

C H A P T E R 9

9

S
tart M

anager

Start Manager 9

This chapter describes the system initialization and system startup process performed by
the Macintosh computer. It describes the Start Manager, which lets you specify a few
global settings that affect the startup process, and it describes initialization-dependent
code, such as system extensions, that the system runs while starting up the computer.

You should read this chapter if you are developing a device driver or other code that is
installed at some point during the system initialization and startup process, or if you
want to use the Start Manager routines.

This chapter begins with a description of the initialization and startup process
performed on Macintosh computers. It then

■ describes the boot blocks and defines the fields in the boot block header

■ defines global variables that provide timing information

■ discusses the Start Manager routines you can use to identify and set default devices
and to get and set the timeout interval for the startup drive

■ describes how to write a system extension

System Initialization and Startup 9

When a Macintosh computer is first turned on, but before it can load and run an
application, it must go through system initialization and system startup. At system
initialization, the system initialization code located in ROM is executed: memory is
tested and initialized, slot cards are initialized, ROM drivers are installed, device drivers
are located, and more. The next section, “System Initialization,” describes the various
steps included in system initialization. At system startup, the system code that is located
on the startup disk is executed: various software modules are initialized and system
extensions are run. The section “System Startup” on page 9-4 describes various steps
included in system startup.

▲ W A R N I N G

The system initialization and system startup process is not the same for
all Macintosh models. In addition, the system initialization sequence
and system startup sequence listed in this chapter are both subject to
change; therefor use the information in these sections only for
informational purposes. ▲

You should read this section if you provide a system extension that installs software,
such as a device driver or other code, during system initialization or system startup.

System Initialization 9
Initialization on a Macintosh computer begins as soon as the power is first supplied to it.
Built-in hardware circuits initialize the main processor and other ICs and temporarily
alter the memory mapping to make an image of the ROM appear at the location where
RAM normally starts (address 0), while making RAM appear at a location higher in
System Initialization and Startup 9-3

C H A P T E R 9

Start Manager

memory. This mapping scheme allows the startup routines in the initialization code to
obtain critical low-memory vectors. After the initialization code begins executing and
obtains the low-memory vectors, it resets the memory mapping back to normal. For
further details on this process, see the Guide to Macintosh Family Hardware.

The following list summarizes the events that typically take place when the initialization
code in ROM is executed.

IMPORTANT

The system initialization sequence is subject to change; the information
in this section is provided for informational purposes only. ▲

1. Hardware is initialized. The initialization code performs a set of diagnostic tests to
verify functionality of some vital hardware components. If the diagnostics succeed,
the initialization code initializes these hardware components. If diagnostics fail, the
initialization code issues diagnostic tones to indicate the type of hardware failure.
The initialization code determines how much RAM is available and tests it, then
validates the parameter RAM (PRAM). Parameter RAM contains a user’s preferences
for settings of various control panel settings and port configurations.
The initialization code determines the global timing variables, TimeDBRA,
TimeSCCDB, and TimeSCSIDB. (See “Global Timing Variables” on page 9-9 for
more information) and initializes the Resource Manager, Notification Manager,
Time Manager, and Deferred Task Manager.

2. On machines with expansion slots, the initialization code initializes the Slot Manager.
The Slot Manager then initializes any installed cards by executing the primary
initialization code in each card’s declaration ROM. Video expansion cards, including
built-in video, initialize themselves by determining the type of connected monitor,
and then set the display to 1 bit per pixel, and display a gray screen (alternating black
and white dots).

3. The initialization code initializes the Vertical Retrace Manager and Gestalt Manager.
ROM drivers for all built-in functionality are installed in the unit table and initialized.
The initialization code initializes the Apple Desktop Bus (ADB) Manager that then
initializes each ADB device. The initialization code initializes the Sound Manager and
SCSI Manager.

4. The initialization code loads drivers from all on-line SCSI devices.

5. The initialization code chooses the boot device, and calls the boot blocks to begin
initialization of the System Software.

Having initialized the computer’s slots, drivers, and hardware, as well as some of the
Operating System managers, the initialization code dispatches to the startup code,
which immediately begins the startup procedure described in the next section,
“System Startup.”

System Startup 9
System startup begins as soon as the initialization code in ROM transfers control to the
system startup code. The system startup code is responsible for initializing AppleTalk,
9-4 System Initialization and Startup

C H A P T E R 9

Start Manager

9

S
tart M

anager

the debugger, and system extensions. System extensions are covered in detail in the
section “Writing a System Extension” beginning on page 9-10.

This section covers the startup sequence for Macintosh computers running System 7 or
later; it then describes the boot blocks and defines the boot block header.

The following list summarizes the events that take place when the system startup code
is executed.

IMPORTANT

The system startup sequence is subject to change; the information in this
section is provided for informational purposes only. ▲

1. The system startup code looks for an appropriate startup device. It first checks the
internal 3.5-inch floppy drive. If a disk is found, it attempts to read it and looks for a
System file. If it doesn’t find a disk or System file, it checks the default startup device
specified by the user in the Startup Disk control panel. If no default device is specified
or if the device specified is not connected, it checks for other devices connected to the
SCSI port, beginning with the internal drive and proceeding successively from drive 6
through drive 1. If it doesn’t find a startup device, it displays the question-mark disk
icon until a disk is inserted. If the startup device itself fails, the startup code displays
the sad Macintosh icon until the computer is turned off.

2. After selecting a startup device, the system startup code reads system startup
information from the startup device. The system startup information is located in the
boot blocks, the logical blocks 0 and 1 on the startup disk. The boot blocks contain
important information such as the name of the System file and the Finder. The boot
blocks are described in detail in the next section.

3. The system startup code displays the happy Macintosh icon.

4. The system startup code reads the System file and uses that information to initialize
the System Error Handler and the Font Manager.

5. The system startup code verifies that the necessary hardware is available to boot the
system software and displays on the startup screen an alert box with the message
“Welcome to Macintosh.”

6. The system startup code performs miscellaneous tasks: it verifies that enough RAM
is available to boot the system software, it loads and turns on Virtual Memory if it is
enabled in the Memory control panel, it loads the debugger, if present. (The system
startup information contains the name of the debugger —usually MacsBug), it sets up
the disk cache for the file system, and it loads and executes CPU-specific software
patches. At this point, the system begins to trace mouse movement.

7. For any NuBus cards installed, the system startup code executes the secondary init
code on the card’s declaration ROM.

8. The system startup code loads and initializes all script systems, including components
for all keyboard input methods. It also executes the initialization resources in the
System file.

