

ð

Developer Press



 Apple Computer, Inc. 1995

ð

ResEdit Reference

For ResEdit 2.1

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.



 1991, 1994 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, HyperCard, Macintosh,
MPW, and MultiFinder are trademarks
of Apple Computer, Inc., registered in
the United States and other countries.
Finder and ResEdit are trademarks of
Apple Computer, Inc.
Adobe Illustrator and Adobe
Photoshop are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered service
mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
Internet is a trademark of Digital
Equipment Corporation.

MacDraw is a trademark of Claris
Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables vii

Preface

About This Book

xi

Prerequisites xi
What This Manual Contains xi
How to Use This Manual xii
Conventions Used in This Book xii
Graphics xii
Where to Get Information xiii

About APDA xiii

Chapter 1

ResEdit Overview

1

Resources 2
New and Changed Resource Editors in ResEdit 2.1 3

Editing Resources in ResEdit 3
Uses 4
Extensibility 4
The Resource Development Cycle 5

Chapter 2

Getting Started

7

Invoking ResEdit 8
Working With Files 9

Resource Checking 9
Opening a File 10

Menus in ResEdit 12
The File Menu 12

File Information 15
The Edit Menu 16
The Resource Menu 16
The Window Menu 20
The View Menu 20

Starting an Editor 22
Resource ID Numbers 22

Thi d t t d ith F M k 4 0 4

iv

Chapter 3

The Bit Editors

25

Overview of the Bit Editors 26
Tools 27
Menus 28

The Transform Menu 28
The Color Menu 28

Editing Cursors 30
Editing Icons 32

Editing 'cicn' Resources 32
The cicn Menu 32
Creating New Color Icons 33

Finder Icons 33
The Icon Menu 34

'ICON' Resources 35
'ICN#' Resources 36

List Resources 37
'SICN' Resources 37

Editing Patterns 38
Relative Patterns 38
Custom Patterns 39
'PAT' Resources 39
'PAT#' Resources 40
'ppat' Resources 40

'ppat' Relative Patterns 41
'ppt#' Resources 41

Desktop Pattern Lists 41
'ppt#' Relative Patterns 41

'FONT' Resources 42
Editing 'FONT' Resources 43

Chapter 4

Other Resource Editors

45

Using the Hexadecimal Editor 46
'WIND', 'ALRT', and 'DLOG' Resources 46
'DITL' Resources 52
'BNDL' Resources 57
'clut' and 'pltt' Resources 60
'INTL', 'itl0', and 'itl1' Resources 62
'KCHR' Resources 63

The Main 'KCHR' Editor 63
The Character Chart 63
The Table Chart 64
The Virtual Keycode Chart 64
The Keyboard Region 65
The Information Region 65

v

Editing Dead Keys 65
The Dead-Key Editor 66

The Character Chart 66
The Nomatch Character 66
The Completion and Substitution Character Pair List 66
The Trash 67
The Information Region 67

The Menus 67
The KCHR Menu 67
The Font Menu 68
The Size Menu 69

'MENU' Resources 69
'TEXT' and 'styl' Resources 73
'vers' Resources 74

Chapter 5

ResEdit Templates

75

Template Characteristics 76
Editing 77

'PICT' Editing 77
Creating New Templates 78

Template Example 78

Chapter 6

ResEdit Tips

83

Hints and Kinks 84
The 'LAYO' Resource 87
'KCHR' Questions and Answers 91

Chapter 7

The Programmatic Interface

93

Pickers and Editors 94
Code-Containing Resources in the ResEdit Release 94

Samples 94
Sample Editor 95
Sample Picker 95
Sample LDEF 95

Building the Examples 95
Using ResEd 96
Writing a ResEdit Extension 96

ResEdit Menus 97
Pickers 97
ResEdit 2.0 Changes 97

vi

ResEd Changes for the 2.0 Release 98
ResEdit 2.1 changes 99
Required Routines 101

The ResEd Interface 102
Data Structures 103

The Parent Record 103
The Picker Record 104

Other Routines 105
Window Utilities 105
Extended Resource Manager 108
Routines Used by Pickers 110
Routines Used by Editors 112
Routines Used to Start Pickers and Editors 112
Routines Used to Feed Events and Menus to the Appropriate

Picker or Editor 114
Miscellaneous Utilities 114
Pop-up Menus 120
Internal Routines 122

Appendix A

The 'KCHR' Resource

127

Basic Theory of Keyboard Operation 127
Generating the Virtual Keycode 127

Exceptions to the Rule 127
Generating the Character Code 127
Dead Keys 127

The Structure of a 'KCHR' Resource 128

Appendix B

The 'BNDL' Resource

131

The Structure of a 'BNDL' Resource 131
Definitions of the 'BNDL' and 'FREF' Resources 133

Appendix C

Resource Types Defined for Rez and ResEdit

135

Appendix D

The Macintosh Character Set

141

Index

143

vii

Figures and Tables

Chapter 2

Getting Started

7

Figure 2-1

ResEdit’s startup display 8

Figure 2-2

ResEdit File Open dialog box 9

Figure 2-3

Add Resource Fork alert box 10

Figure 2-4

A ResEdit 2.1 file window 11

Figure 2-5

File menu 12

Figure 2-6

Open Special dialog box 13

Figure 2-7

A File Info window 13

Figure 2-8

A Folder Info window 14

Figure 2-9

Preferences dialog box 15

Figure 2-10

Edit menu 16

Figure 2-11

File window Resource menu with

'BNDL'

 type selected 16

Figure 2-12

The Resource menu with a picker open 17

Figure 2-13

There is no template for

'CODE'

 resources 18

Figure 2-14

An

'ICN#'

 Get Info window 18

Figure 2-15

A resource type window (with custom picker) 19

Figure 2-16

The Window menu 20

Figure 2-17

The View menu and a ResEdit 2.1 file window 21

Figure 2-18

The View menu and a resource type window 21

Figure 2-19

Showing type attributes 22

Chapter 3

The Bit Editors

25

Figure 3-1

Bit editor window layout 26

Figure 3-2

The Transform menu 28

Figure 3-3

The Color menu 29

Figure 3-4

'CURS'

 resource editor 31

Figure 3-5

Color cursor editing: mask examples 31

Figure 3-6

Color icon editor 32

Figure 3-7

Finder icon family editor 34

Figure 3-8

Icon menu 35

Figure 3-9

'ICON'

 resource editor 35

Figure 3-10

'ICN#'

 resource editor 36

Figure 3-11

'SICN'

 resource editor 37

Figure 3-12

Pattern Size dialog box 38

Figure 3-13

'PAT'

 resource editor 39

Figure 3-14

'PAT#'

 resource editor 40

Figure 3-15

'ppat'

 resource editor 40

Figure 3-16

'ppt#'

 resource editor 41

Figure 3-17

'FONT'

 resource editor 43

Thi d t t d ith F M k 4 0 4

viii

Chapter 4

Other Resource Editors

45

Figure 4-1

'WIND'

 resource editor 47

Figure 4-2

MiniScreen menu 47

Figure 4-3

'ALRT'

 resource editor 48

Figure 4-4

'DLOG'

 resource editor 49

Figure 4-5

WIND menu 49

Figure 4-6

Setting

'WIND'

 characteristics 50

Figure 4-7

ALRT menu 50

Figure 4-8

'ALRT'

 Stage Info dialog box 51

Figure 4-9

DLOG menu 51

Figure 4-10

Setting

'DLOG'

 characteristics 52

Figure 4-11

'DITL'

 resource editor 53

Figure 4-12

'DITL'

 item editor 53

Figure 4-13

DITL menu 54

Figure 4-14

DITL menu View As dialog box 55

Figure 4-15

Alignment menu 56

Figure 4-16

Special parameter strings 56

Figure 4-17

'BNDL'

 resource editor, simple view 57

Figure 4-18

The Icon chooser 58

Figure 4-19

'BNDL'

 resource editor, extended view 59

Figure 4-20

'clut'

 resource editor 60

Figure 4-21

clut menu 61

Figure 4-22

Editing an

'itl0'

 resource 62

Figure 4-23

Editing an

'itl1'

 resource 62

Figure 4-24

Editing a

'KCHR'

 resource 63

Figure 4-25

Editing a dead key 66

Figure 4-26

The KCHR menu 67

Figure 4-27

Dead Key Edit Dialog Box 68

Figure 4-28

'MENU'

 resource editor 69

Figure 4-29

'MENU'

 line item edit 70

Figure 4-30

'MENU'

 Mark pop-up menu 71

Figure 4-31

'MENU'

 Icon Chooser dialog box 71

Figure 4-32

Editing a

'cmnu'

 resource 72

Figure 4-33

'MENU'

 ID dialog box 73

Figure 4-34 'TEXT' and 'styl' editor 73
Figure 4-35 Editing a 'vers' resource 74

Chapter 5 ResEdit Templates 75

Figure 5-1 The template editor for 'PICT' 77
Figure 5-2 'TMPL' definition for type 'STR#' 78
Figure 5-3 'STR#' template in use 79

ix

Chapter 6 ResEdit Tips 83

Figure 6-1 'RMAP' resource 86
Figure 6-2 'LAYO' template, view 1 87
Figure 6-3 'LAYO' template, view 2 88
Figure 6-4 'LAYO' template, view 3 89
Figure 6-5 'LAYO' template, view 4 89
Figure 6-6 'LAYO' template, view 5 90

Appendix A The 'KCHR' Resource 127

Figure A-1 Modifier flag high byte 129

Appendix B The 'BNDL' Resource 131

Figure B-1 Six resources and their relationships 132

Appendix C Resource Types Defined for Rez and ResEdit 135

Table C-1 Resource types defined for Rez and ResEdit 135

Appendix D The Macintosh Character Set 141

Figure D-1 Macintosh character set 141

xi

P R E F A C E

About This Book

ResEdit



, an extensible stand-alone resource editor for the Macintosh



computer, is a powerful tool you can use to speed your software development
process and to create icons, menus, and other resources for Macintosh

programs and files. This manual is a complete reference to ResEdit that
includes introductions to the various resource type editors included in the
program and a discussion of the framework that is provided so that you can
extend the capabilities of the program by adding your own resource pickers
and editors.

Prerequisites 0

To run ResEdit 2.1, the system you use must have at least 128 kilobytes of
ROM and at least 1 megabyte of RAM memory. That is, ResEdit 2.1 doesn’t
run on the Macintosh Plus or earlier machines.

ResEdit 2.1 works with system software version 6.0 and later. ResEdit is
compatible with (but does not require) 32-bit QuickDraw



.

What This Manual Contains 0

Chapter 1 introduces the concepts behind ResEdit, starting with an overview
of Macintosh resources. Chapter 2 tells you about the user interface. Chapter 3
discusses the editors in ResEdit that handle various kinds of bitmap resources
(cursors, icons, and so on), and Chapter 4 discusses the other built-in editors.
Chapter 5 describes template editing and tells you how to build your own
templates. Chapter 6 contains “hints and kinks” — useful information that
will help you make efficient use of ResEdit. Chapter 7 describes the
programmatic interface to ResEdit and tells you what you need to know to
write your own picker or editor. Appendix A describes the inner workings of
the

'KCHR'

 editor, Appendix B describes the inner workings of the

'BNDL'

resource, Appendix C lists a number of extant resource types, and Appendix
D is a chart of the regular Macintosh character set.

Thi d t t d ith F M k 4 0 4

xii

P R E F A C E

How to Use This Manual 0

If you have used previous versions of ResEdit, you will probably want to take
a quick look at Chapter 2, which describes the user interface in some detail.
The interface has been changed in version 2.0 and, to a lesser extent, in
version 2.1.

If you have never used ResEdit, you should probably read Chapters 1 and 2
and look over the rest of the book. Use the program for a while, and then look
at the book again. It will probably make a lot more sense after you’ve actually
played with ResEdit.

Conventions Used in This Book 0

The following visual cues are used throughout this book to identify different
types of information:

Note

A note like this contains information that is interesting but not essential
for an understanding of the main text.

◆

IMPORTANT

A note like this contains information that is essential.

▲

▲ W A R N I N G

A warning like this indicates potential problems.

▲

This manual uses

courier

 type to represent code fragments and the names
of procedures.

Graphics 0

Most of the artwork in this book is taken directly from Macintosh screens.
Some illustrations show a condensed version of the screen with a sequence of
windows or some particular feature (such as a menu) evident. Others show
only an active window or an alert or dialog box.

xiii

P R E F A C E

Where to Get Information 0

Apple



 technical books published by Addison-Wesley, such as

Inside
Macintosh

, are available at commercial bookstores. Books and manuals
published by Apple are available through APDA



, the Apple Programmers
and Developers Association, at the address listed in the next section. Technical
notes and other materials of interest to Macintosh application developers are
also available from APDA.

About APDA 0

APDA is Apple’s worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested
in developing applications on Apple platforms. Customers receive the

APDA
Tools Catalog

featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

C H A P T E R 1

ResEdit Overview 1Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

ResEdit Overview

2

Resources

This chapter introduces the concept of resources as they are handled on the Macintosh



computer, and introduces ResEdit



, an interactive, graphics-oriented application for
manipulating resources in Macintosh files. Some Macintosh files don’t contain any
resources, but all applications and most of the System Folder files do.

Resources 1

One of the differences between Macintosh computers and other computers is the way
Macintosh machines handle

resources

 (typefaces, icons, dialog boxes, and so on). In
the Macintosh world, resources are distinct from data (for example, the text in a
word-processing file). The Macintosh does not insist that resources reside in a central
pool; they may be placed in any file.

In most computers, a file consists of a sequence of bytes, perhaps beginning with a
header that contains some information about the structure of the data contained in the
file, and possibly ending with some sort of trailer. In any case, the file is one sequence of
bytes. In the Macintosh world, by contrast, the file structure is designed to include two
sequences of bytes, a

data fork

 and a

resource fork

. Any file may contain only a data
fork, only a resource fork, or both. Although a plain HyperCard



 stack, for example, has
only data in it, people commonly add icons and sounds to their stacks, creating resource
forks for those stacks in the process.

Resources are classified by type. Each type has its own name, which consists of exactly
four characters. Any characters in the Macintosh character set can occur in resource type
names, even unprintable ones, but typically they consist of lower and uppercase letters,
numerals, punctuation marks, and the space and Option-space characters. In this book,
resource type names are surrounded by single straight quotation marks (for example,

'itl0'

). If you see a name that appears to be shorter than four characters (for example,

'snd'

), the empty slots are probably filled with spaces. Some resource types are named
and described in Appendix C. There are many different types of resources, and you can
create your own resource types with ResEdit if you don’t find the type you need.

Note

Apple Computer, Inc., reserves all names that don’t contain any
uppercase letters. Any combination with at least one uppercase letter in
it is yours to use, though it is a good idea to avoid using any resource
type name that you know someone else has already used.

◆

Another feature of this system is that code is regarded as a resource. It even has its own
resource type name (very straightforwardly,

'CODE'

). Any application, then, must have
a resource fork, which is where its code resides, along with various other resources, such
as menus.

ResEdit lets you copy and paste all resource types and lets you edit many of them.
(

'NFNT'

 is an exception and is discussed briefly in the section on

'FONT'

 editing in
Chapter 3.) ResEdit actually includes a number of different resource editors: There is a

general resource editor

 for editing any resource in hexadecimal and ASCII formats, and
there are individual resource editors for various specific resource types. There is also a

C H A P T E R 1

ResEdit Overview

Editing Resources in ResEdit

3

template editor

 which lets you edit some kinds of resources in a dialog box format, with
fields that you can fill in as appropriate. There are predefined templates for quite a few
resources already built into ResEdit, and you can create others. For further information
on template editing and on generating your own templates, see Chapter 5.

New and Changed Resource Editors in ResEdit 2.1 1

ResEdit 2.1 includes new editors for the following resource types:

■

'crsr'

Color cursors

■

'clut'

 and

'pltt'

Color lookup tables, palettes

■

'ppat'

 and

'ppt

#'Color patterns and pattern lists

■

'styl'

/

'TEXT'

Styled text

■

'vers'

Version resource

The editors for the following resource types have been changed:

Finder



 icon suite (includes

'ICN#'

,

'icl4'

,

'icl8'

,

'ics#'

,

'ics4'

, and

'ics8'

 resources).

Editing Resources in ResEdit 1

ResEdit provides three kinds or categories of resource editors: individual editors, a
template editor, and a hexadecimal editor.

Individual resource editors are described in some detail in Chapters 3 and 4. Several of
the resources (

'CURS'

,

'FONT'

,

'ICON'

,

'PAT'

, and so on) that are edited with
individual editors are graphic or pictorial. To edit any of the pictorial resources except

'PICT'

, you use bit editors, which are discussed in Chapter 3.

'PICT'

 resources are
special. The individual editor for

'PICT'

 resources only displays them; it does not allow
you to change them.

Some resources are edited with templates. If you open a resource of this kind, you are
presented with a dialog box that contains various labeled fields. You can change the

'DITL'

Dialog item list

'DLOG'

Dialog box

'PAT'

black-and-white pattern

'PAT

#'

black-and-white pattern list

'ICON'

Icons (for instance, HyperCard icons)

'ICN#'

Icons (original Finder icons)

'SICN'

Small icons

'CURS'

black-and-white cursors

'cicn'

Color icons

C H A P T E R 1

ResEdit Overview

4

Uses

contents of the fields. Information on existing templates and on generating your own
templates appears in Chapter 5, and an example of template editing appears in
Chapter 6.

To edit resources for which there is no template or individual editor, you must use the
hexadecimal editoreditors: hexadecimal; unless you write your own templates or editors
for them.

Uses 1

ResEdit is especially useful for creating and changing graphic resources, such as dialog
boxes and icons. For example, you can use ResEdit to try out different formats and
presentations of resources in the process of putting together a quick prototype of a user
interface. Anyone can quickly learn to use ResEdit for translating resources into
languages other than English without having to recompile programs. You can use
ResEdit to modify a program’s resources at any stage in the process of program
development. ResEdit is also useful for modifying the

'LAYO'

 (desktop layout control)
resource in a copy of the Finder so that you can reconfigure some aspects of the desktop
display. See Chapter 6 for more details about the

'LAYO'

 resource.

Extensibility 1

A key feature of ResEdit is its extensibility. Because it can’t anticipate the formats of all
the different types of resources that you may use, ResEdit is designed so that you can
teach it to recognize and parse new resource types.

There are two ways to extend ResEdit to handle new types:

■

You can create templates for your own resource types. ResEdit lets you edit most
resource types by filling in the fields of a dialog box; this is the way you edit the
Finder’s desktop layout control resource, for example. The ordering of the items in
these dialog boxes is determined by a template in ResEdit’s resource fork, and you
can add templates to ResEdit or to the ResEdit Preferences file yourself to edit new
resource types. Resource templates are described in Chapter 5, and the desktop layout
control resource is discussed in some detail in Chapter 6.

■

You can program your own special-purpose

resource picker

 or

editor

 (or both) and
add it to either ResEdit or to the ResEdit Preferences file. (The

resource picker

is the
code that displays all the resources of one type in the resource type window. The

editor

 is the code that displays and allows you to edit a particular resource. These
pieces of code are separate from the main code of ResEdit.) A set of Pascal or C
routines, called ResEd, is available for this purpose — see Chapter 7 for information.
The advantage of adding your code to the ResEdit Preferences file rather than to
ResEdit itself is that doing so facilitates updating to new versions of ResEdit as they
become available.

C H A P T E R 1

ResEdit Overview

The Resource Development Cycle

5

The Resource Development Cycle 1

ResEdit is often used with Macintosh Programmer’s Workshop (MPW



) and other
program development systems. Once you have created or modified a resource with
ResEdit, you can use the MPW resource decompiler, DeRez, to convert the resource to a
textual representation that can be processed by the resource compiler, Rez. You can then
add comments to this text file or otherwise modify it with the MPW Shell or another text
editor. Rez and DeRez are fully described in the

Macintosh Programmer’s Workshop
Reference

(

MPW Reference

). It is not necessary to use Rez or DeRez unless you have some
specific need or desire to modify or comment the code that DeRez produces; the
resources generated by ResEdit are, in general, entirely acceptable.

C H A P T E R 2

Getting Started 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Getting Started

8

Invoking ResEdit

If you are new to ResEdit, you will want to proceed with some caution, as ResEdit is
quite powerful and can easily damage or destroy your files. If you are accustomed to
ResEdit versions prior to 2.0, you will notice that the user interface has been extensively
changed and now conforms more closely to the guidelines established by Apple
Computer, Inc.

Invoking ResEdit 2

ResEdit is a regular application, so if you are in the Finder or in HyperCard you can start
it up just as you would any other application. If you are using MPW, you can start
ResEdit by entering either of these commands in the MPW Shell:

ResEdit

ResEdit file1 file2 ...

The latter command causes ResEdit to open the named files automatically.

When ResEdit first starts up, it displays an animated startup display. Figure 2-1 shows
one of the stages of this animation.

Figure 2-1

ResEdit’s startup display

The animation continues until you click the mouse button or press any key. If you click
the mouse button or press an unmodified key, ResEdit presents a dialog box, shown in
Figure 2-2, that lets you create a new file or open an existing one. If you press a
Command-key combination, the startup display is dismissed and ResEdit performs the

C H A P T E R 2

Getting Started

Working With Files

9

action you have requested. This is especially useful for Command-key combinations
assigned to the Open Special menu, described in this chapter. You can, if you wish, use
the Preferences command on the File menu to suppress the dialog box.

Figure 2-2

ResEdit File Open dialog box

You can select a filename by clicking it or by typing one or more characters of the
filename.

Working With Files 2

ResEdit provides facilities to let you open and create files and perform two levels of
verification on them; it also lets you create, move, and edit resources.

Resource Checking 2

Sometimes a resource file gets corrupted. This is typically the result of a crash occurring
while the file is being updated. In the past, ResEdit would occasionally crash when you
tried to open a damaged file with it. Versions of ResEdit starting with 2.0 provide
resource file checking facilities to help avoid crashes and to minimize loss of data. The
checking facility does not detect corrupted individual resources; it bases its tests on the
file’s resource map.

When you open a file, ResEdit performs a partial resource check on it. This test verifies
only that the resource map is located after the end of the resource data area, and that the
header, data, and map do not extend beyond the EOF (end-of-file mark) of the resource

C H A P T E R 2

Getting Started

10

Working With Files

fork. If the file does not pass these initial tests, a full test is automatically performed. If
you choose “Verify files when they are opened” in the Preferences dialog box, ResEdit
performs a full test whenever you open a file.

If you want to invoke the full test yourself, choose Verify Resource File from the
File menu.

When it performs a full resource check, ResEdit goes through the entire resource map
and verifies that the type list, the reference lists, and the name list are consistent, that all
resource data areas can be located, and that they do not exceed the available file size. It
also checks for duplicate types, and for duplicate ID numbers within each type. ResEdit
has several techniques for locating the resource map, the existence and location of which
is critical to the process of recovering damaged resource files.

If damage is discovered, the user is offered a repair option. This procedure does not
change the damaged file. Instead, ResEdit creates a new file, extracts all the resources it
can find in the damaged file, and copies them to the new file. It then renames the old file
(with an extension of “(damaged)”. ResEdit also presents the user with status
information about the resources that were extracted.

There is one exception to the rule that the damaged file is not changed: minor damage
occurs whenever a resource file is not properly closed. ResEdit repairs this damage
without asking the user’s permission. (The actual process involved is quite simple:
ResEdit calls the Resource Manager to open the file, calls the

UpdateResFile

 routine to
rewrite the resource map, and closes the file.) After performing the repair, it presents an
alert box to inform the user that it has done so.

Opening a File 2

To list the resource types in a file, select and open the filename from the list in the File
Open dialog box. If you try to open a file that does not have a resource fork, ResEdit
displays a dialog box, shown in Figure 2-3, that asks you whether you want to open the
file anyway. If you permit it to open the file, ResEdit extends the file by creating a
resource fork in it.

Figure 2-3

Add Resource Fork alert box

C H A P T E R 2

Getting Started

Working With Files

11

▲ W A R N I N G

You can edit any file shown in the window, including the System file
and ResEdit itself, though there are some restrictions (the Finder and the
Desktop file cannot be opened by ResEdit under MultiFinder



, for
example). It’s dangerous, though, to edit a file that’s currently in use. In
general, it is much wiser to edit a duplicate instead of the file itself

▲

When you open a file, a

file window

 appears. This window displays a pictorial list of all
the resource types in that file (see Figure 2-4), unless you choose “by Type” from the
View menu (see Figure 2-18). If you do choose to view the resource list by resource type,
you can also choose to show the total size of each resource type.

Figure 2-4

A ResEdit 2.1 file window

When a file window is the active window, you can create new resource types, copy or
delete existing resources, and paste resources from other files into the currently active
one. Here, operations are performed on sets of resources. For example, selecting the
resource type

'ALRT'

 in a file causes all resources of type

'ALRT'

 in that file to be
selected as a group. Any operation you then perform on that group affects all

'ALRT'

resources in the file. To select more than one resource type, hold down the Command
key while clicking the individual items or click an item at the beginning of the range you
want to select, hold down the Shift key, and click the item at the end of the range. The
Shift key allows you to select the items in a rectangular area. You can then continue to
select or deselect individual resource types with the Command key pressed. (These
techniques also work for selecting individual resources within an open resource type.)

Note

Many applications put more than one resource type at a time into the
scrap when Copy is chosen. For example, when an object is copied in
MacDraw



, an

'MDPL'

 resource and a

'PICT'

 resource are put into the
scrap. When you paste into the file window in ResEdit, all resources that
are present are pasted.

◆

C H A P T E R 2

Getting Started

12

Menus in ResEdit

Note

Starting with version 2.0, you can no longer use ResEdit to delete files;
also, ResEdit does not manipulate or read data forks (this means, for
example, that it cannot copy them).

