CHAPTER 3

Name-Binding Protocol (NBP)

This chapter describes the Name-Binding Protocol (NBP) that you can use to make your
process or application available to other processes or applications across the network.
This chapter also describes how you can use NBP to obtain the addresses of other
processes and applications on the network.

This chapter uses the term entity to refer to processes and applications that run on an
AppleTalk network. You use NBP in conjunction with another protocol that allows you
to send and receive data. For example, you can register your entity with NBP and then
use a transport protocol such as ADSP to communicate with other entities; ADSP opens
a socket for your entity to use and assigns that socket number to the entity. Your entity
registers an NBP name in conjunction with this socket number.

You should read this chapter if you want to

» register an entity with NBP to make it available for other network entities to contact
» obtain another entity’s address so that you can contact it

= obtain the NBP names and internet socket addresses of all registered entities whose
NBP names match your partial specified name

For an overview of the Name-Binding Protocol and how it fits within the AppleTalk
protocol stack, read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. For a description
of the Name-Binding Protocol specification, see Inside AppleTalk, second edition.

About NBP

NBP allows you to bind a name to the internal storage address for your entity and
register this mapping so that other entities can look it up. Applications can display NBP
names to users and use addresses internally to locate entities. When you register your
entity’s name and address pair, NBP validates its uniqueness.

An entity name consists of three fields: object, type, and zone. The value for each of
these fields can be an alphanumeric string of up to 31 characters. The entity name is not
case sensitive. You specify the value for the object and type fields.

The object field typically identifies the user of the system, or the system itself, in the case
of a server. Applications commonly set this value to the owner name, which the user
specifies through the Sharing Setup control panel.

The type field generally identifies the type of service that the entity provides, for
example, “Mailbox” for an electronic mailbox on a server. Entities of the same type can
find one another and identify potential partners by looking up addresses based on the
type portion of the name alone.

The zone field identifies the zone to which the node belongs. You do not specify this
value; when you register your process, you specify an asterisk (*) for this field. NBP
interprets the asterisk to mean the current zone or no zone, in the case of a simple
network configuration not divided into zones.

About NBP 3-3

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

The mapping of names to addresses that NBP maintains is important for AppleTalk
because the addressing numbers that AppleTalk uses are not fixed. AppleTalk assigns
an address dynamically to a node when the node first joins the network and whenever
the node is rebooted. Because of this, the address of a node on an AppleTalk network
can change from time to time. Although a network number corresponds to a particular
wire and the network number portion of an address is relatively stable, the socket
number that is assigned to an entity is usually randomly generated. (For an overview
of AppleTalk addresses and the addressing scheme, see the chapter “Introduction to
AppleTalk” in this book.) Although NBP is not a transport protocol, that is, you do not
use it to send and receive data, NBP is a client of DDP. Figure 3-1 shows NBP and its
underlying protocols.

Figure 3-1 The Name-Binding Protocol and the underlying AppleTalk protocols

=g

NBP

LAP Manager

HQI@H@

NBP provides network entities with access to current addresses of other entities. The
name part of an NBP mapping is also important in identifying and locating an entity on
the network. The NBP entity name is different from the application name. An application
can display entity names to users and look up addresses based on names.

For example, an entity name can include a portion that identifies that entity type. An
application can request NBP to return the names of all of the registered entities of a
certain type, such as a particular type of game. The application can then display those
entity names to a user to allow the user to select a partner. When the user selects

an entity name, the application can request NBP to return the address that is mapped to
the entity name.

About NBP

CHAPTER 3

Name-Binding Protocol (NBP)

When you register your entity with NBP, it is made visible to other entities throughout
the network. A network entity that is registered with NBP is referred to as a network-
visible entity. A mail server application is an example of a network-visible entity. When
a mail server is registered with NBP, workstation clients with mailboxes can access the
mail server program to send and receive mail.

A server application might call NBP to register itself at initialization time so that its
clients can access the server when they come online. However, a game application
might register itself when a user launches it so that partner applications of the same
type can locate it, then remove its entry from the NBP names directory when the user
quits the application.

You use the NBP routines to register your entity so that other entities can find it and

to retrieve the addresses of other entities with which you want to communicate. You
specify an entity name that adheres to a defined format and register that name with
NBP in conjunction with the socket number that your entity uses. NBP then makes your
entity’s complete address available to other entities. To retrieve the address of another
entity that is registered with NBP, you supply that entity’s NBP name. You can retrieve
the addresses of more than one entity by using wildcards instead of a fully qualified
NBP name.

Although you register your entity’s NBP name in association with the socket that it uses,
NBP maintains an entry that contains your entity’s complete internet socket address. The
internet socket address, also called the internet address, includes the socket number, the
node ID, and the network number. All network-visible entities on an internet are socket
clients, which means that each one is associated with a socket. Each socket has a unique
number, and every entity has a unique internet socket address that identifies it. The
socket number part of the internet address ensures that data intended for an entity is
delivered to that particular entity.

The link-access protocol dynamically assigns a unique node ID to each node when it
joins the network. When the user reboots the system, sometimes the same node ID is
available and sometimes a new node ID is assigned. The network number is the number
of the network to which the node is directly connected, and it remains the same as

long as the node is physically connected to that network. NBP fills in the node ID

and the network number in a names table entry. You don’t supply these parts of the
internet address.

NBP maintains a names table in each node that contains the name and internet address
of each registered entity in that node. Each name and address pair is called a tuple.
When you register your process with NBP, you provide a names table entry. NBP builds
its names table on a node from the entries that entities supply.

The NBP routines include a procedure, NPBSet NTE, that you can use to fill in a names
table entry that is in the format that NBP expects. The NPBSet NTE procedure takes the
name and the socket ID that you specify and builds a names table entry in the buffer that
you provide. (For information on using NPBSet NTE, see “Registering Your Entity With
NBP” beginning on page 3-7.)

About NBP 3-5

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

To form a names table for a node, NBP connects together as a linked list the names table
entries of all the registered entities on that node. The collection of names tables on all the
nodes in an internet is known as the NBP names directory. Figure 3-2 shows a number
of nodes on a network, each with its own names table; each names table contains an
entry for each registered entity on its node.

Figure 3-2 The NBP names table on each node, collectively forming an NBP names directory
NBP names NBP names NBP names
table table table

Whenever a node receives an NBP lookup request, NBP searches through its names table
for a match and, if it finds a match, returns the information to the requester.

Using NBP

3-6

This section describes how you can use NBP to

= set up a names table entry for your entity and register your entity’s name and address
pair with NBP for other entities to access

= look up an address based on a name
= confirm a name and address that you already have
= remove your entity’s name and address from the NBP names directory

= cancel a pending NBP request

The .MPP driver implements the NBP protocol. Your application should check to ensure
that the .MPP driver is already loaded on the system running your application before it
attempts to call NBP. If the driver is not already open, your application should open it by

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

calling the Device Manager’s OpenDr i ver function. The following example shows how
to open the MPP driver.

BEG N
nyErr := OpenDriver('.MP , nppRef Nunj; {open . MPP driver}
|F myErr <> noErr THEN DoErr (nyErr); {check and handl e }

{ error}

For more information on determining if the .MPP driver is open and opening the
AppleTalk drivers, see the chapter “AppleTalk Utilities” in this book.

Your application can have multiple concurrent active NBP requests. For example,

your application can perform a number of PRegi st er Nane, PLookupNane and

PConf i r mMNane requests concurrently. The maximum number of concurrent requests

is machine dependent. You can use the PGet Appl eTal kI nf o function to determine
the maximum number of concurrent NBP requests supported by the MPP driver

on the node running your application. For information about the PGet Appl eTal kil nf o
function, see the chapter “AppleTalk Utilities” in this book.

All of the NBP functions use parameter blocks to hold input and output values. Whether
you execute a function synchronously or asynchronously, you must not alter the contents
of the parameter block until after the NBP function that uses it completes the operation.
In effect, the parameter block belongs to the NBP function until the function completes
execution. (For a discussion of synchronous and asynchronous execution, see the chapter
“Introduction to AppleTalk” in this book.) When the operation completes, you can either
reuse the memory allocated for the parameter block or release it.

In addition to the parameter block used for the function, the memory that you allocate
for any records and buffers whose pointers you pass to NBP through a parameter block
field must also be nonrelocatable until the function completes execution. When the
operation completes, you can reuse these data structures or release the memory that you
allocated for them.

To allocate nonrelocatable memory, you can use the Memory Manager’s NewPt r or
NewPt r Sys function. If you use NewHandl e instead, you need to lock the memory. For
more information about these functions, see Inside Macintosh: Memory.

Registering Your Entity With NBP

You register your entity with NBP to make its services available to other entities through-
out the network. Once the entity is registered, other entities can look up its name and
address pair based on its name or a part of that name.

Your process can register itself with several names all associated with the same socket.

To register itself, your entity calls two NBP routines:

= the set names table entry (NBPSet NTE) procedure, which prepares the names
table entry

= the register name (PRegi st er Nanme) function, which provides NBP with a pointer to
the names table entry so that NBP can register the entry on the node

Using NBP 3-7

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

Setting Up a Names Table Entry

The NBPSet NTE procedure creates a names table entry in the format that Figure 3-4 on
page 3-9 shows. You associate an NBP entity name with the socket number assigned to
your entity.

When you create the names table entry, you provide NBP with the socket number that
your entity uses. This is the socket ID that was assigned to your entity when it opened
a socket.

Figure 3-3 shows a complete internet socket address belonging to an entity and the entity
name that is associated with the address.

Figure 3-3 The internet socket address and entity name of an application

3-8

Internet socket address

ol Network number Node ID Socket
- number
Entity name

Peggy:SurfPaint@GraphicsGroup

Along with the individual fields of the name and the socket number, you pass

NBPSet NTE a pointer to a buffer that is 108 bytes long. You create a record of type
NarresTabl eEnt ry as the buffer to be used for the names table entry. When you
register your entity, NBP uses the buffer that you pass it as the actual names table entry
for that entity; it does not make a copy of the buffer. NBP links the NanesTabl eEnt ry
record that you provide to other names table entries on the node to create a names
table for that node. For this reason, memory that you allocate for the buffer must be
nonrelocatable.

