

Index
Symbols

& operator 1-34
@ operator 2-25

Numerals

0 (memory location) 1-4, 1-35
0-length handles 1-34
24-bit addressing 3-5 to 3-7, 4-7 to 4-8

defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

32-bit addressing 3-7 to 3-9, 4-8
defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16

A

A5 register
and A5 world 1-13, 4-5 to 4-6
grow-zone functions saving and restoring 1-49, 4-14
setting and restoring 1-78 to 1-79, 4-14, 4-24 to 4-25
use of by Toolbox and Operating System

routines 4-14
using to access QuickDraw globals 4-18 to 4-19

A5 world
accessing in completion routines 4-14 to 4-15
accessing in interrupt tasks 4-16 to 4-17
defined 1-12, 1-13
setting 1-78 to 1-79, 4-24 to 4-25

addresses. See memory addresses
addressing modes

24-bit 4-7
32-bit 4-7 to 4-8
current mode, getting 4-26
switching 4-20 to 4-21, 4-26 to 4-27

Address Management Unit (AMU) 3-5
address space. See logical address space; physical

address space
address-translation mode

getting 4-26

setting 4-26 to 4-27
temporarily changing 4-20

AMU (Address Management Unit) 3-5
AND operator 1-34
AppleShare, and paging devices 3-5
application global variables 1-12

accessing in completion routines 4-14
accessing in interrupt tasks 4-17

application heap 1-9 to 1-11
defined 1-10
determining amount of free space 1-42 to 1-44
maximizing space to prevent fragmentation 1-40
setting up 1-38 to 1-42, 1-50 to 1-52, 2-27 to 2-29

application heap limit
getting 1-53, 2-84
setting 1-53 to 1-54, 2-84 to 2-85

application heap zone.See also heap zones
defined 2-5
getting a pointer to 2-81
initializing 2-87 to 2-88
maximizing size of 1-51, 2-27
subdividing into multiple heap zones 2-14 to 2-16

application parameters 1-13
application partitions 1-4, 1-7 to 1-13
ApplicationZone function 2-81
ApplLimit global variable 1-8, 1-40, 1-53, 2-84
ApplZone global variable 2-81

B

backing-store files
defined 3-5
volume specified in Memory control panel 4-5

backing volume. See paging device
block contents 2-22
block headers 2-22 to 2-24
BlockMove procedure 1-74 to 1-75, 2-59 to 2-60
_BlockMove trap, flushing instruction cache 4-10
blocks, memory.See also nonrelocatable blocks;

relocatable blocks
allocating 1-44 to 1-46
concatenating 2-64 to 2-66
copying 1-74 to 1-75, 2-59 to 2-64
defined 1-10
how allocated 1-22
manipulating 2-59 to 2-66
releasing 1-44 to 1-46
IN-1

I N D E X

size correction for 2-23, 2-24
Boolean operators, short-circuit 1-34
BufPtr global variable 2-14

limitation on lowering during startup 2-85
bus-error vectors 3-22
Byte data type 2-25

C

caches. See data cache; disk cache; instruction cache
callback routines

and code segmentation 1-32 to 1-33
maintaining the A5 register in 4-14 to 4-15

click-loop routines, and the A5 register 4-15
code resources, copying into system heap 2-13
code segmenting

and dangling pointers 1-31 to 1-32
effect on callback routines 1-32 to 1-33

compacting heap zones 2-71 to 2-73
compaction. See heap compaction
CompactMem function 2-71 to 2-72
CompactMemSys function 2-72 to 2-73
completion routines

deferred under virtual memory 3-12
maintaining the A5 register in 4-14 to 4-15

concatenating memory blocks 2-64 to 2-66
concurrent drivers 3-11
control action procedures, and the A5 register 4-15
control definition procedures, and the A5 register 4-15
control panels, Memory.See Memory control panel
copy-back cache 4-12
copying memory blocks 1-74 to 1-75, 2-59 to 2-64
CurrentA5 global variable 1-79, 4-25

and callback routines 4-15
defined 1-13
getting value 1-79, 4-25

current heap zone 2-5
CurStackBase global variable 2-104
cushions. See memory cushions