9. The system startup code loads and executes system extensions. (System extensions
can be located in the Extensions folder, in the Control Panels folder, and in the
System Folder).
System Initialization and Startup 9-5

C H A P T E R 9

Start Manager

10. The system startup code launches the Process Manager, which takes over at this point
and launches the Finder. The Finder then displays the desktop and the menu bar. The
desktop shows all mounted volumes; it also shows any windows that were open
the last time the computer was shut down. The Memory Manager sets up a large,
unsegmented application heap, which is divided into partitions as applications
start up.

At this point, the system has successfully booted.

The next section, “Boot Blocks,” describes the format of the boot block header. This
header contains information that the startup code uses to start up the system.

Boot Blocks 9

The first two logical blocks on every Macintosh volume are boot blocks. These blocks
contain system startup information: instructions and information necessary to start up
(or “boot”) a Macintosh computer. This information consists of certain configurable
system parameters (such as the capacity of the event queue, the number of open files
allowed, and so forth) and is contained in a boot block header. The system startup
information also includes actual machine-language instructions that could be used to
load and execute the System file. Usually these instructions follow immediately after the
boot block header. Generally, however, the boot code stored on disk is ignored in favor of
boot code stored in a resource in the System file.

The boot block header has a structure that can be described by the BootBlkHdr
data type.

▲ W A R N I N G

The format of the boot block header is subject to change. If your
application relies on the information presented here, it should check the
boot block header version number and react gracefully if that number is
greater than that documented here. ▲

Note that there are two boot block header formats. The current format includes two
fields at the end that are not contained in the older format. These fields allow the
Operating System to size the system heap relative to the amount of available physical
RAM. A boot block header that conforms to the older format sizes the system heap
absolutely, using values specified in the header itself. You can determine whether a boot
block header uses the current or the older format by inspecting a bit in the high-order
byte of the bbVersion field, as explained in its field description.

TYPE BootBlkHdr = {boot block header}

RECORD

bbID: Integer; {boot blocks signature}

bbEntry: LongInt; {entry point to boot blocks}

bbVersion: Integer; {boot blocks version number}

bbPageFlags: Integer; {used internally}

bbSysName: Str15; {System filename}

bbShellName: Str15; {Finder filename}

bbDbg1Name: Str15; {first debugger filename}
9-6 System Initialization and Startup

C H A P T E R 9

Start Manager

9

S
tart M

anager

bbDbg2Name: Str15; {second debugger filename}

bbScreenName: Str15; {name of startup screen}

bbHelloName: Str15; {name of startup program}

bbScrapName: Str15; {name of system scrap file}

bbCntFCBs: Integer; {number of FCBs to allocate}

bbCntEvts: Integer; {number of event queue elements}

bb128KSHeap: LongInt; {system heap size on 128K Mac}

bb256KSHeap: LongInt; {system heap size on 256K Mac}

bbSysHeapSize: LongInt; {system heap size on all machines}

filler: Integer; {reserved}

bbSysHeapExtra:LongInt; {additional system heap space}

bbSysHeapFract:LongInt; {fraction of RAM for system heap}

END;

Field descriptions

bbID A signature word. For Macintosh volumes, this field always
contains the value $4C4B.

bbEntry The entry point to the boot code stored in the boot blocks. This field
contains machine-language instructions that translate to BRA.S
*+$90 (or BRA.S *+$88, if the older block header format is used),
which jumps to the main boot code following the boot block header.
This field is ignored, however, if bit 6 is clear in the high-order byte
of the bbVersion field or if the low-order byte in that field
contains $D.

bbVersion A flag byte and boot block version number. The high-order byte of
this field is a flag byte whose bits have the following meanings:

If bit 7 is clear, then bits 5 and 6 are ignored and the version number
is found in the low-order byte of this field. If that byte contains a
value that is less than $15, the Operating System ignores any values
in the bb128KSHeap and bbSysHeapSize fields and configures
the system heap to the default value contained in the
bbSysHeapSize field. If that byte contains a value that is greater
than or equal to $15, the Operating System sets the system heap to
the value in bbSysHeapSize. In addition, the Operating System
executes the boot code in the bbEntry field only if the low-order
byte contains $D.
If bit 7 is set, the Operating System inspects bit 6 to determine
whether to execute the boot code contained in the bbEntry field
and inspects bit 5 to determine whether to use relative sizing of the

Bit Meaning

0-4 Reserved; must be 0

5 Set if relative system heap sizing is to be used

6 Set if the boot code in boot blocks is to be executed

7 Set if new boot block header format is used
System Initialization and Startup 9-7

C H A P T E R 9

Start Manager

system heap. If bit 5 is clear, the Operating System sets the system
heap to the value in bbSysHeapSize. If bit 5 is set, the system
heap is extended by the value in bbSysHeapExtra plus the
fraction of available RAM specified in bbSysHeapFract.

bbPageFlags Used internally.
bbSysName The name of the System file.
bbShellName The name of the shell file. Usually, the system shell is the Finder.
bbDbg1Name The name of the first debugger installed during the boot process.

Typically this is Macsbug.
bbDbg2Name The name of the second debugger installed during the boot process.

Typically, this is Disassembler.
bbScreenName The name of the file containing the information (welcome message)

initially displayed on the startup screen. Usually, this is
StartUpScreen.

bbHelloName The name of the startup program. Usually, this is the Finder.
bbScrapName The name of the system scrap file. Usually, this is the Clipboard.
bbCntFCBs The number of file control blocks (FCBs) to put in the FCB buffer.

In System 7 and later, this field specifies only the initial number of
FCBs in the FCB buffer because the Operating System can usually
resize the FCB buffer if necessary. See the chapter “File Manager”
in Inside Macintosh: Files for details on the file control block
(FCB) buffer.

bbCntEvts The number of event queue elements to allocate. This number
determines the maximum number of events that can be stored by
the Event Manager at any one time. Usually this field contains the
value 20.

bb128KSHeap The size of the system heap on a Macintosh computer having
128 KB of RAM.

bb256KSHeap Reserved.
bbSysHeapSize The size of the system heap on a Macintosh computer having

512 KB or more of RAM. This field might be ignored, as explained
in the description of the bbVersion field.

filler Reserved.
bbSysHeapExtra The minimum amount of additional system heap space required.

If bit 5 of the high-order word of the bbVersion field is set, this
value is added to the bbSysHeapSize.

bbSysHeapFract The fraction of RAM available to be used for the system heap. If bit
5 of the high-order word of the bbVersion field is set, this fraction
of available RAM is added to the bbSysHeapSize.
9-8 System Initialization and Startup

C H A P T E R 9

Start Manager

9

S
tart M

anager

Global Timing Variables 9
During system initialization, the initialization code initializes the following global
variables with timing information.

