CHAPTER 2

Mixed Mode Manager

This chapter describes the Mixed Mode Manager, the part of the Macintosh system
software that manages the mixed-mode architecture of PowerPC processor-based
computers running 680x0-based code (including system software, applications, and
stand-alone code modules). The Mixed Mode Manager cooperates with the 68LC040
Emulator to provide a fast, efficient, and virtually transparent method for code in
one instruction set architecture to call code in another architecture. The Mixed Mode
Manager handles all the details of switching between architectures.

The Mixed Mode Manager is intended to operate transparently to most applications and
other software. You need the information in this chapter only if

= you want to recompile your application into PowerPC code and your application
passes the address of some routine to the system software using a reference of
type ProcPtr

» your application—written in either PowerPC or 680x0 code—supports installable
code modules that might be written in a different architecture

= you are writing stand-alone code (for example, a VBL task or a component) that could
be called from either the PowerPC native environment or the 680x0 emulated
environment

= you are writing a debugger or other software that needs to know about the structure
of the stack at any time (for example, during a mode switch)

You do not need to read this chapter if you're simply writing 680x0 code that doesn’t call
external code modules of unknown type, or if you are writing PowerPC code that calls
other PowerPC code using a procedure pointer. In these cases, any environment switching
that might occur is handled completely transparently by the Mixed Mode Manager.

IMPORTANT

This chapter describes the operation and features of the Mixed
Mode Manager and the 68LC040 Emulator as they exist in the
first version of the system software for PowerPC processor-based
Macintosh computers. a

To use this chapter, you should already be generally familiar with the Macintosh
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory
for information about the run-time architecture of the 680x0 environment. You also need
to be familiar with the run-time architecture of PowerPC processor-based Macintosh
computers, as explained in the chapter “Introduction to PowerPC System Software.”

This chapter begins by describing the mixed-mode architecture of PowerPC processor-
based Macintosh computers and the operations of the Mixed Mode Manager. Then it
shows how to use the Mixed Mode Manager to call external code.

2-3

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

About the Mixed Mode Manager

The Mixed Mode Manager is the part of the Macintosh Operating System that allows
PowerPC processor-based Macintosh computers to cooperatively run 680x0 applications,
PowerPC applications, 680x0 system software, and PowerPC system software. It
provides a number of capabilities, including

= transparent access to 680x0-based system software from PowerPC applications

= transparent access to PowerPC processor-based system software from 680x0
applications

= a method—independent of the instruction set architecture—of calling an external
piece of code. This includes

o transparent access to PowerPC code by 680x0 applications
o system support for calling 680x0 code from PowerPC code
o system support for calling PowerPC code from 680x0 code
= support for patching PowerPC or 680x0 code with PowerPC or 680x0 code

= support for stand-alone code resources containing either 680x0 or PowerPC code

In short, the Mixed Mode Manager is intended to provide both PowerPC processor-
based and 680x0-based code transparent access to code written in another instruction set
(or in an instruction set whose type is unknown). It does this by keeping track of what
kind of code is currently executing and, when necessary, switching modes. For example,
if some PowerPC code calls a Macintosh Operating System routine that exists only in
680x0 form, the Mixed Mode Manager translates the routine’s parameters from their
PowerPC arrangement (for example, stored in registers GPR3 and GPR4) into the
appropriate 680x0 arrangement (for example, stored in registers D0 and D1, with the
result placed into register A0).

The Mixed Mode Manager is an integral part of the system software for PowerPC
processor-based Macintosh computers. It is designed to hide, as much as possible, the
dual nature of the operating environment supported on PowerPC processor-based
Macintosh computers running the 68LC040 Emulator. Except in specific cases described
later, your application or other software should not need to call the routines provided by
the Mixed Mode Manager.

External Code

To appreciate when and why you might need to use the routines provided by the Mixed
Mode Manager, you need to understand the circumstances in which you might directly
or indirectly call code in an instruction set architecture different from that of the calling
code. There are several ways to execute external code (code that is not directly contained
in your application or software), including

s calling a trap

s calling a device driver (for example, by calling the driver’s Open, Status, or
Control routines)

About the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

= loading and then executing code contained in a resource
= using the address of a procedure or function obtained from an unknown source

In any of these four cases, the external code that you call might be in an instruction set
architecture that is different from the instruction set architecture of the calling code. (For
example, an application that uses the PowerPC instruction set might call a ROM-based
Toolbox trap that uses the 680x0 instruction set.) As a result, in all these cases, the Mixed
Mode Manager might have to switch environments to allow the called routine to execute
and then switch back to allow your application or other software to continue execution.

In the first two of the four cases, the Mixed Mode Manager is able to handle all required
mode switching virtually transparently to the calling software. In the two last cases,
however, you might need to intervene in the otherwise automatic operations of the
Mixed Mode Manager. This is because the Mixed Mode Manager cannot tell, from a
given pointer to some executable code, what kind of code the pointer references.

The following section describes in greater detail the extent of this problem and the way
you need to solve it, using universal procedure pointers in place of procedure pointers.
See “Using the Mixed Mode Manager” beginning on page 2-14 for code samples that
illustrate how to create and use universal procedure pointers.

Procedure Pointers

For present purposes, a procedure pointer is any reference generated by a compiler
when taking the address of a routine. On 680x0-based Macintosh computers, a procedure
pointer is simply the address of the routine’s executable code (and is defined by the
ProcPt r data type). On PowerPC processor-based Macintosh computers, a procedure
pointer is the address of the routine’s transition vector. Figure 2-1 illustrates the structure
of procedure pointers in each environment.

Figure 2-1 680x0 and PowerPC procedure pointers

680x0 procedure pointer PowerPC procedure pointer
Pointer |—| 680x0 Pointer || Code pointer |— [PowerPC
code code
TOC pointer

Transition vector

A transition vector is a set of two addresses: the address of the routine’s executable code
and the address of the fragment’s table of contents (TOC).

About the Mixed Mode Manager 2-5

Jabeuel apo paxiN -

2-6

CHAPTER 2

Mixed Mode Manager

The Macintosh programming interfaces allow you to use procedure pointers in several
ways. A procedure pointer can be

= passed as a parameter to a system software routine (for example, the gr owZone
parameter to the Set G owZone routine)

= passed in a field of a parameter block or other data structure (for example, the
gzPr oc field of a Zone parameter block)

= stored in an application-specific global data structure (for example, the addresses
stored in a gr af Pr ocs field of a graphics port)

= installed into a vector accessed through system global variables (for example, the
j GNEFi | t er global variable)

= installed into the trap dispatch table or into a patch daisy chain using the
Set Tool Tr apAddr ess or Set OSTr apAddr ess routine

As indicated previously, the Mixed Mode Manager cannot tell, from a given procedure
pointer, what kind of code the pointer references (either directly through a pointer of
type ProcPt r or indirectly through a transition vector). The Mixed Mode Manager
solves this problem by requiring you to use generalized procedure pointers, known as
universal procedure pointers, whenever you would previously have used a procedure
pointer. A universal procedure pointer is either a normal 680x0 procedure pointer
(that is, the address of a routine) or the address of a routine descriptor, a data structure
that the Mixed Mode Manager uses to encapsulate information about an externally
referenced routine. A routine descriptor describes the address of the routine, its
parameters, and its calling conventions.

t ypedef Routi neDescriptor *Universal ProcPtr;

Note

See “Routine Descriptors” on page 2-37 for a description

of the fields of a routine descriptor. O

The Macintosh application programming interfaces have been revised for the PowerPC
platform to change all references to procedure pointers to references to universal
procedure pointers. (The new interfaces are called the universal interface files.) For
example, the Set Gr owZone function was previously declared in the interface file
Menor y. h like this:

typedef ProcPtr G owZoneProcPtr;
pascal void Set G owZone (G owZoneProcPtr growZone);

In the updated interface file Menory. h, Set G- owZone is declared like this:

t ypedef Universal ProcPtr G owZoneUPP;
extern pascal void Set G owZone (G owZoneUPP growZone);

This redefinition of all procedure pointers as universal procedure pointers ensures that at
the time a procedure is to be executed, the Operating System has enough information
to determine the routine’s instruction set architecture and hence to determine whether

About the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

a mode switch is necessary. In addition, if a mode switch is necessary, the universal
procedure pointer (if it is a pointer to a routine descriptor) provides information about
the routine’s calling conventions, the number and sizes of its parameters, and so forth.

It’s important to understand exactly when you need to be concerned about routine
descriptors and when you need to use the new programming interfaces when writing
your application. The following cases cover most of the relevant possibilities:

» If your application uses the 680x0 instruction set (and therefore executes under the
68LC040 Emulator on PowerPC processor-based Macintosh computers) and does not
support external code modules, you do not need to use routine descriptors or the new
programming interfaces.

» If your application uses the PowerPC instruction set, you must use the new program-
ming interfaces.

» If your application uses either the 680x0 instruction set or the PowerPC instruction set
and makes calls only to code of the same type, you do not need to create routine
descriptors.

Jabeuel apo paxiN -

» If your code uses the PowerPC instruction set and passes a routine’s address to code
that might be in the 680x0 instruction set, then you need instead to pass the address of
a routine descriptor. This applies to all the methods of passing a routine address listed
earlier in this section (as a parameter to a system software routine, in a field of a
parameter block, and so forth).

» If you create a resource containing PowerPC code that might be called either by 680x0
code or by PowerPC code, that code must be preceded by a routine descriptor. It’s
possible that the calling code simply loads the resource and jumps to its beginning;
if the resource does not begin with a routine descriptor, the Mixed Mode Manager
will not be called to determine whether a mode switch is necessary. See “Executing
Resource-Based Code” on page 2-24 for more details.

IMPORTANT

In short, you need to convert procedure pointers to universal procedure
pointers only if you pass a routine’s address to code that is external to
your application. See “Using Universal Procedure Pointers” beginning
on page 2-21 for details on making the appropriate modifications to
your application. a

Mode Switches

This section describes the operations of the Mixed Mode Manager in switching modes
(from PowerPC native mode to 680x0 emulation mode, or vice versa). It describes the
circumstances under which mode switches are performed and the mechanism that the
Mixed Mode Manager uses to switch modes.

IMPORTANT

The information in this section is provided for debugging purposes only.
Your application (or other code) should not rely on the details of mode
switching presented here. a

About the Mixed Mode Manager 2-7

2-8

CHAPTER 2

Mixed Mode Manager

Every mode switch occurs as a result of either an explicit or an implicit cross-mode
call. An explicit cross-mode call occurs when the calling software itself calls the

Cal | Uni ver sal Proc function and passes a universal procedure pointer of a routine
that exists in an instruction set architecture other than that of the caller. An implicit
cross-mode call occurs when the calling software executes a routine descriptor for a
routine that exists in an instruction set architecture other than that of the caller.