Figure 3-4 shows the structure of the names table entry record.

Notice that the first field in the NanmesTabl eEnt r y record is a pointer to the next entry
in the linked list. NBP maintains the value of this field. You do not supply this value.
However, you can get a pointer to the first entry in the names table on the node

where the entity is running by calling the PGet Appl eTal kI nf o function. For informa-
tion about the PGet Appl eTal kI nf o function, see the chapter “AppleTalk Utilities” in
this book.

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Figure 3-4 Names table entry record format
Bytes
—
Pointer to next entry 4
Internet address ——
Network number 4
Node ID 1
- Socket number 1
Reserved 1
. Length of object name 1
Z Object name (ASCII) Variable
length
Length of type name 1
Name of network-)
visible entity T ASCII Variable
Z ype name (.) length
Length of zone name 1
Zone name (ASCII) Variable
length
—

Registering a Names Table Entry

After you create the names table entry using NBPSet NTE, you register it by calling the
PRegi st er Nane function. When you call PRegi st er Narre, NBP fills in the network
number and node ID for the names table entry; because these values are the same for all
entities on the node, you do not need to supply them.

Before you call the PRegi st er Nane function, you must supply values for the function’s
parameter block input fields. These fields are i nt er val , count, entityPtr, and

veri f yFl ag. If you execute the function asynchronously, you must also supply a value
for the i oConpl et i on field. After you call the PRegi st er Nane function, you must not
alter the contents of the parameter block until the function completes execution, and you
must not modify or manipulate the names table entry until you remove it from the NBP
name and address pair directory.

You set the parameter block’s ent i t yPt r field to the names table entry’s pointer. For
released software, you should always set the ver i f yFl ag field to a nonzero number.
This directs NBP to check throughout the network to determine that the name you want
to register is unique. Ensuring that a name is unique avoids the occurrence of problems
that can arise when two entities are registered with the same name. If the entity name is
already registered for another entity, the PRegi st er Name function result indicates that
the name is a duplicate by returning a function result of nbpDupl i cat e.

Using NBP 3-9

(dgN) 1020101d Buipuig-aueN ‘

3-10

CHAPTER 3

Name-Binding Protocol (NBP)

You can specify how many times NBP should attempt to verify the name’s uniqueness
by assigning a value to the count field. You can control how long NBP waits between
each check by assigning a value to the i nt er val field.

The interval and count parameters are both 1 byte long, which limits them to a value
within the range of 0 to 255 ($300-$FF). However, you should not specify a value of 0
(which is equivalent to 256) for the retransmit interval; the task will never be executed if
you do.

You measure intervals in 8-tick units. You can use this equation to determine how long in
ticks a function will take to complete:

Ti meToConpl etel nTicks := count * interval * 8;

Avalue of 7 for the i nt er val field is usually sufficient (7 x 8 = 56 ticks equals approxi-
mately 1 second). A retry count of 5 is usually sufficient. However, on a large network,
base the interval value on the speed of the network. Base the retry count on how likely it
is for a particular kind of device to catch or miss the NBP lookup request and how many
devices of this kind are on the network.

Some kinds of devices are more likely to receive the NBP lookup request than are others.
For example, the AppleTalk ImageWriter has a dedicated processor on the LocalTalk
option card to handle AppleTalk processing. A dedicated processor is likely to be
available to receive an NBP lookup request, so the count for a device of this type can be
relatively low. However, most Macintosh computers and LaserWriter printers depend on
the system’s shared processor to handle all processing, so the count for these kinds of
devices should be higher. On a network with slow connections, for example, one that
uses a modem bridge, you should increase the interval.

You can use different values for different types of devices. You can store these values in a
preferences resource so that you can easily change them to correspond to changes in the
network. For example, you could include values such as the following for these devices:

Device Interval Count
AppleShare $07 $05
AppleTalk ImageWriter $07 $02
LaserWriter $0B $05

You pass to the PRegi st er Nane function a pointer to a parameter block and a Boolean
value indicating if the function is to be executed asynchronously or synchronously. If
you set the async Boolean parameter to TRUE, you must either provide a completion
routine or set the i oConpl et i on field value to NI L, in which case, your process must
poll the parameter block’s i oOResul t field to determine when the function completes
the operation. For a discussion of synchronous and asynchronous execution, see the
chapter “Introduction to AppleTalk” in this book.

Listing 3-1 shows a segment of code that registers an application with NBP. First the code
allocates nonrelocatable memory for the names table entry. Then the code calls

NBPSet NTE to set up the names table entry in the format that the PRegi st er Nanme
function expects.

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Next, the code assigns values to the input fields of the parameter block to be used for
the PRegi st er Nane function. The code doesn’t assign values to the i oRef Numand
csCode fields because these field values are filled in by the PRegi st er Name function’s
glue code in the MPW interface.

Notice that the code assigns to the ent i t yPt r field the nt ePt r pointer to the buffer
that the code passed to the NBPSet NTE function. After it sets up the parameter block,
the code makes a synchronous call to the PRegi st er Nane function to register the
names table entry. If the PRegi st er Nanme function returns an error, the code releases
the nonrelocatable memory that it allocated for the names table entry.

Listing 3-1 Registering an application with NBP

FUNCTI ON MyRegi st er Name (entityCbject: Str32; entityType: Str32;

VAR

socket: Integer; VAR ntePtr: Ptr): OSErr;

nppPB: MPPPar anBl ock;
result: OSErr;

BEG N
ntePtr := NewPtrSys(sizeof (NanmesTabl eEntry));
IF ntePtr = NIL THEN
BEG N
result := MenError; {return nmenory error}
ntePtr := NL;
END
ELSE
BEG N

{Build the names table entity.}
NBPSet NTE(ntePtr, entityObject, entityType, '*', socket);
W TH nmppPB DO

BEG N
interval := $0F; {reasonabl e values for the }
count := $03; { interval and retry count}
entityPtr := ntePtr; {pointer to NanesTabl eEntry}
verifyFlag : = Byte(TRUE); {ensure that name is unique}
END;
result := PRegi sterNane(@ppPB, FALSE);{register the nane}
IF (result <> noErr) THEN
BEG N
Di sposPtr(ntePtr); {if error, release nenory}
ntePtr := NL;
END;

END;
My/Regi sterNane : = result;

END;

Using NBP 3-11

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

Handling Names Table Entry Requests

In addition to providing services that let you register an entity name and socket address
for your process, NBP lets you look up addresses of other entities based on a name,
confirm that a process whose entity name and address you already have is still registered
with NBP and that the address is correct, remove your process’s name and address from
the names table when you no longer want to make the entity available, and cancel a
pending request. You use

the NBPSet Ent i t y procedure to prepare an entity name in the format required by
the NBP functions

the PLookupNane function to retrieve another entity’s address based on the entity’s
complete NBP name, or to retrieve the addresses of multiple entities that match an
NBP name that includes wildcards

the NBPExt r act function to read a retrieved address from the return buffer
the PConf i r mNane function to verify a name and address

the PRenpveNane function to remove your process’s name and address from the
NBP names directory

the PKi | | NBP function to cancel a request to register, confirm, or look up a names
table entry if the function was called asynchronously and it has not already been
executed

Preparing an Entity Name

To prepare an entity name using NBPSet Ent i t y, you allocate a buffer that is at least
99 bytes long. You can allocate a record of type Ent i t yNane for this buffer. You pass
NBPSet Ent i t y a pointer to the buffer along with the three parts of the name (object,
type, and zone), and NBPSet Ent i t y writes the entity name to the buffer in the
format that the PLookupNane, PConf i r mNane, and PRenpveNane functions require.
Figure 3-5 shows the format of the entity name record.

Figure 3-5 Entity name record format
Bytes
Length of object name 1
. Variable
Z Object name (ASCII) / length
Length of type name 1
Variable
Z Type name (ASCII) length
Length of zone name 1
Zone name (ASCII) Variable
length

3-12 Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

For the PConf i r mNanme and PRenpveNane functions, you must specify explicit values
for the nbpQhj ect, nbpType, and nbpZone parameters. However, you can specify
wildcards for these parameters for PLookupNane.

Looking Up a Name

You can use the PLookupNane function to look up the address of a particular entity
whose NBP name you know. You can also use the PLookupNane function to find the
addresses of more than one entity whose NBP names match a partial name that includes
wildcards.

If you want to retrieve the address of a particular entity, you assign to theent i t yPtr
field of the parameter block a pointer to a fully qualified entity name that you provided
using NBPSet Ent i t y. You create a buffer to hold the name and address that
PLookupNare returns and set the parameter block’s return buffer pointer (r et Buf f Pt r)
field to this buffer’s pointer. Because the data is packed and each tuple takes a maximum
of 104 bytes, to look up a particular name you need to set the return buffer size

(ret Buf f Si ze) field to the buffer size of 104 bytes. Figure 3-6 shows the format of

the record for a tuple that PLookupNane returns.

Figure 3-6 Tuple returned by the PLookupNare function

Bytes
—
Network number 2
Internet address —— Node 1D 1
L Socket number 1
Reserved 1
. Length of object name 1
Z Object name (ASCII) Variable
length
Length of type name 1
Name of network- — Variable
visible entity Z Type name (ASCI)) / length
Length of zone name 1
Zone name (ASCII) Variable
length
—

If you want only one name and address pair returned, you set the maximum number of
matches (maxToGet) field to 1. When you call the function asynchronously, you must
assign to the i oConpl et i on field a pointer to your completion routine or set this field
to NI L. For more information about executing routines synchronously or asynchro-
nously, see the chapter “Introduction to AppleTalk” in this book.