Note
The TimeDBRA value is calculated in ROM and is affected by the
processing method of the CPU. Accordingly, for routines running in
RAM, it is not necessarily a good measure of how fast the computer is. ◆

About the Start Manager 9

The Start Manager lets you set the Macintosh computer’s default startup and video
devices. The Start Manager also lets you get or set the timing interval for the startup
drive.

The Start Manager provides routines that let you specify a default startup device, a
default video device, a default operating system, and a default timeout interval for the
startup drive. Because all Start Manager routines run under the Macintosh Operating
System, you cannot execute them early enough in the initialization process to transfer
control to another operating system. Start Manager routines constitute just a small part
of the process required to boot another operating system on a Macintosh computer. Most
programmers should have no reason to use these routines.

The next section gives an overview of how to use the Start Manager routines.

Using the Start Manager 9

The Start Manager provides a set of simple routines that get and set information in a
word in parameter RAM. This information indicates the default status of some
peripheral devices connected to the Macintosh computer. Three of these routines get
information about the default startup device, default video device, and the default
operating system. Another three routines enable you to set this information. The
remaining two routines get and set the timeout interval for the startup drive.

The GetDefaultStartup procedure returns information about the default startup
device, and the SetDefaultStartup procedure lets you specify a slot or SCSI device
as the default startup device. The default startup device is the drive on which the
startup code first attempts to start up the Operating System. The Startup Disk control

Variable Contents

TimeDBRA The number of times the DBRA (decrement branch always instruction)
can be executed per millisecond.

TimeSCCDB The number of times the SCC can be accessed per millisecond.

TimeSCSIDB The number of times the SCSI can be accessed per millisecond.
About the Start Manager 9-9

C H A P T E R 9

Start Manager
panel calls the GetDefaultStartup and SetDefaultStartup procedures when
the user changes the startup disk. Another pair of routines, the GetVideoDefault
and SetVideoDefault procedures, get information about and set the default video
device — essentially, the monitor on which the Macintosh computer displays the
message “Welcome to Macintosh” and other startup information. The Monitors control
panel calls the GetVideoDefault and SetVideoDefault procedures when the user
changes the startup screen. Any changes made to settings in the Monitors control panel
take affect at the next system startup.

A third pair of routines, the GetOSDefault and SetOSDefault procedures, enable
you to get information about and set the default operating system —the operating
system that the processor attempts to initialize and start up. At present, the only default
operating systems allowed is the Macintosh Operating System.

The last two routines, the GetTimeout and SetTimeout procedures, get or set the
timeout interval for the startup drive. The timeout interval is the interval of time the
system waits for the startup drive to respond while the computer is booting. A disk
driver might need to change the timeout interval, for example if the drive takes a long
time to reach operating speed.

Writing a System Extension 9

This section discusses

■ the profile of a system extension

■ the user interface for a system extension

■ how to create additional resources for a system extension

■ how to compile a system extension

Before you begin to write a system extension, consider whether the feature that you have
in mind is best governed by a system extension. A system extension does not enjoy the
full status of an application. The user cannot launch a system extension. During system
startup, each system extension is simply loaded and executed in a temporary heap that
the system deallocates after the extension is called.

Profile of a System Extension 9
A system extension is a file (of file type 'INIT') containing a code resource of type 'INIT'
and additional other resources. A system extension typically contains code that provides
a system-level service, such as a printer driver or a patch to a system software routine,
and it contains code that loads this system-level service into the system at system
startup time.

Listing 9-1 illustrates code for a simple system extension called MySampleINIT. When
launched at system startup, MySampleINIT loads the MyShutDownBeep code resource
into the system heap, installs a pointer to the shutdown code in the shutdown queue,
9-10 Writing a System Extension

C H A P T E R 9

Start Manager

9
S

tart M
anager
and displays an icon indicating whether the installation succeeded or failed. The
MyShutDownBeep procedure is executed just before the Macintosh computer shuts
down or restarts. For more information about the shutdown process and the Shutdown
Manager, see the chapter “Shutdown Manager” in Inside Macintosh: Processes.

The code for MySampleINIT places the MyShutDownBeep procedure in the system
heap, making this procedure available after system startup. The MyShutDownBeep
procedure calls SysBeep just before the Macintosh computer shuts down or restarts.

Listing 9-1 The MySampleINIT system extension

UNIT MySampleINIT {write a Pascal system extension as a UNIT}

INTERFACE

USES

Types, Events, Errors, Resources, Memory, Shutdown;

CONST

kIconIDSuccess = 128; {icon of this system extension}

kIconIDFailure = 129; {icon of this system extension }

{ with an “X” on it}

kMyShutDownResourceType = 'SHUT'

kMyShutDownResourceID = 128;

moveX = -1;

IMPLEMENTATION

PROCEDURE MyShowINIT(theIcon, moveX: Integer); EXTERNAL;

PROCEDURE MyShutDownBeep; FORWARD;

PROCEDURE MyINIT;

VAR

theIcon: Char;

myShutDownCodeHndl: Handle;

myShutDownCodePtr: ProcPtr;

BEGIN

theIcon := kIconIDSuccess;

{retrieve a handle to MyShutDownBeep procedure}

myShutDownCodeHndl := GetResource(kMyShutDownResourceType,

kMyShutDownResourceID);

IF ((myShutDownCodeHndl = NIL) OR

(ResError <> noErr)) THEN

theIcon := kIconIDFailed;
Writing a System Extension 9-11

C H A P T E R 9

Start Manager
IF (theIcon = kIconIDSuccess) THEN

BEGIN

{the MyShutDownBeep code resource is present, detach it}

{ from the resource file and check for an error}

DetachResource(myShutDownCodeHndl);

IF (ResError <> noErr) THEN

theIcon = kIconIDFailed;

ELSE

ReleaseResource(myShutDownCodeHndl);

END;

IF (theIcon = kIconIDSuccess) THEN

BEGIN

MoveHHi(myShutDownCodeHndl);

HLock(myShutDownCodeHndl);

END;

MyShowINIT(theIcon, moveX);{place the icon at boot time}

{install MyShutDownBeep procedure into shutdown queue}

myShutDownCodePtr := myShutDownCodeHndl^);

ShutDwnInstall(myShutDownCodePtr, sdOnUnmount);

END;

PROCEDURE MyShutDownBeep;

BEGIN

SysBeep(40);

END;

END. {of UNIT}

Notice that the code for the MySampleINIT extension is defined as a Pascal UNIT rather
than a PROGRAM. This distinction is important because Pascal programs are applications
that require an application heap, an initialized A5 register, the Segment Loader, and the
services of other Operating System and Toolbox managers. By comparison, a Pascal unit
is merely a collection of routines. It does not enjoy the full status of an application. You
cannot launch a system extension. It is simply loaded and executed in a temporary heap
that the system deallocates soon after the system finishes booting the computer.