The mixed-mode architecture of PowerPC processor-based computers running 680x0-
based code gives rise to four possible situations when a piece of code calls a system
software routine:

= When 680x0 code calls a system software routine that exists as 680x0 code, the
routine is called directly, using the trap dispatch mechanism provided in the
68LC040 Emulator.

s When 680x0 code calls a system software routine that exists as PowerPC code, the
routine is called indirectly, using the address—contained in the trap dispatch table—
of a routine descriptor, which invokes a mode switch to the PowerPC environment.
When the PowerPC code returns, the executing environment is switched back to the
68LC040 Emulator. See the next section, “Calling PowerPC Code From 680x0 Code,”
for more details.

s When PowerPC code calls a system software routine that exists as PowerPC code, the
routine is called through glue in the system software import library. The glue code
calls Cal | Uni ver sal Pr oc, which determines that the routine is PowerPC code and
then calls it directly.

s When PowerPC code calls a system software routine that exists as 680x0 code, the
routine is called through glue code contained in the system software import library.
The glue code sets up a 680x0 universal procedure pointer (which is simply a 680x0
procedure pointer) and executes the 680x0 code by calling the Cal | Uni ver sal Proc
function. See “Calling 680x0 Code From PowerPC Code” on page 2-12 for more details.

IMPORTANT

Only 680x0 code can make implicit cross-mode calls. Native PowerPC
code must always make explicit cross-mode calls. The Mixed Mode
Manager determines whether a mode switch is necessary. a

Calling PowerPC Code From 680x0 Code

This section describes how the Mixed Mode Manager switches modes from the 680x0
emulated environment to the PowerPC native environment. This usually happens
when 680x0 code calls a system software routine that is implemented in the PowerPC
instruction set.

Suppose that a 680x0 application calls some system software routine. The application is
not aware that it is running under the 68LC040 Emulator, so it just pushes the routine’s
parameters onto the stack (or stores them into registers) and then jumps to the routine
or calls a trap that internally jumps to the routine. If the routine exists as 680x0 code,
no mode switch is required and the routine is called as usual. If, however, the routine

About the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

exists as PowerPC code, the calling application must implicitly invoke the Mixed
Mode Manager.

If the calling application merely jumps to the PowerPC code, the code must begin with
a routine descriptor, as explained in “Executing Resource-Based Code” on page 2-24. If
the calling application calls a trap, the trap dispatch table must contain—instead of the
address of the routine’s executable code—the address of a routine descriptor for that
routine. This routine descriptor is created at system startup time.

Figure 2-2 shows the path followed when a 680x0 application calls a system software
routine implemented as PowerPC code. The trap dispatch table contains the address
of the native routine’s routine descriptor. The routine descriptor contains the address
of the routine’s transition vector, which in turn contains the routine’s entry point and
TOC value.

Figure 2-2 Calling PowerPC code from a 680x0 application

Trap dispatch table

{ / / /

Routine descriptor

Transition vector PowerPC code

For example, suppose that your application calls the Count Resour ces function,
as follows:

myResCount = Count Resources(' PROC);

Suppose further that Count Resour ces has been ported to the PowerPC instruction set.

When your application calls Count Resour ces, the stack looks like the one shown in
Figure 2-3.

About the Mixed Mode Manager 2-9

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

Figure 2-3 The stack before a mode switch

2-10

/ /

10
0 Result space
8
4 PROC Parameter
1000E Return address
SP —

{ Stack grows {
dorn

The trap dispatcher executes the Count Resour ces routine descriptor, which begins
with an executable instruction that invokes the Mixed Mode Manager. The Mixed Mode
Manager retrieves the transition vector and creates a switch frame on the stack. A switch
frame is a stack frame that contains information about the routine to be executed, the
state of various registers, and the address of the previous frame. Figure 2-4 shows the
structure of a 680x0-to-PowerPC switch frame.

IMPORTANT

Notice in Figure 2-4 that the low-order bit in the back chain pointer to
the saved A6 value is set. The Mixed Mode Manager uses that bit
internally as a signal that a switch frame is on the stack. The Mixed
Mode Manager will fail if the stack pointer has an odd value. a

About the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

Figure 2-4 A 680x0-to-PowerPC switch frame

7 /

680x0 Local variables

caller stack —|
frame 0 Result space

PROC Parameter

1000E Return address

T

Saved A6

Reserved

Parameters
(8 words minimum,
more if needed)

680x0-to- 28
PowerPC — PROC
switch frame 24
Saved RTOC
20
Reserved
12
8 Saved LR
4 Saved CR
\1 Back chain (low bit is set)
— 0
—
PowerPC 4 Stack grows {
callee stack — down
frame

In addition to creating a switch frame, the Mixed Mode Manager also sets up several
CPU registers:

s The Table of Contents Register (RTOC) must be set to the TOC address of the
fragment containing the Count Resour ces routine. This value is obtained from
the transition vector whose address is extracted from the routine descriptor.

» The Link Register (LR) must be set to point to code that cleans up the stack and
restarts the emulator.

At this point, it’s safe to execute the native Count Resour ces code. When

Count Resour ces completes, the Mixed Mode Manager copies the return value from R3
into its proper location (in a register or on the stack). The RTOC, LR, and CR are restored
to their saved values, and the switch frame is popped off the stack. The Mixed Mode
Manager also pops the return address off the stack, as well as the parameters of routines

About the Mixed Mode Manager 2-11

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

of type pascal . Finally, the Mixed Mode Manager jumps back into the 68LC040
Emulator and the application continues execution.

Calling 680x0 Code From PowerPC Code

This section describes how the Mixed Mode Manager switches modes from the PowerPC
native environment to the 680x0 emulated environment. This usually happens when
PowerPC code calls a system software routine that is implemented in the 680x0
instruction set.

For example, suppose that a PowerPC application calls a system software routine that
exists only as 680x0 code. In the system software import library must exist a small piece
of glue code that

= allocates space on the stack for the routine’s result, if any

= determines the address of the 680x0 routine from the trap dispatch table
= provides the procedure information for the routine

= calls the Cal | Uni ver sal Proc function

Listing 2-1 illustrates a sample glue routine for the QuickDraw text-measuring routine
Text W dt h.

IMPORTANT

Glue routines like the one illustrated in Listing 2-1 are part of
the system software import library. You do not need to write
glue routines like this. a

Listing 2-1 Sample glue code for a 680x0 routine

enum {
uppText Wdt hProcl nfo = kPascal St ackBased
| RESULT_SI ZE(kTwoByt eCode)
| STACK _ROUTI NE_PARAMETER(1, kFour Byt eCode)
| STACK ROUTI NE_PARAMETER(2, kTwoByt eCode)
| STACK ROUTI NE_PARAMETER(3, kTwoByt eCode)

}s

short TextWdth (Ptr textBuf, short firstByte, short byteCount)

{
ProcPtr text Wdt h_68K;

text Wdth_68K = NGet TrapAddress(_TextWdth, Tool Trap);

return Call Universal Proc((Universal ProcPtr)textWdth_68K,
uppText Wdt hProcl nfo, textBuf, firstByte, byteCount);

2-12 About the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

See “Specifying Procedure Information” beginning on page 2-14 for a description of the
constants and macros used to define the procedure information (that is, the myPr ocl nf o
parameter).

Note

For Operating System traps (that is, traps of type OSTr ap), the
trap dispatcher copies the trap number into register D1. As a result,
the glue code illustrated in Listing 2-1 would need to call the
function Cal | OSTr apUni ver sal Proc. O

The call to Cal | Uni ver sal Pr oc invokes the Mixed Mode Manager, which verifies that
a mode switch is necessary. At that point, the Mixed Mode Manager saves all nonvolatile
registers and other necessary information on the stack in a switch frame. Figure 2-5
shows the structure of a PowerPC-to-680x0 switch frame.

Figure 2-5 A PowerPC-t0-680x0 switch frame

— } }
PowerPC — Saved LR
stack frame Saved CR
Back chain
P 0
Oxffffffff Switch frame indicator
» B
Saved PowerPC
——registers
(GPR13-GPR31)
-/
B
PowerPC-to- — Reserved
680x0 switch —
frame —
Result space
—
—— 680x0 input
parameters
_/
Return address
N
- .
A6 back chain
Local variables
680x0
caller stack —
frame 4 Stack grows {
down
—

About the Mixed Mode Manager 2-13

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

Once the switch frame is set up, the Mixed Mode Manager sets up the 68LC040
Emulator’s context block and then jumps into the emulator. When the routine has
finished executing, it attempts to jump to the return address pushed onto the stack. That
return address points to a mode-switching structure contained in the Reserved area in
the switch frame. The emulator encounters the instruction in the goM xedModeTr ap
field of the routine descriptor and then saves the current 680x0 state in its context block.
Once this is done, the Mixed Mode Manager restores native registers that were
previously saved and deallocates the switch frame. Control then returns to the caller of
Cal | Uni versal Proc.

IMPORTANT

As currently implemented, the instruction that causes a return from the
68LC040 Emulator to the native PowerPC environment clears the
low-order 5 bits of the Condition Code Register (CCR). This prevents
680x0 callback procedures from returning information in the CCR. If you
want to port 680x0 code that calls an external routine that returns results
in the CCR, you must instead call a 680x0 stub that saves that
information in some other place. a

Using the Mixed Mode Manager

2-14

You can use the Mixed Mode Manager to specify the procedure information for a
routine, create routine descriptors, and execute the code referenced by a universal
procedure pointer. Typically, you'll call NewRout i neDescr i pt or to create a routine
descriptor and Cal | Uni ver sal Proc to execute the code described by a routine
descriptor. You can dispose of routine descriptors you no longer need by calling the
Di sposeRout i neDescri pt or function.

Remember that if you are compiling code for the 680x0 environment, you don’t need to
worry about creating, calling, or disposing of routine descriptors. For 680x0 code, the
compiler variable USESROUTI NEDESCRI PTORS is set to f al se (the default setting). Any
calls in your source code to the NewRout i neDescri pt or function are replaced by the
code address passed as a parameter to NewRout i neDescr i pt or. Similarly, any calls to
Di sposeRout i neDescri pt or are simply removed.

Note

Your development environment sets the USESROUTI NEDESCRI PTCR
variable to the value appropriate for the kind of code you are compiling,
You don’t need to set or reset this variable. O

Specifying Procedure Information

The primary task of the Mixed Mode Manager is to convert routine parameters between
the 680x0 and PowerPC environments. The parameter passing conventions in the
PowerPC environment are identical for all routines, so you'll need to specify the calling
conventions only for 680x0 routines.