D

dangling pointers
avoiding 1-29 to 1-33
causes of 1-29 to 1-33
dangling procedure pointers 1-32 to 1-33
defined 1-29
detecting 1-29
introduced 1-20
locking blocks to prevent 1-29 to 1-30
referencing callback routines 1-32 to 1-33

using local variables to prevent 1-31
data cache 4-30 to 4-31

and virtual memory 3-21
defined 4-9
flushing 4-9, 4-12

DebuggerEnter procedure 3-23, 3-35
DebuggerExit procedure 3-23, 3-35 to 3-36
DebuggerGetMax function 3-34 to 3-35
DebuggerLockMemory function 3-21, 3-23, 3-37
DebuggerPoll procedure 3-23, 3-39
debuggers, and virtual memory 3-21 to 3-24
DebuggerUnlockMemory function 3-21, 3-23, 3-38
_DebugUtil trap 3-22, 3-45
deferred tasks, and the A5 register 4-16
DeferUserFn function 3-33

introduced 3-21
using 3-20 to 3-21

dereferenced handles 1-29
DeskHook global variable

clearing in Pascal 2-9
and displaying windows during startup time 2-9

DetachResource procedure 2-13
device drivers, avoiding page faults 3-12
dialog boxes, and low-memory situations 1-44
direct memory access (DMA) 3-3, 3-13, 3-15, 3-16, 3-18,

3-20, 3-21, 4-3, 4-10
and stale data 4-12

disk cache
defined 4-4
setting with the Memory control panel 4-4

disposed handles
checking for 1-33
defined 1-33
preventing dereferencing of 1-33
problems using 1-33

DisposeHandle procedure 1-46, 1-57, 2-34 to 2-35
DisposePtr procedure 1-46, 1-60, 2-38 to 2-39
DMA. See direct memory access
double indirection 1-18
double page faults 3-11 to 3-12, 3-14
duplicating relocatable blocks 2-62 to 2-64

E

EmptyHandle procedure 1-67 to 1-68, 2-51 to 2-52
used by a grow-zone function 1-49

empty handles
checking for 1-34
defined 1-34
IN-2

I N D E X

F

fake handles 1-35 to 1-36, 1-55, 2-30
creating 1-35, 1-36
defined 1-35
problems using 1-35, 1-55, 2-30

Finder, allocation of memory for disk copying 2-9
flag bits

master pointer 4-7
stripping 4-7, 4-27

FlushCodeCache procedure 4-31 to 4-32
FlushCodeCacheRange function 4-32 to 4-33
FlushDataCache procedure 4-31
flushing

data cache 4-9, 4-12, 4-31
instruction cache 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33

FlushInstructionCache procedure 4-30
fragmentation. See heap fragmentation
FreeMem function 2-66 to 2-67
FreeMemSys function 2-67
free space

assessing 2-66 to 2-70
assessing availability for temporary memory 2-79 to

2-80

G

gaps in heaps, danger of 1-25
GetApplLimit function 1-53, 2-84
GetHandleSize function 2-39 to 2-40
GetMMUMode function 4-26
GetNextEvent function, and temporary memory 2-10
GetPageState function 3-24, 3-39 to 3-40
GetPhysical function 3-31 to 3-33

and discontiguous physical address space 3-11
introduced 3-16
using 3-16 to 3-20

GetPtrSize function 2-41 to 2-42
GetZone function 2-80
global variables. See application global variables;

system global variables; QuickDraw global
variables

grow-zone functions 1-48 to 1-49, 1-80 to 1-81, 2-89 to
2-90

and the A5 register 4-15
defined 1-38
example of 1-49, 4-15
finding protected block 1-78, 2-77
setting 1-77 to 1-78, 2-76 to 2-77
using SetA5 function 1-81, 2-90
using SetCurrentA5 function 1-81, 2-90

