

C H A P T E R 8

8

A
ppleTalk S

ession P
rotocol (A

S
P

)

AppleTalk Session Protocol (ASP) 8

This chapter describes the AppleTalk Session Protocol (ASP) that you can use to establish
a session between an ASP workstation application or process and an ASP server
application. An ASP session is asymmetrical: all communication is initiated by the ASP
workstation and responded to by the ASP server.

ASP provides an application programming interface for the workstation side only. ASP is
not commonly used by application program developers. The primary use of ASP is to
provide services for the AppleTalk Filing Protocol (AFP) that, in turn, provides all of the
services necessary to access an AppleTalk AppleShare server. Most developers who want
to write an AppleTalk application that establishes a session use the AppleTalk Data
Stream Protocol (ADSP) because it provides peer-to-peer services. For these reasons, this
chapter includes “About” and “Reference” sections only; it does not include a “Using”
section, as do most of the other chapters in this book. This chapter is included to
complete the coverage of the AppleTalk protocol stack in this book.

However, if you want to use ASP to write an application that runs on a workstation
and initiates a session with an ASP server, you should read this chapter and the chapter
in Inside AppleTalk, second edition, that describes the AppleTalk Session Protocol
specification.

You can use ASP to open and close a session with an ASP server; you can also send
commands and data across the session to the server and receive replies in response.
The commands that you send to the ASP server must adhere to the syntax of a higher-
level protocol that is built on top of the ASP server. ASP transfers the commands; it
does not interpret or execute them.

This chapter does not describe how to implement an ASP server. If you want to
implement an ASP server, you must use the programming interface to the AppleTalk
Transaction Protocol (ATP) and follow the AppleTalk Session Protocol specification
as defined in Inside AppleTalk, second edition.

If you want to write an application that supports a peer-to-peer session in which each
end of the session can send and receive data at any time, you should use the AppleTalk
Data Stream Protocol (ADSP) instead of ASP. The chapter “AppleTalk Data Stream
Protocol (ADSP)” in this book describes ADSP.

For an overview of ASP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book. “Introduction to AppleTalk” also
introduces and defines some of the terminology used in this chapter. Because ASP is
built on top of ATP, possessing an understanding of ATP will help you to understand
ASP. The chapter “AppleTalk Transaction Protocol (ATP)” in this book describes ATP.

About ASP 8

The AppleTalk Session Protocol (ASP) allows one or more ASP workstation applications
or processes to establish a session with the same server at the same time. To track
communication from various sessions, ASP assigns a unique session identifier that is
referred to as a session reference number to each session. ASP is an asymmetrical protocol
that provides one set of services to the workstation and a different set of services to
About ASP 8-3

C H A P T E R 8

AppleTalk Session Protocol (ASP)

the server. The ASP workstation application always initiates the process of setting
up a session and the communication across a session, and the ASP server replies to
commands that it receives. (ASP is built on top of ATP, and it follows the transaction
model of ATP while adding session-connection services.) The only case in which an ASP
server can initiate communication is through the ASP attention mechanism. Figure 8-1
shows ASP and its underlying protocols.

Figure 8-1 ASP and its underlying protocols

Note
To open a session with an ASP server, you must know the server’s
internet socket address; you can use the Name-Binding Protocol (NBP)
to obtain the internet socket address of any ASP server that advertises its
services on the network. ◆

You can open an ASP session and send commands to the ASP server for a higher-level
protocol, such as AFP, to interpret and execute. The commands that you send to an
ASP server must follow the syntax prescribed by the higher-level protocol that is a client
of the ASP server. ASP simply transfers the commands, and the ASP server returns
a response.

For example, the AppleShare server is AppleTalk’s ASP server implementation. AFP uses
the services of ASP to allow a user to manipulate files on an AppleShare server. (AFP is

ASP

ATP

DDP

LAP Manager

Port
8-4 About ASP

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8

A
ppleTalk S

ession P
rotocol (A

S
P

)

an example of an ASP workstation application.) As long as the ASP session is open,
the workstation can send AFP commands to request directory information, change
filenames, and so forth.

ASP ensures that commands from a workstation are delivered to the ASP server without
duplication in the same order in which they were sent. This feature is useful for imple-
menting applications that are state dependent, that is, applications in which the response
to a request is dependent on a previous request. A workstation application connecting to
a file server to read a file is an example of a state-dependent application: before the
application can read the file, it must have first issued a request to open the file.

ASP also provides an attention mechanism that allows the server to send a message to
the workstation. For example, a file server can use this messaging system to notify all of
the workstations that are using the file server that it is shutting down. ASP is responsible
for closing down the session if one end fails or becomes unreachable, and it will inform
the workstation applications of its action. The .XPP driver implements ASP.

Once again, if your application requires a session-oriented protocol, you should consider
whether to use ADSP instead of ASP. ASP and ADSP have in common the salient feature
that they are both session-oriented protocols. However, they each provide a different
type of session-oriented service. Although the differences between them are not parallel,
in contrasting the two protocols it is helpful to recognize that ASP is limited by the
structure of a transaction because it is built on top of ATP and that ADSP entails more
flexibility because it is built directly on top of DDP. Figure 8-2 illustrates the different
behavior and functions of the two protocols.

Figure 8-2 Differences between ASP and ADSP

ASP workstation

application

ASP server

software

Command

Response

ADSP workstation

application

ADSP workstation

application

Peer-to-peer

communication

ASP asymmetrical protocol

ADSP symmetrical protocol
About ASP 8-5

C H A P T E R 8

AppleTalk Session Protocol (ASP)

Please read this note before you continue

ASP provides an application programming interface for the workstation
side only. The primary use of ASP is to provide services for the
AppleTalk Filing Protocol (AFP). In most cases, you will not need to use
ASP. Because very few application program developers use ASP, this
chapter does not include a “Using” section. It includes only an overview
of ASP and an ASP reference section. ◆

ASP Reference 8

This section describes the data structures and routines that are specific to the AppleTalk
Session Protocol (ASP).

The “Data Structures” section shows the Pascal data structure for the XPP parameter
block for ASP. The “Routines” section describes the routines for opening an ASP session,
closing a specific ASP session or all ASP sessions on your node, sending commands and
data across a session to a server, obtaining information about ASP sessions on your node
or about a server, and canceling a request to open a session.

