
                                   
Index
Symbols

& operator 1-34
@ operator 2-25

Numerals

0 (memory location) 1-4, 1-35
0-length handles 1-34
24-bit addressing 3-5 to 3-7, 4-7 to 4-8

defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

32-bit addressing 3-7 to 3-9, 4-8
defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16

A

A5 register
and A5 world 1-13, 4-5 to 4-6
grow-zone functions saving and restoring 1-49, 4-14
setting and restoring 1-78 to 1-79, 4-14, 4-24 to 4-25
use of by Toolbox and Operating System 

routines 4-14
using to access QuickDraw globals 4-18 to 4-19

A5 world
accessing in completion routines 4-14 to 4-15
accessing in interrupt tasks 4-16 to 4-17
defined 1-12, 1-13
setting 1-78 to 1-79, 4-24 to 4-25

addresses. See memory addresses
addressing modes

24-bit 4-7
32-bit 4-7 to 4-8
current mode, getting 4-26
switching 4-20 to 4-21, 4-26 to 4-27

Address Management Unit (AMU) 3-5
address space. See logical address space; physical 

address space
address-translation mode

getting 4-26

setting 4-26 to 4-27
temporarily changing 4-20

AMU (Address Management Unit) 3-5
AND operator 1-34
AppleShare, and paging devices 3-5
application global variables 1-12

accessing in completion routines 4-14
accessing in interrupt tasks 4-17

application heap 1-9 to 1-11
defined 1-10
determining amount of free space 1-42 to 1-44
maximizing space to prevent fragmentation 1-40
setting up 1-38 to 1-42, 1-50 to 1-52, 2-27 to 2-29

application heap limit
getting 1-53, 2-84
setting 1-53 to 1-54, 2-84 to 2-85

application heap zone.See also heap zones
defined 2-5
getting a pointer to 2-81
initializing 2-87 to 2-88
maximizing size of 1-51, 2-27
subdividing into multiple heap zones 2-14 to 2-16

application parameters 1-13
application partitions 1-4, 1-7 to 1-13
ApplicationZone function 2-81
ApplLimit global variable 1-8, 1-40, 1-53, 2-84
ApplZone global variable 2-81

B

backing-store files
defined 3-5
volume specified in Memory control panel 4-5

backing volume. See paging device
block contents 2-22
block headers 2-22 to 2-24
BlockMove procedure 1-74 to 1-75, 2-59 to 2-60
_BlockMove trap, flushing instruction cache 4-10
blocks, memory.See also nonrelocatable blocks; 

relocatable blocks
allocating 1-44 to 1-46
concatenating 2-64 to 2-66
copying 1-74 to 1-75, 2-59 to 2-64
defined 1-10
how allocated 1-22
manipulating 2-59 to 2-66
releasing 1-44 to 1-46
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size correction for 2-23, 2-24
Boolean operators, short-circuit 1-34
BufPtr global variable 2-14

limitation on lowering during startup 2-85
bus-error vectors 3-22
Byte data type 2-25

C

caches. See data cache; disk cache; instruction cache
callback routines

and code segmentation 1-32 to 1-33
maintaining the A5 register in 4-14 to 4-15

click-loop routines, and the A5 register 4-15
code resources, copying into system heap 2-13
code segmenting

and dangling pointers 1-31 to 1-32
effect on callback routines 1-32 to 1-33

compacting heap zones 2-71 to 2-73
compaction. See heap compaction
CompactMem function 2-71 to 2-72
CompactMemSys function 2-72 to 2-73
completion routines

deferred under virtual memory 3-12
maintaining the A5 register in 4-14 to 4-15

concatenating memory blocks 2-64 to 2-66
concurrent drivers 3-11
control action procedures, and the A5 register 4-15
control definition procedures, and the A5 register 4-15
control panels, Memory.See Memory control panel
copy-back cache 4-12
copying memory blocks 1-74 to 1-75, 2-59 to 2-64
CurrentA5 global variable 1-79, 4-25

and callback routines 4-15
defined 1-13
getting value 1-79, 4-25

current heap zone 2-5
CurStackBase global variable 2-104
cushions. See memory cushions