GZRootHnd global variable 1-78, 2-77
GZSaveHnd function 1-49, 1-78, 2-77

H

HandAndHand function 2-64 to 2-65
Handle data type 1-18, 2-25
handles

.See also relocatable blocks
checking validity of 1-34
defined 1-18 to 1-19
recovering 2-54 to 2-55
relative 2-23

HandleZone function 2-82 to 2-83
HandToHand function 2-62 to 2-64
HClrRBit procedure 2-50 to 2-51
heap compaction

defined 1-11, 1-23
movement of relocatable blocks during 1-24
routines for 2-71 to 2-73, 2-74 to 2-76

HeapEnd global variable 2-104
heap fragmentation

causes of 1-25 to 1-28
defined 1-10
during memory reservation 1-25
maximizing heap size to prevent 1-40
preventing 1-24 to 1-28
summary of prevention 1-28

heap purging 1-21 to 1-22
routines for 2-73 to 2-76

heap. See application heap; system heap
heap zones

accessing 2-80 to 2-83
changing 2-81
defined 2-5
getting current zone 2-80
initializing 2-86 to 2-87
manipulating 2-83 to 2-89
organization of 2-19 to 2-22
.See also zone headers; zone trailers
subdividing into multiple heap zones 2-14 to 2-16

HFS RAM Cache panel 4-4
HGetState function 1-30, 1-61 to 1-62, 2-43 to 2-44
high memory, allocating at startup time 2-13 to 2-14
HLockHi procedure 1-73, 2-58 to 2-59
HLock procedure 1-30, 1-63 to 1-64, 2-45 to 2-46
HNoPurge procedure 1-66 to 1-67, 2-48 to 2-49
holding physical memory 3-14
HoldMemory function 3-14, 3-25 to 3-26
HPurge procedure 1-65 to 1-66, 2-47 to 2-48
HSetRBit procedure 2-49 to 2-50
HSetState procedure 1-30, 1-62 to 1-63, 2-44 to 2-45
HUnlock procedure 1-64 to 1-65, 2-46 to 2-47
_HWPriv trap macro 4-36
IN-3

I N D E X
I

InitApplZone procedure 2-87 to 2-88
initializing new heap zones within other heap

zones 2-14 to 2-16
InitZone procedure 1-81, 2-86 to 2-87, 2-90
instruction cache

defined 4-8
flushing 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33

interprocess buffers, and temporary memory 2-10
interrupts, nonmaskable 3-23
interrupt tasks

and Memory Manager routines 1-50, 2-26
deferring under virtual memory 3-12
maintaining the A5 register 4-16 to 4-17
and temporary memory 2-10

interrupt time
avoiding Memory Manager routines at 1-50, 2-26
deferring code execution under virtual memory 3-20

I/O completion routines, and the A5 register 4-15
ISP. See stack pointer, interrupt

J

jump table 1-13
jump table entries

and stale instructions 4-10
for callback routines 1-32

L

linked lists, allocating new elements in 1-31
loading code segments, and dangling pointers 1-31 to

1-32
_LoadSeg trap, flushing instruction cache 4-10
locking physical memory

debugger routine 3-37
defined 3-13
routines for 3-28 to 3-30

locking relocatable blocks 1-20 to 1-21, 1-63 to 1-64,
2-45 to 2-46

LockMemoryContiguous function 3-16, 3-29 to 3-30
LockMemory function 3-28

and stale data 4-13
introduced 3-15

logical address space 3-5 to 3-9
possible fragmentation of 3-7
size of with 24-bit addressing 3-5
size of with 32-bit addressing 3-7
translating to physical address space 3-11

logical sizes of blocks 2-22

LogicalToPhysicalTable data structure 3-17, 3-25
logical-to-physical translation table. See translation

table
low-memory conditions 1-36 to 1-38
low-memory global variables

See system global variables

M

master pointer blocks 1-18
master pointer flag bits 4-7
master pointers

allocating manually 1-51 to 1-52, 2-28 to 2-29
comparing 4-22
defined 1-18
determining how many to preallocate 1-41 to 1-42
number per block in application zone 1-41
running out of 1-41