Using NBP 3-13

(dgN) 1020101d Buipuig-aueN ‘

3-14

CHAPTER 3

Name-Binding Protocol (NBP)

If you want to obtain the addresses of other instances of the same type of entity that are
running on other nodes in the network, you can look up the addresses of these entities
by specifying wildcards. In this case, you specify a type field value and wildcards for the
object and zone fields.

Table 3-1 shows the wildcards that you can use to control the kind of matches that you
want NBP to return.

Table 3-1 NBP wildcards

Character Meaning

= All possible values. You can use the equal sign (=) alone instead of
specifying a name in the object or type field.

= Any or no characters in this position. You can use the double tilde (=) to
obtain matches for object or type fields. For example, pa=l matches pal,
paul, paper ball, and so forth. You can use only one double tilde in any
string. Press Option-X to type the double tilde character on a Macintosh
keyboard. If you use the double tilde alone, it has the same meaning as
the equal sign (=).

NOTE Any node not running AppleTalk Phase 2 drivers will not recognize this character.

This zone. You can use the asterisk (*) in place of the name of the zone to
which this node belongs.

For example, if you want to retrieve the names and addresses of all the mailboxes in the
same zone as one in which your process is running, you can set the entity name object
field to the equal sign (=), the type field to Mai | box, and the zone field to the asterisk (*).
The PLookupNane function will return the entity names and internet addresses of all
mailboxes in that zone excluding your own entity’s name and address.

You can specify how thorough the lookup should be by defining the number of times
that NBP should broadcast the lookup packets and the time interval between these
retries. To do this, you assign values to the parameter block’s count and i nt er val
fields. See the discussion on how to determine these values in the section “Registering a
Names Table Entry” beginning on page 3-9.

You must also create a buffer large enough to hold all of the tuples for the matches that
NBP returns. (See Listing 3-3 on page 3-17.) You assign the buffer’s pointer to the
parameter block’s r et Buf f Pt r field and the buffer’s size in bytes to the r et Buf f Si ze
field. Allow 104 bytes for each match. You set the maximum number of matches for NBP
to return as the value of the naxToGet field.

The PLookupNarme function keeps track of the number of matches it writes to the return
buffer each time it receives a returned packet containing one or more matches, and it
updates the number of matches returned (numGot t en) field after it returns each match.
Because PLookupName maintains nunCot t en, you can start reading the names and
addresses in the buffer and storing them or displaying them for the user before the
function completes execution.

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

A single lookup request or retry can return more than one match in a reply packet. When
this happens, the PLookupNarre function will return as many of the matches that the
packet contains as will fit in the buffer. In cases such as this, you will find that the
number of tuples that PLookupName writes to the return buffer may exceed the
maximum number of matches to be returned as specified by maxToGet . When this
occurs you can assume that there may be additional matches that did not fit in the buffer
or additional reply packets containing matches that PLookupNane did not process. To
receive all the matches, you should increase the size of the buffer and the naxToGet
number, and call the PLookupNane function again.

If the buffer is too small to accommodate all of the returned matches in a packet,
the PLookupNane function returns a function result of nbpBuf f Ovr. In any case,
the nunGot t en field always indicates the actual number of tuples returned in the
buffer. (See also “PLookupName” beginning on page 3-30 for more information
about this function.)

The code in Listing 3-2 assigns values to the fields of the parameter block to be used for
the PLookupNane function call. The value t heEnt i t y points to a packed entity-name
record that you prepared using NBPSet Ent i t y. This is the name that will be looked
for. The value r et ur nBuf f er Pt r points to the buffer where PLookupNane will return
any matches that it finds. The buffer must be able to hold the number of matches
specified by the input value of ent i t yCount ; each match is 104 bytes long. On return,
entityCount contains the number of matches that the PLookupNanme function found
and returned in the buffer pointed to by ret ur nBuf f er Pt r. The PLookupNarne
function’s glue code in the MPW interface fills in the values for the i oRef Numand
csCode fields.

Listing 3-2 Calling PLookupNarre to find matches for an entity name

FUNCTI ON MyLookupNane (theEntity: EntityNane; VAR entityCount: Integer;
returnBufferPtr: Ptr): OSErr;
CONST
kTupl eSi ze = 104, {si zeof (Addr Bl ock) + a one-byte enunerator + }
{ sizeof (EntityNane)}
VAR
nppPB: MPPPar anBl ock;

BEG N
W TH nppPB DO
BEG N

i nterval := $0F; {reasonabl e values for the }

count := $03; { interval and retry count}

entityPtr := @heEntity; {pointer to the entity nane to }
{ look for}

retBuffPtr := returnBufferpPtr; {pointer to the buffer for the }
{ tuples}

Using NBP 3-15

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

Ret Buf f Si ze := entityCount * kTupl eSi ze;
{return buffer size}
maxToGet : = entityCount; {the nunber of entities that the }
{ return buffer can hol d}
END;
MyLookupNane : = PLookupName(@ppPB, FALSE);
{look up the entity nane}
entityCount := nppPB. numGotten,;
{return the nunber of natches found}
END;

The tuples in the buffer are in the format used in the NBP names table, as shown in
Figure 3-6 on page 3-13. Because data is packed, the object, type, and zone names in this
format are of arbitrary length; you cannot use Pascal to read these tuples. You can use
the NBPEXt r act function to read tuples from the buffer.

Extracting a Name From a List of Returned Names

After NBP returns the matches to your buffer, you need to extract the match or matches
that you want to use. You can use the NBPExt r act function to read a name and address
pair from the return buffer that you supplied to PLookupNane. Before you call

NBPEXxt r act, you need to allocate memory for two buffers: one buffer that is at least
102 bytes long to hold the name part of the tuple and another buffer that is 4 bytes long
to hold the address. You pass the NBPExt r act function pointers to these buffers. The
NBPExt r act function unpacks the name and address data and writes it to the buffers
that you supply.

You also pass NBPExt r act a pointer to the buffer containing the returned tuples; this is
the pointer that you assigned to the PLookupNane function’s r et Buf f Pt r parameter
block field. For the num nBuf parameter, you specify the number of tuples in the return
buffer; this is the value that the PLookupNane function returned in the nunGot t en
parameter block field. Counting the first returned tuple as one and following in sequence
to the value of nunCot t en, you identify which name and address pair you want to
extract as the value of the whi chOne parameter. You can use the NBPExt r act function
in a loop that varies the value of the whi chOne parameter (ent i t yCount in the
following code example) from 1 to the total number of tuples in the list to extract all the
names in the list.

Listing 3-3 shows an application-defined procedure, DoMyLookupNarre, that allocates a
buffer to hold the matches that the PLookupName function returns; the MyLookupNane
function, shown in Listing 3-2 on page 3-15, calls the PLookupNarre function. The
DoMyLookupNane procedure calls the MyLookupNane function.

If the MyLookupNane function returns a result code of noEr r, then the code calls the
NBPEXxt r act function to read the matches that are in the buffer and write them to

the application’s buffer with an application-defined routine, \yAddToMat chLi st ; the
listing does not show the MyAddToMat chLi st routine. After the matches are extracted,
the code disposes of the return buffer.

3-16 Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Listing 3-3 Creating a buffer to hold name matches found, then using NBPExt r act to read

the matches

PROCEDURE DoMyLookupNarre;

CONST
kTupl eSi ze = 104; {si zeof (Addr Bl ock) + a one-byte enunerator + }
{ sizeof (EntityNane)}
kMaxMat ches = 100; {nunber of matches to get}
VAR
result: CSErr;
returnBufferPtr: Ptr;
theEntity: Enti t yName;
entityCount: I nt eger;
i ndex: I nt eger;
entityAddress: Addr Bl ock;
BEG N

returnBufferPtr := NewPtr(kMaxMat ches * Longl nt (kTupl eSi ze));
|F returnBufferPtr <> NIL THEN

BEG N

{Create a packed entity nane.}

END;
END;

NBPSet Entity(@heEntity, '=", 'AFPServer', '*');
entityCount := kMaxMatches; {maxi mum nunber of natches we want}
result := MyLookupNane(theEntity, entityCount, returnBufferPtr);
IF result = noErr THEN
{Extract the matches and add themto the match list.}

FOR index := 1 TO entityCount DO

I F NBPExtract(returnBufferPtr, entityCount, index, theEntity,
entityAddress) = noErr THEN
AddToMat chLi st (theEntity, entityAddress)
Di posPtr(returnBufferPtr); {rel ease the nenory}

Confirming a Name

If you know the name and address of an entity, and you only want to confirm that the
tuple is still registered with NBP and that the address hasn’t been changed, you should
call the PConf i r mName function instead of calling PLookupNane.

The PConf i r mMName function is faster than PLookupNane because NBP can send a
request packet directly to the node based on the address that you supply rather than
having to broadcast lookup packets throughout the network to locate the names table
entry based on the entity name alone.

The code in Listing 3-4 sets up the parameter block to be used for the PConf i r mNare
function and calls PConf i r mName to verify that the name and address still exist, and

Using NBP 3-17

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

that the address is unchanged. If the application is using a different socket,
PConf i r mName returns a function result of nbpConf Di f f and gives the new
socket number in the parameter block’s newSocket field.

Listing 3-4 Confirming an existing NBP name and address

FUNCTI ON MyConfirmNane (theEntity: EntityName; entityAddress: AddrBl ock;

VAR

VAR socket: Integer): OSErr;

nppPB: MPPPar anBl ock;

BEG N

W TH nmppPB DO

BEG N

interval := $0F; {reasonabl e values for the interval }
count := $03; { and retry count}

entityPtr := @heEntity; {entity nanme to | ook for}

confirmAddr := entityAddress; {entity's network address}

MyConf i rmName : = PConfirmName(@ppPB, FALSE);

socket

END;

3-18

: = nppPB. newSocket ; {return the socket nunber, which is }

{ the new socket nunber if }
{ PConfirmNane's result is }
{ nbpConfDiff}

Removing an Entry From the Names Table

After you close the socket that your process uses or when you no longer want to make
the process available throughout the network, you remove the names table entry from
the node on which it resides using the PRenpveNane function.