◆

Menus in ResEdit 2

The structure of menus in ResEdit has been changed with the 2.1 release. Five main
menus (File, Edit, Resource, Window, View) are discussed here, and special menus
for particular resources are discussed in the sections on editing those resources, in
Chapters 3 and 4.

The File Menu 2

Figure 2-5 shows the File menu.

Figure 2-5

File menu

The File menu commands act as follows:

New… Brings up the New File dialog box.

Open… Brings up a File Open dialog box similar to the one shown in Figure 2-2,
but without a New button.

Open Special
Allows you to open files quickly. The Modify This Menu command,
which always appears at the bottom of the submenu, brings up the dialog
box shown in Figure 2-6. Use this dialog box to add and remove files and
Command-key combinations.

C H A P T E R 2

Getting Started

Menus in ResEdit

13

Figure 2-6

Open Special dialog box

Close Closes the currently active window. (Using this command has the same
effect as clicking the close box.)

Save Saves the currently active file, if there is one. Dimmed if no changes have
been made.

Revert File Restores the currently active file, if there is one, to the last version you
saved. Dimmed if no changes have been made.

Get Info for This File
When no file is open, this command is dimmed and cannot be used.
When a file is open, the words

This File

 are replaced by the filename, and
this command is enabled. It displays file information and allows you to
change it. The file information box is shown in Figure 2-7.

Figure 2-7

A File Info window

C H A P T E R 2

Getting Started

14

Menus in ResEdit

Get File/Folder Info…
Displays file or folder information and allows you to change it. Figure 2-7
shows a File Info window as it appears under system software
version 6.0. Figure 2-8 is a Folder Info window, also for system soft-
ware version 6.0.

Figure 2-8

A Folder Info window

Verify Resource File…
Allows you to check the resource map of a file you specify.

Page Setup… Brings up the Page Setup dialog box.

Print… Allows you to print from almost any picker or editor. When no files are
open, this command is dimmed and cannot be used.

Preferences… Brings up the dialog box shown in Figure 2-9. This lets you specify
whether you want ResEdit to show its splash screen (Figure 2-1), whether
you want it to start up with a File Open dialog box, whether you want to
be warned if you attempt to open the System file or ResEdit itself, and
whether you want ResEdit to perform a verify operation on files when
you open them. It also allows you to set the sizes of type picker and
resource picker windows, or, if you prefer, to let ResEdit automatically fit
them to the size of your screen. If you have more than one monitor, it lets
you specify whether pickers and editors for color resources should open
on the deepest available display or on the main display if they are not
the same.

C H A P T E R 2

Getting Started

Menus in ResEdit

15

Figure 2-9

Preferences dialog box

Quit Quits ResEdit and returns to the Finder (or the MPW Shell, HyperCard,
or whatever program launched ResEdit).

File Information 2

The File Info window contains the following information:

The name of the file; its type and creator; a pop-up menu that lets you set the color
in which the file is shown on the screen; two sets of checkboxes (above and below a
horizontal line); the creation and modification dates of the file; and the sizes of both forks.

The checkboxes above the horizontal line are known as Finder Flags. Please see

Macintosh Technical Note

 40 and Chapter 9 of

Inside Macintosh,

 Volume VI, for more
information about Finder Flags in general; Appendix B of this book contains information
about how the Bundle bit relates to the

'BNDL'

 resource.

The checkboxes below the line are as follows: the File Locked bit is the same one that you
find in the Finder’s Get Info box for the file. The Printer Driver Is MultiFinder
Compatible bit means exactly that, and is used only for printer drivers. The File Busy bit
is controlled by the operating system. The Resource Map Is Read Only bit can be set in
Rez, but not in ResEdit. ResEdit cannot change the File Protected bit.

C H A P T E R 2

Getting Started

16

Menus in ResEdit

The Edit Menu 2

Figure 2-10 shows the Edit menu. It has only one unusual feature, the Select Changed
command on the last line. Choose this command to select only those items that have
been changed since the last time you saved your file.

Figure 2-10

Edit menu

The Resource Menu 2

The Resource menu is configured to provide the commands appropriate for the
frontmost window. The same items are always present on the menu, but their meanings
and wordings may change slightly, depending on the context. The wording of a given
menu item always reflects the action that is taken when you choose it. Figure 2-11 shows
the Resource menu with a resource type picker open and the

'BNDL'

 type selected.

Figure 2-11

File window Resource menu with

'BNDL'

 type selected

C H A P T E R 2

Getting Started

Menus in ResEdit

17

The Create New Resource command lets you create any resource type. The Open Picker
command invokes a picker for the particular kind of resource that is selected. This is
reflected in its name, which includes the name of the selected resource type. The Open
Picker by ID command opens the picker window showing the resources ordered by ID
number, regardless of what the last View choice was. This is useful if View by Special has
problems because of a corrupted resource. At this level, the only other command you can
use is the Revert Resources command, which restores the resources to their state in the
last saved version of the file. If you have made changes in individual resources of the
selected type since you last saved the file, you can undo those changes at this point.

Figure 2-12 shows the Resource menu again, this time with a resource picker open. Note
that it is now possible to open a resource with a resource editor or template (if one is
available) or with the hexadecimal editor.

Figure 2-12

The Resource menu with a picker open

C H A P T E R 2

Getting Started

18

Menus in ResEdit

Figure 2-13 shows the result of attempting to use the Open Using Template command
on a

'CODE'

 resource. There is, in fact, no template for resources of this type. It is
generally not useful to open a resource of one type with a template for a resource of a
different type.

Figure 2-13

There is no template for

'CODE'

 resources

It is also possible to get information on the selected resource. Figure 2-14 shows the Get
Info window for a resource of type

'ICN#'

. This dialog box lets you change the name
and ID number of the resource, and select or deselect some of its attributes.

■

System Heap:

 If this attribute is set, the resource is placed in the system heap unless it
is too large to fit. In that case, the resource is placed in the application heap, as if the
box were not checked. This attribute should not be set for an application’s resources.

Figure 2-14

An

'ICN#'

 Get Info window

C H A P T E R 2

Getting Started

Menus in ResEdit

19

■

Purgeable:

 If this attribute is set, the resource can be purged from memory if more
room is needed. It is typically a good idea to set this attribute.

■

Locked:

 If this attribute is set, the resource is locked in place in the heap and cannot
be moved. This attribute overrides the Purgeable attribute.

■

Protected:

 If this attribute is set, the Resource Manager cannot change the name or ID
number of the resource, modify its contents, or remove the resource from the file that
contains it. The toolbox routine that sets these attributes can be called, however, to
unset this one.

■

Preload:

 Setting this attribute causes the Resource Manager to load the resource into
memory immediately after opening the resource file.

Opening a resource type produces a window that lists each resource of that type in the
file. The list is generated by a resource picker and will take different forms, depending
on the particular resource picker that is displaying it. The general resource picker
displays the resources by type, name, ID number, or order in the file; pickers for specific
resource types generate displays that are appropriate for their type. Figure 2-15 shows a
picker for the

'ICN#'

 resource type.

You can also write your own pickers. For more information, see Chapter 7.

Figure 2-15

A resource type window (with custom picker)

When a resource type window is the active window, the Edit menu commands have the
following effects:

Undo Not usable.

Cut Removes the resources that are selected, placing them in the ResEdit
scrap. If only one resource is selected, it is placed on the Clipboard.

Copy Copies all the resources that are selected into the ResEdit scrap. If only
one resource is selected, it is copied to the Clipboard.

Paste Copies the resources from the ResEdit scrap (or from the Clipboard) into
the resource type window.

C H A P T E R 2

Getting Started

20

Menus in ResEdit

Note

Only resources of the currently open type are copied
into the resource type window.

◆

Clear Removes the resources that are selected without placing them in the
ResEdit scrap.

Duplicate Creates a duplicate of the selected resources and assigns a unique
resource ID number to each new resource.

When you choose Open Using Template from the Resource menu, a list of templates is
displayed, and you can pick the one you want to use.

The Window Menu 2

The Window menu, shown in Figure 2-16, gives you an overview of what windows are
currently open and indicates the currently active window with a checkmark. It also lets
you select a new current window. Note that the Window menu is sorted by file rather
than by how close to the front a particular window is.

Figure 2-16

The Window menu

The View Menu 2

The View menu is configured to match the frontmost window. When a file window is
currently active, the View menu lets you show the resource types in a file by icon or type
name, and if you show them by type, it lets you show the size of each type (that is, the
sum of the sizes of all resources within the type). See Figure 2-17.

C H A P T E R 2

Getting Started

Menus in ResEdit

21

Figure 2-17

The View menu and a ResEdit 2.1 file window

When a resource type window is the currently active window, the View menu lets you
choose among several viewing styles (see Figure 2-18) and lets you show some attributes
for each resource when you view by ID, Name, Size, or Order in File (see Figure 2-19).
Attributes can be displayed but cannot be edited when you use the Show Attributes
command.

Figure 2-18

The View menu and a resource type window

C H A P T E R 2

Getting Started

22

Starting an Editor

Figure 2-19

Showing type attributes

For some resources, the “by Special” line is changed to a type-specific alternate (for
example, “by cicn”, as shown in Figure 2-18). Attributes cannot be displayed in the
special views.

When an individual resource is open, the View menu is not shown.

Starting an Editor 2

To open an editor for a particular resource in a file, first open the picker for the resource
type. To do this, either double-click the resource type name or select it and choose Open
Picker from the Resource menu. (The command will actually name the resource type. For
example, Open ICON Picker.) Then double-click an individual resource, or select it and
choose Open Resource Editor from the Resource menu. When an editor is invoked, one
or more auxiliary menus may appear, depending on the type of resource you’re editing.
Some editors, such as the 'DITL' editor, allow you to open additional editors for the
elements within the resource. The editors vary in their appearance and function, as
explained in Chapters 3 and 4.

If you choose Open Using Template from the Resource menu or hold down the Option
and Command keys while opening a resource, a list of templates is displayed. You may
then select the template that is appropriate for the resource you are opening. For more
information on editing with templates, see Chapter 5.

Resource ID Numbers 2

Within a given resource type, resource ID numbers must be unique. Resources can, in
general, have any ID number between –32768 and +32767, but you should be aware of
the following restrictions which apply to most resources:

■ ID numbers from –32768 to –16385 are reserved. Do not use them!

■ ID numbers from –16384 to –1 are used for system resources that are owned by other
system resources. For example, a dialog box used by a desk accessory (the desk
accessory is, itself, a resource of type 'DRVR') would have a number in this range.

C H A P T E R 2

Getting Started

Resource ID Numbers 23

■ ID numbers from 0 to 127 are used for system resources.

■ ID numbers from 128 to 32767 are available to you for your uses.

Some system resources own others. The “owner” contains code that reads the “owned”
resource into memory. For example, desk accessories can have their own patterns,
strings, and so on. Please see Chapter 5 of Inside Macintosh, Volume I, for more
information.

Fonts constitute a special case. For information about fonts, see the section on 'FONT'
resources in Chapter 3.

C H A P T E R 3

The Bit Editors 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

The Bit Editors

26

Overview of the Bit Editors

Many important resources on the Macintosh are pictorial. These include cursors, icons,
patterns, and fonts. The ResEdit resource editors that handle pictorial resources are
discussed in this chapter. Other resource editors are discussed in Chapter 4. For
information on templates and resources that are edited via templates, please see
Chapter 5.

Overview of the Bit Editors 3

Pictorial resource types are edited with a bit or pixel editor. The bit editors in ResEdit 2.1
are all fundamentally alike except for the

'FONT'

 editor, which is a special case and is
discussed separately.

Figure 3-1 shows the layout of a typical bit editor window.

Figure 3-1

Bit editor window layout

The bit editor window contains these elements:

■

A tool palette at the left edge of the window.

■

A selector that brings up a tear-off palette of patterns and (in color editors) another
pair of selectors, below the tool palette, that allow you to select foreground and
background colors. These bring up tear-off color palettes.

■

A main editing view that shows an enlarged picture for “fat-bits” editing. The size of
this view varies from editor to editor.

■

Full-size images of the resource (in monochrome and, when appropriate, in color) and
its mask (if it has one), to the right of the main editing window.

■

In some of the bit editors, views of the resource on various backgrounds, at the right
edge of the window.

C H A P T E R 3

The Bit Editors

Overview of the Bit Editors

27

When you open a resource that involves color, the editor window is placed on the
display with the largest number of colors or gray levels unless you choose otherwise in
the Preferences dialog box, shown in Figure 2-9.

Tools 3

The tools in the palette behave much as they do in familiar paint programs, with the
exception of the color-dropper and the pencil. The color-dropper lets you pick up the
color of any pixel in the main editing window.

When you are using other drawing tools (for example, the paint bucket), you can access
the color-dropper by holding down the Option key. This does not, however, work with
the eraser, the marquee, or the lasso.

The square containing the color-dropper is empty when you are editing a
black-and-white resource or the mask part or black-and-white image associated with a
color resource.

The middle square on the left side of the tool palette is special, and its content changes
from editor to editor; in Figure 3-1, which shows the

'crsr'

 editor, it allows you to
place the cursor’s hotSpot. This is discussed further in the section on cursor editing in
this chapter. In some of the editors this square is empty.

When you are editing a colored resource, the pencil tool behaves slightly differently than
you might expect if you have edited only in black and white previously. If you click a
pixel in the editing view, that pixel changes to the currently selected color. If it is already
the currently selected color, it becomes the background color instead.

Note

If you try to paste more bits than a resource can hold (for example, if
you try to paste a 40- by 40-bit area from a paint program into an

'ICON'

 resource, which can hold only a 32- by 32-bit area), ResEdit
pastes the selection centered into the active area, and the boundary of
the selection will be outside the active area of the editing window. You
can drag to reposition the selection. If a marquee selection is already
present in the active area when you perform a paste operation, the

'PICT'

 in the Clipboard is scaled into the selection. You cannot paste
into a lasso selection.

◆

If you cut or copy a marquee selection during editing, you can paste it into a file window
as a

'PICT'

 resource. The

'PICT'

 resource picker does

not

 have to be open when you
cut, copy, or paste. When you paste a

'PICT'

 into a color bit editor, the

'PICT'

 is
drawn using colors from the resource being edited and the current color palette. If a
pasted

'PICT'

 is drawn with odd or unexpected colors, it is because some colors
present when the

'PICT'

 was cut or copied are missing from the current color palette.
You may want to select a more appropriate color palette and paste again.

C H A P T E R 3

The Bit Editors

28

Overview of the Bit Editors

Menus 3

The bit editors have two menus in common: Transform and Color. (Strictly monochrome
resources are an exception; their editors do not have a Color menu.) Some of the editors
also have individual menus, which are discussed in the sections on those resources.

The Transform Menu 3

The Transform menu is shown in Figure 3-2. It allows you to transform selected regions
in several ways. The Flip Horizontal, Flip Vertical, and Rotate commands are familiar
from paint programs. The Nudge commands move the selected region by 1 pixel in the
indicated direction. (You can also nudge the selected region by using the arrow keys.)
The Flip and Rotate commands require a rectangular (marquee) selection.

Figure 3-2

The Transform menu

The Color Menu 3

The Color menu is shown in Figure 3-3. It contains a choice of color tables and two other
commands. The color table choice determines what appears in the color pop-up menu or
tear-off color palette. The choices include the standard set, shown in Figure 3-3 and
discussed in this section, as well as any

'clut'

 resources you have added to the ResEdit
Preferences file.

C H A P T E R 3

The Bit Editors

Overview of the Bit Editors

29

Figure 3-3

The Color menu

The items on the Color menu include the following:

Apple Icon Colors
Lets you use a palette of Apple’s recommended colors for Finder icons.

Recent Colors
Lets you use the set of colors currently present in the resource. These may
come from several palettes. This set includes colors that you have selected
since the last time you closed the resource but haven’t used yet. (When
you close a resource, unused colors are automatically removed.)

Standard 256 Colors
Lets you use the standard 8-bit color palette.

Standard 16 Colors
Lets you use the standard 4-bit color palette.

Standard 16 Grays
Lets you use 4 bits of gray levels.

Standard 4 Grays
Lets you use 2 bits of gray levels.

Note

If you have custom entries, they appear between
Standard 4 Grays and Color Picker.

◆

Color Picker Lets you use the standard Color Picker, with which you can select any of
more than 16 million colors. Try ’em all!

Foreground <-> Background
Swaps foreground and background colors, without affecting the image.

C H A P T E R 3

The Bit Editors

30

Editing Cursors

Recolor Using Palette
Merely selecting a palette does not change any of the colors in the
resource you’re editing. This command recolors the resource using
only colors in the current palette.

Palette choices are different for Finder icons. When you are editing

'icl8'

 or

'ics8'

resources, the only color choices available in the Finder icon editor are Apple’s
recommended icon colors and the standard 256-color (8-bit) palette. For

'icl4'

 and

'ics4'

 resources only the standard 16-color (4-bit) palette is available.

Note

ResEdit automatically removes any unused colors
from a resource when you close it.

◆

If you hold down the Command key and pick a new color, all pixels of the current
foreground (or background) color are changed to the new color.

Editing Cursors 3

Cursors are pictorial resources of types

'CURS'

 (B&W) and

'crsr'

 (color). Figure 3-4
shows the

'CURS'

 editor; the

'crsr'

 editor is shown twice in Figure 3-5. In each of
these editors, the middle part of the display has a large image for editing and two
smaller full-scale images (three in the case of

'crsr'

 resources). The upper small image
shows the cursor itself. The lower small image is the mask for the cursor, which affects
how the cursor appears on various backgrounds. The pixel in the editing window that is
marked with an

X

 is the cursor’s hotSpot. (The hotSpot is the pixel in the cursor that the
Macintosh recognizes as the cursor’s location. The hotSpot of the familiar arrow cursor,
for example, is its point.) There is a special hotSpot tool on the palette. It is shaped like
an

X,

 as you would expect. To place the hotSpot, click this tool and then click anywhere
in the main image in the editing window.

Along the right edge of the display, the cursor is drawn to scale on five different
background patterns. When the cursor is to be drawn, a hole is first made in the
background by turning off the pixels in the area of the screen covered by the mask. Then
the cursor is overlaid on the hole. (Figure 3-5 shows a pair of explanatory examples.)
Ordinarily, the mask should be just a filled-in outline of the cursor so that the cursor can
be seen clearly. To edit the cursor’s mask, click the small image labeled Mask. It is then
displayed in the editing window. Initially this image is blank; you can drag an upper
image to the Mask image to create a mask, or select the mask and paste an image into it.

C H A P T E R 3

The Bit Editors

Editing Cursors

31

Figure 3-4

'CURS'

 resource editor

Figure 3-5 shows two almost identical

'crsr'

 editing windows. These illustrate the
difference between

pasting

 the black-and-white image (labeled B&W) into the mask (left)
and

dragging

 the black-and-white image to the mask (right). As you can see, the cursor
on the right is entirely opaque: nowhere does the background show through it. The
difference is most clearly visible in the Mask images and in the top-right corner images.

Figure 3-5

Color cursor editing: mask examples

The CURS and crsr menus contain the following command:

Try Pointer Lets you try out your handiwork by having it become the cursor in use
inside ResEdit, in place of the ordinary arrow cursor.

C H A P T E R 3

The Bit Editors

32

Editing Icons

Editing Icons 3

ResEdit contains editors for all the common icon resource types.

Editing 'cicn' Resources 3

Ordinary color icons are pictorial resources of type

'cicn'

. Figure 3-6 shows the

'cicn'

 editor. Please see the inside front cover for a color illustration of the

'cicn'

 editor.

You can transfer images among the three small framed views to the right of the main
editing window. These are labeled Color, B&W, and Mask. If you drag across any of
these small views, an outline will detach. You can then move that outline to another
small view. The destination becomes inverted to indicate that releasing the mouse button
will transfer the image. If you transfer the image to the mask, interior bits in the image
are set to black.

At the right edge of the editor display are color and black-and-white examples of how
the icon looks against the current background.

Figure 3-6

Color icon editor

The cicn Menu 3

The cicn menu allows you to choose a background for the display section at the right
edge of the window and to bring up a dialog box that lets you set the horizontal and
vertical sizes of the icon. These sizes are separate; that is, the icon does not have to be a
square. The minimum for both is 8 pixels, and the maximum is 64. The Delete B&W Icon
command is active only when the black-and-white icon is selected and is shown in the
main editing view.

C H A P T E R 3

The Bit Editors

Editing Icons

33

It is possible to create a

'cicn'

 resource without a black-and-white image, but because
the system uses the image labeled B&W to display the icon on monitors that are set to
black and white or to 4 grays or colors, it is probably a good idea to include it.

Creating New Color Icons 3

When you create a new

'cicn'

 resource, you get the last color table you selected. The
Color menu, shown in Figure 3-3, lets you choose other color collections. The most
commonly used collection is Standard 256 Colors, which lets you pick colors from the
8-bit system color table. Apple recommends that you use colors in the standard 16- and
256-color collections and specifically the Apple Icon Colors, because these are typically
present when a

'cicn'

 icon is drawn.

Finder Icons 3

Finder icons, beginning with system software version 7.0, constitute a suite, or family, of
pictorial resources. These include small and large color icons in 16 and 256 colors (types

'ics4'

 and

'ics8'

 in the small size,

'icl4'

 and

'icl8'

 in the larger size) as well as
small and large monochrome icons, now types

'ics#'

 and the traditional

'ICN#'

,
which is discussed later in this chapter. The large icons are 32-by 32-pixels and effective-
ly share the mask of the

'ICN#'

 type. The small icons are 16-by 16-pixels; they, too,
share a common mask in an

'ics#'

 resource.

When you use the color-dropper, remember that the color selection is tied to the depth of
the image. That is, using the color-dropper to pick up the color of a pixel in, for example,
the 'icl4' or 'ics4' image does not change the color selection in the 'icl8' and
'ics8' images (and vice versa), nor does it change the “color” selection (black or white)
in the 'ICN#' and 'ics#' images.

Opening any of these resources automatically invokes the Finder icon editor and
selects the particular resource type for editing, provided Color QuickDraw is present.
The 'ICN#' resource type still has its own individual editor but is typically edited in the
Finder icon editor with the other members of the suite. (Double-clicking a resource of
type 'ICN#' opens the 'ICN#' editor rather than the Finder icon editor if Color
QuickDraw is not present, or if you have installed an 'RMAP' resource in the ResEdit
Preferences file to override the Finder Icon editor. See Chapter 6 for details.)

Figure 3-7 shows the Finder icon editor during an 'icl8' edit. The other editing
windows are quite similar, all of them sharing the tool palette; here, as with the 'cicn'
editor, a monochrome illustration cannot fully represent the appearance of a color screen,
but the figure should give you some idea of the appearance of this editor. Please see the
inside front cover for a color illustration of the Finder icon editor.

C H A P T E R 3

The Bit Editors

34 Editing Icons

Figure 3-7 Finder icon family editor

When you click one of the eight small views labeled with resource type names, the
corresponding icon is opened for editing. The display bar area on the far right shows the
icon in the form of three groups of images against the background that was selected from
the Icons menu. The groups are labeled Normal, Open, and Offline. The display shows
how the icons are drawn by the system software version 7.0 Finder. In each group, the
icon is shown unselected on the left and selected on the right.

The Icon Menu 3

The Icon menu is shown in Figure 3-8. It allows you to select a background for the
display section at the right edge of the window; it is useful to be able to check the icon
against several different backgrounds. The Delete command allows you to delete the
icon type currently being edited. If a mask is being edited, the Delete Resource command
allows you to delete the monochrome icon ('ICN#' or 'ics#') that contains the mask.

C H A P T E R 3

The Bit Editors

Editing Icons 35

Figure 3-8 Icon menu

Note
Finder Icon family resources that don’t exist are drawn in gray, except
for masks, which are drawn as black squares. (This allows other family
members to appear in the display bar at the right edge of the editor
before appropriate masks are created for them.) ◆

'ICON' Resources 3
Icons that appear within a program (HyperCard is a good example) are typically
resources of type 'ICON'. The 'ICON' editor is shown in Figure 3-9. The 'ICON'
resource is relatively simple and consists of a 32- by 32-pixel square, in black and white.
It does not have a mask.

Figure 3-9 'ICON' resource editor

C H A P T E R 3

The Bit Editors

36 Editing Icons

'ICN#' Resources 3
The 'ICN#' resource, part of the Finder Icon suite in system software version 7.0 and
later, has long been a common target for ResEdit. The icons that you see on the desktop
in system software version 6.0 and earlier, representing applications and their
documents, are all 'ICN#' icons, as are folder icons and even the Trash icon. The
'ICN#' resource type is edited either in the Finder icon editor, or with its own editor.
Both permit you to change any of the pixels in the icon, which are in a 32- by 32-pixel
square. When you double-click a resource of type 'ICN#', the specific 'ICN#' editor is
ordinarily activated only if Color QuickDraw is not present. If you want to edit a
resource of type 'ICN#' alone and you have Color QuickDraw, you need to generate an
'RMAP' resource in your ResEdit Preferences file to override the normal operation of
ResEdit. See Chapter 6 for details.

The 'ICN#' editor is shown in Figure 3-10.

Figure 3-10 'ICN#' resource editor

In recent versions of the Finder, 'ICN#' resources are displayed on the screen as
follows: First the mask is used to blank an area of the screen. Then an OR operation is
performed in the same screen area, using the icon as data. (When a highlighted icon is
displayed, the foreground and background “colors”—in this case black and white—are
swapped before the OR operation is performed on the data.) If the mask is not the same
shape as the outline of the icon, the results will in general be unaesthetic unless the
background is black.

C H A P T E R 3

The Bit Editors

List Resources 37

List Resources 3

Some pictorial resources contain sets or lists of pictures. Together these pictures make up
an individual resource. Editors for list resources have two kinds of editing regions. The
first kind is a bit editor, familiar from the editors that have already been described in this
chapter. The second kind is used to manipulate the elements in the list.