Using the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

In the Macintosh Operating System, there are five basic kinds of calling conventions:
= Pascal routines with the parameters passed on the stack

= C routines with the parameters passed on the stack

= routines with the parameters passed in registers

= dispatched Pascal or C routines with the selector in a register and the parameters on
the stack

= dispatched Pascal routines with the selector and the parameters on the stack

In addition to these five basic kinds of calling conventions, there exist a number of cases
that the Mixed Mode Manager treats specially. For example, an ADB service routine is
passed information in registers A0, A1, A2, and DO.

The Mixed Mode Manager uses a long word of type Pr ocl nf oType to encode a
routine’s procedure information, which contains essential information about the calling
conventions and other features of a routine. You need to specify procedure information
when you create a new routine descriptor by calling the NewRout i neDescri pt or
function.

t ypedef unsigned | ong Procl nfoType;

IMPORTANT

In all likelihood, you do not need to read the remainder of this section,
which explains in detail the structure of the Pr ocl nf oType long word
and shows how to create custom procedure information. The universal
interface files define procedure information for each universal procedure
pointer used by the system. For example, the interfaces define the
constant uppG owZonePr ocl nf o for you to use when specifying

the procedure information for a grow-zone function. You need to create
procedure information only for routines not defined in the programming
interfaces. You can probably skip to the section “Using Universal
Procedure Pointers” on page 2-21. a

The lower-order 4 bits of the procedure information encode the routine’s calling
conventions. You specify calling conventions using these constants:

enum {

/*cal ling conventions*/

kPascal St ackBased = (Calli ngConventionType) 0,

kCSt ackBased = (Cal li ngConventionType) 1,

kRegi st er Based = (Calli ngConventi onType) 2,

kThi nkCSt ackBased = (Calli ngConventionType) 5,

kDODi spat chedPascal St ackBased = (Cal li ngConventionType) 8,

kDODi spat chedCSt ackBased = (Calli ngConventionType) 9,

kD1Di spat chedPascal St ackBased = (CallingConventionType) 12,
kSt ackDi spat chedPascal St ackBased = (CallingConventionType) 14,
kSpeci al Case = (Calli ngConventi onType) 15

Using the Mixed Mode Manager 2-15

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

For example, a routine that passes its parameters on the stack according to normal C
language conventions would have the rightmost 4 bits of the procedure information set
to 0001 (hexadecimal 0x00000001).

Except for routines having calling conventions of type kSpeci al Case, the 2 bits to the
left of the calling convention bits encode the size of the result returned by the routine.
You can access those bits using a constant:

#defi ne kResul t Si zePhase 4

The Mixed Mode Manager provides four constants and a macro that you can use to set a
routine’s result size in its procedure information.

enum {
kNoByt eCode =
kOneByt eCode =
kTwoByt eCode =
kFour Byt eCode =

w N PO

}s

#def i ne RESULT_SI ZE(si zeCode) \
((Procl nfoType) (si zeCode) << kResul t Si zePhase)

Except as already noted, every set of procedure information uses its rightmost 6 bits to
specify the calling conventions and result size information. The calling conventions,
which take up the rightmost 4 bits, determine how the remaining bits of a routine’s
procedure information are interpreted. For example, if the rightmost 4 bits contain

the value KCSt ackBased or the value kPascal St ackBased, then the remaining bits
encode the sizes and number of the parameters passed on the stack. Figure 2-6 shows
how the Mixed Mode Manager interprets the procedure information for a stack-

based routine.

2-16 Using the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

Figure 2-6 Procedure information for a stack-based routine

Sizes of parameters

()
13 3 2 1
0 1 202122 23242526 2728 31

0 bytes
1 byte :
2 bytes Result size
4 bytes

Calling conventions

Once again, the Mixed Mode Manager provides a set of constants and macros that you
can use to specify a stack-based routine’s procedure information.

#def i ne kSt ackPar anet er Phase 6
#defi ne kStackParaneterWdth 2

#def i ne STACK _ROUTI NE_PARANMETER(whi chPar am si zeCode) \
((Procl nfoType) (si zeCode) << (kStackParanet er Phase + \
(((whichParam - 1) * kStackParaneterWdth)))

As you can see, the maximum number of stack-based parameters whose sizes you can
specify using a variable of type Pr ocl nf oType is 13. The procedure information
encoding used by the Mixed Mode Manager places limits on the number of specifiable
register-based parameters as well. See Table 3-1 at the end of this section (page 2-20) for a
complete list of these limits.

The new application programming interface files described earlier (on page 2-6) include
constants that define procedure information for each type of routine to which you might
need to create a universal procedure pointer. For example, the interface file Menory. h
includes these definitions:

enum {
uppG owZoneProcl nfo = kPascal St ackBased
| RESULT_SI ZE(SI ZE_CODE(si zeof (1 ong)))
| STACK ROUTI NE_PARAMETER(1, SIZE_CODE(si zeof (Size))),
uppPur geProcProcl nfo = kPascal St ackBased
| STACK_ROUTI NE_PARAMETER(1, Sl ZE_ CODE(si zeof (Handl e)))

Using the Mixed Mode Manager 2-17

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

A grow-zone function follows normal Pascal calling conventions, returns a value that is 4
bytes long, and takes a single 4-byte parameter on the stack. A purge-warning procedure
follows normal Pascal calling conventions, returns no value, and takes a single 4-byte
parameter on the stack.

The Mixed Mode Manager provides similar constants and macros for specifying
procedure information for register-based routines.

#def i ne kRegi st er Resul t Locat i onPhase \

(kCal I'i ngConventionWdth + kResultSi zeW dt h)
#def i ne kRegi sterResul t Locati onWdth 5
#def i ne kRegi st er Par anet er Phase \

(kCal I'i ngConventi onWdth + kResultSizeWdth + \
kRegi st er Resul t Locati onW dt h)

#def i ne kRegi st er Par anet er W dt h 5
#defi ne kRegi st er Par anet er Whi chPhase 2
#def i ne kRegi st er Par anet er Si zePhase 0
#def i ne kDi spat chedSel ect or Si zeW dt h 2
#def i ne kDi spat chedSel ect or Si zePhase \
(kCal I i ngConventi onWdth + kResultSi zeW dt h)
#def i ne kDi spat chedPar anet er Phase \

(kCal I i ngConventi onWdth + kResultSizeWdth + \
kDi spat chedSel ect or Si zeW dt h)
#def i ne REA STER_RESULT_LOCATI ON(whi chReg) \
((Procl nfoType) (whi chReg) << kRegi sterResul t Locati onPhase)
#def i ne REA STER_ROUTI NE_PARAMETER(whi chPar am whi chReg, sizeCode) \
((((ProclnfoType) (sizeCode) << kRegi st er Par anet er Si zePhase) | \
((Procl nfoType) (whi chReg) << kRegi st er Par anet er Whi chPhase)) <<\
(kRegi st er Par anet er Phase + (((whi chParan)- 1) * kRegi sterParanmeterWdth)))

For example, Figure 2-7 shows the arrangement of the procedure information for a
register-based routine.

2-18 Using the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

Figure 2-7 Procedure information for a register-based routine
Sizes of parameters
()
4 3 2 1
(\ g A
01 34 56 89 1011 13141516 18192021 252627 28 31

BEEEEREE

Register Size Register Size Register Size Register Size

Result register
(for example, DO = 0)

0 bytes

1 byte :

2 bytes Result size
4 bytes

Calling conventions

The register fields use the following constants to encode 680x0 register information:

enum {

/*680x0 registers*/

kRegi st er DO = 0,
kRegi sterD1 =1,
kRegi st er D2 = 2,
kRegi st er D3 = 3,
kRegi sterD4 = 8,
kRegi st er D5 9,
kRegi st er D6 = 10,
kRegi st er D7 11,
kRegi st er AO = 4,
kRegi ster Al 5,
kRegi st er A2 = 6,
kRegi st er A3 =7,
kRegi st er A4 = 12,
kRegi st er A5 = 13,
kRegi st er A6 = 14,
kCCRegi st er CBi t = 16,
kCCRegi st er VBi t = 17,
kCCRegi st er ZBi t = 18,

Using the Mixed Mode Manager

2-19

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

kCCRegi st er NBi t = 19,
kCCRegi st er XBi t = 20
1
Note

The result size should be specified as 0 for results returned
in any of the CCR registers. O

The Mixed Mode Manager also provides constants and macros to specify the procedure
information for stack-based routines that take a register-based selector and for stack-
based routines that take a stack-based selector.

Note

See “Procedure Information” beginning on page 2-27 for a complete
description of the constants you can use to specify a routine’s procedure
information. See “C Language Macros for Defining Procedure
Information” on page 2-50 for a complete list of the Mixed Mode
Manager macros you can use to create procedure information. O

As noted earlier, there are limits on the number of parameters that a procedure
information can describe. Table 3-1 lists the available calling conventions and the
maximum number of specifiable parameters and selectors for each convention.

IMPORTANT

The input parameters can be passed in any of the registers D0-D3 and
A0-A3; the output parameter can be returned in any register. a

Table 3-1 Limits on the number of specifiable parameters in a procedure information
Maximum number Number of
Calling convention of parameters selectors
kPascal St ackBased 13 0
kCSt ackBased 13 0
kRegi st er Based 4 input, 1 output 0
kThi nkCSt ackBased 13 0
kDODi spat chedPascal St ackBased 12 1
kDODi spat chedCSt ackBased 12 1
kD1Di spat chedPascal St ackBased 12 1
kSt ackDi spat chedPascal St ackBased 12 1

In general, these limitations should not affect you. There are, however, a very few cases
in which the documented behavior of a routine prevents it from being implemented in
native PowerPC code. For example, the low-level .ENET driver routines ReadRest
and ReadPacket return information in several registers. As a result, they cannot be
implemented natively. (Because these routines are typically called only in code where

2-20 Using the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

speed of execution is critical, it's not likely that you would want to incur the overhead of
a mode switch by writing native callbacks to the ENET driver.)

Using Universal Procedure Pointers

When you call the NewRout i neDescr i pt or or NewFat Rout i neDescr i pt or function
to create a routine descriptor, the Mixed Mode Manager calls the Memory Manager to
allocate a nonrelocatable block in the current heap in which to store the new routine
descriptor. Eventually, you might want to dispose of the space occupied by the routine
descriptor; you can do this by calling the Di sposeRout i neDescri pt or function.