There are two ways to remove a names table entry:

» For the first method, you use the NBPSet Ent i t y procedure to put the entity name of
an existing registered entity into the structure that NBP requires. Then you specify the
pointer to this record as the value of the enti t yPt r field of the parameter block.

= For the second method, you provide the PRenmoveNane function with a pointer to the
names table entry record that you used to register the name.

The PRenpveNane function removes the entry from the node’s names table unless the
name is no longer registered, in which case, PRenbveNane returns a function result of
nbpNot Found. An entity name may not be included in the node’s names table if, for
example, the request to register the name had been canceled by the PKi | | NBP function
before the PRegi st er Name function used to register the name was executed.

The code in Listing 3-5 shows how to remove a names table entry using PRenbveNane.
The PRenpveNane function’s glue code fills in the i o0Ref Numand csCode values. The
code in Listing 3-5 provides the pointer to the names table entry record that was used to

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

register the name; it assigns this value to the ent i t yPt r field of the parameter block
used for the PRemoveNane function call. (The code in Listing 3-1 on page 3-11 created the
names table entry record.) If the application-defined MyRenoveNane function returns a
function result of noEr r, the code disposes of the memory block pointed to by nt ePt r.

Listing 3-5 Removing an NBP names table entry

FUNCTI ON MyRenpveNane (ntePtr: Ptr): OSErr;
VAR

nppPB: MPPPar anBl ock;

result: OSErr;
BEG N

nppPB. entityPtr := Ptr(ORD4(ntePtr) + 9);

{the entity nane is at offset 9 in the NTE}
result := PRenoveNane(@ppPB, FALSE);{renove the nane}
IF (result = noErr) THEN

Di sposPtr(ntePtr); {rel ease the nenory}
MyRenmoveNane : = result;
END;

Canceling a Request

You can use the PKi | | NBP function to cancel a request to register, look up, or confirm
a names table entry if the function was called asynchronously and it has not already
been executed.

When you call PRegi st er Nane, PLookupNane, or PConf i r mNanme, NBP calls the
Device Manager, which places your request in the MPP driver queue with other
requests waiting to be executed. To queue the request, the Device Manager places

a pointer to the function’s parameter block in the .MPP driver queue. You assign this
pointer to the PKi | | NPB parameter block’s queue element (nKi | | QEl) field.

If the function request that you want to cancel is not in the queue, PKi | | NBP returns
a function result of cbNot Found. If PKi | | NBP cancels the function, it returns a
function result of NoEr r, and the function that it canceled returns a function result
of reqAbort ed.

The code in Listing 3-6 on page 3-20 shows how to cancel a PRegi st er Nane,
PLookupNarre, or PConf i r mName function call. The application-defined MyKi | | NBP
function takes as an input parameter a pointer to the parameter block that was used

to make the PLookupNane, PRegi st er Nane, or PConf i r mNane function call to be
canceled. The code assigns this pointer to the nKi | | QEl field of the parameter block to
be passed to the PKi | | NBP function. The i oRef Numand csCode field values are filled
in by the PKi | | NBP function’s glue code in the MPW interface.

Using NBP 3-19

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

Listing 3-6 Canceling a request to look up a name

FUNCTI ON MyKi | | NBP (requestPBPtr: MPPPBptr): OSErr;

VAR
nppPB: MPPPar anBl ock;
BEG N
nppPB. nKi Il QGBI := Ptr(requestPBPtr);
M/Ki |1 NBP : = PKil | NBP(@ppPB, FALSE);
END;

NBP Reference

This section describes the data structures and routines that are specific to the Name-
Binding Protocol (NBP). The “Data Structures” section shows the Pascal data structures
for the records and the parameter block that the NBP functions use. The “Routines”
section describes the NBP routines.

Data Structures

This section describes the data structures that you use to provide information to and
receive it from NBP.

Address Block Record

The address block record is a data structure of type Addr Bl ock that defines a packed
record that is used to contain an internet socket address. The names table entry record
includes a field that takes a value of this record type.

Addr Bl ock = PACKED RECORD

aNet : I nt eger;

aNode: Byt e;

aSocket : Byt e;
END;

Field descriptions

aNet The network number.
aNode The node ID.
aSocket The socket number.

3-20 NBP Reference

CHAPTER 3

Name-Binding Protocol (NBP)

Names Table Entry Record

The names table entry record is a data structure of type NanesTabl eEnt ry that is used
to hold an NBP names table tuple, consisting of a name and address. Because the object,
type, and zone names in a names table entry are packed data of arbitrary length, you
cannot create this record in Pascal (which requires you to declare the length of character
strings when you define the record). If you are using the NBP Pascal interface, you use
the NPBSet NTE procedure to create a names table entry. For illustration of the names
table record format, see Figure 3-4 on page 3-9.

TYPE
NanmesTabl eEntry =
RECORD
gLi nk: CEl enPtr;
nt eAddr ess: Addr Bl ock;
nt eDat a: PACKED ARRAY[1..100] OF Char;
END;

Field descriptions

gLi nk A pointer to the next names table entry in the names table linked
list that NBP maintains on the node. (This field is used internally
by NBP.)

nt eAddr ess The internet socket address.

nt eDat a The NBP name associated with the entity’s address.

Entity Name Record

The entity name record is a data structure of type Ent i t yName that is used to hold the
NBP name for an entity that is associated with a socket address. Your application looks
up or confirms an address or removes a names table entry based on an entity name.

Because the object, type, and zone names that constitute the entity name in this format
are packed data and of arbitrary length, you cannot create this record in Pascal (which
requires you to declare the length of character strings when you define the record). If you
are using the NBP Pascal interface, you put an existing entity name into the structure
that NBP requires using the NBPSet Ent i t y procedure.

TYPE

EntityNane =

RECORD
obj Str: Str32;
typeStr: Str32;
zoneStr: Str32;

END;

EntityPtr = “EntityNane;

NBP Reference 3-21

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

Field descriptions

obj Str The object part of an entity name. It consists of an alphanumeric
string of up to 31 characters. The object part of the name can be any
valid string; it is commonly used to identify the user of the system.

typeStr The type part of an entity name. It consists of an alphanumeric
string of up to 31 characters. The type part of the name can be any
valid string, but it is commonly used to identify the type of service
that the entity provides.

zoneStr The zone part of an entity name. It consists of an alphanumeric
string of up to 31 characters that identifies the zone to which the
node belongs that is running the process.

The MPP Parameter Block for NBP

The NBP functions use the MPP parameter block defined by the MPPPar anBl ock data
type to pass information to and receive it from the .MPP driver. You use these fields to
specify input values to and receive output values from an NBP function. This section
defines the fields common to all NBP functions, except those that are reserved for
internal use by the MPP driver or not used.

TYPE
MPPPar nlype

(...Regi sterNameParm LookupNanePar m

Confi r mMNanePar m RenmoveNarmeParm Kil |l NBPParm . .);
MPPPBPt r = AMPPPar anBl ock;

MPPPar anBl ock
PACKED RECORD

gLi nk: QEl enPtr; {reserved}

gType: I nt eger; {reserved}

i oTr ap: I nt eger; {reserved}

i oCndAddr : Ptr; {reserved}

i oConpl eti on: ProcPtr; {conpl eti on routine}

i oResul t: OSErr; {result code}

i oNamePtr: StringPtr; {reserved}

i oVRef Num I nt eger; {reserved}

i oRef Num I nt eger; {driver reference nunber}
csCode: I nt eger; {primary command code}

CASE MPPPar nifype OF
Regi st er NanePar m
LookupNanmePar m
Conf i r mMNanePar m
RenmoveNanmePar m

(interval: Byt e; {retry interval}
count : Byt e; {retry count}
entityPtr: Ptr; {pointer to entity nanme or }

{ nanes table el enent}

3-22 NBP Reference

Ki |

END;

Routines

CHAPTER 3

Name-Binding Protocol (NBP)

CASE MPPPar mlype OF
Regi st er NamePar m
(verifyFl ag: Byt e;
filler3: Byte;)
LookupNamePar m
(retBuffPtr: Ptr;

ret Buf f Si ze: I nt eger;
maxToCet : I nt eger;
nunot t en: I nt eger;)

Confi r mMNamePar m

{verify uni queness of name or not}

{pointer to return buffer}
{return buffer size}

{mat ches to get}

{mat ches gotten}

(confirmAddr: AddrBlock; {pointer to entity nane}

newSocket : Byt e;
filler4: Byte);
)
| NBPPar m
(nKi Il CQEI: Ptr;)

{socket nunber}

{pointer to queue elenent to cancel}

The fields for each variant record are defined in the function description that uses

the record.

This section describes the NBP routines. The NBP routines allow you to

» create an NBP names table entry

= register an NBP names table entry with the NBP names directory

= put an existing NBP entity name into the structure that NBP requires for you to look
up, confirm, or remove an existing registered entity name

= look up the address of a network entity based on its NBP name

= read a name and address from a list of pairs that NBP returns

= confirm that a name and address pair is registered with NBP

= remove a registered name from the

= cancel an NBP request

NBP names directory

An arrow preceding a parameter indicates whether the parameter is an input parameter,

an output parameter, or both:

Arrow Meaning
- Input

- Output
- Both

NBP Reference

3-23

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

You can use the PGet Appl eTal ki nf o function to determine the maximum number of
concurrent NBP requests that the MPP driver installed on the system that is running
your process supports. See the chapter “AppleTalk Utilities” for information on the
PGet Appl eTal ki nf o function.

Registering an Entity

This section describes the NBPSet NTE and the PRegi st er Nane routines. You can use
the NBPSet NTE procedure to create an NBP names table entry to be used to register the
name and address of an entity with NBP so that the entity is made visible throughout the
network. You use the PRegi st er Nane function to register a names table entry that you
created through the NBPSet NTE procedure.

NBPSetNTE

3-24

The NBPSet NTE procedure creates a new NBP names table entry to be added to the NBP
names table through the PRegi st er Nane function.