When MySampleINIT calls the application-defined procedure MyShowInit,
MyShowInit displays an icon on the bottom left of the startup screen, and it does not
erase the screen. If you want an icon displayed at system startup time, you must supply
this application-defined procedure.

IMPORTANT

If you provide a procedure that displays an icon of your system
extension, do no erase the screen. ▲
9-12 Writing a System Extension

C H A P T E R 9

Start Manager

9
S

tart M
anager
For information about compiling system extensions, see the section “Building a System
Extension” beginning on page 9-17.

Note
System extensions are not well equipped to declare global variables
and deal with the A5 world. Stand-alone code modules that do these
things are not system extensions and thus are beyond the scope of
this discussion. See the chapter “Writing Stand-Alone Code” in
Building and Managing Programs in MPW for information on this topic. ◆

Because a system extension possesses no A5 world of its own, it cannot easily define
global variables: the system allocates no space for them, and the A5 register contains no
meaningful value. Extension code that defines global variables usually compiles and
links successfully without a warning from the linker; however, the extension’s global
variables typically overwrite globals defined by the current application.

▲ W A R N I N G

Code containing references to global variables defined in the MPW
libraries, such as QuickDraw globals, generate fatal link errors. ▲

As a general rule, a system extension can call Operating System managers at any time,
but it can call only a few of the Toolbox managers before the startup process completes.
It can call the routines from the File Manager, Memory Manager, Resource Manager, and
the Notification Manager before the system extension is completely launched, but it
must refrain from calling the InitFonts, InitWindows, InitDialogs, InitMenus
and TEInit procedures, as well as other QuickDraw, Window Manager, Dialog
Manager, and Font Manager routines. (Note that the code installed by a system extension
can utilize the full set of Operating System and Toolbox routines.)

A system extension must do without the services of the Segment Loader, which divides
application code into segments that the processor can handle. The size of a system
extension’s code resource should not exceed 32 KB.

You should consider installing your system extension in the system heap if you want its
resources to be available after the computer finishes booting. For example, some system
extensions leave routines in the system heap that can be called through patches to those
routines. The MySampleINIT system extension shown in Listing 1-1 on page 9-11 loads
the MyShutDownBeep procedure in the system heap.

The procedure your system extension uses to install code in the system heap varies
according to what you want to accomplish. Basically, you have to request a block of
memory in the system heap and store the code or resources you want to preserve in the
block. To allocate memory in the system heap in System 7 and later, you merely need to
call the appropriate Memory Manager routines, and the system heap expands
dynamically to meet your requests. In earlier versions of system software, you must use
a system heap space resource of type 'sysz' to indicate how much the Operating System
should increase the size of the system zone.

See the chapter “Memory Manager” in Inside Macintosh: Memory for details on how to
allocate memory in the system heap.
Writing a System Extension 9-13

C H A P T E R 9

Start Manager
Defining the User Interface for a System Extension 9
The user interface for a system extension consists of

■ the system extension icon

■ other elements your system extension needs to communicate with the user

You should provide an icon for the file that contains your system extension. An
extension icon looks like a puzzle piece. Figure 9-1 illustrates the default icon for a
system extension that appears in the Finder if you don’t supply a custom icon for your
system extension. You can customize an extension icon by adding a graphic to the
default icon. You can display the system extension icon in a horizontal or vertical
orientation with the protruding part facing any direction. If you do add graphics, keep
them simple so that the icon still looks good when scaled to the small, 16-by-16 pixel
icon size.

Figure 9-1 The default system extension icon

The code in your system extension should also display the icon for your system
extension when it is first executed at system startup time. You typically display this icon
near the bottom-left corner of the startup screen. If the code installed by your extension
requires resources or hardware that is not available at system startup, your extension can
instead display a crossed-out version of the system extensions icon in the bottom-left
corner of the screen.

You should design a system extension so that a user can install it by dragging the icon on
top of the System Folder. The Finder then asks the user whether to place the system
extension in the Extensions folder. Do not install system extensions in the System file.

When designing a system extension, avoid displaying dialog or alert boxes that interrupt
system booting. Whenever possible, use the Notification Manager to notify users of
important messages. See the chapter “Notification Manager” in Inside Macintosh:
Processes for a description on how to send a notification request. You should also avoid
calling routines like InitWindows that wipe the entire screen clean, obliterating any
startup icons that other system extensions and drivers might have displayed.

Your system extension may only create files in the Preferences folder during execution. It
is important that your system extension does not create files in the Extensions folder, the
Control Panels folder, or the System Folder during execution. The system reads the files
in each of these folders sequentially. Creating an additional file in one of these folders
shifts the location of the other files, causing the system to either skip a system extension
or execute one twice.

If your system extension requires a user interface, you can also create a control panel. If
you use a system extension with your control panel, include it in the control panel file
9-14 Writing a System Extension

C H A P T E R 9

Start Manager

9
S

tart M
anager
along with the required resources and any other optional resources you use. In System 7,
system extensions can be installed in the Control Panels folder or in the Extensions
folder (both of which are stored in the System Folder) or directly in the System Folder.
However, if it contains a system extension, your control panel file must reside in the
Controls Panels folder within the System Folder. At startup time, the system software
opens files of type 'cdev' that reside in the Control Panels folder and executes any
system extensions that it finds there. If the system extension portion of a control panel
is not loaded at startup, the control panel won’t function properly. For additional
information about control panels, see the chapter Control Panels in Inside Macintosh:
More Macintosh Toolbox.

Creating a System Extension’s Resources 9
A file comprising a system extension contains a resource of type 'INIT' and additional
resources. A resource of type 'INIT' contains the code that loads the system-level service
into the system at system startup time, and it often contains the code that provides the
system-level service. You can use additional resources to describe the icons for the
system extension, specify a version number and copyright information for the
information window displayed by the Get Info command, increase the size of the system
heap, and more.

This list describes some of the additional resources you typically use when you create a
system extension:

■ The version ('vers') resource, which you can use to record version information for
your system extension. The version resource allows you to store a version number,
a version message, and a region code.

■ The bundle ('BNDL') resource, which groups together your system extension’s icons.

■ Icon family resources ('ICN#', 'ics#', ic18', 'ic14', ics8', and 'ics4') to represent
your system extension in the Finder.