Data Structures 8
This section describes the XPP parameter block that ASP functions use to pass
information to and receive it from the .XPP driver.

XPP Parameter Block for ASP 8

The ASP functions use the XPP parameter block defined by the XPPParamBlock data
type to pass input and receive output parameters. In addition to the standard XPP
parameter block fields, the ASP functions use variant records. The ASPOpenSession
function uses the ASPOpenPrm variant record. The ASPAbortOS function uses the
ASPAbortPrm variant record. The ASPGetParms function uses the ASPSizeBlk variant
record. The ASPUserCommand and ASPUserWrite functions uses the ASPSubPrm
variant record. The ASPUserWrite, ASPUserCommand, and ASPGetStatus functions
use the ASPEndPrm variant record.

This section defines the parameter block fields that are common to all ASP functions. It
does not define reserved fields, which are used either internally by the .XPP driver or not
at all. The fields that are used by a particular function are defined in the section that
describes the function.

XPPPrmBlkType = (...XPPPrmBlk,ASPAbortPrm,ASPSizeBlk...);

XPPSubPrmType = (ASPOpenPrm,ASPSubPrm);

XPPEndPrmType = (...ASPEndPrm);
8-6 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8

A
ppleTalk S

ession P
rotocol (A

S
P

)

XPPParamBlock = PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

cmdResult: LongInt; {command result (ATP user bytes)}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {call command code}

CASE XPPPrmBlkType OF

ASPAbortPrm:

(abortSCBPtr: Ptr); {SCB pointer for AbortOS}

ASPSizeBlk:

(aspMaxCmdSize: Integer; {for ASPGetParms}

 aspQuantumSize: Integer; {for ASPGetParms}

 numSesss: Integer); {for SPGetParms}

XPPPrmBlk:

(sessRefnum: Integer; {offset to session refnum}

 aspTimeout: Byte; {timeout for ATP}

 aspRetry: Byte; {retry count for ATP}

CASE XPPSubPrmType OF

ASPOpenPrm:

(serverAddr: AddrBlock; {server address block}

scbPointer: Ptr; {SCB pointer}

attnRoutine: Ptr); {attention routine pointer}

ASPSubPrm:

(cbSize: Integer; {command block size}

cbPtr: Ptr; {command block pointer}

rbSize: Integer; {reply buffer size}

rbPtr: Ptr; {reply buffer pointer}

CASE XPPEndPrmType OF

ASPEndPrm:

(wdSize: Integer; {write data size}

wdPtr: Ptr; {write data pointer}

ccbStart: ARRAY[0..295] OF Byte))); {beginning of command control }

{ block}

 END;

 XPPParmBlkPtr = ^XPPParamBlock;
ASP Reference 8-7

C H A P T E R 8

AppleTalk Session Protocol (ASP)

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, AppleTalk calls your completion
routine when it completes execution of the function if you specify
a pointer to the routine as the value of this field. Specify NIL for
this field if you do not wish to provide a completion routine.
If you execute a function synchronously, AppleTalk ignores the
ioCompletion field. For information about completion routines,
see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The driver reference number for the .XPP driver. The Device
Manager’s OpenDriver function that you use to open the .XPP
driver returns the driver reference number in the refnum field. You
must supply this value. You can call this function to obtain the .XPP
driver’s reference number even if the .XPP driver is already open.
The MPW interface does not fill in this value. For information on
opening the .XPP driver, see the chapter “AppleTalk Utilities” in
this book. For information on the OpenDriver function, see the
chapter “Device Manager” in Inside Macintosh: Devices.

csCode The command code of the XPP command to be executed. The MPW
interface fills in this field.

Routines 8
This section describes the ASP functions that you use to

■ open an ASP session from an ASP workstation application or process

■ close one or all ASP sessions for a workstation from your ASP workstation application
or process

■ send commands and data across the session from the workstation to the server

■ obtain information about the maximum capacities of the ASP implementation on
your node, such as the number of concurrent ASP sessions and the amount of data
that you can send

■ obtain status information about a server without establishing a session with
that server

Before you can open an ASP session or call any of the ASP functions, you must open the
.XPP driver. You use the Device Manager’s OpenDriver function to open the .XPP
driver. The .MPP and .ATP drivers must be open before you open the .XPP driver. For
information on opening the .XPP driver, see the chapter “AppleTalk Utilities” in this
book. For information on the OpenDriver function, see the chapter “Device Manager”
in Inside Macintosh: Devices.
8-8 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8

A
ppleTalk S

ession P
rotocol (A

S
P

)

The chapter “AppleTalk Utilities” also describes how to close the .XPP driver. However,
in most circumstances, you should not close the .XPP driver because other applications
and processes could be using the protocols implemented by the .XPP driver.

You must pass the .XPP driver reference number as a parameter to each of the ASP
functions; the MPW interface does not fill in this value. The OpenDriver function that
you use to open the .XPP driver returns the driver reference number in the refnum field.
You can call this function to obtain the .XPP driver’s reference number even if the .XPP
driver is already open.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Opening and Closing ASP Sessions 8

This section describes how to open and close an ASP session from your workstation
application or process. It includes

■ the ASPOpenSession function that you use to open a session with a server

■ the ASPCloseSession function that you use to close a single session when you are
finished using the connection

■ the ASPCloseAll function that you use to close all of the ASP sessions running on
your node

ASPOpenSession 8

The ASPOpenSession function opens an ASP session between an ASP workstation
application and an ASP server application.

FUNCTION ASPOpenSession (thePBptr: XPPParmBlkPtr;

 async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Arrow Meaning

→ Input

← Output

↔ Both
ASP Reference 8-9

C H A P T E R 8

AppleTalk Session Protocol (ASP)

Parameter block

Field descriptions

sessRefnum A unique number that the .XPP driver assigns to the session that it
opens if the function completes successfully.

aspTimeout The interval in seconds between retries of the open session request.
aspRetry The number of times that ASP will retry to open a session.
serverAddr The internet socket address of the socket that the server is using to

listen for requests to open a session.
scbPointer A pointer to a session control block (SCB) that the .XPP driver

requires to maintain an open session. The scbMemSize constant
defines the size of the session control block. The memory that you
allocate for the SCB must be nonrelocatable or locked because it
belongs to the .XPP driver for the life of the session.

attnRoutine A pointer to a routine that ASP calls if the workstation component
of ASP receives an attention request from the server or if the session
is closed. If you do not want to specify an attention routine to be
called, set this pointer to NIL.