PROCEDURE NBPSet NTE (ntePtr: Ptr; nbpQbject, nbpType, nbpZone: Str 32;
socket: Integer);

ntePtr A pointer to a buffer that you provide that is at least 108 bytes long. The
NBPSet NTE procedure fills this buffer with a names table entry based on
the remaining parameter values that you specify. This buffer should be a
record of type NanesTabl eEnt ry.

nbpCbj ect The object part of the name for the names table entry. This value can be
up to 31 characters long. You cannot use any wildcard characters in this
name. (An object name typically identifies the node and is commonly set
to the Chooser name that the user specified.)

nbpType The type part of the name for the names table entry. This value can be up
to 31 characters long. You cannot use any wildcard characters in this
name. This part of an NBP name usually identifies the type of service to
which the name is assigned.

nbpZone The zone part of the name for the names table entry. You must use an
asterisk (*) for this name, indicating the local zone.

socket The number of the socket that was returned and assigned to your process
when you opened a socket using one of the AppleTalk transport
protocols. The NBP entity name is associated with the socket number that
you specify.

NBP Reference

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

The NBPSet NTE procedure creates a names table entry that you can register with

the NBP names directory using the PRegi st er Nane function. When you call

PRegi st er Nane to register the name, you must provide a pointer to the NBP names
table entry that you created previously.

Because the object, type, and zone names in a names table entry are packed data of
arbitrary length, you cannot create this record in Pascal (which requires you to declare
the length of character strings when you define the record). Use the NBPSet NTE
procedure to create the names table entry.

SPECIAL CONSIDERATIONS

The names table entry that you provide remains the property of NBP once you register it
using PRegi st er Name and until you remove it using the PRenoveNane function. You
can allocate a block of nonrelocatable memory for the names table entry buffer using the
Memory Manager’s NewPt r or NewPt r Sys function.

If instead you use the NewHand! e function to allocate the buffer memory, you must lock
the memory before you call PRegi st er Name to register the name because NBP adds the
actual names table entry to the NBP names table for that node, and the names table entry
remains part of the table until you remove it.

ASSEMBLY-LANGUAGE INFORMATION

The NBPSet NTE procedure is implemented entirely in the MPW interface files. There is
no assembly-language equivalent for this procedure.

SEE ALSO
For the names table entry record format, see Figure 3-4 on page 3-9.
For the NamesTabl eEnt ry data type declaration, see “Data Structures” on page 3-20.
For information on allocating memory, see Inside Macintosh: Memory.
The PRegi st er Name function is described next.
PRegisterName

The PRegi st er Name function adds a unique names table entry to the local node’s NBP
names table.

FUNCTI ON PRegi st er Nanme (thePBptr: MPPPBPtr; async: Bool ean): OSErr;

t hePBptr A pointer to an MPP parameter block.

async A Boolean that indicates whether the function should be executed asyn-
chronously or synchronously. Specify TRUE for asynchronous execution.

NBP Reference 3-25

(dgN) 1020101d Buipuig-aueN -

3-26

CHAPTER 3

Name-Binding Protocol

Parameter block

(NBP)

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t CSErr The function result.

- i oRef Num I nt eger The .MPP driver reference number.

- csCode I nt eger Alwaysr egi st er Nane.

- i nterval Byt e The retry interval.

o count Byt e The retry count.

- entityPtr Ptr A pointer to a names table entry.

. veri fyFl ag Byt e A flag to indicate whether NBP is to verify

Field descriptions
i oConpl etion

i oResul t

i oRef Num
csCode

i nterval

count

entityPtr

verifyFl ag

NBP Reference

NBP names as unique.

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NI L for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the i oConpl et i on field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.
The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function

result of NOEr r as soon as the function begins execution. When

the function completes execution, it sets the i oResul t field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the . MPP command to be executed. The
MPW interface fills in this field.

The retry interval to be used by NBP when it verifies the uniqueness
of the name. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. A value of 7 for
thei nterval field is usually sufficient (7 x 8 = 56 ticks equals
approximately 1 second).

On input, the retry count to be used by NBP when it verifies the
uniqueness of the name. Its value tells the PRegi st er Nane
function how many times to retry. A retry count of 5 is usually
sufficient. On return, the number of times that NBP actually
attempted to verify the uniqueness of the name.

A pointer to a names table entry. You can use the NBPSet NTE
procedure to create a names table entry.You cannot use wildcard
characters in the object name and type name fields of the names
table entry, but you must use an asterisk (*)—indicating the local
zone—for the zone name field.

A flag that determines whether NBP attempts to verify that the
name you are adding to the names table is unique. Set this flag to a
nonzero number to have NBP verify the name. You can set this flag
to zero during program development, but to avoid confusion
caused by duplicate names on a network, you should always set the
veri f yFl ag parameter to a nonzero number in released software.

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

Before another entity can send information to your entity over AppleTalk, it must have
your entity’s internet socket address. Also, for users to be able to select your application,
the entity must be made visible throughout the network.

The PRegi st er Name function adds an entry for a network entity to the node’s NBP
names table, making it possible for a user or another process to locate that entity through
its NBP name (consisting of object, type, and zone names). The process whose name is
registered with NBP is referred to as a network-visible entity.

Because the object, type, and zone names in a names table entry are of arbitrary length,
you cannot create this record in Pascal (which requires you to declare the length of
character strings when you define the record). Use the NBPSet NTE procedure to create
the names table entry. If you execute the function asynchronously and you do not specify
a completion routine, your process can poll the i oResul t field to determine when the
function completes execution.

You can assign any number of names to a single socket. If you use a single socket for
more than one process, you must provide a socket listener.

If you use the PKi | | NPB function to cancel the PRegi st er Nane function and the cancel
request is successful, PRegi st er Name returns a function result of r eqAbor t ed.

SPECIAL CONSIDERATIONS

The names table entry that you provide remains the property of NBP until you use the
PRenoveNane function to remove the entry from the names table. You must allocate a
nonrelocatable block for the names table entry, or lock any relocatable block that you use
for it until you are ready to remove the entry.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PRegi st er Nane function from assembly language, call the _Cont r ol
trap macro with a value of r egi st er Nane in the csCode field of the parameter block.
To execute the _Cont rol trap asynchronously, include the value , ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

noErr 0 No error

nbpDupl i cate -1027 Name already exists

t ooManyReqs -1097 Too many concurrent requests; wait a few minutes, then
try the request again

regAbort ed -1105 Request canceled

NBP Reference 3-27

(dgN) 1020101d Buipuig-aueN -

SEE ALSO

CHAPTER 3

Name-Binding Protocol (NBP)

To create a names table entry, use the NBPSet NTE procedure, described on page 3-24.
For the names table entry record format, see Figure 3-2 on page 3-6.

For the NamesTabl eEnt ry data type declaration, see “Names Table Entry Record” on
page 3-21.

To cancel a name registration request, use the PKi | | NBP function, described on

page 3-38.

For information about socket listeners, see the chapter “Datagram Delivery Protocol
(DDP)” in this book.

Handling Name and Address Requests

This section describes

= the NBPSet Ent i t y procedure, which you can use to put an existing NBP entity name
into the structure that NBP requires for you to look up, confirm, or remove an existing
registered entity name

= the PLookupNane function, which you can use to look up the network address of an
entity, based on the NBP registered name for that entity, or using wildcards

= the NBPExt r act function, which you can use to read a name and address pair from
the buffer containing the list of tuples that PLookupNane returns

= the PConf i r mMName function, which you can use to confirm that a name whose
address you know is still associated with that address, and that the pair is still
registered with the NBP names directory

= the PRenmoveNane function, which you can use to remove a name and address pair
from the NBP names directory when you no longer want to make the service
associated with the tuple available throughout the network

= the PKi | | NBP function, which you can use to cancel requests to NBP

NBPSetEntity

3-28

The NBPSet Ent i t y procedure puts an existing NBP name of a network-visible
entity into the packed-record format that the PLookupNane, PConf i r mNane, and
PRenmpveNane functions require.

PROCEDURE NBPSet Entity (buffer: Ptr;
nbpQbj ect, nbpType, nbpZone: Str32);

buf f er A pointer to a buffer that you provide that is at least 99 bytes long. The

NBPSet Ent i t y procedure fills this buffer with the entity name you
specify in the other three parameters.

NBP Reference

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

nbpObj ect The object part of the registered NBP name. You can specify wildcard
characters in this part of the name only for use with the PLookupNane
function.

nbpType The type part of the registered NBP name. You can use wildcard
characters in this part of the name only for use with the PLookupNarre
function.

nbpZone The zone part of the registered NBP name. You can use wildcard

characters in this part of the name only for use with the PLookupNane
function.

Table 3-1 on page 3-14 describes the wildcard characters that you can specify for the
nbpQbj ect, nbpType, and nbpZone fields for use with the PLookupNane function.

When you call the PRenpbveNane function to remove the name of a network-visible
entity from the NBP names table, or call the PLookupNare or PConf i r mNane function
to look up network-visible entities, you must specify an entity name in the format shown
in Figure 3-5 on page 3-12. (For PRenpveNang, instead of creating the entity-name
record, you can provide a pointer to the names table entry record that you used to
register the name.)

The object, type, and zone names that constitute the entity name in this format are
packed data and of arbitrary length. Therefore, you cannot create this record in Pascal
(which requires you to declare the length of character strings when you define the
record). Use the NBPSet Ent i t y procedure to provide the entity name in the format
that NBP requires.

SPECIAL CONSIDERATIONS

The memory that you allocate for the entity name buffer belongs to NBP until the
function completes execution. You can reuse it or dispose of it after the operation
completes.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The NBPSet Ent i t y procedure is implemented entirely in the MPW interface files. There
is no assembly-language equivalent for this procedure.

The PLookupNane function is described next.

For a discussion of how to use NBPSet Ent i t y, see “Preparing an Entity Name”
beginning on page 3-12.

To confirm that an entity is still registered with NBP, use the PConf i r mNane function,
described on page 3-34.

