finally, MyHandleKeyDownInModeless uses the DialogSelect function, which in
turn calls TextEdit to handle keystrokes within editable text items.

Responding to Activate and Update Events in Modeless and Movable
Modal Dialog Boxes 6

If you adopt the previously described strategy of determining—without the aid of the
IsDialogEvent function—whether events involve movable modal or modeless dialog
boxes, your application should be prepared to handle activate and update events for both
movable modal and modeless dialog boxes. You can use DialogSelect to assist you in
handling activate and update events. For faster performance, you may instead want to
use the UpdateDialog function when handling update events. Both DialogSelect
and UpdateDialog use the QuickDraw procedure SetPort to make the dialog box the
current graphics port before redrawing or updating it.

C H A P T E R 6

Dialog Manager

6-98 Using the Dialog Manager

You should use the Control Manager procedure HiliteControl to make the buttons
and other controls inactive in a modeless or movable modal dialog box when you
deactivate it. The HiliteControl procedure dims inactive buttons, radio buttons,
checkboxes, and pop-up menus to indicate to the user that clicking these items has no
effect while the dialog box is in the background. When you activate a modeless or
movable modal dialog box again, you should use HiliteControl to make the controls
active again.

The application-defined DoActivateGlobalChangesDialog routine shown in Listing
6-34 illustrates how to use HiliteControl to make the Change button active when
activating a modeless dialog box and how to make the Change and Stop buttons inactive
when deactivating the dialog box.

Listing 6-34 Activating a modeless dialog box

PROCEDURE DoActivateGlobalChangesDialog (window: WindowPtr;

 event: EventRecord);

VAR

activate: Boolean;

handled: Boolean;

item: Integer;

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

BEGIN

MyCheckEvent(event); {get a valid event record to pass to DialogSelect}

activate := (BAnd(event.modifiers, activeFlag) <> 0);

IF activate THEN {activate the modeless dialog box}

BEGIN

{highlight editable text}

SelectDialogItemText(window, kFindText, 0, 32767);

{make the Change button active (make the Stop button active }

{ only during a change operation)}

GetDialogItem(DialogPtr(window), kChange, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 0); {make Change active}

{draw a bold outline around the newly activated Change button}

MyDrawDefaultButtonOutline(DialogPtr(window), kChange);

END

ELSE {dim the Change and Stop buttons for a deactivate dialog box}

BEGIN

GetDialogItem(DialogPtr(window), kChange, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 255); {dim Change button}

C H A P T E R 6

Dialog Manager

Using the Dialog Manager 6-99

{draw a gray outline around the newly dimmed Change button}

MyDrawDefaultButtonOutline(DialogPtr(window), kChange);

GetDialogItem(DialogPtr(window), kStop, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 255); {dim Stop button}

END;

{let Dialog Manager handle activate events}

handled := DialogSelect(event, window, item);

MyAdjustMenus; {adjust the menus appropriately}

END;

The DoActivateGlobalChangesDialog routine uses DialogSelect to handle
activate events in the modeless dialog box. In response to an activate event,
DialogSelect handles the event and returns FALSE. The DialogSelect function sets
the current graphics port to the modeless dialog box whenever the user makes it active.

Because DialogSelect expects three parameters, one of which must be an event record,
DoActivateGlobalChangesDialog uses the application-defined routine
MyCheckEvent to verify that the event is a valid event. If it’s not, MyCheckEvent
creates and returns a valid event record for an activate event.

Because DialogSelect doesn’t call any draw procedures for items in response to
activate events, DoActivateGlobalChangesDialog calls the application-defined
draw routine MyDrawDefaultButtonOutline to draw either a black outline around
the default button when activating the dialog box or a gray outline when deactivating it.
The MyDrawDefaultButtonOutline routine is shown in Listing 6-17 on page 6-59.

Because users can switch out of your application when you display a movable modal
dialog box, your application must handle activate events for it, too.

You can also use DialogSelect to handle update events. In response to an update
event, DialogSelect calls the Window Manager procedure BeginUpdate, the Dialog
Manager procedure DrawDialog to redraw the entire dialog box, and then the Window
Manager procedure EndUpdate. However, a faster way to update the dialog box is to
use the UpdateDialog procedure, which redraws only the update region of a dialog
box. As shown in Listing 6-35, you should call BeginUpdate before using
UpdateDialog, and then call EndUpdate.

Listing 6-35 Updating a modeless dialog box

PROCEDURE DoUpdate (window: WindowPtr);

VAR

windowType: Integer;

BEGIN

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

; {update document windows here}

C H A P T E R 6

Dialog Manager

6-100 Using the Dialog Manager

kMyGlobalChangesModelessDialog:

BEGIN

BeginUpdate(window);

UpdateDialog(window, window^.visRgn);

EndUpdate(window);

END;

{handle cases for other window types here}

END; {of CASE}

END;

Closing Dialog Boxes 6

When you no longer need a dialog box, you can dispose of it by using either the
CloseDialog procedure if you allocated the memory for the dialog box or the
DisposeDialog procedure if you did not. Or, you can merely make it invisible by using
the Window Manager procedure HideWindow.

Generally, your application should not allocate memory for modal dialog boxes or
movable modal dialog boxes, but it should allocate memory for modeless dialog boxes.
Under these circumstances, your application should use DisposeDialog to dispose
of either a fixed or movable modal dialog box when the user clicks the OK or Cancel
button, and it should use CloseDialog to dispose of a modeless dialog box when the
user clicks the close box or chooses Close from the File menu.

You do not close alert boxes; the Dialog Manager does that for you automatically by
calling the DisposeDialog procedure after the user responds to the alert box by
clicking any enabled button.

The CloseDialog procedure removes a dialog box from the screen and deletes it from
the window list. It also releases the memory occupied by

� the data structures associated with the dialog box (such as its structure, content, and
update regions)

� all the items in the dialog box (except for pictures and icons, which might be shared by
other resources) and any data structures associated with them—for example, the
region occupied by the scroll box of a scroll bar

The CloseDialog procedure does not dispose of the dialog record or the item list
resource. Unlike GetNewDialog, NewDialog does not use a copy of the item list
resource. So, if you create a dialog box with NewDialog, you may want to use
CloseDialog to keep the item list resource in memory even if you didn’t supply a
pointer to the memory.

The DisposeDialog procedure calls CloseDialog and, in addition, releases the
memory occupied by the dialog’s item list resource and the dialog record. If you passed
NIL as a parameter to GetNewDialog or NewDialog to let the Dialog Manager allocate
memory in the heap, call DisposeDialog when you’re done with a dialog box.

For modeless and movable modal dialog boxes, you might find it more efficient to hide
the dialog box rather than remove its data structures. Listing 6-30 on page 6-94 uses the
Window Manager routine HideWindow to hide the Global Changes modeless dialog box

C H A P T E R 6

Dialog Manager Reference 6-101

Dialog Manager 6

when the user clicks its close box. The next time the user invokes the Global Changes
command, the dialog box is already available, in the same location and with the same
text selected as when it was last used.

If you adjust the menus when you display a dialog box, be sure to return them to an
appropriate state when you close the dialog box, as described in “Adjusting Menus for
Modal Dialog Boxes” beginning on page 6-68 and “Adjusting Menus for Movable Modal
and Modeless Dialog Boxes” on page 6-73.

Dialog Manager Reference 6

This section describes the data structure, routines, and resources that are specific to the
Dialog Manager.

The “Data Structure” section shows the Pascal data structure for the dialog record, which
the Dialog Manager creates and maintains. The “Dialog Manager Routines” section
describes Dialog Manager routines for invoking alerts, creating and disposing of dialog
boxes, manipulating items in alert and dialog boxes, and handling events in dialog boxes.

The “Application-Defined Routines” section describes routines that your application
must supply when you need to create application-defined items in dialog boxes, to filter
events that the Dialog Manager doesn’t handle, and to define its own alert sounds.

The “Resources” section describes the dialog resource, the alert resource, the item list
resource, the dialog color table resource, the alert color table resource, and the item
color table resource. The summary sections that conclude this chapter include listings
of the constants that define values for the item types in alert and dialog boxes, the OK
and Cancel buttons in alert boxes, and the icons in note alert boxes, caution alert boxes,
and stop alert boxes, along with the constants used by the Gestalt function for the
Dialog Manager.

Data Structure 6
This section describes the dialog record. Your application doesn’t need to create or use
this record; rather, your application simply uses the appropriate Dialog Manager
routines, creates any necessary resources, and then allows the Dialog Manager to create
and use records of this data type as necessary. The dialog record is described here for
completeness only.

The Dialog Record 6

To create an alert or a dialog box, you use a Dialog Manager routine—such as Alert or
GetNewDialog—that incorporates information from your item list resource and from
your alert resource or dialog resource into a data structure, called a dialog record, in
memory. The Dialog Manager creates a dialog record, which is a data structure of type
DialogRecord, whenever your application creates an alert or a dialog box. Your
application generally should not create a dialog record or directly access its fields.

C H A P T E R 6

Dialog Manager

6-102 Dialog Manager Reference

TYPE DialogPtr = WindowPtr;

DialogPeek = ^DialogRecord

DialogRecord =

RECORD

window: WindowRecord; {dialog window}

items: Handle; {item list resource}

textH: TEHandle; {current editable text item}

editField: Integer; {editable text item number }

{ minus 1}

editOpen: Integer; {used internally; reserved}

aDefItem: Integer; {default button item number}

END;

Field descriptions

window The window record for the alert box or dialog box.
items A handle to the item list resource for the alert or the dialog box.
textH A handle to the current editable text item.
editField The current editable text item.
editOpen Used internally; reserved.
aDefItem The item number of the default button.

Dialog Manager Routines 6
This section describes the routines for initializing the Dialog Manager, invoking alerts,
creating and disposing of dialog boxes, manipulating items in alert and dialog boxes, and
handling events in alert and dialog boxes.

Some Dialog Manager routines can be accessed using more than one spelling of the
routine’s name, depending on the interface files supported by your development
environment. For example, GetDialogItem is also available as GetDItem.
Table 6-1 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 6-1 Mapping between new and previous names of Dialog Manager routines

New name Previous name

DialogCopy DlgCopy

DialogCut DlgCut

DialogDelete DlgDelete

DialogPaste DlgPaste

DisposeDialog DisposDialog

FindDialogItem FindDItem

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-103

Initializing the Dialog Manager 6

Before using the Dialog Manager, you must initialize—in order—QuickDraw, the
Font Manager, the Window Manager, the Menu Manager, and TextEdit. The first
Dialog Manager routine to call is the InitDialogs procedure, which initializes
the Dialog Manager.

At your application’s request, the Dialog Manager uses the system alert sound for
signaling the user during various alert stages. For alerts, if you want the Dialog Manager
to play sounds other than the system alert sound, write your own sound procedure
(described on page 6-144) and call the ErrorSound procedure to make it the current
sound procedure.

By default, the Dialog Manager displays static text and editable text items in the system
font. To make it easier to localize your application for use with worldwide versions of
system software, you should not change the font. However, if you determine that it is
imperative for your application to display static text or editable text in a font other than
the system font, you can use the SetDialogFont procedure.

InitDialogs 6

Use the InitDialogs procedure to initialize the Dialog Manager.

PROCEDURE InitDialogs (resumeProc: ResumeProcPtr);

GetAlertStage GetAlrtStage

GetDialogItem GetDItem

GetDialogItemText GetIText

HideDialogItem HideDItem

NewColorDialog NewCDialog

ResetAlertStage ResetAlrtStage

SelectDialogItemText SelIText

SetDialogFont SetDAFont

SetDialogItem SetDItem

SetDialogItemText SetIText

ShowDialogItem ShowDItem

UpdateDialog UpdtDialog

Table 6-1 Mapping between new and previous names of Dialog Manager routines (continued)

New name Previous name

C H A P T E R 6

Dialog Manager

6-104 Dialog Manager Reference

resumeProc
A pointer to a procedure used by the System Error Handler in case a fatal
system error occurs on a system that predates MultiFinder. For System 7,
your application should set this parameter to NIL.

DESCRIPTION

Before using the Dialog Manager, you must initialize QuickDraw, the Font Manager,
the Window Manager, the Menu Manager, and TextEdit, in that order. Then, to
initialize the Dialog Manager, call InitDialogs once before all other Dialog Manager
routines. The InitDialogs procedure does the following initialization:

� It saves the pointer passed in the resumeProc parameter. For System 7, your
application should set the resumeProc parameter to NIL.

� It installs the system alert sound. To change the system alert sound, use the
ErrorSound procedure.

� It passes empty strings to the ParamText procedure.

ErrorSound 6

To use your own alert sound instead of the system alert sound for signaling the user, use
the ErrorSound procedure.

PROCEDURE ErrorSound (soundProc: SoundProcPtr);

soundProc A pointer to a procedure that generates the desired alert sounds.

DESCRIPTION

The Dialog Manager uses the system alert sound for signaling the user during various
alert stages. The system alert sound, which is a sound resource stored in the System
file, is played whenever system software or your application uses the Sound Manager
procedure SysBeep. By changing the setting in the Sound control panel, the user can
determine which sound is played. If you want to use sounds other than the system
alert sound at various alert stages, write your own sound procedure and call the
ErrorSound procedure to make it the current sound procedure.

SPECIAL CONSIDERATIONS

If you pass NIL in the soundProc parameter, the Dialog Manager neither plays sounds
nor causes the menu bar to blink, and thus the user receives no signal.

SEE ALSO

See the description of MyAlertSound on page 6-144 for a discussion of how to write
the sound procedure pointed to by the soundProc parameter. For examples of how to
incorporate sound alerts into alert stages, see Listing 6-2 on page 6-21 and Listing 6-3 on
page 6-22.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-105

SetDialogFont 6

Although you generally should not change the font used in static and editable text items,
you can do so with the SetDialogFont procedure. The SetDialogFont procedure is
also available as the SetDAFont procedure.

PROCEDURE SetDialogFont (fontNum: Integer);

fontNum A font ID number. Do not rely on font number constants. Instead, use
the Font Manager function GetFNum to find the font number to pass in
this parameter.

DESCRIPTION

For subsequently created dialog and alert boxes, SetDialogFont sets the font of the
dialog or alert box’s graphics port to the specified font. If you don’t call this procedure,
the system font is used. The SetDialogFont procedure does not affect titles of controls,
which are always displayed in the system font.

SPECIAL CONSIDERATIONS

There are a number of caveats regarding the SetDialogFont procedure.

First, the Standard File Package does not always properly calculate the position of the
standard file dialog box once this procedure has been called; for example, the standard
file dialog box may be partially obscured by a menu bar. Second, be aware that this
procedure affects all static text and editable text items in all of the alert and dialog boxes
you subsequently display. Third, SetDialogFont does not change the font for control
titles. Fourth, you can’t use SetDialogFont to change the font size or font style. Finally,
and most importantly, your application will be much easier to localize if you always use
the system font in your alert and dialog boxes and never use SetDialogFont.

SEE ALSO

See the chapter “Font Manager” in Inside Macintosh: Text for information about the
GetFNum function.

Creating Alerts 6

To create an alert—consisting of an alert sound, an alert box, or both—use one of
these functions: NoteAlert, CautionAlert, StopAlert, and Alert. The first
three functions display, respectively, the note, caution, and stop alert icons (see
Figure 6-3, Figure 6-4, and Figure 6-5) in the upper-left corner of the alert box. The Alert
function allows you to display your own icon or to have no icon at all in the upper-left
corner of your alert box.

C H A P T E R 6

Dialog Manager

6-106 Dialog Manager Reference

These functions take descriptive information about the alert from an alert resource that
you provide. When you call one of these functions, you pass it the resource ID of the alert
resource and a pointer to an event filter function. These functions create a dialog record,
play an alert sound, and display an alert box according to the alert stages that you specify
in the alert resource.

You should specify a pointer to an event filter function when you call the Alert,
StopAlert, CautionAlert, and NoteAlert functions. You can use the same
event filter function in most or all of your alert and modal dialog boxes.

If you need to find out the current alert stage—for example, to ensure that your applica-
tion deactivates the frontmost window only if an alert box is to be displayed at that
stage—use the GetAlertStage function. To change the current alert stage, use the
ResetAlertStage procedure.

Your application does not dispose of alert boxes; the Dialog Manager does that for you
automatically.

Alert 6

To display an alert box (or, if appropriate for the alert stage, to play an alert sound
instead of or in addition to displaying the alert box), you can use the Alert function.
This function does not display a default icon in the upper-left corner of the alert box;
you can leave this area blank, or you can specify your own icon in the alert’s item list
resource, which in turn is specified in the alert resource.

FUNCTION Alert (alertID: Integer;

filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure.

DESCRIPTION

The Alert function creates the alert defined in the specified alert resource. The function
calls the current alert sound procedure and passes it the sound number specified in the
alert resource for the current alert stage. If no alert box is to be drawn at this stage, Alert
returns –1; otherwise, it uses the NewDialog function to create and display the alert box.
The default system window colors are used unless your application provides an alert
color table resource with the same resource ID as the alert resource.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-107

The Alert function uses the ModalDialog procedure, which repeatedly gets and
handles most events for you. The ModalDialog procedure, in turn, gets each event by
calling the Event Manager function GetNextEvent. If the event is a mouse-down event
outside the content region of the alert box, ModalDialog emits an error sound and gets
the next event.

The Alert function continues calling ModalDialog until the user selects an enabled
control (typically a button), at which time the Alert function removes the alert box from
the screen and returns the item number of the selected control. Your application then
responds as appropriate when the user clicks this item.

For events inside the alert box, ModalDialog passes the event to an event filter function
before handling the event. The event filter function provides a secondary event-handling
loop for events that ModalDialog doesn’t handle. You specify a pointer to your event
filter function in the filterProc parameter of the Alert function.

If you set the filterProc parameter to NIL, the Dialog Manager uses the standard
event filter function, which behaves as follows:

� If the user presses the Return or Enter key, the event filter function returns TRUE and
returns the item number for the default button.

However, your application should provide a simple event filter function that not only
replicates this behavior but also

� returns TRUE and the item number for the Cancel button if the user presses Esc or
Command-period

� updates your windows in response to update events (this also allows background
windows to receive update events) and returns FALSE

� returns FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents.

Unless the event filter function handles the event in its own way and returns TRUE,
ModalDialog handles the event inside the alert box as follows:

� If the user presses the mouse button while the cursor is in a control, the Control
Manager function TrackControl tracks the cursor. If the user releases the
mouse button while the cursor is in an enabled control, Alert, StopAlert,
CautionAlert, and NoteAlert remove the alert box and return the control’s
item number. (Generally, buttons should be the only controls you use in alert boxes.)

� If the user presses the mouse button while the cursor is in any enabled item other than
a control, Alert, StopAlert, CautionAlert, and NoteAlert remove the alert box
and return the item number. (Generally, button controls should be the only enabled
items in alert boxes.)

� If user presses the mouse button while the cursor is in a disabled item or in no item,
 or if any other event occurs, Alert, StopAlert, CautionAlert, and NoteAlert
do nothing.

C H A P T E R 6

Dialog Manager

6-108 Dialog Manager Reference

The Alert function uses the QuickDraw routine SetPort to make the alert box the
current graphics port. It’s not necessary for your application to call SetPort again before
displaying alert boxes, because you can’t draw into any other windows between the time
you create an alert box and the time the Dialog Manager displays it.

SPECIAL CONSIDERATIONS

If you need to display an alert box while your application is running in the background
or is otherwise invisible to the user, you should use the Notification Manager to post a
notification to the user. The Notification Manager automatically displays an alert box
containing whatever message you specify; you will not need to use the Dialog Manager
to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to an alert box
that your application presents.

SEE ALSO

The ModalDialog procedure is described on page 6-135. See “Writing an Event Filter
Function for Alert and Modal Dialog Boxes” beginning on page 6-86 for a discussion of
how to write an event filter function. See “Creating Alert Sounds and Alert Boxes”
beginning on page 6-18 for a discussion of alerts and alert stages. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about button titles
and messages in alert boxes. Alert resources are described on page 6-150. Alert color table
resources are described on page 6-157. The Dialog Manager uses the system alert sound
as the error sound unless you change it by calling the ErrorSound pro- cedure,
described on page 6-104. See “Responding to Events in Alert Boxes” beginning on
page 6-81 for a discussion of how to respond to events returned by the Alert function.
See the chapter “Notification Manager” in Inside Macintosh: Processes for information
about the Notification Manager.

The NoteAlert, CautionAlert, and StopAlert functions are identical to the Alert
function, except that NoteAlert (described on page 6-110), CautionAlert (described
on page 6-111), and StopAlert (described next) display icons in the upper-left corners
of alert boxes.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-109

StopAlert 6

To display an alert box with a stop icon in its upper-left corner (or, if appropriate for the
alert stage, to play an alert sound instead of or in addition to displaying the alert box),
use the StopAlert function.

FUNCTION StopAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default button.
However, your application should provide a simple event filter function
that also allows background applications to receive update events. Pass a
pointer to the event filter function in this parameter.

DESCRIPTION

The StopAlert function is the same as the Alert function except that, before drawing
the items in the alert box, StopAlert draws the stop icon in the upper-left corner
(within the rectangle with local coordinates [10,20,42,52]). The stop icon has the following
resource ID:

CONST stopIcon = 0; {stop icon}

By default, the Dialog Manager uses the standard stop icon from the System file. You can
change this icon by providing your own 'ICON' resource with this resource ID number.

Use a stop alert to inform the user that a problem or situation is so serious that the action
cannot be completed. Stop alerts typically have only a single button (OK), because all the
user can do is acknowledge that the action cannot be completed.

SEE ALSO

Figure 6-5 on page 6-9 illustrates the stop icon in a typical stop alert. Except that it
includes a stop icon in the alert box, StopAlert is identical to the Alert function. See
the description of the Alert function on page 6-106 for detailed information about the
parameters and behavior of both of these functions.

C H A P T E R 6

Dialog Manager

6-110 Dialog Manager Reference

NoteAlert 6

To display an alert box with a note icon in its upper-left corner (or, if appropriate for the
alert stage, to play an alert sound instead of or in addition to displaying the alert box),
use the NoteAlert function.

FUNCTION NoteAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default button.
However, your application should provide a simple event filter function
that also allows background applications to receive update events. Pass a
pointer to the event filter function in this parameter.

DESCRIPTION

The NoteAlert function is the same as the Alert function except that, before drawing
the items in the alert box, NoteAlert draws the note icon in the upper-left corner
(within the rectangle with local coordinates [10,20,42,52]). The note icon has the following
resource ID:

CONST noteIcon = 1; {note icon}

By default, the Dialog Manager uses the standard note icon from the System file. You can
change this icon by providing your own 'ICON' resource with this resource ID number.

Use a note alert to inform users of a minor mistake that won’t have any disastrous
consequences if left as is. Usually this type of alert simply offers information, and the
user responds by clicking an OK button. Occasionally, a note alert may ask a simple
question and provide a choice of responses.

SEE ALSO

Figure 6-3 on page 6-8 illustrates the note icon in a typical note alert. Except that it
includes a note icon in the alert box, NoteAlert is identical to the Alert function. See
the description of the Alert function on page 6-106 for detailed information about the
parameters and behavior of both of these functions.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-111

CautionAlert 6

To display an alert box with a caution icon in its upper-left corner (or, if appropriate for
the alert stage, to play an alert sound instead of or in addition to displaying the alert
box), use the CautionAlert function.

FUNCTION CautionAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL, the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default button.
However, your application should provide a simple event filter function
that also allows background applications to receive update events. Pass a
pointer to the event filter function in this parameter.

DESCRIPTION

The CautionAlert function is the same as the Alert function except that, before
drawing the items in the alert box, CautionAlert draws the caution icon in the
upper-left corner (within the rectangle with local coordinates [10,20,42,52]). The caution
icon has the following resource ID:

CONST cautionIcon = 2; {caution icon}

By default, the Dialog Manager uses the standard caution icon from the System file.
You can change this icon by providing your own 'ICON' resource with this resource
ID number.

Use a caution alert to alert the user of an operation that may have undesirable results if
it’s allowed to continue. Give the user the choice of continuing the action (by clicking an
OK button) or stopping it (by clicking a Cancel button).

SEE ALSO

Figure 6-4 on page 6-9 illustrates the caution icon in a typical caution alert. Except
that it includes a caution icon in the alert box, CautionAlert is identical to the
Alert function. See the description of the Alert function on page 6-106 for detailed
information about the parameters and behavior of both of these functions.

C H A P T E R 6

Dialog Manager

6-112 Dialog Manager Reference

GetAlertStage 6

To determine the stage of the last occurrence of an alert, use the GetAlertStage
function. The GetAlertStage function is also available as the GetAlrtStage function.

FUNCTION GetAlertStage: Integer;

DESCRIPTION

The GetAlertStage function returns a number from 0 to 3 as the stage of the last
occurrence of an alert. For example, you can use the GetAlertStage function to
ensure that your application deactivates the active window only if an alert box is to be
displayed at that stage.

ASSEMBLY-LANGUAGE INFORMATION

The global variable ACount contains this number. In addition, the global variable
ANumber contains the resource ID of the alert resource of the last alert that occurred.

SEE ALSO

Listing 6-19 on page 6-66 illustrates how to use GetAlertStage to determine whether
to deactivate a window for the current alert stage. Listing 6-2 on page 6-21 illustrates how
to use an alert resource to specify different alert responses according to different alert
stages.

ResetAlertStage 6

To reset the current alert stage to the first alert stage, use the ResetAlertStage
procedure. The ResetAlertStage procedure is also available as the ResetAlrtStage
procedure.

PROCEDURE ResetAlertStage;

DESCRIPTION

The ResetAlertStage procedure resets every alert to a first-stage alert.

SEE ALSO

Listing 6-2 on page 6-21 illustrates how to use an alert resource to specify different alert
responses according to different alert stages.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-113

Creating and Disposing of Dialog Boxes 6

To create a dialog box, you should generally use the GetNewDialog function, which
takes information about the dialog from a dialog resource in a resource file. Like window
resources, dialog resources isolate descriptive information from your application code for
ease of modification or translation to other languages. However, you can also use the
NewDialog and NewColorDialog functions—for which you pass descriptive
information in parameters—to create dialog boxes.

The NewColorDialog function is identical to the NewDialog function, except that
NewColorDialog returns a pointer to a color graphics port.

When you no longer need a dialog box, use the CloseDialog procedure if
you allocated the memory for the dialog record of the dialog box and use the
DisposeDialog procedure if you did not. (To merely make the dialog box invisible
to the user, you can use the Window Manager procedure HideWindow.)

GetNewDialog 6

To create a dialog box from a description in a dialog resource, use the GetNewDialog
function.

FUNCTION GetNewDialog (dialogID: Integer; dStorage: Ptr;

behind: WindowPtr): DialogPtr;

dialogID The resource ID of a dialog resource. If the dialog resource is missing,
the Dialog Manager returns to your application without creating the
dialog box.

dStorage A pointer to the memory for the dialog record. If you set this parameter to
NIL for modal dialog boxes and movable modal dialog boxes, the Dialog
Manager automatically allocates memory for them in your application
heap. For a modeless dialog box, however, you should allocate your
own memory as you would for a window—otherwise, your heap could
become fragmented.

behind A pointer to the window behind which the dialog box is to be placed
on the desktop. Always set this parameter to the window pointer
Pointer(-1) to bring the dialog box in front of all other windows.

DESCRIPTION

The GetNewDialog function creates a dialog record from the information in the dialog
resource and returns a pointer to it. You can use this pointer with Window Manager or
QuickDraw routines to manipulate the dialog box. If the dialog resource specifies that the
dialog box should be visible, the dialog box is displayed. If the dialog resource specifies
that the dialog box should initially be invisible, use the Window Manager procedure
ShowWindow to display the dialog box.

C H A P T E R 6

Dialog Manager

6-114 Dialog Manager Reference

If you supply a dialog color table resource with the same resource ID as the dialog
resource, GetNewDialog uses the NewColorDialog function and returns a pointer
to a color graphics port. If no dialog color table resource is present, GetNewDialog
uses NewDialog to return a pointer to a black-and-white graphics port, although
system software draws the window frame using the system’s default colors.

The dStorage and behind parameters of GetNewDialog have the same meaning as
they do in the Window Manager function GetNewWindow. Always set the behind
parameter to Pointer(-1) to bring the dialog box to the front.

The dialog resource contains the resource ID of the dialog box’s item list resource. After
calling the Resource Manager to read the item list resource into memory (if it’s not
already in memory), GetNewDialog makes a copy of the item list resource and uses that
copy; thus you may have several dialog boxes with identical items.

If you provide a dialog color table resource, GetNewDialog copies it before passing it to
the Window Manager routine SetWinColor unless the number-of-entries element of the
dialog color table resource is set to –1, in which case the default window colors are used
instead. The GetNewDialog function makes the copy so that the dialog color table
resource can be purged without affecting the dialog box.

SPECIAL CONSIDERATIONS

The GetNewDialog function doesn’t release the memory occupied by the resources.
Therefore, your application should mark all resources used for a dialog box as purgeable.

If either the dialog resource or the item list resource can’t be read, the function result is
NIL; your application should test to ensure that NIL is not returned before performing
any more operations with the dialog box or its items.

For modal dialog boxes, the Dialog Manager function ModalDialog traps all events.
This prevents your event loop from receiving activate events for your windows. Thus,
if one of your application’s windows is active when you use GetNewDialog to create
a modal dialog box, you must explicitly deactivate that window before displaying the
modal dialog box.

If you ever need to display a dialog box while your application is running in the back-
ground or is otherwise invisible to the user, you should use the Notification Manager to
post a notification to the user. The Notification Manager automatically displays an alert
box containing whatever message you specify; you do not use the Dialog Manager to
create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to the dialog box
that your application presents.

The GetNewDialog function uses either NewDialog or NewColorDialog, each of
which generates an update event for the entire window contents. Thus, with the

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-115

exception of controls, items aren’t drawn immediately. The Dialog Manager calls the
Control Manager to draw controls, and the Control Manager draws them immediately. So
the controls won’t be drawn twice, the Dialog Manager calls the Window Manager
procedure ValidRect for the enclosing rectangle of each control. If you find that there is
too great a lag between the drawing of controls and the drawing of other items, try
making the dialog box initially invisible and then calling the Window Manager
procedure ShowWindow to show it.

SEE ALSO

See “Creating Dialog Boxes” beginning on page 6-23 and “Displaying Alert and Dialog
Boxes” beginning on page 6-61 for discussions and examples of how to use
GetNewDialog.

The GetNewWindow and ShowWindow procedures are described in the chapter “Window
Manager” of this book. The Notification Manager is described in the
chapter “Notification Manager” in Inside Macintosh: Processes.

“Adjusting Menus for Modal Dialog Boxes” beginning on page 6-68 and “Adjusting
Menus for Movable Modal and Modeless Dialog Boxes” on page 6-73 discuss menu
adjustment when your application displays dialog boxes. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about messages
and control titles in dialog boxes.

NewColorDialog 6

To create a dialog box, you can use the NewColorDialog function, which returns a
pointer to a color graphics port. Generally, you should instead use GetNewDialog to
create a dialog box, because GetNewDialog takes information about the dialog box from
a dialog resource in a resource file. (Like window resources, dialog resources isolate de-
scriptive information from your application code for ease of modification or translation
to other languages.) The NewColorDialog function is also available as the
NewCDialog function.

FUNCTION NewColorDialog (dStorage: Ptr; boundsRect: Rect;

 title: Str255; visible: Boolean;

 procID: Integer; behind: WindowPtr;

 goAwayFlag: Boolean; refCon: LongInt;

 items: Handle): CDialogPtr;

dStorage A pointer to the memory for the dialog record. If you set this parameter to
NIL for modal dialog boxes and movable modal dialog boxes, the Dialog
Manager allocates memory for them on your application heap. For a
modeless dialog box, however, you should allocate your own memory
as you would for a window—otherwise, your heap could become
fragmented.

C H A P T E R 6

Dialog Manager

6-116 Dialog Manager Reference

boundsRect
A rectangle, given in global coordinates, that determines the size and
position of the dialog box; these coordinates specify the upper-left and
lower-right corners of the dialog box.

title A text string used for the title of a modeless or movable modal dialog
box. You can specify an empty string (not NIL) for a title bar that contains
no text.

visible A flag that specifies whether the dialog box should be drawn on the screen
immediately. If you set this parameter to FALSE, the dialog box is not
drawn until your application uses the Window Manager procedure
ShowWindow to display it.

procID The window definition ID for the type of dialog box. Use the dBoxProc
constant to specify modal dialog boxes, the noGrowDocProc constant to
specify modeless dialog boxes, and the movableDBoxProc constant to
specify movable modal dialog boxes.

behind A pointer to the window behind which the dialog box is to be placed on
the desktop. Always set this parameter to the window pointer
Pointer(-1) to bring the dialog box in front of all other windows.

goAwayFlag
A flag to specify whether a modeless dialog box should have a close box
in its title bar when the dialog box is active. If you set this parameter to
TRUE, the dialog window has a close box in its title bar when the window
is active; only modeless dialog boxes should have close boxes.

refCon A value that the Dialog Manager uses to set the refCon field of the dialog
box’s window record. Your application may store any value here for any
purpose. For example, your application can store a number that represents
a dialog box type, or it can store a handle to a record that maintains state
information about the dialog box. You
can use the Window Manager procedure SetWRefCon at any time to
change this value in the dialog record for a dialog box, and you can use
the GetWRefCon function to determine its current value.

items A handle to an item list resource for the dialog box. You can get the handle
by calling the Resource Manager function GetResource to read the item
list resource into memory. Use the Memory Manager procedure
HNoPurge to make the handle unpurgeable while you use it or use the
Operating System utility function HandToHand to make a copy of the
handle and use the copy.

DESCRIPTION

The NewColorDialog function creates a dialog box as specified by its parameters
and returns a pointer to a color graphics port for the new dialog box. The first eight
parameters (dStorage through refCon) are passed to the Window Manager function
NewCWindow, which creates the dialog box. You can use this pointer with Window
Manager or QuickDraw routines to manipulate the dialog box.

The Dialog Manager uses the default window colors for the dialog box. By using the
system’s default colors, you ensure that your application’s interface is consistent with

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-117

that of the Finder and other applications. However, if you absolutely feel compelled to
break from this consistency, you can use the Window Manager procedure SetWinColor
to use your own dialog color table resource that specifies colors other than the default
colors. Be aware, however, that nonstandard colors in your alert and dialog boxes may
initially confuse your users.

The Window Manager creates an auxiliary window record for the color dialog box. You
can access this record with the Window Manager function GetAuxWin. (The
dialogCItemhandle field of the auxiliary window record points to the dialog box’s
item color table resource.) If the dialog box’s content color isn’t white, it’s a good idea
to call NewColorDialog with the visible flag set to FALSE. After the color table
and color item list resource are installed, use the Window Manager procedure
ShowWindow to display the dialog box if it’s the frontmost window. If the dialog box
is a modeless dialog box that is not in front, use the Window Manager procedure
ShowHide to display it.

When specifying the size and position of the dialog box in the boundsRect parameter,
you should generally try to center dialog boxes between the left and right margins of the
screen or the window where the user is working, whichever is more appropriate. Also
ensure that the tops of dialog boxes (including the title bars of modeless and movable
modal dialog boxes) lie below the menu bar when you position them on the main screen.
You can use the Menu Manager function GetMBarHeight to determine the height of
the menu bar.

SPECIAL CONSIDERATIONS

For modal dialog boxes, the Dialog Manager function ModalDialog traps all events.
This prevents your event loop from receiving activate events for your windows. Thus, if
one of your application’s windows is active when you use NewColorDialog to create
a modal dialog box, you must explicitly deactivate that window before displaying the
modal dialog box.

If you ever need to display a dialog box while your application is running in the back-
ground or is otherwise invisible to the user, you should use the Notification Manager
to post a notification to the user. The Notification Manager automatically displays an
alert box containing whatever message you specify; you do not need to use the Dialog
Manager to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to the dialog box
that your application presents.

The NewColorDialog function generates an update event for the entire window
contents. Thus, with the exception of controls, items aren’t drawn immediately. The
Dialog Manager calls the Control Manager to draw controls, and the Control Manager
draws them immediately. So that the controls won’t be drawn twice, the Dialog Manager

C H A P T E R 6

Dialog Manager

6-118 Dialog Manager Reference

calls the Window Manager procedure ValidRect for the enclosing rectangle of each
control. If you find that there is too great a lag between the drawing of controls and the
drawing of other items, try making the dialog box initially invisible and then calling the
Window Manager procedure ShowWindow to show it.

SEE ALSO

Window Manager routines are described in the chapter “Window Manager” in this book.
The Notification Manager is described in the chapter “Notification Manager” in Inside
Macintosh: Processes. See Inside Macintosh: Memory for a description of HNoPurge. See
Inside Macintosh: Operating System Utilities for a description of HandToHand.

“Adjusting Menus for Modal Dialog Boxes” beginning on page 6-68 and “Adjusting
Menus for Movable Modal and Modeless Dialog Boxes” on page 6-73 discuss menu bar
adjustment when your application displays dialog boxes. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about messages
and control titles in dialog boxes. The GetResource function is described in the chapter
“Resource Manager” of Inside Macintosh: More Macintosh Toolbox.

NewDialog 6

To create a dialog box, you can use the NewDialog function, which returns a pointer to a
black-and-white graphics port (although system software draws the window frame of the
dialog box using the system’s default window colors). Generally, you should instead use
GetNewDialog to create a dialog box; GetNewDialog takes information about the
dialog from a dialog resource in a resource file. (Like window resources, dialog resources
isolate descriptive information from your application code for ease of modification or
translation to other languages.)

The NewDialog function is identical to the NewColorDialog function, except that
NewDialog returns a pointer to a black-and-white graphics port. See the discussion
of NewColorDialog on page 6-115 for descriptions of the parameters that you also
pass to NewDialog.

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect;

 title: Str255; visible: Boolean;

 procID: Integer; behind: WindowPtr;

 goAwayFlag: Boolean; refCon: LongInt;

 items: Handle): DialogPtr;

DESCRIPTION

The NewDialog function creates a dialog box as specified by its parameters and returns a
pointer to a black-and-white graphics port for the new dialog box. The first eight
parameters (dStorage through refCon) are passed to the Window Manager function
NewWindow, which creates the dialog box.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-119

When specifying the size and position of the dialog box in the boundsRect parameter,
you should generally try to center dialog boxes between the left and right margins of the
screen or the window where the user is working, whichever is more appropriate. Also
ensure that the tops of dialog boxes (including the title bars of modeless and movable
modal dialog boxes) lie below the menu bar when you position them on the main screen.
You can use the Menu Manager function GetMBarHeight to determine the height of the
menu bar.

SEE ALSO

If you use a dialog color table resource to change the default window colors, use the
NewColorDialog function, which returns a pointer to a color graphics port. See the
description of NewColorDialog on page 6-115 for additional information common to
both the NewDialog and NewColorDialog functions.

CloseDialog 6

To dismiss a dialog box for whose dialog record you allocated memory, use the
CloseDialog procedure.

PROCEDURE CloseDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The CloseDialog procedure removes a dialog box from the screen and deletes it from
the window list. The CloseDialog procedure releases the memory occupied by

� the data structures associated with the dialog box (such as its structure, content, and
update regions)

� all the items in the dialog box (except for pictures and icons, which might be shared by
other resources) and any data structures associated with them

Generally, you should provide memory for the dialog record of modeless dialog boxes
when you create them. (You can let the Dialog Manager provide memory for modal and
movable modal dialog boxes.) You should then use CloseDialog to close a modeless
dialog box when the user clicks the close box or chooses Close from the File menu.

Because CloseDialog does not dispose of the dialog resource or the item list
resource, it is important to make these resources purgeable. Unlike GetNewDialog,
NewColorDialog does not use a copy of the item list resource. Thus, if you
use NewColorDialog to create a dialog box, you may want to use CloseDialog to
keep the item list resource in memory even if you didn’t supply a pointer to the memory.

C H A P T E R 6

Dialog Manager

6-120 Dialog Manager Reference

SEE ALSO

If you let the Dialog Manager allocate memory for the dialog box (by passing NIL in the
dStorage parameter to the GetNewDialog, NewColorDialog, or NewDialog
function), use the DisposeDialog procedure, described next, instead of CloseDialog.

DisposeDialog 6

To dismiss a dialog box for which the Dialog Manager supplies memory, use the
DisposeDialog procedure. The DisposeDialog procedure is also available
as the DisposDialog procedure.

PROCEDURE DisposeDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DisposeDialog procedure calls the CloseDialog procedure and, in addition,
releases the memory occupied by the dialog box’s item list resource and the dialog
record. Call DisposeDialog when you’re done with a dialog box if you pass NIL in
the dStorage parameter to GetNewDialog, NewColorDialog, or NewDialog.

Generally, your application should not allocate memory for the dialog records of modal
dialog boxes or movable modal dialog boxes. In these cases your application should use
DisposeDialog when the user clicks the OK or Cancel button.

SEE ALSO

If you allocate memory for the dialog box (for example, by passing a pointer in the
dStorage parameter to the GetNewDialog, NewColorDialog, or NewDialog
function), use CloseDialog, described on page 6-119, instead of DisposeDialog.

Manipulating Items in Alert and Dialog Boxes 6

In many cases, you won’t have to make any changes to alert or dialog boxes after you
define them in the resource file. If you do need to make changes, use the Dialog Manager
routines described in this section.

For most item manipulation, first call the GetDialogItem procedure to get the
information about the item. You can then use other routines to manipulate that item. Use
the SetDialogItem procedure if you use any of these other routines to change the item.
You must also use SetDialogItem to install any of your own application-defined draw
procedures. If you use SetDialogItem, make the dialog box initially invisible, change
the item as appropriate, then make the dialog box visible by using the Window Manager
procedure ShowWindow. (For information about manipulating text in an
alert box or a dialog box, see “Handling Text in Alert and Dialog Boxes” beginning on
page 6-129.)

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-121

You can dynamically add items to and remove items from a dialog box by using the
AppendDITL and ShortenDITL procedures. These procedures are especially useful
if you share a single item list resource among multiple dialog boxes, because you can
then use AppendDITL or ShortenDITL to add or remove items as appropriate for
individual dialog boxes. You typically make such dialog boxes invisible, use the
AppendDITL and ShortenDITL procedures as appropriate, then make the dialog
boxes visible by using the Window Manager procedure ShowWindow.

GetDialogItem 6

To get a handle to an item so that you can manipulate it (for example, to determine its
current value, to change it, or to install a pointer to a draw procedure for an
application-defined item), use the GetDialogItem procedure. The GetDialogItem
procedure is also available as the GetDItem procedure.

PROCEDURE GetDialogItem (theDialog: DialogPtr; itemNo: Integer;

 VAR itemType: Integer; VAR item: Handle;

 VAR box: Rect);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

itemType A value that represents the type of item requested in the itemNo
parameter. You can use any of these constants to determine the value
returned in this parameter:

 CONST

ctrlItem = 4; {add this constant to the next }

{ four constants}

btnCtrl = 0; {standard button control}

chkCtrl = 1; {standard checkbox control}

radCtrl = 2; {standard radio button}

resCtrl = 3; {control defined in a 'CNTL'}

helpItem = 1; {help balloons}

statText = 8; {static text}

editText = 16; {editable text}

iconItem = 32; {icon}

picItem = 64; {QuickDraw picture}

userItem = 0; {application-defined item}

itemDisable = 128; {add to any of the above to }

{ disable it}

C H A P T E R 6

Dialog Manager

6-122 Dialog Manager Reference

item For an application-defined draw procedure, a pointer to the draw
procedure (coerced to a handle), returned for the item specified in the
itemNo parameter; for all other item types, a handle to the item.

box The display rectangle (described in coordinates local to the dialog box),
returned for the item specified in the itemNo parameter.

DESCRIPTION

The GetDialogItem procedure returns in its parameters the following information
about the item numbered itemNo in the item list resource of the specified dialog box:
in the itemType parameter, the item type; in the item parameter, a handle to the item
(or, for application-defined draw procedures, the procedure pointer); and in the box
parameter, the display rectangle for the item.

For most item manipulation, first use the GetDialogItem procedure to get the informa-
tion about the item. You can then use other routines, such as GetDialogItemText and
SetDialogItem, to determine and change the value of that item.

SEE ALSO

Listing 6-12 on page 6-49 illustrates the use of GetDialogItem in conjunction with
GetDialogItemText to retrieve the text entered by a user in an editable text item.
Listing 6-16 on page 6-58 illustrates the use of GetDialogItem in conjunction with
SetDialogItem to install the draw procedure for an application-defined item into
a dialog box. Listing 6-26 on page 6-83 illustrates the use of GetDialogItem to
determine the current value of a checkbox in a dialog box.

SetDialogItem 6

After using the GetDialogItem procedure to get a handle to an item from a dialog box,
use the SetDialogItem procedure to set or change the item. The SetDialogItem
procedure is also available as the SetDItem procedure.

PROCEDURE SetDialogItem (theDialog: DialogPtr; itemNo: Integer;

 itemType: Integer; item: Handle;

 box: Rect);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

itemType A value that represents the type of item in the itemNo parameter. To
specify the value for this parameter, you can use any of the constants
listed on page 6-121 for the itemType parameter of the GetDialogItem
procedure.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-123

item For an application-defined item, a pointer to the draw procedure (coerced
to a handle) for the item specified in the itemNo parameter; for all other
item types, a handle to the item.

box The display rectangle (described in coordinates local to the dialog box) for
the item specified in the itemNo parameter.

DESCRIPTION

The SetDialogItem procedure sets the item specified by the itemNo parameter for the
specified dialog box. This procedure installs the item without drawing it; typically you
create an invisible dialog box, use SetDialogItem, then use the Window Manager
procedure ShowWindow to draw the dialog box and its items.

SEE ALSO

Listing 6-16 on page 6-58 illustrates how to use SetDialogItem to install an
application-defined draw procedure. The ShowWindow procedure is described in the
chapter “Window Manager” of this book.

HideDialogItem 6

Although you should rarely need to do so, you can make an item in a dialog box invisible
by using the HideDialogItem procedure. The HideDialogItem procedure is also
available as the HideDItem procedure.

PROCEDURE HideDialogItem (theDialog: DialogPtr; itemNo: Integer);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

DESCRIPTION

The HideDialogItem procedure hides the item specified by itemNo by giving it a
display rectangle that’s off the screen. Specifically, if the left coordinate of the item’s
display rectangle is less than 8192 (hexadecimal $2000), HideDialogItem adds 16,384
(hexadecimal $4000) to both the left and right coordinates of the rectangle. If the item is
already hidden (that is, if the left coordinate is greater than 8192), HideDialogItem
does nothing. To redisplay an item that’s been hidden by HideDialogItem, you can use
the ShowDialogItem procedure.

C H A P T E R 6

Dialog Manager

6-124 Dialog Manager Reference

SPECIAL CONSIDERATIONS

If your application needs to display a number of dialog boxes that are similar except for
one or two items, it’s generally easier to modify the common elements using the
AppendDITL and ShortenDITL procedures than to use the HideDialogItem and
ShowDialogItem procedures.

The rectangle for a static text item must always be at least as wide as the first character of
the text.

You generally shouldn’t use HideDialogItem to make an editable text item invisible,
because as the user presses the Tab key, the Dialog Manager attempts to move the cursor
to the hidden editable text item, where the user’s subsequent keystrokes will be placed.

ShowDialogItem 6

To redisplay an item that has been hidden by the HideDialogItem procedure, use the
ShowDialogItem procedure. The ShowDialogItem procedure is also available as the
ShowDItem procedure.

PROCEDURE ShowDialogItem (theDialog: DialogPtr; itemNo: Integer);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

DESCRIPTION

The ShowDialogItem procedure redisplays the item specified in itemNo by restoring
the display rectangle the item had prior to the HideDialogItem call. Specifically, if
the left coordinate of the item’s display rectangle is greater than 8192, ShowDialogItem
subtracts 16,384 from both the left and right coordinates of the rectangle. If the item
is already visible (that is, if the left coordinate is less than 8192), ShowDialogItem
does nothing.

The ShowDialogItem procedure adds the rectangle that contained the item to the
update region so that it will be drawn. Note that if the item is a control you define in a
control ('CNTL') resource, the rectangle added to the update region is the rectangle
defined in the control resource, not the display rectangle defined in the item list resource.
If the item is an editable text item, ShowDialogItem activates it by calling the TextEdit
procedure TEActivate.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-125

FindDialogItem 6

To determine the item number of an item at a particular location in a dialog box, use the
FindDialogItem function. The FindDialogItem function is also available as the
FindDItem function.

FUNCTION FindDialogItem (theDialog: DialogPtr; thePt: Point)

 : Integer;

theDialog A pointer to a dialog record.

thePt A point, specified in coordinates local to the dialog box.