D

dangling pointers
avoiding 1-29 to 1-33
causes of 1-29 to 1-33
dangling procedure pointers 1-32 to 1-33
defined 1-29
detecting 1-29
introduced 1-20
locking blocks to prevent 1-29 to 1-30
referencing callback routines 1-32 to 1-33

using local variables to prevent 1-31
data cache 4-30 to 4-31

and virtual memory 3-21
defined 4-9
flushing 4-9, 4-12

DebuggerEnter procedure 3-23, 3-35
DebuggerExit procedure 3-23, 3-35 to 3-36
DebuggerGetMax function 3-34 to 3-35
DebuggerLockMemory function 3-21, 3-23, 3-37
DebuggerPoll procedure 3-23, 3-39
debuggers, and virtual memory 3-21 to 3-24
DebuggerUnlockMemory function 3-21, 3-23, 3-38
_DebugUtil trap 3-22, 3-45
deferred tasks, and the A5 register 4-16
DeferUserFn function 3-33

introduced 3-21
using 3-20 to 3-21

dereferenced handles 1-29
DeskHook global variable

clearing in Pascal 2-9
and displaying windows during startup time 2-9

DetachResource procedure 2-13
device drivers, avoiding page faults 3-12
dialog boxes, and low-memory situations 1-44
direct memory access (DMA) 3-3, 3-13, 3-15, 3-16, 3-18, 

3-20, 3-21, 4-3, 4-10
and stale data 4-12

disk cache
defined 4-4
setting with the Memory control panel 4-4

disposed handles
checking for 1-33
defined 1-33
preventing dereferencing of 1-33
problems using 1-33

DisposeHandle procedure 1-46, 1-57, 2-34 to 2-35
DisposePtr procedure 1-46, 1-60, 2-38 to 2-39
DMA. See direct memory access
double indirection 1-18
double page faults 3-11 to 3-12, 3-14
duplicating relocatable blocks 2-62 to 2-64

E

EmptyHandle procedure 1-67 to 1-68, 2-51 to 2-52
used by a grow-zone function 1-49

empty handles
checking for 1-34
defined 1-34
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F

fake handles 1-35 to 1-36, 1-55, 2-30
creating 1-35, 1-36
defined 1-35
problems using 1-35, 1-55, 2-30

Finder, allocation of memory for disk copying 2-9
flag bits

master pointer 4-7
stripping 4-7, 4-27

FlushCodeCache procedure 4-31 to 4-32
FlushCodeCacheRange function 4-32 to 4-33
FlushDataCache procedure 4-31
flushing

data cache 4-9, 4-12, 4-31
instruction cache 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33

FlushInstructionCache procedure 4-30
fragmentation. See heap fragmentation
FreeMem function 2-66 to 2-67
FreeMemSys function 2-67
free space

assessing 2-66 to 2-70
assessing availability for temporary memory 2-79 to 

2-80

G

gaps in heaps, danger of 1-25
GetApplLimit function 1-53, 2-84
GetHandleSize function 2-39 to 2-40
GetMMUMode function 4-26
GetNextEvent function, and temporary memory 2-10
GetPageState function 3-24, 3-39 to 3-40
GetPhysical function 3-31 to 3-33

and discontiguous physical address space 3-11
introduced 3-16
using 3-16 to 3-20

GetPtrSize function 2-41 to 2-42
GetZone function 2-80
global variables. See application global variables; 

system global variables; QuickDraw global 
variables

grow-zone functions 1-48 to 1-49, 1-80 to 1-81, 2-89 to 
2-90

and the A5 register 4-15
defined 1-38
example of 1-49, 4-15
finding protected block 1-78, 2-77
setting 1-77 to 1-78, 2-76 to 2-77
using SetA5 function 1-81, 2-90
using SetCurrentA5 function 1-81, 2-90