As with the other bit editors, the picture currently being edited is shown in a box. To edit
a different picture, click it in the list on the right. You can drag elements to different
positions in the list, and commands on the Edit menu can be used to cut, copy, paste,
clear, or duplicate elements when the list is enabled. You can cut or copy list elements
only when the list is active. It is possible to paste more than one element at a time. Paste
inserts after the currently selected element, or at the end of the list if no element is
currently selected. If there are more elements in the list than will fit in the list display
area, the scroll bar is enabled.

'SICN' Resources 3
The small icon ('SICN') editor is shown in Figure 3-11, with the editing window
enabled.

You can add a new small-icon picture by choosing the Insert New SICN command from
the Resource menu.

Figure 3-11 'SICN' resource editor

C H A P T E R 3

The Bit Editors

38 Editing Patterns

Editing Patterns 3

ResEdit 2.1 includes editors for four kinds of pattern resources: 'PAT' (black-and-white
patterns), 'PAT#' (black-and-white pattern lists), 'ppat' (color patterns), and 'ppt#'
(color pattern lists).

Each pattern editor has a menu; the PAT and PAT# menus have only one command, Try
Pattern. This command makes your pattern the desktop pattern.

 The ppat and ppt# menus have two commands. The Pattern Size command brings up a
dialog box, shown in Figure 3-12, that lets you select the size of the basic cell of your
pattern. Patterns are replicated or truncated when resized, not scaled. Remember, the
black-and-white patterns are always 8-by 8-pixels. Only the color patterns are resized.

The Try Pattern command makes your pattern the desktop pattern. When you are in Try
Pattern mode, you can shift back and forth between color and black-and-white versions
of the patterns by clicking their respective pictures in the list area (see Figure 3-15 or
Figure 3-16).

Figure 3-12 Pattern Size dialog box

Relative Patterns 3
The 'ppat' and 'ppt#' editors support a subset of Relative Patterns. Relative Patterns
are used internally by ResEdit in the pattern palette. The editors support 1-bit patterns
with no color table entries. These patterns are edited in black and white; the current
foreground and background colors replace black and white respectively when the
pattern is actually used. For more information, see Inside Macintosh, Volume V, page 57.

C H A P T E R 3

The Bit Editors

Editing Patterns 39

Custom Patterns 3
You can override the set of patterns provided by ResEdit by installing resources in the
ResEdit Preferences file.

To override the patterns available in the black-and-white bit editors, install a 'PAT#'
resource named Fill Patterns into the Preferences file. The first pattern in the list
is the default choice, and it is a good idea to make this a completely filled (that is,
black) pattern.

To override patterns available in the color bit editors, install a 'ppt#' resource named
Fill Patterns in the Preferences file. It is a good idea to create relative patterns that adopt
the current foreground and background colors. You may also include absolute colors in
your patterns. (ResEdit does not permit a single pattern to contain both relative and
absolute colors.) When you edit pictorial resource components that are inherently
colorless (masks, for example), black-and-white patterns are shown in the bit editor’s
pattern palette, but internally ResEdit uses the corresponding color patterns. For this
reason, you should make the black-and-white version of each pattern a monochrome
duplicate of the color pattern.

If you do install your own patterns, you should create similar 'PAT#' and 'ppt#'
resources for consistency.

'PAT' Resources 3
The 'PAT' resource (black-and-white pattern) editor is shown in Figure 3-13. It displays
two panels, with the editing area on the left and the pattern shown on the right. The
editing area is small, but it is possible to make some use of the marquee tool.

Figure 3-13 'PAT' resource editor

C H A P T E R 3

The Bit Editors

40 Editing Patterns

'PAT#' Resources 3
The 'PAT#' resource (black-and-white pattern list) editor is much like the 'SICN'
editor; it is shown in Figure 3-14.

Figure 3-14 'PAT#' resource editor

'ppat' Resources 3
The 'ppat' resource (color pattern) editor is shown in Figure 3-15.

The black-and-white pattern is limited to 8-by 8-pixels and cannot be resized, although it
can be edited. It is displayed on the right edge of the editor window. Unless your color
pattern is also 8 pixels square, the black-and-white pattern probably won’t look quite
like it, as is evident in Figure 3-15.

Figure 3-15 'ppat' resource editor

C H A P T E R 3

The Bit Editors

Editing Patterns 41

'ppat' Relative Patterns 3

In the 'ppat' resource picker, if you hold down the Option key before pulling down the
Resource menu, the first item changes to Create New Relative Pattern.

'ppt#' Resources 3
The 'ppt#' resource (color pattern list) editor is shown in Figure 3-16. There are three
displays in this editor. The display on the left is a color (or black-and-white) fat-bits
version for editing. The display in the middle shows the resulting pattern at full scale,
both in color and in black and white. The pattern labeled B&W is sized to match the
pattern labeled Color. The display on the right is the list area.

Figure 3-16 'ppt#' resource editor

Desktop Pattern Lists 3

Desktop patterns, that is, patterns you can select in the general control panel, are found
in the 'ppt#' resource with ID number 0 in the System file. These patterns are restricted
to 8-by 8-pixels in size and must contain exactly 8 colors. ResEdit will enforce these
restrictions if you edit your System file directly. If you edit 'ppt#' resource ID 0 from
any file other than your System file, ResEdit displays an alert box asking if the resource
is a desktop pattern list. You must answer yes if you want to use the resulting patterns in
your active System file. If you answer no, any changes you make are likely to cause the
number of colors in the pattern to change, and you won’t be able to use the result on
your desktop. There is no convenient way to create a new desktop pattern list. You
should begin with a copy of the 'ppt#' resource with ID 0 from the System file.

'ppt#' Relative Patterns 3

If you hold down the Option key before pulling down the Resource menu, the first
item changes to Insert Relative Pattern. You cannot insert relative patterns into a desktop
pattern list.

C H A P T E R 3

The Bit Editors

42 'FONT' Resources

'FONT' Resources 3

The Font editor is a bit editor. It has not been changed from its state in previous versions
of ResEdit and will be familiar if you have used ResEdit before; if you need to edit fonts
extensively and especially if you need to create new fonts, you should probably use one
or more of the excellent third-party utilities that are now available.

The 'FONT' resource is one of two major ways of representing bitmap (screen) fonts for
the Macintosh. (The 'NFNT' resource, described briefly later in this section, is the other.)
The 'FONT' resource contains a series of pictures that typically represent items in the
Macintosh character set, though they need not do so. A chart of the Macintosh character
set is presented in Appendix D.

Because the Macintosh displays a character of type on its screen as a bitmap, however, it
is possible for the pictures to be just that—pictures. 'FONT' resources in the Macintosh
world can contain scanned images and other pictures just as easily as they can contain
the alphabet, numerals, and punctuation marks.

Macintosh computers can modify elements of a font—for example, they can embolden
fonts or cause them to slant for an approximation of italics. Print quality on dot-matrix
printers (and screen-display accuracy as well) can be improved, however, by providing
extra fonts that are constructed with those styles built into them. 'FONT' resources
typically come in families, so that it is possible to display text on the screen (and print it
on dot-matrix printers) in several styles, most commonly roman, bold, italic, and a
bold-italic combination, without taking processor time to calculate the way such styles
should look. These families can also correspond to downloadable PostScript


 fonts for

laser printers and typesetters.

If you use ResEdit to examine a file of fonts from a recent Macintosh system software
version, you will find that it contains three kinds of resources: 'FOND', 'FONT', and
'vers'. (a record of the version number of the release). The 'FOND' resource “owns”
one or more sizes of a particular font and contains kerning tables and other important
information about the 'FONT' resources it owns. The 'FOND' resource has a unique ID
number, from which the ID numbers of its subsidiary 'FONT's are calculated. To find
the ID number of a particular 'FONT' resource, take the ID number of the parent
'FOND', multiply by 128, and add the point size of the 'FONT'. For example, 'FONT'
ID 268 corresponds to New York (family ID 2), in 12 point size.

The ID numbers of 'FOND' resources may be from 0 (Chicago, the default System font)
to 255, inclusive. Apple reserves ID numbers from 0 through 127. Unfortunately, there
are a great many bitmap fonts (vastly more, in fact, than 255), so occasional ID number
collisions are unavoidable. Version 3.8 and later versions of the Font/DA Mover attempt
to resolve such collisions, as do some third-party system-enhancer packages.

There is also another, newer kind of font resource, type 'NFNT'. Like 'FONT' resources,
'NFNT' resources are also owned by 'FOND' resources. ID numbering of 'NFNT' fonts
is, however, not keyed to the ID number of the parent 'FOND'. Arbitrary numbering of
'NFNT' resources helps avoid font ID number collisions and facilitates resolution of

C H A P T E R 3

The Bit Editors

'FONT' Resources 43

conflicts when they do occur. 'NFNT' fonts, moreover, can contain and display more
than 1-bit per pixel and can be assigned absolute colors with a corresponding 'fctb'
resource, which is a color table record. (Font color table records are discussed in Inside
Macintosh, Volume V, in the section on the Color Manager. The Font Manager is
discussed in some detail in Inside Macintosh, Volumes IV and V.) ResEdit does not allow
you to edit 'NFNT' fonts, but you can use it to copy and move them. You can also use
version 3.8 and later versions of the Font/DA Mover. At least one third-party editor for
'NFNT' fonts is available.

Editing 'FONT' Resources 3
Fonts are edited with a bit editor that is a subset of the bit editors for other pictorial
resources. This editor has several of the tools you are probably familiar with from such
programs as MacPaint


.

The editing window for 'FONT' resources is divided into four panels: a character-
editing panel, a sample text panel, a character-selection panel, and a typical set of
graphics tools. These panels are shown in Figure 3-17.

Figure 3-17 'FONT' resource editor

The character-editing panel;, on the left side of the window, shows an enlargement of
the selected character. You can edit it, as with the other bit editors for pictorial resources,
by clicking bits on and off with the pencil. Drag the black triangles at the bottom of the
character-editing panel to set the left and right bounds of the character (that is, the
character width). Two of the three triangles at the left side of the panel control the ascent
and descent of characters in the font. If you want to increase the ascent or descent, move
the appropriate triangle first. If you put pixels outside the indicated area and then move
the triangle, those pixels are wiped out.

C H A P T E R 3

The Bit Editors

44 'FONT' Resources

▲ W A R N I N G

Changing the ascent or descent of a character changes
the ascent or descent for the entire font. ▲

The third triangle on the left shows the location of the i.‘'FONT' editor: baseline’;, which
is fixed and is displayed only for reference. Below the panel are the character number
(labeled ASCII), and the character’s offset, width, and location, all in decimal notation.

Note
The correspondence between the Macintosh character set number and a
real ASCII number is limited. Strictly speaking, ASCII is a set of 128
characters, numbered from 00 ($00, the NULL character) through 127
($7F, the DEL character), and is intended to represent a basic character
set rather than any font or typeface, in a relatively universally
understood form. Because the Macintosh character set is oriented
toward electronic publishing, which has more (and different)
requirements, it has twice as many possible character numbers. (See the
section on the 'KCHR' editor later in this chapter.) For ordinary text
fonts, characters 0 through 127 of a Macintosh font are the ASCII
character set. For Symbol, ITC Zapf Dingbats


, and the various pictorial

fonts, however, the correspondence with the ASCII character set is
minimal. The Macintosh character set is shown in Appendix D. ◆

The sample text panel, at the upper right, displays a sample of text in the font currently
being edited. (You can change this text by clicking in the text panel and using normal
Macintosh editing techniques.)

The character-selection panel is below the text panel. You can select a character to edit
by typing it (using the Shift and Option keys if necessary), or by clicking it in the row of
three characters shown. To move upward through the character number range, click the
right character in the row; to move downward, click the left character. The character you
select is boxed in the center of the row. (To scroll quickly, click the right or left character
and drag the pointer outside the selection panel, to the right or left.)

The graphics tools panel, directly below the character-selection panel, offers several
familiar graphics-manipulation tools, including the pencil, eraser, circles, and rectangles.
The filled shapes always use a solid black pattern. The 'FONT' editor also includes the
marquee tool and the lasso as panel selections.

Any changes you make in the character-editing panel are reflected in the text panel and
the character-selection panel, except on monitors displaying more than two colors or
gray levels.

You can also change the name of a font. The font name is stored in two places: as the
name of the 'FOND' resource of that font family, and as the name of the size 0 'FONT'
resource. To change the font name, select the individual 'FOND' resource with the name
you wish to change, and choose Get Info from the File menu. To maintain consistency,
you should also change the name of the 0 point 'FONT' resource. This resource does not
show up in the normal display of all fonts in a file. To display it, hold down the Option
key while you open the 'FONT' type from the file window. You will see a generic list of
fonts. Select the font with the name you wish to change, and choose Get Info.

C H A P T E R 4

Other Resource Editors 4Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Other Resource Editors

46

Using the Hexadecimal Editor

Many resources are not of an inherently pictorial nature. ResEdit’s editors for these
resources and its generalized (hexadecimal) editor are discussed in this chapter. For
information on editing template resources, please see Chapter 5.

Using the Hexadecimal Editor 4

The hexadecimal resource editor is invoked if you hold down the Option key while
opening a resource or choose Open Using Hex Editor from the Resource menu. It is also
invoked if you open a resource for which there is no individual editor or template. This
editor allows you to edit the resource as hexadecimal or ASCII data. The hex editor can
edit resources larger than 255Kb. If a resource is between 256Kb and 511Kb in size, each
click in the up or down scroll arrow causes a scroll of two lines; if between 512Kb and
767Kb, each click causes a scroll of three lines; and so on. (The scroll bars keep track of
position with an integer, which is a single byte and thus is limited to values between 0
and 255.)

If you enter hexadecimal text when you are using this editor, the editor maintains byte
alignment of the incoming data. Thus, if you type

2

 into an empty byte, the editor
displays

02

. If you then type

A

, the editor displays

2A

.

The hex editor has a Search menu. It allows you to search for the occurrence of a pattern
in the resource being displayed and allows you to enter the pattern in either hexadecimal
or Macintosh character set notation, the latter being loosely described as ASCII, though it
is actually considerably larger than the true ASCII set. See Appendix D for a chart of the
Macintosh character set. The hex editor also allows you to move to a specified offset
from the beginning of the resource you’re editing.

'WIND', 'ALRT', and 'DLOG' Resources 4

These three resource types are edited with a tightly interrelated set of editors, so they are
considered here as a group.

'WIND'

 resources display windows on the screen. Figure 4-1 shows the

'WIND'

resource editor. At the top of the editing window is a pictorial list of the selectable
window styles. Below that is a miniscreen that shows a small picture of the window. You
can move and size the window in the miniscreen.

The MiniScreen menu, shown in Figure 4-2, contains a set of screen sizes for you to
choose from, and an Other command. It defaults to the dimensions of the Macintosh SE
monitor. The Other command lets you add one new size. If you want still more sizes,
you can add an appropriate menu to the ResEdit Preferences file.

C H A P T E R 4

Other Resource Editors

'WIND', 'ALRT', and 'DLOG' Resources

47

Figure 4-1

'WIND'

 resource editor

Figure 4-2

MiniScreen menu

In Figure 4-1, Custom Color has been selected, and controls that allow you to select
colors for various parts of the window are visible. When you choose Custom Color,
ResEdit creates a

'actb'

,

'dctb'

, or

'wctb'

 resource that corresponds to the

'WIND'

,

'ALRT'

, or

'DLOG'

 resource you are editing. The first time you change a color, ResEdit
reminds you that you are creating a new resource and that if you remove the parent
resource you should also remove the extra

'actb'

,

'dctb'

, or

'wctb'

 that is left
behind.

'ALRT'

 and

'DLOG'

 resources display, respectively, alert and dialog boxes. Editing

'ALRT'

 and

'DLOG'

 resources is much like editing

'WIND'

 resources, except that the
corresponding

'DITL'

 resource is automatically opened if you double-click the picture
of the alert or dialog box after opening the resource. (See the next section.) You can select
a particular

'DITL'

 resource to go with a given

'ALRT'

 or

'DLOG'

 resource, but the
default is one that has the same ID number as the parent resource.

'ALRT'

 resources
have a fixed format, so you cannot select a window type, nor do you have the options of
selecting initial visibility or the presence of a close box.

'DLOG'

 resources do allow these
options.

C H A P T E R 4

Other Resource Editors

48

'WIND', 'ALRT', and 'DLOG' Resources

Figure 4-3 shows an

'ALRT'

 resource open for editing. Just as with the

'WIND'

 resource
example, the editor displays a miniscreen view of the resource.

Figure 4-3

'ALRT'

 resource editor

Note

The first item in the

'DITL'

 associated with any

'ALRT'

 resource must
be a button. The system has no way of telling what is where, so it always
regards the first item as a button. Using the Set

'ALRT'

 Stage Info
command from the ALRT menu, you can specify either item 1 or item 2
as the default at any of the four stages of the alert. If item 1 is the
default, of course, item 2 need not be a button. By an informal conven-
tion in Macintosh programming, item 1 is the OK button and item 2 is
the Cancel button if there is a Cancel button. This convention is reflected
in the dialog box associated with the Set

'ALRT'

 Stage Info command.

◆

Figure 4-4 shows a

'DLOG'

 resource open for editing.

C H A P T E R 4

Other Resource Editors

'WIND', 'ALRT', and 'DLOG' Resources

49

Figure 4-4

'DLOG'

 resource editor

When you display an individual

'WIND'

,

'ALRT'

, or

'DLOG'

 resource, a corresponding
menu appears. The WIND menu is shown in Figure 4-5, the ALRT menu in Figure 4-7,
and the DLOG menu in Figure 4-9. These menus are very similar.

Figure 4-5

WIND menu

They have the following commands in common:

Preview at Full Size
Displays the resource sized as it is in normal display. Click the mouse to
return to the editor.

Auto Position…
Allows System 7.0 to position the window automatically when it is drawn.

Show Height & Width
Changes the editable fields at the bottom of the window to show relative
size/position information.

C H A P T E R 4

Other Resource Editors

50

'WIND', 'ALRT', and 'DLOG' Resources

Show Bottom & Right
Changes the editable fields at the bottom of the window to show absolute
size/position information.

Use Color Picker
Lets you use the Color Picker instead of the standard 256-color palette
when you set the colors of the various parts of the resource.

The WIND menu contains the following commands in addition to those already
discussed:

Set

'WIND'

 Characteristics
Brings up a dialog box, shown in Figure 4-6, that allows you to title the
window and set its

refCon

 and

procID

. If the

procID

 is not the one
associated with any of the pictures at the top of the main window, none of
the pictures is selected.

Figure 4-6

Setting

'WIND'

 characteristics

Never Use Custom

'WDEF'

 for Drawing
This command defaults to true. It causes the resource to be drawn with
the standard

'WDEF'

 resource from the System file regardless of the value
you assign to the

procID

.

Figure 4-7

ALRT menu

C H A P T E R 4

Other Resource Editors

'WIND', 'ALRT', and 'DLOG' Resources

51

The ALRT menu contains the following command in addition to those already discussed:

Set

'ALRT'

 Stage Info
Brings up a dialog box, shown in Figure 4-8, that allows you to set the
display conditions for the resource at different stages. You can select how
many beeps you want to sound, up to three; whether the OK or Cancel
button (actually item 1 or item 2 of the associated

'DITL'

 resource) is the
default; and whether the alert box is to be drawn for each stage. The
stages correspond to successive occurrences of the alert condition,
although stage 4 is for four or more occurrences. Please see

Inside
Macintosh,

 Volume I, page 409, for further information.

Figure 4-8

'ALRT'

 Stage Info dialog box

Figure 4-9

DLOG menu

The DLOG menu contains the following commands in addition to those already
discussed:

Set

'DLOG' Characteristics
Brings up a dialog box, shown in Figure 4-10, that allows you to title the
window and set its refCon and procID. If the procID is not the one
associated with any of the pictures at the top of the main window, none of
the pictures is selected.

C H A P T E R 4

Other Resource Editors

52 'DITL' Resources

Figure 4-10 Setting 'DLOG' characteristics

Never Use Custom 'WDEF' for Drawing
This command defaults to true. It causes the resource to be drawn with
the standard 'WDEF' resource from the System file regardless of the value
you assign to the procID.

'DITL' Resources 4

The 'DITL' (dialog item list) resource editor can be invoked directly or from the
'ALRT' and 'DLOG' editors. When you first invoke it, it displays an image of the items
from the list just as they would be displayed in a dialog or alert box. When you select an
item, a dotted rectangle is drawn around it. The rectangle has a size box in its lower-right
corner so that you can change its size. If you choose Select All, ResEdit first deselects any
selected items, and then selects all items in their order in the item list. You can move an
item by dragging it.

The 'DITL' editor uses the Dialog Manager to display 'DITL' resources. This ensures
that they look the same when your application displays them as they do in the editor.

Figure 4-11 shows the 'DITL' corresponding to 'DLOG' resource ID 5120 from the
Finder. This is the Get Info box.

C H A P T E R 4

Other Resource Editors

'DITL' Resources 53

Figure 4-11 'DITL' resource editor

To create a new item, drag the type you want from the item palette. To open an item,
either double-click it, or select it and press the Return key.

If you open an item, the item editor, shown in Figure 4-12, is invoked. If you hold down
the Option key while opening a 'CNTL', 'ICON', or 'PICT' resource, the hexadecimal
editor is invoked. If you hold down the Option and Command keys while opening a
'CNTL', 'ICON', or 'PICT' resource or if you choose the appropriate Open command
from the Resource menu, a specific editor for the particular resource is started. Some
dialog items are listed as User Items. These are defined in the application, rather than in
the Dialog Manager, and are actually built only when you run the application. The item
editor has one pop-up menu, which allows you to change the type of the item. Different
item types have slightly different editor windows; if another resource (a picture or icon,
for example) is referred to by the item, you can select it by ID number. That information
takes the place of the Text window in Figure 4-12.

Figure 4-12 'DITL' item editor

C H A P T E R 4

Other Resource Editors

54 'DITL' Resources

Because they are linked, the 'DITL' resource is usually given the same ID number as
the parent 'DLOG' or 'ALRT' resource. This is not necessary, however, and you can
assign any 'DITL' resource to any 'ALRT' or 'DLOG' resource.

Figure 4-13 DITL menu

The DITL menu, shown in Figure 4-13, contains the following commands:

Renumber Items
Allows you to renumber items in the 'DITL' resource. Remember that
item number 1 in a 'DITL' used by an 'ALRT' must be a button.

Set Item Number…
Allows you to specify a new number for a selected item. Some of the
items may be renumbered when you do so.

Select Item Number…
Allows you to select an item by specifying its number. This is useful for
items that are obscured by other items or are outside the window. Once
you have selected an item, you can open it by pressing the Return key.

Show Item Numbers
Sets the display to show the number of each item in the 'DITL' resource.
If you hold down the Option key, the current setting of this command is
temporarily toggled.

Align To Grid
Aligns the items on an invisible grid, the size of which defaults to 10 by
10 pixels. If you change the location of an item while Align To Grid is on,
the location is adjusted such that the upper-left corner lies on the grid
point nearest to the location you gave. If you change an item’s size, it is
constrained to be a multiple of the current grid setting in each dimension.

Grid Settings…
Allows you to set the horizontal and vertical grid sizes. These both
default to 10 pixels.

C H A P T E R 4

Other Resource Editors

'DITL' Resources 55

Show All Items
Adjusts the window size so that all items in the item list are visible in the
window (or makes the window as large as the current screen size allows,
if the screen is smaller). The window size that your program will use
when it displays the 'DITL' is actually stored in the parent 'ALRT' or
'DLOG' resource; this command is present solely for your convenience
when you are editing the dialog items.

Use Item’s Rectangle
This command is enabled only for 'CNTL', 'ICON', and 'PICT'
resources. When you choose it, the rectangle specified by the 'DITL'
item, rather than the default rectangle, is used when the 'DITL' resource
is displayed. This is important for pictorial resources in particular, so that
the whole picture, rather than some random part of the picture, is shown.

View As… Brings up a dialog box, shown in Figure 4-14, that allows you to set the
typeface and size in which Edit Text and Static Text items are displayed in
the editor. As you can see from the figure, this command does not actually
change the resource itself. It is useful if you are designing a dialog box
that is to be displayed using a different font from the default font of the
editor, which is 12-point Chicago.

Figure 4-14 DITL menu View As dialog box

Balloon Help…
Brings up a dialog box with items that relate to Balloon Help in system
software release 7.0. There are three types of Balloon Help items; they can
be added and deleted with this command. ResEdit always puts Balloon
Help items at the end of the item list.

C H A P T E R 4

Other Resource Editors

56 'DITL' Resources

Figure 4-15 shows the Alignment menu. In this illustration, both of the items in the
'DITL' have been selected.

Figure 4-15 Alignment menu

The first six items are enabled only when two or more items are selected. The last
two items may pertain to one or more items at a time. Use of all of these items is
straightforward.

Any or all of four special items can be used in static text in a 'DITL' item or in a
'STR#' resource. Each is built of a caret (^) followed by a number from 0 to 3. The text
of these items can be set by calling the ParamText toolbox procedure. An example of a
'DITL' with these items is shown in Figure 4-16. Please see Inside Macintosh, Volume I,
page 421, for further information.

Figure 4-16 Special parameter strings

C H A P T E R 4

Other Resource Editors

'BNDL' Resources 57

'BNDL' Resources 4

To date, 'BNDL' resources have been mysterious, opaque, and difficult to learn about.

They are associated historically with a fairly complex set of concepts, but in fact their
only function is to bring together an application’s documents (including the application
file itself) and their icons for the Finder. Any application that has a distinct icon on the
desktop also contains a 'BNDL' resource. For more details on the structure and concept
of the 'BNDL' resource, please refer to Appendix C, “The 'BNDL' Resource.”

The 'BNDL' editor in ResEdit 2.1 helps you create a bundle consisting of the necessary
'BNDL', 'FREF', and Finder icon resources and saves you the trouble of dealing with
the internal workings of the bundle concept. The basic view you get when you first bring
up the 'BNDL' editor is shown in Figure 4-17. (The extended view is shown in
Figure 4-19.)