DESCRIPTION

If the point specified in the parameter thePt lies within an item, FindDialogItem
returns a number corresponding to the position of that item in the dialog box’s item list
resource. If the point doesn’t lie within the item’s rectangle, FindDialogItem returns
–1. If items overlap, FindDialogItem returns the item number of the first item, in the
item list resource, containing the point.

This function is useful for changing the cursor when it’s over a particular item.

The FindDialogItem function returns 0 for the first item in the item list resource,
1 for the second, and so on. To get the proper item number before calling the
GetDialogItem or SetDialogItem procedure, add 1 to FindDialogItem’s
function result, as shown here:

theItem := FindDialogItem(theDialog, thePoint) + 1;

Note that FindDialogItem returns the item number of disabled items as well as
enabled items.

AppendDITL 6

To add items to an existing dialog box while your application is running, use the
AppendDITL procedure.

PROCEDURE AppendDITL (theDialog: DialogPtr; theDITL: Handle;

 theMethod: DITLMethod);

theDialog A pointer to a dialog record. This is the dialog record to which you will
add the item list resource specified in the parameter theDITL.

theDITL A handle to the item list resource whose items you want to append to the
dialog box.

C H A P T E R 6

Dialog Manager

6-126 Dialog Manager Reference

theMethod The manner in which you want the new items to be displayed in the
existing dialog box. You can pass a negative value to offset the appended
items from a particular item in the existing dialog box. You can also pass
any of these constants:

CONST

overlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}

DESCRIPTION

The AppendDITL procedure adds the items in the item list resource specified in the
parameter theDITL to the items of a dialog box. This procedure is especially useful if
several dialog boxes share a single item list resource, because you can use AppendDITL
to add items that are appropriate for individual dialog boxes. Your application can use
the Resource Manager function GetResource to get a handle to the item list resource
whose items you wish to add.

In the parameter theMethod, you specify how to append the new items, as follows:

� If you use the overlayDITL constant, AppendDITL superimposes the appended
items over the dialog box. That is, AppendDITL interprets the coordinates of the
display rectangles for the appended items (as specified in their item list resource) as
local coordinates within the dialog box.

� If you use the appendDITLRight constant, AppendDITL appends the items to the
right of the dialog box by positioning the display rectangles of the appended items
relative to the upper-right coordinate of the dialog box. The AppendDITL procedure
automatically expands the dialog box to accommodate the new dialog items.

� If you use the appendDITLBottom constant, AppendDITL appends the items to the
bottom of the dialog box by positioning the display rectangles of the appended items
relative to the lower-left coordinate of the dialog box. The AppendDITL procedure
automatically expands the dialog box to accommodate the new dialog items.

� You can also append a list of items relative to an existing item by passing a negative
number in the parameter theMethod. The absolute value of this number is
interpreted as the item in the dialog box relative to which the new items are to be
positioned. For example, if you pass –2, the display rectangles of the appended
items are offset relative to the upper-left corner of item number 2 in the dialog box.

You typically create an invisible dialog box, call the AppendDITL procedure, then make
the dialog box visible by using the Window Manager procedure ShowWindow.

SPECIAL CONSIDERATIONS

The AppendDITL procedure modifies the contents of the dialog box (for instance, by
enlarging it). To use an unmodified version of the dialog box at a later time, your
application should use the Resource Manager procedure ReleaseResource to release
the memory occupied by the appended item list resource. Otherwise, if your application
calls AppendDITL to add items to that dialog box again, the dialog box remains

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-127

modified by your previous call—for example, it will still be longer at the bottom if you
previously used the appendDITLBottom constant.

The AppendDITL procedure is available in System 7 and in earlier versions of the
Communications Toolbox. Before calling AppendDITL, you should make sure that it
is available by using the Gestalt function with the gestaltDITLExtAttr selector.
Test the bit indicated by the gestaltDITLExtPresent constant in the response
parameter. If the bit is set, then AppendDITL is available.

SEE ALSO

Listing 6-13 on page 6-54 and Listing 6-14 on page 6-55 illustrate a typical use
of AppendDITL. Figure 6-29 on page 6-52 shows the result of using the
overlayDITL constant, Figure 6-30 on page 6-52 shows the result of using the
appendDITLRight constant, Figure 6-31 on page 6-53 shows the result of using
the appendDITLBottom constant, and Figure 6-32 on page 6-53 shows the result
of using a negative number in the parameter theMethod.

The chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox describes the
GetResource and ReleaseResource routines. The Gestalt function is described in
the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities. See the
chapter “Window Manager” in this book for information about ShowWindow.

ShortenDITL 6

To remove items from an existing dialog box while your application is running, use the
ShortenDITL procedure.

PROCEDURE ShortenDITL (theDialog: DialogPtr;

 numberItems: Integer);

theDialog A pointer to a dialog record.

numberItems
The number of items to remove (starting from the last item in the item
list resource).

DESCRIPTION

The ShortenDITL procedure removes the specified number of items from the dialog
box. This procedure is especially useful if several dialog boxes share a single item list
resource, because you can use ShortenDITL to remove items as necessary for individual
dialog boxes.

You typically create an invisible dialog box, call the ShortenDITL procedure, then make
the dialog box visible by using the Window Manager procedure ShowWindow. Note that
ShortenDITL does not automatically resize the dialog box; you can use
the Window Manager procedure SizeWindow if you need to resize the dialog box.

C H A P T E R 6

Dialog Manager

6-128 Dialog Manager Reference

SPECIAL CONSIDERATIONS

The ShortenDITL procedure is available in System 7 and in earlier versions of the
Communications Toolbox. Before calling ShortenDITL, you should make sure that it
is available by using the Gestalt function with the gestaltDITLExtAttr selector.
Test the bit indicated by the gestaltDITLExtPresent constant in the response
parameter. If the bit is set, then ShortenDITL is available.

SEE ALSO

You can use the CountDITL function, described next, to determine the number of items
in the dialog box’s item list resource. See the chapter “Window Manager” in this book
for information on the ShowWindow and SizeWindow procedures. The Gestalt
function is described in the chapter “Gestalt Manager” in Inside Macintosh: Operating
System Utilities.

CountDITL 6

You can determine the number of items in a dialog box by using the CountDITL
function.

FUNCTION CountDITL (theDialog: DialogPtr): Integer;

theDialog A pointer to a dialog record.

DESCRIPTION

The CountDITL function returns the number of current items in a dialog box. You
typically use CountDITL in conjunction with ShortenDITL to remove items from a
dialog box.

SPECIAL CONSIDERATIONS

The CountDITL function is available in System 7 and in earlier versions of the Commu-
nications Toolbox. Before calling CountDITL, you should make sure that it is available
by using the Gestalt function with the gestaltDITLExtAttr selector. Test the bit
indicated by the gestaltDITLExtPresent constant in the response parameter. If the
bit is set, then CountDITL is available.

SEE ALSO

The Gestalt function is described in the chapter “Gestalt Manager” in Inside Macintosh:
Operating System Utilities.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-129

Handling Text in Alert and Dialog Boxes 6

The Dialog Manager provides several routines for manipulating text. You can use the
ParamText procedure to supply text strings, such as document titles, dynamically
in the static text items of alert and dialog boxes. The GetDialogItemText and
SetDialogItemText procedures are useful for determining and changing text in both
static text and editable text items. You can use the SelectDialogItemText procedure
to select and highlight text in an editable text item.

When a dialog box containing an editable text item is active, use the DialogCut
procedure to handle the Cut editing command, the DialogCopy procedure to handle the
Copy command, the DialogPaste procedure to handle the Paste command, and the
DialogDelete procedure to handle the Clear command.

Once you determine that an event occurs in a modeless or movable modal dialog box,
you can use the DialogSelect function, which is described on page 6-139, to handle
key-down events in editable text items automatically. The ModalDialog procedure
uses DialogSelect to handle key-down events in the editable text items of modal
dialog boxes.

ParamText 6

To substitute text strings in the static text items of your alert or dialog boxes while your
application is running, use the ParamText procedure.

PROCEDURE ParamText (param0: Str255; param1: Str255;

param2: Str255; param3: Str255);

param0 A text string to substitute for the special string ^0 in the static text items of
all subsequently created alert and dialog boxes.

param1 A text string to substitute for the special string ^1 in the static text items of
all subsequently created alert and dialog boxes.

param2 A text string to substitute for the special string ^2 in the static text items of
all subsequently created alert and dialog boxes.

param3 A text string to substitute for the special string ^3 in the static text items of
all subsequently created alert and dialog boxes.

DESCRIPTION

The ParamText procedure replaces the special strings ^0 through ^3 in the static text
items of all subsequently created alert and dialog boxes with the text strings you pass as
parameters. Pass empty strings (not NIL) for parameters not used.

SPECIAL CONSIDERATIONS

The strings used in ParamText are stored in the low-memory global variable
DAStrings, which specifies a set of string handles used by the Dialog Manager.

C H A P T E R 6

Dialog Manager

6-130 Dialog Manager Reference

If the user launches a desk accessory in your application’s partition and the desk
accessory calls ParamText, it may change the text in your application’s dialog box.

You should be very careful about using ParamText in modeless dialog boxes. If a
modeless dialog box using ParamText is onscreen and you display another dialog box
or alert box that also uses ParamText, both boxes will be affected by the latest call
to ParamText.

The strings you pass in the parameters to ParamText cannot contain the special strings
^0 through ^3, or else the procedure will enter an endless loop of substitutions in
versions of system software earlier than 7.1.

Note that you should try to store text strings in resource files to facilitate translation into
other languages; therefore, ParamText is best used for supplying text strings, such as
document names, that the user specifies. To avoid problems with grammar and sentence
structure when you localize your application, you should use ParamText to supply only
one text string per screen message.

SEE ALSO

Listing 6-9 on page 6-47 and Listing 6-10 on page 6-48 show an example of how you can
use ParamText to supply the title of the user’s current document to your alert and
dialog boxes. If you need to supply a default text string to an editable text item while
your application is running, use SetDialogItemText. The SetDialogItemText
procedure also allows you to set or change the entire text string for a static text item.

GetDialogItemText 6

After using the GetDialogItem procedure to get a handle to an editable text item or a
static text item in a dialog box, you can use the GetDialogItemText procedure to get
the text string contained in that item. The GetDialogItemText procedure is also
available as the GetIText procedure.

PROCEDURE GetDialogItemText (item: Handle; VAR text: Str255);

item A handle to an editable text item or a static text item in a dialog box.

text The text contained within the item.

DESCRIPTION

The GetDialogItemText procedure returns, in the text parameter, the text of the
given editable text or static text item.

SPECIAL CONSIDERATIONS

If the user types more than 255 characters in an editable text item, GetDialogItemText
returns only the first 255.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-131

SEE ALSO

Listing 6-12 on page 6-49 illustrates how to use GetDialogItemText to retrieve
the text that a user types into an editable text item.

SetDialogItemText 6

After using the GetDialogItem procedure to get a handle to an editable text item or
a static text item in a dialog box, you can use the SetDialogItemText procedure to
display a particular text string in that item. The SetDialogItemText procedure is also
available as the SetIText procedure.

PROCEDURE SetDialogItemText (item: Handle; text: Str255);

item A handle to an editable text item or a static text item in a dialog box.

text The text to display in the item.

DESCRIPTION

The SetDialogItemText procedure places the specified text in the specified item and
draws the item. This procedure is useful for supplying a default text string—such as a
document name—for an editable text item while your application is running.

SPECIAL CONSIDERATIONS

All strings should be stored in resource files to ease translation into other languages.

SEE ALSO

For static text items, the ParamText procedure, described on page 6-129, is useful when
you need to determine and provide only a portion of a text string while your application
is running.

SelectDialogItemText 6

To select and highlight text contained in an editable text item, use the
SelectDialogItemText procedure. The SelectDialogItemText procedure
is also available as the SelIText procedure.

PROCEDURE SelectDialogItemText (theDialog: DialogPtr;

 itemNo: Integer;

 strtSel: Integer;

 endSel: Integer);

C H A P T E R 6

Dialog Manager

6-132 Dialog Manager Reference

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an editable text item in the
dialog box’s item list resource.

strtSel A number representing the position of the first character to begin
selecting.

endSel A number representing one position past the last character to be selected.

DESCRIPTION

If the item in the itemNo parameter is an editable text item that contains text, the
SelectDialogItemText procedure sets the text selection range to extend from
the character position specified in the strtSel parameter up to but not including the
character position specified in the endSel parameter. The selection range is highlighted
unless strtSel equals endSel, in which case a blinking vertical bar is displayed to
indicate an insertion point at that position. If the editable text item doesn’t contain text,
SelectDialogItemText displays the insertion point.

You can select the entire text by specifying the number 0 in the strtSel parameter and
the number 32767 in the endSel parameter.

For example, if the user makes an unacceptable entry in the editable text item, your
application can display an alert box reporting the problem and then use
SelectDialogItemText to select the entire text so it can be replaced by a new
entry. Without this procedure, the user would have to select the item before making
the new entry.

SEE ALSO

For details about text selection range and character position, see the chapter “TextEdit” in
Inside Macintosh: Text.

DialogCut 6

When a dialog box containing an editable text item is active, use the DialogCut
procedure to handle the Cut editing command. The DialogCut procedure is also
available as the DlgCut procedure.

PROCEDURE DialogCut (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogCut procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TECut to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-133

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TECut procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogCopy 6

When a dialog box containing an editable text item is active, use the DialogCopy
procedure to handle the Copy editing command. The DialogCopy procedure is also
available as the DlgCopy procedure.

PROCEDURE DialogCopy (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogCopy procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TECopy to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TECopy procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogPaste 6

When a dialog box containing an editable text item is active, use the DialogPaste
procedure to handle the Paste editing command. The DialogPaste procedure is also
available as the DlgPaste procedure.

PROCEDURE DialogPaste (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

C H A P T E R 6

Dialog Manager

6-134 Dialog Manager Reference

DESCRIPTION

The DialogPaste procedure checks whether the dialog box has any editable text
items and, if so, applies the TextEdit procedure TEPaste to the selected editable text
item. Your application should test whether a dialog box is the frontmost window
when handling mouse-down events in the Edit menu and then call this routine when
appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TEPaste procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogDelete 6

When a dialog box containing an editable text item is active, use the DialogDelete
procedure to handle the Clear editing command. The DialogDelete procedure is also
available as the DlgDelete procedure.

PROCEDURE DialogDelete (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogDelete procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TEDelete to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TEDelete procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-135

Handling Events in Dialog Boxes 6

Handling events in an alert box is very simple: after you invoke an alert box, the Dialog
Manager handles most events for you by automatically calling the ModalDialog
procedure. To handle events in a modal dialog box, your application must explicitly call
the ModalDialog procedure after displaying the dialog box. In either case, when an
enabled item is clicked, the Dialog Manager returns the item number. You’ll then do
whatever is appropriate in response to that click. For both alert and modal dialog boxes,
you should also provide a simple event filter function that allows other windows to
respond to update events and that allows your alert or dialog box to respond to a few
key-down events for keys such as Return, Enter, and Esc.

You can use your normal event-handling code to determine whether an event occurs in a
modeless or movable modal dialog box, or you can use the IsDialogEvent function to
learn whether they need to be handled as part of a dialog box. Once you determine that
an event occurs in a modeless or movable modal dialog box, you can use the
DialogSelect function to handle key-down events in editable text items automatically,
to handle update and activate events automatically, and to report the enabled items
clicked by the user. You then respond as appropriate to clicks in your active items. Or you
can use Control Manager, TextEdit, and Window Manager routines (such as
FindWindow, BeginUpdate, EndUpdate, FindControl, TrackControl, and
TEClick) to handle these events without the aid of the Dialog Manager.

ModalDialog 6

To handle events when you display a modal dialog box, use the ModalDialog
procedure.

PROCEDURE ModalDialog (filterProc: ModalFilterProcPtr;

VAR itemHit: Integer);

filterProc
A pointer to an event filter function.

itemHit A number representing the position of the selected item in the item list
resource for the active modal dialog box.

DESCRIPTION

Call the ModalDialog procedure immediately after displaying a modal dialog box. The
ModalDialog procedure assumes that a modal dialog box is displayed as the current
port, and ModalDialog repeatedly handles events inside that port until an event
involving an enabled dialog box item—such as a click in a radio button, for example—
occurs. If the event is a mouse-down event outside the content region of the dialog box,
ModalDialog emits the system alert sound and gets the next event. After receiving an
event involving an enabled item, ModalDialog returns its item number in the itemHit
parameter. Your application should then do whatever is appropriate in response to an
event in that item. Your application should continue calling ModalDialog until the user
selects the OK or Cancel button.

C H A P T E R 6

Dialog Manager

6-136 Dialog Manager Reference

For events inside the dialog box, ModalDialog passes the event to the event filter
function pointed to in the filterProc parameter before handling the event. When the
event filter returns FALSE, ModalDialog handles the event. If the event filter function
handles the event, the event filter function returns TRUE, and ModalDialog performs no
more event handling.

If you set the filterProc parameter to NIL, the standard event filter function is
executed. The standard event filter function returns TRUE and causes ModalDialog to
return item number 1, which is the number of the default button, when the user presses
the Return key or the Enter key. However, your application should provide a simple
event filter function that

� returns TRUE and the item number for the default button if the user presses the Return
or Enter key

� returns TRUE and the item number for the Cancel button if the user presses the Esc key
or the Command-period key combination

� updates your windows in response to update events (this allows background
applications to receive update events) and return FALSE

� returns FALSE for all events that your event filter function doesn’t handle

You can use the same event filter function in most or all of your alert and modal
dialog boxes.

You can also use the event filter function specified in the filterProc parameter to test
for and respond to keyboard equivalents and more complex events—for instance, the
user dragging the cursor within an application-defined item.

To handle events, ModalDialog calls the IsDialogEvent function. If the result of
IsDialogEvent is TRUE, then ModalDialog calls the DialogSelect function to
handle the event. Unless the event filter function returns TRUE, ModalDialog handles
the event as follows:

� In response to an activate or update event for the dialog box, ModalDialog activates
or updates its window.

� If the user presses the mouse button while the cursor is in an editable text item,
ModalDialog responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If a key-down event occurs and
there’s an editable text item, ModalDialog uses TextEdit to handle text entry and
editing automatically. If the editable text item is enabled, ModalDialog returns its
item number after it receives either the mouse-down or key-down event. Normally,
editable text items are disabled, and you use the GetDialogItemText procedure to
read the information in the items only after the user clicks the OK button.

� If the user presses the mouse button while the cursor is in a control, ModalDialog
calls the Control Manager function TrackControl. If the user releases the mouse
button while the cursor is in an enabled control, ModalDialog returns the control’s
item number. Your application should respond appropriately—for example, by
performing a command after the user clicks the OK button.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-137

� If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, ModalDialog returns the item’s number, and your application should
respond appropriately. Generally, only controls should be enabled. If your application
creates a control more complex than a button, radio button, or checkbox, your
application must handle events inside that item with your event filter function.

� If the user presses the mouse button while the cursor is in a disabled item or in no
item, or if any other event occurs, ModalDialog does nothing.

SPECIAL CONSIDERATIONS

Do not use ModalDialog for movable modal dialog boxes (that is, those created with
the movableDBoxProc window definition ID) or for modeless dialog boxes (that is,
those created with the noGrowDocProc window definition ID). If you want the Dialog
Manager to assist you in handling events for movable modal and modeless dialog boxes,
use the IsDialogEvent and DialogSelect functions instead.

The ModalDialog procedure calls the Event Manager function GetNextEvent with a
mask that excludes disk-inserted events. To receive disk-inserted events, your event filter
function can call the Event Manager procedure SetSystemEventMask.

When ModalDialog calls TrackControl, it does not allow you to specify the action
procedure necessary for anything more complex than a button, radio button, or checkbox.
If you need a more complex control (for example, one that measures how long the user
holds down the mouse button or how far the user has moved an indicator), you can
create your own control, a picture, or an application-defined item that draws a control-
like object in your dialog box. You must then provide an event filter function that
appropriately handles events in that item.

SEE ALSO

Listing 6-26 on page 6-83 illustrates the use of ModalDialog. “Responding to Events in
Editable Text Items” beginning on page 6-79 describes how ModalDialog uses TextEdit
to handle text entry and editing in editable text items. The IsDialogEvent and
DialogSelect functions (which your application may use instead of ModalDialog for
modeless and movable modal dialog boxes) are described on page 6-138 and page 6-139,
respectively. See the description of MyEventFilter on page 6-145 for information about
the event filter function your application should specify in the filterProc parameter.

The GetNextEvent and SetSystemEventMask routines are described in the chapter
“Event Manager” in this book. See that chapter as well for a discussion of disk-inserted
events. See “Responding to Events in Controls” on page 6-78 for a description of how
your application should respond to events inside of controls; the TrackControl
function is fully described in the chapter “Control Manager” in this book. Also see that
chapter for information about creating your own nonstandard controls. TextEdit is
described in the chapter “TextEdit” of Inside Macintosh: Text.

C H A P T E R 6

Dialog Manager

6-138 Dialog Manager Reference

IsDialogEvent 6

To determine whether a modeless dialog box or a movable modal dialog box is active
when an event occurs, you can use the IsDialogEvent function.

FUNCTION IsDialogEvent (theEvent: EventRecord): Boolean;

theEvent An event record returned by an Event Manager function such as
WaitNextEvent.

DESCRIPTION

If any event, including a null event, occurs when your dialog box is active,
IsDialogEvent returns TRUE; otherwise, it returns FALSE. When IsDialogEvent
returns FALSE, pass the event to the rest of your event-handling code. When
IsDialogEvent returns TRUE, pass the event to DialogSelect after testing for the
events that DialogSelect does not handle.

A dialog record includes a window record. When you use the GetNewDialog,
NewDialog, or NewColorDialog function to create a dialog box, the Dialog Manager
sets the windowKind field in the window record to dialogKind. To determine whether
the active window is a dialog box, IsDialogEvent checks the windowKind field.

Before passing the event to DialogSelect, you should perform the following tests
whenever IsDialogEvent returns TRUE:

� Check whether the event is a key-down event for the Return, Enter, Esc, or
Command-period keystrokes. When the user presses the Return or Enter key, your
application should respond as if the user had clicked the default button; when the user
presses Esc or Command-period, your application should respond as if the user had
clicked the Cancel button. Use the Control Manager procedure HiliteControl to
highlight the applicable button for 8 ticks.

� At this point, you may also want to check for and respond to any special events that
you do not wish to pass to DialogSelect or that require special processing before
you pass them to DialogSelect. You would need to do this, for example, if the
dialog box needs to respond to disk-inserted events.

� Check whether the event is an update event for a window other than the dialog box
and, if it is, update your window.

� For complex items that you create, such as pictures or application-defined items that
emulate complex controls, test for and respond to mouse events inside those items as
appropriate. When DialogSelect calls TrackControl, it does not allow you to
specify the action procedure necessary for anything more complex than a button, radio
button, or checkbox. If you need a more complex control (for example, one that
measures how long the user holds down the mouse button or how far the user has
moved an indicator), you can create your own control or a picture or an
application-defined item that draws a control-like object in your dialog box. You must
then test for and respond to those events yourself.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-139

If your application uses IsDialogEvent to help handle events when you display a
movable modal dialog box, perform the following additional tests before passing events
to DialogSelect:

� Test for mouse-down events in the title bar of the movable modal dialog box and
respond by dragging the dialog box accordingly.

� Test for and respond to mouse-down events in the Apple menu and, if the movable
modal dialog box includes editable text items, in the Edit menu. (You should disable
all other menus when you display a movable modal dialog box.)

� Play the system alert sound for every other mouse-down event outside the movable
modal dialog box.

SPECIAL CONSIDERATIONS

Both IsDialogEvent and DialogSelect are unreliable when running in versions of
system software earlier than System 7. You shouldn’t use these routines if you expect
your application to run in earlier versions of system software.

SEE ALSO

The WaitNextEvent function is described in the chapter “Event Manager” in this book.
See Inside Macintosh: Sound for a description of the SysBeep procedure. The
FrontWindow function is described in the chapter “Window Manager” in this book.

DialogSelect 6

After determining that an event related to an active modeless dialog box or an active
movable modal dialog box has occurred, you can use the DialogSelect function to
handle most of the events inside the dialog box.

FUNCTION DialogSelect (theEvent: EventRecord;

 VAR theDialog: DialogPtr;

 VAR itemHit: Integer): Boolean;

theEvent An event record returned by an Event Manager function such as
WaitNextEvent.

theDialog A pointer to a dialog record for the dialog box where the event occurred.

itemHit A number corresponding to the position of an item within the item list
resource of the active dialog box.

DESCRIPTION

The DialogSelect function handles most of the events relating to a dialog box. If the
event is an activate or update event for a dialog box, DialogSelect activates or
updates it and returns FALSE. If the event involves an enabled item, DialogSelect

C H A P T E R 6

Dialog Manager

6-140 Dialog Manager Reference

returns a function result of TRUE. In its itemHit parameter, it returns the item number of
the item selected by the user. In the parameter theDialog, it returns a pointer to
the dialog record for the dialog box where the event occurred. In all other cases, the
DialogSelect function returns FALSE. When DialogSelect returns TRUE, do
whatever is appropriate as a response to the event involving that item in that particular
dialog box; when it returns FALSE, do nothing.

Generally, only controls should be enabled in a dialog box; therefore your application
should normally respond only when DialogSelect returns TRUE after the user clicks
an enabled control, such as the OK button.

The DialogSelect function first obtains a pointer to the window containing the event.
For update and activate events, the event record contains the window pointer. For other
types of events, DialogSelect calls the Window Manager function FrontWindow.
The Dialog Manager then makes this window the current graphics port by calling the
QuickDraw procedure SetPort. Then DialogSelect prepares to handle the event by
setting up text information if there are any editable text items in the active dialog box.

If the event is an update event for a dialog box, DialogSelect calls the Window
Manager procedure BeginUpdate, the Dialog Manager procedure DrawDialog,
and then the Window Manager procedure EndUpdate. When an item is a control
defined in a control ('CNTL') resource, the rectangle added to the update region is the
rectangle defined in the control resource, not the display rectangle defined in the item
list resource.

The DialogSelect function handles the event as follows:

� In response to an activate or update event for the dialog box, DialogSelect activates
or updates its window and returns FALSE.

� If a key-down event or an auto-key event occurs and there’s an editable text item
in the dialog box, DialogSelect uses TextEdit to handle text entry and editing,
and DialogSelect returns TRUE for a function result. In its itemHit parameter,
DialogSelect returns the item number.

� If a key-down event or an auto-key event occurs and there’s no editable text item in
the dialog box, DialogSelect returns FALSE.

� If the user presses the mouse button while the cursor is in an editable text item,
DialogSelect responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If the editable text item is disabled,
DialogSelect returns FALSE. If the editable text item is enabled, DialogSelect
returns TRUE and in its itemHit parameter returns the item number. Normally,
editable text items are disabled, and you use the GetDialogItemText function to
read the information in the items only after the OK button is clicked.

� If the user presses the mouse button while the cursor is in a control, DialogSelect
calls the Control Manager function TrackControl. If the user releases the mouse
button while the cursor is in an enabled control, DialogSelect returns TRUE for a
function result and in its itemHit parameter returns the control’s item number. Your
application should respond appropriately—for example, by performing a command
after the user clicks the OK button.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-141

� If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, DialogSelect returns TRUE for a function result and in its itemHit
parameter returns the item’s number. Generally, only controls should be enabled. If
your application creates a complex control—such as one that measures how far a dial
is moved—your application must handle mouse events in that item before passing the
event to DialogSelect.

� If the user presses the mouse button while the cursor is in a disabled item, or if it is in
no item, or if any other event occurs, DialogSelect does nothing.

� If the event isn’t one that DialogSelect specifically checks for (if it’s a null event, for
example), and if there’s an editable text item in the dialog box, DialogSelect calls
the TextEdit procedure TEIdle to make the insertion point blink.

SPECIAL CONSIDERATIONS

Because DialogSelect handles only mouse-down events in a dialog box and key-down
events in a dialog box’s editable text items, you should handle other events
as appropriate before passing them to DialogSelect. Likewise, when DialogSelect
calls TrackControl, it does not allow you to specify any action procedure necessary for
anything more complex than a button, radio button, or checkbox. If you need a more
complex control (for example, one that measures how long the user holds down the
mouse button or how far the user has moved an indicator), you can create your own
control or a picture or an application-defined item that draws a control-like object in your
dialog box. You must then test for and respond to those events yourself.

Within dialog boxes, use the procedures DialogCut, DialogCopy, DialogPaste, and
DialogDelete to support Cut, Copy, Paste, and Clear commands in editable text boxes.

The DialogSelect function is unreliable when running in versions of system software
earlier than System 7. You shouldn’t use this routine if you expect your application to run
under earlier versions of system software.

SEE ALSO

Listing 6-25 on page 6-79 illustrates the use of DialogSelect to make the cursor blink
in editable text items during null events; Listing 6-29 on page 6-92 illustrates the use of
DialogSelect to handle mouse events in a modeless dialog box; Listing 6-33 on
page 6-96 illustrates the use of DialogSelect to handle key-down events in editable
text items; Listing 6-34 on page 6-98 illustrates the use of DialogSelect to handle
activate events in a modeless dialog box.

C H A P T E R 6

Dialog Manager

6-142 Dialog Manager Reference

DrawDialog 6

If you don’t use any other Dialog Manager routines for handling events in a dialog box,
you can use the DrawDialog procedure to draw its entire contents.

PROCEDURE DrawDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DrawDialog procedure draws the entire contents of the specified dialog box. The
DrawDialog procedure draws all dialog items, calls the Control Manager procedure
DrawControls to draw all controls, and calls the TextEdit procedure TEUpdate to
update all static and editable text items and to draw their display rectangles. The
DrawDialog procedure also calls the application-defined items’ draw procedures if
the items’ rectangles are within the update region.

The DialogSelect, ModalDialog, Alert, StopAlert, NoteAlert, and
CautionAlert routines use DrawDialog automatically. If you use GetNewDialog
to create a dialog box but don’t use any of these other Dialog Manager routines when
handling events in the dialog box, you can use DrawDialog to redraw the contents of
the dialog box when it’s visible. If the dialog box is invisible, first use the Window
Manager procedure ShowWindow and then use DrawDialog.

SEE ALSO

See the chapters “Window Manager” and “Event Manager” in this book for more
information on update and activate events for windows. The DrawControls procedure
is described in the chapter “Control Manager” in this book. The TEUpdate procedure is
described in the chapter “TextEdit” in Inside Macintosh: Text.

UpdateDialog 6

You can use the UpdateDialog procedure to redraw the update region of a
specified dialog box. The UpdateDialog procedure is also available as the UpdtDialog
procedure.

PROCEDURE UpdateDialog (theDialog: DialogPtr;

updateRgn: RgnHandle);

theDialog A pointer to a dialog record.

updateRgn A handle to the window region that needs to be updated.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-143

DESCRIPTION

The UpdateDialog procedure redraws only the region in a dialog box specified in the
updateRgn parameter. Because the DialogSelect, ModalDialog, Alert,
StopAlert, NoteAlert, and CautionAlert routines automatically call DrawDialog
to handle update events in your alert and dialog boxes, your application might never
need to use UpdateDialog.

Instead of drawing the entire contents of the specified dialog box, UpdateDialog draws
only the items in the specified update region. You can use UpdateDialog in response to
an update event, and you should usually bracket it by calls to the Window Manager
procedures BeginUpdate and EndUpdate. The UpdateDialog procedure uses the
QuickDraw procedure SetPort to make the dialog box the current graphics port. For
drawing controls, UpdateDialog uses the Control Manager procedure
UpdateControls, which is faster than the DrawControls procedure.

SEE ALSO

Listing 6-35 on page 6-99 illustrates the use of UpdateDialog to respond to update
events in a modeless dialog box. See the chapter “Window Manager” in this book for
more information on update and activate events for windows. The UpdateControls
procedure is described in the chapter “Control Manager” in this book.

Application-Defined Routines 6
If you supply an application-defined item in a dialog box, you must provide a draw
procedure for the Dialog Manager to use when displaying the item; that procedure is
referred to in this section as MyItem. If you want the Dialog Manager to play sounds
other than the system alert sound, you must provide your own sound procedure, referred
to in this section as MyAlertSound. To supplement the Dialog Manager’s ability to
handle events in the Macintosh multitasking environment, you should provide an event
filter function that the Dialog Manager calls whenever it displays alert boxes and modal
dialog boxes. This function is referred to as MyEventFilter.

MyItem 6

To draw your own application-defined item in a dialog box, provide a draw procedure
that takes two parameters: a window pointer to the dialog box and an item number from
the dialog box’s item list resource. For example, this is how you should declare the
procedure if you were to name it MyItem:

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: Integer);

theWindow A pointer to the dialog record for the dialog box containing an
application-defined item. If your procedure can draw in more than
one dialog box, this parameter tells your procedure which one to
draw in.

C H A P T E R 6

Dialog Manager

6-144 Dialog Manager Reference

itemNo A number corresponding to the position of an item in the item list
resource for the specified dialog box. If your procedure draws more
than one item, this parameter tells your procedure which one to draw.

DESCRIPTION

The Dialog Manager calls your procedure to draw an application-defined item at the time
you display the specified dialog box. When calling your draw procedure, the Dialog
Manager sets the current port to the dialog box’s graphics port. Normally, you create an
invisible dialog box and then use the Window Manager procedure ShowWindow to
display the dialog box.

Before you display the dialog box, use the SetDialogItem procedure to install this
procedure in the dialog record. Before using SetDialogItem, you must first use the
GetDialogItem procedure to obtain a handle to an item of type userItem.

If you enable the application-defined item that you draw with this procedure, the
ModalDialog procedure and the DialogSelect function return the item’s number
when the user clicks that item. If your application needs to respond to a user action more
complex than this (for example, if your application needs to measure how long the user
holds down the mouse or how far the user drags the cursor), your application must track
the cursor itself. If you use ModalDialog, your event filter function must handle events
inside the item; if you use DialogSelect, your application must handle events inside
the item before handing events to DialogSelect.

SEE ALSO

Listing 6-17 on page 6-59 illustrates a procedure that draws a bold outline around
a button of any size and shape; Listing 6-16 on page 6-58 shows the use of
GetDialogItem and SetDialogItem to install this draw procedure in a dialog
record. The ShowWindow procedure is described in the chapter “Window Manager”
in this book.

MyAlertSound 6

If you want the Dialog Manager to play sounds other than the system alert sound, write
your own sound procedure and call the ErrorSound procedure to make it the current
sound procedure. For example, you can declare a sound procedure named
MyAlertSound, as shown here:

PROCEDURE MyAlertSound (soundNo: Integer);

soundNo An integer from 0 to 3, representing the four possible alert stages.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-145

DESCRIPTION

For each of the four alert stages that can be reported in the soundNo parameter, your
procedure can emit any sound that you define. When the Dialog Manager calls your
procedure, it passes 0 as the sound number for alert sounds specified by the silent
constant in the alert resource. The Dialog Manager passes 1 for sounds specified by the
sound1 constant, 2 for sounds specified by the sound2 constant, and 3 for sounds
specified by the sound3 constant.

SPECIAL CONSIDERATIONS

When the Dialog Manager detects a click outside an alert box or a modal dialog box, it
uses the Sound Manager procedure SysBeep to play the system alert sound. By
changing settings in the Sound control panel, the user can select which sound to play as
the system alert sound. For consistency with system software and other Macintosh
applications, your sound procedure should call SysBeep whenever your sound
procedure receives sound number 1 (which you can represent with the sound1 constant).

SEE ALSO

Listing 6-3 on page 6-22 illustrates how to use MyAlertSound. The SysBeep procedure
is described in Inside Macintosh: Sound.

MyEventFilter 6

To supplement the Dialog Manager’s ability to handle events, your application should
provide an event filter function that the Dialog Manager calls when it displays alert boxes
and modal dialog boxes. Your event filter function should have three parameters and
return a Boolean value. For example, this is how you would declare it if you were to
name it MyEventFilter:

FUNCTION MyEventFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

theDialog A pointer to a dialog record for an alert box or a modal dialog box.

theEvent An event record returned by an Event Manager function such as
WaitNextEvent.

itemHit A number corresponding to the position of an item in the item list
resource for the alert or modal dialog box.

C H A P T E R 6

Dialog Manager

6-146 Dialog Manager Reference

DESCRIPTION

After receiving an event that it does not handle, your function should return FALSE.
When your function returns FALSE, ModalDialog handles the event, which you pass
in the parameter theEvent. (Your function can also change the event to simulate a
different event and return FALSE, which passes the event to the Dialog Manager for
handling.) If your function does handle the event, your function should return TRUE
as a function result, and in the itemHit parameter return the number of the item
that it handled. The ModalDialog procedure and, in turn, the Alert, NoteAlert,
StopAlert, and CautionAlert functions then return this item number in their own
itemHit parameters.

Your event filter function should perform the following tasks:

� return TRUE and the item number for the default button if the user presses Return
or Enter

� return TRUE and the item number for the Cancel button if the user presses Esc or
Command-period

� update your windows in response to update events (this allows background
applications to receive update events) and return FALSE

� return FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor in an application-
defined item. For example, if you provide an application-defined item that requires you
to measure how long the user holds down the mouse button or how far the user drags
the cursor, use the event filter function to handle events inside that item.

The ModalDialog procedure calls the Event Manager function GetNextEvent with a
mask that excludes disk-inserted events; to receive disk-inserted events, your event filter
function can call the Event Manager procedure SetSystemEventMask.

You can use the same event filter function in most or all of your alert and modal
dialog boxes.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. Your event filter function should always
check whether the Return key or Enter key was pressed and, if so, return the number of
the default button in the itemHit parameter and a function result of TRUE.

In all alert and dialog boxes, any buttons that are activated by key sequences should
invert to indicate which item has been selected. Use the Control Manager procedure
HiliteControl to invert a button for 8 ticks, long enough to be noticeable but not so
long as to be annoying. The Control Manager performs this action whenever users click a
button, and your application should do this whenever the user presses the keyboard
equivalent of a button click.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-147

For modal dialog boxes that contain editable text items, your application should handle
menu bar access to allow use of your Edit menu and its Cut, Copy, Paste, Clear, and
Undo commands. Your event filter function should then test for and handle clicks
in your Edit menu and keyboard equivalents for the appropriate commands in your
Edit menu. Your application should respond by using the procedures DialogCut,
DialogCopy, DialogPaste, and DialogDelete to support the Cut, Copy, Paste, and
Clear commands.

For an alert box, you specify a pointer to your event filter function in a parameter that
you pass to the Alert, StopAlert, CautionAlert, and NoteAlert functions. For a
modal dialog box, specify a pointer to your event filter function in a parameter that you
pass to the ModalDialog procedure.

SEE ALSO

Listing 6-27 on page 6-88 illustrates an event filter function. The functions
GetNextEvent and SetSystemEventMask are described in the chapter
“Event Manager” in this book.

Resources 6
This section describes resources used by the Dialog Manager for displaying alerts and
dialog boxes. These resources are

� the dialog ('DLOG') resource, which specifies the window type, display rectangle, and
item list resource for a dialog box

� the alert ('ALRT') resource, which specifies alert sounds, a display rectangle, and an
item list resource for an alert box

� the item list ('DITL') resource, which specifies the items—such as buttons and static
text—to display in an alert box or a dialog box

� the dialog color table ('dctb') resource, which lets you supply a color graphics port
for a dialog box and also use colors other than the default colors in a dialog box

� the alert color table ('actb') resource, which lets you use colors other than the
default colors in an alert box

� the item color table ('ictb') resource, which lets you change the default colors,
typeface, font style, and font size of items in an alert box or a dialog box

This section describes the structures of these resources after they are compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
files for these resources, see “Using the Dialog Manager” beginning on page 6-17 for
detailed information.

C H A P T E R 6

Dialog Manager

6-148 Dialog Manager Reference

The Dialog Resource 6

You can use a dialog resource to define a dialog box. A dialog resource is a resource of
type 'DLOG'. All dialog resources must be marked purgeable, and they must have
resource ID numbers greater than 128.

To specify the items in a dialog box, you must also provide an item list resource,
described beginning on page 6-151. Use the GetNewDialog function (described on
page 6-113) to create the dialog box defined in the dialog resource.

The format of a Rez input file for a dialog resource differs from its compiled output
format. This section describes the structure of a Rez-compiled dialog resource. If you
are concerned only with creating a dialog resource, see “Creating Dialog Boxes”
beginning on page 6-23.

Figure 6-42 shows the format of a compiled dialog resource.

Figure 6-42 Structure of a compiled dialog ('DLOG') resource

The compiled version of a dialog resource contains the following elements:

� Rectangle. This determines the dialog box’s dimensions and, possibly, its position.
(The last element in the dialog resource usually specifies a position for the dialog box.)

� Window definition ID.
� If the integer 0 appears here (as specified in the Rez input file by the dBoxProc

window definition ID), the Dialog Manager displays a modal dialog box.

'DLOG' resource type

Dialog box position

Alignment byte

Rectangle

Window definition ID

Visibility
Reserved

Close box specification
Reserved

Reference constant

Item list ID

Window title

8

2

1
1
1
1

4

2

1 to 256

2

0 or 1

Bytes

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-149

� If the integer 4 appears here (as specified in the Rez input file by the
noGrowDocProc window definition ID), the Dialog Manager displays a
modeless dialog box.

� If the integer 5 appears here (as specified in the Rez input file by the
movableDBoxProc window definition ID), the Dialog Manager displays
a movable modal dialog box.

These types of dialog boxes are illustrated in Figure 6-6 on page 6-10, Figure 6-8 on
page 6-12, and Figure 6-7 on page 6-11, respectively.

� Visibility. If this is set to a value of 1 (as specified by the visible constant in the Rez
input file), the Dialog Manager displays this dialog box as soon as you call the
GetNewDialog function. If this is set to a value of 0 (as specified by the invisible
constant in the Rez input file), the Dialog Manager does not display this dialog box
until you call the Window Manager procedure ShowWindow.

� Close box specification. This specifies whether to draw a close box. Normally, this is
set to a value of 1 (as specified by the goAway constant in the Rez input file) only for a
modeless dialog box to specify a close box in its title bar. Otherwise, this is set to a
value of 0 (as specified by the noGoAway constant in the Rez input file).

� Reference constant. This contains any value that an application stores here. For
example, an application can store a number that represents a dialog box type, or
it can store a handle to a record that maintains state information about the dialog
box or other window types. An application can use the Window Manager procedure
SetWRefCon at any time to change this value in the dialog record for a dialog box,
and you can use the GetWRefCon function to determine its current value.

� Item list resource ID. The ID of the item list resource that specifies the items—such as
buttons and static text—to display in the dialog box.

� Window title. This is a Pascal string displayed in the dialog box’s title bar only when
the dialog box is modeless.

� Alignment byte. This is an extra byte added if necessary to make the previous Pascal
string end on a word boundary.

� Dialog box position. This specifies the position of the dialog box on the screen. (If your
application positions dialog boxes on its own, don’t use these constants, because your
code may conflict with the Dialog Manager.)
� If 0x0000 appears here (as specified by the noAutoCenter constant in the Rez

input file), the Dialog Manager positions this dialog box according to the global
coordinates specified in the rectangle element of this resource.

� If 0xB00A appears here (as specified by the alertPositionParentWindow
constant in the Rez input file), the Dialog Manager positions the dialog box over the
frontmost window so that the window’s title bar appears. This is illustrated in
Figure 6-33 on page 6-63.

� If 0x300A appears here (as specified by the alertPositionMainScreen constant
in the Rez input file), the Dialog Manager centers the dialog box near the top of the
main screen. This is illustrated in Figure 6-34 on page 6-63.

� If 0x700A appears here (as specified in the Rez input file by the
alertPositionParentWindowScreen constant), the Dialog Manager
positions the dialog box on the screen where the user is currently working.
This is illustrated in Figure 6-35 on page 6-64.

C H A P T E R 6

Dialog Manager

6-150 Dialog Manager Reference

The Alert Resource 6

You can use an alert resource to define an alert. An alert resource is a resource of type
'ALRT'. All alert resources must be marked purgeable, and they must have resource ID
numbers greater than 128.

To specify the items in an alert box, you must also provide an item list resource,
described beginning on page 6-151. To display the alert, you call either the NoteAlert,
CautionAlert, StopAlert, or Alert function and pass it the resource ID of the
alert resource. The NoteAlert, CautionAlert, StopAlert, and Alert functions
are described in “Creating Alerts” beginning on page 6-105.

The format of a Rez input file for an alert resource differs from its compiled output
format. This section describes the structure of a Rez-compiled alert resource. If you are
concerned only with creating an alert resource, see “Creating Alert Sounds and Alert
Boxes” beginning on page 6-18.

Figure 6-43 shows the structure of a compiled alert resource.

Figure 6-43 Structure of a compiled alert ('ALRT') resource

The compiled version of an alert resource contains the following elements:

� Rectangle. This determines the alert box’s dimensions and, possibly, its position. (The
last element in the alert resource usually specifies a position for the alert box.)

� Item list resource ID. The ID of the item list resource that specifies the items—such as
buttons and static text—to display in the alert box.

� Fourth-stage alert information. This specifies the response when the user repeats the
action that invokes this alert four or more consecutive times. The Dialog Manager
responds in the manner specified in the 4 bits that make up this element.
� If the first bit is set, the Dialog Manager draws a bold outline around the second

item in the item list resource (typically, the Cancel button) and—if your application
does not specify an event filter function—returns 2 when the user presses the
Return or Enter key at the fourth consecutive occurrence of the alert. If the first bit is
not set, the Dialog Manager draws a bold outline around the first item in the item
list resource (typically, the OK button) and—if your application does not specify an
event filter function—returns 1 when the user presses the Return or Enter key.

Rectangle 8

'ALRT' resource type Bytes

4th-stage alert information

Item list resource ID

Alert box position

2

1

2

3rd-stage alert information
2nd-stage alert information 1st-stage alert information

1

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-151

� If the second bit is set, the Dialog Manager displays the alert box at this stage. If the
second bit is not set, the Dialog Manager doesn’t display the alert box at this stage.

� If neither of the next 2 bits is set, the Dialog Manager plays no alert sound at this
stage. If bit 3 is set and bit 4 is not set, the Dialog Manager plays the first alert
sound—by default, the system alert sound. If bit 3 is not set and bit 4 is set, the
Dialog Manager plays the second alert sound; by default, it plays the system alert
sound twice. If both bit 3 and bit 4 are set, the Dialog Manager plays the third alert
sound; by default, it plays the system alert sound three times. By defining your own
alert sound (described on page 6-144) and calling the ErrorSound procedure
(described on page 6-104) to make it the current sound procedure, you can specify
your own alert sounds.

� Third-stage alert information. This specifies the response when the user repeats the
action that invokes this alert three consecutive times. The Dialog Manager interprets
these 4 bits in the manner described for the fourth-stage alert.

� Second-stage alert information. This specifies the response when the user repeats the
action that invokes this alert two consecutive times. The Dialog Manager interprets
these 4 bits in the manner described for the fourth-stage alert.

� First-stage alert information. This specifies the response for the first time that the user
performs the action that invokes this alert. The Dialog Manager interprets these 4 bits
in the manner described for the fourth-stage alert.

� Alert box position. This specifies the position of the alert box on the screen. (If your
application positions alert boxes on its own, don’t use these constants, because your
code may conflict with the Dialog Manager.)
� If 0x0000 appears here (as specified by the noAutoCenter constant in the Rez

input file), the Dialog Manager positions this alert box according to the global
coordinates specified in the rectangle element of this resource.

� If 0xB00A appears here (as specified by the alertPositionParentWindow
constant in the Rez input file), the Dialog Manager positions the alert box over the
frontmost window so that the window’s title bar appears. This is illustrated in
Figure 6-33 on page 6-63.

� If 0x300A appears here (as specified by the alertPositionMainScreen constant
in the Rez input file), the Dialog Manager centers the alert box near the top of the
main screen. This is illustrated in Figure 6-34 on page 6-63.

� If 0x700A appears here (as specified in the Rez input file by the
alertPositionParentWindowScreen constant), the Dialog Manager
positions the alert box on the screen where the user is currently working.
This is illustrated in Figure 6-35 on page 6-64.

The Item List Resource 6

You use an item list resource to specify items—such as buttons and text—in alert boxes
and dialog boxes. An item list resource is a resource with the resource type 'DITL'. All
item list resources must be marked purgeable, and they must have resource ID numbers
greater than 128.

C H A P T E R 6

Dialog Manager

6-152 Dialog Manager Reference

For an alert box, you specify the resource ID of the item list resource in an alert
resource (described beginning on page 6-150). For a dialog box that you create with
the GetNewDialog function, you specify the resource ID of the item list resource in a
dialog resource (described beginning on page 6-148). For a dialog box that you create
with either the NewColorDialog function (described on page 6-115) or the NewDialog
function (described on page 6-118), you use the Resource Manager function
GetResource to read the item list resource into memory and to provide a handle to
the item list resource in memory.