■ The system heap space ('sysz') resource.

The 'sysz' resource is described in this section. See the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials for additional information about the other
resources mentioned in this section.

Figure 9-2 shows a ResEdit window containing additional resources for a system
extension. These additional resources can be compiled with an 'INIT' resource into
a system extension that goes in the Extensions folder.
Writing a System Extension 9-15

C H A P T E R 9

Start Manager
Figure 9-2 Typical resources for a system extension

Not all of the resources in Figure 9-2 are required for all system extensions, but they do
add useful features to a system extension.

Note
You can use a high-level tool such as the ResEdit application, which is
available through APDA, to create your resources. See ResEdit Reference
for details on using ResEdit. ◆

Creating Icons for a System Extension 9

You should provide two sets of icons for your system extension:

■ an icon family for the file that contains your system extension

■ an icon that your system extension displays at system startup time. This icon indicate
whether the installation succeeded or failed

You should provide icon family resources for the file that contains your system
extension. See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for a detailed description of the icon family resources.

You can create a color icon resource of type 'cicn' for your system extension if you want
to display a color startup icon at the bottom left of the screen. You can implement this
feature by creating your own application-defined MyShowINIT procedure, or you can
use a similar program called ShowInit. You can obtain the ShowInit program from
various on-line services. (You can also contact APDA for further developer product
information). To use ShowINIT, you pass the resource ID of your system extension’s
'cicn' resource to the ShowINIT procedure, and ShowINIT displays the 'cicn' icon
on the bottom-left corner of the screen.

Creating a System Heap Zone Resource for a System Extension 9

You should read the information in this section only if you plan to install code from your
system extension into the system heap and run your system extension on system
software prior to System 7.
9-16 Writing a System Extension

C H A P T E R 9

Start Manager

9
S

tart M
anager
If you install code in the system heap and run your system extension on system software
prior to System 7, you should include a system heap space resource of type 'sysz'. The
'sysz' resource tells the system software the amount of memory the system heap needs
to expand by, in order to accommodate space for code installed by your system extension.

Note
It is not necessary to include a 'sysz' resource for system extensions
running only on System 7 and later. The system heap in System 7
grows dynamically and expands as long as there is any unused
RAM available. ◆

Using a 'sysz' resource, you can request the system software to increase the memory in
the system heap by the amount specified in the 'sysz' resource. If the system software
is able to allocate the needed memory in the system heap, your system extension will
execute. If the system is unable to allocate the extra memory to the system heap, your
system extension will not be able to execute.

To create a 'sysz' resource, you can use an editor like the ResEdit application. Specify, in
bytes, the amount of memory you want the system heap to increase by. For example, if
your system extension takes 8 KB to execute, you should increase the system heap by
that amount.

You do not need to allocate memory for the actual system extension code ('INIT'
resource), only for the amount of memory for any code installed by your system
extension needs to execute.

Building a System Extension 9

Once you have created a file containing the 'INIT' resource and a file containing all the
additional resources, you can build your system extension. To build a system extension,
compile and link the 'INIT' resource and the additional resources into an executable
file for your system extension.

When you compile the 'INIT' resource and your additional resources, you should keep
the following points in mind:

■ Make sure that the file type of the system extension is of type 'INIT'.

■ Specify a creator if you want the Finder to use icons for your system extension.

■ Specify the resource type 'INIT' and a resource ID (usually 128).

■ Specify the main entry point for your system extension. When written in Pascal, the
main entry point of a module is the first written instruction.

■ Specify that the 'INIT' resource be loaded into the system heap if you want its
resources to be available after the computer finishes booting.

■ Specify the 'INIT' resource (code resource) as locked to prevent the system from
moving the resource during execution.

■ Make sure that all additional resources are unlocked and purgeable.
Writing a System Extension 9-17

C H A P T E R 9

Start Manager
Start Manager Reference 9

This section describes the data structures and routines that are specific to the Start
Manager. The “Data Structures” section explains the data structures for the default
startup device parameter block, the default video device parameter block, and the
default operating system record. The “Routines” section describes routines that get
information about and set devices or values that the system uses as defaults when
booting a Macintosh computer.

Data Structures 9
This section describes the data structures that you use to provide information to the Start
Manager or the Start Manager uses to return information to your application.

The Default Startup Device Parameter Block 9

Two procedures, GetDefaultStartup and SetDefaultStartup, use the default
startup device parameter block. You can use these procedures and the default startup
device parameter block to get or set the default startup device. As defined by the
DefStartType data type, a startup device is either a slot or a SCSI device. The
DefStartRec data type defines the default startup device parameter block.

TYPE DefStartType = (slotDev, scsiDev);

DefStartRec =

RECORD

CASE DefStartType OF

slotDev:

sdExtDevID: SignedByte; {external device ID}

sdPartition:SignedByte; {reserved}

sdSlotNum: SignedByte; {slot number}

sdSRsrcID: SignedByte; {SResourceID}

scsiDev:

sdReserved1:SignedByte; {reserved}

sdReserved2:SignedByte; {reserved}

sdRefNum: Integer; {driver reference number}

END;

DefStartPtr = ^DefStartRec;
9-18 Start Manager Reference

C H A P T E R 9

Start Manager

9
S

tart M
anager
Field descriptions

sdExtDevID The external device ID specified by a slot’s driver. This ID identifies
one of perhaps several devices connected through a single slot.

sdPartition Reserved.
sdSlotNum A number that identifies the location of the NuBus slot containing

the default startup card. (Currently, these numbers range from
$9 through $E on six-slot computers.)

sdSRsrcID The resource ID (SResourceID) for the slot.
sdReserved1 Reserved.
sdReserved2 Reserved.
sdRefNum A negative value in this field indicates the driver reference number

for a SCSI device. A positive number indicates a slot device, in
which case the fields in the slotDev variant.

The Default Video Device Parameter Block 9

Two procedures, GetVideoDefault and SetVideoDefault, use the default video
device parameter block. You can use these procedures with the default video device
parameter block to get or set the default video device. The DefVideoRec data type
defines the default video device parameter block.

TYPE DefVideoRec =

RECORD

sdSlot: SignedByte; {slot number}

sdsResource:SignedByte; {SResourceID}

END;

DefVideoPtr = ^DefVideoRec;

Field descriptions

sdSlot The physical slot number for the default video device. A value of 0
indicates no video device is the default.

sdSResource The slot resource ID (SResourceID) for the default video device.

The Default Operating System Parameter Block 9

Two procedures, GetDefaultOS and SetDefaultOS, use the default operating system
parameter block. You can use these procedures with the default operating system
parameter block to get or set the default operating system. The DefOSRec data type
defines the default operating system parameter block.