DESCRIPTION

To gain access to an ASP server, you must call the ASPOpenSession function to open
a session. Before calling the ASPOpenSession function, you must obtain the internet
socket address of the socket that the ASP server uses to listen for incoming session
requests. The server uses a session listening socket (SLS) for this purpose. You can use
the Name-Binding Protocol (NBP) to get the internet socket address of an SLS. You pass
the internet socket address of the SLS as the value of the serverAddr parameter.

You also pass the ASPOpenSession function a pointer to a session control block (SCB)
in the scbPointer parameter. The .XPP driver uses the SCB internally to manage the
session. Each session requires its own SCB. You must either allocate nonrelocatable
memory for the session control block or lock the memory and not modify it for the
duration of the session. The SCB size is defined by the constant scbMemSize. The
memory belongs to the .XPP driver for the life of the session. You can reuse an SCB after
either of the following events occurs:

■ You have called the ASPCloseSession function to close the session and it has
completed successfully.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .XPP driver reference number.
→ csCode Integer Always openSess for this function.
← sessRefnum Integer The session reference number.
→ aspTimeout Byte The retry interval in seconds.
→ aspRetry Byte The number of retries.
→ serverAddr AddrBlock The server socket address.
→ scbPointer Ptr A pointer to the session control block.
→ attnRoutine Ptr A pointer to an attention routine.
8-10 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

■ The server end of the ASP session has closed the session or the .XPP driver has closed
the session. In both cases, the .XPP driver returns an aspParamErr result code as the
result of a call for that session.

You can also pass the ASPOpenSession function a pointer to an attention routine that
the .XPP driver calls when it receives an attention request from the server and when the
session is closing. ASP provides an attention mechanism that allows the ASP server to
notify the ASP workstation application of some event or critical piece of information. As
the value of the attnRoutine parameter, you can specify a pointer to your attention
routine, and the .XPP driver will call this routine when it receives an attention request
from the server or when the server, the workstation, or ASP closes the session; ASP, as
implemented in the .XPP driver, will close a session if it cannot successfully open the
session before it exhausts the number of retries.

Because the .XPP driver calls your attention routine at interrupt level, you must observe
the following interrupt conventions in writing the attention routine:

■ An attention routine can change registers A0 through A3 and D0 through D3.

■ The routine must not call any Memory Manager routines.

The .XPP driver calls your attention routine with

■ D0 (word) equal to the session reference number (sessRefnum) for that session. This
is the number that ASP returns on completion of the ASPOpenSession function.

■ D1 (word) equal to the attention bytes passed by the server or 0 if the session
is closing.

To resume normal execution, your attention routine must return with an RTS (return
from subroutine) instruction.

If you code your program in a high-level language such as Pascal, you might not want to
provide an attention routine written in assembly language. If you do not want to provide
an attention routine, you can poll the attention bytes to determine if your ASP work-
station application has received an attention request from the server. The attention bytes
are the first 2 bytes of the session control block. When the .XPP driver receives an
ASPOpenSession function call, it sets these 2 bytes to 0. When the server sends an
attention request to the workstation, the .XPP driver receives the request and sets the
first 2 bytes of the SCB to the attention bytes from the packet. (A higher-level protocol
that uses the services of ASP defines the attention code that the 2 attention bytes in the
packet carry.) If the first 2 bytes of the SCB are nonzero when your Pascal program polls
them, the program will know that it has received an attention request from the server.
Your program can handle the request, based on the conventions defined by the
higher-level protocol, and reset the SCB’s attention bytes to 0. However, using this
method to determine if the workstation has received an attention request from the server
has limitations: two or more attention requests could be received between successive
polls and only the last one would be preserved.

When the .XPP driver receives an ASPOpenSession function, it sends a special open
session (OpenSession) packet as an ATP request to the SLS; this packet carries the
address of the socket that the ASP workstation application or process is using for the
session. The open session packet also carries a version number so that both ends can
verify that they are using the same version of ASP.
ASP Reference 8-11

C H A P T E R 8

AppleTalk Session Protocol (ASP)
Once you open a session, you can send commands and data to the server and receive
command replies from the server. However, before you open an ASP session, you should
call the ASPGetParms function to determine the maximum sizes of commands and
replies that ASP supports on your node.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager’s OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ASPOpenSession function from assembly language, call the _Control
trap macro with a value of openSess in the csCode field of the parameter block. You
must also specify the .XPP driver reference number. To execute the _Control trap
asynchronously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

For information on how to use NBP, see the chapter “Name-Binding Protocol (NBP)” in
this book.

You can use the ASPAbortOS function described on page 8-25 to cancel an outstanding
ASPOpenSession function request before it completes execution.

For the maximum sizes of commands and replies that ASP supports on your node, use
the ASPGetParms function, described on page 8-22.

aspBadVersNum –1066 The server cannot support the ASP version number
aspNoMoreSess –1068 The .XPP driver cannot support another ASP session

(the number of sessions that the driver is capable of
supporting is dependent on the machine type)

aspNoServers –1069 There is no server at the specified serverAddr
address, or the server did not respond to the request

aspParamErr –1070 You specified an invalid session reference number, or
the session has been closed

aspServerBusy –1071 The server cannot open another session
reqAborted –1105 The ASPOpenSession function call was aborted by an

ASPAbortOS function call
8-12 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

ASPCloseSession 8

The ASPCloseSession function closes the session that you identify.

FUNCTION ASPCloseSession (thePBptr: XPPParmBlkPtr;

 async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

sessRefnum A unique number that the .XPP driver assigned to this session when
you called the ASPOpenSession function to open the session.

DESCRIPTION

To close a single session, you pass the session’s reference number to the
ASPCloseSession function in the sessRefnum field. The session reference number
is the number that the .XPP driver assigns to the session and returns to you in the
sessRefnum field when you open a session using the ASPOpenSession function. The
ASPCloseSession function cancels any function calls that are pending for the session,
closes the session, and calls the attention routine for the session, if there is one, with
an attention code of 0 to indicate that the session is closed.