The format of a Rez input file for an item list resource differs from its compiled output
format. This section describes the structure of a Rez-compiled item list resource. If you
are concerned only with creating an item list resource, see “Providing Items for Alert and
Dialog Boxes” beginning on page 6-26.

Figure 6-44 shows the format of a compiled item list resource.

Figure 6-44 Structure of a compiled item list ('DITL') resource

The compiled version of an item list resource contains the following elements:

� Item count minus 1. This value is 1 less than the total number of items defined in
this resource.

� A variable number of items.

The format of each item depends on its type. Figure 6-45 shows the format of an item
defined to be a button, a checkbox, a radio button, a static text item, or an editable
text item.
The compiled version of a button, checkbox, radio button, static text item, or editable text
item consists of the following elements:

� Reserved. The Dialog Manager uses the element for storage.

� Display rectangle. This determines the size and location of the item in the alert box or
dialog box. The display rectangle is specified in coordinates local to the alert box
or dialog box; these coordinates specify the upper-left and lower-right corners of
the item.

'DITL' resource type Bytes

Item count minus 1 2

(Variable)

(Variable)Last item
(variable format)

First item
(variable format)

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-153

Figure 6-45 Structure of compiled button, checkbox, radio button, static text, and editable
text items

� Enable flag. This specifies whether the item is enabled or disabled. If this bit is set,
the item is enabled and the Dialog Manager reports to your application whenever
mouse-down events occur inside this item.

� Item type.
� If this bit string is set to 4 (as specified in the Rez input file by the Button constant),

then the item is a button.
� If this bit string is set to 5 (as specified in the Rez input file by the CheckBox

constant), then the item is a checkbox.
� If this bit string is set to 6 (as specified in the Rez input file by the RadioButton

constant), then the item is a radio button.
� If this bit string is set to 8 (as specified in the Rez input file by the StaticText

constant), then the item is static text.
� If this bit string is set to 16 (as specified in the Rez input file by the EditText

constant), then the item is editable text.

� Text. This specifies the text that appears in the item. This element consists of a length
byte and as many as 255 additional bytes for the text. (“Titles for Buttons, Checkboxes,
and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text and
Editable Text Items” beginning on page 6-40 contain recommendations about appro-
priate text in items.)
� For a button, checkbox, or radio button, this is the title for that control.
� For a static text item, this is the text of the item.
� For an editable text item, this can be an empty string (in which case the editable text

item contains no text), or it can be a string that appears as the default string in the
editable text item.

� Alignment byte. This is added if necessary to make the previous text string end on a
word boundary.

Reserved 4

Button, checkbox, radio button,
static text, and editable text items

Bytes

8

1 to 256

0 or 1

Display rectangle

Enable flag

Text

Alignment byte

Item type (7 bits) 1

C H A P T E R 6

Dialog Manager

6-154 Dialog Manager Reference

Figure 6-46 shows the format for an element defined to be a control, an icon, or a
picture item.

Figure 6-46 Structure of compiled control, icon, and picture items

The compiled version of a control, an icon, or a picture item consists of the following
elements:

� Reserved. The Dialog Manager uses the element for storage.

� Display rectangle. This determines the size and location of the item in the alert box
or dialog box. The display rectangle is specified in coordinates local to the alert or
dialog box.

� Enable flag. This specifies whether the item is enabled or disabled. If this bit is set, the
item is enabled and the Dialog Manager reports to your application whenever
mouse-down events occur inside this item.

� Item type.
� If this 7-bit string is set to 7 (as specified in the Rez input file by the Control

constant), then the item is a button.
� If this is set to 32 (as specified in the Rez input file by the Icon constant), then the

item is an icon.
� If this is set to 64 (as specified in the Rez input file by the Picture constant), then

the item is a QuickDraw picture.

� Resource ID.
� For a control item, this is the resource ID of a 'CTRL' resource.
� For an icon item, this is the resource ID of an 'ICON' resource and, optionally, a
'cicn' resource

� For a picture item, this is the resource ID of a 'PICT' resource.

Figure 6-47 shows the format for an application-defined item.

Control, icon, and picture items Bytes

Display rectangle

Reserved

Resource ID

8

2

1

Reserved 4

1Enable flag Item type (7 bits)

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-155

Figure 6-47 Structure of a compiled application-defined item

The compiled version of an application-defined item consists of the following elements:

� Reserved. The Dialog Manager uses the element for storage.

� Display rectangle. This determines the size and location of the application-defined
item in the alert box or dialog box. The display rectangle is specified in coordinates
local to the alert box or dialog box.

� Enable flag. This specifies whether the application-defined item is enabled or disabled.
If this bit is set, the item is enabled and the Dialog Manager reports to
your application whenever mouse-down events occur inside this item.

� Item type. This is set to a value of 0 (as specified in the Rez input file by the UserItem
constant).

Figure 6-48 shows the format for a help item. (Help items are described in detail in the
chapter “Help Manager” of Inside Macintosh: More Macintosh Toolbox.)

Figure 6-48 Structure of compiled help items

4

Application-defined items Bytes

Reserved

Display rectangle

Enable flag
Reserved

8

1Item type (7 bits)
1

Help items Bytes

Size

HelpItem type

Resource ID

Item number
(HMScanAppendhdlg only)

1

2

2

Enable flag Item type (7 bits) 1

2

Reserved 8

Reserved 4

C H A P T E R 6

Dialog Manager

6-156 Dialog Manager Reference

The compiled version of a help item consists of the following elements:

� Reserved. The Dialog Manager uses the element for storage.

� Reserved. This should be set to 0.

� Enable flag. This specifies whether the item is enabled or disabled. For help items, this
bit should never be set, because the Dialog Manager cannot report to your application
when mouse-down events occur inside the item.

� Item type. This is set to 1 (as specified in the Rez input file by the HelpItem constant).

� Size. This specifies the number of bytes contained in the rest of this element. This is set
to 4 for an item identified by either the HMScanhdlg or HMScanhrct identifier, or it’s
set to 6 for an item identified by the HMScanAppendhdlg identifier.

� HelpItem type. This specifies the type of help item defined in the resource.
� For an item identified by the HMScanhdlg identifier, this element contains the

value 1.
� For an item identified by the HMScanhrct identifier, this element contains the

value 2.
� For an item identified by the HMScanAppendhdlg identifier, this element contains

the value 8.

� Resource ID. This is the resource ID of the resource containing the help messages for
this alert box or dialog box.
� For an item identified by either the HMScanhdlg or HMScanAppendhdlg identifier,

this is the ID of an 'hdlg' resource.
� For an item identified by the HMScanhrct identifier, this is the ID of an
'hrct' resource.

� Item number. This is available only for an item identified by the HMScanAppendhdlg
identifier. This is the item number within the alert box or dialog box after which the
help messages specified in the 'hdlg' resource should be displayed. These help
messages relate to the items that are appended to the alert box or dialog box. (The item
list resource does not contain these 2 bytes for items identified by either the
HMScanhdlg or HMScanhrct identifier.)

The Dialog Color Table Resource 6

On color monitors, the Dialog Manager automatically adds color to your alert and dialog
boxes so that they match the colors of the windows, alert boxes, and dialog boxes used by
system software. These colors provide aesthetic consistency across all monitors, from
black-and-white displays to 8-bit color displays. On a color monitor, for example, the
racing stripes in the title bar of a modeless dialog box are gray, the close box and window
frame are in color, and the buttons and text are black.

When you create dialog resources, your application’s dialog boxes use the system’s
default colors. Typically, this is all you need to do to provide color for your dialog
boxes—with the following exceptions:

� When you need to include a color version of an icon in a dialog box, you must create a
resource of type 'cicn' with the same resource ID as the black-and-white 'ICON'
resource specified in the item list resource. Plate 2 at the front of this book shows an
alert box that includes a color icon.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-157

� When you need to produce a blended gray color for outlining the inactive (that is,
dimmed) default button, you must create a dialog color table ('dctb') resource with
the same resource ID as the dialog resource.

“Using an Application-Defined Item to Draw the Bold Outline for a Default Button”
beginning on page 6-56 explains how to create a draw routine that outlines the default
button of a dialog box. If you deactivate a dialog box, you should dim its buttons and use
gray to draw the outline for the default button. Because GetNewDialog and NewDialog
supply black-and-white graphics ports for dialog boxes, you can create a dialog color
table resource for the dialog box to force the Dialog Manager to supply a color graphics
port. Then you can use a blended gray color for the outline for the default button. (The
NewColorDialog function supplies a color graphics port.)

Even when you create a dialog color table resource for drawing a gray outline, you
should not change the system’s default colors. If you feel absolutely compelled to use
nonstandard colors, you can use the Dialog Manager to specify colors other than the
default colors. Your application can specify its own colors for a dialog box by creating a
dialog color table ('dctb') resource with the same resource ID as the dialog resource
(described beginning on page 6-148). You don’t have to call any new routines to change
the colors used in dialog boxes. When you call the GetNewDialog function, for example,
the Dialog Manager automatically attempts to load a dialog color table resource with the
same resource ID as the dialog resource.

Be aware, however, that nonstandard colors in your dialog boxes may initially confuse
your users. Also be aware that despite any changes you may make, users can alter the
colors of dialog boxes anyway by changing settings in the Color control panel.

� W A R N I N G

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. �

A dialog color table resource has exactly the same format as a window color table (that is,
a resource of type 'wctb'), which is described in the chapter “Window Manager” of this
book.

If the dialog box’s content color isn’t white, specify the invisible constant in the dialog
resource. Use the Window Manager procedure ShowWindow to display the dialog box
when it’s the frontmost window. If the dialog box is a modeless dialog box that is not in
front, use the Window Manager procedure ShowHide to display it.

The Alert Color Table Resource 6

On color monitors, the Dialog Manager automatically adds color to your alert boxes so
that they match the colors of the windows and alerts used by system software. When you
create alert resources, your application’s alert boxes use the system’s default colors.
Typically, this is all you need to do to provide color for your alert boxes. (However, to
include a color version of an icon in an alert box, you must add a resource of type
'cicn' with the same resource ID as the black-and-white 'ICON' resource specified in
the item list resource.)

C H A P T E R 6

Dialog Manager

6-158 Dialog Manager Reference

If you feel absolutely compelled to use nonstandard colors, you can use the Dialog
Manager to specify colors other than the default colors. Your application can specify its
own colors for an alert box by creating an alert color table ('actb') resource with the
same resource ID as the alert resource (described beginning on page 6-150). You don’t
have to call any new routines to change the colors used in alert or dialog boxes. When
you call the Alert function, for example, the Dialog Manager automatically attempts to
load an alert color table resource with the same resource ID as the alert resource.

Be aware, however, that nonstandard colors in your alert boxes may initially confuse
your users. Also be aware that despite any changes you may make, users can alter the
colors of dialog boxes anyway by changing settings in the Color control panel.

� W A R N I N G

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. �

An alert color table resource has exactly the same format as a window color table
('wctb') resource, which is described in the chapter “Window Manager” of this book.

The Item Color Table Resource 6

On color monitors, the Dialog Manager automatically draws the items in your dialog and
alert boxes so that they match the colors of the items used by system software in its
dialog and alert boxes. The Dialog Manager also uses the default system font when it
draws the text in the static text and editable text items of your dialog and alert boxes.

If you feel absolutely compelled to use nonstandard fonts and colors, you can use the
Dialog Manager to specify your own colors, typeface, font style, and font size.

Note
The Dialog Manager displays the typeface, font style, and font size you
specify only on color monitors. �

Your application can specify these by creating an item color table ('ictb') resource with
the same resource ID as the dialog or alert box’s item list resource , and then providing a
dialog color table resource for a dialog box or an alert color table resource for an alert
box. You don’t have to call any new routines to change the colors, typefaces, font styles,
or font sizes used in dialog boxes. When you call the GetNewDialog function, for
example, the Dialog Manager automatically attempts to load an item color table resource
with the same resource ID as the item list resource.

Note
To make it easier to localize your application for other script
systems, you should not change the font. Do not use a smaller font,
such as 9-point Geneva; some script systems, such as KanjiTalk,
require 12-point fonts. �

Also, be aware that nonstandard colors for items in your dialog and alert boxes may
initially confuse your users.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-159

� W A R N I N G

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. �

If you want to provide an item color table resource for an alert box or a dialog box, you
must create an alert color table resource or a dialog color table resource, even if the item
color table resource has no actual color information and describes only static text and
editable text style changes.

An item color table resource is a resource of type 'ictb'. All item color table resources
must have resource ID numbers greater than 128.

There is no Rez template available for creating item color table resources. When
you compile an item color table resource, it should follow the format illustrated in
Figure 6-49.

Figure 6-49 Structure of a compiled item color table resource

Item data

Item offset

2

2

'ictb' resource type Bytes

First font family

Last
control color table or

font style table

Last font family

(Variable)

(Variable)

(Variable)

(Variable)

First item

Item data

First
control color table or

text style table

Last item
Item offset

2

2

C H A P T E R 6

Dialog Manager

6-160 Dialog Manager Reference

You define an item color table resource for a dialog box or an alert box by specifying
these elements in a resource with the 'ictb' resource type:

� Items. These consist of a variable number of items, corresponding to those in an item
list resource with the same resource ID as this item color table resource.

� Control color tables and text style tables.
� A control color table defines the colors used in a control. Several controls can share

the same control color table.
� A text style table defines the font family, font style, font size, and color of text in an

editable text item or a static text item. Several editable text and static text items can
share the same text style table.

� Optionally, a list of font families. If you use any text style tables, you generally
conclude the item color table resource with a list of text strings, each of which specifies
a font family. Although you may specify font numbers instead of font names, it’s much
more reliable to specify names, because system software may renumber these fonts as
they are installed and removed. For every editable text item and static text item listed
at the top of the item color table resource, specify a font family at the bottom of the
resource.

The information contained in an element depends on the type of item it describes:

� Item data. This contains information about how this item is described in the rest of this
resource.
� For a control, this is the length (in bytes) of its control color table.
� For a static text item or an editable text item, the bits of this element determine

which elements of the text style table to use and are interpreted as follows:

� Item offset. The number of bytes from the beginning of the resource to either the
control color table or the text style table that describes this item.

When both the item data and item offset elements are set to 0, then the control or text
item is drawn with the default colors, typeface, font size, and font style. Even if only the
first few items of the dialog box have color style information, there must be room for all
of the items actually in the box (with the item data and item offset elements of the unused
entries set to 0).

Bit Meaning

0 Change the font family.

1 Change the typeface.

2 Change the font size.

3 Change the font foreground color.

4 Add the font size.

13 Change the font background color.

14 Change the font mode.

15 The font element is an offset to the name.

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-161

For controls, the colors are described by a color table identical to a 'cctb' resource used
by the Control Manager. Multiple controls can use the same color table. If the resource
sets both the item data and the item offset element to 0, then the system’s default colors
are used for the control. The format of a control color table is illustrated in Figure 6-50.

Figure 6-50 Structure of a compiled control color table

A control color table consists of the following elements:

� Reserved. This should always be set to a value of 0.

� Reserved. Again, should always be set to a value of 0.

� Number of control parts. For standard controls other than scroll bars, this should be
set to 3, because a standard control uses only three parts: frame, control body, and text.
For scroll bars, this should be set to 12; see the description of the control color table
resource in the chapter “Control Manager” for information on specifying the colors for
a scroll bar. To create a control that uses other parts, you must create a custom 'CDEF'
resource, as described in the chapter “Control Manager” in this book.

Reserved 4

Control color table Bytes

Number of control parts

First part identifier

Red component

Green component

Blue component

Last part identifier

Red component

Green component

Blue component

2

2

2

2

2

2

2

2

Reserved 2

2

C H A P T E R 6

Dialog Manager

6-162 Dialog Manager Reference

� Part identifier. This is a value that identifies a part of the first control. The following
list shows the values and constants they represent for the standard controls other than
scroll bars. For information on the part identifiers for a scroll bar, see the description of
the control color table resource in the chapter “The Control Manager” in this book.
They can be listed in any order in the control color table.

� Red component. This is an integer that represents the intensity of the red component
of the color to use when drawing this control part.

� Green component. This is an integer that represents the intensity of the green
component of the color to use when drawing this control part.

� Blue component. This is an integer that represents the intensity of the blue component
of the color to use when drawing this control part.

� Part identifier, and the red, green, and blue color components for the next control part.
Specify color components for every part of this control whose color you want to
change. If a part is not listed in the control color table, the Dialog Manager draws it in
its default color.

Figure 6-51 shows the format of a text style table.

Figure 6-51 Structure of a compiled text style table

Constant Value Control part

cFrameColor 0 Frame

cBodyColor 1 Body

cTextColor 2 Text (such as titles)

2

2

2

2

2

2

2

2

2

2

Text style table Bytes

Typeface

Font style

Font size

Red component for text

Green component for text

Blue component for text

Red component for background

Green component for background

Blue component for background

Mode

C H A P T E R 6

Dialog Manager

Dialog Manager Reference 6-163

The text style table must be 20 bytes long, as shown in Figure 6-51. Multiple editable text
and static text items can use the same text style record. To display text in the standard
typeface, color, font size, and font style, set the item data and item offset elements for the
item to 0. Allocate space for all fields in the text style table, even if they are not used.

A text style table consists of the following elements (see Inside Macintosh: Text for a
discussion of font families, font style, and point sizes):

� Typeface. This is the name of the font family to use. If bit 15 in the item data element is
set to 1, then this element contains an offset (in bytes) to a font name element at the
end of the resource. If bit 0 in the item data element is set to 1, then this element
contains the number of a font family. If bit 0 in the item data element is set to 0, this
element is set to 0, and the system default font is used.

� Font style. This is the font style to use. If bit 1 in the item data element is set to 1, then
this element uses the bits of the low-order byte to describe which styles to apply to the
text. If all bits in the low-order byte are set to 0, the plain font style is used. The bit
numbers and the styles they represent are

� Font size. This is the point size of the font. If bit 2 in the item data element is set to 1,
this element contains a value representing a point size. If bit 4 in the item data element
is set to 1, this element contains a value to add to the current point size of the text. If
bit 0 in the item data element is set to 0, this element is set to 0, and the system font
size (12) is used.

� Text red color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the red component of the color to use when
drawing the text.

� Text green color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the green component of the color to use when
drawing the text.

� Text blue color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the blue component of the color to use when
drawing the text.

� Background red color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the red component of the color
to use when drawing the background behind the text.

Bit
value Style

0 Bold

1 Italic

2 Underline

3 Outline

4 Shadow

5 Condensed

6 Extended

C H A P T E R 6

Dialog Manager

6-164 Dialog Manager Reference

� Background green color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the green component of the color
to use when drawing the background behind the text.

� Background blue color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the blue component of the color
to use when drawing the background behind the text.

� Mode. If bit 14 in the item data element is set to 1, this element contains an integer that
represents how characters are placed in the bit image. The values that the Dialog
Manager interprets and the constants that represent them are listed here. See Inside
Macintosh: Imaging for a discussion of source transfer modes.

Constant Value

scrOr 1

srcXor 2

srcBic 3

C H A P T E R 6

Dialog Manager

Summary of the Dialog Manager 6-165

Summary of the Dialog Manager 6

Pascal Summary 6

Constants 6

CONST

{checking for AppendDITL, ShortenDITL, CountDITL using Gestalt function}

gestaltDITLExtAttr = 'ditl'; {Gestalt selector for AppendDITL, etc.}

gestaltDITLExtPresent = 0; {if this bit's set, then AppendDITL, }

{ ShortenDITL, & CountDITL are available}

{item types for GetDialogItem, SetDialogItem}

ctrlItem = 4; {add this constant to the next four constants}

btnCtrl = 0; {standard button control}

chkCtrl = 1; {standard checkbox control}

radCtrl = 2; {standard radio button}

resCtrl = 3; {control defined in a control resource}

helpItem = 1; {help balloons}

statText = 8; {static text}

editText = 16; {editable text}

iconItem = 32; {icon}

picItem = 64; {QuickDraw picture}

userItem = 0; {application-defined item}

itemDisable = 128; {add to any of the above to disable it}

{item numbers of OK and Cancel buttons in alert boxes}

ok = 1; {first button is OK button}

cancel = 2; {second button is Cancel button}

{resource IDs of alert box icons}

stopIcon = 0;

noteIcon = 1;

cautionIcon = 2;

{constants used for theMethod parameter in AppendDITL}

overlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}

C H A P T E R 6

Dialog Manager

6-166 Summary of the Dialog Manager

{constants for procID parameter of NewDialog, NewColorDialog}

dBoxProc = 1; {modal dialog box}

noGrowDocProc = 4; {modeless dialog box}

movableDBoxProc = 5; {movable modal dialog box}

Data Types 6

TYPE DialogPtr = WindowPtr;

ResumeProcPtr = ProcPtr;

SoundProcPtr = ProcPtr;

ModalFilterProcPtr = ProcPtr;

DialogPeek = ^DialogRecord;

DialogRecord =

RECORD

window: WindowRecord; {dialog window}

items: Handle; {item list resource}

textH: TEHandle; {current editable text item}

editField: Integer; {editable text item number minus 1}

editOpen: Integer; {used internally}

aDefItem: Integer; {default button item number}

END;

DITLMethod = Integer;

Dialog Manager Routines 6

Initializing the Dialog Manager
PROCEDURE InitDialogs (resumeProc: ResumeProcPtr);

PROCEDURE ErrorSound (soundProc: SoundProcPtr);

PROCEDURE SetDialogFont (fontNum: Integer); {also spelled SetDAFont}

Creating Alerts
{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

FUNCTION Alert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION StopAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION NoteAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION CautionAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION GetAlertStage : Integer;

PROCEDURE ResetAlertStage;

C H A P T E R 6

Dialog Manager

Summary of the Dialog Manager 6-167

Creating and Disposing of Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

FUNCTION GetNewDialog (dialogID: Integer; dStorage: Ptr;
behind: WindowPtr): DialogPtr;

FUNCTION NewColorDialog (dStorage: Ptr; boundsRect: Rect; title: Str255;
visible: Boolean; procID: Integer; behind:
WindowPtr; goAwayFlag: Boolean; refCon:
LongInt; items: Handle): DialogPtr;

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect; title:
Str255; visible: Boolean; procID: Integer;
behind: WindowPtr; goAwayFlag: Boolean; refCon:
LongInt; items: Handle): DialogPtr;

PROCEDURE CloseDialog (theDialog: DialogPtr);

PROCEDURE DisposeDialog (theDialog: DialogPtr);

Manipulating Items in Alert and Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE GetDialogItem (theDialog: DialogPtr; itemNo: Integer;
VAR itemType: Integer; VAR item: Handle;
VAR box: Rect);

PROCEDURE SetDialogItem (theDialog: DialogPtr; itemNo: Integer;
itemType: Integer; item: Handle; box: Rect);

PROCEDURE HideDialogItem (theDialog: DialogPtr; itemNo: Integer);

PROCEDURE ShowDialogItem (theDialog: DialogPtr; itemNo: Integer);

FUNCTION FindDialogItem (theDialog: DialogPtr; thePt: Point): Integer;

PROCEDURE AppendDITL (theDialog: DialogPtr; theDITL: Handle;
theMethod: DITLMethod);

PROCEDURE ShortenDITL (theDialog: DialogPtr; numberItems: Integer);

FUNCTION CountDITL (theDialog: DialogPtr): Integer;

Handling Text in Alert and Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE ParamText (param0: Str255; param1: Str255;
param2: Str255; param3: Str255);

PROCEDURE GetDialogItemText (item: Handle; VAR text: Str255);

PROCEDURE SetDialogItemText (item: Handle; text: Str255);

PROCEDURE SelectDialogItemText
(theDialog: DialogPtr; itemNo: Integer; strtSel:
Integer; endSel: Integer);

PROCEDURE DialogCut (theDialog: DialogPtr);

PROCEDURE DialogCopy (theDialog: DialogPtr);

C H A P T E R 6

Dialog Manager

6-168 Summary of the Dialog Manager

PROCEDURE DialogPaste (theDialog: DialogPtr);

PROCEDURE DialogDelete (theDialog: DialogPtr);

Handling Events in Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE ModalDialog (filterProc: ModalFilterProcPtr; VAR itemHit:
Integer);

FUNCTION IsDialogEvent (theEvent: EventRecord): Boolean;

FUNCTION DialogSelect (theEvent: EventRecord; VAR theDialog:
DialogPtr; VAR itemHit: Integer): Boolean;

PROCEDURE DrawDialog (theDialog: DialogPtr);

PROCEDURE UpdateDialog (theDialog: DialogPtr; updateRgn: RgnHandle);

Application-Defined Routines 6

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: Integer);

PROCEDURE MyAlertSound (soundNo: Integer);

FUNCTION MyEventFilter (theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR itemHit: Integer): Boolean;

C Summary 6

Constants 6

enum {

/*checking for AppendDITL, ShortenDITL, CountDITL using Gestalt function*/

#define gestaltDITLExtAttr 'ditl' /*Gestalt selector*/

gestaltDITLExtPresent = 0 /*if this bit's set, then AppendDITL, */

/* ShortenDITL, & CountDITL are available*/

};

enum {

/*item types for GetDItem, SetDItem*/

ctrlItem = 4, /*add this constant to the next four constants*/

btnCtrl = 0, /*standard button control*/

chkCtrl = 1, /*standard checkbox control*/

radCtrl = 2, /*standard radio button*/

resCtrl = 3, /*control defined in a control resource*/

statText = 8, /*static text*/

editText = 16, /*editable text*/

iconItem = 32, /*icon*/

C H A P T E R 6

Dialog Manager

Summary of the Dialog Manager 6-169

picItem = 64, /*QuickDraw picture*/

userItem = 0, /*application-defined item*/

helpItem = 1, /*help balloons*/

itemDisable = 128,/*add to any of the above to disable it*/

/*item numbers of OK and Cancel buttons in alert boxes*/

ok = 1, /*first button is OK button*/

cancel = 2, /*second button is Cancel button*/

/*resource IDs of alert box icons*/

stopIcon = 0,

noteIcon = 1,

cautionIcon = 2

};

enum {

/*constants used for theMethod parameter in AppendDITL*/

overlayDITL = 0, /*overlay existing items*/

appendDITLRight = 1, /*append at right*/

appendDITLBottom = 2 /*append at bottom*/

};

enum {

/*constants for procID parameter of NewDialog, NewColorDialog*/

dBoxProc = 1, /*modal dialog box*/

noGrowDocProc = 4, /*modeless dialog box*/

movableDBoxProc = 5 /*movable modal dialog box*/

};

Data Types 6

typedef WindowPtr DialogPtr;

typedef struct DialogRecord DialogRecord;

typedef struct DialogRecord *DialogPeek;

struct DialogRecord{

WindowRecord window; /*dialog window*/

Handle items; /*item list resource*/

TEHandle textH; /*current editable text item*/

short editField; /*editable text item number minus 1*/

short editOpen; /*used internally*/

short aDefItem; /*default button item number*/

};

C H A P T E R 6

Dialog Manager

6-170 Summary of the Dialog Manager

typedef pascal void (*ResumeProcPtr)(void);

typedef pascal void (*SoundProcPtr)(void);

typedef pascal Boolean (*ModalFilterProcPtr)(DialogPtr theDialog,

EventRecord *theEvent, short *itemHit);

typedef short DITLMethod;

Dialog Manager Routines 6

Initializing the Dialog Manager

pascal void InitDialogs (ResumeProcPtr resumeProc);

pascal void ErrorSound (SoundProcPtr soundProc);

pascal void SetDialogFont (short fontNum); /*also spelled SetDAFont*/

Creating Alerts

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal short Alert (short alertID, ModalFilterProcPtr filterProc);

pascal short StopAlert (short alertID, ModalFilterProcPtr filterProc);

pascal short NoteAlert (short alertID, ModalFilterProcPtr filterProc);

pascal short CautionAlert (short alertID, ModalFilterProcPtr filterProc);

#define GetAlertStage() (* (short*) 0x0A9A);

pascal void ResetAlertStage (void);

Creating and Disposing of Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal DialogPtr GetNewDialog
(short dialogID, void *dStorage,
WindowPtr behind);

pascal DialogPtr NewColorDialog
(void *dStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short procID, WindowPtr behind,
Boolean goAwayFlag, long refCon, Handle items);

pascal DialogPtr NewDialog
(void *dStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short procID, WindowPtr behind,
Boolean goAwayFlag, long refCon,
Handle items);

pascal void CloseDialog (DialogPtr theDialog);

pascal void DisposeDialog (DialogPtr theDialog);

C H A P T E R 6

Dialog Manager

Summary of the Dialog Manager 6-171

Manipulating Items in Alert and Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void GetDialogItem (DialogPtr theDialog, short itemNo,
short *itemType, Handle *item, Rect *box);

pascal void SetDialogItem (DialogPtr theDialog, short itemNo, short
itemType, Handle item, const Rect *box);

pascal void HideDialogItem (DialogPtr theDialog, short itemNo);

pascal void ShowDialogItem (DialogPtr theDialog, short itemNo);

pascal short FindDialogItem (DialogPtr theDialog, Point thePt);

pascal void AppendDITL (DialogPtr theDialog, Handle theDITL, DITLMethod
theMethod);

pascal void ShortenDITL (DialogPtr theDialog, short numberItems);

pascal short CountDITL (DialogPtr theDialog);

Handling Text in Alert and Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void ParamText (ConstStr255Param param0,
ConstStr255Param param1,
ConstStr255Param param2,
ConstStr255Param param3);

pascal void GetDialogItemText
(Handle item, Str255 text);

pascal void SetDialogItemText
(Handle item, ConstStr255Param text);

pascal void SelectDialogItemText
(DialogPtr theDialog, short itemNo,
short strtSel, short endSel);

pascal void DialogCut (DialogPtr theDialog);

pascal void DialogCopy (DialogPtr theDialog);

pascal void DialogPaste (DialogPtr theDialog);

pascal void DialogDelete (DialogPtr theDialog);

Handling Events in Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void ModalDialog (ModalFilterProcPtr filterProc, short *itemHit);

pascal Boolean IsDialogEvent (const EventRecord *theEvent);

pascal Boolean DialogSelect (const EventRecord *theEvent,
DialogPtr *theDialog, short *itemHit);

pascal void DrawDialog (DialogPtr theDialog);

pascal void UpdateDialog (DialogPtr theDialog, RgnHandle updateRgn);

C H A P T E R 6

Dialog Manager

6-172 Summary of the Dialog Manager

Application-Defined Routines 6

pascal void MyItem (WindowPtr theWindow, short itemNo);

pascal void MyAlertSound (short soundNo);

pascal Boolean MyEventFilter (DialogPtr theDialog, *EventRecord theEvent,
*short itemHit);

Assembly-Language Summary 6

Data Structures 6

DialogRecord Data Structure

Global Variables 6

0 dWindow 156 bytes window record for the alert box or dialog box
156 items long handle to the item list resource for the alert box or dialog box
160 teHandle long handle to the current editable text item
164 editField word current editable text item
166 editOpen word used internally
168 aDefItem word item number of the default button

DAStrings Handles to text strings specified with the ParamText procedure
DABeeper Address of current sound procedure
DlgFont Font number for text in dialog boxes and alert boxes
ACount Alert stage number (0 through 3) of the last alert
ANumber Resource ID of last alert
ResumeProc Address of resume procedure (should not be used in System 7)

Contents 7-1

C H A P T E R 7

Figure 7-0
Listing 7-0
Table 7-0

Contents

7 Finder Interface

Introduction to the Finder Interface 7-3
About the Finder Interface 7-6
Using the Finder Interface 7-6

Giving a Signature to Your Application and a Creator and a
File Type to Your Documents 7-8
Creating Icons for the Finder 7-11
Creating Customized Document Icons 7-17
Creating File Reference Resources 7-18
Creating a Bundle Resource 7-20
How and When the Finder Launches Your Application 7-25
Displaying Messages When the Finder Can’t Find Your Application 7-27
Providing Version Resources 7-31
Using Finder Information in the Catalog File 7-32
Supporting Stationery Pads 7-34
Distributing Fonts, Sounds, and Other Movable Resources 7-36
Providing Balloon Help for Nondocument Icons 7-38
Using Aliases 7-39
Using the System Folder and Its Related Directories 7-41
The Desktop Database 7-45

Finder Interface Reference 7-46
Data Structures 7-46

File Information Record 7-47
Extended File Information Record 7-49
Directory Information Record 7-50
Extended Directory Information Record 7-50

Routines 7-51
Resolving Alias Files 7-51
Finding Directories 7-53

C H A P T E R 7

7-2 Contents

Resources 7-56
The Signature Resource 7-57
The Icon List Resource 7-57
The Small Icon List Resource 7-58
The Large 4-Bit Color Icon Resource 7-59
The Small 4-Bit Color Icon Resource 7-60
The Large 8-Bit Color Icon Resource 7-61
The Small 8-Bit Color Icon Resource 7-62
The Icon Resource 7-63
The Color Icon Resource 7-64
The File Reference Resource 7-64
The Bundle Resource 7-65
The Missing-Application Name String 7-68
The Application-Missing Message String 7-68
The Version Resource 7-69

Summary of the Finder Interface 7-71
Pascal Summary 7-71

Constants 7-71
Data Types 7-73
Routines 7-74

C Summary 7-74
Constants 7-74
Data Types 7-76
Routines 7-77

Assembly-Language Summary 7-77
Data Structures 7-77

Result Codes 7-78

C H A P T E R 7

Introduction to the Finder Interface 7-3

Finder Interface 7

The Finder is an application that works with the system software to keep track of files
and manage the user’s desktop display. This chapter describes the programming
interface your application should use to interact with the Finder.

To use this chapter, you should be familiar with the Resource Manager. See the chapter
“Introduction to the Macintosh Toolbox” in this book for general information about
resources; detailed information about the Resource Manager and its routines is provided
in the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox. Virtually
all software intended for Macintosh computers must use the Finder-related resources
described in this chapter.

Read this chapter to learn how to

� set up the resources the Finder needs to display and start up your application

� set up the resources the Finder uses to display information about other files related to
your application

� check or change Finder-related information stored in a volume’s catalog file

� support stationery pads

� use the directories generally organized within the System Folder

This chapter does not explain how to use Apple events to communicate with the Finder.
When a user opens or prints a file from the Finder, the Finder sends information to your
application so that it can open or print the file. In System 7, applications that support
high-level events receive this information through the required Apple events.

Refer to Inside Macintosh: Interapplication Communication for instructions on how
your application should respond to these required Apple events that the Finder sends
to your application: Open Application, Open Documents, Print Documents, and Quit
Application. In addition, your application can use another set of Apple events—called
Finder events—to request services from the Finder. For example, your application can ask
the Finder to perform such operations as launching another application on your behalf.
Refer to Inside Macintosh: Interapplication Communication for more details.

Introduction to the Finder Interface 7

The Finder is an application that manages the user’s desktop interface. The desktop is
the working environment displayed on the Macintosh computer—namely, the gray
background area on the screen.

On the desktop, the Finder displays icons representing your application and the
documents it creates, and it tracks user activity. An icon is an image that the Finder
displays to graphically represent some object—such as a file, a folder, or the Trash—
that the user can manipulate. For example, Figure 7-1 on the next page shows icons that
the Finder displays for several sample applications (called SurfWriter 3.0, SurfPainter,
and SurfDB) and for a text document (named Some Memo) that a user has created
with the SurfWriter application. These icons are displayed in a window that the Finder
uses to display the contents of the disk icon labeled Essentials.

C H A P T E R 7

Finder Interface

7-4 Introduction to the Finder Interface

Figure 7-1 Application and document icons in a window on the desktop

To distinguish your product for the user, you should design your own icons for all the
files associated with your application. For each file type that your application uses or
creates, you should define large, small, black-and-white, and 4-bit and 8-bit color icons—
each in a separate resource. Your application can then use another resource, called a
bundle resource, to assign these icons to all your files of a particular type. For example,
the document icon representing Some Memo in Figure 7-1 is the icon that the SurfWriter
application assigns to all text files that it creates. When double-clicking the icon for Some
Memo, the user asks the Finder to launch the SurfWriter application, which in turn
responds by opening the document Some Memo in a window.

Stationery pads are files that a user creates to serve as templates for other documents.
Editions are special files that contain data to be shared among applications. Query
documents contain commands and data in a format appropriate for a database or other
data source. If your application supports any of these document types, you can create
icons for the Finder that distinguish the stationery pads, editions, and query documents
that users create with your application. For example, Plate 4 at the front of this book
shows customized stationery pad and edition icons used for documents created with the
SurfWriter application. (Editions are described in Inside Macintosh: Interapplication
Communication. Query documents are described in Inside Macintosh: Communications.)

You might also like your application to create customized icons for documents on the
desktop. Or, if instead of producing an application, you produce and distribute
information documents (such as database files, stationery pads, query documents, clip art
libraries, or dictionaries) to be used by other applications, you can also provide
customized icons for the Finder that distinguish your documents.

Macintosh users have access to online assistance in the form of help balloons. You can
customize the help balloon that the Finder displays for your application icon. For
example, Figure 7-2 shows a customized help balloon for the SurfWriter application icon.

C H A P T E R 7

Finder Interface

Introduction to the Finder Interface 7-5

Figure 7-2 A customized help balloon for an application icon

When appropriate, the Finder starts up your application and uses Apple events to tell
your application what documents to open or print. To perform these tasks, the Finder
relies on information you provide through resources. When the user creates or installs a
file, the File Manager (described in Inside Macintosh: Files) initially stores some of this
information in the volume’s catalog file. (The catalog file is a special file, located on a
volume, that contains information about the hierarchical organization of files and folders
on that volume.)

The Finder extracts from the catalog file the information you provide in your resources
and, for quick access to your resource information, the Finder uses that information to
build either a desktop database for all volumes over 2 MB or a Desktop file for volumes
under 2 MB. (The desktop database is a Finder-maintained database of icons, file types,
applications, version data, and comments; the Desktop file is a resource file in which the
Finder stores this information for volumes under 2 MB.)

You can even specify resources that identify your application when the user tries to open
a document and your application is missing. For example, if a user tries to open a
document named Instructions and the SurfWriter application is missing from the user’s
computer system, the Finder displays the alert box in Figure 7-3.

Figure 7-3 A Finder message identifying a missing application

The System Folder is a directory that contains the software that Macintosh computers
use to start up. The System Folder includes a set of folders for storing related files. Your
application may use several of these folders for storing its files. For example, you may
want to use the Preferences folder to store preferences files that your application needs
when starting up.

C H A P T E R 7

Finder Interface

7-6 About the Finder Interface

About the Finder Interface 7

You can use the Finder interface to

� create the resources—such as those describing icons—that the Finder uses to extract
and to display information about your application and its documents (Generally, all
applications should provide these resources for their files.)

� determine and change the Finder information structure stored in a catalog file
(Generally, most applications need to determine—and many might wish to set—
information in the catalog file.)

� support stationery pads so that users can easily use templates for their documents
(Generally, most applications that create documents should support stationery pads.)

� locate the directories typically located in the System Folder (Generally, many
applications will want to access these directories.)

Using the Finder Interface 7

The Finder needs quick access to some key information about your application, such as
what icons to use when displaying your application and its documents. You supply most
of this information in the resource fork of your application file.

The Finder extracts this information and uses it to maintain its own database of the
resources it needs. The Finder records the location of your application on disk in
this database so that it can find your application quickly when the user opens one of your
documents.

For compatibility with the Finder, your application should have

� a signature resource, so that the Finder can identify and start up your application
when a user double-clicks documents created by your application

� a set of resources that describe icons that visually represent your application and
any documents it creates

� a set of file reference resources, to link icons with the file types they represent and
to allow users to launch your application by dragging document icons to your
application icon

� a bundle resource, to group together your application’s signature, icon, and file
reference resources

� a size resource, to tell the Finder how much memory to allocate for your applica-
tion when it starts up and whether your application supports various system
software features

� either a missing-application name string resource in your application’s documents
(to display the name of your application if the user tries to open or print a document

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-7

created by your application when your application is missing) or an application-
missing message string resource in your application’s documents (to explain why
the user can’t open or print a document used only by your application)

Note
Supply a missing-application name string resource for documents
that you intend for users to open with your application; supply an
application-missing message string resource for documents (such
as preferences files) that your application uses but that users
shouldn’t open. You supply only one of these resources in a document—
never both. �

Your application can also make use of these resources:

� version resources, so that users can easily find out the version of your application and,
if applicable, the version of your application’s superset of files

� a help resource, which the Finder uses to display your customized Balloon Help
message for your application, control panel, system extension, or desk accessory icon

If you sell or distribute data in the form of a document to be used by other applications,
you can assist users by providing

� an appropriate file type to allow users to open your document from the Finder by
dragging its icon to an application icon or by choosing the Open command from the
File menu within an application

� the resources describing an icon family to represent your document to the user

� a missing-application name string resource or an application-missing message string
resource, so the Finder can assist users who try to open or print your documents from
the Finder

� version resources, so that users can easily find out the version of your document and,
if your document file is one of a larger collection of files, the version of the entire
superset of files

A catalog file exists on every volume to maintain relationships between the files and
directories on that volume. (A volume is any storage medium formatted to contain files.)
Although it’s used mostly by the File Manager, the catalog file also contains information
used by the Finder. You can always check the information in the catalog file. In particular,
you may want to check the file type or creator for a file, or you may want to check or set
one of the Finder flags for a document. When opening a document, your application
should check a Finder flag to determine if the document is a stationery pad, and, if it is,
your application should copy the document’s contents into a new document and open
the new document in an untitled window.

Your application might wish to use the folders located in the System Folder. Those you’re
most likely to want to access are Preferences, Temporary Items, and Trash. For example,
you might wish to check for the existence of a user’s configuration file in Preferences,
create a temporary file in Temporary Items, or—if your application runs out of storage
when trying to save a file—check how much storage is taken by items in the Trash
directory and report this to the user. You can use the FindFolder function to get the
path information you need to gain access to these system-related directories.

C H A P T E R 7

Finder Interface

7-8 Using the Finder Interface

In System 7, users can create Finder objects called aliases to aid them in organizing their
files. Ordinarily, when the user wants to open or print files, your application does not
need to be concerned with whether they are aliases because the Finder resolves aliases
before passing them to your application. However, if your application bypasses the
Finder (or the Standard File Package, which is described in Inside Macintosh: Files) when
manipulating documents, it should check for and resolve aliases itself by using the Alias
Manager function ResolveAliasFile.

The rest of this chapter describes in detail how to use these Finder features in your
application.

Giving a Signature to Your Application and a Creator and a
File Type to Your Documents 7
The Finder identifies your application through its signature, a unique four-character
sequence. The signature must not conflict with the signature of any other application.
To ensure uniqueness, you must register your application’s signature with Apple
Computer, Inc., at Macintosh Developer Technical Support.

Note
There is no need to register your own resource types because they’re
usually used in only your own applications or documents. �

You must include in your resource file a special resource that has your application’s
signature as its resource type. By convention, the signature resource has a resource ID
number of 0. The signature resource typically contains a string that specifies the name,
version number, and release date of your application. If you do not provide specific
version information through a version resource (described in “Providing Version
Resources” beginning on page 7-31), the Finder displays the string stored in the signature
resource when the user selects your application and chooses Get Info from
the File menu.

Listing 7-1 illustrates a signature resource in Rez input format. (Rez is the resource
compiler provided with Apple’s Macintosh Programmer’s Workshop [MPW], available
from APDA.)

Listing 7-1 Rez input for a signature resource

type 'WAVE' as 'STR '; /*WAVE is the signature*/

resource 'WAVE' (0, purgeable) { /*resource ID is 0*/

"SurfWriter 3.0 © 1992" /*default Get Info string*/

};

Note
The signature resource alone is not sufficient to establish your
application’s signature. You must also supply a bundle resource,
described in “Creating a Bundle Resource” beginning on page 7-20. �

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-9

Whenever your application creates a document, it assigns the document a creator and
a file type. Typically, as described in “Using Finder Information in the Catalog File”
beginning on page 7-32, your application sets its signature as the document’s creator.
When a user double-clicks a document or selects it and chooses Open or Print from the
Finder’s File menu, the Finder reads the creator field of that file to find the document’s
creator. The Finder then searches for an application with a signature by that name. When
it finds that application, the Finder launches it.

If the document’s creator is your application’s signature, for example, the Finder calls the
Process Manager to start your application. The Finder then passes to your application the
information it needs to open or print the document; since the introduction of
System 7, the Finder has used Apple events to pass this information to your application.
Inside Macintosh: Interapplication Communication describes how your application processes
the required Apple events to open or print files.

As described in “Using Finder Information in the Catalog File” beginning on page 7-32,
your application typically assigns a file type to a document when it creates one. The file
type can be a type especially defined for your application, or it can be one of the existing
general types, such as those listed here.

File type Description

'APPL' Launchable application

'DFIL' File for storing desk accessories

'DRVR' Driver

'FFIL' File for storing fonts

'INIT' System extension

'PICT' QuickDraw picture

'PRER' Printer driver

'RDEV' Chooser extension

'TEXT' Stream of ASCII characters

'adev' Network extension (such as EtherTalk 2.0)

'appe' Background-only application

'cdev' Control panel

'edtp' Edition for sharing graphics-oriented data

'edts' Edition for sharing sound-oriented data

'edtt' Edition for sharing text-oriented data

'ffil' Font

'ifil' Script system resource collection

'kfil' Keyboard layout

'pref' Preferences file

'qery' Query document for database access

'scri' System extension for script systems

'sfil' Sound

C H A P T E R 7

Finder Interface

7-10 Using the Finder Interface

Note
Apple reserves the use of all signatures and file types whose names
contain only lowercase and nonalphabetic characters. Your signature and
the file types created especially for your application must each contain at
least one uppercase character. Since the system software
never displays signatures and file types to users, signatures and file
types can consist of character combinations that might otherwise be
incomprehensible to anyone but you. �

Like signatures, file types must be registered with Apple. Your application must have a
file type of 'APPL'. The creator field of your application file should contain its own
signature. Most programming environments provide a simple tool for setting the creator
field of your application file.

Your application can create documents of any type, and it can specify any application
as the creator. You could write a utility application, for example, that creates a new
document by opening one text file and appending onto it another text file. The applica-
tion would give the new document the same creator as the first original text file so
that the Finder can call on that application when the user wants to open or print the
new document.

Assign the standard file type 'TEXT' to files that consist of only text—that is, a stream of
characters with return characters at the ends of paragraphs. Most word processors allow
the user to create text-only files. A document of file type 'TEXT' can be opened or
printed by any application that accepts such file types. Your application can still assign its
own signature as the file’s creator so that the Finder can call on it to open or print the file
when appropriate.

Users can also open a document created by your application—as well as a document of a
file type supported by your application—by selecting its icon and dragging it to your
application’s icon. Because the document’s file type is stored in the catalog file and the
Finder stores a list of your application’s supported file types in the desktop database, the
Finder can determine whether to launch your application. If the document’s file type is
supported by your application, the Finder launches your application and passes it the
name of the document. (These topics are detailed in subsequent sections of this chapter.)

For example, if your application is a page-layout program, it might create documents of
its own file type while also supporting documents of 'TEXT' and 'PICT' file types. A
user can launch your application by dragging a document of any of these file types to
your application icon.

Your application also relies on file types to determine which files to let the user open
when your application is running. When your application calls the Standard File Package
to open a file, your application supplies either a list of the file types that your application
can open or a filter function for those types. The open file dialog box then displays only
files of the specified types. (See Inside Macintosh: Files for details.)

'tfil' TrueType font

'ttro' TeachText read-only file

'zsys' A system file (such as the System file itself)

File type Description

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-11

Creating Icons for the Finder 7
The Finder represents your files as icons. To distinguish your product for the user, you
can design your own icons for all the files associated with your application, including

� your application file itself

� standard documents created by your application

� stationery pads that users create from your application’s documents

� data-sharing editions that users create from your application’s documents

� other special documents, such as read-only, graphics, and query documents, which are
either created by your Macintosh application or provided by you for use by other
Macintosh applications

For most effective display, you should create an icon family for each of your files.
An icon family is the set of icons that represent a single object, such as an application
or a document, that the Finder displays. An entire icon family consists of large
(32-by-32 pixel) and small (16-by-16 pixel) icons, each with a mask, and each available
in three different versions of color: black and white, 4 bits of color data per pixel, and
8 bits of color data per pixel. Specifically, the following icons make up the icon family
for a single file:

� a large (32-by-32 pixel) black-and-white icon and mask—both of which you define in
an icon list ('ICN#') resource

� a small (16-by-16 pixel) black-and-white icon and mask—both of which you define in a
small icon list ('ics#') resource

� a large (32-by-32 pixel) color icon with 4 bits of color data per pixel—which you define
in a large 4-bit color icon ('icl4') resource

� a small (16-by-16 pixel) color icon with 4 bits of color data per pixel—which you define
in a small 4-bit color icon ('ics4') resource

� a large (32-by-32 pixel) color icon with 8 bits of color data per pixel—which you define
in a large 8-bit color icon ('icl8') resource

� a small (16-by-16 pixel) color icon with 8 bits of color data per pixel—which you define
in a small 8-bit color icon ('ics8') resource

Plate 3 in the front of this book shows how the SurfWriter sample application uses these
resources to define the icon family for its application icon.