In general, there are two ways you’ll probably handle this allocation and deallocation.
By far the easiest method is to allocate in your application’s heap, at application
initialization time, a routine descriptor for each routine whose address you'll need to
pass elsewhere. For example, if your application calls Tr ackCont r ol with a custom
action procedure, you can create a routine descriptor in the application heap when your
application starts up, as shown in Listing 2-2.

Listing 2-2 Creating global routine descriptors

Uni versal ProcPtr myActi onProc;

myAct i onProc = NewRouti neDescri ptor((ProcPtr)MAction,
uppCont rol Acti onProcl nf o,
Get Currentl SA());

Later you would call Tr ackCont r ol like this:
TrackControl (myControl, myPoint, nyActionProc);

The routine descriptor pointed to by the global variable nyAct i onPr oc remains
allocated until your application quits, at which time the Process Manager reclaims
all the memory in your application heap.

Note

If you don’t want Tr ackCont r ol to call an application-defined action
procedure, you must pass NULL in place of myAct i onPr oc. In that case,
you don’t need to call NewRout i neDescri ptor. O

The other way to handle routine descriptors is to create them as you need them and then
dispose of them as soon as you're finished with them. This practice would be useful for
routines you don'’t call very often. Listing 2-3 shows a way to call the Modal Di al og
function to display a rarely used modal dialog box.

Using the Mixed Mode Manager 2-21

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

Listing 2-3 Creating local routine descriptors

2-22

voi d DoAbout Box (voi d)

{
short nyltem = 0;
Di al ogPt r myDi al og;
Uni ver sal ProcPtr my Modal Pr oc;
myDi al og = Get NewDi al og(kAbout Boxl D, NULL, (W ndowPtr) -1L);
nyModal Proc = NewRout i neDescri ptor((ProcPtr)MMEventFilter,
uppModal Fi | t er Procl nf o,
CetCurrent| SA());
while (nyltem!=iOK)
Modal Di al og(nyModal Proc, &nylteny;
Di sposeDi al og(nyDi al og) ;
Di sposeRout i neDescr i pt or (myModal Proc) ;
}

If you decide to allocate and dispose of routine descriptors locally, make sure that you
don’t dispose of a routine descriptor before it’s actually used by the Operating System.
(This could happen, for instance, if you pass a universal procedure pointer for a comple-
tion routine and then exit the local procedure before the completion routine is called.)

Note

You should call Di sposeRout i neDescri pt or only to dispose routine
descriptors that you created using either NewRout i neDescri pt or or
NewFat Rout i neDescri ptor. O

Using Static Routine Descriptors

Instead of allocating space for routine descriptors in your application heap (as described
in the previous section), you can also create routine descriptors on the stack or in your
global variable space by using macros supplied by the Mixed Mode Manager. Most
likely, you'll create a descriptor on the stack when you need to use a routine descriptor
for a very short time. For example, you could use the function defined in Listing 2-4
instead of the one defined in Listing 2-3.

Using the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

Listing 2-4 Creating static routine descriptors

voi d DoAbout Box (voi d)

{

short nyltem = 0;
Di al ogPt r myDi al og;
Rout i neDescri pt or nyRD =
BUI LD_ROUTI NE_DESCRI PTOR(uppMdal Fi | t er Procl nf o,
(ProcPtr) WEventFilter);
Uni versal ProcPtr my Modal Pr oc;

myDi al og = Get NewDi al og(kAbout Boxl D, NULL, (W ndowPtr) -1L);
nmyModal Proc = @yRD;
while (myltem!= i 0K
Modal Di al og(myModal Proc, &nyltem;
Di sposeDi al og(myDi al og) ;

As you can see, the DoAbout Box function defined in Listing 2-4 uses the macro

BUI LD_ROUTI NE_DESCRI PTOR to create a routine descriptor on the stack and then
passes the address of that routine descriptor to the Modal Di al og procedure. Because
the routine descriptor is created on the stack, there is no need to dispose of it before
exiting the DoAbout Box function.

You can create a routine descriptor in your application’s global data area by using the
BU LD_ROUTI NE_DESCRI PTOR macro as follows:

static RoutineDescriptor nyRD =

BUI LD_ROUTI NE_DESCRI PTOR(uppMdal Fi | t er Procl nf o,
(ProcPtr) WEventFilter);

This line of code creates a routine descriptor as part of the application global variables.

The advantage of this method is that you don’t have to call NewRout i neDescr i pt or
to allocate a routine descriptor in your heap.

The C language macro BUI LD_ROUTI NE_DESCRI PTCORis defined in Listing 2-5.

{

Listing 2-5 Building a static routine descriptor

#def i ne BU LD _ROUTI NE_DESCRI PTOR(procl nf o, procedure) \
\

_M xedMbdeMagi c, /*m xed- node A-trap*/ \
kRout i neDescri pt or Ver si on, /*version*/ \
kSel ect or sAreNot | ndexabl e, /*RD flags: not dispatched*/ \

0, /*reservedl*/ \

0, [*reserved2*/ \

Using the Mixed Mode Manager 2-23

Jabeuel apo paxiN -

0,
0,
{
b
}
2-24

CHAPTER 2

Mixed Mode Manager

/*sel ector info*/ \

/*nunber of routines*/ \

/*it's an array*/ \

/[*it's a structure*/ \

(proclnfo), /*the procedure info*/ \
0, /*reserved*/ \
kPower PCl SA, [*1 SA*/ \
kProcDescri ptorl sAbsol ute | /*flags: absol ute address*/ \
kFragnent | sPrepared | /*it's prepared*/ \
kUseNat i vel SA, /*al ways use native | SA*/ \
(ProcPtr) (procedure), /*t he procedure*/ \
0, /*reserved*/ \
0, /*not di spat ched*/ \
\

\

IMPORTANT

You should use the BUl LD_ROUTI NE_DESCRI PTOR macro only to
create a routine descriptor that describes a nondispatched routine
that exists as PowerPC code. a

The Mixed Mode Manager also defines a C language macro that you can use to
create static fat routine descriptors. See the Mixed Mode Manager interface file for
the definition of the BUI LD_FAT_ROUTI NE_DESCRI PTOR macro.

Executing Resource-Based Code

As you've seen earlier in this book (in the section “Executable Resources” on page 1-34),
you can create executable resources that contain PowerPC code to serve as accelerated
versions of 680x0 code resources. The accelerated resource is simply a PowerPC version
of the 680x0 code resource, prefixed with a routine descriptor for the code contained in
the resource. The routine descriptor is necessary for the Mixed Mode Manager to know
whether it needs to change modes in order to execute the code. The routine descriptor
also lets the Mixed Mode Manager know whether it needs to call the Code Fragment
Manager to prepare the fragment. Figure 2-8 shows the structure your code-containing
resources should have.

Using the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

Figure 2-8 General structure of an executable code resource
Routine
descriptor
L
PowerPC

code fragment

The pr ocDescri pt or field of the routine record—contained in the r out i neRecor ds
field of the routine descriptor—should contain the offset from the beginning of the
resource (that is, the beginning of the routine descriptor) to the beginning of the execut-
able code fragment. In addition, the routine flags for the specified code should have the
kProcDescri pt orl sRel ati ve bit set, indicating that the address is relative, not
absolute. If the code contained in the resource is PowerPC code, you should also set the
kFr agnent NeedsPr epar i ng bit.

It's also possible to create “fat” code-bearing resources, that is, resources containing both
680x0 and PowerPC versions of some routine. Figure 2-9 shows the general structure of
such a resource.

Using the Mixed Mode Manager 2-25

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

Figure 2-9 General structure of a fat resource

Routine
descriptor

PowerPC
code fragment

680x0
code

In this case, the routine descriptor contains two routine records in its r out i neRecor ds
field, one describing the 680x0 code and one describing the PowerPC code. As with any
code-bearing resource, the procDescr i pt or field of each routine record should contain
the offset from the beginning of the resource to the beginning of the appropriate code.
The flags for both routine records should have the kProcDescri pt or | sRel ati ve flag
set, and the routine flags for the PowerPC routine record should have the

kFr agnent NeedsPr epar i ng flag set.

The MPW interface file M xedMode. r provides Rez templates that you can use to create
the accelerated resource shown in Figure 2-8 or the fat resource shown in Figure 2-9.

WARNING

Do not call accelerated resources at interrupt time unless you are certain
that the resource has already been loaded into memory, locked, and
prepared for execution. If the resource containing the code hasn’t

been prepared, the Code Fragment Manager will attempt to do so,

and thereby allocate memory. (Memory allocation is not allowed at
interrupt time.) a

Mixed Mode Manager Reference

2-26

This section describes the constants, data structures, and routines provided by the Mixed
Mode Manager. See “Using the Mixed Mode Manager” beginning on page 2-14 for
detailed instructions on using these routines.

Mixed Mode Manager Reference

CHAPTER 2

Mixed Mode Manager

Constants

This section describes the constants provided by the Mixed Mode Manager. You use
these constants to specify routine descriptor flags and a routine’s procedure information.
Because the universal interface files define procedure information for the most common
callback routines, it’s likely that you won’t need to use the procedure information
constants listed here.

Routine Descriptor Flags

The r out i neDescr i pt or Fl ags field of a routine descriptor contains a set of routine
descriptor flags that specify attributes of the described routine. You can use constants
to specify the routine descriptor flags. In general, you should use the constant

kSel ect or sAr eNot | ndexabl e when constructing your own routine descriptors; the
value kSel ect or sAr el ndexabl e is reserved for use by Apple.

enum {
kSel ect or sAreNot | ndexabl e
kSel ect or sAr el ndexabl e

(RDFI agsType) 0x00,
(RDFI agsType) 0x01

s

Constant descriptions

kSel ect or sAr eNot | ndexabl e
For dispatched routines, the recognized routine selectors are
not contiguous.

kSel ect or sAr el ndexabl e
For dispatched routines, the recognized routine selectors are
contiguous and therefore indexable.

Procedure Information

The Mixed Mode Manager uses a long word of type Pr ocl nf oType to encode a
routine’s procedure information, which contains essential information about the calling
conventions and other features of a routine. These values specify

= the routine’s calling conventions
= the sizes and locations of the routine’s parameters, if any
= the size and location of the routine’s result, if any

See “Specifying Procedure Information” beginning on page 2-14 for a description of the
general structure of a routine’s procedure information. The Mixed Mode Manager
provides a number of constants that you can use to specify the procedure information.

The following constants are used to specify the size (in bytes) of a value encoded in a
routine’s procedure information.