GZRootHnd global variable 1-78, 2-77
GZSaveHnd function 1-49, 1-78, 2-77

H

HandAndHand function 2-64 to 2-65
Handle data type 1-18, 2-25
handles

.See also relocatable blocks
checking validity of 1-34
defined 1-18 to 1-19
recovering 2-54 to 2-55
relative 2-23

HandleZone function 2-82 to 2-83
HandToHand function 2-62 to 2-64
HClrRBit procedure 2-50 to 2-51
heap compaction

defined 1-11, 1-23
movement of relocatable blocks during 1-24
routines for 2-71 to 2-73, 2-74 to 2-76

HeapEnd global variable 2-104
heap fragmentation

causes of 1-25 to 1-28
defined 1-10
during memory reservation 1-25
maximizing heap size to prevent 1-40
preventing 1-24 to 1-28
summary of prevention 1-28

heap purging 1-21 to 1-22
routines for 2-73 to 2-76

heap. See application heap; system heap
heap zones

accessing 2-80 to 2-83
changing 2-81
defined 2-5
getting current zone 2-80
initializing 2-86 to 2-87
manipulating 2-83 to 2-89
organization of 2-19 to 2-22
.See also zone headers; zone trailers
subdividing into multiple heap zones 2-14 to 2-16

HFS RAM Cache panel 4-4
HGetState function 1-30, 1-61 to 1-62, 2-43 to 2-44
high memory, allocating at startup time 2-13 to 2-14
HLockHi procedure 1-73, 2-58 to 2-59
HLock procedure 1-30, 1-63 to 1-64, 2-45 to 2-46
HNoPurge procedure 1-66 to 1-67, 2-48 to 2-49
holding physical memory 3-14
HoldMemory function 3-14, 3-25 to 3-26
HPurge procedure 1-65 to 1-66, 2-47 to 2-48
HSetRBit procedure 2-49 to 2-50
HSetState procedure 1-30, 1-62 to 1-63, 2-44 to 2-45
HUnlock procedure 1-64 to 1-65, 2-46 to 2-47
_HWPriv trap macro 4-36
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InitApplZone procedure 2-87 to 2-88
initializing new heap zones within other heap 

zones 2-14 to 2-16
InitZone procedure 1-81, 2-86 to 2-87, 2-90
instruction cache

defined 4-8
flushing 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33

interprocess buffers, and temporary memory 2-10
interrupts, nonmaskable 3-23
interrupt tasks

and Memory Manager routines 1-50, 2-26
deferring under virtual memory 3-12
maintaining the A5 register 4-16 to 4-17
and temporary memory 2-10

interrupt time
avoiding Memory Manager routines at 1-50, 2-26
deferring code execution under virtual memory 3-20

I/O completion routines, and the A5 register 4-15
ISP. See stack pointer, interrupt

J

jump table 1-13
jump table entries

and stale instructions 4-10
for callback routines 1-32

L

linked lists, allocating new elements in 1-31
loading code segments, and dangling pointers 1-31 to 

1-32
_LoadSeg trap, flushing instruction cache 4-10
locking physical memory

debugger routine 3-37
defined 3-13
routines for 3-28 to 3-30

locking relocatable blocks 1-20 to 1-21, 1-63 to 1-64, 
2-45 to 2-46

LockMemoryContiguous function 3-16, 3-29 to 3-30
LockMemory function 3-28

and stale data 4-13
introduced 3-15

logical address space 3-5 to 3-9
possible fragmentation of 3-7
size of with 24-bit addressing 3-5
size of with 32-bit addressing 3-7
translating to physical address space 3-11

logical sizes of blocks 2-22

LogicalToPhysicalTable data structure 3-17, 3-25
logical-to-physical translation table. See translation 

table
low-memory conditions 1-36 to 1-38
low-memory global variables

See system global variables

M

master pointer blocks 1-18
master pointer flag bits 4-7
master pointers

allocating manually 1-51 to 1-52, 2-28 to 2-29
comparing 4-22
defined 1-18
determining how many to preallocate 1-41 to 1-42
number per block in application zone 1-41
running out of 1-41