Note that there are other ways in which a session can be closed: for example, ASP closes
a session when one end of the session fails. A session remains open until it is explicitly
terminated by either the ASP workstation application or the ASP server or until one of
the session’s ends fails or becomes unreachable.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager’s OpenDriver function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .XPP driver reference number.
→ csCode Integer Always closeSess for this function.
→ sessRefnum Integer The session reference number.
ASP Reference 8-13

C H A P T E R 8

AppleTalk Session Protocol (ASP)
ASSEMBLY-LANGUAGE INFORMATION

To execute the ASPCloseSession function from assembly language, call the _Control
trap macro with a value of closeSess in the csCode field of the parameter block. You
must also specify the .XPP driver reference number. To execute the _Control trap
asynchronously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

You can call the ASPCloseAll function, described next, to cancel all active ASP sessions
on your node. Note that you should use the ASPCloseAll function cautiously as
applications and processes other than your own that are running on the same node could
be using ASP sessions.

ASPCloseAll 8

The ASPCloseAll function closes all of the active ASP sessions on the node.

FUNCTION ASPCloseAll (thePBptr: XPPParmBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

DESCRIPTION

To close all of the ASP sessions that are active and maintained by the .XPP driver on
the node, you call the ASPCloseAll function. This function cancels all active requests,
and it invokes the attention routines for any active sessions, if attention routines were
provided. A good use of this function is as a system-level function call to ensure that all
ASP sessions are closed before you close the .XPP driver.

aspParamErr –1070 You specified an invalid session reference number,
or the session has been closed

aspSessClosed –1072 The .XPP driver is in the process of closing down
the session

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .XPP driver reference number.
→ csCode Integer Always closeAll for this function.
8-14 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager’s OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ASPCloseAll function from assembly language, call the _Control trap
macro with a value of closeAll in the csCode field of the parameter block. You must
also specify the .XPP driver reference number. To execute the _Control trap asynchro-
nously, include the value ,ASYNC in the operand field.

RESULT CODES

Sending Commands and Writing Data From the Workstation to the Server 8

After you open a session, you can send a sequence of commands or a variable-size block
of data across the session to the server. ASP returns to your ASP workstation application
replies to the commands from the server end of the session. This section describes the
ASPUserCommand function that you use to send commands to the server and the
ASPUserWrite function that you use to send data.

ASPUserCommand 8

The ASPUserCommand function sends a command that you define from the workstation
to the server across a session between them. ASP does not interpret the command syntax
or execute the command; it simply transfers the command to the ASP server.

FUNCTION ASPUserCommand (thePBptr: XPPParmBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

aspParamErr –1070 You specified an invalid session reference number,
or the session has been closed

aspSessClosed –1072 The .XPP driver is in the process of closing
down the session
ASP Reference 8-15

C H A P T E R 8

AppleTalk Session Protocol (ASP)
Parameter block

Field descriptions

cmdResult The ASP command result, consisting of 4 bytes of data returned by
the server. The ASP client application defines the contents of the
command result field. For example, AFP defines this field to specify
the result of the AFP command. This field is valid if no system-level
error is returned in the ioResult field.

sessRefnum The reference number assigned to this session that the
ASPOpenSession function returned when you called it to open
the session.

aspTimeout The time in seconds after which ASP is to retry to send the command
across the session. You cannot specify the number of retries, just the
time between them. ASP will retry to transmit the command until
either it succeeds or the session is closed.

cbSize The size in bytes of the buffer that contains the command that
ASP is to send to the sever. The command buffer size must not
exceed the value of aspMaxCmdSize, which the ASPGetParms
function returns.

cbPtr A pointer to a buffer containing the command that ASP is to send
to the server.

rbSize On input, the size in bytes of the buffer that you allocated to contain
the command reply that you expect to receive from the server. On
return, the size in bytes of the reply data that was actually returned.

rbPointer A pointer to the buffer for the command reply.
ccbStart The beginning of the memory for the command control block (CCB)

that the .XPP driver is to use. The memory allocated for the CCB
must not exceed the maximum of 150 bytes for this function. The
CCB is an array that is part of the .XPP parameter block.

DESCRIPTION

You use the ASPUserCommand function to send a user command across an ASP session.
You pass to the ASPUserCommand function a pointer to a variable-size command block
that contains the command data to be sent to the ASP server. The command data must
adhere to a format defined by a higher-level protocol that is built on top of the ASP

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
← cmdResult LongInt The ASP command result.
→ ioRefNum Integer The .XPP driver reference number.
→ csCode Integer Always userCommand for this function.
→ sessRefnum Integer The session reference number.
→ aspTimeout Byte The retry interval in seconds.
→ cbSize Integer The command block size.
→ cbPtr Ptr A pointer to the command block.
↔ rbSize Integer The reply buffer and reply size.
→ rbPointer Ptr A pointer to the reply buffer.
← ccbStart Array The beginning of memory for the CCB.
8-16 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

server, such as the AppleTalk Filing Protocol (AFP). The command data requests the
server to perform a particular function and return a reply consisting of a variable-size
block of data and a command result. Some examples of the types of commands that you
can send are

■ a request to open a particular file on a file server (The server would return a small
amount of data for this request.)

■ a request to read a range of bytes from a device (The server might send a multiple-
packet reply to this request.)

ASP delivers the commands in the same sequence that you send them. ASP does not
interpret the command data or in any way participate in executing the command’s
function. It simply conveys the command data, included in a higher-level format, to
the server end of the session and returns the command reply to your ASP workstation
application. The command reply consists of a 4-byte command result returned in the
cmdResult field and a variable-size command reply returned in the reply buffer that
you supply. The higher-level protocol that is the client of ASP defines the content and
use of the command result. A command result error is returned in the cmdResult field.
All other types of errors are returned in the function’s parameter block ioResult field.
These error codes report the following error conditions:

■ system-level errors returned by the .XPP driver indicating, for example, that the
driver is not open or that a particular system call is not supported

■ .XPP driver errors indicating, for example, that the session is not open

■ AppleTalk errors returned from the underlying AppleTalk protocols

■ an ASP-specific error returned from an ASP server, for example, in response to a failed
ASPOpenSession function

Figure 8-3 on page 8-18 shows how these errors are reported.

The .XPP driver uses the memory at the end of the XPP parameter block defined as a
CCBStart array as an internal command control block (CCB). To ensure that the
function executes successfully, you can specify the maximum size for this array as
indicated in particular for the function that uses it.