To remove a registered name from the NBP names table, use the PRenbveNamne function,
described on page 3-36.

NBP Reference 3-29

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

PLookupName

3-30

The PLookupNane function returns the names and addresses of all the network-visible
entities that match a name that you supply, which can include wildcard characters.

FUNCTI ON PLookupNane (thePBptr: MPPPBPtr; async: Bool ean): OSErr;

t hePBpt r A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t OSErr The function result.

> i oRef Num I nt eger The .MPP driver reference number.

- csCode I nt eger Always | ookupNane.

- i nterval Byte The retry interval.

o count Byte The retry count.

- entityPtr Ptr A pointer to an entity name.

- retBuf fPtr Ptr A pointer to the return data buffer.

- ret Buf f Si ze I nt eger The return buffer size in bytes.

- maxToGet I nt eger The maximum number of matches to get.
- nuntott en I nt eger The number of addresses found and returned.

Field descriptions
i oConpl etion

i oResul t

i oRef Num
csCode

i nt erval

NBP Reference

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NI L for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the i oConpl et i on field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of NOErr as soon as the function begins execution. When the
function completes execution, it sets the i oResul t field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the .MPP command to be executed. The
MPW interface fills in this field.

The retry interval to be used by NBP when it looks on the internet
for matching names. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. The retry interval
equals the i nt erval field value x 8 ticks. A value of 7 for the

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

i nterval field is usually sufficient (7 x 8 = 56 ticks equals approxi-
mately 1 second). However, on a large network, you should base
the interval value on the speed of the network and how many
devices of this type you expect to be on the network.

count The retry count to be used by NBP when it looks on the internet
for matching names. Its value specifies the number of times
PLookupNare is to retry the operation. A retry count of 3 or 4 is
usually sufficient. However, on a large network, you should base
the value on how likely it is for the type of device to miss the NBP
request. For example, the AppleTalk ImageWriter has a dedicated
processor on the LocalTalk option card to handle AppleTalk
processing, so the retry count for a device of this type can be low,
whereas most Macintosh systems and LaserWriter printers depend
on their shared processor to handle all system processing, so
a retry count for a device of these types should be higher. The
PLookupNane function decrements this field each time it looks
for names.

entityPtr A pointer to an entity name in the format shown in Figure 3-5 on
page 3-12. You can use the NBPSet Ent i t y procedure to prepare
the entity name record.

retBuffPtr A pointer to a buffer you provide into which the PLookupNane
function puts the names and addresses that it finds. Each matching
tuple takes a maximum of 104 bytes, and you use the maxToGet
field to specify the maximum number of tuples to be returned.

(dgN) 1020101d Buipuig-aueN -

ret Buf f Si ze The size of the buffer you are providing.
max ToGet The maximum number of matches to be returned.
nunCot t en The actual number of matches that PLookupNane returned. The

PLookupNarre function updates this field each time it receives an
NBP returned packet and adds names to the return buffer. If there is
space remaining in the buffer, NBP may return more matches than
the number specified by maxToGet . If nunmGot t en is greater than
or equal to maxToGet , there may be additional matches. In this
case, you should increase the size of the buffer pointed to by

ret Buf f Pt r and call the PLookupNane function again.

Before you can send data to another entity, you must have the network address of
that entity. The PLookupNarre function returns the names and addresses of any
network-visible entities whose names match the entity name you specify. The entity
name can include any of the wildcard characters given in Table 3-1 on page 3-14.

The PLookupNane function completes execution when the number of matches
returned is equal to or greater than the number in the maxToGet field, the function
exceeds the retry count, the buffer overflows, or the request is canceled through the
PKi | | NBP function.

The number of matches returned can be greater than the number specified in the
maxToCet field under the following circumstances: A single lookup request or retry can
return more than one match in a reply packet. If there is space remaining in the buffer

NBP Reference 3-31

CHAPTER 3

Name-Binding Protocol (NBP)

and NBP receives a packet containing multiple matches, PLookupNane will return

as many of the matches as fit in the buffer. If this occurs, you should increase the size
of the buffer and call the PLookupName function again to ensure that you obtain all of
the matches.

If all of the tuples returned in a reply packet do not fit in the buffer, then the function
completes with as many tuples as can fit. Whether NBP returns more or fewer matches
than you specify as the value of maxToGet, the value of nunGot t en reflects the actual
number of tuples that PLookupName writes to the return buffer.

Because the function updates the nunGot t en field each time it receives a returned
packet containing one or more matches and writes those name and address pairs to
the return buffer, you can start reading the names in the buffer and displaying them
for the user before the function completes execution.

The tuples in the buffer are in the format used in the NBP names table, as shown in
Figure 3-6 on page 3-13. Because the object, type, and zone names in this format are
of arbitrary length, you cannot use Pascal to read these tuples. Use the NBPExt r act
function to read tuples from the buffer.

SPECIAL CONSIDERATIONS

Memory used for the entity name record and the return buffer belongs to PLookupNarre
until the function completes execution and must be nonrelocatable.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PLookupName function from assembly language, call the _Cont r ol trap
macro with a value of | ookupNane in the csCode field of the parameter block. To
execute the _Cont r ol trap asynchronously, include the value , ASYNCin the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

RESULT CODES
noErr 0 No error
t ooManyReqs -1097 Too many concurrent requests; wait a few minutes, then
try the request again
regAbort ed -1105 Request canceled
SEE ALSO

To read tuples from the buffer, use the NBPExt r act function, described next.

To create the entity name record, use the NBPSet Ent i t y procedure, described on
page 3-28.

To check that a network-visible entity whose name and address you already know is still
available on the network, use the PConf i r mName function, described on page 3-34.

To cancel a name lookup request, use the PKi | | NBP function, described on page 3-38.

3-32 NBP Reference

CHAPTER 3

Name-Binding Protocol (NBP)

NBPExtract

DESCRIPTION

The NBPExt r act function returns one tuple (entity name and internet address) from the
list of tuples placed in a buffer by the PLookupNane function.

FUNCTI ON NBPExtract (theBuffer: Ptr; num nBuf: |nteger;
whi chOne: | nteger;
VAR abEntity: EntityNane;
VAR addr ess: AddrBl ock): OSErr;

t heBuf f er A pointer to the buffer containing the tuples returned by the
PLookupNane function.

num nBuf The number of tuples returned by the PLookupNane function in the
nunCot t en parameter.

whi chOne The sequence number of the tuple that you want the function to return.
This parameter can be any integer in the range 1 through num nBuf .

abEntity A pointer to a buffer that you provide to hold the name returned by the
function. This buffer must be at least 102 bytes long.

address A pointer to a buffer that you provide to hold the address returned by the
function. The buffer must be at least 4 bytes long.

The NBPExt r act function extracts a name and address pair from the list of tuples that
the PLookupNane function returns. The PLookupNane function returns the names of
network-visible entities in a packed format that you cannot read from Pascal. Use the
NBPExt r act function in a loop that varies the value of the whi chOne parameter from 1
to the total number of tuples in the list to extract all the names in the list.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The NBPExt r act function is implemented entirely in the MPW interface files. There is
no assembly-language equivalent to this procedure.

noErr 0 No error
extractErr -3104 Can’t find tuple in buffer

To look up the name and address of an entity registered with NBPF, use the PLookupNarre
function, described on page 3-30.

For a description of the Ent i t yNanme data type, see “Entity Name Record” on page 3-21.
For a description of the Addr Bl ock data type, see “Address Block Record” on page 3-20.

NBP Reference 3-33

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

PConfirmName

3-34

The PConf i r mNane function confirms that a network-visible entity whose name you
know is still available on the network and that the address associated with the name has

not been changed.

FUNCTI ON PConfirnNane (thePBptr: MPPPBPtr; async: Bool ean): OSErr;

t hePBpt r A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t OSErr The function result.

- i oRef Num I nt eger The .MPP driver reference number.
- csCode I nt eger Always conf i r mNane.

- i nterval Byt e The retry interval.

- count Byt e The retry count.

- entityPtr Ptr A pointer to an entity name.

- conf i r mAddr Addr Bl ock The entity address.

- newSocket Byt e The current socket number.

Field descriptions
i oConpl etion

i oResul t

i oRef Num
csCode

i nt erval

NBP Reference

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NI L for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the MPP driver
ignores the i oConpl et i on field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of NOEr r as soon as the function begins execution. When the
function completes execution, it sets the i oResul t field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the . MPP command to be executed. The
MPW interface fills in this field.

The retry interval to be used by NBP when it looks on the internet
for the entity. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. A value of 7 for
thei nt erval field is usually sufficient (7 x 8 = 56 ticks equals
approximately 1 second).

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

count The retry count to be used by NBP when it looks on the internet for
the entity. The value of count specifies the number of times the
PConf i r mName function is to retry the operation. A retry count of 3
or 4 is usually sufficient. The PConf i r mName function decrements
this field each time it looks for names.

entityPtr A pointer to an entity name that you want to confirm. The entity
name must be in the format that Figure 3-5 on page 3-12 shows.
You can use the NBPSet Ent i t y procedure to create the entity
name record.

confi r mAddr The last known address of the network-visible entity whose
existence you wish to confirm.
newSocket The current socket number of the entity. If the socket number of

the entity has changed, the PConf i r mNane function returns the
new socket number in this field and returns the nbpConf Di f f
result code.

If you already know the name and address of a network-visible entity, but want to
confirm that the name is still registered with NBP and that the address hasn’t changed
before you attempt to send data to it, you can use the PConf i r mName function. If the
address is no longer associated with the name, PConf i r mNane returns a result code
of nbpNoConf i r m indicating that the name may have been removed from the socket.
If the name is assigned to another socket, PConf i r mName returns the current socket
number in the parameter block’s newSocket field and a result code of nbpConf Di f f .
This function generates less network traffic than the PLookupNane function.