Mixed Mode Manager Reference 2-27

Jabeuel apo paxiN -

enum

{

CHAPTER 2

Mixed Mode Manager

/| *si ze codes*/

kNoByt eCode =
kOneByt eCode =
kTwoByt eCode =
kFour Byt eCode =

w N PO

Constant descriptions
kNoByt eCode The value occupies no bytes.

kOneByt eCode The value occupies 1 byte.
kTwoByt eCode The value occupies 2 bytes.
kFour Byt eCode The value occupies 4 bytes.

The offsets to fields and the widths of the fields within a value of type Pr ocl nf oType
are defined by constants:

/*of fsets to and wi dths of procedure infornation fields*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i

2-28

ne
ne
ne
ne
ne
ne
ne
ne

ne
ne

ne
ne
ne
ne
ne

ne

kCal I i ngConventi onPhase 0
kCal I i ngConventi onW dt h 4
kResul t Si zePhase kCal | i ngConventi onW dt h
kResul t Si zeW dt h 2
kResul t Si zeMask 0x30
kSt ackPar anet er Phase 6
kSt ackPar anet er W dt h 2
kRegi st er Resul t Locat i onPhase \
(kCal I i ngConventi onWdth + kResult Si zeW dt h)
kRegi st er Resul t Locati onW dt h 5
kRegi st er Par anet er Phase \
(kCal I i ngConventi onWdth + kResultSizeWdth + \
kRegi st er Resul t Locat i onW dt h)
kRegi st er Par anet er W dt h 5
kRegi st er Par anet er Whi chPhase 2
kRegi st er Par anet er Si zePhase 0
kDi spat chedSel ect or Si zeW dt h 2
kDi spat chedSel ect or Si zePhase \
(kCal I i ngConventi onWdth + kResultSi zeW dt h)
kDi spat chedPar anet er Phase \

(kCal I i ngConventi onWdth + kResultSizeWdth + \
kDi spat chedSel ect or Si zeW dt h)

Constant descriptions

kCal I i ngConvent i onPhase
The offset from the least significant bit in the procedure information
to the calling convention information.

Mixed Mode Manager Reference

CHAPTER 2

Mixed Mode Manager

kCal I i ngConventi onW dt h
The number of bits in the procedure information that encode the
calling convention information.

kResul t Si zePhase
The offset from the least significant bit in the procedure information
to the function result size information.

KResul t Si zeW dth
The number of bits in the procedure information that encode the
function result size information.

kResul t Si zeMask
A mask for the bits in the procedure information that encode the
function result size information.

kSt ackPar anmet er Phase
The offset from the least significant bit in the procedure information
to the stack parameter information.

kSt ackPar amet er W dt h
The number of bits in the procedure information that encode the
size of a stack-based parameter.

kRegi st er Resul t Locat i onPhase
The offset from the least significant bit in the procedure information
to the result register information.

kRegi st er Resul t Locati onW dt h
The number of bits in the procedure information that encode which
register the result will be stored in.

kRegi st er Par anet er Phase
The offset from the least significant bit in the procedure information
to the register parameter information.

kRegi st er Par anet er W dt h
The number of bits in the procedure information that encode the
information about a register-based parameter.

kRegi st er Par anet er Whi chPhase
The offset from the beginning of a register parameter information
field to the encoded register.

kRegi st er Par anet er Si zePhase
The offset from the beginning of a register parameter information
field to the encoded size of the parameter.

kDi spat chedSel ect or Si zeW dt h
The number of bits in the procedure information that encode the
size of a routine-dispatching selector.

kDi spat chedSel ect or Si zePhase
The offset from the least significant bit in the procedure information
to the selector size information of a routine that is dispatched
though a selector.

kDi spat chedPar anet er Phase
The offset from the least significant bit in the procedure information
to the parameter information of a routine that is dispatched though
a selector.

Mixed Mode Manager Reference 2-29

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

The following constants are used to specify a routine’s calling conventions:

enum {
/*cal ling conventions*/
kPascal St ackBased = (Calli ngConventi onType) 0,
kCSt ackBased = (CallingConventionType) 1,
kRegi st er Based = (Cal li ngConventionType) 2,
kThi nkCSt ackBased = (Cal li ngConventi onType) 5,
kDODi spat chedPascal St ackBased = (Cal li ngConventi onType) 8,
kDODi spat chedCsSt ackBased = (Cal li ngConventionType) 9,
kD1Di spat chedPascal St ackBased = (CallingConventionType) 12,
kSt ackDi spat chedPascal St ackBased = (Cal l'i ngConventi onType) 14,
kSpeci al Case = (Calli ngConventi onType) 15
b
Constant descriptions
kPascal St ackBased
The routine follows normal Pascal calling conventions.
kCst ackBased The routine follows the C calling conventions employed by the
MPW development environment.
kRegi st er Based
The parameters are passed in registers.
kThi nkCSt ackBased
The routine follows the C calling conventions employed by the
THINK C software development environment. Arguments are
passed on the stack from right to left, and a result is returned in
register D0. All arguments occupy an even number of bytes on
the stack. An argument having the size of a char is passed in the
high-order byte. You should always provide function prototypes;
failure to do so may cause THINK C to generate code that is
incompatible with this parameter-passing convention.
kDODi spat chedPascal St ackBased
The parameters are passed on the stack according to Pascal
conventions, and the routine selector is passed in register DO.
kDODi spat chedCSt ackBased
The parameters are passed on the stack according to C conventions,
and the routine selector is passed in register DO.
kD1Di spat chedPascal St ackBased
The parameters are passed on the stack according to Pascal
conventions, and the routine selector is passed in register D1.
kSt ackDi spat chedPascal St ackBased
The routine selector and the parameters are passed on the stack.
kSpeci al Case The routine is a special case. You can use the following constants to
specify a special case.
2-30 Mixed Mode Manager Reference

enum {
/ *speci al cases*/

kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci
kSpeci

CHAPTER 2

Mixed Mode Manager

al CaseHi ghHook

al CaseCar et Hook

al CaseEOQLHook

al CaseW dt hHook

al CaseNW dt hHook

al CaseText W dt hHook
al CaseDr awHook

al CaseHi t Test Hook

al CaseTEFi ndWrd

al CasePr ot ocol Handl er
al CaseSocket Li st ener
al CaseTERecal c

al CaseTEDoText

al CaseGNEFi | t er Proc
al CaseMBar Hook

01
kSpeci al CaseHi ghHook

Constant descriptions

kSpeci al CaseH ghHook
The routine follows the calling conventions documented in Inside
Macintosh: Text; a rectangle is on the stack and a pointer is in register
A3; no result is returned.

kSpeci al CaseCar et Hook
The routine follows the calling conventions documented in Inside
Macintosh: Text; a rectangle is on the stack and a pointer is in register
A3; no result is returned.

kSpeci al CaseEOQ_Hook
Parameters are passed to the routine in registers A3, A4, and DO,
and output is returned in the Z flag of the Status Register. An
EOLHook routine has these calling conventions.

kSpeci al CaseW dt hHook
Parameters are passed to the routine in registers A0, A3, A4, DO, and
D1, and output is returned in register D1. AW DTHHook routine has
these calling conventions.

kSpeci al CaseNW dt hHook
Parameters are passed to the routine in registers A0, A2, A3, A4, DO,
and D1, and output is returned in register D1. An nW DTHHook
routine has these calling conventions.

kSpeci al CaseText W dt hHook
Parameters are passed to the routine in registers A0, A3, A4, DO, and
D1, and output is returned in register D1. A Text W dt hHook
routine has these calling conventions.

kSpeci al CaseDr awHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and

Mixed Mode Manager Reference 2-31

Jabeuel apo paxiN -

2-32

CHAPTER 2

Mixed Mode Manager

kSpeci

kSpeci

kSpeci

kSpeci

kSpeci

kSpeci

kSpeci

kSpeci

D1, and no result is returned. A DRAWHooK routine has these calling
conventions.

al CaseHi t Test Hook
Parameters are passed to the routine in registers A0, A3, A4, D0, D1,
and D2, and output is returned in registers DO, D1, and D2. A
H TTESTHook routine has these calling conventions.

al CaseTEFi ndWr d
Parameters are passed to the routine in registers A3, A4, D0, and
D2, and output is returned in registers DO and D1. A TEFi ndWor d
hook has these calling conventions.

al CasePr ot ocol Handl er
Parameters are passed to the routine in registers A0, Al, A2, A3, A4,
and in the low-order word of register D1; output is returned in the
Z flag of the Status Register. A protocol handler has these calling
conventions.

al CaseSocket Li st ener
Parameters are passed to the routine in registers A0, Al, A2, A3, A4,
in the low-order byte of register DO, and in the low-order word of
register D1; output is returned in the Z flag of the Status Register. A
socket listener has these calling conventions.

al CaseTERecal ¢
Parameters are passed to the routine in registers A3 and D7, and
output is returned in registers D2, D3, and D4. A TextEdit line-start
recalculation routine has these calling conventions.

al CaseTEDoText
Parameters are passed to the routine in registers A3, D3, D4, and
D7, and output is returned in registers A0 and D0. A TextEdit
text-display, hit-test, and caret-positioning routine has these calling
conventions.

al CaseGNEFi | t er Proc
Parameters are passed to the routine in registers A1 and D0 and on
the stack, and output is returned on the stack. A Get Next Event
filter procedure has these calling conventions.

al CaseMBar Hook
Parameters are passed to the routine on the stack, and output is
returned in register DO. A menu bar hook routine has these calling
conventions.

For register-based routines, the registers are encoded in the routine’s procedure
information using these constants:

enum {

/ *680x0 registers*/

kRegi st er DO =
kRegi st er D1 =
kRegi st er D2

kRegi st er D3 =
kRegi sterD4 =

© w N EF O

Mixed Mode Manager Reference

CHAPTER 2

Mixed Mode Manager

kRegi st er D5
kRegi st er D6
kRegi st er D7
kRegi st er AO
kRegi st er Al
kRegi st er A2
kRegi st er A3
kRegi ster Ad
kRegi st er A5
kRegi st er A6

kCCRegi ster CBi t
kCCRegi st er VBi t
kCCRegi st er ZBi t
kCCRegi st er NBi t
kCCRegi st er XBi t

}s

Constant descriptions

kRegi st er DO
kRegi st er D1
kRegi st er D2
kRegi st er D3
kRegi sterD4
kRegi st er D5
kRegi st er D6
kRegi st er D7
kRegi st er AO
kRegi st er Al
kRegi st er A2
kRegi st er A3
kRegi ster A4
kRegi st er A5
kRegi st er A6
kCCRegi ster CBi t

kCCRegi st er VBi t
kCCRegi ster ZBi t
kCCRegi st er NBi t

kCCRegi st er XBi t

Register DO.
Register D1.
Register D2.
Register D3.
Register D4.
Register D5.
Register D6.
Register D7.
Register AQ.
Register Al.
Register A2.
Register A3.
Register A4.
Register A5.
Register A6.