MaxApplZone procedure 1-51, 2-27
and ApplLimit global variable 1-8
automatic execution of 1-40, 2-16
and heap fragmentation 1-40

MaxBlock function 2-67 to 2-68
MaxBlockSys function 2-68
maximizing heap zone space 2-74 to 2-76
MaxMem function 2-74 to 2-75
MaxMemSys function 2-75 to 2-76
maxSize constant 2-72
MC680x0 microprocessor

data cache 4-9
instruction cache 4-8, 4-9
size of memory blocks with 2-22

MemErr global variable 1-50, 1-76, 2-26, 2-71
MemError function 1-50, 1-76, 2-26, 2-70 to 2-71
memory

allocating and releasing 1-54 to 1-60, 2-29 to 2-39
allocating during startup 2-13 to 2-14
assessing 2-66 to 2-83
changing sizes of blocks 2-39 to 2-43
freeing 2-71 to 2-76
holding 3-13, 3-14
organization of 1-4 to 1-13, 2-19 to 2-24
releasing 3-15
.See also temporary memory; virtual memory

memory addresses
comparing 4-8, 4-22
converting to 32-bit mode 4-7, 4-21 to 4-24, 4-26 to 

4-27
mapping logical to physical 3-16 to 3-20
stripping flag bits from 4-7, 4-21 to 4-23, 4-27
translating 4-23 to 4-24, 4-28

MemoryBlock data structure 3-17, 3-24
memory-block record 3-17
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memory blocks. See blocks, memory
memory configuration, obtaining information 

about 3-14
Memory control panel 3-4, 3-5, 4-3 to 4-5

addressing mode controls 4-5
disk cache controls 4-4
illustrated 4-4
introduced 4-3
RAM disk controls 4-5
virtual memory controls 4-5

memory cushions
defined 1-37
determining optimal size of 1-43
maintaining 1-43 to 1-44

_MemoryDispatchA0Result trap macro 3-45
_MemoryDispatch trap macro 3-20, 3-44
memory management unit (MMU) 3-5
Memory Manager 2-3 to 2-105

24-bit 1-15
32-bit 1-15
allocating master pointers 1-41
and application heap 1-10 to 1-11
application-defined routines 2-89 to 2-92
calling grow-zone function 1-48
capabilities of 2-4
compacting heap 1-23 to 1-24
data types 1-17 to 1-18, 2-24 to 2-26
defined 2-3
movement of blocks by 1-24
purging heap 1-23 to 1-24
reserving memory 1-22 to 1-23, 2-55 to 2-56
returning result codes 1-50, 1-76, 2-26, 2-70 to 2-71
routines 2-26 to 2-89
testing for features 2-11 to 2-12

memory reservation. See reserving memory
memory reserves

benefits of 1-37
defined 1-37
maintaining 1-46 to 1-48

MemTop global variable 2-14, 2-86
menu definition procedures, and the A5 register 4-15
MMU (memory management unit) 3-5
MoreMasters procedure 1-41 to 1-42, 1-51 to 1-52, 