SPECIAL CONSIDERATIONS

Memory used for the buffer containing the entity name and the record containing the
entity address belongs to PConf i r mName until the function completes execution.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PConf i r mNane function from assembly language, call the _Cont r ol
trap macro with a value of conf i r mName in the csCode field of the parameter block. To
execute the _Cont r ol trap asynchronously, include the value , ASYNCin the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

NoErr 0 No error

nbpNoConfirm -1025 Name not confirmed

nbpConf Di f f -1026 Name confirmed for different socket

t ooManyReqgs -1097 Too many concurrent requests; wait a few minutes, then
try the request again

r eqAbor t ed -1105 Request canceled

NBP Reference 3-35

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

SEE ALSO
For a description of the Addr Bl ock data type, see “Address Block Record” on page 3-20.
To find the address of a network-visible entity whose name or address you do not
already know, use the PLookupNane function, described on page 3-30.
To cancel a name confirmation request, use the PKi | | NBP function, described on
page 3-38.
PRemoveName
The PRenpveNane function removes a previously registered name from the NBP
names table.
FUNCTI ON PRermoveNane (thePBptr: MPPPBPtr; async: Bool ean): OSErr;
t hePBpt r A pointer to an MPP parameter block.
async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.
Parameter block
. i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t OSErr The function result.
- i oRef Num I nt eger The .MPP driver reference number.
. csCode | nt eger Always r enoveNane.
- entityPtr Ptr A pointer to an entity name.
Field descriptions
i oConpl etion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NI L for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the MPP driver
ignores the i oConpl et i on field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.
i oResul t The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function
result of NOEr r as soon as the function begins execution. When
the function completes execution, it sets the i oResul t field to the
actual result code.
i oRef Num The .MPP driver reference number. The MPW interface fills in
this field.
csCode The command code of the .MPP command to be executed. The
MPW interface fills in this field.
3-36 NBP Reference

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

entityPtr A pointer to the name of the network-visible entity that you wish
to remove from the names table. The name must be in the format
shown in Figure 3-5 on page 3-12. You cannot use any wildcard
characters in the name.

When you close a socket or terminate an application or process that you registered in the
NBP names table as a network-visible entity, you must use the PRenbveNane function
to remove the name from the names table.

To remove the names table entry, you assign to the ent i t yPt r field of the parameter
block a pointer to a fully qualified entity name. The entity name is a packed array of
Pascal strings. Because the object, type, and zone names in this format are of arbitrary
length, you cannot create this record in Pascal (which requires you to declare the length
of character strings when you define the record). You can use the NBPSet Ent i ty
procedure to create this record, or you can provide PRenbveNane with a pointer to the
names table entry record that you used to register the name.

SPECIAL CONSIDERATIONS

Memory used for the buffer containing the entity name belongs to the PRenoveNare
function until the function completes execution and must be nonrelocatable. After you
remove the names table entry, you can reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PRenpveNane function from assembly language, call the _Cont r ol trap
macro with a value of r empveNane in the csCode field of the parameter block. To
execute the _Cont r ol trap asynchronously, include the value , ASYNCin the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

noErr 0 No error
nbpNot Found -1028 Name not found
reqAbor t ed -1105 Request canceled

To create an entity name record of the form required by the PRenoveNane function, use
the NBPSet Ent i t y procedure, described on page 3-28.

NBP Reference 3-37

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

PKilINBP

The PKi | | NBP function cancels NBP function calls to the PLookupNarre,

PRegi st er Name, or PConf i r mNan® function.

FUNCTI ON PKi | | NBP (thePBptr: MPPPBPtr; async: Bool ean): OSErr;

t hePBpt r A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed

asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.

- i oResul t OSErr The function result.

> i oRef Num I nt eger The .MPP driver reference number.

- csCode I nt eger Always ki | | NBP.

- nKi | 1 CEl Ptr A pointer to a queue element.

Field descriptions

i oConpl eti on A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NI L for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the i oConpl et i on field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

i oOResul t The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of NOErr as soon as the function begins execution. When the
function completes execution, it sets the i oResul t field to the
actual result code.

i oRef Num The .MPP driver reference number. The MPW interface fills in
this field.

csCode The command code of the .MPP command to be executed. The
MPW interface fills in this field.

nKi | 1 QEl A pointer to the MPP parameter block for the NBP request you
want to cancel.

DESCRIPTION

3-38

When you call the PLookupNane, PRegi st er Nane, or PConf i r mNane function asyn-
chronously, the Device Manager puts your request in the .MPP driver’s queue with
other requests. If you want to cancel a pending NBP request, you pass a pointer to the
parameter block for that request to the PKi | | NBP function.

NBP Reference

CHAPTER 3

Name-Binding Protocol (NBP)

If the function’s parameter block is in the MPP driver’s queue waiting for the function
to be executed, the PKi | | NBP function deletes the entry from the queue and returns

a function result of noEr r. The function whose parameter block is deleted completes
execution and returns a function result of r eqAbor t ed, indicating that the function
was canceled.

If the function has already been executed, that is, it is no longer in the queue, PKi | | NBP
returns a function result of cbNot Found, indicating that the parameter block for the
function to be canceled was not in the .MPP driver’s queue.

The function also calls the completion routine for the canceled request with the result
code r eqAbort ed (-1105) in the DO register.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PKi | | NBP function from assembly language, call the _Contr ol trap
macro with a value of ki | | NBP in the csCode field of the parameter block. To execute
the _Control trap asynchronously, include the value , ASYNCin the operand field.

To execute this function from assembly language, you must also specify the driver
reference number.

RESULT CODES

noErr 0 No error
cbNot Found -1102 NBP queue element not found

NBP Reference 3-39

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

Summary of NBP

Pascal Summary

Constants

CONST
{.MPP driver unit and reference nunmber}
nppUni t Num = 9; {MPP driver unit nunber}
nppRef Num = -10; {MPP reference nunber}

{csCodes for NBP}

confirmNane = 250; {confirm nane}
| ookupNane = 251; {l ookup nane}
r enoveNane = 252; {renove nanme from nanes tabl e}
regi st er Nane = 253; {register nane in nanes tabl e}
ki | | NBP = 254; {kill outstandi ng NBP request}
Data Types
Address Block Record
Addr Bl ock =
PACKED RECORD
aNet : I nt eger; {networ k nunber}
aNode: Byt e; {node 1D}
aSocket : Byt e; {socket number}
END;

Names Table Entry Record

TYPE NanesTabl eEntry =

RECORD
gLi nk: CEl enPtr; {pointer to next NTE in nanes table}
nt eAddr ess: Addr Bl ock; {pointer to this names table entry}

nt eDat a: PACKED ARRAY[1..100] OF Char;
{nanes table entry}
END;

3-40 Summary of NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Entity Name Record
EntityNane =
RECORD
obj Str: Str32; {obj ect nane}
typeStr: Str32; {type nane}
zoneStr: Str32; {zone nane}
END;

EntityPtr = “EntityNane;

MPP Parameter Block for NBP

MPPPar nily pe = (...Regi sterNaneParm LookupNanmePar m
Confi r mMNanePar m RenoveNanmeParm . .);
TYPE MPPPar anBl ock =
PACKED RECORD

gLi nk: CEl enPtr; {reserved}

gType: I nt eger; {reserved}

i oTr ap: I nt eger; {reserved}

i oCrdAddr : Ptr; {reserved}

i oConpl eti on: ProcPktr; {compl etion routine}

i oResul t: CSErr; {result code}

i oNamePtr: StringPtr; {reserved}

i oVRef Num I nt eger; {reserved}

i oRef Num I nt eger; {driver reference nunber}
csCode: I nt eger; {primary command code}

CASE MPPPar mlfype COF
Regi st er NanePar m
LookupNanmePar m
Confi r mMNamePar m
RenmoveNamePar m

(interval: Byt e; {retry interval}
count : Byt e; {retry count}
entityPtr: Ptr; {pointer to entity name or }

{ nanmes table entry}
CASE MPPPar mlype COF
Regi st er NanePar m

(veri fyFl ag: Byt e; {verify uni queness of nane or not}
filler3: Byte;)
LookupNamePar m
(retBuffPtr: Ptr; {pointer to return buffer}
ret Buf f Si ze: I nt eger; {return buffer size}
maxToGet : I nt eger; {matches to get}
nuntot t en: I nt eger;) {mat ches gotten}

Summary of NBP 3-41

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

Conf i r mNamePar m
(confirmAddr: AddrBlock; {pointer to entity nane}

newSocket : Byt e; {socket nunber}
filler4: Byte);
)
Ki | | NBPPar m
(nKi Il CEI: Ptr;) {pointer to queue elenent to cancel}
END;
MPPPBPt r = AMPPPar anBl ock;
Routines
Registering an Entity
PROCEDURE NBPSet NTE (ntePtr: Ptr; nbpQObject, nbpType, nbpZone: Str32;
socket: Integer);
FUNCTI ON PRegi st er Nane (thePBptr: MPPPBPtr; async: Boolean): OSErr;

Handling Name and Address Requests

PROCEDURE NBPSet Entity (buffer: Ptr; nbpObject, nbpType, nbpZone: Str32);
FUNCTI ON PLookupNane (thePBptr: MPPPBPtr; async: Bool ean): OSErr;
FUNCTI ON NBPExt r act (theBuffer: Ptr; num nBuf: I|nteger; whichOne:

Integer; VAR abEntity: EntityNane; VAR address:
Addr Bl ock): OSErr;

FUNCTI ON PConf i r mName (thePBptr: MPPPBPtr; async: Bool ean): OSErr;
FUNCTI ON PRenpveNane (thePBptr: MPPPBPtr; async: Boolean): OSErr;
FUNCTI ON PKi | | NBP (thePBptr: MPPPBPtr; async: Bool ean): OSErr;
C Summary

Constants

/ *NBP par anet er constants*/

#defi ne MPPi oConpl eti on MPP. i oConpl etion
#def i ne MPPi oResult MPP. i oResult

#defi ne MPPi oRef Num MPP. i oRef Num

#defi ne MPPcsCode MPP. csCode

#defi ne NBPi nterval NBP.interval

#defi ne NBPcount NBP. count

3-42 Summary of NBP

CHAPTER 3

Name-Binding Protocol (NBP)