You can minimize the amount of memory that is used for the CCB in the queue element.
To do this, you should understand how ASP uses this memory. ASP uses the CCB to
build data structures, including parameter blocks and buffer data structures (BDS), that
it needs in order to make function calls to the .ATP driver. (See the chapter “AppleTalk
Transaction Protocol [ATP]” in this book for information on ATP and buffer data
structures.) The exact size of the memory that ASP needs for the CCB depends on the
size of the replies that you expect from the server, and in the case of the ASPUserWrite
function, the size of the data to be written. For the ASPUserCommand, ASPUserWrite,
and ASPGetStatus functions, ASP must set up a BDS to hold the reply information.
The number of entries in the BDS that ASP creates is equal to the size of the reply buffer
divided by 578 (the maximum number of data bytes per ATP response packet), rounded
up. A BDS cannot exceed eight elements. In addition to a BDS, ASP uses the CCB
memory for the queue element to call the .ATP driver.
ASP Reference 8-17

C H A P T E R 8

AppleTalk Session Protocol (ASP)
Figure 8-3 Error reporting in ASP

You can use the following equations to determine the minimum size of a CCB for a
function that includes a reply buffer (rbSize):

bdsSize = MIN (((rbSize DIV 578) + 1),8) * bdsEntrySz

ccbSize = ioQElSize + 4 + bdsSize

For functions, such as ASPUserWrite, ASP must create an additional BDS and queue
element to use in sending the write data to the server. You can use the following equa-
tions to determine the minimum size of a CCB for an ASPUserWrite function; these
equations take into account the reply buffer (rbSize) and write data size (wdSize):

wrBDSSize = MIN (((wdSize DIV 578) + 1),8) * bdsEntrySz

wrCCBSz = (2 * ioQElSize) + 4 + bdsSize + wrBDSSize

Note that bdsEntrySz is equal to 12 and ioQelSize is equal to 50.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager’s OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ASPUserCommand function from assembly language, call the _Control
trap macro with a value of userCommand in the csCode field of the parameter block.
You must also specify the .XPP driver reference number. To execute the _Control trap
asynchronously, include the value ,ASYNC in the operand field.

ASP client

command result

ASP server

ASP server

error

ASP workstation

System error

XPP error

AppleTalk error

ioResult field

AppleTalk error

cmdResult field

ASP client

command result
8-18 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

RESULT CODES

ASPUserWrite 8

The ASPUserWrite function transfers data from the workstation to the server across a
specific session.

FUNCTION ASPUserWrite (thePBptr: XPPParmBlkPtr;

 async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

cmdResult The ASP command result consisting of 4 bytes of data returned by
the server. The ASP client application defines the contents of the
command result field. For example, AFP defines this field to specify
the result of the AFP command. This field is valid if no system-level
error is returned in the ioResult field.

aspBufTooSmall –1067 The reply data exceeds the size of the reply buffer; the
.XPP driver will fill the buffer and truncate the data

aspParamErr –1070 You specified an invalid session reference number, or
the session has been closed

aspSessClosed –1072 The .XPP driver is in the process of closing down
the session

aspSizeErr –1073 The size of the command block exceeds the maximum
size of aspMaxCmdSize

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
← cmdResult LongInt The ASP command result.
→ ioRefNum Integer The .XPP driver reference number.
→ csCode Integer Always userWrite for this function.
→ sessRefnum Integer The session reference number.
→ aspTimeout Byte The retry interval in seconds.
→ cbSize Integer The command block size.
→ cbPtr Ptr A pointer to command blocks.
↔ rbSize Integer The reply buffer size and reply size.
→ rbPointer Ptr A pointer to the reply buffer.
↔ wdSize Integer The write data size.
→ wdPtr Ptr The write data pointer.
← ccbStart Array The beginning of memory for the CCB.
ASP Reference 8-19

C H A P T E R 8

AppleTalk Session Protocol (ASP)
sessRefnum The reference number of the session that you want to use to transfer
data. The session reference number is the unique number that the
.XPP driver assigned to this session when you opened the session
by calling the ASPOpenSession function.

aspTimeout The time in seconds after which ASP is to retry to send data across
the session.

cbSize The size in bytes of the command data that ASP is to transfer across
the session.

cbPtr A pointer to the buffer containing the command data to be
transferred.

rbSize On input, the size in bytes of the buffer that you allocated to contain
the command reply that you expect to receive from the server. On
return, the size in bytes of the reply data that was actually returned.

rbPointer A pointer to the buffer for the reply data.
wdSize On input, the size in bytes of the of the write data that the

command is to send. On return, the size in bytes of the write data
that was actually sent.

wdPtr A pointer to the buffer containing the data to be written.
ccbStart The beginning of the memory for the command control block (CCB)

that the .XPP driver is to use. The maximum size of this block
is 296 bytes. The CCB is an array that is part of the .XPP
parameter block.

DESCRIPTION

The ASPUserWrite function allows you to transfer a variable-size block of data to the
server end of the ASP session and receive a reply. If you have previously called the
ASPUserCommand function to send a command that directs the ASP server to open a
file, you can call the ASPUserWrite function to write data to the file.

The .XPP driver uses the memory at the end of the XPP parameter block defined as
a CCBStart array as an internal command control block (CCB). To ensure that the
function executes successfully, you can specify the maximum size for this array as
indicated in particular for the function that uses it. If you want to limit the amount
of memory used for the CCB, you can specify the minimum amount of memory
required for this array.

A command result error is returned in the cmdResult field. All other types of errors
are returned in the function’s parameter block ioResult field. Error reporting for
the ASPUserWrite function is the same as for the ASPUserCommand.
8-20 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager’s OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ASPUserWrite function from assembly language, call the _Control
trap macro with a value of userWrite in the csCode field of the parameter block. You
must also specify the .XPP driver reference number. To execute the _Control trap
asynchronously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

To send a command to the server to direct it to perform a prerequisite action before you
use the ASPUserWrite command to write data, use the ASPUserCommand function,
described on page 8-15. To determine the minimum amount of memory required for the
CCB or to find out more about the possible types of error conditions for which errors are
returned and how these error results are reported, see the description of the
ASPUserCommand function.

Obtaining Information About ASP’s Maximum Capacities and the Status of the Server8

This section describes the ASPGetParms function that you can use to determine how
many concurrent ASP sessions can run on your node and the maximum amount of data
that you can send and receive across a session. Before you open an ASP session, you
should call the ASPGetParms function to determine the maximum sizes of commands
and replies that ASP supports on your node.