TYPE DefOSRec =

RECORD

sdReserved: SignedByte; {reserved}
Start Manager Reference 9-19

C H A P T E R 9

Start Manager
sdOSType: SignedByte; {operating-system type}

END;

DefOSPtr = ^DefOSRec;

Field descriptions

sdReserved Reserved.
sdOSType A value identifying the operating system installed at startup.

A 1 indicates the Macintosh Operating System. The numbers
0 through 15 are reserved.

Routines 9
This section describes the Start Manager routines you can use to identify and change the
default startup device, the default video device, default operating system, and the
default timeout value for the startup drive.

Many Start Manager routines specify a pointer to a parameter block as a parameter. For
these routines, the routine description includes a list of the fields in the parameter block
used by the routine. For each routine that uses a parameter block, information about the
fields appears in the following format:

Parameter block

The arrow on the far left indicates whether the field is an input or output parameter. You
must supply values for all input parameters. The routine returns values in the output
parameters. The next column shows the field name as defined in the MPW interface files,
followed by the data type of that field. This matches the MPW interface name of the data
type as shown in the parameter block. The fourth column contains a comment about or a
brief definition of the field.

Identifying and Setting the Default Startup Device 9

You can use the routines in this section to get information that identifies the default
startup device or to supply information that sets a default startup device. These routines
provide applications with the same capability that the Startup Disk control panel
supplies for Macintosh users.

GetDefaultStartup 9

You can use the GetDefaultStartup procedure to return information about the
default startup device.

PROCEDURE GetDefaultStartup (paramBlock: DefStartPtr);

→ input1 LongInt Input parameter comment.
← output1 LongInt Output parameter comment.
9-20 Start Manager Reference

C H A P T E R 9

Start Manager

9
S

tart M
anager
paramBlock A pointer to a default startup device parameter block.

Parameter block

DESCRIPTION

The GetDefaultStartup procedure returns information about the default startup
device from parameter RAM. The default startup device parameter block of data type
DefStartType defines two kinds of startup devices: either a slot or a SCSI device. The
GetDefaultStartup procedure returns in the sdRefNum field a value indicating the
startup device type. A negative value indicates a SCSI device. A positive value indicates
a slot device. If the value is negative, the sdRefNum field contains the driver reference
number needed to identify that device. If the value is positive, the slotDev variant of
the default startup device parameter block contains information about the slot device.

You cannot read the system’s default startup device parameter block directly. Instead,
create another parameter block to which the GetDefaultStartup procedure can write
and pass GetDefaultStartup a pointer to that parameter block.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

SEE ALSO

For more information about the default startup device parameter block
see “The Default Startup Device Parameter Block” beginning on page 9-18.
To specify the default startup device, see the description of the SetDefaultStartup
procedure described next.

← sdExtDevID SignedByte External device ID.
← sdPartition SignedByte Reserved.
← sdSlotNum SignedByte Physical slot number.
← sdSRsrcID SignedByte Slot resource ID (SResourceID).
← sdReserved1 SignedByte Reserved.
← sdReserved2 SignedByte Reserved.
← sdRefNum Integer Driver reference number.

Registers on entry

A0 Address of the default startup device parameter block

Registers on exit

A0 Address of the default startup device parameter block
Start Manager Reference 9-21

C H A P T E R 9

Start Manager
SetDefaultStartup 9

You can use the SetDefaultStartup procedure to write information to parameter
RAM that specifies the default startup device.

PROCEDURE SetDefaultStartup (paramBlock: DefStartPtr);

paramBlock A pointer to a default startup device parameter block.

Parameter block for a slot device

Parameter block for a SCSI device

DESCRIPTION

The SetDefaultStartup procedure writes information to parameter RAM that
specifies the default startup device. The default startup parameter block of data type
DefStartType defines two kinds of startup devices: either a slot or a SCSI device.
To specify a slot device as the default, pass the external device ID, the slot number, and
the slot resource ID. The external device ID, supplied by the slot’s driver, identifies a
particular device connected through that slot. It’s possible that the card in this slot could
have several devices connected to it.

To specify a SCSI device as the default, pass its driver reference number (always
negative) in the sdRefNum field. To specify no device as the default, pass a value
of 0 in this field.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

→ sdExtDevID SignedByte External device ID.
→ sdPartition SignedByte Reserved.
→ sdSlotNum SignedByte Physical slot number.
→ sdSRsrcID SignedByte Slot resource ID (SResourceID).

→ sdReserved1 SignedByte Reserved.
→ sdReserved2 SignedByte Reserved.
→ sdRefNum Integer Driver reference number.

Registers on entry

A0 Address of the default startup device parameter block

Registers on exit

A0 Address of the default startup device parameter block
9-22 Start Manager Reference

C H A P T E R 9

Start Manager

9
S

tart M
anager
SEE ALSO

For more information about the default startup device parameter block see “The Default
Startup Device Parameter Block” beginning on page 9-18.

To retrieve information about the default startup device, see the description of the
GetDefaultStartup procedure described on page 9-20.

Identifying and Setting the Default Video Device 9

You can use the routines in this section to get information about the default video device
or to supply information that sets or changes a default video device. These routines
provide applications with the same capability that the Monitors control panel supplies
for Macintosh users. The default video device is equivalent to the monitor that displays
the startup message “Welcome to Macintosh” as well as other startup indications.

GetVideoDefault 9

You can use the GetVideoDefault procedure to return information that identifies the
default video device.

PROCEDURE GetVideoDefault (paramBlock: DefVideoPtr);

paramBlock A pointer to a default video device parameter block.

Parameter block

DESCRIPTION

The GetVideoDefault procedure returns information from parameter RAM that
identifies the default video device. If the sdSlot field returns a 0, indicating no default
video device, the Start Manager chooses the first available video device when the
computer starts up.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

← sdSlot SignedByte Physical slot number.
← sdSResource SignedByte Slot resource ID (SResourceID).

Registers on entry

A0 Address of the default video device parameter block

Registers on exit

A0 Address of the default video device parameter block
Start Manager Reference 9-23

C H A P T E R 9

Start Manager
SEE ALSO

For more information about the default startup device parameter block see “The Default
Video Device Parameter Block” beginning on page 9-19.

To specify the default video device, see the description of the SetVideoDefault
procedure described next.

SetVideoDefault 9

You can use the SetVideoDefault procedure to write information to parameter RAM
that sets or changes the default video device.

PROCEDURE SetVideoDefault (paramBlock: DefVideoPtr);

paramBlock A pointer to a default video device parameter block.