Figure 4-17 'BNDL' resource editor, simple view

The Finder bundles together documents, applications, and their icons with a four-
character signature, which must be unique for every application. All the necessary
resources to do this are stored in the so-called Desktop file (or in the desktop database in
system software version 7.0). This signature is shown in the first line of the window. All
characters in the Macintosh character set (see Appendix D) are allowed in the signature.
To register a unique signature for your own application, please contact Macintosh
Developer Technical Support at Apple Computer, Inc.

This signature is used as the creator code for all files that are part of the bundle (the
creator code is a property of every file and can be set using the Get File/Folder Info
command on the File menu). Every file on the Macintosh also has a file type, which
is another four-character field (several standard file types are defined: APPL for
application, TEXT for plain text document, PICT for picture files, and so on). This file
type is used not only to differentiate among different kinds of files but also to associate

C H A P T E R 4

Other Resource Editors

58 'BNDL' Resources

distinct icons with different files having the same creator (that is, those that belong to the
same application). This is what the list in the bottom part of the 'BNDL' editor window
does. To create a new file type and its icon, choose Create New File Type from the
Resource menu. Enter the file type in the left column and open the Finder Icon field in
the right column by selecting Choose Icon from the BNDL menu or by double-clicking
the field.

Figure 4-18 shows the Icon chooser. Here you can either select an existing icon for your
file type, or you can create your own by pressing the New button. Note that even though
the 'BNDL' editor shows the entire Finder icon family, because of screen real estate
considerations you will see only a list of 'ICN#' resources in this window. Versions of
the Finder before system software release 7.0 use only 'ICN#' icons.

Figure 4-18 The Icon chooser

Once you have associated all your file types with distinct icons (remember to include the
file type APPL for your application itself), you need take only a few more steps to make
the Finder display your icons.

Choose either the Get File/Folder Info command or the Get Info for This File command
from the File menu, and select your application from the resulting list of files. Now set
the file type to APPL and the creator to the signature you have entered in the 'BNDL'
resource. Then set the Bundle bit and clear the Inited bit. This tells the Finder that your
application contains a 'BNDL' resource and that it hasn’t already seen your file. If the
Finder doesn’t immediately show your new icon, select your application and use the Get
Info command in the Finder.

C H A P T E R 4

Other Resource Editors

'BNDL' Resources 59

Note
Once the Finder has seen your 'BNDL' resource and loaded the icons
into its Desktop file, it will never again look at your 'BNDL', even if you
clear the Inited bit.

In order to change the 'BNDL' resource or to change some icons, you
must either remove your 'BNDL' resource from the Desktop file
manually using ResEdit (this works, but is not recommended) or
recreate the Desktop file. To do this, hold down the Option and
Command keys while restarting your Macintosh computer. The Finder
will then ask you if you want to rebuild the Desktop file. Remember that
when you do this, you lose all comments you may have entered in the
Get Info windows in the Finder in system software previous to system
software version 7.0. ◆

If you want to move information from one file type to another within the 'BNDL'
resource you can do so by using the commands on the Edit menu. For copying
operations, all necessary information (including the Finder icons) is copied with the file
type. If you clear or cut a file type in the 'BNDL' resource, please note that for safety
reasons the Finder icons are not removed (because good icons are hard to design, it is
generally considered better to waste a few bytes than to delete one accidentally).

If you ever need to tinker with the internal workings of the 'BNDL' resource, you can
edit all information stored in the 'BNDL' and associated 'FREF' resources by choosing
Extended View from the BNDL menu. See Figure 4-19.

Figure 4-19 'BNDL' resource editor, extended view

For historical reasons the third line of the extended view, which displays the contents of
the signature resource, is labeled  String. This is because before the introduction of the
'vers' resource to keep track of version information, the signature resource was used
to store such information. Today the Finder ignores the contents of the signature

C H A P T E R 4

Other Resource Editors

60 'clut' and 'pltt' Resources

resource unless the 'vers' resources are missing. In that case the Finder displays the
contents in its Get Info window. The 'vers' resource and its editor are described in
detail in this chapter.

'clut' and 'pltt' Resources 4

The 'clut' (color look-up table) and 'pltt' (palette) resources are used to store color
and gray-scale information. They are largely interchangeable, but the 'pltt' resource
type contains usage information in addition to the information contained in a corre-
sponding 'clut' resource. Palettes are associated with windows. For more information,
see the Palette Manager and Color Manager chapters in Inside Macintosh, Volume V.
ResEdit 2.1 includes an editor for 'clut' and 'pltt' resources, shown in its 'clut'
version in Figure 4-20.

Figure 4-20 'clut' resource editor

If you click any color patch, the editor draws a marquee around it to indicate that it is
selected. Shift-click to make an extended selection. When a single color patch is selected,
you can change its value by typing new numbers into the boxes labeled Red, Green, and
Blue at the bottom of the editing window, or by clicking the up or down arrows.

The arrows change the indicated value by the amount shown but cannot create a value
that is greater than 65535 or less than 0. For example, if the change size is set to 500 and
you attempt to decrease a value that is already less than 500 by clicking the correspond-
ing down arrow, the value is set to 0. The default change size is 500, as shown in
Figure 4-20.

To create a new color patch, choose Insert New Color from the Resource menu or press
Command-K. To remove a color patch you must use Cut or Clear, because the Delete key
changes only the contents of the labeled boxes.

C H A P T E R 4

Other Resource Editors

'clut' and 'pltt' Resources 61

Figure 4-21 clut menu

The clut menu, shown in Figure 4-21, contains the following commands:

Blend Generates a ramp, or blend, between the endpoints of a selected range of
colors. If only three color patches are selected, the middle color will be set
to a value halfway between the extremes. If fewer than three color patches
are selected, this command is dimmed and cannot be used.

Complement Changes the values of selected colors to the values of their complements.

Load Colors…
Brings up a dialog box that allows you to load colors and gray levels from
the available palettes and color look-up tables. These include the standard
8-bit (256-color) set, the standard 4-bit set, black-and-white, Apple’s
recommended colors for icons, and any others that are available in the
ResEdit Preferences file or in any other files you have open. Using this
command replaces the current colors with the new ones.

RGB Model

CMY Model

HSB Model

HLS Model These commands allow you to select from one of four models for
handling colors. The models are:

RGB: Red/Green/Blue
CMY: Cyan/Magenta/Yellow
HSB: Hue/Saturation/Brightness
HLS: Hue/Lightness/Saturation

RGB is the default model.

The pltt menu is identical to the clut menu except that it includes a Usage command that
brings up a dialog box in which you can specify usage information for the particular
'pltt' resource.

The Sort menu (not shown) allows you to sort by any of the three criteria of the current
model. That is, if you are using the RGB model, it lets you sort by amount of red, green,
or blue.

The Background menu (not shown) lets you choose white, gray, or black as the back-
ground color of the area of the editing window having no color patches, including the
border around the patches.i).‘editors: 'clut'’;

C H A P T E R 4

Other Resource Editors

62 'INTL', 'itl0', and 'itl1' Resources

'INTL', 'itl0', and 'itl1' Resources 4

The 'INTL' resource combines the functionality of the 'itl0' and 'itl1' resources.
That is, 'INTL' “US” ID = 0 is the same as 'itl0' “US” ID = 0, and 'INTL' “US” ID =
1 is the same as 'itl1' “US” ID = 0. These resources are used in international localiza-
tion. For further information, see Inside Macintosh, Volume V, Chapter 16. Each of these
resources (whether you edit them as 'INTL' or as 'itl0' and 'itl1') is shown as a
window with a set of boxes to be filled in and some buttons that can be clicked.
Figures 4-22 and 4-23 show the windows for 'itl0' and 'itl1' resources.

Figure 4-22 Editing an 'itl0' resource

Figure 4-23 Editing an 'itl1' resource

C H A P T E R 4

Other Resource Editors

'KCHR' Resources 63

'KCHR' Resources 4

The 'KCHR' resource controls keyboard mapping. The main 'KCHR' editing screen is
shown in Figure 4-24, with the Command and Shift keys pressed; the dead-key editor
is shown in Figure 4-25. Appendix A contains an in-depth discussion of the 'KCHR'
resource itself, and a short section of 'KCHR' questions and answers appears in
Chapter 6.

Figure 4-24 Editing a 'KCHR' resource

The Main 'KCHR' Editor 4
The display for the main 'KCHR' editor (Figure 4-24) is divided into five parts, which
are described in the sections that follow.

The Character Chart 4

The character chart is the large rectangle at the upper-left corner of the display.

This chart shows the 256 characters that make up the currently selected font. It displays
the character generated by the currently pressed key, by highlighting it. You can also
display a character by clicking with the mouse in either the keyboard region or the
virtual keycode chart. These characters can be assigned to keys on the keyboard. To

C H A P T E R 4

Other Resource Editors

64 'KCHR' Resources

assign a character to a key, drag the character either to a keycap in the keyboard region
or to the virtual keycode chart. You cannot assign characters to the Command, Option,
Shift, Caps Lock, Control, Return, or Enter keys.

The Table Chart 4

The table chart is at the upper-right corner of the display.

The Shift, Caps Lock, Option, Command, and Control keys are considered to be modifiers.
No combination of modifier keys generates a character code unless some other key is
also pressed. The table chart shows which table is used by the currently depressed
modifier key combination.

Please note that although there are 256 possible combinations of modifier keys, most
versions of the 'KCHR' resource use only 8 tables, and very few ever use more than 16.
This is because similar modifier key combinations are frequently mapped to the same
table. For example, in the U.S. 'KCHR' resource, all combinations involving the Control
key point to Table 6. Also, the Caps Lock and Shift combination points to Table 1 (which
is pointed to by the Shift key) rather than Table 2 (which is pointed to by the Caps Lock
key on its own).

To change the table used by a modifier key combination, press that combination of
modifier keys and click a different table. The mapping is changed by the editor. This
feature is probably of very little use, and the information is included here for
completeness. Here is a listing of the tables as they are pointed to by various modifier
key combinations in the U.S. 'KCHR', as supplied:

■ Table 0 is shown when none of the modifier keys is pressed, or when the Command
key or Command and Shift keys are pressed.

■ Table 1 is shown when the Shift key or Caps Lock and Shift keys are pressed.

■ Table 2 is shown when the Caps Lock key is pressed.

■ Table 3 is shown when the Option key is pressed.

■ Table 4 is shown when the Shift and Option keys are pressed.

■ Table 5 is shown when the Caps Lock and Option keys are pressed.

■ Table 6 is shown when the Option and Command keys are pressed.

■ Table 7 is shown when the Control key (and any other keys) are pressed.

The Virtual Keycode Chart 4

The virtual keycode chart is at the top of the display, slightly to the right of center.

This chart shows all 128 keycodes in the current table and highlights the keycode that is
generated if you press a particular key with the current modifier key combination. These
keycodes come from the keyboard and are virtual in the sense that further translation
has to take place before a Macintosh character set number results and a character can be
displayed.

C H A P T E R 4

Other Resource Editors

'KCHR' Resources 65

The Keyboard Region 4

The keyboard region occupies the bottom of the display, below the character chart and
the virtual keycode chart.

This area reflects a particular keyboard layout. You can choose a different keyboard for
displaying the virtual keycodes by using the View As command on the KCHR menu.
The Apple


 Extended Keyboard and Extended Keyboard II have two sets of modifier

keys, and you can use the Uncouple Modifier Keys command, also on the KCHR menu,
to get access to the alternate modifier keys (the ones on the right side of the keyboard,
which are usually coupled with the ones on the left side). If you do not have the Apple
Extended Keyboard or Extended Keyboard II connected to your Macintosh, you cannot
choose the Uncouple Modifier Keys command.

Note that the modifier keys shown in the keyboard picture have a gray border. This
border has two purposes:

■ It reminds you that you cannot drag a character from the character chart onto a
modifier key.

■ It helps you find the modifier keys in the virtual keycode chart. (They have a gray
border there, too.)

Note also that if you press the Option key, some keys in the display are shown with solid
black borders. These are “dead” keys. If you click a dead key, the special editor for dead
keys is invoked. For more information on editing dead keys, see “Editing Dead Keys,”
later in this chapter.

The Information Region 4

The information region is at the right edge of the display, below the table chart.

This small box shows you the current character code and virtual keycode (if there are
any), both in hexadecimal form.

Editing Dead Keys 4
Some combinations of keys do not immediately specify a character. Because nothing
appears on the screen and the cursor does not move when these combinations are
pressed, they are called dead keys. They act to modify the next key that is pressed after
the dead key is released. The special editor for dead keys is shown in Figure 4-25.

C H A P T E R 4

Other Resource Editors

66 'KCHR' Resources

Figure 4-25 Editing a dead key

The Dead-Key Editor 4
The display for the dead-key editor is divided into five functional sections.

The Character Chart 4

The character chart is on the left side of the editing window.

This chart displays the character codes and is used to assign a different character code to
either a completion character, a substitution character, or the nomatch character; you
assign a code by dragging the character to its new location. If you drag a character to one
of the empty slots (displayed in gray) in the completion and substitution character pair
list, you automatically add a new pair.

The Nomatch Character 4

If the character typed after the dead key doesn’t fit, a nomatch character is displayed,
followed by the character you have typed. For example, Option-E must be followed by a
vowel; it doesn’t make much sense to put an accent mark on a k. The nomatch character
for the current dead key is shown in the upper-right corner of the window.

The Completion and Substitution Character Pair List 4

The completion and substitution pair list is just to the right of the character chart.

This list shows the translation rules for the dead key that is currently selected. There are
two columns, allowing for a total of 32 dead keys. The left half of each column shows all
completion characters; the right half shows all substitution characters. If the character
typed after the dead key is one of the completion characters, the matching substitution
character is actually produced. For example, pressing Option-e and then e produces the
character é.

C H A P T E R 4

Other Resource Editors

'KCHR' Resources 67

The Trash 4

To remove a completion/substitution character pair, just drag either character from that
pair in the completion/substitution pair list to the Trash icon in the lower-right corner of
the window.

The Information Region 4

The information region is on the right edge of the window, and contains the word Char:.

This area contains the character code in hexadecimal form whenever you click one of the
other parts of the editor.

The Menus 4
The 'KCHR' editor has three menus: KCHR, Font, and Size.

The KCHR Menu 4

This menu is shown in Figure 4-26.

Figure 4-26 The KCHR menu

The KCHR menu contains the following commands:

View As... If you have the Key Layout file (which has been part of the system
software since version 4.2) in your System Folder, you’ll be presented
with a list of keyboards to be used for displaying the virtual keycodes.
Note that you are not changing the layout of a particular keyboard, but
the 'KCHR' resource that is used by all keyboards and is based on the ISO
(International Standards Organization) Apple Desktop Bus (ADB)
keyboard.

Uncouple Modifier Keys
This command is enabled when you have an ADB extended keyboard
connected to your computer. It can be used to uncouple the right modifier
keys (see the note immediately following) and thus edit the tables used
by them. Please note that the 'KCHR' editor automatically recouples
them whenever you bring another window to the front or close the editor.

C H A P T E R 4

Other Resource Editors

68 'KCHR' Resources

Note
When you choose the Uncouple Modifier Keys command, you must also
use the View As command to set the current keyboard to a keyboard
that supports uncoupled modifier keys. To avoid confusion, and because
not all keyboards support this decoupling, it is recommended that you
not make use of this command. ◆

New Table Creates a new empty table.

Duplicate Table
Creates an identical copy of the current table.

Remove Unused Tables
Looks for tables that are not used by any modifer key combination, and
removes them.

Remove Duplicate Tables
Checks for tables that are identical, reassigns modifier key combinations
as necessary to one table, and removes any duplicates.

Edit Dead Key...
Displays a dialog box (see Figure 4-27) containing a list of all dead keys
and lets you select one to edit. Note that there is a shortcut to edit dead
keys: You can either click a dead key on the screen, or press the dead key
on the keyboard. In either case the dead-key editor will automatically
appear.

Figure 4-27 Dead Key Edit Dialog Box

Convert To Dead Key
Whenever you hold down a key with any combination of modifier keys
and choose this menu command, the key will be converted to a dead key.
You can then use the Edit dead key command to define all valid
completion and substitution characters for the new dead key.

Remove Dead Key
This command is enabled only when a dead-key window is open. It
removes the dead key currently being edited from the dead-key list,
converting it into a live key in the process.

The Font Menu 4

This menu lets you choose a font for displaying the characters in the editor’s window.

C H A P T E R 4

Other Resource Editors

'MENU' Resources 69

The Size Menu 4

This menu lets you choose a size for the characters displayed in the editor’s window. All
characters in the window are automatically resized.

Note
If you are editing 'KCHR' resources on a Macintosh SE, Macintosh Plus,
or Macintosh 512K enhanced, the 'KCHR' editor automatically sets the
size to 9 points so that the editing window fits on the screen. ◆

'MENU' Resources 4

Menus are an important part of the Macintosh user interface and are found in all
applications and many desk accessories. They are stored in resources of types 'MENU'
(regular menus), 'cmnu' (MacApp temporary menus; these are converted into 'MENU'
resources by PostRez during the MacApp build process, so you will never find one in an
application), 'CMNU' (MacApp permanent menus; these will be supported in future
versions of MacApp), and 'mctb' (menu color tables for any of the preceding types).
The 'cmnu' and 'CMNU' types differ from regular menus in that they have an addi-
tional command number field stored for each item in the menu. ResEdit 2.1 supports
editing of all these menu resource types with a new editor that automatically integrates
the color information stored in the 'mctb' resources and thereby allows editing of
menus in color. See the inside front cover for a color illustration of menu editing.

The display of the menu editor, shown in Figure 4-28, is divided into two sections. The
left side shows the entire menu, and the right side displays detailed information about
the item selected on the left side. To accommodate menus with many items, the box on
the left side has a scroll bar.

Figure 4-28 'MENU' resource editor

C H A P T E R 4

Other Resource Editors

70 'MENU' Resources

If the title of the menu is selected, the editor not only allows you to change the title but
also displays some information about the entire menu. You can enable or disable the
entire menu and also select colors for the menu’s title, for the item text default, and for
the menu background. On machines capable of displaying color, the color patches are
pop-up menus that let you choose a color from a palette corresponding to the pixel-
depth of the deepest device intersecting the window. Should you want or need to enter a
color in RGB values, you can choose Use Color Picker from the MENU menu and set the
color using the standard color picker. On monochrome machines the color picker is
opened whenever you click the color patch, because a palette cannot be displayed
adequately. Since the Apple character can’t easily be generated on some keyboards, there
is also a convenient radio button to make the menu title the Apple character instead of
text entered in the box. If you do enter the Apple character, the editor automatically
selects the radio button. In some typefaces there are two Apple characters, only one of
which causes the editor to select the radio button. You can enter it by typing Control-T.
The other Apple is Option-Shift-K.

When you create a new menu, there are no items to select in order to start the editing
process. You can choose Create New Item from the Resource menu, type Command-K, or
press the Return key.

When you choose an individual menu item, the display changes to the one shown in
Figure 4-29. You can either edit the text of the item directly or you can use the radio
button to make the item a separation line (which you can also do by entering a hyphen
in the text box). You can use the Style menu to select a different style (bold, italic, and so
on) for each item, and you can enable or disable the item with the checkbox in the
upper-right corner. For each item you can assign a Command-key equivalent (the Menu
Manager is not case sensitive, so for esthetic reasons and consistency you should use
only uppercase characters) and an item mark, which you can choose from an extensible
pop-up menu shown in Figure 4-30. Both the Command-key equivalent and the Mark
character can be displayed in color. If you want to do that, select a color from the
corresponding color palette pop-up menus.

Figure 4-29 'MENU' line item edit

C H A P T E R 4

Other Resource Editors

'MENU' Resources 71

Figure 4-30 'MENU' Mark pop-up menu

To make an important item look unique, you can put an icon in front of the item’s text.
Use the Choose Icon command from the MENU menu to get the dialog box shown in
Figure 4-31.

Figure 4-31 'MENU' Icon Chooser dialog box

Because of Menu Manager restrictions, the icon’s ID must be in the range of 257 to 511 in
order for it to be used in a menu. All other icons are displayed in gray. If a regular item
seems to be too large for your menu, you can select the Reduced Icons (ICON) radio
button to shrink the icon to a more convenient 16- by 16-pixel size or you can add a
small icon (resource type 'SICN') instead of a regular one. If you later want to remove
the icon from an item, choose Remove Icon from the MENU menu. So that the window

C H A P T E R 4

Other Resource Editors

72 'MENU' Resources

will not appear cluttered, the menu on the left side of the editing window does not
show icons.

If you want to see how your menu looks in real life, you can try it out at the right edge of
the menu bar. Its title is outlined with a black border to show you that this is not a
regular menu but a sample of the menu you are editing.

Sometimes a menu may become overcrowded with items. That’s when you should start
to think about organizing the items in groups and making the menu hierarchical. The
menu editor helps you create submenus by providing you with the option to turn any
item into a submenu just by clicking a checkbox. To edit the items of the submenu, either
choose Open Submenu from the Resource menu or double-click on the item’s text.

If you happen to edit a 'cmnu' or 'CMNU' resource for inclusion in a MacApp program,
you will notice that an additional field in the item’s display lets you set the command
number for each item. This is shown in Figure 4-32, just to the right of center.

Figure 4-32 Editing a 'cmnu' resource

The menu editor also lets you rearrange the items in your menu. You can either use the
standard commands on the Edit menu, or you can put an item in a new position by
dragging it around in the menu on the left side of the window. As you move the item
around, a black line between items shows you where the item will move if you release
the mouse button.

Selecting colors from the various pop-up palettes actually modifies an 'mctb' resource
(menu color table), which is transparently generated and changed for you. If you want to
get rid of the colors you have set, you can reset the 'mctb' resource by choosing Use
Default Colors from the MENU menu.

The 'MENU' resource has two assigned ID numbers. One of these is the resource ID
number; it is set by getting information on the resource from the picker window or the
editor window. This is the ID number that always appears in the picker window. The
other is the menu ID number; it is set inside the editor and is returned by the Menu
Manager of the Macintosh toolbox in response to MenuSelect and MenuKey calls.

C H A P T E R 4

Other Resource Editors

'TEXT' and 'styl' Resources 73

Keeping these two numbers the same, while not required, avoids confusion, and in fact
they default to the same number. See Chapter 6 for more information.

The corresponding 'MDEF' ID number is almost always 0. This refers to the standard
'MDEF' in the System file, which is generally appropriate. Some menus (palettes, for
example) do, however, need to be drawn differently. These could use separate 'MDEF'
resources and hence would not have 0 in this field. Figure 4-33 shows the 'MENU' and
'MDEF' ID number dialog box.

Figure 4-33 'MENU' ID dialog box

'TEXT' and 'styl' Resources 4

When styled text is copied to the clipboard or stored in a resource file by applications,
the style information pertaining to the text and the text itself are stored in two resources,
one of type 'TEXT', and one of type 'styl'. Previous versions of ResEdit have allowed
template editing of the 'TEXT' resource, but have not allowed access to 'styl'
information. The 'TEXT'/'styl' editor, shown in Figure 4-34, has menus for Font,
Size, and Style, and works much as you would expect a text editor to.

Figure 4-34 'TEXT' and 'styl' editor

C H A P T E R 4

Other Resource Editors

74 'vers' Resources

If you attempt to open a 'styl' resource, the editor is invoked with the associated
'TEXT' resource. A 'styl' resource doesn’t make much sense without some text to
which it can be applied.

'vers' Resources 4

The 'vers' resource is typically part of a Macintosh application but can be found in
any file. It is defined as a general source of version information, but currently displays its
information in the Get Info window displayed by the Finder.

The 'vers' editor is shown in Figure 4-35. The “Version number” is displayed in three
parts, with a fourth “Non-release” part below. The allowable ranges for these numbers
are as follows: main number: 0–99; second part: 0–9; third part: 0–9; fourth part: 0–255.
The editor will reject numbers outside the allowable ranges, even though it appears to
accept and save them; if you close and reopen the resource, they show up as 0. If your
version number has letters in it, you should put the letters only in the short and long
version strings. The Release and Country Code items are pop-up menus. Release allows
you to select from Development, Alpha, Beta, and Final; Country Code is a longer list,
currently containing 54 countries. The short version string should, in general, contain
only the ordinary version number (for example, 2.1a5); the long version string can also
include copyright notices, authors’ names, release dates, and other relevant information.
It is displayed in the Get Info window.

Figure 4-35 Editing a 'vers' resource

C H A P T E R 5

ResEdit Templates 5Figure 5-0
Listing 5-0
Table 5-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

ResEdit Templates

76

Template Characteristics

One generic way of editing a resource is to fill in the fields of a dialog box. The contents
of the dialog box are specified by a template contained, typically, in ResEdit’s own
resource fork or in the ResEdit Preferences file. This chapter discusses template editing
and tells you how to create your own templates.

Template Characteristics 5

If you open an actual resource of any of the types listed in this chapter, you will find
yourself editing in a dialog box, the contents of which are specified by the template of
the same name as that resource type. (For example, the

'LAYO'

 resource, discussed
further in Chapter 6, is controlled by the

'TMPL'

 resource named LAYO in ResEdit.) The
template specifies the format of the resource and also specifies what labels should be put
beside the editText items in the dialog box used for editing the resource.

Note

A template can contain a maximum of 2048 fields. For the purpose of
enumerating, a field is defined as any item that is drawn on the screen.
That is, a label counts as a field, as does a separator, and so on. This
limiting number of 2048 is reached rather easily, particularly in resources
with repeating lists, as for example,

'pltt'

.