MaxApplZone procedure 1-51, 2-27
and ApplLimit global variable 1-8
automatic execution of 1-40, 2-16
and heap fragmentation 1-40

MaxBlock function 2-67 to 2-68
MaxBlockSys function 2-68
maximizing heap zone space 2-74 to 2-76
MaxMem function 2-74 to 2-75
MaxMemSys function 2-75 to 2-76
maxSize constant 2-72
MC680x0 microprocessor

data cache 4-9
instruction cache 4-8, 4-9
size of memory blocks with 2-22

MemErr global variable 1-50, 1-76, 2-26, 2-71
MemError function 1-50, 1-76, 2-26, 2-70 to 2-71
memory

allocating and releasing 1-54 to 1-60, 2-29 to 2-39
allocating during startup 2-13 to 2-14
assessing 2-66 to 2-83
changing sizes of blocks 2-39 to 2-43
freeing 2-71 to 2-76
holding 3-13, 3-14
organization of 1-4 to 1-13, 2-19 to 2-24
releasing 3-15
.See also temporary memory; virtual memory

memory addresses
comparing 4-8, 4-22
converting to 32-bit mode 4-7, 4-21 to 4-24, 4-26 to

4-27
mapping logical to physical 3-16 to 3-20
stripping flag bits from 4-7, 4-21 to 4-23, 4-27
translating 4-23 to 4-24, 4-28

MemoryBlock data structure 3-17, 3-24
memory-block record 3-17
IN-4

I N D E X
memory blocks. See blocks, memory
memory configuration, obtaining information

about 3-14
Memory control panel 3-4, 3-5, 4-3 to 4-5

addressing mode controls 4-5
disk cache controls 4-4
illustrated 4-4
introduced 4-3
RAM disk controls 4-5
virtual memory controls 4-5

memory cushions
defined 1-37
determining optimal size of 1-43
maintaining 1-43 to 1-44

_MemoryDispatchA0Result trap macro 3-45
_MemoryDispatch trap macro 3-20, 3-44
memory management unit (MMU) 3-5
Memory Manager 2-3 to 2-105

24-bit 1-15
32-bit 1-15
allocating master pointers 1-41
and application heap 1-10 to 1-11
application-defined routines 2-89 to 2-92
calling grow-zone function 1-48
capabilities of 2-4
compacting heap 1-23 to 1-24
data types 1-17 to 1-18, 2-24 to 2-26
defined 2-3
movement of blocks by 1-24
purging heap 1-23 to 1-24
reserving memory 1-22 to 1-23, 2-55 to 2-56
returning result codes 1-50, 1-76, 2-26, 2-70 to 2-71
routines 2-26 to 2-89
testing for features 2-11 to 2-12

memory reservation. See reserving memory
memory reserves

benefits of 1-37
defined 1-37
maintaining 1-46 to 1-48

MemTop global variable 2-14, 2-86
menu definition procedures, and the A5 register 4-15
MMU (memory management unit) 3-5
MoreMasters procedure 1-41 to 1-42, 1-51 to 1-52,

2-28 to 2-29
MoveHHi procedure 1-26 to 1-27, 1-71 to 1-72, 2-56 to

2-58
moving relocatable blocks high 1-26 to 1-27, 1-71 to

1-73, 2-56 to 2-59
multiple heap zones

implementing 2-14 to 2-16
uses for 2-6

N

NewEmptyHandle function 2-33
NewEmptyHandleSys function 2-34
NewHandleClear function 1-45, 1-56, 2-31 to 2-32
NewHandle function 1-44, 1-55 to 1-56, 2-29 to 2-31
NewHandleSysClear function 2-32
NewHandleSys function 2-31
NewPtrClear function 1-59, 2-37 to 2-38
NewPtr function 1-44, 1-58 to 1-59, 2-36 to 2-37
NewPtrSysClear function 2-38
NewPtrSys function 2-37
nonessential memory requests, checking whether to

satisfy 1-43
nonmaskable interrupts 3-23
nonrelocatable blocks

.See also blocks, memory
advantages of 1-20
allocating 1-28, 1-58 to 1-59, 2-36 to 2-38
allocating temporarily 1-28
data type for 1-18
defined 1-17
disposal and reallocation of 1-25
releasing 1-60, 2-38 to 2-39
sizing 2-41 to 2-43
when to allocate 1-27 to 1-28