The C (carry) flag of the Status Register.
The V (overflow) flag of the Status Register.
The Z (zero) flag of the Status Register.

The N (negative) flag of the Status Register.

The X (extend) flag of the Status Register.

Mixed Mode Manager Reference

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

Routine Flags

The r out i neFl ags field of a routine record contains a set of flags that specify informa-
tion about a routine. You can use constants to specify the desired routine flags. Currently,
only 5 of the 16 bits in a routine flags word are defined. You should set all the other

bits to 0.

enum {
kProcDescri ptorlsAbsol ute
kProcDescriptorlsRel ative

(Rout i neFl agsType) 0x00,
(Rout i neFl agsType) 0x01

};
Constant descriptions
kProcDescri ptorl sAbsol ute
The address of the routine’s entry point specified in the
procDescri pt or field of a routine record is an absolute address.
kProcDescriptorlsRel ative
The address of the routine’s entry point specified in the
procDescri pt or field of a routine record is relative to the
beginning of the routine descriptor. If the code is contained in a
resource and its absolute location is not known until run time, you
should set this flag.
enum {
kFragnent | sPrepar ed = (Routi neFl agsType) 0x00,
kFr agnent NeedsPr epari ng = (Routi neFl agsType) 0x02
};
Constant descriptions
kFragment | sPrepar ed
The fragment containing the code to be executed is already loaded
into memory and prepared by the Code Fragment Manager.
kFr agnent NeedsPr epari ng
The fragment containing the code to be executed needs to be loaded
into memory and prepared by the Code Fragment Manager. If this
flag is set, the kPower PCI SAand kProcDescri ptorl sRel ative
flags should also be set.
enum {
kUseCurrent | SA = (Routi neFl agsType) 0x00,
kUseNat i vel SA = (Routi neFl agsType) 0x04
};

Constant descriptions

kUseCurrent | SA If possible, use the current instruction set architecture when
executing a routine.

kUseNati vel SA Use the native instruction set architecture when executing a routine.

2-34 Mixed Mode Manager Reference

CHAPTER 2

Mixed Mode Manager

enum {
kPassSel ect or
kDont PassSel ect or

(Rout i neFl agsType) 0x00,
(Rout i neFl agsType) 0x08

}s

Constant descriptions
kPassSel ector Pass the routine selector to the target routine as a parameter.
kDont PassSel ect or

Do not pass the routine selector to the target routine as a parameter.
You should not use this flag for 680x0 routines.

enum {
kRout i nel sNot Di spat chedDef aul t Routi ne
= (Routi neFl agsType) 0x00,
kRout i nel sDi spat chedDef aul t Routi ne
= (Routi neFl agsType) 0x10

Constant descriptions

kRout i nel sNot Di spat chedDef aul t Routi ne
This routine is not the default routine for a set of routines that is
dispatched using a routine selector.

kRout i nel sDi spat chedDef aul t Routi ne
This routine is the default routine for a set of routines that is
dispatched using a routine selector. If a set of routines is dispatched
using a routine selector and the routine corresponding to a specified
selector cannot be found, this default routine is called. This routine
must be able to accept the same procedure information for all
routines. If possible, it is passed the procedure information passed
in a call to Cal | Uni ver sal Proc.

IMPORTANT

In general, you should use the constants kPassSel ect or and

kRout i nel sNot Di spat chedDef aul t Rout i ne. The constants

kDont PassSel ect or and kRout i nel sDi spat chedDef aul t Routi ne
are reserved for use with selector-based system software routines. a

Instruction Set Architectures

The | SAfield of a routine record contains a flag that specifies the instruction set
architecture of a routine. You can use constants to specify the instruction set architecture.

Mixed Mode Manager Reference 2-35

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

enum {
kM68kI SA = (1 SAType) 0, /*M2680x0 architecture*/
kPower PCl SA = (1 SAType) 1 / *Power PC ar chi tecture*/
1
Constant descriptions
kMb8kI SA The routine consists of 680x0 code.
kPower PCl SA The routine consists of PowerPC code.

Data Structures

This section describes the two data structures provided by the Mixed Mode Manager:

= the routine record, which contains information about a routine’s calling conventions,
the sizes and locations of its parameters, and its location in memory

= the routine descriptor, which provides a generalization of procedure pointers
(variables of type Pr ocPt r) common in the 680x0 environment

Routine Records

A routine record is a data structure that contains information about a particular routine.
The routine descriptor specifies, among other things, the instruction set architecture

of the routine, the number and size of the routine’s parameters, the routine’s calling
conventions, and the routine’s location in memory. At least one routine record is
contained in the r out i neRecor ds field of a routine descriptor. A routine record is
defined by the Rout i neRecor d data type.

struct RoutineRecord {

Procl nf oType procl nf o; /*cal ling conventions*/

unsi gned char reservedl; /*reserved*/

| SAType | SA; /*instruction set architecture*/
Rout i neFl agsType routi neFl ags; /*flags for each routine*/
ProcPtr procDescri ptor; /*the thing we're calling*/

unsi gned | ong reserved2; [*reserved*/

unsi gned | ong sel ector; /*sel ector for dispatched calls*/

1
t ypedef struct RoutineRecord RoutineRecord;
t ypedef RoutineRecord *RoutineRecordPtr, **Routi neRecordHandl e;

Field descriptions

proclnfo A value of type Pr ocl nf oType that encodes essential information
about the routine’s calling conventions and parameters. See
“Procedure Information” beginning on page 2-27 for a complete list
of the constants you can use to set this field.

reservedl Reserved. This field must be 0.

2-36 Mixed Mode Manager Reference

CHAPTER 2

Mixed Mode Manager

| SA

routi neFl ags

procDescri ptor

reserved?
sel ect or

Routine Descriptors

The instruction set architecture of the routine. See “Instruction Set
Architectures” beginning on page 2-35 for a complete listing of the
constants you can use to set this field.

A value of type Rout i neFl agsType that contains a set of flags
describing the routine. See “Routine Flags” beginning on page 2-34
for a complete listing of the constants you can use to set this field.

A pointer to the routine’s code. If the routine consists of 680x0

code and the kPr ocDescri pt or | sAbsol ut e flag is set in the
rout i neFl ags field, then this field contains the address of the
routine’s entry point. If the routine consists of 680x0 code and the
kProcDescri ptorl sRel ati ve flag is set, then this field contains
the offset from the beginning of the routine descriptor to the
routine’s entry point. If the routine consists of PowerPC code,

the kFr agment | sPr epar ed flag is set, and the

kProcDescri pt or | sAbsol ut e flag is set, then this field contains
the address of the routine’s transition vector. If the routine consists
of PowerPC code, the kFr agment NeedsPr epar i ng flag is set,
and the kProcDescri pt or| sRel ati ve flag is set, then this field
contains the offset from the beginning of the routine descriptor to
the routine’s entry point.

Reserved. This field must be 0.

Reserved. This field must be 0. For routines that are dispatched, this
field contains the routine selector.

A routine descriptor is a data structure used by the Mixed Mode Manager to execute a
routine. The external interface to a routine descriptor is through a universal procedure
pointer, of type Uni ver sal ProcPt r, which is defined as a procedure pointer (if the
code is 680x0 code) or as a pointer to a routine descriptor (if the code is PowerPC code).
A routine descriptor is defined by the Rout i neDescr i pt or data type.

struct RoutineDescriptor {

unsi gned short goM xedMbdeTrap; /*ni xed-node A-trap*/
char ver si on; /*routine descriptor version*/
RDFI agsType routi neDescri pt or Fl ags;

/*routine descriptor flags*/
unsi gned | ong reservedl; /*reserved*/
unsi gned char reserved2; [*reserved*/
unsi gned char sel ectorl nfo; /*sel ector information*/
short rout i neCount ; /*index of last RRin this RD*/
Rout i neRecor d routi neRecords[1];/*the individual routines*/

s

typedef struct RoutineDescriptor RoutineDescriptor

Mixed Mode Manager Reference 2-37

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

Field descriptions

goM xedModeTr ap
An A-line instruction that is used privately by the Mixed Mode
Manager. When the emulator encounters this instruction, it
transfers control to the Mixed Mode Manager. This field contains
the value $AAFE.

ver si on The version number of the Rout i neDescri pt or data type. The
current version number is defined by the constant
kRout i neDescri pt or Ver si on:

enum { kRout i neDescri pt orVersion = 7};

routi neDescri pt or Fl ags
A set of routine descriptor flags. Currently, all the bits in this field
should be set to 0, unless you are specifying a routine descriptor for
a dispatched routine. See “Routine Descriptor Flags” on page 2-27
for a complete description of these flags.

reservedl Reserved. This field must initially be 0.

reserved2 Reserved. This field must be 0.

selectorlnfo Reserved. This field must be 0.

rout i neCount The index of the final routine record in the following array,

rout i neRecor ds. Because the r out i neRecor ds array is zero-
based, this field does not contain an actual count of the routine
records contained in that array. Often, you'll use a routine
descriptor to describe a single procedure, in which case this field
should contain the value 0. You can, however, construct a routine
descriptor that contains pointers to both 680x0 and PowerPC code
(known as a “fat” routine descriptor). In that case, this field should
contain the value 1.

routineRecords
An array of routine records for the routines described by this
routine descriptor. See “Routine Records” on page 2-36 for the
structure of a routine record. This array is zero-based.

IMPORTANT

Your application (or other software) should never attempt to guide its
execution by inspecting the value in the | SAfield of a routine record
and jumping to the address in the pr ocDescri pt or field. a

Mixed Mode Manager Routines

This section describes the routines provided by the Mixed Mode Manager. You can use
these routines to

= create and dispose of routine descriptors

= execute routines described by routine descriptors

2-38 Mixed Mode Manager Reference

CHAPTER 2

Mixed Mode Manager

In general, you need to call these routines only from PowerPC code. To maintain a single
source code base for your software, however, you can call Mixed Mode Manager
routines from 680x0 code, as long as you set the USESROUTI NEDESCRI PTORS compiler
flag to f al se (its default setting). To compile code for the PowerPC environment, you
should set the USESROUTI NEDESCRI PTORS flag to t r ue.

See “Using the Mixed Mode Manager” beginning on page 2-14 for detailed instructions
on using these routines.

Creating and Disposing of Routine Descriptors

The Mixed Mode Manager provides routines that you can use to create and dispose of
routine descriptors. In general, you need to create routine descriptors only for routines
whose addresses are exported to the system software (for example, a completion
procedure). You don’t need to create a routine descriptor for a routine that is called by
code of the same type.