◆

The

'TMPL'

 resource inside ResEdit is recursive, in the sense that the contents of each
of these named

'TMPL'

 resources is itself a template. (There is even, of course, one
for

'TMPL'

 itself.) As of late 1990, ResEdit contains

'TMPL'

 resources for these
resource types:

'actb' 'acur' 'ALRT' 'APPL' 'BNDL' 'cctb'

'clut' 'CMDK' 'CMNU' 'cmnu' 'CNTL' 'CTY#'

'dctb' 'DITL' 'DLOG' 'DRVR' 'FBTN' 'fctb'

'FDIR' 'finf' 'fld#' 'FOND' 'FONT' 'FREF'

'FRSV' 'fval' 'FWID' 'GNRL' 'hwin' 'icmt'

'inbb' 'indm' 'infa' 'infs' 'inpk' 'inra'

'insc' 'itlb' 'itlc' 'itlk' 'LAYO' 'MBAR'

'mcky' 'mctb' 'MENU' 'nrct' 'PAPA' 'PICK'

'PICT' 'pltt' 'POST' 'ppat' 'PRC0' 'PRC3'

'PSAP' 'qrsc' 'resf' 'RMAP' 'ROv#' 'RVEW'

'scrn' 'SIGN' 'SIZE' 'STR ' 'STR#' 'TEXT'

'TMPL' 'TOOL' 'vers' 'wctb' 'WIND' 'wstr'

C H A P T E R 5

ResEdit Templates

Editing

77

Editing 5

When you are editing a template, the Tab key moves you forward from field to field
within the template. Shift-Tab moves you backward. Here, however, the term

field

 means
an active area with an editable value in it. Fields are shown on the screen as boxes.

To add a new field to a repeating sequence in a template, select a separator, which is
usually a set of asterisks (*****), and choose Create New Field from the Resource menu.

Some templates control windows or resources that contain rectangles. Some of these
templates will have a Set button that lets you draw a rectangle on the screen to delimit
the resource. The pixel numbers for the rectangle are automatically copied to the appro-
priate fields in the template. There is a Set button in the

'LAYO'

 template, which is
discussed in Chapter 6; another is shown in Figure 5-1.

Values can be entered into numeric fields in either decimal or hexadecimal notation.
You can enter a hexadecimal number into any numeric field by preceding it with a dollar
sign ($).

'PICT' Editing 5

There is a custom editor for

'PICT'

 resources, but it only displays the resources at full
size, and does not permit you to alter them. You can edit

'PICT'

 resources with the
template that exists for them, which is shown in Figure 5-1, by choosing Open Using
Template from the Resource menu. If you click the Set button, you can then draw a
rectangle on the screen to define the size of the picture frame that is used when the
resource is displayed. Otherwise, you can define the size of the frame by entering values
in the fields as you would in any template.

Figure 5-1

The template editor for

'PICT'

C H A P T E R 5

ResEdit Templates

78

Creating New Templates

For other examples of template editing, see the description of the

'STR#'

 resource
template in this chapter and the description of the

'LAYO'

 resource in Chapter 6.

Creating New Templates 5

You can generate templates for your own resource types. These templates, which are
resources of type

'TMPL'

, need not reside within ResEdit. The ResEdit Preferences file
in the System Folder is a good place to keep them.

Template Example 5

The

'TMPL'

 resource inside ResEdit with name STR# is shown in Figure 5-2. It is shown
here as a ready example of what

'TMPL'

 innards look like on the screen.

Figure 5-2

'TMPL'

 definition for type

'STR#'

Figure 5-3 shows the same template being used to edit an actual

'STR#'

 resource.
You can see the correspondence between the items in the

'TMPL'

 resource and the
resulting display.

C H A P T E R 5

ResEdit Templates

Creating New Templates

79

Figure 5-3

'STR#'

 template in use

You can look through the other templates and compare them with the structures of their
corresponding resources to get a feel for how you might define your own resource
template. (If you use MPW, note that these templates are equivalent to the resource type
declarations contained in the {RIncludes} directory—refer also to the DeRez command in
the

MPW Reference,

 and the appropriate chapters of

Inside Macintosh

.)

These are the types you may choose from for your editable data fields:

DBYT, DWRD, DLNG Decimal byte, decimal word, decimal long word

HBYT, HWRD, HLNG Hex byte, hex word, hex long word

AWRD, ALNG Word align, long align

FBYT, FWRD, FLNG Byte fill, word fill, long fill (with 0)

HEXD Hex dump of remaining bytes in resource (This can only be
the last type in a resource.)

PSTR Pascal string (length byte followed by the characters)

LSTR Long string (length long followed by the characters)

WSTR Same as LSTR, but a word rather than a long word

ESTR, OSTR Pascal string padded to even or odd length (needed for
DITL resources)

CSTR C string (characters followed by a null)

ECST, OCST Even-padded C string, or odd-padded C string (padded
with nulls)

BOOL Boolean (two bytes)

C H A P T E R 5

ResEdit Templates

80

Creating New Templates

Note

Scrolling can become extremely slow if a template
contains many BBIT or BOOL items.

◆

ResEdit does the appropriate type checking for you when you put the editing dialog
window away.

The template mechanism is flexible enough to describe a repeating sequence of items
within a resource, as in

'STR#'

,

'DITL'

, and .

'MENU'

 resources. You can also have
repeating sequences within repeating sequences, as in

'BNDL'

 resources. To terminate
a repeating sequence, put the appropriate code in the template as follows:

BBIT Binary bit (There must be 8 or an even multiple of 8 of
these; if fewer than 8 bits are defined, you must include
placeholder bits.)

TNAM Type name (four characters, like OSType and ResType)

CHAR A single character

RECT An 8-byte rectangle

H

nnn

A 3-digit hex number; displays

nnn

 bytes in hex format

C

nnn

A C string that is

nnn

 hex bytes long (The last byte is
always a 0, so the string itself occupies the first

nnn

-1 bytes.)

P0

nn

A Pascal string that is

nn

 hex bytes long (The length byte
is not included in

nn,

 so the string occupies the entire
specified length.)

LSTZ

LSTE

List Zero–List End.

 Terminated by a 0 byte (as in

'MENU'

resources).

ZCNT

LSTC

LSTE

Zero Count/List Count–List End.

 Terminated by a zero-based
word count that starts the sequence (as in

'DITL'

 resources).

OCNT

LSTC

LSTE

One Count/List Count–List End.

 Terminated by a one-based
word count that starts the sequence (as in

'STR#'

 resources).

LSTB

LSTE

List Begin–List End.

 Ends at the end of the resource. (As in

'acur'

 and

'APPL'

 resources.)

C H A P T E R 5

ResEdit Templates

Creating New Templates

81

The LSTB (list-begin) code begins the repeating sequence of items, and the LSTE code is
the end. Labels for these codes are usually set to the string "*****". Both of these codes are
required. It is generally advisable to keep the beginning and ending labels identical to
each other and to have them be no more than five characters long.

Your template does not have to be inside ResEdit; it can be in any open file. (The pre-
ferred location is the ResEdit Preferences file in your System Folder.) Note that if more
than one currently open file contains a template for your resource type, the one in the
most recently opened file is used when you edit resources of your type. To create a
template, follow these steps:

1. Open the file into which you want to put your template.

2. Open the

'TMPL'

 type window. (If no resources of type

'TMPL'

 exist in the file,
choosing Create New Resource from the Resource Menu in the File window opens
both the picker and the editor, eliminating step 3.)

3. Choose Create New Resource from the Resource menu.

4. Select the (1)*****) list separator by clicking it.

5. Choose Insert New Field(s) from the Resource menu. You may now begin entering the
label, type pairs that define the template. Before closing the template editing window,
choose Get Info from the Resource menu and set the name of the template to the
four-character name of your resource type.

6. Close the file window and save changes.

The next time you try to edit or create a resource of the new type, you’ll get the dialog
box in the format you have specified.

C H A P T E R 6

ResEdit Tips 6Figure 6-0
Listing 6-0
Table 6-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

ResEdit Tips

84

Hints and Kinks

As with any other utility, ResEdit takes some getting used to. This chapter presents a few
handy tips and a few “hints and kinks” to help you become more comfortable with the
capabilities of the program.

Hints and Kinks 6

Some of the examples and suggestions given here are oversimplified to help new users
of ResEdit and users who may not be fully familiar with the user interface of the
Macintosh computer.

■

At the risk of being slightly repetitive, and because these things can be important, it is
suggested once again that you edit resources in a copy of your target file, rather than
in the original.

■

If you choose Get Info for ResEdit (from the Finder), you will find that Application
Memory Size is set to 500K. If you are editing large resources 500K is not sufficient,
and you should give ResEdit more memory.

■

The following sequence of steps can be used to copy a

'PICT'

 resource from most
drawing or painting programs into another file:
1. Open the file that contains the graphic you want to turn into a

'PICT'

 resource.
2. Select and copy the part of the graphic you want.
3. Start ResEdit and open the file you want to store the

'PICT'

 resource in.
4. Open the

'PICT'

 picker for that file (if the file already has

'PICT'

 resources in it)
by double-clicking the

'PICT'

 type or by clicking the

'PICT'

 type and choosing
Open

'PICT'

 Picker from the Resource menu. If the file does not already contain
the

'PICT'

 resource type, create one, which opens the picker and the editor. Close
the editor and delete the new resource to get an empty (but open) picker.

5. Choose Paste from the Edit menu or use the Command-V key combination.
If you paste with the file window open instead of the

'PICT'

 picker window, you
will get both the

'PICT'

 and the application’s private resource type (for example,

'MDPL'

 if your

'PICT'

 is from MacDraw).

■

To add a picture to a

'DLOG'

 resource:
1. Get a picture. Add it to the

'PICT'

 resources in your file. (See the previous tip.)
2. Choose the Get Resource Info command from the Resource menu.
3. Choose Copy from the Edit menu to put the ID number of the new

'PICT'

 in
the scrap.

(Instead of steps 2, 3, and 7 here, you can read the ID number from the screen when
you copy the

'PICT'

 resource, and type it into the

'DITL'

 item yourself. ResEdit 2.1
displays the ID number of each

'PICT'

 resource.)
4. Go to the

'DITL'

 resource that belongs to the

'DLOG'

 resource you are adding the
picture to.

5. Drag a

'PICT'

 from the palette.
6. Choose Open as Dialog Item from the Resource menu or press the Return key. This

invokes the Dialog Item editor.

C H A P T E R 6

ResEdit Tips

Hints and Kinks

85

7. Paste the ID number from the scrap.
8. Close the Dialog Item editor.
9. Choose Use Item’s Rectangle from the DITL menu.

10. Position the picture by dragging it.

■

When you make your own template resources, you may want them to display your
own icon instead of the question mark that ResEdit ordinarily displays. Here’s how
you do it:
1. Get or make an icon, of resource type

'ICON'

 for black and white or of resource
type

'icl4'

 if you want it to display in color.
2. Put it into the ResEdit Preferences file and give it the same name as your

'TMPL'

resource.

■

If you are using any of the bit editors and you make a selection with the marquee and
then cut or copy it, you can paste it into either a file window or the

'PICT'

 picker as
a

'PICT'

 resource.

■

There are keyboard equivalents for many operations you would ordinarily perform
with the mouse. Try selecting a file in the File Open dialog box by typing the first
letter or two, then opening it with the Return key; you can do the same with resource
types, and then with individual resources. (With individual resources, you can type
the ID number or the name.) The arrow keys also work—for example, in a file list, you
can go down the list with the down-arrow key.

■

There is a hidden Change Color command in the bit editors. If you hold down the
Command key and pick a new color, all pixels of the current foreground (or back-
ground) color are changed to the new color.

■

In general, it is a good idea to use the same ID for an

'ALRT'

 or

'DLOG'

 resource and
its associated

'DITL'

 resource, though this practice is not required.

■

Other shortcuts and handy items:

n

In a resource picker: use Option–double-click for the Open Using Hex command.

n

In a resource picker: use Option–Command–double-click for the Open Using
Template command.

n

In the resource picker, Option–Command–Shift–double-click (or Shift–Open Using
Template) displays the template-type dialog box without the list of templates. (You
can enter the template type you want.) If you are operating from a floppy disk, this
can be a fast method.

n

Option-Cut and Option-Copy append the cut or copied item to the scrap. At the
individual item editor level, holding down the Option key does not change the
action of the Cut or Copy command.

n

In the

'DITL'

 editor: use Option–Command–double-click on any resource item to
open it using its normal editor rather than the

'DITL'

 item editor.

n

Command-click in a picker for disjoint selection.

n

Shift-click in a picker to extend a selection. (In a pictorial display such as the one
for

'ICON'

 resources, the selection will extend as a rectangle.)

n

Using Shift–Create New Resource to create a new resource type gives you the “new
type” dialog box without the list of resources. You must, of course, enter the
resource type you want rather than selecting it from the list. If you are operating
from a floppy disk, this can be a fast method.

C H A P T E R 6

ResEdit Tips

86

Hints and Kinks

n

Option-Create New Resource normally creates a new resource and opens it using
the hexadecimal editor. If you are creating a

'ppat'

 or

'ppt#'

 resource, however,
it creates a new relative pattern.

■

If you hold down the Command, Option, and Shift keys while choosing About
ResEdit from the Apple menu, you can toggle a special stress-testing mode (“Pig
mode”). In this mode, ResEdit performs a compact-memory operation and a
purge-memory operation each time it receives an event from the queue, excepting null
events. This feature was designed as an aid to debugging ResEdit itself, and is clearly
something most people will never have any use for. It is suggested that you avoid
invoking this mode unless you are writing an editor and feel a need to stress-test it.

■

Because

'DITL'

 and

'ALRT'

 resources are ordinarily displayed where you put them
in the window, there is some chance that they may be mispositioned. That is, if you
don’t have your code display these resources exactly where you want them, they
could show up where you

don’t

 want them. To be sure that a dialog box shows up
where you want it, mark it as invisible and reposition it exactly in your code. Have
your code mark it visible right after displaying it. (This avoids various
embarrassments.)

■

If you have Color QuickDraw, but you want to be able to open the

'ICN#'

 editor by
double-clicking a resource of type

'ICN#'

 (rather than opening the Finder icon
family editor), you can make a resource of type

'RMAP'

 in the ResEdit Preferences
file. This resource should look like the one shown in Figure 6-1. Notice that the name
of the

'RMAP'

 resource is the name of the resource you will be opening, and the
MapTo field contains the name of the editor you want to invoke. Set the name of the

'RMAP'

 resource as usual, with the Get Resource Info command from the Resource
menu. If you set Editor Only? to 1, the

'RMAP'

 is used for the editor but not for the
template, if one exists.

Figure 6-1

'RMAP'

 resource

■

If you hold down the Option and Command keys and choose About ResEdit from the
Apple menu, you get a list of credits that tells you who has worked on the program.

C H A P T E R 6

ResEdit Tips

Hints and Kinks

87

■

Although under ordinary conditions the menu ID number and the

'MENU'

 resource
ID are kept identical to one another, there is one situation in which you may want to
make them different. If you are using an ordinary debugger to disassemble and walk
through the main event loop of your program, it is convenient to have the Menu
Manager return numbers like 1, 2, 3, 4, and 5 for the menus in your program. You
would therefore set the menu ID fields of your menus to consecutive integers. Then
you might create a

'MBAR'

 resource with ID 128 and list the

'MENU'

 resource IDs of
your menus in it. You need only call

GetNewMBar (128) in your program to install
all of the menus. When you are debugging, a call to MenuSelect (for example)
returns a value of $00030004 if the fourth item in the third menu has been chosen. This
is rather more convenient than seeing $00820004 and having to translate $82 to 130
decimal, and then remembering that 130 was your third menu. If you use a high-level
debugger, this approach is unnecessary.

The 'LAYO' Resource 6
One of the resources inside the Finder is of particular interest, because in system
software release 6 it controls a number of defaults, most of which are part of the layout
of your desktop. It is the 'LAYO' resource. To open the Finder with ResEdit, you must be
running under the Finder itself (rather than under MultiFinder), or you must edit a copy
of the Finder. It is, of course, suggested that you edit a copy. If MultiFinder is running
and you try to open the currently active Finder, you get an error message telling you that
the Finder is already open from another application.

If you are in a risk-taking mood (or if you have done this a few hundred times already
and have become inured to it), boot without MultiFinder, open the Finder, and choose
the 'LAYO' resource type. There is only one 'LAYO' resource, ID number 128. Open it.

The first part of the template is shown in Figure 6-2.

Figure 6-2 'LAYO' template, view 1

C H A P T E R 6

ResEdit Tips

88 Hints and Kinks

The first two items control the display font—that is, the font that prints out under the
icons on your desktop. The default is 9-point Geneva, as shown. If you dislike sans-serif
fonts, you can easily change the first two items to 2 and 9, for New York at 9 points, or to
20 and 10 (or even 12), for Times at 10 or 12 points; the 9-point version of Times is
very small.

The line of numbers labeled Window Rect in Figure 6-3 allows you to specify the default
folder (and disk) window size and location.

Figure 6-3 'LAYO' template, view 2

If you like, you can specify these defaults by clicking the Set button and then drawing a
rectangle on the screen. Please note that if MultiFinder is running when you edit the
'LAYO' resource in a copy of the Finder, and you try to start your rectangle in an area of
the screen that has something other than a ResEdit window in it, you will find yourself
summarily ejected from ResEdit into whatever you have clicked. The cure is straight-
forward: Move a ResEdit window to the area where you want to start drawing your
rectangle before you click the Set button, or use the number fields instead of the Set
button. You can also explicitly set the locations of the seven tab stops the Finder uses for
displaying information about files when you view them by name, date, size, or kind.

A bit further down the template are the numbers that control the placement of the icons
themselves, as shown in Figure 6-4.

C H A P T E R 6

ResEdit Tips

Hints and Kinks 89

Figure 6-4 'LAYO' template, view 3

Some people dislike having icons with long names overlapping and obscuring the names
of other icons. One solution to this problem is to change the value of “Icon Vert. phase”.
Figure 6-4 shows some modified numbers, rather than the defaults supplied with the
system release.

▲ W A R N I N G

Do not set “Icon Vert. phase” to exactly half the value of “Icon Vert.
spacing” unless you like system crashes. ▲

Figure 6-5 shows some unused bits and three commands, the first of which (“Use zoom
Rects”) is on by default. If you set it to FALSE, the Finder will open and close windows
slightly faster, because it won’t use its “zoom” visual effect.

Figure 6-5 'LAYO' template, view 4

C H A P T E R 6

ResEdit Tips

90 Hints and Kinks

“Skip trash warnings” prevents the system from asking whether you really want to
throw away applications or System files. Because you can avoid the warning by holding
down the Option key when you throw things into the Trash, this seems a bit extreme.
Moreover, it can be quite dangerous, depending on what you tend to throw out and how
attentive you are about it.

If you don’t like having to clean up your windows, try turning on “Always grid drags”.
This option makes the icons stick in place at the grid spacing specified in the part of the
template shown in Figure 6-4. Some people prefer to be able to put them anywhere and
therefore eschew this option.

The Watch Thresh setting (not visible in any of the figures) allows you to adjust how
long the Finder will wait during lengthy operations such as file copying before it
displays a wristwatch icon with animated hands. The time is expressed in 60ths of a
second. If you make it too short, the cursor will jitter and change shape too often. Some
older Finders do not make use of this option.

Figure 6-6 shows a few more unused bits and the end of the template.

Figure 6-6 'LAYO' template, view 5

Use Phys Icon is handy if you have a Macintosh II or Macintosh SE with two floppy disk
drives. If this option is on, the icon you get when you insert a floppy disk into your
machine indicates which drive the floppy disk is in. The disk location is certainly easy
enough to recall just after you put the disk in, but you may forget it later. Knowing
which drive a floppy disk is in may not be a major issue, but is certainly a pleasant
convenience. This option also includes distinctive icons for an external hard disk and a
CD-ROM drive.

Title Click lets you double-click the title bar of a folder’s window to bring the parent
folder’s window to the front (or to open it if it is not already open). This feature can be
quite handy.

When you create folders on an AppleShare


 server, New Fold Inherit causes them to get
their privileges from the parent folder, and when you duplicate existing folders on an

C H A P T E R 6

ResEdit Tips

Hints and Kinks 91

AppleTalk


 server, Copy Inherit causes the copies to inherit their privileges from the
originals.

The “Max # of windows” field allows you to set the maximum number of windows the
Finder can have open at any one time. Increasing this number causes the Finder to need
more memory. Under MultiFinder, you may have to increase the memory allocation for
the Finder if you make this number much larger than the default.

Some of the items in the 'LAYO' template have not been discussed here. Of these, some
are not yet in use, and are so marked. Others are either arcane or self-evident.

'KCHR' Questions and Answers 6
■ How do I change the character generated by Shift-e?

Shift-e normally generates a capital E character. To make this key combination
generate a different character, simply hold down the Shift key and use the mouse to
drag a character from the character chart to the e key on the keyboard.
You will notice that when you press the Shift key, the table that is highlighted in
the table list changes. (For most key layouts, the highlight switches from Table 0 to
Table 1.) This change shows you that any character changes you make will be made
in the highlighted table. When you make Shift-e generate a different character, you
are changing every modifier key combination that uses the highlighted table. For
example, if Option-Shift used the same table as Shift, you would also have changed
the character generated by Option-Shift-e.

■ How do I change the behavior of a modifier key combination?
For example, suppose you wanted Option-Shift-a to generate a different character
from that generated by Option-Command-Shift-a. If you hold down the Option and
Shift keys and then press and release the Command key, you will notice that (for most
key layouts) the highlighted table does not change. If you want these two modifier
key combinations to be different, you need to create a new table for one of them. To do
this, you can use either the New Table command or the Duplicate Table command
from the KCHR menu. If you want to create only a few differences, you should use
the Duplicate Table command. In our example, we want only Option-Command-
Shift-a to be different, so we would do the following:
1. Press and hold down the Option, Command, and Shift keys.
2. Choose Duplicate Table from the KCHR menu.
3. Select the new table that was added to the end of the list (while still holding down

the modifier keys).
4. Choose OK in the alert box that appears.
5. Drag the character from the character chart to the key that you want to change

(while still holding down all of the modifier keys).

■ How do I remove a table that is no longer being used?
If you have reassigned a modifier key combination so that a table is no longer used,
you can remove the table by choosing “Remove unused tables” from the KCHR
menu. If there are unused or duplicate tables present when you close the editor, you
will be asked whether they should be removed.

C H A P T E R 6

ResEdit Tips

92 Hints and Kinks

■ How do I create a dead key?
You can create a dead key (such as Option-e in most key layouts) by choosing
“Convert to dead key” from the KCHR menu while holding down the key. For
example, follow these steps to make Option-k into a dead key:
1. Press and hold down the Option and k keys.
2. Choose “Convert to dead key” from the KCHR menu.
3. Release the keys.
4. Once again, press Option and k to activate the dead-key editor.

■ How do I remove a dead key?
Follow these steps:
1. Select the dead key to display the dead-key editor.
2. Choose “Remove dead key” from the KCHR menu.

■ How do I create a new completion/substitution pair in the dead-key editor?
When the dead-key editor is active, you can drag characters from the character chart
to the completion/substitution pair list. The character on the left in the list is the
completion character, and the character on the right is the substitution character. For
example, Option-E followed by Shift-E produces the É character.

■ How do I delete a completion/substitution pair in the dead-key editor?
To delete a completion/substitution pair, drag either character from that pair in the
completion/substitution pair list to the Trash in the lower-right corner of the window.

C H A P T E R 7

The Programmatic Interface 7Figure 7-0
Listing 7-0
Table 7-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 7

The Programmatic Interface

94

Pickers and Editors

You may want to create and edit your own types of resources. You can write pickers and
editors as extensions to ResEdit in Pascal or C, and put them in the ResEdit Preferences
file in your System Folder. This chapter describes this process and discusses necessary
and optional functions and procedures.

Pickers and Editors 7

Pickers and editors are separate from ResEdit’s main code and therefore may be
supplied by user-written software.

The

picker

 is given the resource type information and should display all resources of that
type in the current resource file, using a suitable display format. If the picker is given an
Open call and there is a suitable editor, it should launch that editor. You need not supply
your own picker; if a custom picker is not available, the standard picker is used to show
a list of resources with their names and IDs.

The

editor

 is the code that displays and lets you edit a particular resource. The editor is
given a handle to the resource object and should open an edit window for you.

Code-Containing Resources in the ResEdit Release 7

ResEdit includes three different types of resources that contain code. Much of the code is
in the normal

'CODE'

 resources. The editors and pickers are found in the

'RSSC'

resources, and the LDEF (or list definition) procedures are found in the

'LDEF'

 resources.
The resource names of the pickers and editors are very important. The resource name of
the

'RSSC'

 resource for a picker should be the resource type that the picker will pick. The
resource name for an editor should be the resource type that the editor will edit, with a
commercial “at” sign (@) in front of it.

Subeditors

 (described in the section “Routines
used to start pickers and editors” later in this chapter) should have a dollar sign ($) in
front of the resource type name. For example, the

'DITL'

 picker can be found in an

'RSSC'

 resource with the name DITL. The

'DITL'

 editor can be found in an

'RSSC'

resource with the name @DITL, and the

'DITL'

 subeditor in an

'RSSC'

 resource with
the name $DITL.

Samples 7

A sample resource editor, picker, and LDEF are included with ResEdit. The samples are
provided in both C and Pascal and use the MPW 3.2 environment, the MPW C or Pascal
Compiler, and the MPW Assembler. The appropriate build files and makefiles are
also provided.

C H A P T E R 7

The Programmatic Interface

Code-Containing Resources in the ResEdit Release

95

Sample Editor 7

A sample ResEdit editor is provided in the file XXXX.Edit. In this sample,

XXXX

represents your resource type. The sample editor will simply display a window and
invert its contents. Since the details of editing your resource are known only to you, it
is up to you to fill in the code necessary to make this sample into a real editor.

The sample editor is initialized by means of the

EditBirth

 procedure when a resource
of type XXXX must be edited.

EditBirth

 is passed two handles: a handle to the
resource to be edited (the same handle that would be received by using a

GetResource

call) and a handle back to the picker that launched the editor.