This section also describes the ASPGetStatus function that you can use to obtain server
status information without opening a session with the server.

aspBufTooSmall –1067 The reply data exceeds the size of the reply buffer;
the .XPP driver will fill the buffer and truncate
the data

aspParamErr –1070 You specified an invalid session reference number,
or the session has been closed

aspSessClosed –1072 The .XPP driver is in the process of closing
the session

aspSizeErr –1073 The size of the command block exceeds the
maximum size of 296 bytes
ASP Reference 8-21

C H A P T E R 8

AppleTalk Session Protocol (ASP)
ASPGetParms 8

The ASPGetParms function returns the maximum size of the data that you can send and
receive across an ASP session and the maximum number of concurrent ASP sessions that
the .XPP driver running on your node supports.

FUNCTION ASPGetParms (thePBptr: XPPParmBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

aspMaxCmdSize The maximum size in bytes of a command that you can send to
the server.

aspQuantumSize The maximum size in bytes of the data that you can either request
ASP to transfer to the server in an ASPUserWrite function call or
receive from the server in a command reply.

numSesss The number of concurrent ASP sessions that the .XPP driver
supports on your node.

DESCRIPTION

The ASPGetParms function returns information about the data capacity of an ASP
session that you need to know to send commands using the ASPUserCommand and
ASPUserWrite functions and write data using the ASPUserWrite function. It also
tells you how many concurrent ASP sessions your node supports. You do not need to
establish a session before you call the ASPGetParms function.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager’s OpenDriver function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .XPP driver reference number.
→ csCode Integer Always getParms for this function.
← aspMaxCmdSize Integer The maximum size of command data.
← aspQuantumSize Integer The maximum data size.
← numSesss Integer The number of sessions.
8-22 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

ASSEMBLY-LANGUAGE INFORMATION

To execute the ASPGetParms function from assembly language, call the _Control trap
macro with a value of getParms in the csCode field of the parameter block. You must
also specify the .XPP driver reference number. To execute the _Control trap asynchro-
nously, include the value ,ASYNC in the operand field.

RESULT CODES

ASPGetStatus 8

The ASPGetStatus function returns status information about the server whose internet
socket address you provide.

FUNCTION ASPGetStatus (thePBptr: XPPParmBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

aspTimeout The time in seconds after which ASP is to retry to obtain
information about the status of the server whose address
you provide.

aspRetry The number of times ASP is to retry to obtain the server status
information.

serverAddr The internet socket address of the server about which you want
status information.

rbSize On input, the size in bytes of the buffer that you allocated to contain
the reply that you expect to receive from the server. On return, the
size in bytes of the reply (status) data that was actually returned.

noErr 0 No error

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .XPP driver reference number.
→ csCode Integer Always getStatus for this function.
→ aspTimeout Byte The retry interval in seconds.
→ aspRetry Byte The number of retries.
→ serverAddr AddrBlock The server socket address.
↔ rbSize Integer The reply buffer and reply size.
→ rbPtr Ptr A pointer to the reply buffer.
← ccbStart Array The beginning of memory for the CCB.
ASP Reference 8-23

C H A P T E R 8

AppleTalk Session Protocol (ASP)
rbPtr A pointer to the buffer for the reply data.
ccbStart The beginning of the memory for the command control block (CCB)

that the .XPP driver is to use. The memory allocated for the CCB
must not exceed the maximum of 150 bytes.

DESCRIPTION

You can use the ASPGetStatus function to obtain service status information about a
server without opening a session between your application and that server. ASP does not
impose any structure on the status block. The protocol above ASP defines the structure.
The .XPP driver uses the memory at the end of the XPP parameter block defined as
a CCBStart array as an internal command control block (CCB). To ensure that the
function executes successfully, you can specify the maximum size for this array as
indicated in particular for the function that uses it. If you want to limit the amount of
memory used for the CCB, you can specify the minimum amount of memory required
for this array.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager’s OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ASPGetStatus function from assembly language, call the _Control
trap macro with a value of getStatus in the csCode field of the parameter block.
You must also specify the .XPP driver reference number. To execute the _Control
trap asynchronously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

To determine the minimum amount of memory required for the CCB, refer to the
description of the ASPUserCommand function on page 8-15.

aspBufTooSmall –1067 The reply data exceeds the size of the reply buffer; the
.XPP driver will fill the buffer and truncate the data

aspNoServer –1069 There was no response from the server whose address
you specified as the value of serverAddr
8-24 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

Canceling an ASP Request to Open a Session 8

This section describes the ASPAbortOS function that you can use to cancel a pending
request to open a session.

ASPAbortOS 8

The ASPAbortOS function cancels a specific pending request to open an ASP session
function.

FUNCTION ASPAbortOS (thePBptr: XPPParmBlkPtr;

 async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

abortSCBPointer
A pointer to the session control block (SCB) that you passed to the
ASPOpenSession function that you want to cancel.

DESCRIPTION

The ASPAbortOS function cancels a single call to the ASPOpenSession function if that
function has not yet completed execution. You identify the request to be canceled by
passing the ASPAbortOS function the pointer to the original session control block that
you specified to open the session.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter to
this function. You can obtain the driver reference number by calling the Device
Manager’s OpenDriver function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .XPP driver reference number.
→ csCode Integer Always abortOS for this function.
→ abortSCBPointer Ptr A pointer to the session control block.
ASP Reference 8-25

C H A P T E R 8

AppleTalk Session Protocol (ASP)
ASSEMBLY-LANGUAGE INFORMATION

To execute the ASPAbortOS function from assembly language, call the _Control trap
macro with a value of abortOS in the csCode field of the parameter block. You must
also specify the .XPP driver reference number. To execute the _Control trap asynchro-
nously, include the value ,ASYNC in the operand field.