NewRoutineDescriptor

DESCRIPTION

You can call the NewRout i neDescr i pt or function to create a new routine descriptor.

pascal Universal ProcPtr NewRouti neDescri ptor
(ProcPtr theProc, ProclnfoType theProclnfo,
| SAType thel SA);

t heProc The address of the routine.
theProclnfo
The procedure information to be associated with the routine.

t hel SA The instruction set architecture of the routine being described.

The NewRout i neDescri pt or function creates a new routine descriptor and returns a
pointer (of type Uni ver sal ProcPt r) to it. If the value of the t hePr oc parameter is
NULL, NewRout i neDescr i pt or returns the value NULL.

The memory occupied by the new routine descriptor is allocated in the current heap. If
you want the memory to be allocated in some other heap, you'll need to set the current
heap to that heap and then restore the current heap before exiting.

SPECIAL CONSIDERATIONS

The NewRout i neDescr i pt or function allocates memory; you should not call it at
interrupt time or from any code that might be executed when memory is low. In
addition, the block of memory allocated by NewRout i neDescr i pt or is nonrelocatable.

Mixed Mode Manager Reference 2-39

Jabeuel apo paxiN -

SEE ALSO

CHAPTER 2

Mixed Mode Manager

To help minimize heap fragmentation, you should try to allocate any routine descriptors
you will need early in your application’s execution.

When the USESROUTI NEDESCRI PTORS compile flag is f al se, the
NewRout i neDescr i pt or function simply returns the address passed in
the t hePr oc parameter and does not allocate memory for a routine descriptor.

See “Using Universal Procedure Pointers” beginning on page 2-21 for a more complete
description of when and how to create routine descriptors. See “Specifying Procedure
Information” beginning on page 2-14 for information on creating procedure information.

NewFatRoutineDescriptor

DESCRIPTION

You can call the NewFat Rout i neDescr i pt or function to create a new fat routine
descriptor.

pascal Universal ProcPtr NewFat Routi neDescri ptor
(ProcPtr theMs8kProc, ProcPtr t hePower PCProc,
Procl nf oType t heProcl nfo);

t heMb8kPr oc
The address of a 680x0 routine.

t hePower PCPr oc
The address of a PowerPC routine.

t heProclnfo
The procedure information to be associated with the routine.

The NewFat Rout i neDescr i pt or function creates a new fat routine descriptor and
returns a pointer (of type Uni ver sal Pr ocPt r) to it. The routine descriptor contains
routine records for both 680x0 and PowerPC versions of a routine. If the value of either
the t heMB8KPr oc parameter or the t hePower PCPr oc parameter is NULL,

NewFat Rout i neDescri pt or returns the value NULL.

The memory occupied by the new routine descriptor is allocated in the current heap. If
you want the memory to be allocated in some other heap, you'll need to set the current
heap to that heap and then restore the original heap before exiting.

SPECIAL CONSIDERATIONS

2-40

The NewFat Rout i neDescr i pt or function allocates memory; you should not call it at
interrupt time or from any code that might be executed when memory is low. In addition,
the block of memory allocated by NewFat Rout i neDescr i pt or is nonrelocatable. To

Mixed Mode Manager Reference

SEE ALSO

CHAPTER 2

Mixed Mode Manager

help minimize heap fragmentation, you should try to allocate any routine descriptors you
will need early in your application’s execution.

When the USESROUTI NEDESCRI PTORS compile flag is f al se, the
NewFat Rout i neDescr i pt or function is undefined.

See “Using Universal Procedure Pointers” beginning on page 2-21 for a more complete
description of when and how to create routine descriptors. See “Specifying Procedure
Information” beginning on page 2-14 for information on creating procedure information.

DisposeRoutineDescriptor

DESCRIPTION

You can call the Di sposeRout i neDescri pt or function to dispose of a routine
descriptor.

pascal void Di sposeRoutineDescri ptor
(Uni versal ProcPtr theProcPtr);

t heProcPtr
A universal procedure pointer.

The Di sposeRout i neDescri pt or function disposes of the routine descriptor pointed
to by the t hePr ocPt r parameter. You should call this function to release any memory
allocated by a previous call to NewRout i neDescr i pt or.

The Operating System automatically disposes of any remaining routine descriptors held
by your application when Exi t ToShel | is executed on its behalf. As a result, you don’t
need to explicitly dispose of any routine descriptors that you have allocated in your
application heap.

SPECIAL CONSIDERATIONS

Be careful not to dispose of a routine descriptor that is still in use by the Operating
System. Code that installs completion routines or other routines called asynchronously
may complete before the completion routine is actually called.

When the USESROUTI NEDESCRI PTORS compile flag is f al se, the
Di sposeRout i neDescri pt or function does nothing.

Mixed Mode Manager Reference 2-41

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

Calling Routines via Universal Procedure Pointers

The Mixed Mode Manager provides a function that allows you to execute the routine
associated with a universal procedure pointer. It also provides a function that allows you
to call the routine associated with a universal procedure pointer, following Operating
System register saving and restoring conventions.

CallUniversalProc

You can use the Cal | Uni ver sal Pr oc function to call the routine associated with a
universal procedure pointer.

 ong Cal | Uni versal Proc (Universal ProcPtr theProcPtr,
Procl nfoType theProclnfo, ...);

t heProcPtr
A universal procedure pointer.
t heProcl nfo

The procedure information associated with the routine specified by the
t heProcPt r parameter.

DESCRIPTION

The Cal | Uni ver sal Pr oc function executes the routine associated with the specified
universal procedure pointer. You pass Cal | Uni ver sal Pr oc a universal procedure
pointer (which may be either a 680x0 procedure pointer or the address of the routine
descriptor), a set of procedure information, and a variable number of parameters that are
passed to the routine. Cal | Uni ver sal Pr oc returns a result of type | ong that contains
the result (if any) returned by the called routine.

SPECIAL CONSIDERATIONS

If the universal procedure pointer passed to Cal | Uni ver sal Pr oc is the address
of the routine descriptor, that routine descriptor must already exist before you call
Cal | Uni ver sal Proc. If you pass the address of an invalid routine descriptor to
Cal | Uni ver sal Proc, a system error will occur.

CallOSTrapUniversalProc

You can call the Cal | GSTr apUni ver sal Pr oc function to call the routine associated
with a universal procedure pointer, following Operating System register saving and

2-42 Mixed Mode Manager Reference

DESCRIPTION

CHAPTER 2

Mixed Mode Manager

restoring conventions. You're likely to need to use this function only if you need to patch
an Operating System trap.

| ong Cal | OSTrapUni versal Proc (Universal ProcPtr theProcPtr,
Procl nfoType theProclnfo, ...);

t heProcPtr
A universal procedure pointer.

theProclnfo
The procedure information associated with the routine specified by the
t heProcPt r parameter.

The Cal | OSTr apUni ver sal Pr oc function executes the routine associated with the
specified universal procedure pointer, following standard conventions for executing
Operating System traps. Registers A1, A2, D1, and D2 are saved before the routine is
executed and restored after its completion; in addition, register A0 is saved and restored,
depending on the setting of the appropriate flag bit in the trap word. The trap number

is put into register D1; you should make certain to record that fact in any procedure
information you build yourself.

Jabeuel apo paxiN -

You pass Cal | OSTr apUni ver sal Pr oc a universal procedure pointer (which may be
either a 680x0 procedure pointer or the address of a routine descriptor), a set of
procedure information, and a variable number of parameters that are passed to the
routine. Cal | OSTr apUni ver sal Pr oc returns a result of type | ong that contains the
result (if any) returned by the called routine.

SPECIAL CONSIDERATIONS

If the universal procedure pointer passed to Cal | OSTr apUni ver sal Pr oc is the address
of the routine descriptor, that routine descriptor must already exist before you call

Cal | OSTr apUni ver sal Proc. If you pass the address of an invalid routine descriptor
to Cal | OSTr apUni ver sal Pr oc, a system error will occur.

The Cal | OSTr apUni ver sal Pr oc function is defined only for register-based Operating
System traps. Make sure that the procedure information specified in the t hePr ocl nf o
parameter correctly specifies the calling conventions of the trap. In particular, do not
specify either C or Pascal calling conventions.

Mixed Mode Manager Reference 2-43

CHAPTER 2

Mixed Mode Manager

Determining Instruction Set Architectures

The Mixed Mode Manager contains a function that you can use to determine the current
instruction set architecture.

GetCurrentISA

DESCRIPTION

You can use the Get Cur r ent | SAfunction to get the current instruction set architecture.

| SAType GetCurrentl SA (void);

The Get Cur r ent | SAfunction returns the current instruction set architecture. See
“Instruction Set Architectures” on page 2-35 for a list of the values Get Current | SA
can return.

SPECIAL CONSIDERATIONS

2-44

Currently, the Get Cur r ent | SAfunction is defined as a compiler macro.

#i f defined(powerc) || defined(__powerc)

#define GetCurrentl| SA() ((I SAType) kPower PCl SA)
#el se

#def i ne Get Current| SA() ((I SAType) kMB8KI SA)
#endi f

The implementation details are subject to change.