The editor then creates a window and sets up any data structures needed to operate.
Because it may be loaded in and out of memory during any given session and because
it doesn’t have access to global variables, it creates a handle to a data structure to hold
all data that needs to be preserved between calls. Note that the handle to the edit data
structure is stored in the window’s

refCon

 parameter. ResEdit uses this data structure
to identify which editor or picker is to receive a given event.

ResEdit determines which editor should receive which events, so you need to worry
only about events that affect your editor. During an update event, the

BeginUpdate

and

EndUpdate

 calls are done by ResEdit, not by the extension program.

Sample Picker 7

A sample ResEdit picker is provided in the file ICON.Pick. The sample picker is an

'ICON'

 picker. The

'ICON'

 LDEF (in the file ICON.LDEF) is included with this
example so that you can see the interaction between a picker and its LDEF. ResEdit
normally uses a

'PICK'

 resource for the

'ICON'

 picker. If you want to try the example
picker you will have to delete the

'PICK'

 resource named “ICON” from ResEdit.

Sample LDEF 7

A sample ResEdit LDEF is provided in the file ICON.LDEF. An LDEF is a list definition
procedure used to customize the way the List Manager draws and highlights cells. For
more information, see

Inside Macintosh

, Volume IV, Chapter 30, and

Technical Introduction
to the Macintosh Family

, Chapter 3. In ResEdit, LDEFs are used to customize the look of
the picker windows. LDEFs are generally very simple procedures that draw or highlight
a single cell of a list. The sample LDEF is the

'ICON'

 LDEF from ResEdit. This LDEF is
used to display a file’s icons.

Building the Examples 7

You can build the examples by using the build scripts provided in the folder appropriate
to the language that you are using. The build scripts assume that ResEdit and the
Examples folder will be found in the directory {boot}ResEdit:. If these files are located
elsewhere, the build script files should be modified accordingly.

If ResEdit is successfully located, the makefile instructions will install the editor, picker,
and LDEFs directly into ResEdit. When you experiment with changing any of these files,

C H A P T E R 7

The Programmatic Interface

96

Using ResEd

you may want to do your build into a duplicate copy of ResEdit rather than your
original. If anything goes wrong, you can easily make a fresh duplicate of ResEdit to
continue your experiments.

Using ResEd 7

The program you write must be a Pascal unit or C header file and library. Its interface
with ResEdit is established by the MPW unit ResEd, contained in the file ResEd.p or
ResEd.h. If your unit is written in Pascal, it must begin with a

USES

 declaration for
this unit.

The assembly-language code that “opens up” ResEdit and activates your program is
contained in the file RSSC.a. It must be linked with your Pascal or C module. When
you open a resource of your type, ResEdit will call this code.

If your build script does not automatically install your editor or picker, place it in
ResEdit’s file by using ResEdit itself, with the type

'RSSC'

 and a unique ID number.
Please use an ID number between 2500 and 3000 to avoid future conflicts. Use a range of
ten numbers, starting with the number that is ten times your editor’s ID number for
other resources, such as

'DLOG'

 or

'MENU'

. For example, if your editor has ID 2560,
your

'DLOG'

 should have ID 25600. Your editor’s name in the ResEdit file must be of the
form @ABCD, where

ABCD

 is the name you have assigned to the new type it edits.
Install your picker (also of type

'RSSC'

) with the name ABCD (without the commercial
“at” sign).

Writing a ResEdit Extension 7

Here are two things to remember when writing a ResEdit extension:

■

Always know which resource you are requesting and where it will come from. The
ResEdit Preferences file is always the current resource file. This avoids inadvertently
loading resources from the file being edited. (For example,

GetNewDialog

 could
load a

'CDEF'

 resource from the file being edited instead of from the System file.)
Always use ResEdit’s versions of the resource manager calls to be sure you get the
resource from the correct file.

■

Your editor may be called with an empty handle in order to create an entirely new
instance of the type you edit.

In all of these procedures, remember to lock any handle that is going to be dereferenced
(for example, in a Pascal

with

 statement). For example, in Pascal, the first instructions in
the

DoEvent

 procedure should be

BubbleUp(Handle(object));

HLock(Handle(object));

C H A P T E R 7

The Programmatic Interface

Writing a ResEdit Extension

97

It is important to call the

BubbleUp

 procedure to avoid heap fragmentation. Remember
to unlock the object at the end of the procedure!

If any of these procedures will need access to the current port, especially

EditBirth

,

DoEvent

, and

DoMenu

, call

SetPort (object^^.wind)

if you are writing in Pascal, or

SetPort ((*object)->wind)

if you are writing in C.

ResEdit Menus 7

ResEdit 2.1 guarantees the following conditions when an activate event is received:

File menu All items are enabled.

Edit menu All text is set to default strings except Select All and Select Changed. If a
picker window is being activated, all items are enabled. If an editor or
floating window is being activated, all but duplicate, select all and select
changed are enabled.

Resource menu
All text is set to default strings except Get Resource Info. If a picker
window is being activated, all items are enabled. If an editor or float-
ing window is being activated, only Revert and GetInfo are enabled.

Pickers 7

It’s easy to create a new picker with ResEdit 2.1. All you need is a

'PICK'

 resource
and an

'LDEF'

 to draw and highlight the cells. You can use the

'PICK'

 template to
create a

'PICK'

 resource and create a new

'LDEF'

 using the example code. The

'PICK'

resource contains the same fields that you would normally initialize in the

PickBirth

 procedure before you call

DoPickBirth

. You should put the same values
into the resource that you would store into the

PickRec

 data structure.

ResEdit 2.0 Changes 7

Here’s what you have to do to upgrade an editor to ResEdit 2.0:

■ Change the name field of your parent record from STR64 to STR255.

■ Add AbleMenu for the Resource menu on activate:

AbleMenu (rsrcMenu, rsrcEditor);

C H A P T E R 7

The Programmatic Interface

98 Writing a ResEdit Extension

■ Change AbleMenu for the File menu to

AbleMenu (fileMenu, fileAll);

■ Add PrintItem to the DoMenu procedure:

printItem:

PrintWindow (NIL);

■ In DoMenu, change RevertItem to rsrcRevertItem and GetInfoItem to
rsrcGetInfoItem. Move them from the File menu to the Resource menu.

■ Add the IsThisYours function and be sure to make it public. See the example code
for details.

■ EditorWindSetup now requires a windowKind parameter and a dlogID
parameter; windowKind should be the resource ID of the editor or picker (returned
by ResEdID), and dlogID should be noDialog or the resource ID of a dialog box
to be used for the window.

■ WindOrigin now takes a ParentHandle parameter and requires that the
windowKind field of the argument window be set to the resource ID of the editor.

ResEd Changes for the 2.0 Release 7
Please note these changes:

■ PickRec was changed to remove some unused fields and add other fields for the
View menu.

■ ParentRec was changed to include an STR255 instead of STR64.

■ Menu and string constants were changed.

■ Several procedures have interface changes; these are the new interfaces:

FUNCTION EditorWindSetup (dlogID: INTEGER; colorkind: ColorType;

width, height: INTEGER; VAR windowTitle, windowName:

STR255; addFrom: BOOLEAN; windowKind: INTEGER; father:

ParentHandle): WindowPtr;

PROCEDURE WindOrigin (w: WindowPtr; dad: ParentHandle);

PROCEDURE PickMenu (tossOnClose: BOOLEAN; menu, item: INTEGER;

pick: PickHandle);

C H A P T E R 7

The Programmatic Interface

Writing a ResEdit Extension 99

ResEdit 2.1 changes 7
Here’s the information you need to update an editor from ResEdit 2.0 to ResEdit 2.1:

■ The ParentRec data structure has changed, as have all other derived structures. Five
new fields have been added. You should initialize them as follows:

windowType := editorWindow;

theResType := 'PAT '; { or whatever }

theResFile := HomeResFile (thing); { thing is the res handle

passed to EditBirth }

codeResID := ResEdID;

theResToEdit := thing;

■ You no longer have to start the name saved in ParentRec with an editorNameChr.
the windowType field of ParentRec now indicates that an editor owns the window.

■ The boolean color parameter of EditorWindSetup has changed to a tri-state
colorKind parameter. If you don’t need a color window, change FALSE to noColor.

■ You may no longer need to set and reset the menus when you receive activate and
deactivate events. See the section on ResEdit menus in this chapter.

■ Several procedure names were changed:

NewRes => RENewUniqueRes

AddNewRes => REAddNewRes

BeautifulUnique1ID => REBeautifulUnique1ID

ResEditGet1Resource => REGet1ResourceSpecial

RemoveResource => RERemoveAnyResource

Get1Res => REGet1Resource

Get1Index => REGet1IndResource

■ Several new procedures have been added:

n Window utilities

FloatingWindowSetup

n Extended resource manager

REAddResource

RECount1Resources

RECount1Types

REGet1IndType

REGet1NamedResource

n Routines used to feed events and menus to the appropriate picker or editor

CallDoEvent

PassEvent

C H A P T E R 7

The Programmatic Interface

100 Writing a ResEdit Extension

n Miscellaneous utilities

ChooseIcon

HandleCheck

StandardFilter

n Pop-up menus

DoPopup

DrawPopup

n Internal routines

CompressedResource

DoKeyScan

GetResEditScrapFile

■ The following procedures have been removed:

CurrentRes (use CurResFile instead)
Get1MapEntry

MyCalcMask

ScrapPaste

■ The following changes have been made for pickers:

n PickRec now includes three new fields:

minWindowWidth

minWindowHeight

optionCreateStr

n The following fields have been removed from PickRec:

rNum (replaced by theResFile)

drawProc (was unused)

scroll (was unused)

pickID (replaced by codeResID)

n In most cases, specific pickers are no longer needed, though you still need an LDEF.
A new resource type, 'PICK', specifies everything ResEdit needs to know about a
picker (in 20 bytes!). ResEdit 2.1 includes a template for editing 'PICK' resources.

C H A P T E R 7

The Programmatic Interface

Writing a ResEdit Extension 101

Required Routines 7
Each picker and editor must contain a set of required procedures. Some of these
procedures are appropriate only for editors, and others are appropriate only for pickers,
but all of them must appear in all editors and pickers.

PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle);

This procedure should initialize the editor data structure and create an editor window
for the given resource type. In a picker, this procedure will do nothing and should be
defined as

PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle);

BEGIN

END;

PROCEDURE PickBirth (theType: ResType; dad: ParentHandle);

This procedure should initialize the picker data structure and create a picker window for
the given type. PickBirth is very similar to EditBirth except that it takes a resource
type as a parameter instead of a resource handle. The DoPickBirth procedure can
usually be used to take care of most initialization for a picker. In an editor, this procedure
will do nothing and should be defined as

PROCEDURE PickBirth (theType: ResType; dad: ParentHandle);

BEGIN

END;

PROCEDURE DoEvent(VAR evt: EventRecord; object: ParentHandle);

DoEvent handles all events for the picker or editor. The object parameter can be locally
defined as whatever type is appropriate (such as a PickHandle) instead of the generic
ParentHandle.

Editors will normally handle all of the events (except those described in the next
paragraph) themselves, whereas pickers should simply call PickEvent.

Many events are handled by the main part of the ResEdit code before the DoEvent
procedure is called. For mouse-down events, ResEdit handles the following events:
pulling down menus, dragging windows, switching between windows, and converting
double-clicks to open commands. Update events call BeginUpdate and EndUpdate
around the call to DoEvent. For key-down events, the DoMenu procedure is called if the
Command key was down (unless the key was Return, Enter, or an arrow key); DoEvent
is called otherwise. MultiFinder suspend and resume events are converted into the
appropriate activate or deactivate events.

C H A P T E R 7

The Programmatic Interface

102 The ResEd Interface

PROCEDURE DoInfoUpdate(oldID, newID: INTEGER; object:

ParentHandle);

This procedure is called when information about a resource—for example, its ID
number—is changed in a Get Info window. (See the ShowInfo procedure, discussed
later in this chapter in the section “Miscellaneous Utilities.”) For editors, the
DoInfoUpdate procedure should recalculate the window title and the name stored in
the ParentHandle and pass the update on to its father by using the CallInfoUpdate
procedure as follows:

CallInfoUpdate(oldID, newID, LONGINT(object^^.father),

object^^.father^^.wind^.windowKind);

Pickers should simply call

PickInfoUp (oldID, newID, object);

PROCEDURE DoMenu(menu, item: INTEGER; object: ParentHandle);

DoMenu handles all menu events for the picker or editor. The object parameter can be
locally defined as whatever type is appropriate (such as a PickHandle) instead of the
generic ParentHandle.

The main part of the ResEdit code takes care of several of the menu-handling details. All
selections from the Apple menu are handled so that the editors and pickers do not need
to know anything about desk accessories. All commands in the File menu are also
handled for you. The Quit command displays the Save Changes dialog box and may
pass a Close command to all editors and pickers. If your editor needs to do some
cleaning up before the Quit command completes, it should do so when it receives a
Close or deactivate command. If “no” is chosen in the Save File dialog box, the frontmost
window receives a deactivate event. No events are passed to any other window. When
your editor receives a Close command, it can call CloseNoSave to see whether edit
checking should be performed. If the current file is being closed but the changes are not
being saved, CloseNoSave will return TRUE, and edit checking should not be
performed.

Pickers can simply call

PickMenu (menu, item, object);

The ResEd Interface 7

The ResEd unit contains data structures, procedures, and functions that you can access
from your extension program. They are described in the remainder of this chapter.

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 103

Data Structures 7
The ResEd unit declares the data structures described in this section, which provide
communication between extension programs and ResEdit. Each editor or picker has its
own object handle. The data structure has to start with a handle to its parent’s object,
followed by a unique name. The next field should be the window of the object that may
be used by the child to get back to the father through the refCon in the windowRec
record. The next field is the “rebuild” field, a flag used to indicate that a window’s
data (for example, a picker’s list) must be recalculated at the next opportunity. Next
is a resWasntLoaded flag, which should be set by calling WasItLoaded in the
EditBirth procedure. If the value of resWasntLoaded is FALSE, the resource being
edited should not be released. Next is WindowType, which indicates the type of the
window. The field TheResType is the type of the resource, TheResFile is the file
reference number of the file containing the resource, CodeResID is the ID of the 'RSSC'
resource containing the editor or picker, and TheResToEdit is the resource being
edited. For editors, the rest of the handle can have any format; pickers have additional
data, as described in this chapter. Editors and pickers typically declare additional fields
at the end of the predefined fields and can store in these additional fields global data that
they need to access from the DoEvent, DoInfoUpdate, and DoMenu procedures.

The name (in the ParentRecord) for a picker should be the name of the file. For
editors, the name should be the complete name (not the window’s title). An example
of a complete name is ALRT ID = -1234 from AFile. This name is used as a unique
identifier for a window. The window’s title is created by GetWindowTitle or
EditorWindSetup, described later in this chapter.

Note
It is important for editors and pickers to follow these conventions for
name and window title. For pickers, it is more important that the
window’s title be unique, and for editors, that the name be unique. The
AlreadyOpen procedure uses the window’s name and title to deter-
mine whether the window is open. Please refer to the description of
AlreadyOpen later in this chapter in the section “Window Utilities” for
complete information about how the name and title are used. ◆

The Parent Record 7

Here is the parent record:

PossibleWindowTypes =(typePickerWindow, resourcePickerWindow,

folderInfoWindow, fileInfoWindow,

resourceInfoWindow, editorWindow,

floatingWindow);

ParentPtr = ^ParentRec;

ParentHandle = ^ParentPtr;

C H A P T E R 7

The Programmatic Interface

104 The ResEd Interface

ParentRec = RECORD

father: ParentHandle;

name: str255;

wind: WindowPeek; { Owning window }

rebuild: BOOLEAN; { Flag set when window should

be rebuilt }

resWasntLoaded: BOOLEAN; { TRUE if the resource should

be released when the window

is closed }

windowType: PossibleWindowTypes;

theResType: ResType; { Type of the resource }

theResFile: INTEGER; { Home resfile of the res }

codeResID: INTEGER; { Resource ID of the RSSC

resource containing the

picker or editor }

theResToEdit:Handle;

END;

The Picker Record 7

The record for pickers is slightly different from the standard parent record. The first few
fields are the same as those in the parent record, but several extra fields have been added.

PickPtr = ^PickRec;

PickHandle = ^PickPtr;

ViewTypes = (viewById, viewByName, viewBySize,

 viewByOrder, viewBySpecial);

PickRec = RECORD

father: ParentHandle; { Back ptr to dad }

fName: STR255;

wind: WindowPtr; { Picker window }

rebuild: BOOLEAN;

spare1: BOOLEAN; { Not used here}

windowType: PossibleWindowTypes;

theResType: ResType;{ Type of the resource }

theResFile: INTEGER; { Home resfile of the res }

codeResID: INTEGER; { Resource ID of the RSSC

 resource containing the

 picker or editor }

spare: Handle; { Not used here}

rType: ResType; { Type for picker. }

rSize: LONGINT; { Size of an empty resource }

minWindowWidth: INTEGER; { Used when window is grown }

minWindowHeight: INTEGER;

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 105

instances: ListHandle; { List of instances }

nInsts: INTEGER; { Number of instances }

viewBy: ViewTypes; { Current view type }

showAttributes: BOOLEAN; { Show attrs in window?}

ldefType: ResType; { Which LDEF to use }

theViewMenu: MenuHandle; { The picker view menu }

viewMenuMask: LONGINT; { Which items are enabled? }

cellSize: Cell; { Cell size for special view }

optionCreateStr: STR255; { Create item menu text when

 the option key is pressed }

END;

Other Routines 7
The required routines are called by ResEdit itself. Here are others you can use. These are
called by the editor or picker.

Window Utilities 7

FUNCTION AlreadyOpen (VAR windowTitle, windowName: STR255;

father: ParentHandle): BOOLEAN;

The AlreadyOpen routine checks whether the window is already open. If the window
is open, AlreadyOpen activates it and returns TRUE. The windowTitle and
windowName parameters are as defined in the note immediately below. You don’t need
to call this function if you are using the DoPickBirth, PickerWindSetup, or
EditorWindSetup procedure.

Note
You should call AlreadyOpen to avoid opening the same resource
twice. Correct functioning of AlreadyOpen depends on your setting
windowTitle and windowName correctly. For pickers, the window’s
title must uniquely identify the window. For editors, the name stored in
the parentRec data structure must uniquely identify the window. The
name is used for editors so that the window title can be simple and
short. For example, the window title for a dialog item might be Edit
DITL item #3, whereas its name would be Edit DITL item #3 •
DITL "<resource name>" id = <num> from <filename>. ◆

C H A P T E R 7

The Programmatic Interface

106 The ResEd Interface

FUNCTION EditorWindSetup (dlogID: INTEGER; colorKind: ColorType;

width, height: INTEGER; VAR windowTitle, windowName:

STR255; addFrom: BOOLEAN; windowKind: INTEGER; father:

ParentHandle): WindowPtr;

The EditorWindSetup function should be called by editors from the EditBirth
procedure to set up their windows. The windowTitle, windowName, and addFrom
parameters are passed directly to GetWindowTitle. Refer to the description of
GetWindowTitle for details about these parameters. The windowName parameter is
returned with the string that should be used for the name in ParentRecord. This
routine also takes care of constructing the windowTitle and windowName correctly so
that the window can be uniquely identified. Use the dlogID parameter if you want your
window to be a dialog; for normal windows, pass the constant noDialog. If dlogID is
not set to noDialog, the width and height parameters should be set to 0 if you want to
use the size stored in the 'DLOG' resource. The windowkind parameter is used to
initialize the window. Pass the result of a ResEdID call here. The colorKind parameter
can contain noColor, canColor, or requiresColor. If it’s set to RequiresColor,
the window won’t be activated if color is not available.

Note
NIL is returned if the window can’t be allocated for some reason or if
the window is already allocated (that is, an editor is already open). If
NIL is returned, the EditBirth procedure should be aborted. ◆

FUNCTION FloatingWindowSetup (WINDID: INTEGER;

fw: FloatingWindowHandle;

owner: ParentHandle;

where: Point): WindowPtr;

The FloatingWindowSetup function allocates a floating palette window (for example,
the one used by the 'DITL' editor). The WINDID parameter specifies the resource ID
of a 'WIND' resource that defines the floating window. The FloatingWindowHandle
parameter is the version of ParentHandle used by floating windows. The owner
parameter specifies the editor window that will control the floating window. The where
parameter specifies the location of the new floating window. If where is 0,0 the floating
window will be placed next to the owner window. NIL is returned if the window could
not be created.

PROCEDURE GetWindowTitle (VAR windowTitle, windowName: STR255;

addFrom: BOOLEAN; father: ParentHandle);

The GetWindowTitle procedure constructs the window title and name for an editor.
This routine should always be called in the DoInfoUpdate procedure, and should be
called in the EditBirth procedure if EditorWindSetup is not called. The value in
windowTitle should be used for the window’s title. The addFrom parameter deter-
mines whether the name of the file is added to the title. The value in windowName
should be saved in the name field of the editor’s data structure. This name is used later

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 107

to identify the window uniquely. On input, windowTitle should contain only the title
or the resource (for example, 'ALRT'), and windowName should contain the resource
type (for example, 'ALRT'). If EditorWindSetup is not used, the following code
fragment can be used to ensure that the name and title are correct:

GetResInfo(myResource, theID, theType, windowTitle);

TypeToString (theType, windowTitle);

SetETitle(myResource, windowTitle);

windowName := windowTitle;

GetWindowtitle (windowTitle, windowName, TRUE, parent);

FUNCTION PickerWindSetup(colorKind: ColorType;

ShowTheWindow: BOOLEAN; width, height: INTEGER;

VAR windowTitle: STR255; windowKind: INTEGER;

dad: ParentHandle): WindowPtr;

The PickerWindSetup function should be called by pickers from the PickBirth
procedure. It is similar to the EditorWindSetup procedure. The ShowTheWindow
parameter specifies whether the window should be displayed after it is initialized.

PROCEDURE SetETitle (h: Handle; VAR title: STR255);

The SetETitle procedure concatenates the resource ID to the resource name and
appends the result to title. The h parameter is the handle to the resource. You can
use this routine when you are constructing a window’s name or title.

FUNCTION WindAlloc: WindowPtr;

The WindAlloc function returns a pointer to a window record to be used by your editor
or picker. Using this routine instead of allocating your own window pointer can help
reduce heap fragmentation. Because windows are pointers and must be nonrelocatable
objects in the heap, ResEdit uses this procedure to try to allocate WindowPtr pointers as
low in the heap as possible. When this procedure is called, it usually returns a
WindowPtr that it has previously allocated low in the heap.

PROCEDURE WindReturn (w: WindowPtr);

WindReturn returns a window pointer that was allocated by WindAlloc. Use this
procedure when you terminate your editor or picker and you are finished with its
window. The WindReturn procedure makes the memory used by the window available
to another picker or editor for use as a new window. This helps keep the nonrelocatable
window pointers as low in the heap as possible.

C H A P T E R 7

The Programmatic Interface

108 The ResEd Interface

Extended Resource Manager 7

Because the current resource file is always left set to the ResEdit Preferences file (to
avoid loading code resources such as 'LDEF's and 'CDEF's from the wrong file), you
should always use the extended resource manager calls to get resources from the file
being edited.

FUNCTION REAddNewRes (resFile: INTEGER; hNew: Handle;

t: ResType; idNew: INTEGER; s: str255): BOOLEAN;

The REAddNewRes function has similar parameters to, and performs the same actions
as, the Macintosh procedure AddResource. If an error is detected, an alert box is
displayed and FALSE is returned; TRUE is returned otherwise. The resFile parameter
specifies the file to which the resource should be added.

PROCEDURE REAddResource(resFile: INTEGER; theResource: Handle;

 theType: ResType;theID: INTEGER; name: Str255);

The REAddResource procedure is similar to the AddResource Toolbox procedure
except that it takes resFile as a parameter.

FUNCTION REBeautifulUnique1ID (resFile: INTEGER;

t: ResType): INTEGER;

This routine should be used instead of the Toolbox procedure Unique1ID. It returns the
first unused resource ID starting with ID 128 in the file specified by resFile.

FUNCTION RECount1Resources(resFile: INTEGER;

 theType: ResType): INTEGER;

The RECount1Resources function is similar to the Count1Resources Toolbox
procedure except that it takes resFile as a parameter.

FUNCTION RECount1Types (resFile: INTEGER): INTEGER;

The RECount1Types function is similar to the Count1Types Toolbox procedure except
that it takes resFile as a parameter.

FUNCTION REGet1IndResource (resFile: INTEGER;

theType: ResType; index: INTEGER): Handle;

The REGet1IndResource function is similar to the Get1IndResource trap. The only
differences are that it takes resFile as a parameter, and that if the resource is not
found, it sets ResError to the resNotFound error and returns NIL.

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 109

PROCEDURE REGet1IndType(resFile: INTEGER;

 VAR theType: ResType;index: INTEGER);

The REGet1IndType procedure is similar to the Get1IndType Toolbox procedure
except that it takes resFile as a parameter.

FUNCTION REGet1NamedResource(resFile: INTEGER;

 theType: ResType; name: Str255): Handle;

The REGet1NamedResource function is similar to the Get1NamedResource Toolbox
procedure except that it takes resFile as a parameter.

FUNCTION REGet1Resource (resFile: INTEGER;

theType: ResType; theID: INTEGER): Handle;

The REGet1Resource function is similar to the Get1Resource trap. The only
differences are that it takes resFile as a parameter, and that if the resource is not
found, it sets ResError to the resNotFound error and returns NIL.

FUNCTION REGet1ResourceSpecial (resFile: INTEGER;

theType: ResType; ID: INTEGER; VAR wasLoaded: BOOLEAN;

VAR error: INTEGER): Handle;

The REGet1ResourceSpecial function should be used in place of the Toolbox routine
Get1Resource. It’s equivalent to Get1Resource except for the fact that it returns a
wasLoaded variable to indicate whether the resource is already in use. If the return
value of wasLoaded is TRUE, the caller should never free the resource with the
ReleaseResource procedure.