#define NBPnt QEl Ptr NBP. NBPPtrs. nt CEl Ptr

#define NBPentityPtr NBP. NBPPtrs.entityPtr

#define NBPverifyFl ag NBP. parmverifyFl ag

#def i ne NBPret Buf f Ptr NBP. parm Lookup. retBuffPtr
#defi ne NBPretBuffSize NBP. parm Lookup. retBuffSize
#defi ne NBPmaxToGet NBP. parm Lookup. maxToGet

#def i ne NBPnunfeott en NBP. par m Lookup. nunfzotten
#defi ne NBPconfirmAddr NBP. parm Confirm confirnmAddr
#define NBPnKill QEl NBPKILL.nKill QEl

#def i ne NBPnewSocket NBP. par m Confirm newSocket

enum { /*.MPP driver unit and reference */
/* nunber*/
nppUni t Num = 9, [*.MPP driver unit nunber*/
nppRef Num = -10}; /*MPP reference nunber*/
enum { /*. PP csCodes*/
confi rmName = 250, /*confirm nane*/
| ookupNane = 251, /*1 ookup name*/
r enoveNane = 252, /*renmove nane from nanes tabl e*/
regi st er Nane = 253, /*regi ster nane in nanes table*/
ki | | NBP = 254} ; /*kill outstandi ng NBP request*/
Data Types
Address Block Record
struct AddrBl ock {
short alNet ; /*networ k name*/
unsi gned char aNode; / *node nane*/
unsi gned char aSocket ; / *socket nunber*/

b

t ypedef struct AddrBl ock Addr Bl ock;

Names Table Entry Data Structure

struct {
Ptr gNext ; /*pointer to next nanes table el ement*/
NTE!l ement nt;

} NanesTabl eEntry;

Summary of NBP 3-43

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

Entity Name Record

struct EntityNanme {
Str32 obj Str;
char padl;
Str32 typeStr;
char pad2;
Str32 zoneStr;
char pad3;

b

t ypedef struct
typedef EntityNane *EntityPtr

MPP Parameter Block for NBP

#def i ne MPPATPHeader \

CEl em *qLi nk;
short gType;
short i oTr ap;
Ptr i oCrdAddr ;
ProcPtr i oConpl eti on;
OSEr r i oResul t;
| ong user Dat a;
short reqTl D
short i oRef Num
short csCode;
typedef struct {
MPPATPHeader
} MPPpar ns;
typedef struct {
MPPATPHeader
char i nterval;
char count ;
uni on {
Ptr nt Qel Ptr;
Ptr entityPtr;
} NBPPtrs;
3-44 Summary of NBP

/ *obj ect nane*/

/*Str32's aligned on even word boundari es*/

/*type name*/

/ *zone nane*/

EntityName EntityNane;

/*reserved*/\

/*reserved*/\

/*reserved*/\

/*reserved*/\

/*conpl etion routine*/\
/*result code*/\

/*conmmand result (ATP user
/*request transaction |D*/\
/*driver reference nunber*/\
/[*primary comand code*/

bytes)*/\

[*retry interval */
/*retry count*/

/*pointer to queue element to cancel */

/*pointer to entity nanme or nanes */

/* table entry*/

CHAPTER 3

Name-Binding Protocol (NBP)

uni on {
char veri fyFl ag; /*verify uni qgueness of nane or not*/
struct {
Ptr retBuf fPtr; /*pointer to return buffer*/
short ret Buff Si ze; /[*return buffer size*/
short maxToGet ; /*mat ches to get*/
short nuntot t en; /*mat ches gotten*/
} Lookup;
struct {
Addr Bl ock confirmAddr; /*pointer to entity nane*/
char newSocket ; /*socket nunber*/
} Confirm
} parm
} NBPpar 11s;
struct {
MPPATPHeader
Ptr nkKi | | QEl

/*pointer to queue elenment to cancel */
} NBPKi | | par ns;

uni on Par anBl ockRec {

MPPpar ns MPP; /*general MPP parns*/
NBPpar s NBP; /*NBP cal | s*/
NBPKi | | par s NBPKI LL; /*cancel call to NBP*/

1
t ypedef MPPParanBl ock *MPPPBPt r

Routines

Registering an Entity

pascal void NBPSet NTE (Ptr ntePtr, Ptr nbpObject, Ptr nbpType
Ptr nbpZone, short socket);

pascal OSErr PRegi sterName (MPPPBPtr thePBpt, Bool ean async);

Handling Name and Address Requests

pascal void NBPSetEntity (Ptr buffer, Ptr nbpObject, Ptr nbpType,
Ptr nbpZone);

pascal OSErr PLookupName (MPPPBPt r t hePBptr, Bool ean async);

Summary of NBP

3-45

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

pascal OSErr NBPExtract

pascal OSErr PConfirmNane

pascal OSErr PRenpveNamne

pascal OSErr PKil | NBP

(Ptr theBuffer, short num nBuf, short whi chOne,
EntityNane *abEntity, AddrBl ock *address);

(MPPPBPtr thePBptr, Bool ean async);
(MPPPBPt r t hePBptr, Bool ean async);
(MPPPBPt r t hePBptr, Bool ean async);

Assembly-Language Summary

Constants

Unit Number for the .MPP Driver

nppUni t Num EQU

NBP Symbolic Characters

equal s EQU
NBPW | dCar d EQU
star EQU
NBP Command Codes
regi st er Nane EQU
| ookupRepl y EQU
| ookupNane EQU
confir mNane EQU
r enoveNanme EQU
kil | NBP EQU
NBP Packet

nbp EQU
nbpCont r ol EQU
nbpTCount EQU
nbpl D EQU
nbpTupl e EQU
NBP Tuple Header Offsets
t upl eNet EQU
t upl eNode EQU
t upl eSkt EQU

3-46 Summary of NBP

9

253
242
251
250
252
254

$02

N OO

N

:MPP unit nunber

;W | dcard synbol
;w | dcard synbol
; "This zone" synbol

;register name in nanes table
;used internally

;1 ook up an NBP nane

; confirm nane

;remove nane from nanmes table
; kil outstandi ng NBP request

; DDP protocol type code for NBP
;control code

; tupl e count

i NBP I D

;start of the first tuple

;of fset to network nunber (word)
;offset to node ID (byte)
;of fset to socket number (byte)

CHAPTER 3

Name-Binding Protocol (NBP)

t upl eEnum EQU 4 ;of fset to enunerator (byte)

t upl eNane EQU 5 ;offset to nane part of tuple (byte)
t upl eAddr Sz EQU 5 ;tuple address field size

NBP Packet Types

br Rq EQU 1 ; broadcast request

| kUp EQU 2 ; | ookup request

| kUpRepl y EQU 3 ;1 ookup reply

NBP Names Information Socket (NIS) Number
nis EQU 2 ; NI'S nunber

Maximum Number of Tuples in NBP Packet, Maximum Size of a Tuple Name

t upl eMax EQU 15 ; maxi mum nunber of tuples returned from
; a | ookup request
NBPMaxTupl eSi ze EQU 32 ; maxi mum si ze of a tuple nane

Data Structures

MPP Parameter Block Common Fields for NBP

0 gLi nk long reserved
4 gType word reserved
6 i oTrap word reserved
8 i oCndAddr long reserved
12 i oConpl etion long address of completion routine
16 i oResul t word result code
18 i oNamePt r long reserved
22 i oVRef Num word reserved
24 i oRef Num word driver reference number

PRegisterName Parameter Variant

26 csCode word command code; always r egi st er Nane

28 i nterval byte retry interval

29 count byte retry count

30 entityPtr long names table queue element pointer
(ntQElPtr)

34 verifyFlag byte verify name flag

40 filler byte reserved

Summary of NBP 3-47

(dgN) 1020101d Buipuig-aueN -

CHAPTER 3

Name-Binding Protocol (NBP)

PLookupName Parameter Variant

26 csCode word command code; always | ookupNane
28 i nterval byte retry interval

29 count byte retry count

30 entityPtr long pointer to entity name

34 retBuffPtr long pointer to return data buffer

38 ret Buf f Si ze word size in bytes of return buffer

40 max ToGet word maximum number of matches to get
42 numGot t en word number of matches returned

PConfirmName Parameter Variant

26 csCode word command code; always conf i r miNane

28 i nterval byte retry interval

29 count byte retry count

30 entityPtr long pointer to entity name

34 confi r mAddr long address of names table entry to confirm

38 newSocket byte socket number, if different from specified one
39 filler byte reserved

PRemoveName Parameter Variant

26 csCode word command code; always r enoveNane
28 filler word reserved
30 entityPtr long pointer to entity name

PKilINBP Parameter Variant

26 csCode word command code; always ki | | NBP
28 nKi I QEl long pointer to queue element to remove

Result Codes

noErr 0 No error

nbpNoConfirm -1025 Name not confirmed

nbpConf Di f f -1026 Name confirmed for different socket

nbpDupl i cate -1027 Name already exists

nbpNot Found -1028 Name not found

t ooManyReqs -1097 Too many concurrent requests; wait a few minutes, then try the
request again

cbNot Found -1102 NBP queue element not found

r eqAbort ed -1105 Request canceled

extractErr -3104 Can't find tuple in buffer

3-48 Summary of NBP

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	Name-Binding Protocol (NBP)
	About NBP
	Using NBP
	Registering Your Entity With NBP
	Setting Up a Names Table Entry
	Registering a Names Table Entry

	Handling Names Table Entry Requests
	Preparing an Entity Name
	Looking Up a Name
	Extracting a Name From a List of Returned Names
	Confirming a Name
	Removing an Entry From the Names Table
	Canceling a Request

	NBP Reference
	Data Structures
	Address Block Record
	Names Table Entry Record
	Entity Name Record
	The MPP Parameter Block for NBP

	Routines
	Registering an Entity
	Handling Name and Address Requests

	Summary of NBP
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