Somewhat related to these resources are the icon ('ICON') resource and the color icon
('cicn') resource. You can use either to describe a 32-by-32 pixel icon within some
element of your application. However, the Finder does not use or display any resources
that you create of type 'ICON' or type 'cicn'. Instead, your application uses these
resources to display icons within your application. Generally, you use an icon resource to
display a black-and-white icon in a menu or dialog box, as described in the chapters
“Menu Manager” and “Dialog Manager” in this book. (For example, the color alert box in
Plate 2 in the front of this book specifies a resource of type 'cicn' for the color icon in
the upper-left corner of the alert box.) If you provide a color icon ('cicn') resource with
the same resource ID as the icon ('ICON') resource, the Menu Manager and the Dialog
Manager display the color icons instead of the black-and-white icons for users with color
monitors.

C H A P T E R 7

Finder Interface

7-12 Using the Finder Interface

Before creating icon families for your files, you should begin by designing a graphic
element that all of your icon families can share and that can help the users quickly
identify the files associated with your product. Figure 7-4, for example, illustrates how
a company uses the image of a wave in all of its application icons; these icons represent
the SurfWriter text-editing application, the SurfPainter graphics application, and the
SurfDB database application. As illustrated in Plate 4 at the front of this book, the wave
element is also included in icons representing the documents, stationery pads, and
editions that users create with these applications.

Figure 7-4 Large black-and-white application icons for a company’s product line

If you do not design your own icons, the Finder uses a set of its own default application
and document icons for display. Figure 7-5 shows the Finder’s default large black-and-
white icons.

Figure 7-5 Default large black-and-white icons

Text-editing
application

Graphics
application

Database
application

Application

Query
document

Document

Preference

Edition

System
extension

Stationery
pad

Desk
accessory

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-13

Note
Desk accessories, displayed by default with the icon shown in
Figure 7-5, were designed for early versions of Macintosh system
software that did not support cooperative multitasking. Desk
accessories and applications are much more alike in their appearance
and behavior in System 7. Because there are no longer any compelling
reasons for creating desk accessories, you should generally write a
small application instead of a desk accessory if you wish to create
a small or simple program. �

If you don’t want the Finder to display the default icons for your application or
documents, you must at least define an icon list ('ICN#') resource for each icon.

The term icon list has become a bit of a misnomer, because you can define only two
images in the icon list resource: a 32-by-32 pixel black-and-white icon and its mask.
To define color and 16-by-16 pixel icons for a file, you create additional resources, as
described later in this section. (If you don’t define color versions of your icons, the Finder
displays the black-and-white icon defined in your icon list resource on all displays, and if
you don’t define 16-by-16 pixel icons, the Finder algorithmically reduces the 32-by-32
pixel icon to half size when needed.)

An icon list resource defines one icon. It contains two icon descriptions: the actual icon
for display and an all-black mask that shows the area covered by the icon. The Finder
uses the mask to crop the icon’s outline into whatever background color or pattern is on
the desktop. The Finder then draws the icon into this shape. Therefore, it’s important that
the mask be exactly the same shape as the icon. The mask also defines the area that users
need to click to select the icon. Therefore, it’s best not to have any holes in the mask;
otherwise, users may have trouble selecting your icon.

Figure 7-6 illustrates a black-and-white icon and its mask for an application. The area
around the pencil just underneath the wave creates a problem with this sample icon and
its mask: like a hole in a mask, it creates two small areas within the middle of the icon
that the user cannot select with the cursor.

Figure 7-6 A black-and-white icon and its mask for an application

C H A P T E R 7

Finder Interface

7-14 Using the Finder Interface

An icon list resource is defined to be an array of two items of type String[128]; each
bit in the first array represents a pixel in the 32-by-32 pixel icon, and each bit in the
second array represents a pixel in the 32-by-32 pixel mask. Typically, you use a high-level
tool such as the ResEdit application, which is available through APDA, to create your
icon list resources. Figure 7-7 shows how the icon list resource for the icon in Figure 7-6
was created using the ResEdit icon editor. When you are satisfied with the appearance of
your icons, you can use the DeRez decompiler to convert your icon list resources into Rez
input.

Listing 7-2 is a partial listing of the icon list resource’s Rez input that describes the
application icon shown in Figure 7-7; Listing 7-2 also shows partial listings for the icon
list resources used for the icons that represent the documents created by the application.
This listing and those that follow in this chapter use Rez input format to help you
understand the format of the resources and see how they work together.

Figure 7-7 The ResEdit view of an icon

Listing 7-2 Rez input for an icon list resource

data 'ICN#' (128, purgeable) { /*application icon & mask*/
/*array: 2 elements*/
/*[1]: the application icon*/

$"0E 00 00 00" /*1st line of icon: 4 bytes (32 bits)*/
. /*32 lines total in icon*/
.
.
, /*[2]: the mask*/
$"0E 00 00 00 /*1st line of mask: 4 bytes (32 bits)*/
. /*32 lines total in mask*/
.
.

};

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-15

data 'ICN#' (129, purgeable) { /*text document icon and mask*/
/*icon data goes here*/

};
data 'ICN#' (130, purgeable) { /*stationery pad icon & mask*/

/*icon data goes here*/
};
data 'ICN#' (131, purgeable) { /*edition icon & mask*/

/*icon data goes here*/
};

You can also define a small (16-by-16 pixel) version of your icon in a small icon list
resource (that is, in a resource of resource type 'ics#'). On black-and-white monitors,
the Finder displays the small icon in windows when the user chooses by Small Icon
from the View menu. On black-and-white monitors, the small icon also appears in the
Application menu after the user launches your application and in the Apple menu if
the user places your application or an alias to it in the Apple Menu Items folder. (Alias
files and the Apple Menu Items folder are described, respectively, in “Using Aliases”
beginning on page 7-39 and “Using the System Folder and Its Related Directories”
beginning on page 7-41.)

You should also define color versions of both large and small icons by using several
resource types. The resource for each icon variation has the same resource ID as the icon
list resource that defines the large black-and-white icon. For example, if the resource ID
number of your application icon’s icon list resource is 128, its small icon list resource
should have a resource ID number of 128; and the following resources should also have
resource IDs of 128: the large 4-bit color icon resource, the small 4-bit color icon resource,
the large 8-bit color icon resource, and the small 8-bit color icon resource.

Don’t define masks for the resources that define color icons. The large 4-bit color icon
resource and large 8-bit color icon resource use the black-and-white icon mask defined in
their companion icon list resource, and the small 4-bit color icon resource and small 8-bit
color icon resource use the black-and-white icon mask defined in their companion
'ics#' resource. Because of this, the outline shapes of your color icons should exactly
match those defined in your 'ICN#' and 'ics#' resources.

ResEdit 2.1 includes an icon family editor to help you easily manage the creation of these
related resources. See the ResEdit Reference for details.

See Macintosh Human Interface Guidelines for information about the most effective use of
color and shape for your icons. It is generally best that you first create the black-and-
white icons in the icon list resource and small icon list resource and then add color to
them using the resources that define color icons. Don’t alter the shapes of your icons
among these resources; otherwise, the masks defined in the icon list resource and the
small icon list resource won’t match these shapes. Choose your colors from the 36
recommended icon colors in the system palette. (If you use ResEdit 2.1, these colors
appear in a palette when you choose Apple Icon Colors from the Color menu.) Note that
you cannot specify your own color table for these resources.

For more information about color palettes, see Inside Macintosh: Imaging. Although the
Palette Manager allows you to define a palette for the system to use when it needs to
define the color environment, you should rely on the system palette colors for your icons.

C H A P T E R 7

Finder Interface

7-16 Using the Finder Interface

Users may often use the Finder when your application is not running, and the user can
switch to another application when your application is running. Relying on the system
palette gives your icons a more consistent look in the Finder regardless of what the active
application is. Also, because users can change the desktop color and pattern, your
application gives users more control over their work environment if your icons rely on
the system palette. Users can always alter your color definitions by selecting an icon and
choosing a color from the Label menu. The Finder then blends the chosen color into those
of the selected icon. To restore the original colors, users must choose None from the Label
menu.

If your application creates documents, it should also define at least two additional icon
families: one to be displayed for documents created by your application and another
to be displayed when the user creates a stationery pad from one of your applica-
tion’s documents. (“Supporting Stationery Pads” beginning on page 7-34 describes
stationery pads.)

If your application creates other variations of its documents, you can assist your users
by providing different icons for the different documents. For example, TeachText has
separate icon families to distinguish its read-only and graphics documents.

If your application supports data sharing through the Edition Manager, your application
should also define an icon family for editions. The Edition Manager (described in Inside
Macintosh: Interapplication Communication) allows users to share and automatically update
data from numerous documents and applications. For example, a user might want to
capture sales figures and totals from within a spreadsheet and then include this
information in a word-processing document that summarizes sales for a given month. If
both the spreadsheet and word-processing applications support the Edition Manager, the
user begins by selecting data within the spreadsheet document and creating a publisher.
The spreadsheet application then writes a copy of that data to a separate file, called an
edition. The edition is represented by an icon; by default, it appears as the edition icon
shown in Figure 7-5 on page 7-12. If the user opens a word-processing document and
creates a subscriber to the spreadsheet document’s edition, the word-processing
application then incorporates the desired sales figures and totals from the spreadsheet
document’s edition into the document.

If you design your application to create editions, consider creating an icon that uniquely
identifies your editions and that associates them with your application’s documents. The
file type for your edition containers should be 'edtt' (for text-oriented data), 'edtp'
(for graphics-oriented data), or 'edts' (for sound-oriented data); and the creator, of
course, should be the signature of your application.

If your Macintosh application is a database program or serves as a source for data (as
a spreadsheet program often does), you might wish to create query documents so that
other Macintosh applications can gain access to that data through the Data Access
Manager; in this case, your application should also define an icon family for its query
documents. (See Inside Macintosh: Communications for information on sharing data in
this manner.)

Plate 4 at the front of this book shows the large color icons for the various documents that
the sample SurfWriter application creates: text documents, stationery pads,
and editions.

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-17

Defining icon resources is not enough to display your icons. In addition, you must follow
one of two sets of procedures:

� If you are an application developer, you must define file reference resources and a
bundle resource for your application, as described in “Creating File Reference
Resources” beginning on page 7-18 and “Creating a Bundle Resource” beginning on
page 7-20.

� If you are an information provider or a database developer—that is, if you provide
documents that are used by other applications—you don’t need to create file reference
resources or a bundle resource to provide document icons on Macintosh computers
running System 7. You can instead create customized icons for your documents as
described in the following section.

Creating Customized Document Icons 7
You can create customized icons for your documents. Users can also create customized
icons. When an icon list resource is stored with a resource ID of –16455 in the resource
fork of a file, the Finder uses the large, small, 4-bit and 8-bit color, and black-and-white
icons defined in resources with that resource ID as customized icons in place of the
Finder’s default icon and in place of any icons listed in the file’s bundle resource.

Note
Although an application can assign icons to it all of its documents by
associating their icons with the documents’ file types in a bundle
resource (as explained in “Creating File Reference Resources” beginning
on page 7-18 and “Creating a Bundle Resource” beginning on page 7-20),
a customized icon can represent only one specific file—that file that has
an icon list resource with a resource ID of –16455 in its resource fork. �

Users of System 7 are able to customize individual icons. By selecting a file and choosing
Get Info from the File menu, the user sees the information window for that file. The
user can then select the icon displayed in the upper-left corner of the information
window and use the Paste command in the Edit menu to replace it with a picture from
the Clipboard. The Finder creates a family of icons based on the user’s customized
icon, assigns a resource ID number of –16455 to each resource in the icon family, stores
these resources in the resource fork of the file that the icon represents, and sets the
hasCustomIcon bit in the file’s Finder flags field. (Finder flags are described in detail
in “File Information Record” beginning on page 7-47.)

Your application can use the same strategy to provide customized icons for the
documents that it creates. For example, a drawing application might create miniature
versions of the illustrations contained within its documents and use those for the
documents’ icons.

If you are a database developer who creates and distributes query documents that
support the Data Access Manager, you can also use this strategy to create icons that
identify your database’s query documents. Similarly, if instead of producing an
application you produce and distribute information (such as database files, stationery
pads, clip art libraries, or dictionaries) to be used by other applications, you might want
to provide icons that distinguish your documents.

C H A P T E R 7

Finder Interface

7-18 Using the Finder Interface

To make the Finder display customized icons for a document, you must create—at least—
an icon list resource with resource ID –16455 and store it in the document’s resource
fork. (To create this while your application is running, your application can call the
AddResource procedure, described in the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.) You can use the following constant in place of
the ID number:

CONST kCustomIconResource = –16455; {res ID for custom icon}

If you provide only an icon list resource, the Finder uses a black-and-white icon on all
screen displays and automatically reduces it when a small version of the icon is required.
To create color versions and to define a small version of the icon, create an entire icon
family as described in “Creating Icons for the Finder” beginning on page 7-11.

After creating resources for icons using the kCustomIconResource constant as their
IDs, you must set the hasCustomIcon bit in the file’s Finder flags field. To prevent users
from changing these icons, set the nameLocked bit in the file’s Finder flags field. (Most
development environments provide tools for setting these bits. “Using Finder
Information in the Catalog File” beginning on page 7-32 describes how to determine
and set these Finder flags.)

Creating File Reference Resources 7
File reference ('FREF') resources perform two main functions. First, they associate icons
you define with file types used by your application. Second, they allow users to drag
document icons to your application icon in order to open them from your application.

Create a file reference resource for your application file itself and create separate file
reference resources for each file type that your application can open. Listing 7-3 shows, in
Rez input format, the file reference resources for the SurfWriter application file, text
documents, stationery pads, and editions and for TeachText read-only documents.

Each file reference resource specifies the following items:

� a file type

� the local ID of an icon list resource as assigned in the bundle resource

� an empty string

The file type can be defined for files created by your application only, for files created by
other applications that your application supports, or for files of the existing general
types, such as 'TEXT' and 'PICT'.

As described in the next section, “Creating a Bundle Resource,” the local ID maps the
file type to an icon list resource that is assigned the same local ID in the bundle resource.
If you wanted two file types to share the same icon, for example, you could create two
separate file reference resources that share the same local ID, which the bundle resource
would map to the same icon list resource. (Creating two file types that share the same
icon is not recommended, however, because a shared icon would make it very difficult
for the user to distinguish between the different file types while using the Finder.)

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-19

Listing 7-3 Rez input for file reference resources

resource 'FREF' (208, purgeable) { /*SurfWriter application*/

'APPL', /*type 'APPL'*/

0, /*maps to icon list resource w/ local ID 0 in bundle resource*/

"" /*leave empty string for name: not implemented*/

};

resource 'FREF' (209, purgeable) { /*SurfWriter document*/

'TEXT', /*type 'TEXT'*/

 1, /*maps to icon list resource w/ local ID 1 in bundle resource*/

""

};

resource 'FREF' (210, purgeable) { /*SurfWriter stationery pad*/

'sEXT', /*type 'sEXT'*/

2, /*maps to icon list resource w/ local ID 2 in bundle resource*/

""

};

resource 'FREF' (211, purgeable) { /*SurfWriter edition*/

'edtt', /*type 'edtt'*/

3, /*maps to icon list resource w/ local ID 3 in bundle resource*/

""

};

resource 'FREF' (212, purgeable) {/*TeachText read-only files*/

'ttro', 4, "" /*These documents have TeachText as their */

/* creator. Finder uses TeachText's icon list resource */

/* for these documents. Included here so users */

/* can drag these docs to SurfWriter's app icon*/

};

If you provide your own icon for the stationery pads that users create from your
application’s documents, create a file reference resource for your stationery pads.
Assign this file reference resource a file type in the following manner: use the file type
of the document upon which the stationery pad is based, but replace the first letter of
the original document’s file type with a lowercase s. As with other file reference
resources, you map this to an icon list resource in the bundle resource. (This convention
necessitates that you make the names of your documents’ file types unique in their last
three letters.)

For example, in Listing 7-3, the 'sEXT' file type assigned within the file reference
resource is used for stationery pads created from documents of the 'TEXT' file type. In
this case, when the isStationery bit (described in “Using Finder Information in the
Catalog File” beginning on page 7-32) is set on a document of file type 'TEXT', the
Finder looks in the SurfWriter application’s bundle ('BNDL') resource to determine what
icon is mapped to documents of type 'sEXT'. The Finder then displays the document
using the stationery pad icon shown in Plate 4 at the front of this book.

C H A P T E R 7

Finder Interface

7-20 Using the Finder Interface

When the user drags a document icon to your application icon, the Finder checks a list
that it maintains of your file reference resources. If the document’s file type appears in
this list, the Finder launches your application with a request to open that document.

If your application supports file types for which it doesn’t provide icons, you can still
define file reference resources for them, and then users can launch your application by
dragging these document icons to your application icon. For example, the file reference
resource with resource ID 212 in Listing 7-3 on page 7-19 is created so that the Finder
launches the SurfWriter application when users drag TeachText read-only documents to
the SurfWriter application icon. Since these documents have TeachText as their creator,
the Finder displays the icon that the TeachText application defines for them in its own
bundle resource.

By supporting the Open Documents event, you can also specify disks, folders, and a pair
of wildcard file types in your file reference resources so that users can launch your
application by dragging their icons to your application icon. As explained in Inside
Macintosh: Interapplication Communication, the Open Documents event is one of the four
required Apple events. After the Finder uses the Process Manager to launch an
application that supports high-level events, the Finder sends your application an Open
Documents event, which includes a list of alias records for objects that the application
should open.

Because alias records can specify volumes and directories as well as files, an Open
Documents event gives you the opportunity to handle cases in which users drag disk
or folder icons to your application. (Alias records are described in “Using Aliases”
beginning on page 7-39.) Create a file reference resource and specify 'disk' as the
file type to allow users to drag hard disk and floppy disk icons to your application icon.
Create a file reference resource and specify 'fold' as the file type to allow users to
drag folder icons to your application icon.

You can create a file reference resource that specifies '****' as the file type to allow
users to drag all file types—including applications, system extensions, documents, and so
on, but not including disks or folders—to your application icon. If you create three file
reference resources that specify 'disk', 'fold', and '****' as their file types and if
your application supports the Open Documents event, you effectively allow users to
launch your application by dragging any icon to your application icon. It is up to your
application to open disks, folders, or all possible file types in a manner appropriate to the
needs of the user.

Creating a Bundle Resource 7
A bundle ('BNDL') resource associates all of the resources used by the Finder for your
application; in particular, it associates your application and its documents with their
icons. The bundle resource contains

� the application’s signature

� the resource ID number of its signature resource (which should always be 0)

� the assignment of local IDs to the resource IDs of all icon list resources defined for the
application; the local IDs must be the same as those assigned within corresponding file
reference resources

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-21

� the assignment, for compatibility reasons, of local IDs to file reference resource IDs
(For consistency, these can be the same local IDs that are assigned inside the file
reference resources, but they don’t have to be—they only need to be unique for every
file reference resource.)

When the Finder first displays your application on the user’s desktop, it checks the
catalog file (described in detail in “Using Finder Information in the Catalog File”
beginning on page 7-32) to see if your application has a bundle resource. If it doesn’t,
the Finder displays the default icons shown in Figure 7-5 on page 7-12. If your
application has a bundle resource, the Finder installs the information from the bundle
resource and all its bundled resources into either the desktop database for a hard disk
or into the Desktop file for a floppy disk and uses this information to display icons for the
file types associated with your application.

You must assign local IDs to your icon list resources within your bundle resource. Make
sure that for all your file types with icons, these local IDs match the local IDs you
assigned inside their corresponding file reference resources. In the Desktop file on floppy
disks (and on hard disks running earlier versions of system software), the Finder
renumbers the resource IDs that you’ve assigned to your resources to avoid conflicts with
the resources of other applications. Therefore, the bundle resource has to rely on these
local IDs to map icon list resources to their file reference resources; that is, the bundle
resource uses the local ID you assign to an icon list resource to map it to the file reference
resource that has specified the same local ID.

For example, the file reference resource with resource ID 208 in Listing 7-3 on page 7-19
shows that the file type 'APPL' (the SurfWriter application file) is assigned a local ID
of 0. In the bundle resource shown in Listing 7-4, you see that local ID 0 is assigned to the
icon list resource with resource ID 128. This maps the icon defined by this resource (see
Figure 7-7 on page 7-14) to the SurfWriter application file. Listing 7-4 shows
the bundle resource for the icons and file reference resources defined in Listing 7-2 on
page 7-14 and in Listing 7-3 on page 7-19.

Listing 7-4 Rez input for a bundle resource

resource 'BNDL' (128, purgeable) { /*SurfWriter bundle resource*/

'WAVE', /*SurfWriter signature*/

0, /*resource ID of signature resource: should be 0*/

{

'ICN#', { /*mapping local IDs in 'FREF's to 'ICN#' IDs*/

0, 128, /*'FREF' w/ local ID 0 maps to 'ICN#' res ID 128*/

1, 129, /*'FREF' w/ local ID 1 maps to 'ICN#' res ID 129*/

2, 130, /*'FREF' w/ local ID 2 maps to 'ICN#' res ID 130*/

3, 131 /*'FREF' w/ local ID 3 maps to 'ICN#' res ID 131*/

/*no 'FREF' with local ID 4 in this list: */

/* TeachText's icons used for 'ttro' file type*/

},

C H A P T E R 7

Finder Interface

7-22 Using the Finder Interface

'FREF', { /*local res IDs for 'FREF's: no duplicates*/

10, 208, /*local ID 10 assigned to 'FREF' res ID 208*/

11, 209, /*local ID 11 assigned to 'FREF' res ID 209*/

12, 210, /*local ID 12 assigned to 'FREF' res ID 210*/

13, 211, /*local ID 13 assigned to 'FREF' res ID 211*/

14, 212 /*local ID 14 assigned to 'FREF' res ID 212*/

}

}

};

In Listing 7-4, notice that you also assign local IDs to file reference resources inside the
bundle resource. This assignment is superfluous because the Finder doesn’t map these
local IDs to any other resources. The local ID assignment for file reference resources
inside the bundle resource was implemented for the earliest versions of Macintosh
system software, and it remains this way today to maintain backward compatibility. For
compatibility with the format of the bundle resource, assign local IDs to file reference
resource IDs. You may number them any way you like, except that each local ID in this
particular list must be unique.

Of all the icon resource types that make up an icon family, you need to list only the icon
list resource in the bundle resource. The Finder automatically recognizes and loads all the
other members of the icon family—provided that you have given them the same resource
IDs that you have assigned to your icon list resource.

If the user drags documents created by other applications to your application icon, and
if you have created file reference resources for these documents’ file types, the Finder
launches your application and passes it the names of the documents. You should create
file reference resources for all file types that your application supports. Do not provide
icon resources for file types created by other applications because the Finder won’t use
them, but will instead use the icon resources defined by the documents’ creators. Though
the local IDs of such a file reference resource are superfluous in the file reference resource
and at the bottom of the bundle resource, the resource formats require that you provide
local IDs in both.

For example, notice in Listing 7-3 on page 7-19 that the file reference resource with
resource ID 212 is assigned a local ID of 4, but that no icon list resource is assigned to
local ID 4 in the bundle resource in Listing 7-4 on page 7-21. This file reference resource,
which specifies a file type of 'ttro', was created in Listing 7-3 to make the Finder
launch the SurfWriter application when users drag TeachText read-only documents to the
SurfWriter application icon. No icon mapping is made for this file type in the SurfWriter
application’s bundle resource because the Finder displays the icons defined for it by the
TeachText application. The file reference resource with resource ID 212 is assigned to local
ID 14 in the bundle resource in Listing 7-4 because the format of the resource requires a
local ID for all associated file reference resources.

You alert the Finder that your application has a bundle resource by setting a bit in the
file’s Finder flags field. (Most development environments provide a simple tool for
setting the bundle bit. “Using Finder Information in the Catalog File” beginning on
page 7-32 describes Finder flags.)

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-23

Figure 7-8 illustrates how the bundle resource created in Listing 7-4 uses local IDs to map
icon list resources to file reference resources. This figure illustrates two main concepts:
first, that one bundle resource ties together all the icon resources and file reference
resources for your application and all of its documents; and second, that the icon
resources and their associated file reference resources are mapped together by
local IDs.

Figure 7-8 Linking icon list resources and file reference resources in a bundle resource

’ICN#’ resource

Resource ID
128

’ICN#’ resource

Resource ID
129

’ICN#’ resource

Resource ID
130

’ICN#’ resource

Resource ID
131

’BNDL’ resource

’FREF’ resource

’FREF’ resource

’FREF’ resource

’FREF’ resource

Application signature ’WAVE’
Signature resource ID 0
’ICN#’ (icon resource)

Resource ID Local ID

128 0

129 1

130 2

131 3

Desktop file

Resource ID
208

File type ’APPL’
Local ID

0

Resource ID
209

File type ’TEXT’
Local ID

1

Resource ID
210

File type ’sEXT’
Local ID

2

Resource ID
211

File type ’edtt’
Local ID

3

System-mapped ID

162

163

164

165

C H A P T E R 7

Finder Interface

7-24 Using the Finder Interface

In Figure 7-8, the application file’s icon list resource has resource ID 128 while its file
reference resource has resource ID 208. For easier code maintenance, you should
probably assign the same resource ID to a file’s file reference resource that you assign
to its icon list resource. However, because the Finder renumbers these whenever it
adds them to a Desktop file on floppy disks, you must map them by using local IDs. In
Figure 7-8, the application file’s icon list resource is assigned local ID 0. This maps the
icon to the file type described by the file reference resource with local ID 0—in this case,
the file reference resource with resource ID 208.

The general steps you must take to provide icons for applications and documents are
enumerated here and assume that you are using a tool, such as ResEdit, that allows you
to open and edit several resources simultaneously. (Remember that these resources must
have resource IDs of 128 or greater.)

To provide your application with icon families for itself and for its documents, follow
these steps:

1. Design a graphic element that all of your icon families can share in common and that
can help users quickly identify the files associated with your product.

2. Create an icon list ('ICN#') resource for your application file.

3. Create the other members of the icon family of the application file—resources of types
'ics#', 'icl8', 'icl4', 'ics8', and 'ics4'—and give each of these the same
resource ID as the icon list resource.

4. Create a bundle ('BNDL') resource.

5. Within the bundle resource, list the resource ID number of the application file’s icon
list resource and assign it a local ID of 0.

6. Create a file reference resource for the application file.

7. Within the file reference resource, assign the application a file type of 'APPL' and
assign it a local ID of 0.

8. Within the bundle resource, list the resource ID number of the file reference resource
for the application file and assign it a unique local ID—for example, 0 to maintain
consistency with the local ID assigned in the file reference resource.

9. Create another icon family—consisting of resources of types 'ICN#', 'ics#',
'icl8', 'icl4', 'ics8', and 'ics4'—to represent one type of document that your
application creates.

10. Within the application’s bundle resource, list the resource ID number of the
document’s icon list resource and assign it a local ID of 1.

11. Create a file reference resource for the document.

12. Within the file reference resource for the document, assign it a file type (for example,
'TEXT' or 'edtt') and assign it a local ID of 1.

13. Within the bundle resource, list the resource ID number of the file reference resource
for the document and assign it a unique local ID—for example, 1 to maintain
consistency with the local ID assigned in the file reference resource.

14. Assigning unique local IDs for every type of document your application creates, repeat
steps 9 through 13.

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-25

15. If your application supports file types of other applications, define file reference
resources for them, but do not create icon resources for them.

16. Create a signature resource (as described in “Giving a Signature to Your Application
and a Creator and a File Type to Your Documents” beginning on page 7-8) with
resource ID 0.

17. Set the file’s hasBundle bit and clear the hasBeenInited bit in the file’s Finder
flags. (Finder flags are described in “Using Finder Information in the Catalog File”
beginning on page 7-32.)

18. Save and close all of the resources. (When you restart your Macintosh computer, your
application should appear with its own icon. If you later alter any of your icons, clear
the hasBeenInited bit and rebuild your desktop database by pressing Command-
Option when restarting.)

How and When the Finder Launches Your Application 7
The previous sections in this chapter explain the resources that the Finder uses to display
and launch your application. This section provides a brief summary of how the Finder—
using the previously described resources—starts up your application whenever the user
requests the Finder to launch your application or to open or print a document supported
by your application.

The simplest scenarios under which the Finder launches your application occur when the
user double-clicks your application icon or selects it and chooses Open from the Finder’s
File menu. In these cases, the Finder calls the Process Manager to start your application.
As explained in Inside Macintosh: Processes, the Process Manager creates a partition of
memory for your application, loads your code into this partition, and sets up the stack,
heap, and A5 world for your application. The Process Manager returns control to the
Finder.

If your application supports the required Apple events (as explained in Inside Macintosh:
Interapplication Communication), the Finder sends your application an Open
Application event and then relinquishes control to your application. Your application
then performs the tasks necessary to open itself—displaying an untitled document
window, for example.

When the user requests the Finder to open or print a document supported by your
application, the Finder calls the Process Manager and launches your application in the
same way, except that the Finder sets up the information your application needs to open
or print the document and passes this information to your application. This information
includes a list of files to open or print. In System 7, applications receive this information
through Apple events, which are described in Inside Macintosh: Interapplication
Communication.

The user can request the Finder to open documents created by your application by
double-clicking one of their icons, and the user can request the Finder to open or print
documents by selecting one or more icons and choosing Open or Print from the Finder’s
File menu. The Finder reads the creator field of each selected file to find the document’s
creator. Typically (as described in “Using Finder Information in the Catalog File”
beginning on page 7-32), your application sets the four-character string specified in its

C H A P T E R 7

Finder Interface

7-26 Using the Finder Interface

signature resource as the creator of its documents. The Finder searches for the applica-
tion whose signature matches each document’s creator. If the document’s creator matches
your application’s signature, the Finder calls the Process Manager, launches your
application, and then passes your application the name of the selected document
or selected multiple documents in an Open Documents or a Print Documents event.
Your application should then open the documents in titled windows or print them, as
appropriate. (See Inside Macintosh: Files for detailed information about opening
documents; see Inside Macintosh: Imaging for detailed information about printing them.)

If the user tries to open documents created by your application and your application is
missing, the Finder displays an alert box telling the user that your application is missing.
The Finder displays the name of your application in this alert box if you provide your
documents with a missing-application name string resource, as described in “Displaying
Messages When the Finder Can’t Find Your Application” beginning on page 7-27.

Sometimes when your application is already running, the user might double-click a
document created by your application. In this case, the Finder sends your application
the Open Documents event.

The user can also request the Finder to launch your application by dragging one icon or
several icons to your application’s icon. The Finder determines whether to launch your
application by comparing the document’s file type (which is stored in the catalog file)
against the list of your application’s supported file types. The Finder compiles this list
from the file reference resources you create for your application; the Finder stores this
list in the desktop database. If the document’s file type appears in the file reference
resource list for your application, the Finder calls the Process Manager, launches your
application, and passes it the name of the selected document or selected multiple
documents in an Open Documents event. Your application should then open the
documents in titled windows.

You can also specify disks, folders, and a wildcard file type for all other files in your file
reference resources so that users can launch your application by dragging their icons to
your application icon, in which case the Finder launches your application and sends it an
Open Documents event. An Open Documents event includes a list of alias records for ob-
jects that the application should open. It is up to your application to open disks, folders,
or all possible file types in a manner appropriate to the needs of the user. (Alias records
are described in “Using Aliases” beginning on page 7-39.)

To support stationery, your application should specify the isStationeryAware
constant in its 'SIZE' resource and always check the isStationery bit of a document
passed to it by the Finder. If the isStationery bit is set for a file that the user wants to
open, your application should copy the stationery pad’s contents into a new document
and open the document in an untitled window. This is described in “Supporting
Stationery Pads” beginning on page 7-34.

In System 7, users can create aliases, which are objects that represent other files,
directories, or volumes. If the user opens an alias that represents a document created by
your application, the Finder resolves the alias for you; that is, it passes your application
the name and location of the document itself, not the alias.

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-27

Displaying Messages When the Finder Can’t Find
Your Application 7
When the user double-clicks a file or selects it and chooses either the Open or the Print
command from the Finder’s File menu, the Finder looks for the application whose
signature is stored in the file’s creator field. The Finder starts up that application and tells
it which documents the user wants to open or print. If the Finder cannot find the creator
application, it displays an alert box.

If the document is of file type 'TEXT' or 'PICT' and if the TeachText application is
available, an alert box asks the user whether the TeachText application should be
used to open the document. For documents of any other file type, or if the TeachText
application is not present, the Finder displays an alert box like the one shown in
Figure 7-9. Your application should store one of two string resources in its documents
to make the alert box message more useful than the default shown in Figure 7-9.

Figure 7-9 The default application-unavailable alert box

Before displaying the default message shown in Figure 7-9, the Finder looks in the
document for one of two special 'STR ' resources with resource ID numbers of –16396
and –16397: the missing-application name string and the application-missing message
string, respectively. If the Finder can’t find the document’s creator on any mounted
volume, it looks first for the application-missing message string resource. Provide an
application-missing message string resource if you do not intend for users to open the
file. The message should explain why the file can’t be opened. If the Finder does not find
an application-missing message string resource, it looks for the missing-application name
string resource. Provide a missing-application name string resource if you intend for us-
ers to open the file. The missing-application name string should be your application’s
name; the Finder displays it in an alert box to inform the user that your application is
needed.

Supply either the application-missing message string resource or the missing-application
name string resource; don’t supply both. Supply an application-missing message string
resource for documents (such as a preferences file) that your application uses but that
users should not open; supply a missing-application name string resource for documents
that you intend for users to open with your application.

Your missing-application name string resource (an 'STR ' resource with a resource ID
number of –16396) should contain the name of your application. Listing 7-5 on the next
page shows a missing-application name string resource for the SurfWriter application.

C H A P T E R 7

Finder Interface

7-28 Using the Finder Interface

Listing 7-5 Rez input for a missing-application name string resource

resource 'STR ' (-16396, purgeable) { /*the application name*/

"SurfWriter"

};

You can store this resource in the resource fork of your application. When your applica-
tion saves a document for the first time, it should copy the missing-application name
string resource from your application’s resource fork to the resource fork of the newly
created document. Listing 7-6 shows a fragment of an application-defined function called
DoSaveAsCmd, which the application calls when the user chooses the Save As command
from the File menu. (For a description of the File Manager routines used here to create,
open, and save the resource file, see Inside Macintosh: Files.)

Listing 7-6 Storing a missing-application name string resource in the resource fork of
a document

VAR

myData: MyDocRecHnd; {handle to document record}

myErr: OSErr;

myFile: Integer; {file reference number}

{with the DoSaveAsCmd routine: create document's resource fork}

FSpCreateResFile(myData^^.fileFSSpec, 'MYAP', 'TEXT',

smSystemScript);

myErr := ResError;

IF myErr = noErr THEN {open the resource fork}

myFile := FSpOpenResFile(myData^^.fileFSSpec, fsRdWrPerm);

IF myFile > 0 THEN {copy the missing-application name string}

myErr := DoCopyResource('STR ', -16396, gAppsResFile, myFile)

ELSE

myErr := ResError;

IF myErr = noErr THEN

myErr := FSClose(myFile); {close the resource fork}

Listing 7-7 shows the application-defined function DoCopyResource, which copies the
missing-application name string resource from the application’s resource fork into the
newly created document’s resource fork. (For a description of the Resource Manager
routines used here to set, open, and write the resource file, see the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox.)

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-29

Listing 7-7 Copying the missing-application name string resource into the resource fork of
a document

FUNCTION DoCopyResource (theType: ResType; theID: Integer;

 source: Integer; dest: Integer): OSErr;

VAR

myHandle: Handle; {handle to resource to copy}

myName: Str255; {name of resource to copy}

myType: ResType; {ignored; used for GetResInfo}

myID: Integer; {ignored; used for GetResInfo}

BEGIN

UseResFile(source); {set the source resource file}

myHandle := GetResource(theType, theID); {open the source}

IF myHandle <> NIL THEN

BEGIN

GetResInfo(myHandle, myID, myType, myName); {get resource }

{ name}

DetachResource(myHandle); {detach resource}

UseResFile(dest); {set the destination resource file}

AddResource(myHandle, theType, theID, myName);

IF ResError = noErr THEN

WriteResource(myHandle); {write resource data}

END;

DoCopyResource := ResError; {return result code}

END;

If a user tries to open or print one of the application’s documents when the application is
not present, the Finder specifies the application’s name in the alert box, as illustrated in
Figure 7-10.

Figure 7-10 The application-unavailable alert box specifying an application’s name

Your application-missing message string resource (an 'STR ' resource with a
resource ID number of –16397) should explain why the user cannot open or print a
document. Use this resource for files—such as your application’s preferences file—
that are not intended to be opened or printed by the user. Register a signature (as
explained in “Giving a Signature to Your Application and a Creator and a File Type to
Your Documents” beginning on page 7-8) that is different from the signature of your

C H A P T E R 7

Finder Interface

7-30 Using the Finder Interface

application and set this signature as the creator of files that you don’t want your users to
open. This ensures that the Finder displays your message instead of launching your
application when the user double-clicks these documents.

Listing 7-8 illustrates an application-missing string resource that explains why a user
cannot open a preferences file.

Listing 7-8 Rez input for an application-missing message string resource

resource 'STR ' (-16397, purgeable) {/*the message*/
"This document describes user preferences for the application "

"SurfWriter. You cannot open or print this document. To be "
"effective, this document must be stored in the Preferences "
"folder in the System Folder."
};

Figure 7-11 shows the alert box generated by Listing 7-8.

Figure 7-11 The application-unavailable alert box with a customized message

Note that if your application creates documents of file type 'TEXT' or 'PICT', if
the TeachText application is available, and if your application is missing when the
user tries to open these documents from the Finder, the Finder always displays the
alert box shown in Figure 7-12. For these file types, the Finder displays this alert box even
if you provide missing-application name string resource or application-missing message
string resource.

Figure 7-12 The application-unavailable alert box for 'TEXT' and 'PICT' documents

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-31

Providing Version Resources 7
You can use version ('vers') resources to record version information for your
application. If the user opens the Views control panel, clicks the Show version box, and
then chooses any command from the View menu other than by Icon or by Small Icon,
filenames and their version numbers from the version resource appear in the active
Finder window. The Finder also displays version information when the user selects your
application and chooses Get Info from the File menu.

The version resource allows you to store a version number, a version message, and a
region code. (Because the Get Info command’s information window already displays
the name of your application, the version message should not include the name of
your application.) You can use version resources to assign version information to an
individual file and, if it is a part of a larger collection of files, to the entire superset of files.
The version resource with a resource ID number of 1 specifies the version of the
file; the version resource with a resource ID number of 2 specifies the version of the set
of files.

Each version resource should contain these elements:

� Major revision level in binary-coded decimal format. Although the Finder doesn’t
display it anywhere, you can store this information here; most programming
environments provide a tool for setting this element.

� Minor revision level in binary-coded decimal format. Although the Finder doesn’t
display it anywhere, you can store this information here; most programming
environments provide a tool for setting this element.

� Development stage. You can use any of these values or the constants that
represent them:

� Prerelease revision level. This number specifies the version if the software is still
prerelease.

� Region code. This identifies the script system for which this version of the software is
intended. See the chapter “Script Manager” in Inside Macintosh: Text for information
about the values represented by the various region codes that can be specified here.

� Version number. This string identifies the version number of the software. When the
user opens the Views control panel, clicks the Show version box, and then chooses any
command from the View menu other than by Icon or by Small Icon, the Finder
window containing this application displays this string.

Value Constant Description

0x20 development Prealpha file

0x40 alpha Alpha file

0x60 beta Beta file

0x80 release Released file

C H A P T E R 7

Finder Interface

7-32 Using the Finder Interface

� Version message. This string identifies the version number and either a company
copyright for a file or a product name for a superset of files. When the user selects this
file and chooses the Get Info command, the Finder displays this string in the
information window as follows:
� For a version resource with a resource ID number of 1, this string is displayed in the

version field of the information window.
� For a version resource with a resource ID number of 2, this string is displayed

beneath the file’s name next to the file’s icon at the top of the information window.

Listing 7-9 illustrates the version resources for a graphics application and for the
document-processing system of which it is a part. Notice that the paint program is
version 1.0 while the set of files that compose the entire document-processing system
is version 2.0.

Listing 7-9 Rez input for a pair of version resources

resource 'vers' (1, purgeable) {

0x01, 0x00, release, 0x00, verUS,

"1.0",

"1.0 (US), © My Company, Inc. 1992"

};

resource 'vers' (2, purgeable) {

0x02, 0x00, release, 0x00, verUS,

"2.0",

"(for SurfWriter 3.0)"

};

Figure 7-13 illustrates how the Finder displays the information from these resources in its
information window.

You can store version resources in any kind of file, not just an application. If your
application does not contain a version resource with a resource ID number of 1, the
Finder displays the string from your signature resource as the version information
in the information window for your application.

Using Finder Information in the Catalog File 7
A catalog file exists on every volume to maintain relationships between the files and
directories on that volume. (A volume is any storage medium formatted to contain files.)
Although it’s used mostly by the File Manager, the catalog file also contains information
used by the Finder. The information for files is listed in file information records (data
structures of type FInfo) and in extended file information records (data structures of
type FXInfo). The information for directories is listed in directory information (DInfo)
records and in extended (DXInfo) directory information records.

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-33

Figure 7-13 The version data in the information window

The Finder manipulates the fields in the file information, directory information, and
extended directory information records; your application shouldn’t have to directly check
or set any of these fields.

Normally, your application sets the file type and the creator information in fields of the
file’s file information record when your application creates a new file; for example, the
File Manager function FSpCreate (described in Inside Macintosh: Files) takes a creator
and a file type as parameters. The Finder manipulates the other fields in the file
information record, which is shown here:

TYPE FInfo =

RECORD

fdType: OSType; {file type}

fdCreator: OSType; {file creator}

fdFlags: Integer; {Finder flags}

fdLocation: Point; {file's location in window}

fdFldr: Integer; {directory that contains file}

END;

After you have created a file, you can use the File Manager function FSpGetFInfo to
return the file information record, then change the fdType and fdCreator fields by
using the File Manager function FSpSetFInfo.

Product name and version,
from 'vers'(2) resource

File version number and
company copyright from
'vers'(1) resource

C H A P T E R 7

Finder Interface

7-34 Using the Finder Interface

You can check the information in this record by calling the File Manager function
FSpGetFInfo or PBGetCatInfo. In particular, you may want to check the file type
or creator for a file, or you may want to check or set one of your document’s Finder flags.
See “File Information Record” beginning on page 7-47 for a list of all the Finder flags. The
only Finder flags you might ever want to set are described here:

� isInvisible. This flag specifies that a file is invisible from the Finder and from the
Standard File Package dialog boxes. Making a file invisible is generally not
recommended. Not even temporary files need to be invisible because the Temporary
Items folder into which they should be written is invisible. The Temporary Items
folder is described in “Using the System Folder and Its Related Directories” beginning
on page 7-41.

� hasBundle. This flag specifies that a file has a bundle resource that associates the file
with your own icons. When the Finder displays or manipulates a file, it checks the
file’s hasBundle bit (also called the bundle bit). If that bit is not set, the Finder
displays a default icon for that file type. If the hasBundle bit is set, the Finder checks
the hasBeenInited bit. If the hasBeenInited bit is set, the Finder uses the
information in the desktop database to display that file’s icon. If the hasBeenInited
bit is not set, the Finder installs the information from the bundle resource in the
desktop database and sets the hasBeenInited bit. Most development environments
provide a simple tool for setting the bundle bit when you create your application.

� nameLocked. This flag specifies that a file cannot be renamed from the Finder and
that the file cannot have customized icons assigned to it by users.

� isStationery. This flag specifies that a file is a stationery pad. To support
stationery pads, your application should check this bit for every document passed to it
by either the Finder or the Standard File Package. (The File Manager functions
StandardGetFile and CustomGetFile return this flag in the sfFlags field of the
standard file reply record.) If the isStationery bit is set for a file that a user wants
to open, your application should copy the template’s contents into a new document
and open the document in an untitled window. Stationery pads are described in the
next section.

� isShared. This flag specifies that a file is an application that multiple users on a
network can execute simultaneously.

� hasCustomIcon. This flag specifies that a file has a customized icon. “Creating
Customized Document Icons” beginning on page 7-17 explains how users or your
application can use customized icons.

Supporting Stationery Pads 7
Stationery pads are special documents that the user creates as templates. Opening
a stationery pad should not open the document itself; instead, it should open a new
document with the same contents as the stationery pad. To turn any document into
a stationery pad, the user selects it, chooses Get Info from the File menu, and clicks
the Stationery pad checkbox in the information window. The Finder tags a document as
being a stationery pad by setting the isStationery bit in the file’s Finder flags field.

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-35

When the user opens a stationery pad from the Finder, the Finder first checks your
application’s size resource to see if your application supports stationery. The 'SIZE'
resource tells the Finder and the Process Manager which features your application
supports and how much memory to allocate when it starts up your application.
Listing 7-10 illustrates a size resource.

Listing 7-10 Rez input for a size resource

resource 'SIZE' (-1, purgeable) {

reserved,

acceptSuspendResumeEvents,

reserved,

canBackground,

doesActivateOnFGSwitch,

backgroundAndForeground,

dontGetFrontClicks,

ignoreAppDiedEvents,

is32BitCompatible,

isHighLevelEventAware,

localAndRemoteHLEvents,

isStationeryAware, /*support stationery pads*/

dontUseTextEditServices,

reserved, reserved, reserved,

kPrefSize * 1024,

kMinSize * 1024

};

Notice that the twelfth field, isStationeryAware, tells the Finder that this application
supports stationery pads.

If the isStationeryAware bit is not set in the size resource, the Finder creates a
new document from the template and prompts the user for a name. The Finder then
starts up your application as usual, passing it the name of the new document.

If the isStationeryAware bit is set, as shown in Listing 7-10, the Finder informs your
application that the user has opened a document and passes your application the name of
the stationery pad.

To support stationery, your application should

� specify the isStationeryAware constant in its size resource

� always check the isStationery bit of a document before opening it

Listing 7-11 on page 7-36 illustrates a simple function that takes a file system specification
record and returns TRUE or FALSE, indicating whether the file is a stationery document
or not.

C H A P T E R 7

Finder Interface

7-36 Using the Finder Interface

Listing 7-11 Determining whether a document is a stationery pad

FUNCTION IsStationeryDoc (myFSSpec: FSSpec): Boolean;

VAR

 myErr: OSErr;

 myFInfo: FInfo;

BEGIN

 myErr := FSpGetFInfo(myFSSpec, myFInfo);

 IF myErr = noErr THEN

 IsStationeryDoc := BTST(myFInfo.fdFlags, isStationery)

 ELSE

 IsStationeryDoc := FALSE;

END;

The isStationery bit alone identifies whether a document is stationery. If the
isStationery bit is set for a file that the user wants to open, your application should
copy the template’s contents into a new document and open the document in an untitled
window. (For information about opening documents and about the File Manager
function FSpGetFInfo, see Inside Macintosh: Files.)

Your application can check the sfFlags field of the standard file reply record to
determine whether the isStationery bit is set. Unlike the Finder, the Standard File
Package always passes your application the stationery pad itself, not a copy of it,
regardless of the setting of the isStationery bit. When the user opens a stationery
pad from within your application, the Standard File Package checks your application’s
size resource. If your application does not support stationery, the Standard File Package
displays an alert box warning the user that the stationery pad itself, not a copy of it,
is being opened. As you can see, the user can still easily change the template and
mistakenly write over it by choosing Save without assigning a new name. You can
prevent this unnecessary user frustration by making your application stationery-aware.

You can supply the icon to be displayed for stationery pads created from your
application’s documents by using the resources described in “Creating Icons for the
Finder” beginning on page 7-11. If you do not supply your own stationery pad icon, the
Finder uses the default stationery pad icon illustrated in Figure 7-5 on page 7-12.

In your documentation, tell users to choose the Get Info command to make stationery
pads. You may also want to give examples of useful stationery pads created with your
application. For example, if your application supports text and graphics, you may
provide samples of stationery pads for business letterheads or billing statements.

Distributing Fonts, Sounds, and Other Movable Resources 7
If you create fonts, sounds, keyboard layouts, and script system resource collections, you
can distribute them in individual, movable resource files.