FUNCTION RENewUniqueRes (resFile: INTEGER; s: LONGINT;

t: ResType;): Handle;

Given a size, s, RENewUniqueRes allocates a new handle, clears it, adds it to the
specified resource file as a resource of type t with a unique ID, and returns a handle to
the new resource. If this function fails, it returns a NIL handle.

PROCEDURE RERemoveAnyResource (resFile: INTEGER;

theRes: Handle);

This procedure should always be used in place of the Toolbox call, RmveResource. It
correctly handles resources that have the protected attribute set, by unprotecting them
before removing them. The function of this routine is otherwise the same as that of the
RmveResource Toolbox procedure.

C H A P T E R 7

The Programmatic Interface

110 The ResEd Interface

FUNCTION RevertThisResource (theObj: ParentHandle;

res: Handle): BOOLEAN;

The RevertThisResource function restores a resource being edited to its state before
editing started. The parameter res is a handle to the resource. The parameter theObj is
the ParentHandle from the current window. It is needed to determine whether the
resource was newly added. The RevertThisResource function returns a value of
FALSE if the resource was newly added by ResEdit (and, therefore, no longer exists after
the reversion), and TRUE otherwise. If the resource has not been changed (its
resChanged flag is not set), nothing is done.

Routines Used by Pickers 7

FUNCTION DefaultListCellSize:INTEGER;

The DefaultListCellSize function returns the height of a list cell with the
application font (ascent + descent + leading). This function should be used by pickers
that display resources as text strings when setting up their window.

FUNCTION DoPickBirth(colorKind: ColorType;

buildList: BOOLEAN; which: PICKERTYPE;

pickerResId: INTEGER; pick: PickHandle): BOOLEAN;

The DoPickBirth function takes care of just about everything needed to initialize a
picker. If the value of buildList is TRUE, the list of all of the resources will be created.
The pick parameter is the handle to a partially initialized PickHandle. The fields that
should be initialized before this procedure is called are: father, rType, viewBy,
cellSize, ldefType, minWindowWidth, and minWindowHeight. The example
picker shows how these fields should be initialized. The size of the picker’s window is
calculated automatically from cellSize.

PROCEDURE DrawLDEF (message: INTEGER; lSelect: BOOLEAN;

lRect: Rect; theRes: Handle; id: INTEGER;

title: STR255; maxH, maxV: INTEGER;

DrawResource: ProcPtr; lh: ListHandle);

The DrawLDEF procedure is a general-purpose drawing routine for graphic LDEFs such
as 'ICON', 'cicn', and so on. It should be called from an LDEF that is used by a
picker. If title is an empty string, id is converted to a string and used as the title. The
drawProc is of the form

PROCEDURE DrawResource (lRect: Rect; theRes: Handle).

Use of this procedure is shown in the example picker LDEF.

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 111

PROCEDURE GrowMyWindow (minWidth, minHeight: INTEGER;

windPtr: WindowPtr; lh: ListHandle);

Pickers use this procedure to change the size of their windows. The minWidth and
minHeight parameters determine the minimum size of the window; windPtr is the
window to be resized; lh is the list that is in the window.

The GrowMyWindow procedure takes care of everything that is necessary to change the
size of a picker’s window. If necessary, the list is resized and redrawn. Two-dimensional
lists (such as those used by the icon picker) are updated to fit as many cells as possible in
the window without requiring horizontal scrolling.

PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle);

The PickEvent procedure handles an event contained in evt for a standard picker
referenced by pick. This procedure should be called from your picker’s DoEvent
procedure. It is usually sufficient to call only this routine from DoEvent, with no other
special processing at all.

PROCEDURE PickInfoUp (oldID, newID: INTEGER;

pick: PickHandle);

The PickInfoUp procedure handles the update necessary when a resource’s ID is
changed in the Get Info window. This procedure should be called from your picker’s
DoInfoUpdate procedure. It is usually sufficient to call only this routine from
DoInfoUpdate, with no other special processing at all.

PROCEDURE PickMenu (menu, item: INTEGER; pick: PickHandle);

PickMenu handles menu commands for a standard picker referenced by pick. PickMenu
should be called from your picker’s DoMenu procedure. This routine handles all of the
standard menu commands. It is usually sufficient to call only this routine from DoMenu.

FUNCTION PickStdHeight: INTEGER;

This function returns the height in pixels that should be used when creating picker
windows. This value is obtained from the Preferences dialog box. A window of the
specified height is guaranteed to fit on the screen. Because the picker’s size is set by
DoPickBirth, you should not need to use this procedure.

FUNCTION PickStdWidth: INTEGER;

This function returns the width in pixels that should be used when creating picker
windows. This value is obtained from the Preferences dialog box. A window of the
specified width is guaranteed to fit on the screen. Because the picker’s size is set by
DoPickBirth, you should not need to use this procedure.

C H A P T E R 7

The Programmatic Interface

112 The ResEd Interface

Routines Used by Editors 7

FUNCTION CloseNoSave: BOOLEAN;

The CloseNoSave function returns a Boolean value that indicates whether data
checking should be performed before closing. A return value of TRUE indicates that
checking should not be performed. For example, if the user is editing a template and
there are errors in the template when the Quit command is chosen, the template editor
should not perform edit checking if No was clicked in the Save Changes dialog box.

FUNCTION NeedToRevert (myWindow: WindowPtr; theRes: Handle):

BOOLEAN;

The NeedToRevert function should be called by all editors before they revert their
resource. If the editor’s window is frontmost and the resource has been changed, an alert
box is displayed asking the user to verify that he or she really wants to revert the
resource. If the user does want to revert the resource, the function returns a value of
TRUE. Otherwise it returns a value of FALSE. The myWindow parameter is a pointer to
the editor’s window. The theRes parameter is the handle of the resource that is to be
reverted.

PROCEDURE NoDoubleClickHere;

Call this procedure in your mouse-down processing code if you don’t want ResEdit to
convert a double-click at this location to an Open command. This should be used if a
double-click makes sense only in part of your window.

PROCEDURE SetResChanged (h: Handle);

The SetResChanged procedure sets the resChanged attribute for the specified
resource and also sets the mapChanged attribute for the resource file that contains the
resource. This procedure should be called whenever a resource is changed.

FUNCTION WasItLoaded: BOOLEAN;

The WasItLoaded function should be called by every editor in the EditBirth
procedure. The returned value should be saved in the ParentRec data structure. When
a Close command is received, the resource being edited should be released only if
WasItLoaded returned FALSE. If the returned value is TRUE, the resource may already
be in use by ResEdit or the system and therefore shouldn’t be released.

Routines Used to Start Pickers and Editors 7

PROCEDURE GiveEBirth (resHandle: Handle; pick: PickHandle);

The GiveEBirth procedure starts an editor. This routine is used when a picker wants to
start an editor or when an editor wants to start another editor (as when the 'DLOG'
editor starts the 'DITL' editor). If the user chooses Open Using Template, or if an editor

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 113

is not found, the 'GNRL' (template) editor is started. If the user chooses Open Using
Hex Editor or if neither an editor nor a template is found, the hexadecimal editor
is started. A call to the appropriate editor’s EditBirth procedure is then generated,
as follows:

EditBirth (resHandle, pick)

In this call, resHandle is the handle of the resource to be edited, and pick is the
caller’s ParentHandle.

Note
When an editor is starting another editor, it is important to remember
that pick^^.rType must be set before this routine is called. The
editor’s ParentRec will need to be equivalent to a PickRec, at least
down to the rType field. The GiveEBirth procedure looks to the
PickHandle parameter for information (for example, the resource type)
that it needs to start up an editor. ◆

PROCEDURE GiveSubEBirth (resHandle: Handle; pick: PickHandle);

The GiveSubEBirth procedure starts an editor that edits a part of another type of
resource. For example, the 'DITL' editor uses GiveSubEBirth to start the dialog item
editor. The GiveSubEBirth procedure behaves exactly like GiveEBirth except that
the name of the resource that it looks for begins with a dollar sign ($) instead of a
commercial “at” sign (@). For example, the name of the 'DITL' editor resource is @DITL
and the name of the 'DITL' subeditor resource is $DITL. This distinction allows an
editor to use the standard method for editing multiple occurrences of a subtype within
the resource. For example, a dialog item list ('DITL') typically contains several dialog
items. Calling GiveSubEBirth lets the user open multiple dialog items and treat them
in the same way as any other windows.

PROCEDURE GiveThisEBirth (resHandle: Handle; pick: PickHandle;

openThisType:ResType);

The GiveThisEBirth procedure is similar to GiveEBirth, except that it lets the caller
specify the type of editor to open. The specified editor is opened even if the user chooses
Open Using Template or Open Using Hex Editor. If an editor of the specified type is not
found, a template of the specified type is opened. If a template is not found, the
hexadecimal editor is opened.

C H A P T E R 7

The Programmatic Interface

114 The ResEd Interface

Routines Used to Feed Events and Menus
to the Appropriate Picker or Editor 7

PROCEDURE CallDoEvent (evt: EventRecord; theWindow:

WindowPtr);

The CallDoEvent procedure calls the DoEvent procedure of the specified window
with the specified event. You normally won’t need to use this procedure.

PROCEDURE CallInfoUpdate (oldID, newID: INTEGER;

refcon: LONGINT; id: INTEGER);

The CallInfoUpdate procedure passes an information update command to the
specified window. After updating its own window and data structures, each editor’s
DoInfoUpdate procedure should call this routine to pass the information update along
to its parent window. This call is necessary since the parent may be displaying data (such
as the ID or name in a picker window) that has been changed. An editor could pass this
information along by making the following call:

CallInfoUpdate (oldid, newid, longint(father),

father^^.wind^.windowkind);

PROCEDURE PassEvent (evt: EventRecord; father: ParentHandle);

The PassEvent procedure sends the specified event to all windows opened by the
window owned by the specified ParentHandle. You normally won’t need to use this
procedure.

PROCEDURE PassMenu (menu, item: INTEGER; father:

ParentHandle);

The PassMenu procedure passes menu commands on to any child pickers or editors that
you have started. For example, when your editor receives a Close command, it should
make this call to pass that command along to any subeditors or information windows
that it has opened:

PassMenu (fileMenu, closeItem, myObj)

Miscellaneous Utilities 7

PROCEDURE Abort;

The Abort procedure sets the abort flag, which will stop any command that is in
progress. The most common use of this command is in stopping the Quit command. For
example, if an error is detected in a template when its window is being closed, the
template editor calls Abort so that processing of the Quit command will stop and the
error can be corrected.

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 115

PROCEDURE AbleMenu (menu: INTEGER; enable: LONGINT);

The AbleMenu procedure enables or disables menu items. This procedure differs from
the Resource Manager routines EnableItem and DisableItem in that it acts on the
entire menu. The parameter menu is a menu ID; enable is a mask. Values used for the
mask can be found in the ResEd file.

PROCEDURE BubbleUp (h: Handle);

The BubbleUp procedure sets up the correct heap zone and then calls the Memory
Manager routine MoveHHI. For information about MoveHHi, see Inside Macintosh,
Volume II, Chapter 1. This routine should always be called, to avoid heap fragmentation,
before the Macintosh procedure HLock is called for any handle. Remember to unlock
any handle that you lock!

PROCEDURE CenterDialog (theType: ResType; dialog: INTEGER);

This procedure centers dialogs or alerts on the same screen as the current port, which is
assumed to be a window. If the dialog is in color, it is centered on the deepest screen on
which any portion of the current port appears. The ResType parameter can be “DLOG”
or “ALRT”; dialog is the resource ID of the dialog or alert. The 'DLOG' or 'ALRT'
resource is loaded into memory and its boundsRect is centered. When you use the
dialog or alert box (for example, in GetNewDialog), the resource will be found in
memory with the correct boundsRect.

FUNCTION CheckError (err, msgID: INTEGER): BOOLEAN;

The CheckError function displays an error alert if the value of err is not 0. This
routine has built-in alert messages for several errors (such as “disk write-protected”,
“out of memory”, and so on). If the value of msgId is negative, a fatal error message is
retrieved from the 'STR#' resource with ID of 128. This resource is preloaded into
memory and may be accessible even if a serious error has occurred. If the value of msgID
is nonnegative, an error message from the 'STR#' resource with ID of 129 is displayed.
If the error is not one that is built in, the string with an ID of msgID is displayed in the
alert box. TRUE is returned if err was 0; FALSE otherwise. When adding a new string
for use by CheckError, be sure to add it to the end of the existing list in the 'STR#'
resource.

FUNCTION ChooseIcon(EdHandle: ParentHandle;

VAR IconResID: integer; VAR IconKind: IconType;

dialogID: integer): BOOLEAN;

The ChooseIcon function displays the 'ICON' chooser used by the 'MENU' and
'BNDL' editors. The EdHandle parameter is the ParentHandle of the editor
displaying the dialog. Passing onlyICON in the IconKind parameter forces the
IconChooser to not allow reduced 'ICON's or 'SICN's. Passing onlyICNPound in the
IconKind parameter uses 'ICN#' resources instead of 'ICON's. Passing any other
value instructs the IconChooser to support regular 'ICON's, reduced 'ICON's, and

C H A P T E R 7

The Programmatic Interface

116 The ResEd Interface

'SICN's (as in the 'MENU' editor). The icon’s resource ID is returned in IconResID
(this field also specifies the icon to be selected). The dialogID field specifies the
resource ID of the dialog to be displayed. You should copy the 'MENU' or 'BNDL'
editor’s dialog and make minor changes. Don’t remove any of the existing fields. If you
don’t want some of the fields in your dialog, move them outside of the window bounds.

FUNCTION ColorAvailable (needColorQD: BOOLEAN): BOOLEAN;

The ColorAvailable function returns TRUE if color QuickDraw is available. If the
value of the needColorQD parameter is TRUE, an alert is displayed if color QuickDraw
is not available.

PROCEDURE ConcatStr (VAR str1: STR255; str2: STR255);

The ConcatStr procedure concatenates str2 to str1, leaving the result in str1.

▲ W A R N I N G

This routine does not check for aggregate string lengths
in excess of 255 characters. Please be careful! ▲

FUNCTION DisplayAlert (which: AlertType; id: INTEGER):

INTEGER;

The DisplayAlert function displays an alert box with the given id. This routine
assures that the alert resource is loaded from ResEdit and that the cursor is reset to
an arrow. The which parameter determines the kind of alert box that is displayed.

AlertType = (displayTheAlert, displayStopAlert, displayNoteAlert,

displayCautionAlert);

FUNCTION DisplaySTRAlert(which: AlertType; STRName: STR255;

STRIndex: INTEGER): BOOLEAN;

This function is similar to DisplayAlert except that a standard alert box is used and
the text is retrieved from a 'STR#' resource. If you want to display an alert box, just
create a 'STR#' resource in ResEdit and call this routine with the 'STR#' resource
name and the index in the string list of the string to be used. Whenever possible, this
routine should be used instead of DisplayAlert. TRUE is returned if the OK button
was pressed.

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 117

PROCEDURE DrawMBarLater (forceItNow: BOOLEAN);

The DrawMBarLater procedure should be used instead of the Toolbox DrawMenuBar
procedure. It will collect updates to the menu bar but actually draw the menu bar only
when no other events are pending. Using this procedure prevents the menu bar from
flashing as menus are added and removed. If the value of forceItNow is TRUE, the
menu bar is drawn immediately and any pending updates are cleared.

FUNCTION FindOwnerWindow (theRes: Handle): WindowPeek;

The FindOwnerWindow function checks all of ResEdit’s windows to see if an editor is
open for the specified resource. If you’re writing an editor that uses a resource that may
be in use by another editor (for example, two 'DLOG' resources may share the same
'DITL'), call FindOwnerWindow to determine whether the resource should be released.

PROCEDURE FixHand (s: LONGINT; h: Handle);

The FixHand procedure makes sure that the object to which h is a handle is s bytes
long. If it is longer, FixHand shortens it; if it’s shorter, FixHand expands it and fills the
extension with 0.

PROCEDURE FlashDialogItem (dp: DialogPtr; item: integer);

The FlashDialogItem procedure causes a dialog button to blink (inverts the button)
for 8 ticks to indicate that the button was selected. This procedure should be called from
a dialog’s filter procedure.

PROCEDURE FrameDialogItem (dp: DialogPtr; item: integer);

The FrameDialogItem procedure draws a frame around a dialog button to indicate
that it is the default button (the button that will be selected when either the Return or the
Enter key is pressed). The dp parameter is a pointer to the dialog record; item is the
item number of the button in the corresponding 'DITL'. This procedure should be
called when an update event is received by a dialog’s filter procedure.

PROCEDURE GetNamedStr(index: INTEGER; name: STR255;

VAR str: STR255);

The GetNamedStr procedure returns in str the indexth string in the 'STR#' resource
named name. All strings should be stored in either 'STR#' or 'STR' resources to
maintain the international localizability of ResEdit.

C H A P T E R 7

The Programmatic Interface

118 The ResEd Interface

FUNCTION GetQuickDrawVars: pQuickDrawVars;

This function returns a pointer to the QuickDraw variables that are normally available to
Macintosh programmers. Because of the way that pickers and editors are implemented,
they do not normally have access to these variables. The following types are used with
this function:

pQuickDrawVars = ^QuickDrawVars;

QuickDrawVArs = RECORD

randSeed: LONGINT;

screenBits: BitMap;

arrow: Cursor;

dkGray: Pattern;

ltGray: Pattern;

gray: Pattern;

black: Pattern;

white: Pattern;

thePort: GrafPtr;

END; { QuickDrawVars }

FUNCTION GetScreenRect (roomForIcons: BOOLEAN;

wind: windowPtr): Rect;

The GetScreenRect function returns the rectangle of the screen containing most of the
specified window. If the value of roomForIcons is TRUE, the window is on the main
screen, and the screen is large, there is room for the Finder icons at the right edge. If the
window is on the main screen, the rectangle returned will not include the menu bar.

PROCEDURE GetStr (index, resID: INTEGER; VAR str: STR255);

The GetStr procedure returns, in str, string number index from ResEdit’s 'STR#'
resource with ID of resID. All strings should be stored in either 'STR#' or 'STR'
resources to maintain the international localizability of ResEdit.

FUNCTION HandleCheck (h: Handle; msgID: INTEGER): BOOLEAN;

The HandleCheck function checks to see if the handle h is NIL or empty. If it is either,
HandleCheck returns FALSE and displays an error alert, using string msgID from
ResEdit’s 'STR#' resource ID 129. If the handle ID is OK, HandleCheck returns TRUE.

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN);

The MetaKeys procedure returns the values of the modifier keys from the last event.
Some menu commands that have shortcut key combinations simulate the shortcut
modifier keys when the menu command is selected. For example, when the user chooses
Open Using Template from the Resource menu, MetaKeys indicates that the Command
and Option modifier keys were pressed. Because of these transformations, MetaKeys
should always be used to get the modifier values.

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 119

FUNCTION PrintSetup: Handle;

Use PrintSetup if you are doing your own printing instead of using PrintWindow.
Return type is actually THPrint. The following code can be used to set up your own
printing loop:

myPrintHandle := PrintSetup;

IF myPrintHandle <> NIL THEN

BEGIN

PrOpen;

IF PrError = noErr THEN

BEGIN

IF PrJobDialog(myPrintHandle) THEN

BEGIN

printingPort := PrOpenDoc(myPrintHandle, NIL, NIL);

IF PrError = noErr THEN

BEGIN

{do the usual printing loop here (see TechNote #161)}

{Warning: be careful NOT to change the current resfile}

{ or the printing manager will fail}

PrCloseDoc(printingPort);

END;

END;

PrClose;

END;

END;

PROCEDURE PrintWindow (toPrint: PicHandle);

The PrintWindow procedure does just that. If you pass it NIL, it will print an image of
the current window. If you pass it a PicHandle, it will print the picture.

FUNCTION ResEdID: INTEGER;

The ResEdID function returns the resource ID of the calling picker or editor. This value
should be saved in the windowKind field of the editor’s window, and also in the
codeResID field of the ParentRec data structure.

PROCEDURE SetTheCursor (whichCursor: INTEGER);

The SetTheCursor procedure changes the cursor to the specified cursor resource. The
constant arrowCursor defined in the ResEd file should be used to set the cursor to the
arrow. The most common use of this routine is to set the cursor to a watch
(watchCursor) during a time-consuming operation.

C H A P T E R 7

The Programmatic Interface

120 The ResEd Interface

PROCEDURE ShowInfo (h:Handle; father: ParentHandle);

The ShowInfo procedure puts up a Get Info window for the resource referenced by h
that belongs to the father object referenced by father. Your editor should call
ShowInfo when the user chooses Get Info from the File menu.

FUNCTION StandardFilter(theDialog: DialogPtr;

VAR theEvent: EventRecord; VAR itemHit: INTEGER): BOOLEAN;

The StandardFilter function can be used by any dialog to make the appropriate
responses when the user presses the Return, Enter, Esc, or Command-period keys. Cut,
Copy, and Paste are also supported if there are editable fields in the dialog.

PROCEDURE TypeToString (t: ResType; VAR s: Str255);

The TypeToString procedure returns a string consisting of the four characters that
make up the ResType t.

PROCEDURE UseAppRes;

The UseAppRes procedure sets the current resource file to be the ResEdit Preferences
file. If you need to call a Toolbox procedure that looks for resources starting with the
current resource file (GetNewDialog, for example), you need to call UseResFile with
the appropriate resource file before you call the Toolbox procedure. Use this routine to
restore ResEdit as the current resource file when you’re done.

FUNCTION WasAborted: BOOLEAN;

The WasAborted function returns the state of the aborted flag (set by the Abort
procedure previously described). This function is useful, for example, if you have just
called PassMenu with a Close command and you want to know if any of the windows
that were closed encountered a problem.

Pop-up Menus 7

FUNCTION ColorPalettePopupSelect(whichWindow: WindowPtr;

itemBox: Rect; VAR whichColor: RGBColor;

CQDishere: BOOLEAN; useColorPicker: BOOLEAN): BOOLEAN;

The ColorPalettePopupSelect function handles mouseDown events in the color
palette pop-up menu. Call this procedure whenever you receive a mouseDown event in
one of your color patches. The whichWindow parameter specifies the window
containing the pop-up palette, itemBox specifies which Rect is to be used to draw the
color patch, whichColor is the RGBColor to be used as default, and CQDishere is set
to TRUE when Color QuickDraw is available. If the value of useColorPicker is TRUE,
the color picker dialog is displayed rather than the color pop-up palette. On exit,
whichColor contains the RGBColor selected by the user.

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 121

PROCEDURE DeinstallColorPalettePopup(whichWindow: WindowPtr;

CQDishere: Boolean);

The DeinstallColorPalettePopup procedure removes the palette from the window.
See ColorPalettePopupSelect for an explanation of the parameters. Call this
procedure before closing the window.

PROCEDURE DoPopup(whichDialog: DialogPtr;

promptDialogItem, popupDialogItem: integer;

VAR menuItem: integer; whichMenu: MenuHandle);

The DoPopup procedure should be called in response to a mouseDown event in a pop-up
menu. The whichDialog parameter specifies the dialog containing the pop-up menu.
The promptDialogItem parameter specifies the item in the dialog containing the
pop-up menu’s prompt and popupDialogItem is the pop-up menu itself. The
menuItem parameter is the current setting and also returns the new setting; whichMenu
specifies the menu to be displayed.

PROCEDURE DrawColorPopup(whichWindow: WindowPtr; itemBox: Rect;

whichColor: RGBColor; CQDishere: BOOLEAN);

The DrawColorPopup procedure draws the color patch and a drop shadow indicating
that this is actually a pop-up menu. Call this procedure for every pop-up palette
whenever you need to update the window contents. The whichWindow parameter
specifies the window containing the pop-up palette, itemBox specifies the Rect to be
used to draw the color patch, whichColor is the RGBColor to be drawn, and
CQDishere is set to TRUE when Color QuickDraw is available.

PROCEDURE DrawPopup(whichDialog: DialogPtr; whichDialogItem,

whichMenuItem: integer; whichMenu: MenuHandle);

The DrawPopup procedure should be called when you receive an update event for a
pop-up menu. The whichDialog parameter specifies the dialog containing the pop-up
menu, whichDialogItem is the item number of the pop-up and whichMenuItem is
the current setting. The whichMenu parameter specifies the menu to be drawn.

PROCEDURE InstallColorPalettePopup(whichWindow: WindowPtr;

CQDishere, isActive: BOOLEAN);

The InstallColorPalettePopup procedure sets up a palette containing the
approprieate set of system colors for the deepest available device, and associates the
palette with the window specified by whichWindow. Call this procedure immediately
after opening your window and whenever you receive an update event. The CQDishere
parameter should be set to TRUE when Color QuickDraw is available, and isActive
should be set to TRUE only when the window is the frontmost one.

C H A P T E R 7

The Programmatic Interface

122 The ResEd Interface

Internal Routines 7

FUNCTION BuildType (t: ResType; l: ListHandle): INTEGER;

Given a list that has been initialized with no rows, BuildType builds a list of all
resources of type t from the current resource file. (See the WindList routine described
in this chapter.) This function requires that the refCon field of the list contain the
ParentHandle of the window owning the list. If SetResLoad (FALSE) has not been
called, all of the resources will be loaded into memory. The BuildType function returns
a count of the number of instances that it adds to the list.

A picker that doesn’t use PickerWindSetup can set up its window with this sequence:

myList := WindList(myWindow, myListWidth, myCellSize, ResEdid);

myList^^.refCon := LongInt(myParentHandle);

LDoDraw(FALSE, myList); {draw it later}

NInsts := BuildType(myType, myList);

LSetSelect(TRUE, Cell(0), myList); {automatically select first cell}

LDoDraw(TRUE, myList); {ok to draw it next time}

FUNCTION CompressedResource(theResource: Handle): BOOLEAN;

The CompressedResource function returns TRUE if the specified resource is
compressed using the system software release 7.0 compression technique.