Mixed Mode Manager Reference

CHAPTER 2

Mixed Mode Manager

Summary of the Mixed Mode Manager

C Summary

Constants

/*Cestalt selector and response bits*/
"'m xd'

#def i ne gestalt M xedMbdeAt tr
enum {
gest al t Power PCAwar e

/*M xed Mbde Mgr attri butes*/

/*true if MVMMgr supports Power PC*/

/*current version of RoutineDescriptor data type*/

1
enum {
kRout i neDescri pt or Ver si on
b
Routine Flags
enum {
kProcDescri ptorl sAbsol ute
kProcDescriptorlsRel ative
b
enum {
kFragnment | sPrepar ed
kFr agment NeedsPr epari ng
1
enum {
kUseCurrent| SA
kUseNati vel SA
i
enum {
kPassSel ect or
kDont PassSel ect or
b

7

(Rout i
(Rout i

(Rout i
(Routi

(Rout i
(Rout i

(Routi
(Rout i

Summary of the Mixed Mode Manager

neFl agsType) 0x00,
neFl agsType) 0x01

neFl agsType) 0x00,
neFl agsType) 0x02

neFl agsType) 0x00,
neFl agsType) 0x04

neFl agsType) 0x00,
neFl agsType) 0x08

2-45

Jabeuel apo paxiN -

enum {

kRout i nel sNot Di spat chedDef aul t Routi ne

kRout i nel sDi spat chedDef aul t Routi ne

b

CHAPTER 2

Mixed Mode Manager

= (Routi neFl agsType) 0x00,

= (Routi neFl agsType) 0x10

Instruction Set Architectures

enum {
kM68kI SA
kPower PCl SA
b

Routine Descriptor Flags

enum {

kSel ect or sAr eNot | ndexabl e
kSel ect or sAr el ndexabl e

b

Procedure Information

enum {
/*si ze codes*/

kNoByt eCode =0
kOneByt eCode =1
kTwoByt eCode = 2,

3

kFour Byt eCode =

b

= (I SAType) O,
= (1 SAType) 1

= (RDFl agsType) 0x00,
= (RDFl agsType) 0x01

[/ *MC680x0 architecture*/
| *Power PC ar chi t ect ure*/

/*of fsets to and wi dths of procedure infornation fields*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

2-46

ne
ne
ne
ne
ne
ne
ne
ne

ne

kCal | i ngConventi onPhase

kCal I i ngConventi onW dt h
kResul t Si zePhase

kResul t Si zeW dt h

kResul t Si zeMask

kSt ackPar anet er Phase

kSt ackPar amet er W dt h

kRegi st er Resul t Locat i onPhase

0

4

kCal | i ngConventi onW dt h
2

0x30

6

2

\

(kCal I i ngConventi onWdth + kResultSi zeW dt h)

kRegi st er Resul t Locati onW dt h

Summary of the Mixed Mode Manager

5

CHAPTER 2

Mixed Mode Manager

#def i ne kRegi st er Par anet er Phase \
(kCal l'i ngConventi onWdth + kResultSizeWdth + \
kRegi st er Resul t Locat i onW dt h)

#def i ne kRegi st er Par anet er Wdt h 5
#defi ne kRegi st er Par anet er Whi chPhase 2
#defi ne kRegi st er Paranet er Si zePhase 0
#def i ne kDi spat chedSel ect or Si zeW dt h 2
#defi ne kDi spat chedSel ect or Si zePhase \
(kCal I'i ngConventi onWdth + kResultSi zeW dt h)
#def i ne kDi spat chedPar anet er Phase \

(kCal l'i ngConventi onWdth + kResultSizeWdth + \
kDi spat chedSel ect or Si zeW dt h)

enum {

/*cal ling conventions*/

kPascal St ackBased (Cal l'i ngConventi onType) 0O,
kCSt ackBased = (Calli ngConventionType) 1,
kRegi st er Based (Cal l'i ngConventi onType) 2,
kThi nkCSt ackBased (Cal l'i ngConventi onType) 5,
kDODi spat chedPascal St ackBased (Cal l'i ngConventi onType) 8,
kDODi spat chedCst ackBased (Cal l'i ngConventionType) 9,
kD1Di spat chedPascal St ackBased (Cal l'i ngConventi onType) 12,
kSt ackDi spat chedPascal St ackBased (Cal I'i ngConventi onType) 14,

kSpeci al Case = (Cal li ngConventi onType) 15
1
enum {
/ *speci al cases*/
kSpeci al CaseH ghHook = 0,
kSpeci al CaseCar et Hook = kSpeci al CaseHi ghHook,
kSpeci al CaseEO_Hook = 1,
kSpeci al CaseW dt hHook = 2,
kSpeci al CaseNW dt hHook = 3,
kSpeci al CaseText W dt hHook = kSpeci al CaseW dt hHook,
kSpeci al CaseDr awHook = 4,
kSpeci al CaseHi t Test Hook = 5,
kSpeci al CaseTEFi ndWrd = 6,
kSpeci al CasePr ot ocol Handl er =7,
kSpeci al CaseSocket Li st ener = 8,
kSpeci al CaseTERecal ¢ = 9,
kSpeci al CaseTEDoText = 10,
kSpeci al CaseGNEFi | t er Proc = 11,
kSpeci al CaseMBar Hook = 12
b

Summary of the Mixed Mode Manager

2-47

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

enum {

/*680x0 regi sters*/

kRegi st er DO =0,

kRegi st er D1 = 1,

kRegi st er D2 = 2,

kRegi st er D3 = 3

kRegi ster D4 = 8,

kRegi st er D5 =9,

kRegi st er D6 = 10,

kRegi st er D7 = 11,

kRegi st er A0 = 4,

kRegi st er A1 = 5,

kRegi st er A2 = 6,

kRegi st er A3 =7,

kRegi st er A4 =12,

kRegi st er A5 = 13,

kRegi st er A6 = 14,

kCCRegi st er CBi t = 16,

kCCRegi st er VBi t = 17,

kCCRegi st er ZBi t = 18,

kCCRegi st er NBi t = 19,

kCCRegi st er XBi t = 20
b
Data Types
t ypedef unsigned char | SAType; /*instruction set architecture*/
t ypedef unsi gned short CallingConventionType; /*calling convention*/
t ypedef unsigned | ong Procl nfoType; /*procedure infornmation*/

t ypedef unsi gned short Regi ster Sel ector Type;
t ypedef unsigned short RoutineFl agsType;

struct RoutineRecord {

Procl nf oType procl nf o; /*cal ling conventions*/

unsi gned char reservedl; /*reserved*/

| SAType | SA; /*instruction set architecture*/
Rout i neFl agsType routi neFl ags; /*flags for each routine*/
ProcPtr procDescri ptor; /*the thing we're calling*/

unsi gned | ong reserved2; [*reserved*/

unsi gned | ong sel ector; /*sel ector for dispatched calls*/

2-48 Summary of the Mixed Mode Manager

CHAPTER 2

Mixed Mode Manager

1
typedef struct RoutineRecord RoutineRecord;
t ypedef Routi neRecord *RoutineRecordPtr, **RoutineRecordHandl e;

t ypedef unsi gned char RDFI agsType; /*routine descriptor flags*/

struct RoutineDescriptor {

unsi gned short goM xedModeTrap; /*nm xed-node A-trap*/
char versi on; /*routine descriptor version*/
RDFI agsType routi neDescri ptor Fl ags;

/*routine descriptor flags*/
unsi gned | ong reservedl,; [*reserved*/
unsi gned char reservedz; /*reserved*/
unsi gned char sel ectorl nfo; /*sel ector information*/
short routi neCount ; /*index of last RRin this RD*/
Rout i neRecor d routi neRecords[1];/*the individual routines*/

b

typedef struct RoutineDescriptor RoutineDescriptor;

t ypedef RoutineDescriptor *Universal ProcPtr, **Universal ProcHandl e;

typedef Routi neDescriptor *RoutineDescriptorPtr, **RoutineDescri ptorHandl e;

Mixed Mode Manager Routines

Creating and Disposing of Routine Descriptors

pascal Universal ProcPtr NewRouti neDescri ptor
(ProcPtr theProc, ProclnfoType theProclnfo,
| SAType thel SA);

pascal Universal ProcPtr Newrat Routi neDescri ptor
(ProcPtr theMs8kProc, ProcPtr thePower PCProc,
Procl nf oType theProclnfo);

pascal void Di sposeRoutineDescri ptor
(Uni versal ProcPtr theProcPtr);

Calling Routines via Universal Procedure Pointers

| ong Cal | Uni versal Proc (Uni versal ProcPtr theProcPtr,
Procl nfoType theProclnfo, ...);

| ong Cal | OSTrapUni ver sal Proc
(Uni versal ProcPtr theProcPtr,
Procl nfoType theProclnfo, ...);

Determining Instruction Set Architectures
| SAType Get Current| SA (void);

Summary of the Mixed Mode Manager 2-49

Jabeuel apo paxiN -

CHAPTER 2

Mixed Mode Manager

C Language Macros for Defining Procedure Information

#def i ne SI ZE CODE(si ze) (((size) == 4) ? kFourByteCode : \
(((size) == 2) ? kTwoByteCode : (((size) == 1) ? kOneByteCode : 0)))

#def i ne RESULT_SI ZE(si zeCode) ((ProclnfoType) (sizeCode) << kResultSi zePhase)

#def i ne STACK _ROUTI NE_PARANMETER(whi chPar am si zeCode) \
((Procl nfoType) (si zeCode) << (kStackParanet er Phase + \
(((whichParam - 1) * kStackParaneterWdth)))

#defi ne DI SPATCHED STACK_ROUTI NE_PARAMETER(whi chPar am si zeCode) \
((Procl nfoType) (si zeCode) << (kDi spat chedPar anet er Phase + \
(((whichParam - 1) * kStackParaneterWdth)))

#defi ne DI SPATCHED_STACK_ROUTI NE_SELECTOR_SI ZE(si zeCode) \
((Procl nfoType) (si zeCode) << kDi spat chedSel ect or Si zePhase)

#def i ne REA STER_RESULT_LOCATI ON(whi chReg) \
((Procl nfoType) (whi chReg) << kRegi sterResul t Locati onPhase)

#defi ne REG STER _ROUTI NE_PARAMETER(whi chParam whi chReg, sizeCode) \
((((ProclnfoType) (sizeCode) << kRegi st er Par anet er Si zePhase) | \
((Procl nfoType) (whi chReg) << kRegi st er Par anet er Whi chPhase)) <<\
(kRegi st er Par anmet er Phase + (((whichParam - 1) * kRegi sterParaneterWdth)))

#def i ne SPECI AL_CASE PROCI NFQ(speci al CaseCode) \
(kSpeci al Case | ((ProclnfoType)(special CaseCode) << 4))

2-50 Summary of the Mixed Mode Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to PowerPC TOC
	 Introduction to PowerPC
	 Mixed Mode Manager TOC
	Mixed Mode Manager
	About the Mixed Mode Manager
	External Code
	Procedure Pointers
	Mode Switches
	Calling PowerPC Code From 680x0 Code
	Calling 680x0 Code From PowerPC Code

	Using the Mixed Mode Manager
	Specifying Procedure Information
	Using Universal Procedure Pointers
	Using Static Routine Descriptors
	Executing Resource-Based Code

	Mixed Mode Manager Reference
	Constants
	Routine Descriptor Flags
	Procedure Information
	Routine Flags
	Instruction Set Architectures

	Data Structures
	Routine Records
	Routine Descriptors

	Mixed Mode Manager Routines
	Creating and Disposing of Routine Descriptors
	Calling Routines via Universal Procedure Pointers
	Determining Instruction Set Architectures

	Summary of the Mixed Mode Manager
	C Summary
	Constants
	Data Types
	Mixed Mode Manager Routines

	 Code Fragment Manager TOC
	 Code Fragment Manager
	 Exception Manager TOC
	 Exception Manager
	 Glossary
	 Index
	 Colophon