Movable resources such as fonts, keyboard layouts, and sounds are represented on the
screen by icons. To install these resources, the user drags their icons to the System Folder

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-37

icon. The Finder puts font resources in the Fonts folder, and it puts the other resources
in the System file. The user can determine which fonts are currently installed by double-
clicking the System Folder to open it and then double-clicking the Fonts folder. By
double-clicking the System file so that it opens like a folder, the user can see which other
movable resources are installed. (For a description of the new organization of the System
Folder, see “Using the System Folder and Its Related Directories” beginning on
page 7-41.)

To make one of these resources visible on the screen, assign it one of the special file types
defined by the Finder for movable resources. The following list shows the resources that
can be moved, their assigned file types, and their icons:

Note
You or your users can give customized icons to these file types (as
described in “Creating Customized Document Icons” beginning on
page 7-17) as long as the files are not installed in the System file
or in a suitcase file. As soon as users install them in the System file or
in a suitcase file, the Finder displays them using the icons shown in
the previous list. Font and TrueType font movable resources retain
their custom icons when installed in the Fonts folder. �

The user can still store fonts (as well as desk accessories) in files that have suitcase icons,
which is how they were distributed for installation or saved by the user using the
Font/DA Mover in versions of system software that preceded System 7. A suitcase file
that holds desk accessories is of type 'DFIL', and a suitcase file that holds fonts is of
type 'FFIL'. All suitcase files have a creator of 'DMOV'.

Resource File type
Large black-
and-white icon

Font 'ffil'

Keyboard layout 'kfil'

Script system
resource collection

'ifil'

Sound 'sfil'

TrueType font 'tfil'

C H A P T E R 7

Finder Interface

7-38 Using the Finder Interface

In your documentation, tell users to install fonts, sounds, or script system resource
collections by dragging their icons to the System Folder icon. A dialog box appears
asking the user to verify that the resource should be installed in either the Fonts folder
or the System file. The user clicks OK to accept the installation. The user also has the
option to click Cancel to prevent the installation.

Note
If users drag icons to the open System Folder window instead of to the
System Folder icon, the Finder copies or moves the files into the System
Folder directory instead of installing them into either the Fonts folder or
the System file. �

Providing Balloon Help for Nondocument Icons 7
The Finder offers Balloon Help online assistance for users. After the user chooses Show
Balloons from the Help menu, descriptive help balloons appear when the user moves the
cursor to an area of the screen (such as a menu, a window control, or a dialog box) that
has a help resource associated with it.

The Finder provides default help balloons for application, control panel, and system
extension icons. You can provide a customized help balloon for your application, control
panel, or system extension icon by adding an 'hfdr' resource with resource ID –5696 to
the resource fork of your application. Figure 7-14 compares the default help balloon with
a customized help balloon for the SurfWriter application icon.

Figure 7-14 Default and customized help balloons for application icons

Listing 7-12 shows a Finder help override resource and its associated 'STR ' resource,
which are used for the customized help balloon shown in Figure 7-14.

Note
You cannot override the default help balloon that the Finder uses
for document icons. �

The chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox describes in
detail how to provide Balloon Help for your application icon and for other elements of
your application.

Default help balloon for
an application icon

Customized help balloon for
an application icon

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-39

Listing 7-12 Rez input for a help balloon resource for an application icon

resource 'hfdr' (-5696, purgeable) { /*help for SurfWriter icon*/

HelpMgrVersion, hmDefaultOptions, 0, 0, /*header information*/

{HMSTRResItem {kIconHelpString}}

};

resource 'STR ' (kIconHelpString, purgeable) {/*help message for app icon*/

"Use the SurfWriter word processor to create or edit the "

"swellest documents you ever wrote on your Macintosh computer."

};

Using Aliases 7
The Finder allows the user to create multiple icons to represent a single document or
other desktop object (such as a disk, a folder, or the Trash). One of the icons represents
the actual file; the others are aliases that point to the file. An alias is an object that
represents some other file, directory, or volume. An alias looks like the icon of its target,
but its name is displayed in a different style. The style depends on the system script; for
Roman and most other scripts, alias names are displayed in italic.

To the user, the icons of the actual file and its aliases are functionally identical. Aliases
give the user more flexibility in organizing files and offer a convenient way to store a
local copy of a large or dynamic file that resides on a file server.

Ordinarily, when the user wants to open or print files, your application does not need to
be concerned with whether they are aliases because both the Finder and the Standard File
Package resolve aliases before passing them to your application. If the user opens an alias
that represents a document created by your application, the Finder passes your
application the name and location of the document itself, not the alias. Similarly, when
the user opens an alias from within your application, the Standard File Package passes
your application the name of the target document.

If your application opens a file or a directory without going through the Finder or the
Standard File Package (if, for example, it uses preference files or dictionary files), your
application should always call the ResolveAliasFile function just before opening
the file.

As a Finder object, the alias depicts a file called the alias file, which contains a record that
points to the file, directory, or volume represented by the icon. Alias files are created and
managed by the user through the Finder.

Although your application shouldn’t create alias files or change users’ aliases, your
application can create and use its own alias records for storing identifying information
about files or directories. An alias record is a data structure that identifies a file, folder, or
volume. Whenever your application needs to store file or directory information, you can
record the location and other identifying information in an alias record. The next time
your application needs the file or directory, you can use the Alias Manager to locate it,
even if the user has renamed it, copied it, restored it from backup, or moved it. You can

C H A P T E R 7

Finder Interface

7-40 Using the Finder Interface

also use alias records to identify objects on other volumes, including AppleShare
volumes. See the chapter “Alias Manager” in Inside Macintosh: Files for details about
creating and managing information in alias records.

An alias file contains an alias record, stored as a resource of type 'alis', that points to
the target of the alias. (The alias target is the file, directory, or volume described by the
alias record.) The alias file might also contain the target object’s icon descriptions. The
Finder identifies an alias file by setting the isAlias bit in the file’s Finder flags field (see
“File Information Record” beginning on page 7-47 for a description of Finder flags).

An alias file that represents a document typically has the same type and creator as the file
it represents. However, many Finder objects—such as disks, folders, and the Trash—do
not have file types. Instead, alias files for these objects are assigned special file
types, called alias types. Here are the alias types for those objects for which users can
create aliases:

(The Extensions, Preferences, Apple Menu Items, Control Panels, Startup Items, and
PrintMonitor Documents folders are described in “Using the System Folder and Its
Related Directories” beginning on page 7-41.)

Object Alias type Constant

Apple Menu Items
folder 'faam' kAppleMenuFolderAliasType

AppleShare drop folder 'fadr' kDropFolderAliasType

Application 'adrp' kApplicationAliasType

Control Panels folder 'fact' kControlPanelFolderAliasType

Exported
AppleShare folder 'faet' kExportedFolderAliasType

Extensions folder 'faex' kExtensionFolderAliasType

File server 'srvr' kContainerServerAliasType

Floppy disk 'flpy' kContainerFloppyAliasType

Folder 'fdrp' kContainerFolderAliasType

Hard disk 'hdsk' kContainerHardDiskAliasType

Mounted
AppleShare folder 'famn' kMountedFolderAliasType

Other objects that
can hold files 'drop' kContainerAliasType

Preferences folder 'fapf' kPreferencesFolderAliasType

PrintMonitor
Documents folder 'fapn' kPrintMonitorDocsFolderAliasType

Shared
AppleShare folder 'fash' kSharedFolderAliasType

Startup Items folder 'fast' kStartupFolderAliasType

System Folder 'fasy' kSystemFolderAliasType

Trash 'trsh' kContainerTrashAliasType

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-41

When opening a file without going through the Finder or the Standard File Package,
you call ResolveAliasFile immediately before opening the file. (The
ResolveAliasFile function is described in detail on page 7-52.) In Listing 7-13,
the customized open function MyOpen ensures that the file to be opened is the target
file and then opens the data fork with the File Manager function FSpOpenDF.

Listing 7-13 Using the ResolveAliasFile function to open a file

FUNCTION MyOpen (VAR theSpec: FSSpec; perm: SignedByte;

 VAR fRefNum: Integer): OSErr;

VAR

myErr: OSErr;

targetIsFolder: Boolean;

wasAliased: Boolean;

BEGIN

myErr := ResolveAliasFile(theSpec, TRUE, targetIsFolder, wasAliased);

IF targetIsFolder THEN

myErr := paramErr {cannot open a folder}

ELSE IF (myErr <> noErr) THEN {try to open it}

myErr := FSpOpenDF(theSpec, perm, fRefNum);

MyOpen := myErr;

END;

Using the System Folder and Its Related Directories 7
The System Folder is a directory that stores essential system software such as the System
file, the Finder, and printer drivers. System 7 introduced a new organization for the
System Folder, which contains a set of new subdirectories to hold related files. The Finder
uses these subdirectories to facilitate file management for the user. For example, by
sorting and storing such files as desk accessories, control panels, fonts, preferences files,
system extensions, and temporary files into separate folders for the user, the Finder keeps
the top level of the System Folder from being cluttered with dozens, or even hundreds, of
files.

The user can easily install and remove fonts, sounds, keyboard layouts, control panels,
and system extensions by dragging their icons to the System Folder icon. The Finder then
moves them into the proper subdirectories. When a control panel icon is dragged to the
System Folder icon, for example, the Finder presents a dialog box that asks the user,
“Place this control panel into the ‘Control Panels’ folder?” The user accepts by clicking
the OK button or declines by clicking the Cancel button.

Note
If users drag icons to the open System Folder window instead of to
the System Folder icon, the Finder copies or moves the files into the
System Folder directory instead of copying or moving them to the proper
subdirectories. �

C H A P T E R 7

Finder Interface

7-42 Using the Finder Interface

Figure 7-15 shows a user’s view of the new directory organization typically found within
the System Folder.

Figure 7-15 The System Folder and related folders

Additional related directories are located at the root directory. Notice the Trash window.
It shows the contents of the Trash directory, which is represented to the user by the Trash
icon. The Trash directory exists at the root level of the volume. A Macintosh sharing files
among users in a network environment maintains separate Trash subdirectories within a
shared Trash directory. That is, the server creates a separate, uniquely named Trash
subdirectory for every user who opens a volume on a Macintosh server and drags an
object to the Trash icon. All Trash subdirectories within a shared Trash directory are
invisible to users. On the desktop, the user sees only the Trash icon of the local Macintosh
computer. When the user double-clicks the Trash icon, a window reveals the names of
only those files that the user has thrown away; no distinction is made to the user as to
which computers any of these files originated on.

At the root level of the volume, the Finder also maintains a Temporary Items folder
and a Desktop Folder, both of which are invisible to the user and so don’t appear
in Figure 7-15.

Figure 7-15 illustrates the folder organization typically found on single-user systems. Of
all the related directories shown, your application is likely to use only the Preferences
folder and the Temporary Items folder. However, you cannot be certain of the location of
these or any of the other system-related directories. In the future, these system-related
directories may not be located in the System Folder or in the root directory.

You can use the FindFolder function (described on page 7-54) to get the path
information to these directories. Of these directories, the only ones you are ever likely
to need are Preferences, Temporary Items, and Trash. For example, you might wish to
check for the existence of a user’s configuration file in Preferences, create a temporary file
in Temporary Items, or—if your application runs out of storage when trying to save
a file—check how much storage is taken by items in the Trash directory and report this to
the user.

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-43

Your application may freely use these two directories for storing and locating
important files:

� Preferences, located in the System Folder, holds preferences files to record local
configuration settings. Your application can store its preferences file in this directory.
The active Finder Preferences file is always stored in the Preferences folder. Do not use
the Preferences folder to hold information that is to be shared by users on more than
one Macintosh computer on a network. Ensure that your application can always
operate even if its preferences file has been deleted.

� Temporary Items, located at the root level of the volume, holds temporary files created
by applications. The Temporary Items folder is invisible to the user. Your application
can place its temporary files in this directory. A temporary file should exist only as
long as your application needs to keep it open. As soon as your application closes the
file, your application should remove the temporary file. You should also ensure that
you are assigning a unique name to your temporary file so that you don’t write over
another application’s file.

It’s important to bear in mind a few rules about storing your application’s files. First,
don’t store any files at the top level of the System Folder. Use the Preferences directory
or one of the other directories described in the following list.

Second, use the FindFolder function to locate or put files in the right place. Don’t
assume files are on the same volume as your application; they could be on a different
local volume, or on a remote volume on the network.

Third, don’t store any files that multiple users may need to access, such as dictionaries
and format converters, in the Preferences directory or in any of the directories located in
the System Folder. Remember that the files in the System Folder are generally accessible
only to the person who starts up from the System file in that System Folder.

There are additional directories that either the user or the Finder uses for storing and
locating important files; these directories are described here. Generally, your application
should not store files in these directories.

� Apple Menu Items, located in the System Folder, holds the standard desk accessories
plus any other desk accessories, applications, files, folders, or aliases that the user
wants to display in the Apple menu. Only the user and the Installer should put things
into the Apple Menu Items folder.

� Control Panels, located in the System Folder, holds control panels. The Apple Menu
Items folder holds an alias to the Control Panels folder so that the user can also reach
the control panels through the Apple menu. Only the user and the Installer should put
things into the Control Panels folder.

� Desktop Folder, which is invisible to users, is located at the root level of the volume.
The Desktop Folder stores information about the icons that appear on the desktop area
of the screen. The user controls the contents of the Desktop Folder by arranging icons
on the screen. What appears on the screen to the user is the union of the contents of
Desktop Folders for all mounted volumes.

� Extensions, located in the System Folder, holds extensions—that is, code that is not
part of the basic system software but that provides system-level services, such as
printer drivers and system extensions. Files of type 'INIT', previously called startup
documents, and of type 'appe', also known as background-only applications, are

C H A P T E R 7

Finder Interface

7-44 Using the Finder Interface

routed by the Finder to this folder. Files of type 'scri' (system extensions for
script systems) are also routed to this folder. Only the user and the Installer should put
files into the Extensions folder.

� Fonts, located in the System Folder on computers using system software version 7.1 or
later, holds fonts. Only the user and the Installer should put fonts into the Fonts folder.

� PrintMonitor Documents, located in the System Folder, holds spooled docu-
ments waiting to be printed. Only the printing software uses the PrintMonitor
Documents folder.

� Rescued Items from volume name, located in the Trash directory, is a directory created
by the Finder at system startup, restart, or shutdown only when the Finder finds items
in the Temporary Items folder. Since applications should remove their temporary files
when they close them, the existence of a file in a Temporary Items folder indicates a
system crash. When the Finder discovers a file in the Temporary Items folder, the
Finder creates a Rescued Items from volume name directory that is named for the
volume on which the Temporary Items folder exists. For example, the Finder creates a
directory called Rescued Items from Loma Prieta when a file is discovered in the
Temporary Items folder on a volume named Loma Prieta. The Finder then moves the
temporary file to that directory so that users can examine the file in case they want to
recreate their work up to the time of the system crash. When a user empties the Trash,
all Rescued Items folders disappear. Only the Finder should put anything into
Rescued Items directories.

� Startup Items, located in the System Folder, holds applications and desk accessories
(or their aliases) that the user wants started up every time the Finder starts up.
Only the user should put things into the Startup Items folder. Note that there is a
distinction between startup applications that users put in the Startup Items folder
and system extensions of file type 'INIT' (previously called startup documents),
which are typically installed in the Extensions folder.

� System file, located in the System Folder, contains the basic system software plus
some system resources, such as sound and keyboard resources. The System file
behaves like a folder in this regard: although it looks like a suitcase icon, double-
clicking it opens a window that reveals movable resource files (such as sounds,
keyboard layouts, and script system resource collections) stored in the System file.
(“Distributing Fonts, Sounds, and Other Movable Resources” beginning on page 7-36
describes the resources that can be moved into the System file.) Only the user and the
Installer should put resources into the System file.

� Trash, located at the root level of a volume, holds items that the user moves to the
Trash icon. After opening the Trash icon, the user sees the collection of all items that he
or she has moved to the Trash icon—that is, the union of all appropriate Trash
directories from all mounted volumes. A Macintosh set up to share files among users
in a network environment maintains separate Trash subdirectories for remote users
within its shared Trash directory. That is, the server creates a separate, uniquely named
Trash subdirectory for every remote user who opens a volume on a Macintosh file
server and drags an object to the Trash icon. All Trash subdirectories and the shared
Trash directory are invisible to users. The Finder empties a Trash directory (or, in the
case of a file server, a Trash subdirectory) only when the user of that directory chooses
the Empty Trash command.

C H A P T E R 7

Finder Interface

Using the Finder Interface 7-45

Although the names of the visible system-related folders vary on different international
systems, the invisible directories Temporary Items and Desktop Folder keep these names
on all systems. System software assigns unique names for invisible Trash subdirectories.

Generally, you should store application-specific files in the folder with your application,
not in any of these system-related directories. Your application may want to provide
users with a mechanism to specify a directory in which to look for auxiliary files. For
example, you could design a customized version of the open file dialog box that allows
users to specify a path to locations where files are stored. This technique may be useful
for finding files that are shared by several applications. It’s also possible to track the
location of files by using the Alias Manager. For details, see the chapter “Alias Manager”
in Inside Macintosh: Files.

When you design your application, it’s important to consider the user’s view of the tools
that you provide. In most cases you’ll want to build your application so that the user
deals with one icon that represents the entire set of abilities your application provides.
This scheme simplifies the user’s world by restricting the complexity of installing and
maintaining your product. If you provide optional tools—such as a dictionary and
thesaurus—that have their own icons, it’s a good idea to allow these tools to work from
any location in the file system rather than relying on their storage somewhere in the
System Folder.

The Desktop Database 7
For quick access to the resources it needs, the Finder maintains a central desktop
database of information about the files and directories on a volume. The Finder
updates the database when applications are added, moved, renamed, or deleted.

Normally, your application won’t need to use the information in the desktop database
or to use Desktop Manager routines to manipulate it. Instead, your application should let
the Finder manipulate the desktop database and handle such Desktop Manager tasks as
launching applications when users double-click icons, maintaining user comments
associated with files, and managing the icons used by applications.

In case you discover some important need to retrieve information from the desktop
database or even to change the desktop database from within your application, Desktop
Manager routines are provided for you to do so. While your application probably won’t
ever need to use them, for the sake of completeness they are described in Inside
Macintosh: More Macintosh Toolbox.

Much of the information in the desktop database comes from the bundle resources
for applications and other files on the volume. (See “Using Finder Information in the
Catalog File” beginning on page 7-32 for a discussion on setting the bundle bit of an
application so that its bundled resources get stored in the desktop database.) The desktop
database contains all icon definitions and their associated file types. It lists all the file
types that each application can open and all copies or versions of the application that’s
listed as the creator of a file. The desktop database also lists the location of each
application on the disk and any comments that the user has added to the information
windows for desktop objects.

C H A P T E R 7

Finder Interface

7-46 Finder Interface Reference

The Finder maintains a desktop database for each volume with a capacity greater than
2 MB. For most volumes, such as hard disks, the database is stored on the volume itself.
For read-only volumes—such as some compact discs—that don’t contain their own
desktop database, the Desktop Manager creates it and stores it in the System Folder of
the startup drive.

For compatibility with older versions of system software, the Finder keeps the informa-
tion for ejectable volumes with a capacity smaller than 2 MB in a resource file instead of a
database.

Finder Interface Reference 7

This section describes the data structures, routines, and resources that are specific to the
Finder interface.

The “Data Structures” section shows the data structures for the file information record,
the extended file information record, the directory information record, and the extended
directory information record. The “Routines” section describes the routines for resolving
alias files and for finding system-related folders. The “Resources” section describes the
resources you supply for your files so that the Finder can relay information about them to
your users.

Data Structures 7
A catalog file exists on every volume to maintain relationships between the files and
directories on that volume. (A volume is any storage medium formatted to contain files.)
Although it’s used mostly by the File Manager, the catalog file also contains information
used by the Finder. The information for files is listed in file information records and
extended file information records; the information for directories is listed in directory
information records and extended directory information records.

Normally, your application sets the file type and the creator information in fields of a file
information record when your application creates a new file. (For a complete discussion
of the File Manager and the functions available for creating files, see Inside Macintosh:
Files.) The Finder manipulates the other fields in the file information record. You can
check the information in this record by calling the File Manager function FSpGetFInfo
or PBGetCatInfo. In particular, you may want to check the file type or creator for a file,
or you may want to check or set one of your document’s Finder flags.

The Finder manipulates the fields in the extended file information, directory informa-
tion, and extended directory information records; your application shouldn’t have to
directly check or set any of these fields. These data structures are described here for
completeness.

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-47

File Information Record 7

You typically set a file’s type and creator when you create the file; for example, you pass a
creator and a file type to the File Manager function FSpCreate as parameters. The
Finder manipulates the other fields in the file information record, which is a data
structure of type FInfo. After you have created a file, you can use the File Manager
function FSpGetFInfo to return the file information record, then change the fdType
and fdCreator fields by using the File Manager function FSpSetFInfo.

TYPE FInfo =

RECORD

fdType: OSType; {file type}

fdCreator: OSType; {file creator}

fdFlags: Integer; {Finder flags}

fdLocation: Point; {file's location in window}

fdFldr: Integer; {window that contains file}

END;

Field descriptions

fdType File type. For a discussion of file types, see “Giving a Signature to
Your Application and a Creator and a File Type to Your Documents”
beginning on page 7-8.

fdCreator The signature of the application that created the file. For a discussion
about creators, see “Giving a Signature to Your Application and a
Creator and a File Type to Your Documents” beginning on page 7-8.

fdFlags Finder flags. There are only a few flags that your application might
ever need to set; these are described in “Using Finder Information in
the Catalog File” beginning on page 7-32. All of the Finder flags are
listed here for completeness.

Flag name
Bit
number Description

isAlias 15 For a file, this bit indicates that the file
is an alias file. For directories, this bit is
reserved—in which case, set to 0.

isInvisible 14 The file or directory is invisible from the
Finder and from the Standard File Package
dialog boxes.

hasBundle 13 For a file, this bit indicates that the file
contains a bundle resource. For directories,
this bit is reserved—in which case, set to 0.

nameLocked 12 The file or directory can’t be renamed from
the Finder, and the icon cannot be changed.

isStationery 11 For a file, this bit indicates that the file is a
stationery pad. For directories, this bit is
reserved—in which case, set to 0.

hasCustomIcon 10 The file or directory contains a
customized icon.

C H A P T E R 7

Finder Interface

7-48 Finder Interface Reference

You can use these constants as masks for these flags:

CONST

fHasBundle = 8192; {set if file has a bundle }

{ resource}

fInvisible = 16384; {set if icon is invisible}

kIsOnDesk = $1; {unused and reserved in }

{ System 7}

kColor = $E; {three bits of color }

{ coding}

kIsShared = $40; {file can be executed by }

{ multiple users }

{ simultaneously}

kHasBeenInited

= $100; {file info is in desktop }

{ database}

kHasCustomIcon

= $400; {file or directory has a }

{ customized icon}

kIsStationery

 = $800; {file is a stationery pad}

kNameLocked = $1000; {file or directory can't }

{ be renamed from Finder, }

{ and icon can't be }

{ changed}

kHasBundle = $2000; {file has bundle resource}

kIsInvisible= $4000; {file or directory is }

{ invisible from Finder & }

Reserved 9 Reserved; set to 0.

hasBeenInited 8 The Finder has recorded information from
the file’s bundle resource into the desktop
database and given the file or folder a
position on the desktop.

hasNoINITS 7 The file contains no 'INIT' resources; set to
0. Reserved for directories; set to 0.

isShared 6 The file is an application that can be
executed by multiple users simultaneously.
Defined only for applications; otherwise, set
to 0.

requiresSwitchLaunch 5 Unused and reserved in System 7; set to 0.

colorReserved 4 Unused and reserved in System 7; set to 0.

color 1–3 Three bits of color coding.

isOnDesk 0 Unused and reserved in System 7; set to 0.

Flag name
Bit
number Description

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-49

{ from Standard File }

{ Package dialog boxes}

kIsAlias = $8000; {file is an alias file}

fdLocation The location—specified in coordinates local to the window—of the
file’s icon within its window.

fdFldr The window in which the file’s icon appears; this information is
meaningful only to the Finder.

Extended File Information Record 7

The Finder manipulates the fields in the extended file information records, which are
data structures of type FXInfo; your application shouldn’t have to check or set any of
these fields directly.

TYPE FXInfo =

RECORD

fdIconID: Integer; {icon ID}

fdUnused: ARRAY[1..3] OF Integer;

{unused but reserved 6 bytes}

fdScript: SignedByte; {script flag and code}

fdXFlags: SignedByte; {reserved}

fdComment: Integer; {comment ID}

fdPutAway: LongInt; {home directory ID}

END;

Field descriptions

fdIconID An ID number for the file’s icon; the numbers that identify icons are
assigned by the Finder.

fdUnused Reserved.
fdScript The script system for displaying the file’s name. Ordinarily, the

Finder (and the Standard File Package) displays the names of all
desktop objects in the system script, which depends on the
region-specific configuration of the system. The high bit of the byte
in the fdScript field is set by default to 0, which causes the Finder
to display the filename in the current system script. If the high bit is
set to 1, the Finder (and the Standard File Package) displays the
filename and directory name in the script whose code is recorded in
the remaining 7 bits.

fdXFlags Reserved.
fdComment An ID number for the comment that is displayed in the information

window when the user selects a file and chooses the Get Info
command from the File menu. The numbers that identify comments
are assigned by the Finder.

fdPutAway If the user moves the file onto the desktop, the directory ID of the
folder from which the user moves the file.

C H A P T E R 7

Finder Interface

7-50 Finder Interface Reference

Directory Information Record 7

The Finder manipulates the fields in the directory information record, which is a data
structure of type DInfo. Your application shouldn’t have to check or set any of these
fields directly.

TYPE DInfo =

RECORD

frRect: Rect; {folder's window rectangle}

frFlags: Integer; {flags}

frLocation: Point; {folder's location in window}

frView: Integer; {folder's view}

END;

Field descriptions

frRect The rectangle for the window that the Finder displays when the user
opens the folder.

frFlags Reserved.
frLocation Location of the folder in the parent window.
frView The manner in which folders are displayed; this is set by the user

with commands from the View menu of the Finder.

Extended Directory Information Record 7

The Finder manipulates the fields in the extended directory information records, which
are data structures of type DXInfo; your application shouldn’t have to check or set any
of these fields directly.

TYPE DXInfo =

RECORD

frScroll: Point; {scroll position}

frOpenChain: LongInt; {directory ID chain of open }

{ folders}

frScript: SignedByte; {script flag and code}

frXFlags: SignedByte; {reserved}

frComment: Integer; {comment ID}

frPutAway: LongInt; {home directory ID}

END;

Field descriptions

frScroll Scroll position within the Finder window. The Finder does not
necessarily save this position immediately upon user action.

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-51

frOpenChain Chain of directory IDs for open folders. The Finder numbers
directory IDs. The Finder does not necessarily save this information
immediately upon user action.

frScript The script system for displaying the folder’s name. Ordinarily, the
Finder (and the Standard File Package) displays the names of all
desktop objects in the current system script, which depends on the
region-specific configuration of the system. The high bit of the byte
in the fdScript field is set by default to 0, which causes the Finder
to display the folder’s name in the current system script. If the high
bit is set to 1, the Finder (and the Standard File Package) displays the
filename and directory name in the script whose code is recorded in
the remaining 7 bits. However, as of system software version 7.1, the
Window Manager and Dialog Manager do not support multiple
simultaneous scripts, so the system script is always used for
displaying filenames and directory names in dialog boxes, window
titles, and other user interface elements used by the Finder.
Therefore, until the system software’s script capability is fully
implemented, you should treat this field as reserved.

frXFlags Reserved.
frComment An ID number for the comment that is displayed in the information

window when the user selects a folder and chooses the Get Info
command from the File menu. The numbers that identify comments
are assigned by the Finder.

frPutAway If the user moves the folder onto the desktop, the directory ID of the
folder from which the user moves it.

Routines 7
This section describes the routines your application can use to resolve alias files if it
bypasses the Finder when manipulating documents and to find system-related folders
if your application needs to determine where they are located.

Resolving Alias Files 7

Ordinarily, when the user wants to open or print files, your application does not need to
be concerned with whether they are aliases because the Finder resolves aliases before
passing them to your application. If the user opens an alias that represents a document
created by your application, the Finder passes your application the name and location of
the document itself, not the alias. (Similarly, when the user opens an alias from within
your application, the Standard File Package passes your application the name of the
target document.) If your application bypasses the Finder when manipulating
documents, it should check for and resolve aliases itself by using the Alias Manager
function ResolveAliasFile, which is described here for completeness.

C H A P T E R 7

Finder Interface

7-52 Finder Interface Reference

ResolveAliasFile 7

If your application bypasses the Finder when manipulating documents, it should check
for and resolve aliases itself by using the ResolveAliasFile function.

FUNCTION ResolveAliasFile (VAR theSpec: FSSpec;

resolveAliasChains: Boolean;

VAR targetIsFolder: Boolean;

VAR wasAliased: Boolean): OSErr;

theSpec A file system specification record for the file or directory you plan to open.

resolveAliasChains
A Boolean value. Set this parameter to TRUE if you want
ResolveAliasFile to resolve all aliases in a chain, stopping only when
it reaches the target file. Set this parameter to FALSE if you want to resolve
only one alias file, even if the target is another alias file.

targetIsFolder
A return parameter only. The ResolveAliasFile function returns TRUE
in this parameter if the file specification record in the parameter theSpec
points to a directory or a volume; otherwise, ResolveAliasFile returns
FALSE in this parameter.

wasAliased
A return parameter only. The ResolveAliasFile function returns TRUE
in this parameter if the file specification record in the parameter theSpec
points to an alias; otherwise, ResolveAliasFile returns FALSE in this
parameter.

DESCRIPTION

The ResolveAliasFile function returns in the parameter theSpec the name and
location of the target file that you initially pass in the parameter theSpec.

The ResolveAliasFile function first checks the catalog file for the file or directory
specified in the parameter theSpec to determine whether it is an alias and whether it is
a file or a directory. If the object is not an alias, ResolveAliasFile leaves theSpec
unchanged, sets the targetIsFolder parameter to TRUE for a directory or volume and
FALSE for a file, sets wasAliased to FALSE, and returns noErr. If the object is an alias,
ResolveAliasFile resolves it, places the target in the parameter theSpec, and sets
the wasAliased flag to TRUE.

When ResolveAliasFile finds the specified volume and parent directory but fails to
find the target file or directory in that location, ResolveAliasFile returns a result code
of fnfErr and fills in the parameter theSpec with a complete file system specification
record describing the target (that is, its volume reference number, parent directory ID,
and filename or folder name). The file system specification record is valid, although the

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-53

object it describes does not exist. This information is intended as a “hint” that lets you
explore possible solutions to the resolution failure. You can, for example, use the file
system specification record to create a replacement for a missing file with the File
Manager function FSpCreate.

If ResolveAliasFile receives an error code while resolving an alias, it leaves the input
parameters as they are and exits, returning an error code. In addition to any of these
result codes, ResolveAliasFile can also return any Resource Manager or File
Manager errors.

SPECIAL CONSIDERATIONS

Before calling the ResolveAliasFile function, you should make sure that it is
available by using the Gestalt function with the gestaltAliasMgrAttr selector.

RESULT CODES

SEE ALSO

Listing 7-13 on page 7-41 illustrates how to use ResolveAliasFile from an
application’s own MyOpen function. The file system specification record is described in
Inside Macintosh: Files. Aliases and other Alias Manager and File Manager routines
are also described in greater detail in Inside Macintosh: Files. The Gestalt function is
described in the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

Finding Directories 7

You can use the FindFolder function to get the path information you need to gain
access to the system-related directories described in “Using the System Folder and Its
Related Directories” beginning on page 7-41. Those you’re most likely to want to access
are Preferences, Temporary Items, and Trash. For example, you might wish to check for
the existence of a user’s configuration file in Preferences, create a temporary file in
Temporary Items, or—if your application runs out of disk storage when trying to save a
file—check how much disk storage is taken by items in the Trash directory and report
this to the user.

noErr 0 No error
nsvErr –35 Volume not found
fnfErr –43 Target not found, but volume and parent directory

found, and theSpec parameter contains a valid
file system specification record

dirNFErr –120 Parent directory not found

C H A P T E R 7

Finder Interface

7-54 Finder Interface Reference

FindFolder 7

To get the path information to gain access to the system-related directories, use the
FindFolder function.

FUNCTION FindFolder (vRefNum: Integer; folderType: OSType;

createFolder: Boolean;

VAR foundVRefNum: Integer;

VAR foundDirID: LongInt): OSErr;

vRefNum The volume reference number (or the constant kOnSystemDisk for the
startup disk) of the volume on which you want to locate a directory.

folderType
A four-character folder type, or a constant that represents the type, for the
directory you want to find. The constants and the four-character folder
types they represent are listed here:

CONST

kAppleMenuFolderType

= 'amnu'; {Apple Menu Items}

kControlPanelFolderType

= 'ctrl'; {Control Panels}

kDesktopFolderType = 'desk'; {Desktop Folder}

kExtensionFolderType

= 'extn'; {Extensions}

kFontsFolderType = 'font'; {Fonts folder}

kPreferencesFolderType

= 'pref'; {Preferences}

kPrintMonitorDocsFolderType

= 'prnt'; {PrintMonitor }

{ Documents}

kStartupFolderType = 'strt'; {Startup Items}

kSystemFolderType = 'macs'; {System Folder}

kTemporaryFolderType

= 'temp'; {Temporary Items}

kTrashFolderType = 'trsh'; {single-user Trash}

kWhereToEmptyTrashFolderType

= 'empt'; {shared Trash on net}

createFolder
Pass the constant kCreateFolder in this parameter to create a directory
if it does not already exist; otherwise, pass the constant
kDontCreateFolder.

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-55

foundVRefNum
The volume reference number, returned by FindFolder, for the volume
containing the directory you specify in the folderType parameter.

foundDirID
The directory ID number, returned by FindFolder, for the directory you
specify in the folderType parameter.

DESCRIPTION

For the folder type on the particular volume (specified, respectively, in the folderType
and vRefNum parameters), the FindFolder function returns the directory’s volume
reference number in the foundVRefNum parameter and its directory ID in the
foundDirID parameter.

The specified folder used for a given volume might be located on a different volume in
future versions of system software; therefore, do not assume the volume that you
specify in vRefNum and the volume returned in foundVRefNum will be the same.

Specify a volume reference number (or the constant kOnSystemDisk for the startup
disk) in the vRefNum parameter.

Specify a four-character folder type—or the constant that represents it—in the
folderType parameter. Use the kTrashFolderType constant to locate the current
user’s Trash directory for a given volume—even one located on a file server. On a file
server, you can use the kWhereToEmptyTrashFolderType constant to locate the
parent directory of all logged-on users’ Trash subdirectories.

Use the constant kCreateFolder in the createFolder parameter to tell FindFolder
to create a directory if it does not already exist; otherwise, use the constant
kDontCreateFolder. Directories inside the System Folder are created only if the
System Folder directory exists. The FindFolder function will not create a System Folder
directory even if you specify the kCreateFolder constant in the createFolder
parameter.

The FindFolder function returns a nonzero result code if the folder isn’t found,
and it can also return other file system errors reported by the File Manager or
Memory Manager.

SPECIAL CONSIDERATIONS

The Finder identifies the subdirectories of the System Folder, and their folder types, in a
resource of type 'fld#' located in the System file. Do not modify or rely on the contents
of the 'fld#' resource in the System file; use only the FindFolder function to find the
appropriate directories.

To determine the availability of the FindFolder function, use the Gestalt function
with the Gestalt selector gestaltFindFolderAttr. Test the bit field indicated by the
gestaltFindFolderPresent constant in the response parameter. If the bit is set, then
the FindFolder function is present.

CONST gestaltFindFolderPresent = 0; {if this bit is set, }
{ FindFolder is present}

C H A P T E R 7

Finder Interface

7-56 Finder Interface Reference

RESULT CODES

SEE ALSO

The system-related directories located by the FindFolder function are described in
“Using the System Folder and Its Related Directories” beginning on page 7-41.

Resources 7
This section describes the resources you supply for your files so that the Finder can use
your files and relay information about them to your users. These resources are

� the signature resource—defined using a string ('STR ') resource—which the Finder
uses to identify and start up your application when a user double-clicks documents
created by your application

� the set of resources (icon list resource, small icon list resource, large 4-bit color icon
resource, small 4-bit color icon resource, large 8-bit color icon resource, and small 8-bit
color icon resource) that visually represent your application and any documents it
creates, and two related resources, the icon ('ICON') resource and the color icon
('cicn') resource

� the file reference ('FREF') resource, which links icons with the files types they
represent and which allows users to launch your application by dragging document
icons to your application icon

� a bundle ('BNDL') resource, which groups together your application’s signature, icon
list resource, and file reference resources

� a missing-application name string—that is, a string ('STR ') resource—for your
application’s documents in order to display the name of your application if the user
tries to open or print a document created by your application when your application is
missing

� an application-missing message string—that is, a string ('STR ') resource—in your
application’s documents in order to explain why the user can’t open or print certain
documents used by your application

� the version ('vers') resource, so that users can easily find out the version of a file
and, if applicable, the version of the superset of files to which the single file belongs

For information about using the 'SIZE' resource to support stationery pads, see
“Supporting Stationery Pads” beginning on page 7-34.

This section describes the structures of these resources after they are compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
files for these resources, see instead “Using the Finder Interface” beginning on page 7-6
for detailed information.

noErr 0 No error
fnfErr –43 Type not found in 'fld#' resource, or disk doesn’t have

System Folder support or System Folder in volume
header, or disk does not have desktop database support
for Desktop Folder—in all cases, folder not found

dupFNErr –48 File found instead of folder

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-57

The Signature Resource 7

Every application that creates documents should define a signature resource, so that the
Finder can identify and start up the application when a user double-clicks documents
created by the application. A signature resource is typically defined to be a string
resource (that is, a resource of type 'STR ') that is given a unique four-character
signature as its resource type. For example, an application with the signature of WAVE
would use a string resource to define its signature resource as a resource of type 'WAVE'.
The signature resource should have a resource ID number of 0.

To ensure uniqueness, developers must register their applications’ four-character
signatures with Apple Computer, Inc., at Macintosh Developer Technical Support.

This section describes the structure of a signature resource defined to be of type 'STR '
after it’s compiled by the Rez resource compiler. The format of a Rez input file for a
signature resource differs from its compiled output form. If you are concerned only with
creating a signature resource, see “Giving a Signature to Your Application and a Creator
and a File Type to Your Documents” beginning on page 7-8.

If you examine a compiled version of a signature resource, as shown in Figure 7-16, you
find that it contains a Pascal string that specifies the name, version number, and release
date of the application.

Figure 7-16 Structure of a signature resource compiled as a string ('STR ') resource

If an application does not provide specific version information through a version
resource (described in “Providing Version Resources” beginning on page 7-31), the
Finder displays the string stored in the signature resource when the user selects the
application and chooses Get Info from the File menu.

The Icon List Resource 7

An icon list resource is one of several icon resources that you create to represent visually
for the user your application or one of the document types it creates. An icon list resource
is a resource with the resource type 'ICN#'. All icon list resources must be marked
purgeable, and they must have resource IDs greater than 128.

When the user chooses by Icon from the View menu, the Finder displays the black-and-
white icon specified in this resource in windows if either the user has a black-and-white
monitor or your application has not defined any resources for color icons; otherwise, the
Finder displays a color version of the icon.

Name, version number, and release date of application

Unique signature resource type as an 'STR ' resource

1 to 256

Bytes

C H A P T E R 7

Finder Interface

7-58 Finder Interface Reference

An icon list resource is defined to be an array of two items of type String[128]; each
bit in the first array represents a pixel in the 32-by-32 pixel icon, and each bit in the
second array represents a pixel in the 32-by-32 pixel mask. You can use a high-level tool
such as the ResEdit application, which is available through APDA, to create icon list
resources. You can then use the DeRez decompiler to convert your icon list resources into
Rez input when necessary. See “Creating Icons for the Finder” beginning on page 7-11 for
additional information about creating icon list resources and other resources for
representing files to users.

An icon list resource defines one icon, which the Finder uses to display the file it
represents. If you examine the compiled version of an icon list resource, as represented in
Figure 7-17, you find that it contains the following elements:

� The 32-by-32 pixel black-and-white icon.

� The 32-by-32 pixel black icon mask, which shows the area covered by the black-and-
white icon and any 32-by-32 pixel color versions of the icon. The Finder uses the mask
to crop the icon’s outline into whatever background color or pattern is on the desktop.
The Finder then draws the black-and-white icon specified in this resource—or the
color icons specified in large 4-bit color icon resources or large 8-bit color icon
resources—into this shape.

Figure 7-17 Structure of a compiled icon list ('ICN#') resource

To create 16-by-16 pixel and color versions of the icon defined in an icon list resource
(thereby supplying an entire icon family), your application must also create the following
resources: a small icon list resource, a large 4-bit color icon resource, a small 4-bit color
icon resource, a large 8-bit color icon resource, and a small 8-bit color icon resource. Their
compiled formats are described in the next several sections; guidelines for creating them
are provided in “Creating Icons for the Finder” beginning on page 7-11.

The Small Icon List Resource 7

A small icon list resource is one of several resources that you provide for an icon
family. A small icon list resource is a resource with the resource type 'ics#'. A small
icon list resource must be marked purgeable, and it must have the same resource
ID as the icon list resource that represents the file that the small icon list resource
also represents.

32-by-32 pixel black-and-white icon

'ICN#' resource type

128

Bytes

32-by-32 pixel icon mask 128

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-59

When the user chooses by Small Icon from the View menu, the Finder displays the
small black-and-white icon specified in this resource in windows if either the user has a
black-and-white monitor or the application has not defined any resources for color icons;
otherwise, a color version of the icon is displayed. Similarly, the small black-and-white
icon or its color version appears in the Application menu after the user launches the
application and in the Apple menu if the user places the application or an alias to it in the
Apple Menu Items folder.

A small icon list resource is defined to be an array of two items of type String[32];
each bit in the first array represents a pixel in the 16-by-16 pixel icon, and each bit in the
second array represents a pixel in the 16-by-16 pixel mask. You can use a high-level tool
such as the ResEdit application to create small icon list resources. You can then use the
DeRez decompiler to convert your small icon list resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating small icon list resources and other resources for representing files to users.

A small icon list resource defines one icon, which the Finder uses to display the file it
represents. If you examine the compiled version of a small icon list resource, as
represented in Figure 7-18, you find that it contains the following elements:

� The 16-by-16 pixel black-and-white icon for display on the desktop.

� The 16-by-16 pixel black icon mask, which shows the area covered by the icon. The
Finder uses the mask to crop the icon’s outline into whatever background color or
pattern is on the desktop. The Finder then draws the black-and-white icon specified
in this resource—or the color icons specified in the small 4-bit color icon resource or
the small 8-bit color icon resource—into this shape.

The format for the compiled icon list resource is described on page 7-57; the format
for the compiled small 4-bit color icon resource is described on page 7-60; and the
format for the compiled small 8-bit color icon resource is described on page 7-62.

Figure 7-18 Structure of a compiled small icon list ('ics#') resource

The Large 4-Bit Color Icon Resource 7

A large 4-bit color icon resource is one of several resources that you provide for an icon
family. A large 4-bit color icon resource is a resource with the resource type 'icl4'. A
large 4-bit color icon resource must be marked purgeable, and it must have the same

16-by-16 pixel black-and-white icon

'ics#' resource type

32

Bytes

16-by-16 pixel icon mask 32

C H A P T E R 7

Finder Interface

7-60 Finder Interface Reference

resource ID as the icon list resource that represents the file that the large 4-bit color icon
resource also represents.

When the user chooses by Icon from the View menu, the Finder displays the large 4-bit
color icon specified in this resource in windows if the user has a monitor displaying
4 bits of color data per pixel. Similarly, the large 4-bit color icon appears in the
Application menu after the user launches the application and in the Apple menu if the
user places the application or an alias to it in the Apple Menu Items folder.

A large 4-bit color icon resource is defined to be of type String[512]; every 4 bits in the
string represent a pixel in the 32-by-32 pixel icon. You can use a high-level tool such as
the ResEdit application to create large 4-bit color icon resources. You can then use the
DeRez decompiler to convert your large 4-bit color icon resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating resources for visually representing files.

A large 4-bit color icon resource defines one icon, which the Finder uses to display the file
it represents. If you examine the compiled version of a large 4-bit color icon resource, as
represented in Figure 7-18, you find that it contains only the 32-by-32 pixel 4-bit color
icon for display by the Finder. This resource does not specify a mask for the icon; instead,
the Finder uses the mask specified for the icon list resource with the same resource ID
number as this resource.

Figure 7-19 Structure of a compiled large 4-bit color icon ('icl4') resource

The format for the compiled icon list resource is described on page 7-57.

The Small 4-Bit Color Icon Resource 7

A small 4-bit color icon resource is one of several resources that you provide for an icon
family. A small 4-bit color icon resource is a resource with the resource type 'ics4'. A
small 4-bit color icon resource must be marked purgeable, and it must have the same
resource ID as the icon list resource that represents the file that the small 4-bit color icon
resource also represents.

When the user chooses by Small Icon from the View menu, the Finder displays the small
4-bit color icon specified in this resource in windows if the user has a monitor displaying
4 bits of color data per pixel. Similarly, the small 4-bit color icon appears in the
Application menu after the user launches the application and in the Apple menu if the
user places the application or an alias to it in the Apple Menu Items folder.

32-by-32 pixel 4-bit color icon

'icl4' resource type

512

Bytes

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-61

A small 4-bit color icon resource is defined to be of type String[128]; every 4 bits in
the string represent a pixel in the 16-by-16 pixel icon. You can use a high-level tool such
as the ResEdit application to create small 4-bit color icon resources. You can then use the
DeRez decompiler to convert your small 4-bit color icon resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating resources for representing files to users.

A small 4-bit color icon resource defines one icon, which the Finder uses to display the
file it represents. If you examine the compiled version of a small 4-bit color icon resource,
as represented in Figure 7-18, you find that it contains only the 16-by-16 pixel 4-bit color
icon for display by the Finder. This resource does not specify a mask for the icon; instead,
the Finder uses the mask specified for the small icon list resource with the same resource
ID number as this resource.

Figure 7-20 Structure of a compiled small 4-bit color icon ('ics4') resource

The format for the compiled icon list resource is described on page 7-57. The format for
the compiled small icon list resource is described on page 7-58.

The Large 8-Bit Color Icon Resource 7

A large 8-bit color icon resource is one of several resources that you provide for an icon
family. A large 8-bit color icon resource is a resource with the resource type 'icl8'.
A large 8-bit color icon resource must be marked purgeable, and it must have the same
resource ID as the icon list resource that represents the file that the large 8-bit color
icon resource also represents.

When the user chooses by Icon from the View menu, the Finder displays the large 8-bit
color icon specified in this resource in windows if the user has a monitor displaying
8 bits of color data per pixel. Similarly, the large 8-bit color icon appears in the
Application menu after the user launches the application and in the Apple menu if the
user places the application or an alias to it in the Apple Menu Items folder.

A large 8-bit color icon resource is defined to be of type String[1024]; every byte in
the string represents a pixel in the 32-by-32 pixel icon. You can use a high-level tool such
as the ResEdit application to create large 8-bit color icon resources. You can then use the
DeRez decompiler to convert your large 8-bit color icon resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating resources for visually representing files.

16-by-16 pixel 4-bit color icon

'ics4' resource type

128

Bytes

C H A P T E R 7

Finder Interface

7-62 Finder Interface Reference

A large 8-bit color icon resource defines one icon, which the Finder uses to display the file
it represents. If you examine the compiled version of a large 8-bit color icon resource, as
represented in Figure 7-21, you find that it contains only the 32-by-32 pixel 8-bit color
icon for display by the Finder. This resource does not specify a mask for the icon; instead,
the Finder uses the mask specified for the icon list resource with the same resource ID
number as this resource.

The format for the compiled icon list resource is described on page 7-57.

Figure 7-21 Structure of a compiled large 8-bit color icon ('icl8') resource

The Small 8-Bit Color Icon Resource 7

A small 8-bit color icon resource is one of several resources that you provide for an icon
family. A small 8-bit color icon resource is a resource with the resource type 'ics8'. A
small 8-bit color icon resource must be marked purgeable, and it must have the same
resource ID as the icon list resource that represents the file that the small 8-bit color icon
resource also represents.

When the user chooses by Small Icon from the View menu, the Finder displays the small
8-bit color icon specified in this resource in windows if the user has a monitor displaying
8 bits of color data per pixel. Similarly, the small 8-bit color icon appears in the
Application menu after the user launches the application and in the Apple menu if the
user places the application or an alias to it in the Apple Menu Items folder.

A small 8-bit color icon resource is defined to be of type String[256]; every byte in the
string represents a pixel in the 16-by-16 pixel icon. You can use a high-level tool such as
the ResEdit application to create small 8-bit color icon resources. You can then use the
DeRez decompiler to convert your small 8-bit color icon resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating resources for visually representing files.