Parameter block

DESCRIPTION

The SetVideoDefault procedure writes information to parameter RAM that sets or
changes the default video device. If you set the sdSlot field to 0, indicating no default
video device, the Start Manager chooses the first available video device when the
computer starts up.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

SEE ALSO

For more information about the default video device parameter block see “The Default
Video Device Parameter Block” beginning on page 9-19.

To retrieve information about the default video device, see the description of the
GetVideoDefault procedure on page 9-23.

→ sdSlot SignedByte Physical slot number.
→ sdSResource SignedByte Slot resource ID (SResourceID).

Registers on entry

A0 Address of the default video device parameter block

Registers on exit

A0 Address of the default video device parameter block
9-24 Start Manager Reference

C H A P T E R 9

Start Manager

9
S

tart M
anager
Identifying and Setting the Default Operating System 9

You can use the routines in this section to get information about the default operating
system or to supply information that sets or changes a default operating system. These
routines read from and write to a byte in parameter RAM.

GetOSDefault 9

You can use the GetOSDefault procedure to identify the operating system that gets
booted on the Macintosh computer.

Procedure GetOSDefault (paramBlock: DefOSPtr);

paramBlock A pointer to a default operating system parameter block.

Parameter block

DESCRIPTION

The GetOSDefault procedure identifies the operating system that gets booted on the
Macintosh computer. A value of 1 returned in the sdOSType field indicates the
Macintosh Operating System. Apple Computer, Inc. reserves the numbers 0 through 15
for its use.

When the Macintosh Operating System boots, certain startup routines call
GetOSDefault and compare the value it returns with the value in the ddType field of
the driver’s portion of the driver descriptor record. Each driver for the startup device
has its own block of fields in this record. The startup routine tries to match the
operating-system type returned by GetOSDefault with the value in one of the ddType
fields. If it finds a match, the computer continues to boot; if it doesn’t, the startup routine
searches other drives attached to the computer. The boot process does not continue until
the startup routine finds a ddType value that matches the one returned by
GetOSDefault.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

← sdReserved byte Reserved.
← sdOSType byte Operating-system type.

Registers on entry

A0 Address of the default operating system parameter block

Registers on exit

A0 Address of the default operating system parameter block
Start Manager Reference 9-25

C H A P T E R 9

Start Manager
SEE ALSO

For more information about the default operating system parameter block, see “The
Default Operating System Parameter Block” beginning on page 9-19.
For information about the driver descriptor record, see the chapter “SCSI Manager”
in Inside Macintosh: Devices.

To specify the default operating system, see the description of the SetOSDefault
procedure described next.

SetOSDefault 9

You can use the SetOSDefault procedure to set a byte in parameter RAM that
indicates the operating system that gets booted on the Macintosh computer.

PROCEDURE SetOSDefault (paramBlock: DefOSPtr);

paramBlock A pointer to a default operating system parameter block.

Parameter block

DESCRIPTION

The SetOSDefault procedure sets a byte in parameter RAM that indicates the
operating system that gets booted on the Macintosh computer. Setting a value of 1 in the
sdOSType field indicates the Macintosh Operating System, which is currently the only
default operating system allowed. The numbers 0 through 15 are reserved by Apple
Computer.

Unless the value in the sdOSType field matches the value in one of the ddType fields of
the driver descriptor record, the computer cannot continue booting. Every drive
connected to the computer has a driver descriptor record at the beginning of physical
block 0.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry and exit for this routine are

→ sdReserved SignedByte Reserved.
→ sdOSType SignedByte Operating-system type.

Registers on entry

A0 Address of the parameter block for the default operating system record

Registers on exit

A0 Address of the parameter block for the default operating system record
9-26 Start Manager Reference

C H A P T E R 9

Start Manager

9
S

tart M
anager
SEE ALSO

For information about the driver descriptor record, see the chapter “SCSI Manager” in
Inside Macintosh: Devices.

Getting and Setting the Timeout Interval 9

You can use the routines in this section to get or set the default timeout interval for the
startup drive. This timeout indicates how long the system waits for the startup drive to
respond while the computer is booting.

GetTimeout 9

You can use the GetTimeout procedure to identify the current timeout interval set for
the startup drive.

PROCEDURE GetTimeout (VAR count: Integer);

count Indicates the number of seconds the system waits for the startup drive to
respond during the boot cycle. A value of 0 indicates the default timeout
of 20 seconds.

DESCRIPTION

The GetTimeout procedure identifies the current timeout interval set for the
startup drive. Timeout values increment in 1-second intervals, from 1 to a maximum of
31 seconds. A count of 1 equals 1 second.

ASSEMBLY LANGUAGE INFORMATION

The register on exit from the routine is

The _GetTimeout macro expands to invoke another trap macro, whose routine selector
is passed in the A0 register.

Registers on exit

A0 Value of count field

Trap Macro Selector

_InternalWait $0000
Start Manager Reference 9-27

C H A P T E R 9

Start Manager
SetTimeout 9

You can use the SetTimeout procedure to set the timeout interval for the startup drive.

PROCEDURE SetTimeout (count: Integer);

count Indicates the number of seconds that you want the system to wait for the
startup drive to respond during the boot cycle. A value of 0 indicates the
default timeout of 20 seconds. The maximum value is 31 seconds.

DESCRIPTION

The SetTimeout procedure sets the timeout interval for the startup drive. Timeout
values increment in 1-second intervals, from 1 to a maximum of 31 seconds. Setting the
count parameter to a value of 1 indicates 1 second.

ASSEMBLY LANGUAGE INFORMATION

The registers on entry for this routine are

The _SetTimeout macro expands to invoke another trap macro, whose routine selector
is passed in the A0 register:

Registers on entry

A0 $0001

Trap Macro Selector

_InternalWait $0001
9-28 Start Manager Reference

C H A P T E R 9

Start Manager

9
S

tart M
anager
Summary of the Start Manager 9

Pascal Summary 9

Data Types 9

TYPE

DefStartType = (slotDev, scsiDev);

DefStartRec =

RECORD

CASE DefStartType OF

slotDev:

sdExtDevID: SignedByte; {external device ID}

sdPartition:SignedByte; {reserved}

sdSlotNum: SignedByte; {slot number}

sdSRsrcID: SignedByte; {SResourceID}

scsiDev:

sdReserved1:SignedByte; {reserved}

sdReserved2:SignedByte; {reserved}

sdRefNum: Integer {driver reference number}

END;