Notification Manager, and the A5 world 4-16 to 4-17
notification response procedures, and the A5

register 4-16

O

OpenResFile function, calling StripAddress on
filenames 4-22

OpenRFPerm function, calling StripAddress on
filenames 4-22

operating system queues, storing elements in system
heap zone 2-12

ordered address comparisons 4-22
original application heap zone 2-5
_OSDispatch trap macro 2-104

P

Paged Memory Management Unit (PMMU) 3-5
PageFaultFatal function 3-22, 3-36
page faults

defined 3-11
handling 3-20
intercepted by Virtual Memory Manager 3-11 to

3-12, 3-22
IN-5

I N D E X
protection against 3-12, 3-14
.See also double page faults

pages, memory
defined 3-4
holding 3-14, 3-25
locking 3-15, 3-28
locking contiguously 3-29
releasing 3-15, 3-27
unlocking 3-30

PageState data type 3-24
paging 3-4
paging device 3-5
partitions 1-4

.See also application partitions; system partition
patches, and stale instructions 4-10
physical address space 3-9 to 3-11

discontiguous 3-9
physical memory 3-14 to 3-20

holding pages in 3-14 to 3-15
locking pages in 3-15 to 3-16
releasing pages 3-15
unlocking pages 3-16

physical sizes of blocks 2-22
PMMU (Paged Memory Management Unit) 3-5
pointers 1-17 to 1-18

.See also nonrelocatable blocks; dangling pointers
Process Manager, and callback routines 4-14
processor caches 4-8 to 4-13, 4-29 to 4-33

.See also data cache; instruction cache
ProcPtr data type 2-25 to 2-26

and code segmentation 1-32 to 1-33
referencing code in code resources 2-13

program counter, fixing before switching to 32-bit
mode 4-21

protected blocks
defined 1-49
determining which they are 1-81, 2-90
handle to returned by GZSaveHnd 1-78, 2-77

PtrAndHand function 2-65 to 2-66
Ptr data type 1-17, 2-25
PtrToHand function 2-60 to 2-61
PtrToXHand function 2-61 to 2-62
PtrZone function 2-83
PurgeMem procedure 2-73 to 2-74
PurgeMemSys procedure 2-74
PurgeSpace procedure 1-75, 2-68 to 2-69
purge-warning procedures 2-16 to 2-18, 2-21, 2-90 to

2-92
defined 2-16
installed by SetResPurge 2-18, 2-91
restrictions on 2-91
sample 2-17
using SetA5 function 2-91
using SetCurrentA5 function 2-91

purging heap zones 1-24, 2-73 to 2-74

purging relocatable blocks 1-21 to 1-22

Q

QuickDraw global variables
defined 1-13
reading in stand-alone code 4-18 to 4-19
structure of 4-18
using in stand-alone code 4-18 to 4-19

R

RAM cache. See disk cache
RAM disks

defined 4-5
setting size of with Memory control panel 4-5

_Read trap, flushing instruction cache 4-10
ReallocateHandle procedure 1-68 to 1-69, 2-52 to

2-53
reallocating relocatable blocks 1-21 to 1-22
RecoverHandle function 2-54 to 2-55
reference constant fields

using to store A5 value 4-17
relative handles 2-23
releasing held pages 3-15
relocatable blocks