2-28 to 2-29
MoveHHi procedure 1-26 to 1-27, 1-71 to 1-72, 2-56 to 

2-58
moving relocatable blocks high 1-26 to 1-27, 1-71 to 

1-73, 2-56 to 2-59
multiple heap zones

implementing 2-14 to 2-16
uses for 2-6

N

NewEmptyHandle function 2-33
NewEmptyHandleSys function 2-34
NewHandleClear function 1-45, 1-56, 2-31 to 2-32
NewHandle function 1-44, 1-55 to 1-56, 2-29 to 2-31
NewHandleSysClear function 2-32
NewHandleSys function 2-31
NewPtrClear function 1-59, 2-37 to 2-38
NewPtr function 1-44, 1-58 to 1-59, 2-36 to 2-37
NewPtrSysClear function 2-38
NewPtrSys function 2-37
nonessential memory requests, checking whether to 

satisfy 1-43
nonmaskable interrupts 3-23
nonrelocatable blocks

.See also blocks, memory
advantages of 1-20
allocating 1-28, 1-58 to 1-59, 2-36 to 2-38
allocating temporarily 1-28
data type for 1-18
defined 1-17
disposal and reallocation of 1-25
releasing 1-60, 2-38 to 2-39
sizing 2-41 to 2-43
when to allocate 1-27 to 1-28

Notification Manager, and the A5 world 4-16 to 4-17
notification response procedures, and the A5 

register 4-16

O

OpenResFile function, calling StripAddress on 
filenames 4-22

OpenRFPerm function, calling StripAddress on 
filenames 4-22

operating system queues, storing elements in system 
heap zone 2-12

ordered address comparisons 4-22
original application heap zone 2-5
_OSDispatch trap macro 2-104

P

Paged Memory Management Unit (PMMU) 3-5
PageFaultFatal function 3-22, 3-36
page faults

defined 3-11
handling 3-20
intercepted by Virtual Memory Manager 3-11 to 

3-12, 3-22
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protection against 3-12, 3-14
.See also double page faults

pages, memory
defined 3-4
holding 3-14, 3-25
locking 3-15, 3-28
locking contiguously 3-29
releasing 3-15, 3-27
unlocking 3-30

PageState data type 3-24
paging 3-4
paging device 3-5
partitions 1-4

.See also application partitions; system partition
patches, and stale instructions 4-10
physical address space 3-9 to 3-11

discontiguous 3-9
physical memory 3-14 to 3-20

holding pages in 3-14 to 3-15
locking pages in 3-15 to 3-16
releasing pages 3-15
unlocking pages 3-16

physical sizes of blocks 2-22
PMMU (Paged Memory Management Unit) 3-5
pointers 1-17 to 1-18

.See also nonrelocatable blocks; dangling pointers
Process Manager, and callback routines 4-14
processor caches 4-8 to 4-13, 4-29 to 4-33

.See also data cache; instruction cache
ProcPtr data type 2-25 to 2-26

and code segmentation 1-32 to 1-33
referencing code in code resources 2-13

program counter, fixing before switching to 32-bit 
mode 4-21

protected blocks
defined 1-49
determining which they are 1-81, 2-90
handle to returned by GZSaveHnd 1-78, 2-77

PtrAndHand function 2-65 to 2-66
Ptr data type 1-17, 2-25
PtrToHand function 2-60 to 2-61
PtrToXHand function 2-61 to 2-62
PtrZone function 2-83
PurgeMem procedure 2-73 to 2-74
PurgeMemSys procedure 2-74
PurgeSpace procedure 1-75, 2-68 to 2-69
purge-warning procedures 2-16 to 2-18, 2-21, 2-90 to 

2-92
defined 2-16
installed by SetResPurge 2-18, 2-91
restrictions on 2-91
sample 2-17
using SetA5 function 2-91
using SetCurrentA5 function 2-91

purging heap zones 1-24, 2-73 to 2-74

purging relocatable blocks 1-21 to 1-22

Q

QuickDraw global variables
defined 1-13
reading in stand-alone code 4-18 to 4-19
structure of 4-18
using in stand-alone code 4-18 to 4-19

R

RAM cache. See disk cache
RAM disks

defined 4-5
setting size of with Memory control panel 4-5

_Read trap, flushing instruction cache 4-10
ReallocateHandle procedure 1-68 to 1-69, 2-52 to 