A small 8-bit color icon resource defines one icon, which the Finder uses to display the
file it represents. If you examine the compiled version of a small 8-bit color icon resource,
as represented in Figure 7-22, you find that it contains only the 16-by-16 pixel 8-bit color
icon for display by the Finder. This resource does not specify a mask for the icon; instead,
the Finder uses the mask specified for the small icon list resource with the same resource
ID number as this resource.

32-by-32 pixel 8-bit color icon

'icl8' resource type

1024

Bytes

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-63

Figure 7-22 Structure of a compiled small 8-bit color icon ('ics8') resource

The format for the compiled icon list resource is described on page 7-57. The format for
the compiled small icon list resource is described on page 7-58.

The Icon Resource 7

When you want to display a 32-by-32 pixel black-and-white icon within some element of
your application (such as within a menu, an alert box, or a dialog box), you can create an
icon resource. An icon resource is a resource with the resource type 'ICON'. All icon
resources must be marked purgeable, and they must have resource IDs greater than 128.

Using icon resources, you can create icons similar to the ones the Finder uses to display
your application’s files on the desktop; however, unlike the resource types previously
described in this section, the Finder does not use or display any resources that you create
of type 'ICON'. Instead, your application uses icon resources of type 'ICON' to display
icons from within your application. Icon resources are described here for completeness
and to mitigate the confusion that sometimes arises concerning icon ('ICON') resources
(which your application creates for its own use), icon list ('ICN#') resources, and the
other previously described resources necessary for defining an icon family (which your
application creates for the Finder’s use).

See “Creating Icons for the Finder” beginning on page 7-11 for additional information
about creating icon list resources and other resources for representing files to users.

Generally, you use icon resources in menus and dialog boxes, as described in the chapters
“Menu Manager” and “Dialog Manager” in this book. If you provide a color icon
('cicn') resource with the same resource ID as the icon resource, the Menu Manager
and the Dialog Manager display the color icons instead of the black-and-white icons for
users with color monitors. (For example, the color alert box in Plate 2 specifies a resource
of type 'cicn' for the color icon in the upper-left corner of the alert box.)

An icon resource is defined to be of type String[128]; each bit represents a pixel in the
32-by-32 pixel icon. As illustrated in Figure 7-23 on the next page, an icon resource
resembles an icon list resource without the array that specifies the icon’s mask. You can
use a high-level tool such as the ResEdit application to create icon resources. You can then
use the DeRez decompiler to convert your icon resources into Rez input when necessary.

16-by-16 pixel 8-bit color icon

'ics8' resource type

256

Bytes

C H A P T E R 7

Finder Interface

7-64 Finder Interface Reference

Figure 7-23 Structure of a compiled icon ('ICON') resource

The Color Icon Resource 7

When you want to display a color icon within some element of your application (such as
within a menu, an alert box, or a dialog box), you can create a color icon resource. A color
icon resource is a resource with the resource type 'cicn'. All color icon resources must
be marked purgeable, and they must have resource IDs greater than 128.

Using color icon resources, you can create icons similar to the ones the Finder uses to
display your application’s files on the desktop; however, the Finder does not use or
display any resources that you create of type 'cicn'. Instead, your application uses icon
resources of type 'cicn' to display icons from within your application. Color icon
resources (that is, those of resource type 'cicn') are mentioned here to mitigate the
confusion that sometimes arises concerning color icon resources (which your application
creates for its own use) and the small and large 4-bit and 8-bit color icon resources (types
'ics4', 'icl4', 'ics8', and 'icl8') necessary to define an icon family (which your
application creates for the Finder’s use).

See “Creating Icons for the Finder” beginning on page 7-11 for information about creating
an icon family that includes color icons for representing files to users.

Generally, you use color icon resources in menus, alert boxes, and dialog boxes, as
described in the chapters “Menu Manager” and “Dialog Manager” in this book. If you
provide a color icon ('cicn') resource with the same resource ID as an icon resource
(described on page 7-63), the Menu Manager and the Dialog Manager display the color
icon instead of the black-and-white icon for users with color monitors.You can use a
high-level tool such as the ResEdit application to create color icon resources. You can then
use the DeRez decompiler to convert your color icon resources into Rez input when
necessary. (For example, the color alert box in Plate 2 specifies a resource of type 'cicn'
for the color icon in the upper-left corner of the alert box.)

See Inside Macintosh: Imaging for more information about color icon resources.

The File Reference Resource 7

To link icons with the files types they represent and to allow users to launch your
application by dragging document icons to your application icon, create a file reference
resource for every icon list resource you create. A file reference resource is a resource with
the resource type 'FREF'. All file reference resources must have resource IDs greater
than 128, and each must be marked purgeable.

32-by-32 pixel black-and-white icon

'ICON' resource type

128

Bytes

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-65

This section describes the structure of a file reference resource after it is compiled by the
Rez resource compiler. The format of a Rez input file for a file reference resource differs
from its compiled output form. If you are concerned only with creating a file reference
resource, see “Creating File Reference Resources” beginning on page 7-18.

If you examine a compiled version of a file reference resource, as illustrated in
Figure 7-24, you find that it contains the following elements:

� File type. This is the four-character code that identifies the type of file represented by
this resource. File types are described in “Giving a Signature to Your Application and a
Creator and a File Type to Your Documents” beginning on page 7-8.

� Local ID. The Finder uses this number to map the file type specified in this resource
to an icon list resource that is assigned the same local ID in the bundle resource. The
icon list resource is described on page 7-57; the bundle resource is described in the
next section.

� Empty string. This element should always contain an empty Pascal string.

Figure 7-24 Structure of a compiled file reference ('FREF') resource

The Bundle Resource 7

To group together your application’s signature, icon list resource, and file reference
resources, create a bundle resource. A bundle resource is a resource with the resource
type 'BNDL'. All bundle resources must have resource ID numbers greater than 128,
and all must be made purgeable.

This section describes the structure of the bundle resource after it is compiled by the Rez
resource compiler. The format of a Rez input file for a bundle resource differs from its
compiled output form. If you are concerned only with creating a bundle resource, see
“Creating a Bundle Resource” beginning on page 7-20.

File type

'FREF' resource type

2

Bytes

4

1Empty string

Local ID for an icon list

C H A P T E R 7

Finder Interface

7-66 Finder Interface Reference

Figure 7-25 Structure of a compiled bundle ('BNDL') resource

If you examine a compiled version of a file reference resource, as illustrated in
Figure 7-25, you find that it contains the following elements:

� Application signature. This is the unique four-character code that identifies the
application to the Finder. (Application signatures are described in “Giving a Signature
to Your Application and a Creator and a File Type to Your Documents” beginning on
page 7-8.)

� Resource ID of the signature resource. By convention, this should always be 0.
� Array count. This element should always contain the value 2.
� Mapping of local IDs to icon list resource IDs for all icons supplied by the application.

This is illustrated in Figure 7-26.

� Superfluous local ID mapping for file reference resources. This is illustrated in
Figure 7-27.

If you examine the compiled portion of a bundle resource that maps local IDs to icon list
resource IDs, you find that it contains the following elements:

� Resource type. This element should always specify the resource type 'ICN#' (that is,
an icon list resource).

� Count of all the icon families supplied by the application. This is the number of local
ID–to–icon list resource ID mapping pairs in the rest of this resource.

� Local ID for an icon list resource. This local ID must match the local ID assigned to the
icon list resource within a file reference resource.

� Resource ID for the icon list resource assigned a local ID in the preceding element. To
visually represent files of the type described in the file reference resource that contains
the local ID in the preceding element, the Finder uses the black-and-white icon and
mask described in this icon list resource. The Finder also uses the icons defined in the
following resources with this same resource ID: small icon list resource, small 4-bit
color icon resource, small 8-bit color icon resource, large 4-bit color icon resource, and
large 8-bit color icon resource.

Application signature

'BNDL' resource type

4

Bytes

Resource ID of signature resource 2

Array count (2) 2

Mapping of local IDs to icon list resource IDs Variable

Superfluous local ID mapping for file reference resources Variable

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-67

Figure 7-26 Mapping local IDs to icon list resource IDs in a bundle resource

� Local ID–to–icon list resource ID mapping pairs for the rest of the icons representing
file types for an application.

Figure 7-27 illustrates the remainder of a bundle resource, which assigns local IDs to
file reference resource IDs. This assignment is superfluous because the Finder doesn’t
map these local IDs to any other resources. This ID assignment was implemented for
the earliest versions of Macintosh system software, and it remains this way today to
maintain backward compatibility.

Figure 7-27 Structure of superfluous local ID mapping for file reference resources in a
bundle resource

Resource type ('ICN#')

Count of all icon families supplied by the application

Local ID for first icon list

Resource ID for first icon list

Local ID for last icon list

Resource ID for last icon list

4

2

2

2

2

2

BytesMapping of local IDs to icon list resource IDs

Resource type ('FREF')

Count of all file reference resources for application

Local ID for first file reference resource

Resource ID for first file reference resource

Local ID for last file reference resource

Resource ID for last file reference resource

4

2

2

2

2

2

BytesSuperfluous local ID mapping for file reference resources

C H A P T E R 7

Finder Interface

7-68 Finder Interface Reference

If you examine the compiled portion of the remainder of a bundle resource, you find that
it contains the following elements:

� Resource type. This element should always specify the resource type 'FREF' (that is, a
file reference resource).

� Count of all the file reference resources representing file types for an application.
This is the number of local ID–to–file reference resource mapping pairs in the rest of
this resource.

� Local ID for a file reference resource. The local ID can be any integer so long as no
other file reference resource is given that same local ID within this resource.

� Resource ID for the file reference resource assigned a local ID in the preceding field.

� Local ID–to–file reference resource ID mapping pairs for the rest of the file reference
resources that represent file types with application-supplied icons.

The Missing-Application Name String 7

When your application creates a document that the user can open, your application
should include a missing-application name string in the resource file of the document.
The missing-application name string is a resource with the resource type 'STR ', it must
have a resource ID number of –16396, and it must be made purgeable. The string resource
should contain your application’s name only. See “Displaying Messages When the Finder
Can’t Find Your Application” beginning on page 7-27 for additional information about
copying this resource into the resource fork of your documents.

If you examine a compiled missing-application name string, as illustrated in Figure 7-28,
you find that it consists entirely of a Pascal string that names the application that created
the document. The Finder displays this string in an alert box if the user tries to open or
print a document created by the application whenever the application is missing.

Figure 7-28 Structure of a compiled missing-application name string resource

The Application-Missing Message String 7

When your application creates a document that your application uses but that the user
cannot open (such as a preferences file), your application should set the creator of the
document to a registered signature that is not the same as your or anyone else’s
application, and include an application-missing message string in the resource file of the
document. The application-missing name string is a resource with the resource type

Application name

'STR ' resource with resource ID –16396

1 to 256

Bytes

C H A P T E R 7

Finder Interface

Finder Interface Reference 7-69

'STR ', it must have a resource ID number of –16397, and it must be made purgeable.
The string resource should contain a message that explains why the user cannot open or
print the document, as explained in “Displaying Messages When the Finder Can’t Find
Your Application” beginning on page 7-27.

If you examine a compiled application-missing message string, as illustrated in
Figure 7-29, you find that it consists entirely of a Pascal string that explains why the
user cannot open the document. The Finder displays this string in an alert box if the user
tries to open or print a document that is given a special creator that is not used as a
signature by any application file. (File creators and application signatures are explained
in “Giving a Signature to Your Application and a Creator and a File Type to Your
Documents” beginning on page 7-8.)

Figure 7-29 Structure of a compiled application-missing message string resource

The Version Resource 7

You can use a version resource in any file so that users can easily find out the version of
the file and, if it is a part of a larger collection of files, of the entire superset of files. A
version resource is a resource with the resource type 'vers'. The version resource
with a resource ID number of 1 specifies the version of an individual file; the version
resource with a resource ID number of 2 specifies the superset of files to which the
individual file belongs.

If your application does not contain a version resource with a resource ID number of 1,
the Finder displays the string from your application’s signature resource (described
in “Giving a Signature to Your Application and a Creator and a File Type to Your
Documents” beginning on page 7-8) in the information window when the user chooses
the Get Info command from the File menu.

This section describes the structure of this resource after it is compiled by the Rez
resource compiler. The format of a Rez input file for a version resource differs from its
compiled output form. If you are concerned only with creating version resources, see
“Providing Version Resources” beginning on page 7-31.

If you examine a compiled version of version resource, as illustrated in Figure 7-30 on
page 7-70, you find that it contains the following elements:

� Major revision level in binary-coded decimal format.

� Minor revision level in binary-coded decimal format.

Application-missing message

'STR ' resource with resource ID –16397

1 to 256

Bytes

C H A P T E R 7

Finder Interface

7-70 Finder Interface Reference

Figure 7-30 Format of a compiled version ('vers') resource

� Development stage. The values that can appear in this field, as well as the constants
that can be used to specify them in a Rez input file, are the following:

� Prerelease revision level. This number specifies the version if the software is
still prerelease.

� Region code. This identifies the script system for which this version of the software is
intended. See the chapter “Script Manager” in Inside Macintosh: Text for information
about the values represented by the various region codes that can be specified here.

� Version number. This Pascal string identifies the version number of the software.
When the user opens the Views control panel, clicks the Show version box, and then
chooses any command from the View menu other than by Icon or by Small Icon, the
Finder window containing this application displays this string.

� Version message. This Pascal string identifies the version number and either a
company copyright for a file or a product name for a superset of files. When the
user selects this file and chooses the Get Info command, the Finder displays this
string in the information window as follows:
� For a version resource with a resource ID number of 1, this string is displayed in the

version field of the information window.
� For a version resource with a resource ID number of 2, this string is displayed

beneath the file’s name next to the file’s icon at the top of the information window.

Value Constant Description

0x20 development Prealpha file

0x40 alpha Alpha file

0x60 beta Beta file

0x80 release Released file

Major revision level

'vers' resource type

1

Bytes

Minor revision level
Development stage
Prerelease revision level

Region code 2

Version number 1 to 256

Version message 1 to 256

1
1
1

C H A P T E R 7

Finder Interface

Summary of the Finder Interface 7-71

Summary of the Finder Interface 7

Pascal Summary 7

Constants 7

CONST {Gestalt selectors}

gestaltFindFolderAttr = 'fold'; {selector for FindFolder}

{interpreting Gestalt selector responses}

gestaltFindFolderPresent = 0; {if this bit is set, }

{ FindFolder is present}

{for custom icons}

kCustomIconResource = –16455; {resource ID for }

{ custom icon}

{for Finder flags}

fHasBundle = 8192; {set if file has 'BNDL'}

fInvisible = 16384; {set if icon is invisible}

kIsOnDesk = $1; {unused and reserved in }

{ System 7}

kColor = $E; {three bits of color coding}

kIsShared = $40; {file can be executed by }

{ multiple users }

{ simultaneously}

kHasBeenInited = $100; {file info is in desktop }

{ database}

kHasCustomIcon = $400; {file or directory has a }

{ customized icon}

kIsStationery = $800; {file is a stationery pad}

kNameLocked = $1000; {file or directory can't }

{ be renamed from Finder, }

{ and icon can't be changed}

kHasBundle = $2000; {file has a bundle resource}

kIsInvisible = $4000; {file or directory is }

{ invisible from Finder & }

{ from Standard File }

{ Package dialog boxes}

kIsAlias = $8000; {file is an alias file}

C H A P T E R 7

Finder Interface

7-72 Summary of the Finder Interface

{for FindFolder}

kOnSystemDisk = $8000; {use vRefNum for the }

{ boot disk}

kCreateFolder = TRUE; {create folder if it }

{ doesn't exist}

kDontCreateFolder = FALSE; {don't create folder}

{for special folder types}

kSystemFolderType = 'macs'; {System Folder}

kDesktopFolderType = 'desk'; {Desktop Folder}

kTrashFolderType = 'trsh'; {single-user Trash}

kWhereToEmptyTrashFolderType = 'empt'; {shared Trash on network}

kPrintMonitorDocsFolderType = 'prnt'; {PrintMonitor Documents}

kStartupFolderType = 'strt'; {Startup Items}

kFontsFolderType = 'font'; {Fonts}

kAppleMenuFolderType = 'amnu'; {Apple Menu Items}

kControlPanelFolderType = 'ctrl'; {Control Panels}

kExtensionFolderType = 'extn'; {Extensions}

kPreferencesFolderType = 'pref'; {Preferences}

kTemporaryFolderType = 'temp'; {Temporary Items}

{alias types}

kContainerFolderAliasType = 'fdrp'; {folder alias}

kContainerTrashAliasType = 'trsh'; {Trash alias}

kContainerHardDiskAliasType = 'hdsk'; {hard disk alias}

kContainerFloppyAliasType = 'flpy'; {floppy disk alias}

kContainerServerAliasType = 'srvr'; {server alias}

kApplicationAliasType = 'adrp'; {application alias}

kContainerAliasType = 'drop'; {all other containers}

kSystemFolderAliasType = 'fasy'; {System Folder alias}

kAppleMenuFolderAliasType = 'faam'; {Apple Menu Items folder }

{ alias}

kStartupFolderAliasType = 'fast'; {Startup Items folder alias}

kPrintMonitorDocsFolderAliasType

= 'fapn'; {PrintMonitor Documents }

{ folder alias}

kPreferencesFolderAliasType = 'fapf'; {Preferences folder alias}

kControlPanelFolderAliasType = 'fact'; {Control Panels folder alias}

kExtensionFolderAliasType = 'faex'; {Extensions folder alias}

kExportedFolderAliasType = 'faet'; {export folder alias}

kDropFolderAliasType = 'fadr'; {drop folder alias}

kSharedFolderAliasType = 'fash'; {shared folder alias}

kMountedFolderAliasType = 'famn'; {mounted folder alias}

C H A P T E R 7

Finder Interface

Summary of the Finder Interface 7-73

Data Types 7

TYPE {Finder information records in the volume catalog file}

FInfo =

RECORD

fdType: OSType; {file type}

fdCreator: OSType; {file creator}

fdFlags: Integer; {Finder flags}

fdLocation: Point; {file's location in window}

fdFldr: Integer; {directory that contains file}

END;

FXInfo =

RECORD

fdIconID: Integer; {icon ID}

fdUnused: ARRAY[1..3] OF Integer;

{unused but reserved 6 bytes}

fdScript: SignedByte; {script flag and code}

fdXFlags: SignedByte; {reserved}

fdComment: Integer; {comment ID}

fdPutAway: LongInt; {home directory ID}

END;

DInfo =

RECORD

frRect: Rect; {folder's window rectangle}

frFlags: Integer; {flags}

frLocation: Point; {folder's location in window}

frView: Integer; {folder's view}

END;

DXInfo =

RECORD

frScroll: Point; {scroll position}

frOpenChain: LongInt; {dir ID chain of open folders}

frScript: SignedByte; {script flag and code}

frXFlags: SignedByte; {reserved}

frComment: Integer; {comment ID}

frPutAway: LongInt; {directory ID}

END;

C H A P T E R 7

Finder Interface

7-74 Summary of the Finder Interface

Routines 7

Resolving Alias Files

FUNCTION ResolveAliasFile (VAR theSpec: FSSpec;
resolveAliasChains: Boolean;
VAR targetIsFolder: Boolean;
VAR wasAliased: Boolean): OSErr;

Finding Directories

FUNCTION FindFolder (vRefNum: Integer; folderType: OSType;
createFolder: Boolean;
VAR foundVRefNum: Integer;
VAR foundDirID: LongInt): OSErr;

C Summary 7

Constants 7

enum {

/*Gestalt selectors*/

#define gestaltFindFolderAttr 'fold' /*selector for FindFolder*/

/*interpreting Gestalt selector responses*/

gestaltFindFolderPresent = 0 /*if this bit is set, */

/* FindFolder is present*/

};

/*for custom icons*/

#define kCustomIconResource –16455 /*resource ID for */

/* custom icon*/

/*Finder flags*/

#define kIsOnDesk 0x1 /*unused and reserved in */

/* System 7*/

#define kColor 0xE /*3 bits of color coding*/

#define kIsShared 0x40 /*file can be executed by */

/* multiple users */

/* simultaneously*/

#define kHasBeenInited 0x100 /*file info is in desktop */

/* database*/

#define kHasCustomIcon 0x400 /*file or directory has a */

/* customized icon*/

C H A P T E R 7

Finder Interface

Summary of the Finder Interface 7-75

#define kIsStationary 0x800 /*file is a stationery pad*/

#define kNameLocked 0x1000 /*file or directory can't */

/* be renamed from the */

/* Finder, and icon can't */

/* be changed*/

#define kHasBundle 0x2000 /*file has a bundle */

/* resource*/

#define kIsInvisible 0x4000 /*file or directory is */

/* invisible from Finder */

/* & from Standard File */

/* Package dialog boxes*/

#define kIsAlias 0x8000 /*file is an alias file*/

enum {

/*for Finder flags*/

fHasBundle = 8192, /*set if file has 'BNDL'*/

fInvisible = 16384 /*set if icon is invisible*/

};

enum {

/*for FindFolder*/

kOnSystemDisk = 0x8000 /*use vRefNum for the */

/* boot disk*/

#define kCreateFolder true /*create folder if it */

/* doesn't exist*/

#define kDontCreateFolder false /*don't create folder*/

/*for special folder types*/

#define kSystemFolderType 'macs' /*System Folder*/

#define kDesktopFolderType 'desk' /*Desktop Folder*/

#define kTrashFolderType 'trsh' /*single-user Trash*/

#define kWhereToEmptyTrashFolderType

 'empt' /*shared Trash*/

#define kPrintMonitorDocsFolderType

 'prnt' /*PrintMonitor Documents*/

#define kStartupFolderType 'strt' /*Startup Items*/

#define kFontsFolderType 'font' /*Fonts*/

#define kAppleMenuFolderType 'amnu' /*Apple Menu Items*/

#define kControlPanelFolderType 'ctrl' /*Control Panels*/

#define kExtensionFolderType 'extn' /*Extensions*/

#define kPreferencesFolderType 'pref' /*Preferences*/

#define kTemporaryFolderType 'temp' /*Temporary Items*/

};

/*for alias types*/

#define kContainerFolderAliasType 'fdrp' /*folder alias*/

#define kContainerTrashAliasType 'trsh' /*Trash alias*/

C H A P T E R 7

Finder Interface

7-76 Summary of the Finder Interface

#define kContainerHardDiskAliasType 'hdsk' /*hard disk alias*/

#define kContainerFloppyAliasType 'flpy' /*floppy disk alias*/

#define kContainerServerAliasType 'srvr' /*server alias*/

#define kApplicationAliasType 'adrp' /*application alias*/

#define kContainerAliasType 'drop' /*all other containers*/

#define kSystemFolderAliasType 'fasy' /*System Folder alias*/

#define kAppleMenuFolderAliasType 'faam' /*Apple Menu Items folder */

/* alias*/

#define kStartupFolderAliasType 'fast' /*Startup Items folder */

/* alias*/

#define kPrintMonitorDocsFolderAliasType

 'fapn' /*PrintMonitor Documents */

/* folder alias*/

#define kPreferencesFolderAliasType 'fapf' /*Preferences folder alias*/

#define kControlPanelFolderAliasType 'fact' /*Control Panels fldr alias*/

#define kExtensionFolderAliasType 'faex' /*Extensions folder alias*/

#define kExportedFolderAliasType 'faet' /*export folder alias*/

#define kDropFolderAliasType 'fadr' /*drop folder alias*/

#define kSharedFolderAliasType 'fash' /*shared folder alias*/

#define kMountedFolderAliasType 'famn' /*mounted folder alias*/

Data Types 7

struct FInfo { /*Finder information records in the catalog file*/

OSType fdType; /*file type*/

OSType fdCreator; /*file creator*/

unsigned short fdFlags; /*Finder flags*/

Point fdLocation; /*file's location in window*/

short fdFldr; /*directory that contains file*/

};

struct FXInfo {

short fdIconID; /*icon ID*/

short fdUnused[3]; /*unused but reserved 6 bytes*/

char fdScript; /*script flag and code*/

char fdXFlags; /*reserved*/

short fdComment; /*comment ID*/

long fdPutAway; /*home directory ID*/

};

C H A P T E R 7

Finder Interface

Summary of the Finder Interface 7-77

struct DInfo {

Rect frRect; /*folder's window rectangle*/

unsigned short frFlags; /*flags*/

Point frLocation; /*folder's location in window*/

short frView; /*folder's view*/

};

struct DXInfo {

Point frScroll; /*scroll position*/

long frOpenChain; /*directory ID chain of open folders*/

char frScript; /*script flag and code*/

char frXFlags; /*reserved*/

short frComment; /*comment ID*/

long frPutAway; /*directory ID*/

};

Routines 7

Resolving Alias Files

pascal OSErr ResolveAliasFile
(FSSpec *theSpec, Boolean resolveAliasChains,
Boolean *targetIsFolder, Boolean *wasAliased);

Finding Directories

pascal OSErr FindFolder (short vRefNum, OSType folderType,
Boolean createFolder, short *foundVRefNum,
long *foundDirID);

Assembly-Language Summary 7

Data Structures 7

FInfo Data Structure

0 fdType long file type
4 fdCreator long file creator
8 fdFlags word Finder flags

10 fdLocation long file’s location in window
14 fdFldr word directory that contains file

C H A P T E R 7

Finder Interface

7-78 Summary of the Finder Interface

FXInfo Data Structure

DInfo Data Structure

DXInfo Data Structure

Result Codes 7

0 fdIconID word icon ID
2 fdUnused 6 bytes reserved
8 fdScript 1 byte script flag and code
9 fdXFlags 1 byte reserved

10 fdComment word comment ID
12 fdPutAway long home directory ID

0 frRect 8 bytes folder’s window rectangle
8 frFlags word flags

10 frLocation long folder’s location in window
14 frView word folder’s view

0 frScroll long scroll position
4 frOpenChain long directory ID chain of open folders
8 frScript 1 byte script flag and code
9 frXFlags 1 byte reserved

10 frComment word comment ID
12 frPutAway long directory ID

noErr 0 No error
nsvErr –35 Volume not found
fnfErr –43 For FindFolder: Type not found in 'fld#' resource, or disk doesn’t have

System Folder support or System Folder in volume header, or disk does not
have desktop database support for Desktop Folder—in all cases, folder not
found
For ResolveAliasFile: Target not found, but volume and parent
directory found and theSpec parameter contains a valid file system
specification record

dupFNErr –48 File found instead of folder
dirNFErr –120 Parent directory not found

GL-1

action procedure A procedure that performs an
action in response to the user holding the mouse
button down while the cursor is in a control.

activate event A type of event that indicates
that a window is becoming active or inactive.
Each activate event specifies the window
to be changed and the direction of the change
(that is, whether it’s becoming active or becoming
inactive).

active control A control in which the Control
Manager responds to a user’s mouse actions by
providing visual feedback.

active window The frontmost window on the
desktop, the one in which the user is currently
working. The active window is designated by
racing stripes in the title bar, active controls, and
highlighted selections.

A5 world An area of memory in an applica-
tion’s partition that contains the QuickDraw
gloabl variables, the application global variables,
the application parameters, and the jump table—
all of which are accessed through the A5 register.

alert An alert sound, an alert box, or both.
Alerts warn the user of an unusual or a
potentially undesirable situation occurring within
an application. See also alert box and
alert sound.

alert box A window that an application displays
on the screen to warn the user or to report an
error to the user. An alert box typically consists of
text describing the situation and buttons that
require the user to acknowledge or rectify the
problem. An alert box may or may not be
accompanied by an alert sound. See also caution
alert, note alert, and stop alert.

alert color table resource A resource (of type
'actb') that lets an application display an alert
box using colors other than the system’s default
window colors.

alert resource A resource (of type 'ALRT') that
specifies alert sounds, a display rectangle, and an
item list for an alert box.

alert sound An audible signal from the
Macintosh speaker that warns the user of an
unusual or a potentially undesirable situation
occurring within an application. An alert sound
may or may not be accompanied by an alert box.

alias An object that represents another file,
directory, or volume.

alias file A file that contains a record that points
to another file, directory, or volume. An alias file
is displayed by the Finder as an alias.

alias record A data structure created by the
Alias Manager to identify a file, directory,
or volume.

alias target The file, directory, or volume
described by the alias record.

Apple event A high-level event whose structure
and interpretation are determined by the Apple
Event Interprocess Messaging Protocol.

Apple Menu Items folder A directory located
in the System Folder for storing desk accessories,
applications, folders, and aliases that the
user wants to display in and access from the
Apple menu.

application heap An area of memory in
the application heap zone in which memory is
dynamically allocated and released on demand.
The heap contains the application’s 'CODE'
segment 1, data structures, resource map, and
other code segments as needed.

application partition A partition of memory
reserved for use by an application. The applica-
tion partition consists of free space, the
application heap, the application’s stack, and
the application’s A5 world.

Glossary

G L O S S A R Y

GL-2

auto-key event An event indicating that a
key is still down after a certain amount of time
has elapsed.

auxiliary window record A data structure that
the Window Manager uses to tie together a list of
windows and their corresponding window color
information tables.

background process A process that isn’t
currently interacting with the user. Compare
foreground process.

bundle bit A flag in a file’s Finder information
record that informs the Finder that a bundle
('BNDL') resource exists for the file. A file’s
Finder information record is stored in a volume’s
catalog file. The Finder uses the information
in the bundle resource to associate icons with
the file.

button A control that appears on the screen as a
rounded rectangle with a title centered inside.
When the user clicks a button, the application
performs the action described by the button’s
title. Button actions are usually performed
instantaneously. Examples include completing
operations defined by a dialog box and
acknowledging an error message in an alert box.

catalog file A special file, located on a volume,
that contains information about the hierarchical
organization of files and folders on that volume.

caution alert An alert box that warns the user of
an operation that may have undesirable results if
it’s allowed to continue. A caution alert gives the
user the choice of continuing the action (by
clicking the OK button) or stopping the action (by
clicking the Cancel button). A caution alert is
identified by an icon bearing an exclamation
point in the upper-left corner of the alert box. See
also note alert and stop alert.

character code A value that represents a
particular character. The character code that is
generated depends on the virtual key code and
the state of the modifier keys. In the Roman script
system, character codes are specified in
the extended version of ASCII (the American
Standard Code for Information Interchange).

checkbox A control that appears onscreen as a
small square with an accompanying title. A
checkbox displays one of two settings: on

(indicated by an X inside the box) or off. When
the user clicks a checkbox, the application
reverses its setting. See also radio button.

close box The small white box on the left side of
the title bar of an active window. Clicking it closes
the window.

close region The area occupied by a window’s
close box. See also close box.

Command-key equivalent Refers specifically to
a keyboard equivalent that the user invokes by
holding down the Command key and pressing
another key (other than a modifier key) at the
same time.

content region The part of a window in which
the contents of a document, the size box, and
the window controls (including the scroll bars)
are displayed.

context The information about a process
maintained by the Process Manager. This
information includes the current state of the
process, the address and size of its partition, its
type, its creator, a copy of its low-memory global
variables, information about its 'SIZE' resource,
and a process serial number.

control An onscreen object that the user can
manipulate with the mouse. By manipulating a
control, the user can take an immediate action or
change a setting to modify a future action.

control color table In an item color table
resource, a specification for the colors used to
draw the various parts of a control.

control definition function A function that
defines the appearance and behavior of a control.
A control definition function, for example, draws
the control. See also standard control definition
functions.

control definition ID A number passed to
control-creation routines to indicate the type of
control. It consists of the control definition
function’s resource ID and a variation code.

control list A series of entries pointing to the
descriptions of the controls associated with
the window.

G L O S S A R Y

GL-3

Control Manager A collection of routines that
applications use to create and manipulate
controls, especially those in windows.

Control Panels folder A directory located in the
System Folder for storing control panels, which
allow users to modify the work environment of
their Macintosh computer.

control record A data structure of type
ControlRecord, which the Control Manager
uses to store all the information it needs for its
operations on a control.

current menu list A data structure that contains
handles to the menu records of all menus in the
current menu bar and the menu records of any
submenus or pop-up menus that an application
inserts into the list.

current process The process that is currently
executing and whose A5 world is valid; this
process can be in the background or the
foreground.

cursor Any 256-bit image, defined by a 16-by-16
bit square. The mouse driver displays the current
cursor and maps the movement
of the mouse to relative locations on the screen
as the user moves the mouse.

custom alert box An alert box whose upper-left
corner contains blank space or displays an icon
other than those used by caution alerts, stop
alerts, or note alerts.

customized icon An icon created by the user or
by an application and stored with a resource ID of
–16455 in the resource fork of a file. A file with a
customized icon has the hasCustomIcon bit set
in its Finder flags field.

data fork The part of a file that contains data
accessed using the File Manager. The data usually
corresponds to data entered by the user; the
application creating a file can store and interpret
the data in the data fork in whatever manner is
appropriate.

default button In an alert box or a dialog box,
the button whose action is invoked when the user
presses the Return key or the Enter key. The
Dialog Manager automatically draws a bold
outline around the default button in alert boxes;
applications should draw a bold outline around

the default button in dialog boxes. The default
button should invoke the preferred action, which,
whenever possible, should be a “safe” action—
that is, one that doesn’t cause loss of data.

desktop The working environment displayed
on the Macintosh computer: the gray background
area on the screen.

desktop database A Finder-maintained
database of icons, file types, applications, version
data, and comments for all volumes over 2 MB.
Compare Desktop file.

Desktop file A resource file in which the Finder
stores icons, file types, applications, version data,
and comments for all volumes less than 2 MB.
Compare desktop database.

Desktop Folder A directory, located at the root
level of each volume, used by the Finder for
storing information about the icons that appear
on the desktop area of the screen. The Desktop
Folder is invisible to the user. What the user sees
onscreen is the union of the contents of Desktop
Folders for all mounted volumes.

dial A control, similar to a scroll bar, that
graphically represents the ranges of values that
a user can set or that simply displays the value,
magnitude, or position of something, typically in
some pseudo-analog form.

dialog box A window that an application
displays on the screen to solicit information
from the user before the application carries
out the user’s command. See also modal dialog
box, modeless dialog box, and movable modal
dialog box.

dialog color table resource A resource (of type
'dctb') that lets an application display a dialog
box using colors other than the system’s default
window colors.

Dialog Manager A collection of routines that
applications use to implement alerts and dialog
boxes.

dialog record A data structure of type
DialogRecord that the Dialog Manager
uses to create dialog boxes and alerts.

dialog resource A resource (of type 'DLOG')
that specifies the window type, display rectangle,
and item list for a dialog box.

G L O S S A R Y

GL-4

disabled item In an alert box or a dialog box, an
item for which the Dialog Manager does
not report user events. An example of a disabled
item is static text, which typically does not
respond to clicks.

disk-inserted event An event indicating that a
disk has been inserted into a disk drive.

display rectangle A rectangle that defines the
size and location of an item in an alert box or a
dialog box. The display rectangle is specified in
an item list and uses coordinates local to the alert
box or dialog box.

divider A gray line used in menus to separate
groups of menu items.

document window A window in which the user
enters text, draws graphics, or otherwise enters or
manipulates data.

drag region The area occupied by a window’s
title bar, except for the close box and zoom box.
The user can move a window on the desktop by
dragging the drag region.

edition The data written to an edition container
by a publisher. A publisher writes data to an
edition whenever a user saves a document that
contains a publisher, and subscribers in other
documents may read the data from the edition
whenever it is updated.

enabled item In an alert box or a dialog box, an
item for which the Dialog Manager reports user
events. For example, the Dialog Manager reports
clicks in an enabled OK button.

event The means by which the Event Manager
communicates information about user actions,
changes in the processing status of the
application, and other occurrences that require a
response from the application.

event filter function An application-defined
routine that supplements the Dialog Manager’s
ability to handle events—for example, an event
filter function can test for disk-inserted events
and can allow background applications to receive
update events.

Event Manager The collection of routines that
an application can use to receive information
about actions performed by the user, to receive

notice of changes in the processing status of
the application, and to communicate with
other applications.

event mask An integer with one bit position for
each event type. You specify an event mask as a
parameter to Event Manager routines to specify
the event types you want your application to
receive, thereby disabling (or “masking out”) the
events you are not interested in receiving.

event record A data structure of type
EventRecord that your application uses when
retrieving information about an event. The Event
Manager returns, in an event record, information
about what type of event occurred (a mouse click
or keypress, for example) and additional informa-
tion associated with the event.

Extensions folder A directory located in the
System Folder for storing system extension files
such as printer and network drivers and files of
types 'INIT', 'scri', and 'appe'.

file A named, ordered sequence of bytes stored
on a Macintosh volume, divided into a data fork
and a resource fork.

Finder An application that works with the
system software to keep track of files and manage
the user’s desktop display.

Fonts folder A directory located in the System
Folder for storing fonts.

foreground process The process currently
interacting with the user; it appears to the user as
the active application. The foreground process
displays its menu bar, and its windows are in
front of the windows of other applications.
Compare background process.

frame The part of a window drawn
automatically by the Window Manager, namely,
the title bar, including the close box and zoom
box, and the window’s outline.

global coordinate system The coordinate
system that represents all potential QuickDraw
drawing space. The origin of the global
coordinate system—that is, the point (0,0)—
is at the upper-left corner of the main screen.
Compare local coordinate system.

G L O S S A R Y

GL-5

graphics port A complete, individual drawing
environment with an independent coordinate
system. Each window is drawn in a graphics port.

gray area The area within a scroll bar, excluding
the scroll arrows and the scroll box. When the
user clicks the gray area of a scroll bar, the
application moves the displayed area of the
document by an entire window less one line (or
column, row, or character).

gray region A region that represents all
available desktop area—that is, a collection
of rounded-corner rectangles representing
the display areas of all monitors available to
a computer.

grow image An outline of a window’s new
frame, drawn on the screen while the user is
resizing the window with the size box.

help balloon A rounded-rectangle window that
contains explanatory information for the user.
With tips pointing at the objects they annotate,
help balloons look like bubbles used for dialog in
comic strips. Help balloons are turned on by the
user from the Help menu; when Balloon Help
assistance is on, a help balloon appears whenever
the user moves the cursor over an area that is
associated with it.

hierarchical menu A menu to which a submenu
is attached.

high-level event An event sent from one
application to another requesting transfer of
information or performance of some action.

high-level event queue A separate queue that
the Event Manager maintains to store high-level
events transmitted to an application. The Event
Manager maintains a high-level event queue for
each open application capable of receiving
high-level events.

hot spot A point that the mouse driver uses to
align the cursor with the mouse location.

icon An image that represents an object, a
concept, or a message.

icon family The set of icons that represent an
object—such as an application or a document—
displayed by the Finder. An entire icon family
consists of large (32-by-32 pixel) and small

(16-by-16 pixel) icons, each with a mask, and each
available in three different versions of color: black
and white, 4 bits of color data per pixel, and 8 bits
of color data per pixel.

inactive control A control that has no meaning
or effect in the current context—for example, the
scroll bars in an empty window. The Control
Manager dims inactive controls or otherwise
visually indicates their inactive state.

inactive window A window in which the user
is not working.

indicator A moving part in a dial or slider
control. A user moves an indicator to set a value,
and an application moves it to indicate the
current setting of the control. In a scroll bar, the
scroll box is the indicator.

item color table resource A resource (of type
'ictb') that an application can use to display an
alert box or a dialog box with items using a
typeface, font style, font size, or colors other
than the system’s default font and colors. (For
an application to use a nonstandard typeface, font
style, or font size, the user must have a
color monitor.)

item list A resource (of type 'DITL') that
specifies the items—such as buttons and static
text—to display in an alert box or a dialog box.

item number An integer that identifies an item
in either a menu or a dialog box. Menu items
are assigned item numbers starting with 1 for
the first menu item in the menu, 2 for the second
menu item in the menu, and so on, up to the
number of the last menu item in the menu.
Dialog items are assigned numbers that
correspond to the item’s position in its item list.
For example, the first item listed in a dialog item
list is item number 1.

keyboard equivalent A keyboard combination
of one or more modifier keys and another key
that invokes a corresponding menu command
when pressed by the user.

key-down event An event indicating that the
user pressed a key on the keyboard.

key-up event An event indicating that the user
released a key on the keyboard.

G L O S S A R Y

GL-6

local coordinate system The coordinate system
defined by the port rectangle of a graphics port.
When the Window Manager creates a window, it
places the origin of the local coordinate system at
the upper-left corner of the window’s port
rectangle. Compare global coordinate system.

location name An identifier for the network
location of the computer on which a PPC port
resides. A location name consists of an object
string, a type string, and a zone.

low-level event The type of event returned by
the Event Manager to report very low level
hardware and software occurrences. Low-level
events report actions by the user, changes in
windows on the screen, and that the Event
Manager has no other events to report. Compare
high-level event, operating-system event.

major switch A change of the foreground
process. The Process Manager switches the
context of the foreground process with the context
of a background process (including the A5 worlds
and low-memory global variables) and brings the
background process to the front, sending the
previous foreground process to the background.
See also context.

menu A user interface element you can use in
your application to allow the user to view or
choose an item from a list of choices and
commands that your application provides.
See also hierarchical menu, pop-up menu,
pull-down menu, and submenu.

menu bar A white rectangle that is tall enough
to display menu titles in the height of the system
font and system font size, and with a black lower
border that is one pixel tall. The menu bar extends
across the top of the startup screen and contains
the title of each available pull-down menu.

menu bar definition function A function that
draws the menu bar and performs most of the
drawing activities related to the display of menus
when the user moves the cursor between menus.
This function, in conjunction with the menu
definition procedure, defines the general
appearance and behavior of menus.

menu bar entry A menu color entry record that
contains 0 in both the mctID and mctItem fields.
A menu bar entry defines the color for an

application’s menu bar and defines default colors
for its menu titles, menu items, and background
color of menus.

menu bar resource A resource (of type 'MBAR')
that specifies the order and resource ID of each
menu in a menu bar.

menu color entry record A data structure of
type MCEntry that defines the colors for an
application’s menu bar, menus, or menu items.
The first two fields of a menu color entry record,
mctID and mctItem, define whether the entry
is a menu bar entry, a menu title entry, or a menu
item entry.

menu color information table An array of
menu color entry records, maintained by the
Menu Manager, that define the standard color
for the menu bar, titles of menus, text and
characteristics of menu items, and background
color of a displayed menu. If you do not add
any entries to this table, the Menu Manager
draws your menus using the default colors, black
on white.

menu color information table resource A
resource (of type 'mctb') that specifies the colors
for an application’s menu bar, menus,
and menu items.

menu definition procedure A procedure that
performs all the drawing of menu items within
a specific menu. This procedure, in conjunction
with the menu bar definition function, defines the
general appearance and behavior of menus.

menu ID A number that you assign to a menu
in your application. Each menu in your applica-
tion must have a unique menu ID.

menu item In a menu, a rectangle with text and
other characteristics identifying a command that
the user can choose.

menu item entry A menu color entry record
that contains nonzero values in both the mctID
and mctItem fields. A menu item entry defines
colors for the mark, text, and keyboard equivalent
of items in a specific menu. It also defines the
default background color of a menu.

G L O S S A R Y

GL-7

menu list A data structure that contains handles
to the menu records of one or more menus
(although a menu list can be empty). Compare
current menu list.

Menu Manager The collection of routines that
an application can use to create, display, and
manage its menus.

menu record A data structure of type
MenuInfo that the Menu Manager uses to
maintain information about a menu.

menu resource A resource (of type 'MENU')
that specifies the menu title and the individual
characteristics of items in a menu.

menu title entry A menu color entry record that
contains a nonzero value in the mctID
field and contains 0 in the mctItem field. A menu
title entry defines colors for the title,
items, and background color of a specific menu. It
also defines the default menu bar color.

minimum partition size The actual partition
size limit below which an application cannot run.

minor switch A change in the context of a
process. The Process Manager switches the
context of a process to give time to a background
process without bringing the background process
to the front.

modal dialog box A dialog box that puts the
user in the state or “mode” of being able to work
only inside the dialog box. A modal dialog box
resembles an alert box. The user cannot move a
modal dialog box and can dismiss it only by
clicking its buttons. See also modeless dialog box
and movable modal dialog box.

modeless dialog box A dialog box that looks
like a document window without a size box or
scroll bars. The user can move a modeless dialog
box, make it inactive and active again, and close it
like any document window. See also modal
dialog box and movable modal dialog box.

modifier keys The Shift, Option, Command,
Control, and Caps Lock keys.

mouse-down event An event indicating that the
user pressed the mouse button.

mouse location The location of the cursor at the
time the event occurred.

mouse-moved event An event indicating that
the cursor is outside of a specified region.

mouse-up event An event indicating that the
user released the mouse button.

movable modal dialog box A modal dialog box
that has a title bar (with no close box) by which
the user can drag the dialog box. See also dialog
box, modal dialog box, and modeless dialog box.

note alert An alert box that informs users of a
minor mistake that won’t have any disastrous
consequences if left as is. Usually a note alert
simply offers information, and the user responds
by clicking the OK button. A note alert is
identified by an icon bearing a face and a
cartoonlike dialog balloon in the upper-left corner
of the alert box. See also caution alert and stop
alert.

null event An event indicating that no events of
the requested types exist in the application’s
event stream.

offset point The point in a region whose
horizontal and vertical offsets from the upper-left
corner of the region’s enclosing rectangle are the
same as the offsets of a specified point. The
DrayGrayRgn function uses an offset point to
limit the motion of a region and to calculate the
distance a region has moved.

operating-system event An event returned by
the Event Manager to communicate information
about changes in the operating status of
applications (suspend and resume events) and to
report that the user has moved the cursor outside
of an area specified by the application (mouse-
moved events). Compare low-level event,
high-level event.

Operating System Event Manager The
collection of low-level routines that manage the
Operating System event queue.

Operating System event queue A queue that
the Operating System Event Manager creates and
maintains. The Operating System Event Manager
detects and reports low-level hardware-related
events such as mouse clicks, keypresses, and disk
insertions and places these events in the
Operating System event queue.

G L O S S A R Y

GL-8

part code An integer from 1 through 253 that
stands for a particular part of a control. The
FindControl and TrackControl functions
return a part code to indicate the location of the
cursor when the user presses the mouse button.

pop-up menu A menu that appears elsewhere
than the menu bar. The Control Manager provides
a control definition function for applications to
use when implementing pop-
up menus.

port name A unique identifier for a particular
application on a computer, used for the purposes
of communication between applications. A port
name consists of a name string, a type string, and
a script code.

port rectangle An entry in the graphics port
data structure, described in Inside Macintosh:
Imaging. Ordinarily, the port rectangle represents
the area of a graphics port available for
drawing—that is, the content region of a window.

Preferences folder A directory located in the
System Folder for holding files that record users’
configuration settings for applications on a
particular Macintosh computer.

preferred partition size The partition size at
which an application can run most effectively. The
Operating System attempts to secure this
partition size upon launch of the application.

PrintMonitor Documents folder A directory
located in the System Folder for storing spooled
documents waiting to be printed.

process An open application or, in some cases,
an open desk accessory. (Only desk accessories
that are not opened in the context of another
application are considered processes.)

process serial number A number assigned by
the Process Manager to identify a particular
instance of an application during a single boot
of the local machine.

pull-down menu A menu that is identified by a
menu title (a word or an icon) in the menu bar.

query document A file of file type 'qery'
containing commands and data in a format
appropriate for a database or other data source.
An application uses high-level Data Access
Manager routines to open a query document.

radio button A control that appears onscreen as
a small circle. A radio button displays one of two
settings: on (indicated by a black dot inside the
circle) or off. A radio button is always a part of a
group of related radio buttons in which only one
button can be on at a time. When the user clicks
an unmarked radio button, the application turns
that button on and turns the other buttons in its
group off.

Rescued Items from volume name folder A
directory located in the Trash directory and
created by the Finder at system startup, restart, or
shutdown only when it finds items in the
Temporary Items folder, usually after a system
crash. The Rescued Items from volume name folder
is named for the volume on which the Temporary
Items folder exists. When a user empties the
Trash, all Rescued Items folders disappear.

resource Any data stored according to a defined
structure in a resource fork of a file; the data in a
resource is interpreted according to its resource
type.

resource fork The part of a file that contains the
files’ resources. A resource fork consists of a
resource map and resources.

resource ID A number that identifies a specific
resource of a given resource type.

resource type A sequence of four characters that
uniquely identifies a specific type of resource.

resume event An event indicating that an
application has been switched back into the
foreground and can resume interacting with
the user.

return receipt A high-level event that indicates
whether the other application accepted the
high-level event sent to it by your application.

scroll arrow An arrow at either end of a scroll
bar. When the user clicks a scroll arrow, the
application moves a document or list one line
(or some similar measure) in the direction of the
arrow. When the user holds the mouse button
down while the cursor is over a scroll arrow,
the application moves the document or list
continuously in the direction of the arrow.