RESULT CODES

SEE ALSO

For information on the session control block, see the description of the
ASPOpenSession function on page 8-9.

cbNotFound –1102 Specified SCB was not found (there is no outstanding
open session function call with this SCB)
8-26 ASP Reference

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

Summary of ASP 8

Pascal Summary 8

Constants 8

CONST

{.XPP driver unit and reference number}

xppUnitNum = 40; {XPP unit number}

xppRefNum = -41; {XPP reference number}

{command codes for ASP}

openSess = 255; {open session}

closeSess = 254; {close session}

userCommand = 253; {user command}

userWrite = 252; {user write}

getStatus = 251; {get server status}

getParms = 249; {get parameters for session}

abortOS = 248; {cancel open session request}

closeAll = 247; {close all open sessions}

{miscellaneous}

xppLoadedBit = 5; {XPP bit in PortBUse}

scbMemSize = 192; {size of memory for SCB}

Data Types 8

Address Block Record

TYPE AddrBlock =

PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}

END;
Summary of ASP 8-27

C H A P T E R 8

AppleTalk Session Protocol (ASP)
XPP Parameter Block for ASP

XPPPrmBlkType = (...XPPPrmBlk,ASPAbortPrm,ASPSizeBlk...);

XPPSubPrmType = (ASPOpenPrm,ASPSubPrm);

XPPEndPrmType = (...ASPEndPrm);

TYPE XPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

cmdResult: LongInt; {command result (ATP user bytes)}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {call command code}

CASE XPPPrmBlkType OF

ASPAbortPrm:

(abortSCBPtr: Ptr); {SCB pointer for AbortOS}

ASPSizeBlk:

(aspMaxCmdSize: Integer; {maximum size of data for commands}

 aspQuantumSize:Integer; {maximum size of data for request }

{ commands and receive replies}

 numSesss: Integer); {number of concurrent sessions }

{ for your node}

}

XPPPrmBlk:

(sessRefnum: Integer; {offset to session refnum}

 aspTimeout: Byte; {timeout for ATP}

 aspRetry: Byte; {retry count for ATP}

CASE XPPSubPrmType OF

ASPOpenPrm:

(serverAddr: AddrBlock; {server address block}

 scbPointer: Ptr; {SCB pointer}

 attnRoutine: Ptr); {attention routine pointer}

ASPSubPrm:

(cbSize: Integer; {command block size}

cbPtr: Ptr; {command block pointer}

rbSize: Integer; {reply buffer size}

rbPtr: Ptr; {reply buffer pointer}
8-28 Summary of ASP

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

CASE XPPEndPrmType OF

ASPEndPrm:

(wdSize: Integer; {write data size}

wdPtr: Ptr; {write data pointer}

ccbStart: ARRAY[0..295] OF Byte))); {beginning of command control }

{ block}

 END;

XPPParmBlkPtr = ^XPPParamBlock;

Routines 8

Opening and Closing ASP Sessions

FUNCTION ASPOpenSession (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

FUNCTION ASPCloseSession (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

FUNCTION ASPCloseAll (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

Sending Commands and Writing Data From the Workstation to the Server

FUNCTION ASPUserCommand (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

FUNCTION ASPUserWrite (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

Obtaining Information About ASP’s Maximum Capacities and the Status of the Server

FUNCTION ASPGetParms (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

FUNCTION ASPGetStatus (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

Canceling an ASP Request to Open a Session

FUNCTION ASPAbortOS (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

C Summary 8

Constants 8

enum { /*.XPP driver unit and reference */

/* number*/

xppUnitNum = 40, /*XPP unit number*/

xppRefNum = -41}; /*XPP reference number*/
Summary of ASP 8-29

C H A P T E R 8

AppleTalk Session Protocol (ASP)
enum { /*command codes for ASP*/

openSess = 255, /*open session*/

closeSess = 254, /*close session*/

userCommand = 253, /*user command*/

userWrite = 252, /*user write*/

getStatus = 251, /*get status*/

getParms = 249, /*get parameters*/

abortOS = 248, /*cancel open session request*/

closeAll = 247}; /*close all open sessions*/

enum { /*miscellaneous*/

xppLoadedBit = 5, /*XPP bit in PortBUse*/

scbMemSize = 192}; /*size of memory for SCB*/

Data Types 8

Address Block Record

struct AddrBlock {

short aNet; /*network name*/

unsigned char aNode; /*node name*/

unsigned char aSocket; /*socket number*/

};

XPP Parameter Block for ASP

#define XPPPBHeader\

QElem *qLink; /*reserved*/\

short qType; /*reserved*/\

short ioTrap; /*reserved*/\

Ptr ioCmdAddr; /*reserved*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

long cmdResult; /*command result (ATP user bytes)*/\

short ioVRefNum; /*reserved*/\

short ioRefNum; /*driver reference number*/\

short csCode; /*command code*/

typedef struct {

XPPPBHeader

short sessRefnum; /*offset to session refnum*/

char aspTimeout; /*timeout for ATP*/

char aspRetry; /*retry count for ATP*/
8-30 Summary of ASP

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

short cbSize; /*command block size*/

Ptr cbPtr; /*command block pointer*/

short rbSize; /*reply buffer size*/

Ptr rbPtr; /*reply buffer pointer*/

short wdSize; /*write data size*/

Ptr wdPtr; /*write data pointer*/

char ccbStart[296]; /*CCB memory allocated for */

/* beginning of command control */

/* block*/

}XPPPrmBlk;

typedef struct {

XPPPBHeader

short sessRefnum; /*offset to session refnum*/

char aspTimeout; /*timeout for ATP*/

char aspRetry; /*retry count for ATP*/

AddrBlock serverAddr; /*server address block*/

Ptr scbPointer; /*SCB pointer*/

Ptr attnRoutine; /*attention routine pointer*/

}ASPOpenPrm;

typedef ASPOpenPrm *ASPOpenPrmPtr;

typedef struct {

XPPPBHeader

Ptr abortSCBPtr; /*SCB pointer for ASPAbortOS*/

}ASPAbortPrm;

typedef struct {

XPPPBHeader

short aspMaxCmdSize; /*maximum size of data for commands*/

short aspQuantumSize; /*maximum size of data for request */

/* commands and receive replies*/

short numSesss; /*number of concurrent sessions */

/* for your node*/

}ASPGetparmsBlk;

Routines 8

Opening and Closing ASP Sessions

pascal OSErr ASPOpenSession (ASPOpenPrmPtr thePBptr, Boolean async);

pascal OSErr ASPCloseSession (XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr ASPCloseAll (XPPParmBlkPtr thePBptr, Boolean async);
Summary of ASP 8-31

C H A P T E R 8

AppleTalk Session Protocol (ASP)
Sending Commands and Writing Data From the Workstation to the Server

pascal OSErr ASPUserCommand (XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr ASPUserWrite (XPPParmBlkPtr thePBptr, Boolean async);