DefStartPtr = ^DefStartRec; {pointer to a start definition record}

DefVideoRec =

RECORD

sdSlot: SignedByte; {slot number}

sdsResource:SignedByte; {SResourceID}

END;

DefVideoPtr = ^DefVideoRec; {pointer to a video definition record}

DefOSRec =

RECORD

sdReserved: SignedByte; {reserved--should be 0}

sdOSType: SignedByte; {operating-system type}
Summary of the Start Manager 9-29

C H A P T E R 9

Start Manager
END;

DefOSPtr = ^DefOSRec; {pointer to a default Operating System Record}

Routines 9

Identifying and Setting the Default Startup Device

PROCEDURE GetDefaultStartup (paramBlock: DefStartPtr);

PROCEDURE SetDefaultStartup (paramBlock: DefStartPtr);

Identifying and Setting the Default Video Device

PROCEDURE GetVideoDefault (paramBlock: DefVideoPtr);

PROCEDURE SetVideoDefault (paramBlock: DefVideoPtr);

Identifying and Setting the Default Operating System

PROCEDURE GetOSDefault (paramBlock: DefOSPtr);

PROCEDURE SetOSDefault (paramBlock: DefOSPtr);

Getting and Setting the Timeout Interval

PROCEDURE GetTimeout (VAR count: Integer);

PROCEDURE SetTimeout (count: Integer);

C Summary 9

Data Types 9

struct SlotDev {

char sdExtDevId; /*external device ID*/

char sdPartition; /*reserved*/

char sdSlotNum; /*slot number*/

char sdSRsrcID; /*SResourceID*/

};

typedef struct SlotDev SlotDev;

struct SCSIDev {

char sdReserved1; /*reserved*/

char sdReserved2; /*reserved*/
9-30 Summary of the Start Manager

C H A P T E R 9

Start Manager

9
S

tart M
anager
short sdRefNum; /*driver reference number*/

};

typedef struct SCSIDev SCSIDev;

union DefStartRec {

SlotDev slotDev;

SCSIDev scsiDev;

};

typedef union DefStartRec DefStartRec;

typedef DefStartRec *DefStartPtr;

struct DefVideoRec {

char sdSlot; /*slot number*/

char sdsResource; /*SResourceID*/

};

typedef struct DefVideoRec DefVideoRec;

typedef DefVideoRec *DefVideoPtr;

struct DefOSRec {

char sdReserved; /*reserved —should be 0*/

char sdOSType; /*operating-system type*/

};

typedef struct DefOSRec DefOSRec;

typedef DefOSRec *DefOSPtr;

Routines 9

Identifying and Setting the Default Startup Device

pascal void GetDefaultStartup (DefStartPtr paramBlock);

pascal void SetDefaultStartup (DefStartPtr paramBlock);

Identifying and Setting the Default Video Device

pascal void GetVideoDefault (DefVideoPtr paramBlock);

pascal void SetVideoDefault (DefVideoPtr paramBlock);

Identifying and Setting the Default Operating System

pascal void GetOSDefault (DefOSPtr paramBlock);
Summary of the Start Manager 9-31

C H A P T E R 9

Start Manager
pascal void SetOSDefault (DefOSPtr paramBlock);

Getting and Setting the Timeout Interval

pascal void GetTimeout (short *count);

pascal void SetTimeout (short count);

Assembly-Language Summary 9

Data Structures 9

Default Startup Device Data Structure

Default Video Device Data Structure

Default Operating System Data Structure

0 sdExtDevID byte external device ID
1 sdPartition byte reserved
2 sdSlotNum byte slot number
3 sdSRsrcID byte slot resource ID

0 sdReserved1 byte reserved
1 sdReserved2 byte reserved
2 sdRefNum word driver reference number

0 sdSlot byte slot number
1 sdSResource byte slot resource ID

0 sdReserved byte reserved
1 sdOSType byte operating-system type
9-32 Summary of the Start Manager

C H A P T E R 9

Start Manager

9
S

tart M
anager
Trap Macros 9

Trap Macros Requiring Register Setup

Trap Macros Requiring Routine Selectors

_InternalWait

Global Variables 9

Trap macro name Registers on entry Registers on exit

_GetDefaultStartup A0: address of default video
device parameter block

A0: address of default startup device
parameter block

_SetDefaultStartup A0: address of default video
device parameter block

A0: address of default startup device
parameter block

_GetVideoDefault A0: address of default video
device parameter block

A0: address of default video device
parameter block

_SetVideoDefault A0: address of default video
device parameter block

A0: address of default video device
parameter block

_GetDefaultOS A0: address of default operating
system parameter block

A0: address of default operating
system parameter block

_SetDefaultOS A0: address of default operating
system parameter block

A0: address of default operating
system parameter block

_GetTimeout D0: count (word)

_SetTimeout D0: count (word)

Selector Routine

$0000 GetTimeout

$0001 SetTimeout

TimeDBRA The number of times the DBRA instruction is executed per millisecond.
TimeSCCDB The number of times the SCC is accessed per millisecond.
TimeSCSIDB The number of times the SCSI is accessed per millisecond.
Summary of the Start Manager 9-33

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Gestalt Manager TOC
	 Gestalt Manager
	 System Error Handler TOC
	 System ErrorHandler
	 Mathematical and Logical Utilities TOC
	 Mathematical and Logical Utilities
	 Date, Time, and Measurement Utilities TOC
	 Date, Time, and Measurement Utilities
	 Control Panels Extensions TOC
	 Control Panels Extensions
	 Queue Utilities TOC
	 Queue Utilities
	 Parameter RAM Utilities TOC
	 Parameter RAM Utilities
	 Trap Manager TOC
	 Trap Manager
	 Start Manager TOC
	Start Manager
	System Initialization and Startup
	System Initialization
	System Startup
	Boot Blocks

	Global Timing Variables

	About the Start Manager
	Using the Start Manager
	Writing a System Extension
	Profile of a System Extension
	Defining the User Interface for a System Extension...
	Creating a System Extension’s Resources
	Creating Icons for a System Extension
	Creating a System Heap Zone Resource for a System ...

	Building a System Extension

	Start Manager Reference
	Data Structures
	The Default Startup Device Parameter Block
	The Default Video Device Parameter Block
	The Default Operating System Parameter Block

	Routines
	Identifying and Setting the Default Startup Device...
	Identifying and Setting the Default Video Device
	Identifying and Setting the Default Operating Syst...
	Getting and Setting the Timeout Interval

	Summary of the Start Manager
	Pascal Summary
	Data Types
	Routines

	C Summary
	Data Types
	Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Global Variables

	 Package Manager TOC
	 Package Manager
	 Glossary
	 Index
	 Colophon