G L O S S A R Y

GL-9

scroll bar A control with which the user can
change the portion of a document displayed
within a window. A scroll bar is a light gray
rectangle with scroll arrows at each end.
Windows can have a horizontal scroll bar, a
vertical scroll bar, or both. A vertical scroll bar lies
along the right side of a window. A horizontal
scroll bar runs along the bottom of
a window. Inside the scroll bar is a rectangle
called the scroll box. The rest of the scroll bar
is called the gray area. The user can move
through a document by manipulating the parts
of the scroll bar.

scroll box A box that slides up and down or
back and forth across a scroll bar. The position of
the scroll box in a scroll bar indicates the position
of the window contents relative to the entire
document. When the user drags the scroll box, the
application displays a different portion of
the document.

signature A resource whose type is defined by a
four-character sequence that uniquely identifies
an application to the Finder. A signature is located
in an application’s resource fork.

size box A box in the lower-right corner of
windows that can be resized. Dragging the size
box resizes the window.

size region The area occupied by a window’s
size box. See also size box.

size resource A resource (of type 'SIZE') that
specifies the operating characteristics, minimum
partition size, and preferred partition size of
an application.

slider A control, such as a scroll bar, that
graphically represent the ranges of values that
a user can set or that simply displays the value,
magnitude, or position of something, typically
in some pseudo-analog form.

standard control definition functions Three
control definition functions, stored as 'CDEF'
resources in the System file. The 'CDEF' resource
with resource ID 0 defines the look and behavior
of buttons, checkboxes, and radio buttons; the
'CDEF' resource with resource ID 1 defines the
look and behavior of scroll bars; and the 'CDEF'
resource with resource ID 63 defines the look and
behavior of pop-up menus.

standard state The size and location that
an application deems the most convenient for
a window.

Startup Items folder A directory located in the
System Folder for storing applications and desk
accessories that the user wants started up every
time the Finder starts up.

stationery pad A document that a user creates
to serve as a template for other documents. The
Finder tags a document as a stationery pad by
setting the isStationery bit in the Finder
flags field of the file’s file information record.
An application that is asked to open a stationery
pad should copy the template’s contents into a
new document and open the document in an
untitled window.

stop alert An alert box that informs the user of a
problem or situation so serious that the user’s
desired action cannot be completed. Stop alerts
typically have only a single button (OK), because
all the user can do is acknowledge that the action
cannot be completed. A stop alert is identified by
an icon of an upraised hand in the upper-left
corner of the alert box. See also caution alert and
note alert.

structure region The entire screen area occupied
by a window, including both the window frame
and the content region.

submenu A menu that is attached to
another menu.

suspend event An event indicating that the
execution of your application is about to be
suspended as the result of a major switch.
The application is suspended at the application’s
next call to WaitNextEvent or EventAvail.

system alert sound A sound resource that is
stored in the System file and played whenever
system software or an application uses the Sound
Manager procedure SysBeep. With the Sound
control panel, the user can select which sound
to use.

System file A file, located in the System Folder,
that contains the basic system software plus some
system resources, such as sound and keyboard
resources.The System file behaves like a folder in
this regard: although it looks like a suitcase icon,

G L O S S A R Y

GL-10

double-clicking it opens a window that reveals
movable resource files (such as sounds, keyboard
layouts, and script system resource collections)
stored in the System file.

System Folder A directory containing the
software that Macintosh computers use to start
up. The System Folder includes a set of folders for
storing related files, such as preferences files that
an application might need when starting up.

Temporary Items folder A directory located at
the root level of a volume for storing temporary
buffer files created by applications. The
Temporary Items folder is invisible to the user.

text style table In an item color table resource, a
specification for the typeface, font style, font size,
and color of text in an editable text item or a static
text item.

title bar The bar at the top of a window that
displays the window name, contains the close and
zoom boxes, and indicates whether the window is
active.

Toolbox Event Manager See Event Manager.

Trash folder A directory at the root level of a
volume for storing files that the user has moved
to the Trash icon. After opening the Trash icon,
the user sees the collection of all items that the
user has moved to the Trash icon—that is, the
union of appropriate Trash directories from
all mounted volumes. A Macintosh computer
set up to share files among users in a network
environment maintains separate Trash
subdirectories for remote users within its shared
Trash directory. The Finder empties a Trash
directory (or, in the case of a file server, a Trash
subdirectory) only when the user of that directory
chooses the Empty Trash command.

update event An event indicating that the
contents of a window need updating.

update region A region maintained by the
Window Manager that includes the parts of a
window’s content region that need updating.
The Event Manager generates update events
as necessary, based on the contents of the
update region, telling your application to update
a window.

user state The size and location that the user has
established for a window.

variation code A number that selects among
variations supported by a single window
defintion function or control definition function.
The variation code is stored in the low-order 4
bits of the window definition ID or control
definition ID. See also control definition
function, control definition ID, window
definition function, and window definition ID.

virtual key code A value that represents the key
pressed or released by the user; this value is
always the same for a specific physical key on a
keyboard. Compare character code.

visible region The part of a window’s graphics
port that’s actually visible on the screen—that is,
the part that’s not covered by other windows.

window An area on the screen that displays
information, including user documents as well
as communications such as alert boxes and dialog
boxes. The user can open or close a window;
move it around on the desktop; and sometimes
change its size, scroll through it, and edit its
contents.

window color table The data structure in which
the Window Manager stores the colors
to be used for drawing a window’s frame and
for highlighting selected text.

window definition function A function that
defines the general appearance and behavior of a
window. The Window Manager calls the window
definition function to draw the window’s frame,
determine what region of the window the cursor
is in, draw the window’s size box, draw the
window’s zoom box, move and resize the
window, and calculate the window’s structure
and content regions.

window definition ID An integer that specifies
the resource ID of a window definition function in
the upper 12 bits and an optional variation code
in the lower 4 bits. When creating a new window,
your application supplies a window definition ID
either as a field in the 'WIND' resource or as a
parameter to the NewWindow or NewCWindow
function.

G L O S S A R Y

GL-11

window list A list maintained by the Window
Manager of all windows on the desktop. The
frontmost window is first in the window list, and
the remaining windows appear in the order in
which they are layered on the desktop.

Window Manager port A graphics port that
represents the desktop area on the main
monitor—that is, a rounded-corner rectangle that
occupies all of the main monitor except for the
area occupied by the title bar.

window origin The upper-left corner of a
window. Usually specified as (0,0), the window
origin is expressed in coordinates local to
the window.

window record A data structure of type
WindowRecord (or CWindowRecord) in which
the Window Manager stores a window’s charac-
teristics, including the window’s graphics port,
title, visibility status, and control list.

window region Special-purpose region of a
window. See also close region, content region,
drag region, size region, and zoom region.

window type A collection of characteristics—
such as the shape of the window’s frame and the
features of its title bar—that describe a window.

zoom box A box in the right side of a window’s
title bar that the user can click to alternate
between two different window sizes (the user
state and the standard state).

zoom region The area occupied by a window’s
zoom box. See also zoom box.

IN-1

Index

Symbols

'****' file type 7-20
'????' file type 7-20

Numerals

4-bit color icons 7-11
8-bit color icons 7-11
16-by-16 pixel icons (small) 7-11, 7-15
32-by-32 pixel icons (large) 7-11, 7-13

A

About command (Apple menu) 3-21 to 3-22, 3-45
acceptAppDiedEvents flag 2-118
AcceptHighLevelEvent function 2-69, 2-70 to 2-71,

2-87, 2-90 to 2-92
acceptSuspendResumeEvents flag 2-117
ACount global variable 6-172
'actb' resource type 6-157 to 6-158
action procedures

for buttons, checkboxes, and radio buttons 5-36
changing 5-102
creating 5-115 to 5-117
defined 5-35
for pop-up menus 5-36 to 5-37
for scroll bars 5-58 to 5-61
specifying 5-91, 5-92

activate events
in alert boxes 6-82
deactivating windows for alert and dialog

boxes 6-64 to 6-66
defined 2-8
in dialog boxes 6-85, 6-97 to 6-100
handling 2-50 to 2-55, 4-50 to 4-53
and windows 4-42

active controls 5-11 to 5-13, 6-13 to 6-14
active windows 4-6 to 4-7
AddResMenu procedure. See AppendResMenu

procedure
AEIMP (Apple Event Interprocess Messaging

Protocol) 2-13, 2-67
AEProcessAppleEvent function 2-68, 2-78

AESend function 2-73, 2-78, 2-100
A5 world

and context switching 2-16
size of 2-32

alert boxes
accessing menus from 6-68 to 6-73
as windows 6-15 to 6-17
creating 6-18 to 6-23
default colors of, changing 6-157 to 6-158
defined 6-6
dialog boxes, as distinguished from 6-6 to 6-8
displaying 6-22, 6-61 to 6-75
event filter function for 6-86 to 6-89, 6-145 to 6-147
events in 2-29 to 2-30, 6-81 to 6-82
items in. See items in alert and dialog boxes
stages for 6-20 to 6-22, 6-150 to 6-151
types of 6-8 to 6-9
window types for 4-9

alert color table resources 6-157 to 6-158
Alert function 6-106 to 6-108
alert resources

defined 6-15
example of 6-20, 6-21
Rez input format for 6-19 to 6-22
Rez output format for 6-150 to 6-151

alerts
creating 6-18 to 6-23, 6-105 to 6-112
defined 6-5
defining alert sounds for 6-22, 6-144 to 6-145
displaying 6-61 to 6-75
events in 6-81 to 6-82
stages for 6-20 to 6-22, 6-150 to 6-151
types of 6-8 to 6-9
using the system alert sound 6-8

alert sounds
and the system alert sound 6-8
creating 6-18 to 6-22
defined 6-6
defining 6-22, 6-144 to 6-145
specifying 6-151
stages for 6-20 to 6-22, 6-150 to 6-151

aliases
defined 7-39
resolving 7-39 to 7-41, 7-51 to 7-53

alias files 7-39
alias records 7-40
alias types 7-40
'alis' resource type 7-40

I N D E X

IN-2

'ALRT' resource type. See alert resources
altDBoxProc window type 4-9
'amnu' folder type 7-54
ANumber global variable 6-172
'appe' file type 7-44
AppendDITL procedure 6-54, 6-125 to 6-127
AppendMenu procedure 3-64 to 3-67, 3-124 to 3-125
AppendResMenu procedure 3-20, 3-68 to 3-70, 3-128 to

3-129
Apple Event Interprocess Messaging Protocol

(AEIMP) 2-13, 2-67
Apple events

and the Finder 7-25 to 7-26
application sending to itself 3-71
as high-level events 2-67 to 2-69
defined 2-13
handling 2-78
Open Documents event 7-20
sending 2-78
 in response to menu commands 3-71

Apple menu 3-20
About command 3-21 to 3-22, 3-45
accessing from dialog boxes 6-68 to 6-73
adding items to 3-68 to 3-69
creating 3-43 to 3-44
handling 3-80 to 3-81

Apple Menu Items folder
adding items from, to Apple menu 3-20 to 3-21
alias type for 7-40
defined 7-43
finding 7-54

'APPL' file type 7-10
application-defined items

creating 6-56 to 6-61
specifying in alert or dialog boxes 6-29 to 6-30, 6-155

application heap 2-32
application icons. See also icon families
creating 7-10 to 7-17
default 7-12

Application menu 3-33
accessing from alert and dialog boxes 6-68 to 6-69
Hide Others command 3-33

application-missing message string resources 7-27 to
7-30, 7-68 to 7-69

applications
alias type for 7-40
in Apple Menu Items folder 7-43
creating icons for 7-11 to 7-17
default icon for 7-12
launching from the Finder 7-25 to 7-26
sharing 2-68
signatures for 7-8 to 7-10
switching between 2-5

application-unavailable alert box messages 7-27 to 7-30
arrow cursor 2-63

arrows, in scroll bars. See scroll arrows
'****' file type 7-20
AtMenuBottom global variable 3-151
auto-key events 2-38
auto-key threshold rate 2-38
A/UX and cancel events 2-46
AuxCtlRec data type 5-76 to 5-77, 5-107
auxiliary control records 5-76 to 5-77, 5-107
auxiliary window record 4-21, 4-73 to 4-74
AuxWinRec data type 4-73 to 4-74

B

background applications, and Extensions folder 7-44
background processes 2-4
Balloon Help online assistance, for icons 7-38.See also

help balloons
BeginUpdate procedure 4-50, 4-106 to 4-107
BeginUpdate procedure 2-47
'BNDL' resource type 7-20 to 7-25, 7-65 to 7-68
BringToFront procedure 4-90
bundle bit 7-34
bundle resources 7-20 to 7-25, 7-45, 7-65 to 7-68
Button function 2-108
buttons

active 5-11 to 5-13
control definition ID for 5-14
creating, in windows 5-17 to 5-20
default 6-10 to 6-11, 6-22, 6-30 to 6-31, 6-56 to 6-61
defined 5-5
events in 5-31 to 5-37, 6-78
inactive 5-11 to 5-13
part code for 5-32
specifying in alert or dialog boxes 6-29 to 6-30, 6-153
titles for 6-37 to 6-39

C

CalcMenuSize procedure 3-143, 5-28
CalcVisBehind procedure 4-119
CalcVis procedure 4-119
canBackground flag 2-117
cancel events 2-46 to 2-47
Can’t Undo command (Edit menu) 3-24, 3-25
Caps Lock key 2-20
caret, time between blinks of 2-113
catalog files

defined 7-5
Finder information in 7-32 to 7-34, 7-46 to 7-51

CautionAlert function 6-111
caution alerts

creating with the CautionAlert function 6-111
defined 6-9

I N D E X

IN-3

'cctb' resource type 5-121 to 5-123
'CDEF' resource type 5-14, 5-109 to 5-115
character codes 2-40
checkboxes

active 5-11 to 5-13
changing setting and display of 5-38 to 5-39
control definition ID for 5-14
defined 5-5 to 5-6
events in 6-78
 in windows 5-31 to 5-32, 5-38 to 5-39
inactive 5-11 to 5-13
part code for 5-32
specifying in alert or dialog boxes 6-29 to 6-30, 6-153

CheckItem procedure 3-61 to 3-62, 3-136
CheckUpdate function 4-116
'cicn' resource type 7-64

specifying a menu item’s 3-62, 3-154
Clear command (Edit menu) 3-25, 6-69
ClearMenuBar procedure 3-110
ClipAbove procedure 4-116 to 4-117
Clipboard 3-24

converting data to and from 2-58 to 2-60
Hide Clipboard command (Edit menu) 3-25
Show Clipboard command (Edit menu) 3-25

close box 4-6
Close command (File menu) 3-23
CloseDialog procedure 6-119 to 6-120
close region 4-12
CloseWindow procedure 4-60, 4-104 to 4-105
closing windows 4-60 to 4-62

routines for 4-103 to 4-106
'CNTL' resource type

example of 5-18, 5-21, 5-23, 5-26
Rez input format for 5-18 to 5-24, 5-25 to 5-28
Rez output format for 5-118 to 5-121

Color control panel 4-20, 4-65
color flag 7-48
color graphics ports 4-20
color icon resources 3-46, 3-62, 7-64
color icons 7-11, 7-13 to 7-16
Color QuickDraw

checking for
when creating a window 4-77
when zooming windows 4-54

and color window records 4-65
coordinate systems in 4-17 to 4-18
creating color windows 4-20 to 4-21
and the Window Manager port 4-74

colorReserved flag 7-48
colors

in alert boxes and dialog boxes 6-156 to 6-164
in controls 5-5
Label menu commands for 7-16
in menus 3-46, 3-62, 3-98 to 3-102
in windows 4-20 to 4-21

ColorSpec data type 4-72, 5-78 to 5-79
color window records 4-65 to 4-68
Command key 2-20
Command-key equivalents. See keyboard equivalents
Command-Shift-number key sequences 2-39, 2-86
content region

defined 4-6, 4-12
drawing 4-39 to 4-40
updating 4-40 to 4-41, 4-48 to 4-50

context of a process, switching 2-15 to 2-16
control color table records 5-77 to 5-80
control color table resources 5-121 to 5-123
control color tables 6-160 to 6-162
control definition functions

custom 5-109 to 5-115
defined 5-14
for pop-up menus 5-14, 5-36
standard 5-14

control definition IDs
defined 5-14
for buttons 5-14
for checkboxes 5-14
for custom controls 5-109 to 5-110
for pop-up menus 5-14
for radio buttons 5-14
for scroll bars 5-14
specifying 5-18, 5-19, 5-25, 5-83 to 5-84, 5-120

Control key 2-20
control list 4-14
Control Manager 5-3 to ??

application-defined routines for 5-109 to 5-117
data structures in 5-72 to 5-80
and Dialog Manager 5-3, 5-5, 5-16, 5-29, 5-31, 6-78
and Event Manager 5-3
and List Manager 5-3
localization guidelines 5-15, 5-19 to 5-20, 5-85, 5-120
and Resource Manager 5-3
resources for 5-117 to 5-123. See also control color

tables; control definition functions; control
resources;

routines in 5-80 to 5-117
user interface guidelines 5-5 to 5-13, 5-52 to 5-53
and Window Manager 5-3

control panels installing and removing 7-41
Control Panels folder

alias type for 7-40
defined 7-43
finding 7-54

ControlRecord data type 5-73 to 5-75
control records 5-73 to 5-75
control resources

example of 5-18, 5-21, 5-23, 5-26
Rez input format for 5-18 to 5-24, 5-25 to 5-28
Rez output format for 5-118 to 5-121

I N D E X

IN-4

controls
action procedures for 5-91, 5-102, 5-115 to 5-117
activating 5-13
active 5-11 to 5-13, 6-13
colors in 5-5, 5-101, 5-121 to 5-123
control definition IDs for 5-18, 5-19, 5-25, 5-83 to

5-84, 5-120
custom. See custom controls
defined 5-3
dragging 5-35, 5-99 to 5-100, 5-114 to 5-115
drawing 5-17, 5-85 to 5-88
events in 5-88 to 5-93, 6-78
highlight states 5-35, 5-98 to 5-99
inactive 5-13, 6-13, 6-74
in alert and dialog boxes 6-29 to 6-30, 6-154
indicators. See indicators, in controls
invisible 5-18, 5-19, 5-25, 5-83, 5-97, 5-119
in windows 4-14 to 4-15, 4-23, 5-82
mouse events in 5-11 to 5-13, 5-30 to 5-70
moving 5-65 to 5-70, 5-97 to 5-98
part codes for 5-31 to 5-32
pop-up menus 6-42 to 6-44
rectangles for 5-18 to 5-19, 5-22 to 5-23, 5-25 to 5-26,

5-82, 5-118.See also display rectangles 5-26
reference values for

changing 5-105 to 5-106
determining 5-105
specifying 5-18, 5-25, 5-84, 5-120

removing 5-108 to 5-109
resizing 5-65 to 5-70, 5-98
resources for. See control resources
settings of

changing 5-11, 5-37 to 5-43, 5-61, 5-65 to 5-70, 5-93
to 5-102

determining 5-37 to 5-43, 5-102 to 5-107
specifying initial 5-18 to 5-19, 5-21 to 5-23, 5-25 to

5-28, 5-83, 5-118 to 5-119
standard 5-4, 5-15 to 5-28, 5-81 to 5-85
text in 5-18, 5-19 to 5-20, 5-25
titles of

changing 5-96
determining 5-104 to 5-105
specifying 5-18, 5-19 to 5-20, 5-25, 5-83, 5-85, 5-120,

5-121
types of 5-4 to 5-13. See also buttons; checkboxes;

custom controls; pop-up menus; radio buttons;
scroll bars

updating 5-29 to 5-30
visible 5-18, 5-19, 5-25, 5-83, 5-119

cooperative multitasking 2-10
coordinate systems 4-17 to 4-18
Copy command (Edit menu) 3-25, 6-69
CountDITL function 6-128
CountMItems function 3-81, 3-141
Create Publisher command (Edit menu) 3-25

creators
assigning 7-33 to 7-34, 7-47 to 7-49
defined 7-9 to 7-10

CtlCTab data type 5-77 to 5-80
'ctrl' folder type 7-54
current menu list 3-40
current process 2-28
cursor

adjusting 2-65 to 2-67
arrow 2-63
cross 2-63
I-beam 2-63
plus 2-63
setting the appearance of 2-62
wristwatch 2-63

custom alert boxes
creating with the Alert function 6-106 to 6-108
defined 6-9

custom controls 5-11, 5-109 to 5-115
customized icons 7-17 to 7-18
Cut command (Edit menu) 3-25, 6-69
CWindowPeek data type 4-65
CWindowPtr data type 4-65
CWindowRecord data type 4-65 to 4-68

D

DABeeper global variable 6-172
DAStrings global variable 6-172
data forks 1-11
dBoxProc window type 4-9
dBoxProc window type 2-16, 6-25
'dctb' resource type 6-156 to 6-157
default buttons 6-10 to 6-11, 6-22, 6-30 to 6-31, 6-56 to

6-61
DeleteMCEntries procedure 3-147
DeleteMenuItem procedure 3-127 to 3-128
DeleteMenu procedure 3-109 to 3-110
DelMCEntries procedure. See DeleteMCEntries

procedure
DelMenuItem procedure. See DeleteMenuItem

procedure
desk accessories

handling events in 2-36, 2-87, 2-95
and System 7 7-13

desk accessory resource. See 'DRVR' resource type
'desk' folder type 7-54
DeskHook global variable 4-75
DeskPattern global variable 4-113
desktop 7-3
desktop database 7-5, 7-45 to 7-46
Desktop file 7-5
Desktop Folder

defined 7-43
finding 7-54

I N D E X

IN-5

Desktop Manager 7-45
desktop objects 3-20
desktop pattern 4-112
dial controls 5-11
dialog boxes

accessing menus from 3-84, 6-68 to 6-73
alert boxes, as distinguished from 6-6 to 6-8
as windows 6-15 to 6-17
closing 6-100 to 6-101
creating 6-23 to 6-26, 6-113 to 6-119
default colors of, changing 6-156 to 6-157
defined 6-5
displaying 6-61 to 6-75
disposing of 6-113, 6-119 to 6-120
event filter function for 6-86 to 6-89
events in 2-25, 2-29 to 2-30, 6-82 to 6-100, 6-135 to

6-143
examples of 1-9
items in. See items in alert and dialog boxes
types of 6-9 to 6-12
window types for 4-9 to 4-10

dialog color table resources 6-75, 6-156 to 6-157
DialogCopy procedure 6-133
DialogCut procedure 6-132 to 6-133
DialogDelete procedure 6-134
Dialog Manager 6-5 to 6-172

application-defined routines for 6-143 to 6-147
and Control Manager 5-3, 5-5, 5-16, 5-29, 5-31, 6-78
data structures in 6-101 to 6-102
initializing 6-103 to 6-105
localization guidelines 6-34 to 6-35, 6-39, 6-40, 6-80,

6-130
and Menu Manager 6-68 to 6-73
resources in 6-147 to 6-164.See also alert color table

resources; alert resources; dialog color table
resources; dialog resources; item color table
resources; item list resources

routines in 6-102 to 6-147
testing for availability of AppendDITL, ShortenDITL,

and CountDITL routines 6-18
and TextEdit 6-79 to 6-80
user interface guidelines 6-8 to 6-12, 6-31 to 6-34,

6-37 to 6-41, 6-42, 6-62 to 6-64
and Window Manager 4-13 to ??, 6-15 to 6-16

DialogPaste procedure 6-133 to 6-134
DialogPeek data type 6-102
DialogPtr data type 6-102
DialogRecord data type 6-101 to 6-102
dialog records 6-101 to 6-102
dialog resources

defined 6-15
example of 6-24
Rez input format for 6-24 to 6-26
Rez output format for 6-148 to 6-149

DialogSelect function 2-29, 6-80, 6-89 to 6-93, 6-139
to 6-141

DIBadMount function 2-56
DInfo data type 7-50
directories, finding system-related 7-53 to 7-56
directory information record 7-50
disabled constant 3-7
disabled items 6-13
DisableItem procedure 3-58 to 3-59, 3-131 to 3-132
'disk' file type 7-20
disk-inserted events

handling 2-55 to 2-56
in alert and dialog boxes 6-87
and the ModalDialog procedure 2-56
and standard file dialog boxes 2-55

disks, opening 7-20
display rectangles, for items in alert and dialog

boxes 6-29, 6-32 to 6-35
DispMCInfo procedure. See DisposeMCInfo procedure
DisposDialog procedure. See DisposeDialog

procedure
DisposeControl procedure 5-108
DisposeDialog procedure 6-120
DisposeMCInfo procedure 3-145
DisposeMenu procedure 3-140
DisposeWindow procedure 4-105 to 4-106
DITLMethod data type 6-51, 6-166
'DITL' resource type. See item list resources
divider 3-11
DlgCopy procedure. See DialogCopy procedure
DlgCut procedure. See DialogCut procedure
DlgDelete procedure. See DialogDelete procedure
DlgFont global variable 6-172
DlgPaste procedure. See DialogPaste procedure
'DLOG' resource type. See dialog resources
documentProc window type 4-10
documents 5-9 to 5-10, 5-43 to 5-70

creating icons for 7-16 to 7-17, 7-17 to 7-18
creators of 7-9 to 7-10
default icon for 7-12
file types of 7-9 to 7-10, 7-18 to 7-20
opening from the Finder 7-25 to 7-26
prohibiting users from opening from Finder 7-30
window types for 4-8

document windows
defined 4-4
positioning 4-30
saving position of 4-34
window types for 4-8

doesActivateOnFGSwitch flag 2-117
double click, time between 2-38, 2-113
DragControl procedure 5-99 to 5-100
DragGrayRgn function 4-96 to 4-98
DragHook global variable 4-98, 4-100, 4-102, 4-104
drag region 4-12
DragWindow procedure 4-44, 4-94 to 4-95

I N D E X

IN-6

Draw1Control procedure 5-88
DrawControls procedure 5-87 to 5-88
DrawDialog procedure 6-142
DrawGrowIcon procedure 4-12, 4-39, 4-86 to 4-87
DrawMenuBar procedure 3-51, 3-58, 3-113
DrawNew procedure 4-117
'drop' alias type 7-40
drop folder, alias type for 7-40
'DRVR' resource type 3-20, 3-68, 3-129, 3-130
DXInfo data type 7-50 to 7-51

E

editable text items
events in 6-79 to 6-80
getting text from 6-48 to 6-51, 6-130 to 6-131
highlighting default text in 6-131 to 6-132
setting text in 6-131, 6-153
specifying in dialog boxes 6-29 to 6-30, 6-153

Edition Manager 2-14
editions

creating icons for 7-16
defined 7-4

Edit menu 3-24 to 3-26
accessing from alert and dialog boxes 6-68 to 6-73
adjusting 3-75 to 3-76
Can’t Undo command 3-25
Clear command 3-25, 6-69
Copy command 3-25, 6-69
Create Publisher command 3-25
Cut command 3-25, 6-69
Hide Clipboard command 3-25
Paste command 3-25, 6-69
Publisher Options command 3-25
Select All command 3-25
Show Clipboard command 3-25
Subscriber Options command 3-25
Subscribe To command 3-25
Undo command 3-25, 6-69

8-bit color icons 7-11
'empt' folder type 7-54
enabled constant 3-7
enabled items 6-13
EnableItem procedure 3-58 to 3-59, 3-131
EndUpdate procedure 4-50, 4-107
EndUpdate procedure 2-47, 2-49
EraseRect procedure 4-103
ErrorSound procedure 6-104
EventAvail function 2-21, 2-88 to 2-89
event classes 2-68
event filter functions 6-86 to 6-89, 6-145 to 6-147
event IDs 2-68
event loops 2-24 to 2-25

Event Manager 2-3 to 2-132. See also Operating
System Event Manager

application-defined routine for 2-114 to 2-115
and Control Manager 5-3
data structures in 2-78 to 2-83
initializing 2-17
and MultiFinder 2-7
and the PPC Toolbox 2-7, 2-13
and the Process Manager 2-5
routines in 2-84 to 2-113
and the Scrap Manager 2-60
testing for features 2-17

event masks
defined 2-22, 2-85
setting 2-26 to 2-29

event messages 2-19, 2-80
event queue. See also high-level event queue;

Operating System event queue
scanning for a cancel event 2-46
structure of 2-83

EventRecord data type 2-79 to 2-81
event records 2-79 to 2-81

defined 2-4
and event loops 2-25
for high-level events 2-68, 2-69

events
activate 2-8, 2-50 to 2-55, 4-50 to 4-53
in alert boxes 2-29 to 2-30, 6-81 to 6-82, 6-86 to 6-89,

6-135
Apple. See Apple events
auto-key 2-8, 2-38
in buttons in windows 5-31 to 5-37
cancel 2-46 to 2-47
in checkboxes in windows 5-38 to 5-39
Command-period 2-46
in controls 5-11 to 5-13, 5-30 to 5-70, 5-88 to 5-93, 6-78
defined 2-4
in desk accessories 2-36
in dialog boxes 2-29 to 2-30, 6-77 to 6-100, 6-135 to

6-143
disk-inserted 2-8, 2-55 to 2-56
in editable text items 6-79 to 6-80
filter function for, in alert and dialog boxes 6-86 to

6-89, 6-145 to 6-147
first click in an inactive window 4-42
getting information about 2-18 to 2-21
in gray areas of scroll bars 5-57 to 5-61
handling 2-26
high-level. See high-level events
interacting with the user from the background 2-12
keyboard 2-8, 2-38 to 2-45
key-down 2-38
key-up 2-38, 2-39
low-level 2-8 to 2-9
masking out 2-27

I N D E X

IN-7

events (continued)
in modal dialog boxes 6-82 to 6-89, 6-135 to 6-137
in modeless dialog boxes 2-25, 6-89 to 6-100, 6-138 to

6-141,
and modifier keys 2-20 to 2-21, 2-34
mouse-down 2-8, 2-33 to 2-38
mouse-down in windows 4-42 to 4-45
mouse-moved 2-12, 2-23, 2-62 to 2-67
mouse-up 2-8, 2-33
in movable modal dialog boxes 6-89 to 6-100, 6-138

to 6-141
null 2-9, 2-57
operating-system 2-10 to 2-12, 2-58 to 2-67
in pop-up menus 6-42
in pop-up menus in windows 5-31 to 5-37
priority of 2-15
processing 2-21 to 2-30
in radio buttons in windows 5-31 to 5-32
received in the background 2-12
receiving from other applications 2-69 to 2-71
resume 2-12, 2-60 to 2-62
in scroll arrows 5-57 to 5-61
in scroll bars 5-43 to 5-65
in scroll boxes 5-53 to 5-57
sources of 2-6
suspend 2-12, 2-60 to 2-62
switching contexts 2-15 to 2-16
types of 2-5, 2-18, 2-79
update 2-9, 2-47 to 2-50, 4-48 to 4-50
in windows 4-21 to 4-22, 4-41 to 4-53

event types 2-18
EvQEl data type 2-83
exported AppleShare folder, alias type for 7-40
extended directory information record 7-50 to 7-51
extended file information record 7-49
Extensions folder

alias type for 7-40
defined 7-44
finding 7-54

'extn' folder type 7-54

F

'faam' alias type 7-40
'fact' alias type 7-40
'fadr' alias type 7-40
'faet' alias type 7-40
'faex' alias type 7-40
'famn' alias type 7-40
'fapf' alias type 7-40
'fapn' alias type 7-40
'fash' alias type 7-40
'fast' alias type 7-40

'fasy' alias type 7-40
'fdrp' alias type 7-40
'ffil' file type 7-37
file information record 7-34, 7-47 to 7-49
File menu 3-22 to 3-24

Close command 3-23, 7-18
New command 3-23
Open command 3-23
Page Setup command 3-23
Print command 3-23
Quit command 3-23, 7-18
Save As command 3-23
Save command 3-23

file reference resources 7-18 to 7-25, 7-64 to 7-65
files.See also applications; documents
data fork of 1-11
managing 1-15
resource fork of 1-11
temporary 7-43
user comments associated with 7-45

file types
for alias files 7-40
'appe' 7-33, 7-47
'APPL' 7-10
assigning 7-9 to 7-10, 7-33 to 7-34, 7-47 to 7-49
'****' 7-20
defining in file reference resources 7-18 to 7-25
'DFIL' 7-37
'disk' 7-20
'FFIL' 7-37
'ffil' 7-37
'fold' 7-20
'ifil' 7-37
'kfil' 7-37
for movable resources 7-37
opening documents of particular

from applications 7-10
from the Finder 7-25 to 7-26

'????' 7-20
'scri' 7-44
'sfil' 7-37
for stationery pads 7-19
'tfil' 7-37

filter function.See also event filter functions
for GetSpecificHighLevelEvent 2-92 to 2-93,

2-114 to 2-115
FindControl function 5-33 to 5-35, 5-44, 5-53 to 5-54,

5-58, 5-89 to 5-90
FindDialogItem function 6-125
FindDItem function. See FindDialogItem function
Finder

application interface to 7-3 to 7-78
database for a volume 7-45 to 7-46
data structures used by 7-46 to 7-51
defined 7-3, 7-3 to 7-5

I N D E X

IN-8

Finder (continued)
and Process Manager 7-25
and Resource Manager 7-3
relation to File Manager 7-3
resources used by 7-6 to 7-32, 7-56 to 7-70.See also

application-missing message string resources;
bundle resources; file reference resources; icon
list resources; large 8-bit color icon resources;
large 4-bit color icon resources; missing-
application name string resources; signature
resources; small 8-bit color icon resources; small
4-bit color icon resources; small icon list
resources; version resources

routines for 7-51 to 7-56
user interface guidelines 7-13, 7-15

Finder flags 7-33 to 7-34, 7-47 to 7-48
Finder information, in the catalog file 7-32 to 7-34, 7-46

to 7-51
FindFolder function 7-53 to 7-56
FindWindow function 4-12, 4-44, 4-91 to 4-93

and mouse events 4-42 to 4-44
FindWindow function 5-32 to 5-33

and activate events 2-51
and mouse events 2-33 to 2-37

FInfo data type 7-34, 7-47 to 7-49
“first click” in an inactive window 4-7, 4-42
'FKEY' resource type 2-39, 2-86, 3-118
FlashMenuBar procedure 3-141 to 3-142
'fld#' resource type 7-55
floppy disks, alias type for 7-40
'flpy' alias type 7-40
FlushEvents procedure 2-93 to 2-94
folder resources 7-55
folders

alias type for 7-40
finding system-related 7-53 to 7-56

folder types 7-54
'fold' file type 7-20
'FOND' resource type 3-69
'font' folder type 7-54
Font menu 3-26 to 3-27, 3-69 to 3-70

adding fonts to 3-69 to 3-70
font resources

icon for 7-37 to 7-38
installing and removing 7-41

'FONT' resource type 3-69
fonts

bitmapped 3-27
suitcases for 7-37
TrueType 3-27

Fonts folder 7-44
foreground process 2-4
4-bit color icons 7-11
frames, window 4-6, 4-12 to 4-13
'FREF' resource type 7-18 to 7-25, 7-64 to 7-65
FrontWindow function 4-93 to 4-94

FSpGetFInfo function 7-34, 7-49
FSpSetFInfo function 7-34, 7-49
FXInfo data type 7-49

G

GetAlertStage function 6-66, 6-112
GetAlrtStage function. See GetAlertStage

function
GetAuxCtl function. See

GetAuxiliaryControlRecord function
GetAuxiliaryControlRecord function 5-107
GetAuxWin function 4-115 to 4-116
GetCaretTime function 2-113
GetControlAction function 5-106
GetControlMaximum function 5-41 to 5-42, 5-61,

 5-104
GetControlMinimum function 5-103 to 5-104
GetControlReference function 5-105
GetControlTitle procedure 5-104 to 5-105
GetControlValue function 5-38 to 5-39, 5-41 to 5-42,

5-44, 5-53 to 5-55, 5-61, 5-103
GetControlVariant function 5-106 to 5-107
GetCRefCon function. See GetControlReference

function
GetCTitle procedure. See GetControlTitle

procedure
GetCtlAction function. See GetControlAction

function
GetCtlMax function. See GetControlMaximum

function
GetCtlMin function. See GetControlMinimum

function
GetCtlValue function. See GetControlValue

function
GetCVariant function. See GetControlVariant

function
GetCWMgrPort procedure 4-113 to 4-114
GetDblTime function 2-113
GetDialogItem procedure 6-50, 6-121 to 6-122
GetDialogItemText procedure 6-50, 6-130 to 6-131
GetDItem procedure. See GetDialogItem procedure
GetEvQHdr function 2-100
getFrontClicks flag 2-118
GetGray function 3-91
GetGrayRgn function 4-113
GetItemCmd procedure 3-138 to 3-139
GetItemIcon procedure 3-137
GetItemMark procedure 3-135
GetItem procedure. See GetMenuItemText

procedure
GetItemStyle procedure 3-133 to 3-134

I N D E X

IN-9

GetIText procedure. See GetDialogItemText
procedure

GetKeys procedure 2-110
GetMBarHeight function 3-113
GetMCEntry function 3-145 to 3-146
GetMCInfo function 3-52, 3-143 to 3-144
GetMenuBar function 3-112
GetMenu function 3-55, 3-106 to 3-108
GetMenuHandle function 3-122
GetMenuItemText procedure 3-80, 3-132 to 3-133
GetMHandle function. See GetMenuHandle function
GetMouse procedure 2-108
GetNewControl function 5-15 to 5-18, 5-24 to 5-25,

 5-81 to 5-82
GetNewCWindow function 4-28, 4-76 to 4-77
GetNewDialog function 6-113 to 6-115
GetNewMBar function 3-50 to 3-52, 3-111 to 3-112
GetNewWindow function 4-28, 4-78 to 4-79
GetNextEvent function 2-21, 2-89 to 2-90
GetOSEvent function 2-97 to 2-98
GetPortNameFromProcessSerialNumber

function 2-107
GetProcessInformation function 2-74
GetProcessSerialNumberFromPortName

function 2-73, 2-82, 2-106
GetSpecificHighLevelEvent function 2-71, 2-77,

2-92 to 2-93
GetWindowPic function 4-110
GetWMgrPort procedure 4-114
GetWRefCon function 4-111
GetWTitle procedure 4-86
GetWVariant function 4-24, 4-112
global coordinates 4-17
GlobalToLocal procedure 5-34
graphics ports 4-17 to 4-18
gray areas, in scroll bars

action procedures for 5-58 to 5-61
defined 5-9
events in 5-57 to 5-61
part codes for 5-32

gray region 4-16
GrayRgn global variable 4-16, 4-95, 4-113, 4-116
grow images, of windows 4-57, 4-87
GrowWindow function 4-57 to 4-59, 4-99 to 4-100

H

hard disks, alias type for 7-40
hasBeenInited flag 7-48
hasBundle flag 7-34
hasCustomIcon flag 7-17 to 7-18, 7-34
hasNoINITS flag 7-48

'hdsk' alias type 7-40
help balloon resources 3-44, 3-68
help balloons

for window frames 4-23
for icons 7-38

help items, specifying in alert or dialog boxes 6-29 to
6-30, 6-155 to 6-156

Help menu 3-29 to 3-31
accessing from alert and dialog boxes 6-68 to 6-69
adding items to 3-67 to 3-68
handling 3-81
Hide Balloons command 6-68
Show Balloons command 6-68

Hide Balloons command (Help menu) 6-68
Hide Clipboard command (Edit menu) 3-25
HideControl procedure 5-39 to 5-40, 5-65 to 5-67, 5-97
HideDialogItem procedure 6-123 to 6-124
HideDItem procedure. See HideDialogItem procedure
Hide Others command (Application menu) 3-33
HideWindow procedure 4-61, 4-89
hierarchical menus 3-38, 3-53 to 3-56
high-level event message record 2-72, 2-82 to 2-83
HighLevelEventMsg data type 2-72, 2-82
high-level event queue 2-7, 2-13
high-level events 2-13 to 2-15, 2-67 to 2-78

accepting 2-69, 2-70
defined 2-13
determining the sender of 2-72
event classes 2-68
event IDs 2-68
handling 2-67 to 2-78
posting options 2-75
receiving 2-68, 2-87
replying to 2-74
and return receipts 2-77
searching for a specific event 2-71 to 2-72, 2-92
. See also Apple events
sending 2-73 to 2-77, 2-101
supporting 2-25
testing for availability 2-7

HiliteControl procedure 5-98 to 5-99, 6-13 to 6-14,
6-50 to 6-51, 6-74, 6-98

HiliteMenu procedure 3-71, 3-79, 3-119 to 3-120
HiliteWindow procedure 4-90
HiWord function 4-58
HMGetHelpMenuHandle function 3-67 to 3-68, 3-81,

3-123 to 3-124
'hmmu' resource type 3-44, 3-68
HMSetMenuResID procedure 6-71
hot spot 2-62
human interface guidelines

. See user interface guidelines
human interface guidelines. See user interface

guidelines

I N D E X

IN-10

I, J

I-beam cursor 2-63
'icl4' resource type

creating 7-11, 7-24
Rez output format for 7-59 to 7-60

'icl8' resource type
creating 7-11, 7-24
Rez output format for 7-61 to 7-62

'ICN#' resource type
creating 7-11 to 7-15
example of 7-14 to 7-15
Rez output format for 7-57 to 7-58
specifying in a bundle resource 7-20

icon families 7-11
icon list resources

creating 7-11 to 7-15
example of 7-14 to 7-15
Rez output format for 7-57 to 7-58
specifying in bundle resources 7-20

icon masks 7-13, 7-15
icon resources ('ICON' resource type) 7-63
'ICON' resource type 7-63

specifying a menu item’s 3-46, 3-62, 3-154
icons.See also icon families
for applications 7-10 to 7-15
black and white 7-13, 7-15
color 7-15 to 7-16
creating 7-11 to 7-18
customizing 7-17 to 7-18
defaults used by Finder 7-12, 7-40
defined 7-3
for documents 7-16 to 7-17, 7-17 to 7-18
for editions 7-16
8-bit color 7-11
for font resources 7-37
4-bit color 7-11
for keyboard layout resources 7-37
large 7-10, 7-13
for menu items 3-62 to 3-64
in menus 3-12, 3-62 to 3-64, 3-154
for query documents 7-16
reduced 3-62 to 3-63
for script system resource collections 7-37
small 7-13, 7-15
for sound resources 7-37
specifying in alert or dialog boxes 6-29 to 6-30, 6-154
for stationery pads 7-16, 7-19, 7-36
system 7-12
for TrueType font resources 7-37

'ics8' resource type
creating 7-11, 7-24
Rez output format for 7-62 to 7-63

'ics4' resource type
creating 7-11, 7-24
Rez output format for 7-60 to 7-61

'ics#' resource type
creating 7-11, 7-15, 7-24
Rez output format for 7-58 to 7-59

'ictb' resource type 6-158 to 6-164
'ifil' file type 7-37
inactive controls 5-13, 6-13 to 6-14
inactive windows 4-6 to 4-7

handling mouse-down events in 4-43
indicators, in controls

defined 5-11
dragging 5-35, 5-99 to 5-100, 5-114 to 5-115

Info box. See information windows
information windows

using the stationery checkbox in 7-34
using to customize icon 7-17
version information in 7-8, 7-32

InitDialogs procedure 6-103 to 6-104
'INIT' file type 7-44
InitMenus procedure 3-103 to 3-104
InitProcMenu procedure 3-104
InitWindows procedure 4-75
input methods 3-32
InsertMenuItem procedure 3-64 to 3-67, 3-126 to

 3-127
InsertMenu procedure 3-55, 3-108 to 3-109
InsertResMenu procedure 3-69, 3-129 to 3-130
InsMenuItem procedure. See InsertMenuItem

procedure
InvalMenuBar procedure 3-114
InvalRect procedure 4-107 to 4-108
InvalRgn procedure 4-59, 4-108
IPCListPorts function 2-74
is32BitCompatible flag 2-118
isAlias flag 7-40
IsDialogEvent function 2-29, 6-77, 6-138 to 6-139
isHighLevelEventAware flag 2-119
isInvisible flag 7-34
isOnDesk flag 7-48
isShared flag 7-34, 7-48
isStationeryAware flag 2-119
isStationery flag 7-34
item color table resources 6-158 to 6-164
item list resources

counting items in 6-128
defined 6-13
example of 6-27 to 6-28
Rez input format for 6-26 to 6-30
Rez output format for 6-151 to 6-156
specifying for a dialog box 6-24
specifying for an alert box 6-20

item numbers 6-28

I N D E X

IN-11

items in alert and dialog boxes.See also
application-defined items; buttons; checkboxes;
controls; editable text items; icons; item list
resources; pictures; pop-up menus; radio
buttons; static text items;

adding 6-51 to 6-56, 6-125 to 6-127
copying editable text from 6-133
counting 6-128
creating 6-26 to 6-44
cutting editable text from 6-132 to 6-133
default colors of, changing 6-158 to 6-164
defined 6-13
deleting editable text from 6-134
display rectangles for 6-29, 6-32 to 6-35
drawing application-defined 6-143 to 6-144
enabled and disabled 6-13, 6-36
finding item numbers of 6-125
getting handles to 6-121 to 6-122
getting text strings from 6-130 to 6-131
hiding 6-123 to 6-124
highlighting default text in 6-131 to 6-132
item numbers for 6-28
keyboard navigation 6-44
manipulating 6-44 to 6-56, 6-120 to 6-128
pasting editable text into 6-133 to 6-134
pictures 6-29 to 6-30
redisplaying after hiding 6-124
removing 6-127 to 6-128
setting or changing 6-122 to 6-123
setting text strings in 6-131
substituting text in 6-129 to 6-130
types of 6-13 to 6-14, 6-30

'itlc' resource type 3-32, 3-33
'itlk' resource type 2-41

K

'KCHR' resource type 2-39 to 2-42, 3-16
keyboard equivalents 3-17 to 3-19

commonly used 3-19
defining 3-47
reserved 3-18

keyboard events
in alert boxes 6-86 to 6-89
in dialog boxes 6-79 to 6-80, 6-86 to 6-89, 6-94 to 6-97
handling 2-38 to 2-45
in windows 4-47

keyboard layout resource 3-16, 3-32, 3-33
keyboard layout resources 2-39 to 2-42
Keyboard menu 3-32 to 3-33

accessing from alert and dialog boxes 6-68 to 6-69
added by Menu Manager 3-19

keyboard resources
icon for 7-37 to 7-38
'KCHR' 2-39 to 2-42
'KMAP' 2-21, 2-39 to 2-42

keyboards 2-40
Apple Extended Keyboard II, domestic 2-43
Apple Extended Keyboard II, ISO 2-43
Apple Keyboard II, ISO 2-42
getting the state of 2-110

key-down events
defined 2-8
handling keyboard equivalents 3-77 to 3-78
receiving 2-38 to 2-46

KeyMap data type 2-110
KeyTrans function. See KeyTranslate function
KeyTranslate function 2-110 to 2-111, 3-78
key-up events 2-8, 2-29
'kfil' file type 7-37
KillControls procedure 5-108 to 5-109
'KMAP' resource type 2-21, 2-39 to 2-42

L

Label menu commands 7-16
large 8-bit color icon resources

creating 7-11, 7-24
Rez output format for 7-61 to 7-62

large 4-bit color icon resources
creating 7-11, 7-24
Rez output format for 7-59 to 7-60

large icons (32-by-32 pixel) 7-10, 7-11
launching applications, from the Finder 7-25 to 7-26
listings. See sample routines
List Manager, and Control Manager 5-3
localAndRemoteHLEvents flag 2-119
local coordinates 4-18
local IDs

in bundle resources and file reference resources 7-18,
7-22, 7-24

for mapping resources 7-18 to 7-25
localization guidelines

for Control Manager 5-15, 5-19 to 5-20, 5-85, 5-120
for Dialog Manager 6-34 to 6-35, 6-39, 6-40, 6-80,

6-130
location names 2-73, 2-75
low-level events

handling 2-32 to 2-57
receiving 2-21

LoWord function 4-58

I N D E X

IN-12

M

Macintosh Toolbox
features provided by 1-4
introduction to 1-3 to 1-16

'macs' folder type 7-54
major switches 2-16
marking character in a menu item 3-12
masks

events. See event masks
icon 7-13, 7-15

MBarEnable global variable 3-121
'MBAR' resource type 3-50, 3-155
'MBDF' resource type 3-9, 3-87, 3-104
MCEntry data type 3-99
MCTable data type 3-99
MCTableHandle data type 3-99
'mctb' resource type 3-52, 3-99, 3-143, 3-155 to 3-157
'MDEF' resource type 3-87, 3-157
memory, allocating 1-15
menu bar

accessing from alert and dialog boxes 6-68 to 6-73
creating 3-49 to 3-50
defined 3-6, 3-9
handling mouse-down events in 3-72
installing 3-41

menu bar definition function 3-9, 3-87, 3-104
MenuChoice function 3-118 to 3-119
menu color information table 3-52, 3-98 to 3-102

menu bar entry 3-100
menu item entry 3-101
menu title entry 3-101

menu color information table resources 3-155 to 3-157
menu commands

About (Apple menu) 3-21
Can’t Undo (Edit menu) 3-25
for changing colors in the Finder 7-16
Clear (Edit menu) 3-25, 6-68 to 6-69
Close (File menu) 3-23
Copy (Edit menu) 3-25, 6-68 to 6-69
Create Publisher (Edit menu) 3-25
Cut (Edit menu) 3-25, 6-68 to 6-69
Hide Balloons (Help menu) 6-68
Hide Clipboard (Edit menu) 3-25
Hide Others (Application menu) 3-33
keyboard equivalents for 3-16 to 3-19, 3-154
New (File menu) 3-23
None (Color menu) 7-16
Open (File menu) 3-23
Other (Size menu) 3-28
Page Setup (File menu) 3-23
Paste (Edit menu) 3-25, 6-68 to 6-69, 7-17
Print (File menu) 3-23
Publisher Options (Edit menu) 3-25
Quit (File menu) 3-23