.See also blocks, memory; handles
allocating 1-55 to 1-56, 2-29 to 2-34
changing properties 1-60 to 1-67, 2-43 to 2-51
clearing resource bit 2-50 to 2-51
concatenating 2-64 to 2-65
data type for 1-17
defined 1-17
disadvantages of 1-20
duplicating 2-62 to 2-64
emptying 1-67 to 1-68, 2-51 to 2-52
getting properties 1-61 to 1-62, 2-43 to 2-44
in bottom of heap zone 1-25
locking 1-20 to 1-21, 1-63 to 1-64, 2-45 to 2-46

for long periods of time 1-28
for short periods of time 1-28

making purgeable 1-65 to 1-66, 2-47 to 2-48
making unpurgeable 1-66 to 1-67, 2-48 to 2-49
managing 1-67 to 1-73, 2-51 to 2-59
master pointers after disposing 1-33
master pointers for 1-41
moving around nonrelocatable blocks 1-24
moving high 1-26 to 1-27, 1-71 to 1-73, 2-56 to 2-59
properties of 1-20 to 1-22
purging 1-21 to 1-22
reallocating 1-21 to 1-22, 1-68 to 1-69, 2-52 to 2-53
IN-6

I N D E X
releasing 1-57, 2-34 to 2-35
restrictions on locked blocks 1-27
setting properties 1-62 to 1-67, 2-44 to 2-51
setting resource bit 2-49 to 2-50
sizing 2-39 to 2-41

movement during 1-24
unlocking 1-20 to 1-21, 1-64 to 1-65, 2-46 to 2-47
when to lock 1-28

removable disks, and virtual memory 3-5
ReserveMem procedure 1-70 to 1-71, 2-55 to 2-56
ReserveMemSys procedure 2-56
reserves. See memory reserves
reserving memory 1-22 to 1-23

and heap fragmentation 1-25
defined 1-22
for relocatable blocks 1-26
limitation of 1-25
routines 2-55 to 2-56

resource bit
clearing 2-50 to 2-51
setting 2-49 to 2-50

Resource Manager, installing purge-warning
procedures 2-18, 2-91

resource types
'SIZE' 1-13
'sysz' 2-13

result codes for Memory Manager routines 1-50, 1-76,
2-26, 2-70 to 2-71

S

self-modifying code, and stale instructions 4-10
SetA5 function 1-79, 4-14, 4-25

used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91

SetApplBase procedure 2-88 to 2-89
SetApplLimit procedure 1-53 to 1-54, 2-84 to 2-85

using to increase size of stack 1-40
SetCurrentA5 function 1-79, 4-25

used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91

SetGrowZone procedure 1-77 to 1-78, 1-81, 2-76 to
2-77, 2-90

SetHandleSize procedure 2-40 to 2-41
SetPtrSize procedure 2-42 to 2-43
SetResPurge procedure, installing purge-warning

procedures 2-18
SetZone procedure 2-81
short-circuit Boolean operators 1-34
SignedByte data type 1-17, 2-25
size correction for blocks 2-23, 2-24
Size data type 2-26
'SIZE' resource type, specifying partition size 1-13

slot-based VBL tasks, deferred under virtual
memory 3-12

stack
collisions with the heap 1-8
default size of 1-40
defined 1-8
determining available space 2-69
increasing size of 1-39 to 1-40

stack frame 1-9
stack pointer

interrupt (ISP) 3-23
user (USP) 3-23

stack sniffer 1-8
StackSpace function 2-69 to 2-70
stale data

avoiding problems with 4-13
defined 4-10

stale instructions
avoiding problems with 4-9
defined 4-9

stand-alone code resources, changing
address-translation mode in 4-20

startup process
allocating memory during 2-13 to 2-14
displaying windows during 2-9