2-53
reallocating relocatable blocks 1-21 to 1-22
RecoverHandle function 2-54 to 2-55
reference constant fields

using to store A5 value 4-17
relative handles 2-23
releasing held pages 3-15
relocatable blocks

.See also blocks, memory; handles
allocating 1-55 to 1-56, 2-29 to 2-34
changing properties 1-60 to 1-67, 2-43 to 2-51
clearing resource bit 2-50 to 2-51
concatenating 2-64 to 2-65
data type for 1-17
defined 1-17
disadvantages of 1-20
duplicating 2-62 to 2-64
emptying 1-67 to 1-68, 2-51 to 2-52
getting properties 1-61 to 1-62, 2-43 to 2-44
in bottom of heap zone 1-25
locking 1-20 to 1-21, 1-63 to 1-64, 2-45 to 2-46

for long periods of time 1-28
for short periods of time 1-28

making purgeable 1-65 to 1-66, 2-47 to 2-48
making unpurgeable 1-66 to 1-67, 2-48 to 2-49
managing 1-67 to 1-73, 2-51 to 2-59
master pointers after disposing 1-33
master pointers for 1-41
moving around nonrelocatable blocks 1-24
moving high 1-26 to 1-27, 1-71 to 1-73, 2-56 to 2-59
properties of 1-20 to 1-22
purging 1-21 to 1-22
reallocating 1-21 to 1-22, 1-68 to 1-69, 2-52 to 2-53
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releasing 1-57, 2-34 to 2-35
restrictions on locked blocks 1-27
setting properties 1-62 to 1-67, 2-44 to 2-51
setting resource bit 2-49 to 2-50
sizing 2-39 to 2-41

movement during 1-24
unlocking 1-20 to 1-21, 1-64 to 1-65, 2-46 to 2-47
when to lock 1-28

removable disks, and virtual memory 3-5
ReserveMem procedure 1-70 to 1-71, 2-55 to 2-56
ReserveMemSys procedure 2-56
reserves. See memory reserves
reserving memory 1-22 to 1-23

and heap fragmentation 1-25
defined 1-22
for relocatable blocks 1-26
limitation of 1-25
routines 2-55 to 2-56

resource bit
clearing 2-50 to 2-51
setting 2-49 to 2-50

Resource Manager, installing purge-warning 
procedures 2-18, 2-91

resource types
'SIZE' 1-13
'sysz' 2-13

result codes for Memory Manager routines 1-50, 1-76, 
2-26, 2-70 to 2-71

S

self-modifying code, and stale instructions 4-10
SetA5 function 1-79, 4-14, 4-25

used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91

SetApplBase procedure 2-88 to 2-89
SetApplLimit procedure 1-53 to 1-54, 2-84 to 2-85

using to increase size of stack 1-40
SetCurrentA5 function 1-79, 4-25

used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91

SetGrowZone procedure 1-77 to 1-78, 1-81, 2-76 to 
2-77, 2-90

SetHandleSize procedure 2-40 to 2-41
SetPtrSize procedure 2-42 to 2-43
SetResPurge procedure, installing purge-warning 

procedures 2-18
SetZone procedure 2-81
short-circuit Boolean operators 1-34
SignedByte data type 1-17, 2-25
size correction for blocks 2-23, 2-24
Size data type 2-26
'SIZE' resource type, specifying partition size 1-13

slot-based VBL tasks, deferred under virtual 
memory 3-12

stack
collisions with the heap 1-8
default size of 1-40
defined 1-8
determining available space 2-69
increasing size of 1-39 to 1-40

stack frame 1-9
stack pointer

interrupt (ISP) 3-23
user (USP) 3-23

stack sniffer 1-8
StackSpace function 2-69 to 2-70
stale data

avoiding problems with 4-13
defined 4-10

stale instructions
avoiding problems with 4-9
defined 4-9

stand-alone code resources, changing 
address-translation mode in 4-20

startup process
allocating memory during 2-13 to 2-14
displaying windows during 2-9