Save (File menu) 3-23
Save As (File menu) 3-23
Select All (Edit menu) 3-25
Show Balloons (Help menu) 3-30, 6-68
Show Clipboard (Edit menu) 3-25
Subscriber Options (Edit menu) 3-25
Subscribe To (Edit menu) 3-25
Undo (Edit menu) 3-25, 6-68 to 6-69

menu commands. See menu items
menu definition procedure 3-148 to 3-151

and the A5 register 3-150
defined 3-9
drawing color menus 3-91
handling scrolling in menus 3-91, 3-93
standard 3-148
writing 3-87 to 3-95

menu handle 3-95, 3-122
MenuHandle data type 3-95
menu ID 3-40, 3-152
MenuInfo data type 3-96 to 3-97
menu items 3-11 to 3-16

in an accumulating group 3-15
adding to Apple menu 3-68 to 3-69
adding to Help menu 3-67 to 3-68
adding to menus 3-64 to 3-70
appearance 3-11 to 3-14
changing

font style of 3-60
icon of 3-62 to 3-64
mark of 3-61 to 3-62
script code of 3-62
text of 3-59 to 3-60

characteristics 3-12 to 3-14
disabling 3-8, 3-58 to 3-59, 3-74 to 3-76
divider 3-11
enabling 3-8, 3-58 to 3-59, 3-74 to 3-76
font style of 3-47, 3-154
grouping 3-14 to 3-16
handling user selection of 3-70 to 3-78
icon of 3-154
item numbers 3-40
keyboard equivalents for 3-16 to 3-19, 3-154
marking character of 3-154
metacharacters in 3-65
in a mutually exclusive group 3-14
providing help balloons for 3-7
script code of 3-47, 3-62, 3-154
script of 3-12
specifying the characteristics of 3-45 to 3-47
submenu for 3-47, 3-154
terms to use in help balloons and user

documentation 3-7
text of 3-12 to 3-13

MenuKey function 3-71, 3-77 to 3-78, 3-117 to 3-118
menu lists 3-40, 3-97 to 3-98

I N D E X

IN-13

Menu Manager 3-5 to 3-167
application-defined routines for 3-148 to 3-151
data structures in 3-95 to 3-102
data structures maintained by 3-40 to 3-41
and Dialog Manager 6-68 to 6-73
initializing 3-103 to 3-104
localization guidelines 3-10, 3-16 to 3-18, 3-43
routines in 3-102 to 3-147
routines names, mapping of 3-102
testing for availability 3-42
user interface guidelines 3-5 to 3-38

menu records 3-40, 3-95 to 3-97
menu resource 3-151 to 3-154
'MENU' resource type 3-42 to 3-48, 3-152 to 3-154
menus. See also Apple menu; Application menu; Edit

menu; File menu; Font menu; Help menu;
Keyboard menu; Size menu; Style menu

accessing from alert and dialog boxes 3-84 to 3-86,
6-68 to 6-73

adding items to 3-64 to 3-70
adjusting items in 3-73 to 3-76
Apple. See Applemenu
Application. See Application menu
color 3-11
creating 3-42 to 3-57, 3-105 to 3-108

hierarchical 3-53 to 3-56
pop-up 3-56 to 3-57, 5-25 to 5-28, 6-42 to 6-44
pull-down 3-42 to 3-56

disabling for alert and dialog boxes 6-68 to 6-73
disposing of 3-112, 3-140
Edit. See Edit menu
File. See File menu
Font. See Font menu
grouping items in 3-14 to 3-16
Help. See ; Help menu
help balloons for 3-31
hierarchical 3-6, 3-38, 3-53 to 3-56
items in. See menu items
Keyboard. See Keyboard menu
keyboard equivalents for 3-16 to 3-19, 3-154
localizing 3-10
menu ID 3-152
pop-up. See pop-up menus
pull-down 3-6, 3-42
resource ID 3-44, 3-153
Size. See Size menu
Style. See Style menu
submenus 3-6, 3-53 to 3-56
system-handled 3-19
titles of 3-7, 3-10
types of 3-6

MenuSelect function 3-8, 3-70, 3-72, 3-73, 3-78 to 3-79,
3-115 to 3-117

message string resources 7-27 to 7-30
minor switches 2-16

missing-application name string resources 7-27 to 7-30,
7-68

modal dialog boxes
accessing menus from 6-68 to 6-73
closing 6-100 to 6-101
creating 6-23 to 6-26, 6-113 to 6-119
defined 6-10 to 6-11
displaying 6-61, 6-62 to 6-75
event filter function for 6-86 to 6-89, 6-145 to 6-147
events in 6-82 to 6-86, 6-135 to 6-137
window types for 4-9

ModalDialog procedure 6-84, 6-135 to 6-137
and menus 3-86
and disk-inserted events 2-56

modeless dialog boxes
accessing menus from 6-68 to 6-73
closing 6-100 to 6-101
creating 6-23 to 6-26, 6-113 to 6-119
defined 6-12
displaying 6-61 to 6-67
events in 6-89 to 6-100, 6-138 to 6-141
titles for 6-25
window types for 4-10

modifier keys 2-20 to 2-21, 2-81, 3-77
mounted folder, alias type for 7-40
mouse

determining location of 2-108
getting information about 2-108

mouse-down events
in alert boxes 6-78, 6-81 to 6-82
in controls 5-11 to 5-13, 5-30 to 5-70
in desk accessories 2-87, 2-95
in dialog boxes 6-78 to 6-80, 6-82 to 6-94
handling 2-33 to 2-38
in windows 4-42 to 4-45
in the menu bar 3-72 to 3-73

mouse driver 2-62
mouse-moved events 2-23, 2-62 to 2-67, 2-86
mouse region 2-23, 2-64 to 2-67
mouse-up events 2-33

in alert boxes 6-78, 6-81 to 6-82
in controls 5-11 to 5-13, 5-30 to 5-70
in dialog boxes 6-78 to 6-80, 6-82 to 6-94

movableDBoxProc window type 4-9
movableDBoxProc window type 3-85, 6-25
movable modal dialog boxes

accessing menus from 6-68 to 6-73
closing 6-100 to 6-101
creating 6-23 to 6-26, 6-113 to 6-119
defined 6-11 to 6-12
displaying 6-61, 6-62
events in 6-89 to 6-100, 6-138 to 6-141
titles for 6-25
window types for 4-9

movable resources 7-36 to 7-38

I N D E X

IN-14

MoveControl procedure 5-67 to 5-70, 5-97 to 5-98
MoveWindow procedure 4-95 to 4-96
MultiFinder 2-7
MyAction procedure 5-116 to 5-117
MyAlertSound procedure 6-144 to 6-145
MyControl function 5-110 to 5-115
MyEventFilter function 6-145 to 6-147
MyIndicatorAction procedure 5-117
MyItem procedure 6-143 to 6-144

N

nameLocked flag 7-18, 7-34
name string resources for applications 7-27 to 7-30
networks, using shared Trash directories on 7-44
NewCDialog function. See NewColorDialog function
NewColorDialog function 6-115 to 6-118
New command (File menu) 3-23
NewControl function 5-82 to 5-85
NewCWindow function 4-79 to 4-82
NewDialog function 6-118 to 6-119
NewMenu function 3-105 to 3-106
NewWindow function 4-82 to 4-85
noGrowDocProc window type 4-10
noGrowDocProc window type 6-25
NoteAlert function 6-110
note alerts

creating with the NoteAlert function 6-110
defined 6-8

Notification Manager, and operating-system
events 2-12

null events
defined 2-9
and event masking 2-28
handling 2-57

O

OldContent global variable 4-117
OldStructure global variable 4-117
onlyBackground flag 2-117
Open command (File menu) 3-23
OpenDeskAcc function 3-21, 3-80 to 3-81
Open Documents events 7-20, 7-25 to 7-26
opening

applications, from the Finder 7-25 to 7-26
disks 7-20
documents 7-25 to 7-26
folders 7-20

Operating System Event Manager 2-3, 2-7. See also
Event Manager

Operating System event queue
defined 2-6
flushing events from 2-93

operating-system events
defined 2-10 to 2-12
handling 2-58 to 2-67

Option key 2-20
OSEventAvail function 2-98 to 2-99
Other command (Size menu) 3-28 to 3-29, 3-82 to 3-84

P

page regions, in scroll bars. See gray areas
Page Setup command (File menu) 3-23
PaintBehind procedure 4-118 to 4-119
PaintOne procedure 4-118
PaintWhite global variable 4-118, 4-119
Palette Manager, and system color tables 4-21
ParamText procedure 6-47, 6-129 to 6-130
part codes 5-31 to 5-32
partitions

sizes of 2-30, 2-115
Paste command (Edit menu)

and dialog boxes 6-69
and information windows 7-17
introduced 3-25

PBGetCatInfo function 7-34, 7-49
PBMountVol function 2-55
pCDeskPat parameter-RAM bit flag 4-113
pictures, in alert or dialog boxes 6-29 to 6-30, 6-154
PinRect function 4-99
plainDBoxProc window type 4-9
pop-up menus 3-33 to 3-38

action procedure for 5-36 to 5-37
active 5-11 to 5-13
control definition function for 3-33, 3-34 to 3-36, 5-14
control definition ID for 5-14
creating 3-56 to 3-57, 5-25 to 5-28
defined 3-6, 5-6 to 5-7
events in, in windows 5-31 to 5-37
inactive 5-11 to 5-13
in dialog boxes 6-42 to 6-44
testing for availability 3-42
type-in fields 3-37
variation codes for 5-27 to 5-28

PopUpMenuSelect function 3-57, 3-120 to 3-121
popupPrivateData data type 5-77
port names 2-75

and receiving high-level events 2-73
converting to process serial numbers 2-105

port rectangle 4-18, 4-101, 4-103
of Window Manager port 4-75

PostEvent function 2-104 to 2-105

I N D E X

IN-15

PostHighLevelEvent function 2-73 to 2-77, 2-101 to
2-103

posting options 2-75
PPC (Program-to-Program Communications)

Toolbox 1-16, 2-7
PPCBrowser function

filling in a target ID record 2-77
finding a specific port 2-75
posting a high-level event 2-74 to 2-75

PPostEvent function 2-103 to 2-104
preferences files 7-43
Preferences folder

alias type for 7-40
defined 7-43
finding 7-54
storing files in 7-43

'pref' folder type 7-54
Print command (File menu) 3-23
Print Documents events 7-25 to 7-26
PrintMonitor Documents folder

alias type for 7-40
defined 7-44
finding 7-54

'prnt' folder type 7-54
processes

background 2-4
context of 2-15
foreground 2-4
switching between 2-5, 2-15

Process Manager
and Event Manager 2-3
and the Finder 7-25

process serial numbers, converting to port names 2-105
to 2-107

Program-to-Program Communications (PPC)
Toolbox 1-16, 2-7

Publisher Options command (Edit menu) 3-25
pull-down menus

creating 3-43 to 3-52
defined 3-6

Q

QHdr data type 2-83
query documents

creating icons for 7-16, 7-17
default icon for 7-12
defined 7-4

QuickDraw 1-14
coordinate systems in 4-17 to 4-18
.See also Color QuickDraw 4-17

Quit command (File menu) 3-23

R

radio buttons
active 5-11 to 5-13
control definition ID for 5-14
creating, in windows 5-20 to 5-21
defined 5-6
events in 6-78
events in, in windows 5-31 to 5-32
inactive 5-11 to 5-13
part code for 5-32
specifying in alert or dialog boxes 6-153

rDocProc window type 4-10
rectangles, for controls 5-18 to 5-19, 5-25 to 5-26, 5-82,

5-118. See also display rectangles
refCon field 4-111
reference values

changing, for controls 5-105 to 5-106
determining, for controls 5-105
for pop-up menus 5-28
specifying, for controls 5-18, 5-25, 5-84, 5-120

region codes, in version resources 7-31
requiresSwitchLaunch flag 7-48
Rescued Items from volume name folders 7-44
ResetAlertStage procedure 6-112
ResetAlrtStage procedure. See ResetAlertStage

procedure
resizing windows 4-57 to 4-59
ResolveAliasFile function 7-52 to 7-53
resource forks 1-11
resource IDs

defined 1-11
for cursors 2-63
for icons in menu items 3-62

Resource Manager 1-11 to 1-13
and Control Manager 5-3
and the Finder 7-3

resource maps 1-12
resources 1-11 to 1-13

alert 6-19 to 6-22, 6-150 to 6-151
alert color table 6-157 to 6-158
alias record 7-40
application-missing message string 7-68 to 7-69
bundle 7-20 to 7-25, 7-65 to 7-68
color icon 3-62, 7-64
control 5-18 to 5-28, 5-118 to 5-121
control color table 5-121 to 5-123
control definition function 5-14, 5-109 to 5-115
defined 1-11
dialog 6-15, 6-24 to 6-26, 6-148 to 6-149
dialog color table 6-75 to 6-76, 6-156 to 6-157
driver 3-20, 3-68, 3-129, 3-130
file reference 7-18 to 7-25, 7-64 to 7-65
folder 7-55
font 3-69

I N D E X

IN-16

resources (continued)
font family 3-69
icon 3-62, 7-63
icon list 7-13, 7-57 to 7-58
international configuration 3-32
item color table 6-158 to 6-164
item list. See item list resources
keyboard-layout 2-39
key-map 2-39, 2-41, 2-42
key-remap 2-39, 2-41
large 4-bit color icon 7-59 to 7-60
large 8-bit color icon 7-61 to 7-62
menu 3-151 to 3-154
menu bar 3-155
menu bar definition function 3-9, 3-87, 3-104
menu color information table 3-155 to 3-157
menu definition procedure 3-157
missing-application name string 7-68
movable 7-36 to 7-38
signature 7-8 to 7-10
size 2-115 to 2-119, 7-35
small 4-bit color icon 7-60 to 7-61
small 8-bit color icon 7-62 to 7-63
small icon 3-62
small icon list 7-58 to 7-59
sound 7-37 to 7-38
string 3-60
string list 3-60, 3-65 to 3-67
System file, in the 1-12
used by the Finder 7-6 to 7-32
version 7-31 to 7-32, 7-69 to 7-70
window 4-22, 4-25 to 4-27, 4-124 to 4-127
window color table 4-127 to 4-129
window definition function 4-22, 4-120, 4-127

resource types 1-11
'actb' 6-157 to 6-158
'alis' 7-40
'ALRT'. See alert resources
'BNDL' 7-20 to 7-25, 7-65 to 7-68
'cctb' 5-121 to 5-123
'CDEF' 5-14, 5-109 to 5-115
'cicn' 3-62, 3-154, 7-64
'CNTL' 5-18 to 5-28, 5-118 to 5-121
'dctb' 6-156 to 6-157
'DITL'. See item list resources
'DLOG'. See dialog resources
'DRVR' 3-20, 3-68, 3-129, 3-130
'FKEY' 2-39, 3-118
'fld#' 7-55
'FOND' 3-69, 3-129, 3-130
'FONT' 3-69, 3-129, 3-130
'FREF' 7-18 to 7-25, 7-64 to 7-65
'hmmu' 3-44, 3-68
'icl8' 7-61 to 7-62
'icl4' 7-59 to 7-60

'ICN#' 7-20, 7-57 to 7-58
'ICON' 3-62, 3-154, 7-63
'ics8' 7-62 to 7-63
'ics4' 7-60 to 7-61
'ics#' 7-15, 7-58 to 7-59
'ictb' 6-158 to 6-164
'itlc' 3-32
'itlk' 2-41
'KCHR' 2-39 to 2-42
'KMAP' 2-39 to 2-42
'MBAR' 3-155
'MBDF' 3-9, 3-87, 3-104
'mctb' 3-155 to 3-157
'MDEF' 3-157
'MENU' 3-151 to 3-154
'SICN' 3-62, 3-154
'SIZE' 2-115 to 2-119, 7-35
'STR ' 3-60, 7-27 to 7-30
'STR#' 3-60, 3-65 to 3-67
'vers' 7-31 to 7-32, 7-69 to 7-70
'wctb' 4-127 to 4-129
'WDEF' 4-22, 4-120, 4-127
'WIND' 4-22, 4-25 to 4-27, 4-124 to 4-127

resume events
defined 2-10
handling 2-60 to 2-62

ResumeProc global variable 6-172
return receipts 2-75, 2-77
RGBColor data type 5-79

S

sample code. See sample routines
sample routines
DisplayMyDialog 6-58
DoActivate 2-53, 4-51 to 4-52
DoActivateGlobalChangesDialog 6-98
DoCloseCmd 4-60 to 4-61, 6-94
DoContentClick 5-33, 5-53, 6-92
DoCopyResource 7-29
DoDiskEvent 2-56
DoDrumRollCheckBox 5-38
DoEvent 2-26, 3-72, 3-77
DoGlobalChangesDialog 6-67
DoGraphicsScroll 5-47
DoGrowWindow 4-58 to 4-59
DoHighLevelEvent 2-70
DoIdle 2-57, 6-79
DoKeyDown 2-44, 3-78, 6-95
DoMenuCommand 3-79
DoMouseDown 2-34, 3-72, 4-44 to 4-45, 5-32, 6-91
DoNew 5-24
DoNewCmd 4-28 to 4-29

I N D E X

IN-17

sample routines (continued)
DoOpenFile 4-37 to 4-38
DoOSEvent 2-59
DoPlayButton 5-36
DoPopUpMenu 5-37
DoSaveAsCmd 7-28
DoShowModelessFindDialogBox 4-64
DoSpellBoxWithSpanish 6-54
DoSuspendResumeEvent 2-61
DoUpdate 2-50, 4-50, 5-29, 5-62, 6-99
DoZoomWindow 4-55 to 4-56
IsStationeryDoc 7-36
MyAddHelpItem 3-68
MyAdjustCursor 2-65
MyAdjustEditMenuForDocWindow 3-75
MyAdjustEditMenuForModalDialogs 6-72
MyAdjustFileMenuForDocWindow 3-74
MyAdjustHV 5-41
MyAdjustMenus 3-74, 6-70
MyAdjustMenusForDialogs 6-70
MyAdjustScrollBars 5-39
MyAdjustScrollSizes 5-67
MyAdjustScrollValues 5-40
MyAlert 6-66
MyAlertSound 6-22
MyChangeMenuBarAndSaveColorInfo 3-52
MyCloseDocument 4-61 to 4-62, 6-47
MyCreatePlaySoundsWindow 5-17
MyDrawDefaultButtonOutline 6-59
MyDrawGraphicsWindow 5-63
MyDrawWindow 4-39, 5-30, 5-65
MyEventFilter 6-88
MyEventLoop 2-24
MyGetLocalUpdateRgn 4-60
MyGetWindowType 4-25
MyHandleAppleCommand 3-80
MyHandleHelpCommand 3-81
MyHandleKeyDown 2-44, 6-95
MyHandleKeyDownInModeless 6-96
MyHandleModelessDialogs 6-49
MyHandleSizeCommand 3-83
MyHorzntlActionProc 5-59
MyMakeAllMenus 3-70
MyMakeMenus 3-50
MyMakeSubMenu 3-55
MyMDEF 3-89
MyMoveScrollBox 5-61
MyOpen 7-41
MyPostTest 2-74
MyPostWithPPCBrowser 2-76
MyResizeWindow 4-59
MySaveWindowPosition 4-34 to 4-35
MySetWindowPosition 4-36 to 4-37
MySpellCheckDialog 6-83
MyToggleHideShow 3-59

MyVerticalActionProc 5-59
ShowMyAboutBox 6-65
UserDidCancel 2-46

Save As command (File menu) 3-23
Save command (File menu) 3-23
SaveOld procedure 4-117
SaveUpdate global variable 4-118
SaveVisRgn global variable 4-106
scrap

converting global to private 2-12
converting private to global 2-12

scrap coercion 2-58, 2-61
Scrap Manager 1-14, 2-60
'scri' file type 7-44
script, changing a menu item’s 3-62, 3-154
script code, for menu item text 3-47, 3-62
script system resource collections, icon for 7-37
scroll arrows

action procedures for 5-58 to 5-61
defined 5-8 to 5-9
events in 5-57 to 5-61
part codes for 5-32

scroll bars. See also gray areas; scroll arrows; scroll boxes
activating 5-13
active 5-11 to 5-13
changing settings and display of 5-9 to 5-10, 5-39 to

5-43, 5-44, 5-61, 5-70
control definition ID for 5-14
creating, in windows 5-21 to 5-25
defined 5-7 to 5-10
document scrolling with 5-9 to 5-10, 5-43 to 5-70
events in 5-31 to 5-32, 5-43 to 5-65
inactive 5-11 to 5-13
and List Manager 5-3
moving and resizing 5-65 to 5-70
updating 5-29 to 5-30
as a window element 4-6

scroll boxes
action procedure for 5-36
defined 5-7 to 5-8
dragging 5-35
events in 5-53 to 5-57
moving 5-9 to 5-10, 5-39 to 5-43, 5-44, 5-61, 5-70
part code for 5-32

ScrollRect procedure 5-46 to 5-48, 5-56 to 5-57
Select All command (Edit menu) 3-25
SelectDialogItemText procedure 6-131 to 6-132
SelectWindow procedure 4-87 to 4-88
SelectWindow procedure 2-51
SelIText procedure. See SelectDialogItemText

procedure
SendBehind procedure 4-91
servers, alias type for 7-40
session reference number 2-73
SetControlAction procedure 5-102
SetControlColor procedure 5-101

I N D E X

IN-18

SetControlMaximum procedure 5-41 to 5-43, 5-70, 5-95
to 5-96

SetControlMinimum procedure 5-95
SetControlReference procedure 5-105 to 5-106
SetControlTitle procedure 5-96
SetControlValue procedure 5-38 to 5-39, 5-42 to 5-43,

5-44, 5-61, 5-94 to 5-95
SetCRefCon procedure. See SetControlReference

procedure
SetCTitle procedure. See SetControlTitle

procedure
SetCtlAction procedure. See SetControlAction

procedure
SetCtlColor procedure. See SetControlColor

procedure
SetCtlMax procedure. See SetControlMaximum

procedure
SetCtlMin procedure. See SetControlMinimum

procedure
SetDAFont procedure. See SetDialogFont

 procedure
SetDeskCPat procedure 4-112 to 4-113
SetDialogFont procedure 6-105
SetDialogItem procedure 6-122 to 6-123
SetDialogItemText procedure 6-131
SetDItem procedure. See SetDialogItem procedure
SetEventMask procedure 2-99 to 2-100
SetItemCmd procedure 3-139 to 3-140
SetItemIcon procedure 3-62 to 3-64, 3-137 to 3-138
SetItemMark procedure 3-61 to 3-62, 3-135 to 3-136
SetItem procedure. See SetMenuItemText

procedure
SetItemStyle procedure 3-60, 3-134
SetIText procedure. See SetDialogItemText

procedure
SetMCEntries procedure 3-146 to 3-147
SetMCInfo procedure 3-52, 3-144
SetMenuBar procedure 3-50 to 3-51, 3-112 to 3-113
SetMenuFlash procedure 3-142
SetMenuItemText procedure 3-59 to 3-60, 3-133
SetOrigin procedure 5-44 to 5-45, 5-63 to 5-64
SetPort procedure 6-62
SetWinColor procedure 4-114 to 4-115
SetWindowPic procedure 4-110
SetWRefCon procedure 4-111
SetWTitle procedure 4-85
'sfil' file type 7-37
shared folder, alias type for 7-40
Shift key 2-20
ShortenDITL procedure 6-127 to 6-128
Show Balloons command (Help menu) 6-68
Show Clipboard command (Edit menu) 3-25
ShowControl procedure 5-39 to 5-40, 5-66 to 5-67,

 5-86
ShowDialogItem procedure 6-124

ShowDItem procedure. See ShowDialogItem
procedure

ShowHide procedure 4-89 to 4-90
ShowWindow procedure 4-88
ShowWindow procedure 6-61
'SICN' resource type, specifying a menu item’s 3-62,

3-154
signature resources 7-8 to 7-10
signatures

in bundle resources 7-20
as creators 7-9
defined 7-8
registering 7-8 to 7-10

16-by-16 pixel icons (small) 7-11, 7-15
size box 4-6
SizeControl procedure 5-67 to 5-70, 5-98
Size menu 3-27 to 3-29, 3-82

handling 3-82 to 3-84
Other command 3-28 to 3-29

size region 4-12
size resources 2-115 to 2-119, 7-35
'SIZE' resource type 2-115 to 2-119, 7-35

creating 2-30 to 2-32
defined 2-30 to 2-32, 2-115 to 2-119
flags, defined 2-116 to 2-119
and null events 2-9, 2-57
sample Rez input 2-31
scheduling option flags 2-16
setting flags for high-level events 2-68
setting flags of 2-9, 2-11, 2-16, 2-51

SizeWindow procedure 4-60, 4-101
sleep value 2-22
slider controls 5-11
small 8-bit color icon resources

Rez output format for 7-62 to 7-63
creating 7-11, 7-24

small 4-bit color icon resources
creating 7-11, 7-24
Rez output format for 7-60 to 7-61

small icon list resources
creating 7-11, 7-15, 7-24
Rez output format for 7-58 to 7-59

small icons (16-by-16 pixel)
resource IDs for 7-15
resources for 7-10

sound resources
icon for 7-37 to 7-38
installing and removing 7-41

'srvr' alias type 7-40
stack, size of 2-32
standard control definition function 5-14
standard file dialog boxes, and disk-inserted

events 2-55
Standard File Package and disk-inserted events 2-55 to

2-56

I N D E X

IN-19

standard state of a window 4-33, 4-53, 4-70
Startup Items folder

alias type for 7-40
defined 7-44
finding 7-54

static text items
getting text from 6-130 to 6-131
setting text in 6-36 to 6-41, 6-131, 6-153
specifying in alert or dialog boxes 6-29 to 6-30, 6-153
substituting text in 6-46 to 6-48
substituting text strings in 6-129 to 6-130
user interface guidelines for 6-40 to 6-41

stationery pads
creating icons for 7-16, 7-19
default icon for 7-12
defined 7-4, 7-34 to 7-36
recognition of 2-119

StillDown function 2-109
StopAlert function 6-109
stop alerts

creating with the StopAlert function 6-109
defined 6-9

'STR#' resource type 3-60, 3-65 to 3-67
'STR ' resource type 3-60, 7-27 to 7-30
'strt' folder type 7-54
structure region 4-6, 4-12
Style data type 3-134
StyleItem data type 3-134
Style menu 3-15

and the Font menu 3-27
example of 3-15
keyboard equivalents for 3-19

styles
changing a menu item’s 3-47, 3-60
of a menu item 3-12

submenus
creating 3-53 to 3-56
defined 3-6

Subscriber Options command (Edit menu) 3-25
Subscribe To command (Edit menu) 3-25
suitcases for fonts and desk accessories 7-37
suspend events

defined 2-10
handling 2-60 to 2-62

switching
context 2-15
major 2-16
minor 2-16

system alert sounds 6-8, 6-22
SystemClick procedure 4-43, 4-44
SystemClick procedure 2-87, 2-94 to 2-95
system color tables, and Palette Manager 4-21
SystemEdit function 3-122
SystemEvent function 2-96
system event masks 2-28 to 2-29, 2-99

system extensions
and Extensions folder 7-44
installing and removing 7-41

System file 7-44
System Folder

alias type for 7-40
defined 7-5
finding 7-54
organization of 7-41 to 7-45

system-handled menus 3-19
SystemMenu procedure 3-121
SystemTask procedure 2-25, 2-87, 2-95 to 2-96

T

TargetID data type 2-72, 2-81
target ID records 2-81 to 2-82

receiving 2-73
sending 2-75

'temp' folder type 7-54
temporary files 7-43, 7-44
Temporary Items folder

defined 7-43
finding 7-54

TEPinScroll procedure 5-55 to 5-56
TestControl function 5-93
TEUpdate procedure 5-64 to 5-65
text

editable, in dialog boxes. See editable text items
handling 1-14 to 1-15
in buttons, checkboxes, and radio buttons 5-18, 5-19,

5-19 to 5-20, 5-25, 6-37 to 6-40, 6-153
static, in alert and dialog boxes. See static text items

TextEdit
and Dialog Manager 6-79 to 6-80
and mouse events 2-37
handling text 1-14 to 1-15

'TEXT' file type 7-10
text style table 6-160, 6-162 to 6-164
32-by-32 pixel icons (large) 7-11, 7-13
thumb controls. See scroll boxes
TickCount function 2-112
Ticks global variable 2-112
title bar 4-5
titles

changing, for controls 5-96
determining, for controls 5-104 to 5-105
for modeless and movable modal dialog boxes 6-25
of buttons, checkboxes, and radio buttons 6-37 to

6-40, 6-153
specifying for controls 5-18, 5-19 to 5-20, 5-25, 5-83,

5-85, 5-120, 5-121
Toolbox Event Manager. See Event Manager

I N D E X

IN-20

TopMenuItem global variable 3-151
TrackBox function 4-44, 4-101 to 4-102
TrackControl function 5-35 to 5-37, 5-44, 5-53 to 5-55,

5-58, 5-90 to 5-92, 6-78
and pop-up menus 3-56

TrackGoAway function 4-44, 4-103 to 4-104
Trash, alias type for 7-40
Trash directories

appearance to users 7-42
defined 7-44
finding 7-54

'trsh' alias type 7-40
'trsh' folder type 7-54
TrueType fonts 7-37

.See also fonts

U

Undo command (Edit menu) 3-25, 6-69
UpdateControls procedure 5-86 to 5-87
UpdateDialog procedure 6-142 to 6-143
update events 4-13

in alert boxes 6-82
defined 2-9
in dialog boxes 6-85, 6-86 to 6-89, 6-97 to 6-100
for windows 4-41
handling 2-47 to 2-50, 4-48 to 4-50
in alert boxes 6-86 to 6-89
routines for handling 4-106 to 4-107

update region
defined 4-13
maintaining 4-41
redrawing 4-40 to 4-41

UpdtControl procedure. See UpdateControls
procedure

UpdtDialog procedure. See UpdateDialog procedure
user interface guidelines

for Control Manager 5-52 to 5-53
for controls 5-5 to 5-13
for Dialog Manager 6-8 to 6-12, 6-31 to 6-34, 6-37 to

6-41, 6-42, 6-62 to 6-64
for icons 7-13, 7-15
for static text items 6-40 to 6-41
for windows 4-5 to 4-7, 4-21, 4-30 to 4-32

user-oriented design 1-5
user state of a window 4-33, 4-53, 4-70
useTextEditServices flag 2-119

V

ValidRect procedure 4-58, 4-108 to 4-109
ValidRgn procedure 4-109
variation codes

determining, for controls 5-106 to 5-107
for controls, defined 5-14
for windows 4-11, 4-112, 4-120

version information for applications
in Finder windows 7-31
in information windows 7-32
in signature resource 7-8
in 'vers' resource 7-31 to 7-32

version resources 7-31 to 7-32, 7-69 to 7-70
'vers' resource type 7-31 to 7-32, 7-69 to 7-70
virtual key codes 2-40

of Apple Extended Keyboard II, domestic 2-43
of Apple Extended Keyboard II, ISO 2-43
of Apple Keyboard II, ISO 2-42

visible region 4-48
volume catalogs, Finder information in 7-32 to 7-34
volumes, Finder’s desktop database for 7-45

W, X, Y

WaitMouseUp function 2-109
WaitNextEvent function 2-85 to 2-88

and multitasking 2-60
introduced 2-22 to 2-24

'wctb' resource type 4-71, 4-127 to 4-129
'WDEF' resource type 4-22, 4-120, 4-127
WinCTab data type 4-71 to 4-72
window color table 4-21, 4-71 to 4-73
window definition functions

defined 4-10
writing 4-120 to 4-124

window definition IDs
creating windows, used in 4-80, 4-83 to 4-84
defined 4-11
for a dialog box 6-25
and window definition functions 4-120
in window resources 4-26, 4-125

window frames 4-6, 4-12 to 4-13, 4-121 to 4-122
window list 4-15, 4-74
WindowList global variable 4-74
Window Manager 4-3 to 4-129

application-defined routine for 4-120 to 4-124
and Control Manager 4-14 to 4-15, 5-3
data structures in 4-65 to 4-74
and Dialog Manager 4-13 to ??, 6-15 to 6-16

I N D E X

IN-21

Window Manager (continued)
events generated by 2-9
global variables 4-75
port 4-74
resources in 4-124 to 4-129
routines in 4-74 to 4-119

initializing 4-74 to 4-75
low-level routines 4-116 to 4-119

window origin
changing 5-44 to 5-45, 5-48 to 5-52
defined 5-45

WindowPeek data type 4-20, 4-65
window positioning constants 4-32
WindowPtr data type 4-19, 4-65
WindowRecord data type 4-19, 4-65, 4-69
window records 4-19 to 4-20, 4-65 to 4-69
window regions 4-12 to 4-13
window resources 4-22, 4-25 to 4-27, 4-124 to 4-127
windows 4-3 to 4-129

activating 4-50 to 4-53
active 4-6
alert boxes and dialog boxes

as types of 6-15 to 6-17
deactivating behind 6-64 to 6-66

closing 4-60 to 4-62, 4-103 to 4-106
color in 4-20 to 4-21, 4-71 to 4-74
content region 4-12
controls in 4-14 to 4-15, 5-82
creating 4-25 to 4-30, 4-75 to 4-85
deallocating 4-61 to 4-62, 4-104 to 4-106
defined 4-4
displaying 4-86 to 4-91
drawing content region 4-39 to 4-40
events in 4-21, 4-22, 4-41 to 4-53
grow image 4-57, 4-87
hiding 4-62 to 4-64, 4-89
inactive 4-6 to 4-7
maintaining update region of 4-106 to 4-109
managing multiple 4-15 to 4-16, 4-23 to 4-25
manipulating

characteristics 4-109 to 4-112
color 4-114 to 4-116
on the desktop 4-112 to 4-114

mouse-down events in 4-42 to 4-45
moving 4-53, 4-94 to 4-99
naming 4-85 to 4-86
parts drawn by the Window Manager 4-12 to 4-13
positioning 4-30 to 4-38
regions in 4-12 to 4-13
resizing 4-57 to 4-59
responding to activate events in 2-50, ?? to 2-55, 4-50

to 4-53

retrieving information 4-91 to 4-94
scrolling 5-9 to 5-10, 5-43 to 5-70
showing 4-62 to 4-64, 4-88
sizing 4-99 to 4-101
standard state 4-33, 4-53, 4-70
structure region 4-12
types of 4-8 to 4-10
updating 2-47 to 2-50, 4-40 to 4-41, 4-48 to 4-50, 5-49

to 5-52, 5-62 to 5-65
user state 4-33, 4-53, 4-70
window-manipulation conventions 4-21
window resources, defining 4-25 to 4-27
zooming 4-53 to 4-56, 4-101 to 4-103

window state data record 4-33, 4-54, 4-70 to 4-71
window types 4-8 to 4-11
'WIND' resource type 4-22, 4-25 to 4-27, 4-124 to 4-127
wristwatch cursor 2-63
WStateData data type 4-33, 4-54, 4-70 to 4-71

Z

zoom box 4-6
zoomDocProc window type 4-8
zooming windows 4-53 to 4-56, 4-101 to 4-103
zoomNoGrow window type 4-10
zoom region 4-12
ZoomWindow procedure 4-54, 4-57, 4-102 to 4-103

	Macintosh Toolbox Essentials
	Contents
	Figures, Tables, and Listings
	About This Book
	Format of a Typical Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes
	Empty Strings
	Assembly-Language Information

	The Development Environment

	Introduction to the Macintosh Toolbox
	Overview of the Macintosh Toolbox
	Events
	Menus
	Windows
	Controls
	Alert Boxes and Dialog Boxes
	Icons and Other Interactions With the Finder
	Resources
	Help Balloons
	Copy and Paste

	Related System Software Features
	Drawing on the Screen
	Handling Text
	Managing Files
	Allocating Memory and Launching Processes
	Creating Publishers and Subscribers
	Communicating With Other Applications

	Designing Your Application

	Event Manager
	Introduction to Events
	Low-Level Events
	Operating-System Events
	High-Level Events
	Priority of Events
	Switching Contexts

	About the Event Manager
	Using the Event Manager
	Obtaining Information About Events
	Processing Events
	Using the WaitNextEvent Function
	Writing an Event Loop
	Setting the Event Mask
	Handling Events in a Dialog Box

	Creating a Size Resource
	Handling Low-Level Events
	Responding to Mouse Events
	Responding to Keyboard Events
	Scanning for a Cancel Event
	Responding to Update Events
	Responding to Activate Events
	Responding to Disk-Inserted Events
	Responding to Null Events

	Handling Operating-System Events
	Responding to Suspend and Resume Events
	Responding to Mouse-Moved Events

	Handling High-Level Events
	Responding to Events From Other Applications
	Searching for a Specific High-Level Event
	Determining the Sender of a High-Level Event
	Sending High-Level Events
	Requesting Return Receipts
	Handling Apple Events

	Event Manager Reference
	Data Structures
	The Event Record
	The Target ID Record
	The High-Level Event Message Record
	The Event Queue

	Event Manager Routines
	Receiving Events
	Sending Events
	Converting Process Serial Numbers and Port Names
	Reading the Mouse
	Reading the Keyboard
	Getting Timing Information

	Application-Defined Routine
	Filter Function for Searching the High-Level Event Queue

	Resource
	The Size Resource

	Summary of the Event Manager
	Pascal Summary
	Constants
	Data Types
	Event Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Event Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Data Structures
	Trap Macros
	Global Variables

	Result Codes

	Menu Manager
	Introduction to Menus
	Menu and Menu Bar Definition Routines
	The Menu Bar
	Menus
	Menu Items
	Groups of Menu Items
	Keyboard Equivalents for Menu Commands
	Menus Added Automatically by the Menu Manager
	The Apple Menu
	The File Menu
	The Edit Menu
	The Font Menu
	The Size Menu
	The Help Menu
	The Keyboard Menu
	The Application Menu
	Pop-Up Menus
	Hierarchical Menus

	About the Menu Manager
	How the Menu Manager Maintains Information About Menus
	How the Menu Manager Maintains Information About an Application’s Menu Bar

	Using the Menu Manager
	Creating a Menu
	Creating a Menu Resource
	Creating a Menu Bar Resource
	Setting Up Your Application’s Menu Bar

	Creating a Hierarchical Menu
	Creating a Pop-Up Menu
	Changing the Appearance of Items in a Menu
	Enabling and Disabling Menu Items
	Changing the Text of an Item
	Changing the Font Style of Menu Items
	Changing the Mark of Menu Items
	Changing the Icon or Script Code of Menu Items

	Adding Items to a Menu
	Adding Items to the Help Menu
	Adding Items to the Apple Menu
	Adding Fonts to a Menu

	Handling User Choice of a Menu Command
	Handling Mouse-Down Events in the Menu Bar
	Adjusting the Menus of an Application
	Determining if the User Chose a Keyboard Equivalent

	Responding When the User Chooses a Menu Item
	Handling the Apple Menu
	Handling the Help Menu
	Handling a Size Menu

	Accessing Menus From a Dialog Box
	Writing Your Own Menu Definition Procedure
	Calculating the Dimensions of a Menu
	Drawing Menu Items in a Menu
	Determining Whether the Cursor Is in an Enabled Menu Item

	Menu Manager Reference
	Data Structures
	The Menu Record

	Menu Mana ger Refere nce
	The Menu List
	The Menu Color Information Table Record
	Menu Manager Routines
	Initializing the Menu Manager
	Creating Menus
	Adding Menus to and Removing Menus From the Current Menu List
	Getting a Menu Bar Description From an 'MBAR' Resource
	Getting and Setting the Menu Bar
	Drawing the Menu Bar
	Responding to the User’s Choice of a Menu Command
	Getting a Handle to a Menu Record
	Adding and Deleting Menu Items
	Getting and Setting the Appearance of Menu Items
	Disposing of Menus
	Counting the Items in a Menu
	Highlighting the Menu Bar
	Recalculating Menu Dimensions
	Managing Entries in the Menu Color Information Table

	Application-Defined Routine
	The Menu Definition Procedure

	Resources
	The Menu Resource
	The Menu Bar Resource
	The Menu Color Information Table Resource
	The Menu Definition Procedure Resource

	Summary of the Menu Manager
	Pascal Summary
	Constants
	Data Types
	Menu Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Menu Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Data Structures
	Global Variables

	Result Codes

	Window Manager
	Introduction to Windows
	Active and Inactive Windows
	Types of Windows
	Window Regions
	Dialog Boxes and Alert Boxes
	Controls
	Windows on the Desktop

	About the Window Manager
	Graphics Ports
	Window Records
	Color Windows
	Events in Windows

	Using the Window Manager
	Managing Multiple Windows
	Creating a Window
	Defining a Window Resource
	Creating a Window From a Resource
	Positioning a Document Window on the Desktop

	Drawing the Window Contents
	Updating the Content Region
	Maintaining the Update Region
	Handling Events in Windows
	Handling Mouse Events in Windows
	Handling Keyboard Events in Windows
	Handling Update Events
	Handling Activate Events

	Moving a Window
	Zooming a Window
	Resizing a Window
	Closing a Window
	Hiding and Showing a Window

	Window Manager Reference
	Windo w Mana ger Refere nce
	Data Structures
	The Color Window Record
	The Window Record
	The Window State Data Record
	The Window Color Table Record
	The Auxiliary Window Record
	The Window List

	Window Manager Routines
	Initializing the Window Manager
	Creating Windows
	Naming Windows
	Displaying Windows
	Retrieving Window Information
	Moving Windows
	Resizing Windows
	Zooming Windows
	Closing and Deallocating Windows
	Maintaining the Update Region
	Setting and Retrieving Other Window Characteristics
	Manipulating the Desktop
	Manipulating Window Color Information
	Low-Level Routines

	Application-Defined Routine
	The Window Definition Function

	Resources
	The Window Resource
	The Window Definition Function Resource
	The Window Color Table Resource

	Summary of the Window Manager
	Pascal Summary
	Constants
	Data Types
	Window Manager Routines
	Application-Defined Routine

	C Summary
	Constants
	Data Types
	Window Manager Routines
	Application-Defined Routine

	Assembly-Language Summary
	Data Types
	Global Variables

	Control Manager
	Introduction to Controls
	Buttons
	Checkboxes
	Radio Buttons
	Pop-Up Menus
	Scroll Bars
	Other Controls
	Active and Inactive Controls
	The Control Definition Function

	About the Control Manager
	Using the Control Manager
	Creating and Displaying a Control
	Creating a Button, Checkbox, or Radio Button
	Creating Scroll Bars
	Creating a Pop-Up Menu
	Updating a Control

	Responding to Mouse Events in a Control
	Determining a Mouse-Down Event in a Control
	Tracking the Cursor in a Control

	Determining and Changing Control Settings
	Scrolling Through a Document
	Scrolling in Response to Events in the Scroll Box
	Scrolling in Response to Events in Scroll Arrows and Gray Areas
	Drawing a Scrolled Document Inside a Window

	Moving and Resizing Scroll Bars
	Defining Your Own Control Definition Function

	Control Manager Reference
	Data Structures

	Contr ol Mana ger Refere nce
	The Control Record
	The Auxiliary Control Record
	The Pop-Up Menu Private Data Record
	The Control Color Table Record
	Control Manager Routines
	Creating Controls
	Drawing Controls
	Handling Mouse Events in Controls
	Changing Control Settings and Display
	Determining Control Values
	Removing Controls

	Application-Defined Routines
	Defining Your Own Control Definition Function
	Defining Your Own Action Procedures

	Resources
	The Control Resource
	The Control Color Table Resource
	The Control Definition Function

	Summary of the Control Manager
	Pascal Summary
	Constants
	Data Types
	Control Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Control Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	Dialog Manager
	Introduction to Alerts and Dialog Boxes
	Types of Alerts
	Types of Dialog Boxes
	Modal Dialog Boxes
	Movable Modal Dialog Boxes
	Modeless Dialog Boxes

	Items in Alert and Dialog Boxes
	Events in Alert and Dialog Boxes
	Alert Boxes, Dialog Boxes, and the Window Manager
	About the Dialog Manager

	Using the Dialog Manager
	Creating Alert Sounds and Alert Boxes
	Creating Dialog Boxes
	Providing Items for Alert and Dialog Boxes
	Item Types
	Display Rectangles
	Enabled and Disabled Items
	Resource IDs for Items
	Titles for Buttons, Checkboxes, and Radio Buttons
	Text Strings for Static Text and Editable Text Items
	Pop-Up Menus as Items
	Keyboard Navigation Among Items

	Manipulating Items
	Changing Static Text
	Getting Text From Editable Text Items
	Adding Items to an Existing Dialog Box

	Using an Application-Defined Item to Draw the Bold Outline for a Default Button

	Using the Dialog Mana ger
	Using the Dialog Mana ger
	Displaying Alert and Dialog Boxes
	Positioning Alert and Dialog Boxes
	Deactivating Windows Behind Alert and Modal Dialog Boxes
	Displaying Modeless Dialog Boxes
	Adjusting Menus for Modal Dialog Boxes
	Adjusting Menus for Movable Modal and Modeless Dialog Boxes
	Displaying Multiple Alert and Dialog Boxes
	Displaying Alert and Dialog Boxes From the Background
	Including Color in Your Alert and Dialog Boxes

	Handling Events in Alert and Dialog Boxes
	Responding to Events in Controls
	Responding to Events in Editable Text Items
	Responding to Events in Alert Boxes
	Responding to Events in Modal Dialog Boxes
	Writing an Event Filter Function for Alert and Modal Dialog Boxes
	Responding to Mouse Events in Modeless and Movable Modal Dialog Boxes
	Responding to Keyboard Events in Modeless and Movable Modal Dialog Boxes
	Responding to Activate and Update Events in Modeless and Movable Modal Dialog Boxes
	Closing Dialog Boxes

	Dialog Manager Reference
	Data Structure
	The Dialog Record

	Dialog Manager Routines
	Initializing the Dialog Manager
	Creating Alerts
	Creating and Disposing of Dialog Boxes
	Manipulating Items in Alert and Dialog Boxes
	Handling Text in Alert and Dialog Boxes
	Handling Events in Dialog Boxes

	Application-Defined Routines
	Resources
	The Dialog Resource
	The Alert Resource
	The Item List Resource
	The Dialog Color Table Resource
	The Alert Color Table Resource
	The Item Color Table Resource

	Summary of the Dialog Manager
	Pascal Summary
	Constants
	Data Types
	Dialog Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Dialog Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Global Variables

	Finder Interface
	Introduction to the Finder Interface
	About the Finder Interface
	Using the Finder Interface
	Giving a Signature to Your Application and a Creator and a File Type to Your Documents
	Creating Icons for the Finder
	Creating Customized Document Icons
	Creating File Reference Resources
	Creating a Bundle Resource
	How and When the Finder Launches Your Application
	Displaying Messages When the Finder Can’t Find Your Application
	Providing Version Resources
	Using Finder Information in the Catalog File
	Supporting Stationery Pads
	Distributing Fonts, Sounds, and Other Movable Resources
	Providing Balloon Help for Nondocument Icons
	Using Aliases
	Using the System Folder and Its Related Directories
	The Desktop Database

	Finder Interface Reference
	Data Structures
	File Information Record
	Extended File Information Record
	Directory Information Record
	Extended Directory Information Record

	Routines
	Resolving Alias Files
	Finding Directories

	Resources
	The Signature Resource
	The Icon List Resource
	The Small Icon List Resource
	The Large 4-Bit Color Icon Resource
	The Small 4-Bit Color Icon Resource
	The Large 8-Bit Color Icon Resource
	The Small 8-Bit Color Icon Resource
	The Icon Resource
	The Color Icon Resource
	The File Reference Resource
	The Bundle Resource
	The Missing-Application Name String
	The Application-Missing Message String
	The Version Resource

	Summary of the Finder Interface
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures

	Result Codes

	Glossary
	Index