Str255 data type 2-25
StringHandle data type 2-25
StringPtr data type 2-25
StripAddress function 4-21 to 4-23, 4-27 to 4-28
supervisor mode 3-23
SwapDataCache function 4-30 to 4-31
SwapInstructionCache function 4-29
SwapMMUMode procedure 4-26 to 4-27

calling from stand-alone code 4-20
SysEqu.p interface file 2-7
system extensions, allocating memory at startup

time 2-13
system global variables

changing 2-9
defined 1-6 to 1-7, 2-6
reading 2-8 to 2-9
uses of 2-6 to 2-7

system heap 1-6
defined 1-6
held in RAM under virtual memory 3-12

system heap zone
allocating memory in 2-12
creating new heap zones within 2-16
defined 2-5
getting a pointer to 2-82
installing interrupt code into 2-13
uses for 2-5

system partition 1-4 to 1-7
.See also system heap; system global variables

SystemZone function 2-82
IN-7

I N D E X
SysZone global variable 2-82
'sysz' resource type 2-13

T

tag bytes 2-23
TempFreeMem function 2-79
TempMaxMem function 2-79 to 2-80
TempNewHandle function 2-78
temporary memory

allocating 2-10 to 2-11
confirming success of allocation 2-10
defined 1-13, 2-4
determining zone of 2-10
limitation on locking 2-10
operating on blocks 2-5
optimal usage of 2-5
release of during application termination 2-10
routines 2-77 to 2-80
testing for features of 2-11 to 2-12
tracking of 2-10
using as a heap zone 2-16

TheZone global variable 2-80
32-bit addressing 3-7 to 3-9, 4-8

defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16
THz data type 2-20
Time Manager tasks

and the A5 register 4-16
deferred under virtual memory 3-12

TopMem function 2-14, 2-85 to 2-86
Translate24To32 function 4-23 to 4-24, 4-28 to 4-29
translating logical to physical addresses 3-16 to 3-20,

3-31 to 3-33
translation tables 3-17, 3-25
trap patches, and the A5 register 4-15
24-bit addressing 3-5 to 3-7, 4-7 to 4-8

defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

U

UnholdMemory function 3-15, 3-27
_UnloadSeg trap, flushing instruction cache 4-10
unlocking physical memory 3-16, 3-30 to 3-31

debugger routine 3-38

unlocking relocatable blocks 1-20 to 1-21, 1-64 to 1-65,
2-46 to 2-47

UnlockMemory function 3-16, 3-30 to 3-31
updating windows, saving memory space for 1-44
USP. See stack pointer, user

V

VBL tasks
and the A5 register 4-16
deferred under virtual memory 3-12

Vector Base Register (VBR) 3-22
virtual memory

and AppleShare volumes 3-5
and removable disks 3-5
and user interrupts 3-21
backing-store file 4-5
bus-error vectors under 3-22
CPU data caching 3-15
debugger routines 3-34 to 3-40
debugger support for 3-21 to 3-24
deferring interrupt code execution 3-12, 3-20
introduced 1-15
management routines 3-25 to 3-33
mapping information, getting 3-16 to 3-18
requirements for running 3-5
setting with the Memory control panel 4-5
testing for availability 3-14

Virtual Memory Manager 3-3 to 3-45.See also virtual
memory

data structures 3-24 to 3-25
defined 3-3 to 3-4
routines 3-25 to 3-40

W, X, Y

WaitNextEvent function, and temporary
memory 2-10

window definition procedures, and the A5
register 4-15

WITH statement (Pascal), and dangling pointers 1-29
word-break routines, and the A5 register 4-15
write-through cache 4-11

Z

zero (memory location)See 0 (memory location)
zero-length handlesSee 0-length handles
Zone data structure 2-20
IN-8

I N D E X
zone headers 2-5, 2-20 to 2-21
zone pointers 2-20
zone records 2-20, 2-20 to 2-21
zone trailer blocks 2-20
zone trailers 2-5
IN-9

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Memory Management TOC
	 Introduction to Memory Management
	 Memory Manager TOC
	 Memory Manager
	 Virtual Memory Manager TOC
	 Virtual Memory Manager
	 Memory Management Utilities TOC
	 Memory Management Utilities
	 Glossary
	 Index
	 Colophon