Obtaining Information About ASP’s Maximum Capacities and the Status of the Server

pascal OSErr ASPGetParms (XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr ASPGetStatus (XPPParmBlkPtr thePBptr, Boolean async);

Canceling an ASP Request to Open a Session

pascal OSErr ASPAbortOS (XPPParmBlkPtr thePBptr, Boolean async);

Assembly-Language Summary 8

Constants 8

Offsets in User Bytes

aspCmdCode EQU 0 ;offset to command field

aspWSSNum EQU 1 ;WSS number in OpenSessions

aspVersNum EQU 2 ;ASP version number in OpenSessions

aspSSSNum EQU 0 ;SSS number in OpenSessReplies

aspSessID EQU 1 ;session ID (requests & OpenSessReply)

aspOpenErr EQU 2 ;OpenSessReply error code

aspSeqNum EQU 2 ;sequence number in requests

aspAttnCode EQU 2 ;attention bytes in attentions

Offsets in ATP Data Part

aspWrBSize EQU 0 ;offset to write buffer size

 ; (WriteData)

aspWrHdrSz EQU 2 ;size of data part

Command Codes (csCodes)

openSess EQU 255 ;open session

closeSess EQU 254 ;close session

userCommand EQU 253 ;user command

userWrite EQU 252 ;user write
8-32 Summary of ASP

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

getStatus EQU 251 ;get status

afpCall EQU 250 ;AFP command

getParms EQU 249 ;get parameters

abortOS EQU 248 ;abort open session request

closeAll EQU 247 ;close all open sessions

ASP Commands

aspCloseSess EQU 1 ;close session

aspCommand EQU 2 ;user command

aspGetStat EQU 3 ;get status

aspOpenSess EQU 4 ;open session

aspTickle EQU 5 ;tickle

aspWrite EQU 6 ;write

aspDataWrite EQU 7 ;writeData (from server)

aspAttention EQU 8 ;attention (from server)

Miscellaneous

aspVersion EQU $0100 ;ASP version number

maxCmdSize EQU atpMaxData ;maximum command block size

quantumSize EQU atpMaxData*atpMaxNum ;maximum reply size

tickleInt EQU 30 ;tickle interval (secs)

tickleTime EQU tickleInt*60*4 ;tickle timeout (ticks)

xppLoadedBit EQU atpLoadedBit+1 ;XPP loaded bit number in

; PortBUse

Data Structures 8

XPP Parameter Block Common Fields for ASP Routines

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 cmdResult long pointer to attention routine
22 ioVRefNum word reserved
24 ioRefNum word driver reference number
Summary of ASP 8-33

C H A P T E R 8

AppleTalk Session Protocol (ASP)
ASPOpenSession Parameter Block

ASPCloseSession Parameter Block

ASPCloseAll Parameter Block

ASPUserCommand Parameter Block

ASPUserWrite Parameter Block

ASPGetParms Parameter Block

26 csCode word command code; always openSess
28 sessRefnum word session reference number
30 aspTimeout byte retry interval in seconds
31 aspRetry byte number of retries
32 serverAddr long server internet socket address
36 scbPointer pointer pointer to session control block
40 attnRoutine long pointer to attention routine

26 csCode word command code; always closeSess
28 sessRefnum word session reference number

26 csCode word command code; always closeAll

18 cmdResult long ASP command result
26 csCode word command code; always userCommand
28 sessRefnum word session reference number
30 aspTimeout byte retry interval in seconds
32 cbSize word command block size
34 cbPtr pointer command block pointer
38 rbSize word reply buffer and reply size
40 rbPtr pointer pointer to reply buffer
50 ccbStart record start of memory for CCB

18 cmdResult long ASP command result
26 csCode word command code; always userWrite
28 sessRefnum word session reference number
30 aspTimeout byte retry interval in seconds
32 cbSize word size of command block
34 cbPtr pointer pointer to command block
38 rbSize word reply buffer size and reply size
40 rbPtr pointer pointer to reply buffer
44 wdSize word size of write data
46 wdPtr pointer pointer to write data
50 ccbStart record start of memory for CCB

26 csCode word command code; always getParms
28 aspMaxCmdSize word maximum size of command block
30 aspQuantumSize word maximum data size
32 numSesss word maximum number of sessions
8-34 Summary of ASP

C H A P T E R 8

AppleTalk Session Protocol (ASP)

8
A

ppleTalk S
ession P

rotocol (A
S

P
)

ASPGetStatus Parameter Block

ASPAbortOS Parameter Block

Result Codes 8

26 csCode word command code; always getStatus
30 aspTimeout byte retry interval in seconds
31 aspRetry byte number of retries
32 serverAddr long server internet socket address
38 rbSize word reply buffer and reply size
40 rbPtr pointer pointer to reply buffer
50 ccbStart record start of memory for CCB

26 csCode word command code; always abortOS
28 abortSCBPtr pointer pointer to session control block

noErr 0 No error
aspBadVersNum –1066 The server cannot support the ASP version number
aspBufTooSmall –1067 The reply data exceeds the size of the reply buffer; the

.XPP driver will fill the buffer and truncate the data
aspNoMoreSess –1068 The .XPP driver cannot support another ASP session

(the number of sessions that the driver is capable of
supporting is dependent on the machine type)

aspNoServers –1069 There is no server at the specified serverAddr address,
or the server did not respond to the request

aspParamErr –1070 You specified an invalid session reference number, or the
session has been closed

aspServerBusy –1071 The server cannot open another session
aspSessClosed –1072 The .XPP driver is in the process of closing down the session
aspSizeErr –1073 The size of the command block exceeds the maximum size

of aspMaxCmdSize
cbNotFound –1102 Specified SCB was not found (there is no outstanding open

session function call with this SCB)
reqAborted –1105 The ASPOpenSession function call was aborted by an

ASPAbortOS function call
Summary of ASP 8-35

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	AppleTalk Session Protocol (ASP)
	About ASP
	ASP Reference
	Data Structures
	XPP Parameter Block for ASP

	Routines
	Opening and Closing ASP Sessions
	Sending Commands and Writing Data From the Worksta...
	Obtaining Information About ASP’s Maximum Capaciti...
	Canceling an ASP Request to Open a Session

	Summary of ASP
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