Str255 data type 2-25
StringHandle data type 2-25
StringPtr data type 2-25
StripAddress function 4-21 to 4-23, 4-27 to 4-28
supervisor mode 3-23
SwapDataCache function 4-30 to 4-31
SwapInstructionCache function 4-29
SwapMMUMode procedure 4-26 to 4-27

calling from stand-alone code 4-20
SysEqu.p interface file 2-7
system extensions, allocating memory at startup 

time 2-13
system global variables

changing 2-9
defined 1-6 to 1-7, 2-6
reading 2-8 to 2-9
uses of 2-6 to 2-7

system heap 1-6
defined 1-6
held in RAM under virtual memory 3-12

system heap zone
allocating memory in 2-12
creating new heap zones within 2-16
defined 2-5
getting a pointer to 2-82
installing interrupt code into 2-13
uses for 2-5

system partition 1-4 to 1-7
.See also system heap; system global variables

SystemZone function 2-82
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SysZone global variable 2-82
'sysz' resource type 2-13

T

tag bytes 2-23
TempFreeMem function 2-79
TempMaxMem function 2-79 to 2-80
TempNewHandle function 2-78
temporary memory

allocating 2-10 to 2-11
confirming success of allocation 2-10
defined 1-13, 2-4
determining zone of 2-10
limitation on locking 2-10
operating on blocks 2-5
optimal usage of 2-5
release of during application termination 2-10
routines 2-77 to 2-80
testing for features of 2-11 to 2-12
tracking of 2-10
using as a heap zone 2-16

TheZone global variable 2-80
32-bit addressing 3-7 to 3-9, 4-8

defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16
THz data type 2-20
Time Manager tasks

and the A5 register 4-16
deferred under virtual memory 3-12

TopMem function 2-14, 2-85 to 2-86
Translate24To32 function 4-23 to 4-24, 4-28 to 4-29
translating logical to physical addresses 3-16 to 3-20, 

3-31 to 3-33
translation tables 3-17, 3-25
trap patches, and the A5 register 4-15
24-bit addressing 3-5 to 3-7, 4-7 to 4-8

defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

U

UnholdMemory function 3-15, 3-27
_UnloadSeg trap, flushing instruction cache 4-10
unlocking physical memory 3-16, 3-30 to 3-31

debugger routine 3-38

unlocking relocatable blocks 1-20 to 1-21, 1-64 to 1-65, 
2-46 to 2-47

UnlockMemory function 3-16, 3-30 to 3-31
updating windows, saving memory space for 1-44
USP. See stack pointer, user

V

VBL tasks
and the A5 register 4-16
deferred under virtual memory 3-12

Vector Base Register (VBR) 3-22
virtual memory

and AppleShare volumes 3-5
and removable disks 3-5
and user interrupts 3-21
backing-store file 4-5
bus-error vectors under 3-22
CPU data caching 3-15
debugger routines 3-34 to 3-40
debugger support for 3-21 to 3-24
deferring interrupt code execution 3-12, 3-20
introduced 1-15
management routines 3-25 to 3-33
mapping information, getting 3-16 to 3-18
requirements for running 3-5
setting with the Memory control panel 4-5
testing for availability 3-14

Virtual Memory Manager 3-3 to 3-45.See also virtual 
memory

data structures 3-24 to 3-25
defined 3-3 to 3-4
routines 3-25 to 3-40

W, X, Y

WaitNextEvent function, and temporary 
memory 2-10

window definition procedures, and the A5 
register 4-15

WITH statement (Pascal), and dangling pointers 1-29
word-break routines, and the A5 register 4-15
write-through cache 4-11

Z

zero (memory location)See 0 (memory location)
zero-length handlesSee 0-length handles
Zone data structure 2-20
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zone headers 2-5, 2-20 to 2-21
zone pointers 2-20
zone records 2-20, 2-20 to 2-21
zone trailer blocks 2-20
zone trailers 2-5
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