PROCEDURE DoKeyScan (var evt: EventRecord; offset: integer;

lh: ListHandle);

The DoKeyScan procedure is called for you by PickEvent and shouldn’t be used.

FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle):

Handle;

The DupPick function is called from PickMenu and should normally not need to be
called from any other procedures.

PROCEDURE GetErrorText (error: INTEGER; VAR errorText:

STR255);

The GetErrorText procedure returns an error string for the given error. If no specific
error text is found, the text for an I/O error is returned.

FUNCTION GetResEditScrapFile: INTEGER;

The GetResEditScrapFile function returns the resource file number of the ResEdit
scrap file. You can use this procedure if you want to do your own scrap manipulation.

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 123

FUNCTION GetType (templatesOnly: BOOLEAN; VAR s: STR255):

BOOLEAN;

The GetType function displays a dialog box containing a list of the types of resources
that can be edited. The list contains all types for which there are templates. If the value of
templatesOnly is FALSE, the list also contains all the types for which there are editors.
The selected type is returned in s. TRUE is returned if a type was selected; FALSE is
returned otherwise.

FUNCTION MapResourceType (editor: BOOLEAN; theRes: Handle;

origResType: ResType): ResType;

This function checks the 'RMAP' resources in ResEdit and the ResEdit Preferences file to
see if the specified resource type should be treated as if it were of a different type.

FUNCTION PlaySyncSound(which: INTEGER; sndHandle: Handle):

BOOLEAN;

This function is used by the 'snd' picker to play sounds.

FUNCTION ResEditRes: INTEGER;

The ResEditRes procedure returns the resource file ID of ResEdit. This routine is rarely
needed. You can use this routine if you don’t want to release a resource that you have
been editing, if the resource came from ResEdit.

PROCEDURE ResourceIDHasChanged (theObj: ParentHandle;

theType: ResType; theOldId, theNewId: INTEGER);

Call this procedure if you have changed the ID of a resource. If you change a resource ID
and don’t call this routine, revert won’t work properly. The theObj parameter is a
handle to the parent record of the editor that is editing the changed resource; theType is
the resource type; theOldId and theNewId are the ID numbers involved in the change.

FUNCTION RestoreRemovedResources (pick: PickHandle): BOOLEAN;

This function reverts all resources of the type handled by the picker (pick^^.rType).
The pick parameter is a handle to the parent record of the picker. This function returns
TRUE if the list needs to be rebuilt.

PROCEDURE ScrapCopy (theType: ResType; VAR h: Handle);

The ScrapCopy procedure copies the handle h into the ResEdit scrap. A different
handle will be returned. If h isn’t a resource, it is added to the scrap with type theType.

C H A P T E R 7

The Programmatic Interface

124 The ResEd Interface

PROCEDURE ScrapEmpty;

The ScrapEmpty procedure empties the ResEdit and desktop scraps.

PROCEDURE SendRebuildToPicker (theType: ResType;

parent: ParentHandle);

This procedure is similar to SendRebuildToPickerAndFile except that it doesn’t
send the rebuild on to the file (what a surprise!).

PROCEDURE SendRebuildToPickerAndFile (theType: ResType;

parent: ParentHandle);

This procedure sends a rebuild (sets the rebuild flag in the window’s parentRecord) to
all open picker windows of the specified type. A rebuild is also sent to the file picker in
case a new resource type is being added. This routine is useful if an editor creates a
resource of another type. The theType parameter is the type of resource involved;
parent is a handle to the parent record of the object that has changed. Editors typically
pass their own parent record in this parameter (not the parent record of the picker that
launched the editor). This routine should be called to make sure that the resource picker
and the file picker are updated to reflect the addition of the new resource. For example,
this routine is called from the 'ALRT', 'DLOG', and 'DITL' editors.

FUNCTION SysResFile: INTEGER;

This function returns the resource file ID of the System file. It is often necessary to take
special precautions when accessing the System file. This function allows you to take
these precautions without hard-coding a value for the system resource file ID, which
may change in the future.

FUNCTION WindList (w: WindowPtr; nAcross: INTEGER;

cSize: Point; drawProc:INTEGER): ListHandle;

The WindList function creates a new empty list and returns a handle to that list.; it
should be used by pickers to allocate their lists. This function calls the LNew procedure to
allocate a list. The w parameter specifies the window in which the list will be created, and
nAcross specifies the number of cells across that the list should contain. The list is
allocated with 0 rows. The cSize parameter in this function is passed to LNew as its
cSize parameter, and drawProc is passed to LNew as its Proc parameter. For more
information on lists and a description of the LNew parameters, see the chapter on the List
Manager in Inside Macintosh, Volume IV.

PROCEDURE WindOrigin (w: WindowPtr; dad:ParentHandle);

 The WindOrigin procedure moves the window pointed to by w to the correct location
on the screen. If w is a color window, the window is positioned on the deepest available
display device. This routine guarantees that, if possible, the entire window will be
visible. This procedure requires that the “windowkind” field of w be set to a ResEdit

C H A P T E R 7

The Programmatic Interface

The ResEd Interface 125

value (for example by a call to ResEdID), and that the window size be set. If you are
using the PickerWindSetup or EditorWindSetup procedure, you don’t need to call
this procedure.

PROCEDURE WritePreferences (prefType: ResType;

prefId: INTEGER; prefName: STR255; prefHandle: Handle);

You can use WritePreferences to add your own preference resource to the ResEdit
Preferences file. The PrefType parameter is the resource type that you have chosen for
your preference resource. The prefId and prefName parameters are the ID and name
for the resource. The prefHandle parameter is a handle to the preference data itself. To
read your preferences you can use this code:

myPrefs:= Get1NamedResource(prefType, prefName);

To conform to ResEdit’s standard way of storing preferences, use a type of 'PREF' and
an ID number that’s ten times the ID number of your editor.

A P P E N D I X A

Basic Theory of Keyboard Operation

127

The 'KCHR' Resource A

This appendix contains more information about the

'KCHR'

 resource, its structure, and
its function. The

'KCHR'

 resource controls mapping from the keyboard to the resulting
characters. This mapping process involves several areas of the Macintosh architecture.

Basic Theory of Keyboard Operation A

In order to appreciate fully the workings of the

'KCHR'

 editor, you really should be
aware of the process that it controls. Here is a summary.

Generating the Virtual Keycode A

Whenever a key on any type of keyboard is pressed, the operating system polls the key
information from the device. It then translates each raw keycode generated by the
keyboard into a virtual keycode and a combination of modifier keys by means of the

'KMAP'

 resource. The resulting virtual keycode is information about the key being
pressed that is independent of the keyboard type.

Exceptions to the Rule A

Some countries have different layouts for different keyboards, mostly for historical
reasons. To deal with those exceptions, the

'itlk'

 resource contains a table of trans-
lation rules from a virtual keycode generated by the actually connected keyboard to a
virtual keycode on the ISO ADB keyboard or to whatever keyboard is supported by the

'KCHR'

 resource for that country.

Generating the Character Code A

When the operating system has generated a virtual keycode, the

KeyTrans()

 procedure
then translates the virtual keycode and the concurrently pressed modifier keys into
a Macintosh character set number based on the tables in the

'KCHR'

 resource. That
character number and the virtual keycode information are then stored in the event queue
and can be accessed by calling

GetNextEvent()

.

Dead Keys A

When you press a dead key, the first thing you’ll notice is that nothing happens
immediately (that is, no event is fed into the queue). When you then press another key,
the Event Manager uses the character number generated by this new key and the

Figure A-0
Listing A-0
Table A-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X A

The 'KCHR' Resource

128

The Structure of a 'KCHR' Resource

previously pressed dead key to determine which character number should be put in the
event queue. This process is used, for example, to generate the German characters with
umlauts Ä, Ö, Ü, ä, ö, and ü. You have to press the dead key for a diaeresis (which is
Option-u in the U.S.

'KCHR'

) and then press one of the keys that generate the characters
A, O, U, a, o, or u. (You can also generate ï, and ë, which do not exist in German, but,
depending on the font, possibly not their uppercase equivalents.) If you press a key that
generates none of the defined character numbers for this dead key, the Event Manager
generates the nomatch character (which is, in the case discussed here, the umlaut alone).

The Dead Array contains a list of dead keys. For each dead key it defines the virtual
keycode and the table that is used to trigger the dead-key mechanism. It then lists pairs
of completion characters and substitution characters and, finally, the nomatch characters.
The whole dead-key mechanism can be described as follows:

1. Press a dead key on the keyboard.

2. Press any key that generates a character number that corresponds to a valid
completion character.

You get the corresponding substitution character in the event queue. (If you didn’t press
a valid completion character in step 2, you get the nomatch character.)

The Structure of a 'KCHR' Resource A

Here is the definition of a

'KCHR'

 for the resource compiler Rez. (This information can
also be found in the file SysTypes.r in the folder {RIncludes} in MPW.)

type 'KCHR' {

integer; /* Version */

wide array [$100] { /* Indexes */

 byte;

};

integer = $$CountOf(TableArray);

array TableArray {

 wide array [$80] { /* ASCII characters */

 char;

 };

};

integer = $$CountOf(DeadArray);

array DeadArray {

 byte; /* Table number */

 byte; /* Virtual keycode */

 integer = $$CountOf(CompletorArray);

 wide array CompletorArray {

 char; /* Completing char */

A P P E N D I X A

The 'KCHR' Resource

The Structure of a 'KCHR' Resource

129

 char; /* Substituting char */

 };

 char; /* No match char1 */

 char; /* No match char2 */

 };

};

Each table in the Table Array describes the virtual keycode-to-character number
translation for one complete layer of the keyboard (that is, for all 128 possible keys). The
Index Array defines the mapping of modifier key combinations to tables. The high byte
of the modifier flag (described in

Inside Macintosh

, Volume V, Chapter 10) is used as an
index to determine the number of the table to be used for translation. The information in

Inside Macintosh

 is, however, not complete, because the alternate modifier keys (the Shift,
Option, and Control keys on the right side of the ADB extended keyboard) are not
mentioned. Those keys are normally coupled with the corresponding keys on the left
side. It is possible to uncouple them by sending a command to the keyboard. (See
“Reassigning Right Key Code” in

Inside Macintosh,

 Volume V, Chapter 10.) The correct bit
layout of the high byte is shown in Figure A-1.

Figure A-1

Modifier flag high byte

Suppose you hold down the Option key. This keypress will result in a value of 8 (bit 3 is
set) in the high byte of the modifier flag. Thus the Toolbox Event Manager takes the
value stored in

IndexArray[8]

, which is 3 in the current U.S.

'KCHR'

, and therefore
uses Table 3 to translate the keycodes to character numbers.

1 if alternate Option key down

1 if alternate Shift key down

1 if Control key down

1 if Option key down

7 6 5 4 3 2 1 0

1 if alternate Command key down

1 if Caps Lock down

1 if Shift key down

1 if Command key down

A P P E N D I X B

The Structure of a 'BNDL' Resource

131

The 'BNDL' Resource B

The

'BNDL'

 resource bundles together icons (resource types

'ICN#'

,

'ics#'

,

'icl4'

,

'icl8'

,

'ics4'

,

'ics8'

), file type references (resource type

'FREF'

), and the
“signature” resource (whose resource type is identical to the creator field of the appli-
cation file) for the Finder. This enables the Finder to display distinct icons for an applica-
tion and its documents, and also enables it to launch the appropriate application when
the user double-clicks a document.

The Structure of a 'BNDL' Resource B

The

'BNDL'

 resource contains a reference to the signature resource type and ID (for
historical reasons the ID must be 0) as well as a list of resource types (almost always only

'FREF'

 and

'ICN#'

, although other things are theoretically possible) and

localID

 to

resourceID

 mapping tables. The term

local ID

 is used, because this ID is used within
the

'BNDL'

 resource itself to tie together the file reference and its icons. When the Finder
copies the

'BNDL'

 resource and all its bundled resources to the Desktop file (or the
desktop database in System 7.0), it actually has to change the resource ID numbers to
avoid ID conflicts within the Desktop file. The local ID numbers remain unchanged.

The signature resource can contain anything you want, although, for historical reasons,
it typically contains some version and copyright information. The resource ID of the
signature resource needs to be 0. If you use the

'BNDL'

 editor in ResEdit 2.1, this
resource is transparently created and maintained for you.

For every file type that should be displayed with a distinct icon in the Finder, there needs
to be two entries in the

'BNDL'

 resource, which in turn refer to one

'FREF'

 resource, and
one

'ICN#'

 resource (or an entire Finder icon family for system software version 7.0).
The

'FREF'

 resource contains the four-character file type and a reference to a local ID for
an icon to be used for this file type. Even if you plan to include an entire icon family, you
only need to list the

'ICN#'

 resource in the

'BNDL'

 resource. The System 7.0 Finder
automatically recognizes and loads all the other parts of the Finder icon family. The
relationship of local ID numbers and resource ID numbers is shown in Figure B-1.

Figure B-0
Listing B-0
Table B-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X B

The 'BNDL' Resource

132

The Structure of a 'BNDL' Resource

Figure B-1

Six resources and their relationships

For the Finder to recognize a

'BNDL'

 resource these conditions must be met:

■

The bundle must be complete; that is, all the resources listed here must exist and their
relationships must be defined. If you use the

'BNDL'

 resource editor built into
ResEdit 2.1, you can be sure that this condition is met.

■

The file’s creator must be identical to the signature specified in the

'BNDL'

 resource
and the file’s file type must be one listed in the

'BNDL'

 (that is, it must have its own

'FREF'

 and corresponding

'ICN#'

). Typically the file type will be

'APPL'

 for

128
128

128
128

128

put a length byte and that

many bytes of text here...

TTXT 0

Signature

BNDL 128

Must be 0

TTXT

0

Signature

0

1

128

129

ICN#

0

1

128

129

Local ID Resource ID

Local ID Resource ID

FREF 128

APPL

0

FREF 129

TEXT

1

ICN# 129

Resource ID

Aka Local ID 0

Resource ID

Aka Local ID 0

ics8
ics4

ics#
ic18

ic14
ICN# 128

File type

Icon’s Local ID

File type

Icon’s Local ID

A P P E N D I X B

The 'BNDL' Resource

The Structure of a 'BNDL' Resource

133

application, although any file can contain

'BNDL'

 resources. Specific examples other
than

'APPL'

 are

'INIT'

 and

'CDEV'

. Use the Get File/Folder Info command in the
File menu to change the file’s file type or creator.

■

The file’s Bundle bit must be set and the Inited bit must be cleared. The Finder always
sets the Inited bit whenever it finds a new file and reads in some information about it.
By clearing this bit you tell the Finder to reread that information. Use the Get File/
Folder Info command in the File menu to change the Bundle and Inited bits.

■

There must not already be a

'BNDL'

 resource with the same signature in the Desktop
file (or desktop database in System 7.0). If you want to change an existing bundle (to
modify the icons, for example), you will need to recreate the Desktop file by rebooting
while holding down the Option and Command keys. Note that by doing so, you will
lose all comments you may have entered in the Get Info windows in the Finder in
system software before version 7.0. Alternatively, you can remove the offending

'BNDL'

 from the Desktop file with ResEdit.

Definitions of the 'BNDL' and 'FREF' Resources B

Here are the definitions of the

'BNDL'

 and

'FREF'

 resources from the
MPW Types.R file:

/*-------------------------BNDL • Bundle------------------------------*/

type 'BNDL' {

literal longint; /* Signature */

integer; /* Version ID */

integer = $$CountOf(TypeArray) - 1;

array TypeArray {

literal longint; /* Type */

integer = $$CountOf(IDArray) - 1;

wide array IDArray {

integer; /* Local ID */

integer; /* Actual ID */

};

};

};

/*-------------------FREF • File Reference----------------------------*/

type 'FREF' {

literal longint; /* File Type */

integer; /* Icon ID */

pstring; /* Filename */

};

A P P E N D I X C

135

Resource Types Defined for

Rez and ResEdit C

This appendix contains a list of some resource types in use at Apple Computer, Inc.,
current as of mid-1990. An attempt has been made to give pertinent information about
what each type is, how it is handled by the resource compiler, Rez, and how it is handled
by ResEdit. This list is neither formal nor exhaustive.

In some entries, a digit appears to the right of a resource type name. This indicates the
particular resource of that type with that ID number.

Table C-1

Resource types defined for Rez and ResEdit

Type Definition Rez ResEdit

'actb'

Alert color look-up table Types.r Template

'acur'

Animated cursor resource Types.r Template

'ADBS'

ADB driver loaded before

'INIT'

 31 ----- -----

'ALRT'

Alert template Types.r Template, Editor

'APPL'

Application list (Desktop) ----- Template

'atpl'

AppleTalk resource ----- -----

'bmap'

Bitmap ----- -----

'BNDL'

Bundle Types.r Template, Editor

'CACH'

RAM cache control code ----- -----

'cctb'

Control color look-up table Types.r Template

'CDEF'

Code for drawing controls ----- -----

'cicn'

Color icon Types.r Editor

'clut'

Generic color look-up table Types.r Template

'CMDO'

For MPW commando interface Cmdo.r -----

'cmnu'

MacApp temporary menu resource MacAppTypes.r Editor

'CNTL'

Control template Types.r Template

'CODE'

 0 Jump table ----- -----

'CODE'

Application code ----- -----

'crsr'

Color cursor Types.r -----

'ctab'

Cache tab (list of possible cache sizes) ----- -----

continued

Figure C-0
Listing C-0
Table C-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X C

Resource Types Defined for Rez and ResEdit

136

'CTY#'

City list from MAP CDEV ----- Template

'CURS'

Cursor Types.r Editor

'dctb'

Dialog color look-up table Types.r Template

'DICL'

(for MacWorkstation) ----- -----

'DITL'

Dialog item list Types.r Template, Editor

'DLOG'

Dialog template Types.r Template, Editor

'DRVR'

Driver SysTypes.r Template

'DSAT'

Startup alerts and code to display them ----- -----

'errs'

MacApp error string MacAppTypes.r -----

'FBTN'

MiniFinder button ----- Template

'fctb'

Font color look-up table Types.r Template

'FCMT'

GetInfo comments from Desktop file ----- Template

'FDIR'

MiniFinder button directory ID ----- Template

'finf'

Font information SysTypes.r Template

'FKEY'

Function Key Code ----- -----

'fld#'

List of folder names SysTypes.r Template

'FMTR'

Format record ----- -----

'FOBJ'

Information about folders ----- -----

'FOND'

Font family description SysTypes.r Template

'FONT'

Font description SysTypes.r Template, Editor

'FREF'

File reference Types.r Template

'FRSV'

ROM font resources ----- Template

'FWID'

Font width table SysTypes.r Template

'gama'

Gamma table (color correction
for screen)

----- -----

'GNRL'

NBP timeout and retry info
for AppleTalk

----- -----

'ICON'

Icon Types.r Editor

'ICN#'

Icon list Types.r Editor

'ictb'

Color dialog item list ----- -----

'INIT'

Code that is run at system startup time ----- -----

'insc'

Installer script SysTypes.r Template

continued

Table C-1

Resource types defined for Rez and ResEdit

Type Definition Rez ResEdit

A P P E N D I X C

Resource Types Defined for Rez and ResEdit

137

'INTL'

0 International formatting information

(=

'itl0'

; no longer used)

SysTypes.r Editor

'itl0'

International formatting information SysTypes.r Editor

'INTL'

 1 International date/time information

(=

'itl1'

; no longer used)

SysTypes.r Editor

'itl1'

International date/time information SysTypes.r Editor

'itl2'

International string comparison
package hooks

SysTypes.r -----

'itl4'

International tokenize SysTypes.r -----

'itlb'

International script bundle SysTypes.r -----

'itlc'

International configuration SysTypes.r -----

'itlk' International exception dictionary for
kchar

SysTypes.r Template

'KCAP' Physical layout of keyboard SysTypes.r Template

'KCHR' ASCII mapping (software) SysTypes.r Editor

'KEYC' old keyboard layout (used by old
'INIT' 0 and 1)

----- -----

'KMAP' Keyboard mapping (hardware) SysTypes.r Template

'kscn' Keyboard/script icon Types.r -----

'KSWP' Keyboard swapping SysTypes.r Template

'LAYO' Finder layout resource ----- Template

'LDEF' Code for drawing lists ----- -----

'mach' cdev filtering SysTypes.r -----

'MACS' Version # in system file ----- Template

'MBAR' Menu bar Types.r Template

'MBDF' Menu bar definition procedure (code) ----- -----

'mcky' Mouse tracking SysTypes.r Template

'mctb' Menu color look-up table Types.r Editor

'mcod' MacroMaker information ----- -----

'mdct' MacroMaker information ----- -----

'MDEF' Code for drawing menus ----- -----

'mem!' MacApp memory utilization MacAppTypes.r -----

continued

Table C-1 Resource types defined for Rez and ResEdit

Type Definition Rez ResEdit

A P P E N D I X C

Resource Types Defined for Rez and ResEdit

138

'MENU' Menu Types.r Template, Editor

'minf' Macro info (MacroMaker) ----- Template

'mitq' Default queue sizes for MakeITable SysTypes.r -----

'mntb' MacApp menu table (relate
command # to menu)

----- -----

'mppc' MPP configuration resource SysTypes.r -----

'NBPC' NBP configuration (AppleTalk) ----- -----

'ncts' List of constants ----- -----

'NFNT' Font description SysTypes.r -----

'nrct' Rectangle position list SysTypes.r Template

'PACK' Packages of code used as ROM
extensions

----- -----

'PAPA' Printer access protocol address
(AppleTalk)

----- Template

'PAT ' QuickDraw pattern Types.r Editor

'PAT#' QuickDraw pattern List Types.r Editor

'PDEF' Code to drive printers ----- -----

'PICT' QuickDraw picture Types.r Template

'pltt' Color palette Types.r Template

'POST' PostScript (in Laser Prep file) ----- Template

'ppat' Pixel pattern Types.r Template

'ppt#' Array of 'ppat's ----- -----

'PREC' Printer driver’s private data storage ----- -----

'PRC0' Default page setup info for
printer ('PREC' 0)

----- Template

'PRC3' Print record ('PREC' 3) ----- Template

'PSAP' Just a string ----- Template

'PTCH' ROM patch ----- -----

'qrsc' System 7.0 query resource ----- Template

'res!' Resident MacApp segments MacAppTypes.r -----

'ROv#' ROM resource override SysTypes.r Template

'scrn' Screen configuration SysTypes.r Template

continued

Table C-1 Resource types defined for Rez and ResEdit

Type Definition Rez ResEdit

A P P E N D I X C

Resource Types Defined for Rez and ResEdit

139

'seg!' MacApp memory management MacAppTypes.r -----

'SERD' RAM serial driver ----- -----

'SICN' Small icon Types.r Editor

'SIGN' ? ----- Template

'SIZE' MultiFinder size information Types.r Template

'snd' Sound SysTypes.r ----- (player)

'STR' Pascal-style string Types.r Template

'STR#' Pascal-style string list Types.r Template

'styl' Style information for TextEdit ----- Editor

'TEXT' Unlabeled string ----- Template, Editor

'tlst' Title list ----- -----

'TMPL' ResEdit template ----- Template

'vers' Version SysTypes.r Template

'view' MacApp view resource ViewTypes.r (ViewEdit, not
ResEdit)

'wctb' Window color look-up table Types.r Template

'WDEF' Code for drawing windows ----- -----

'WIND' Window template Types.r Template, Editor

'wstr' Query string used by 'qrsc' resource ----- Template

Table C-1 Resource types defined for Rez and ResEdit

Type Definition Rez ResEdit

A P P E N D I X D

141

The Macintosh Character Set D

This appendix contains a chart (Figure D-1) that displays the regular character set for
Macintosh fonts. The first 128 characters correspond to the standard ASCII character
set. Please remember that not all fonts for the Macintosh have these standard characters
in them. Specific examples are Symbol and ITC Zapf Dingbats: there are also many
pictorial fonts available as bitmaps for dot-matrix printing.

Figure D-1

Macintosh character set

Figure D-0
Listing D-0
Table D-0

0
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

1 2 3 4 5 6 7 8 9 A B C D E F
..

..

~

`

..

~

`

..

†

°

¢

£

§

•

¶

ß

®

©

™

´

¨

Æ

Ø

±

¥

µ

ª

º

æ

ø

¿

¡

¬

ƒ

~

…

A

A

O

Œ

œ

~

nbsp`

~

~

-

—

“

”

‘

’

÷

y

Ÿ

/

¤

fi

fl

‡

˙

‚

„

‰

Â

Ê

Á

Ë

È

Í

Î

Ï

Ì

Ó

Ô

Ò

Ú

Û

Ù

ı

ˆ

˜

¯

˘

·

°

ˆ

sp

del

nbsp

The shaded characters cannot normally be generated

from the Macintosh keyboard or keypad.

Space

Delete —

nonbreaking space (Option-Space on U.S. keyboard)

The key labeled Delete on the U.S. keyboard actually

generates backspace (08) character.

`

≠

<

>

∂

π

≥

≥

∑

∏

Ω

ƒ

◊

″

∨ ∨

∨∨ ..

∨

∨

∇

√

nul dle

soh

stx

etx

eot

enq nak

ack syn

bel etb

bs can

ht em

lf sub

vt esc

ff fs

cr gs

so rs

si us

sp P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

`

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

del

`

~

..

..

`

`

..

~

`

`

Â

A

Å

Ç

E

N

O

U

a

a

a

a

a

å

ç

e

e

Â

`

Âe

e

i

i

i

n

o

o

o

o

o

u

u

u

u

`

`

Âl
..

Âu

Thi d t t d ith F M k 4 0 4

143

Index

1)***** 81

A

@ABCD 96

AbleMenu

 procedure 115

Abort

 procedure 114

'actb'

 resource type 47
Align To Grid 54

AlreadyOpen

 function 105
ALRT menu 49, 51

'ALRT'

 resource editor 46–52

'ALRT'

 resource type 46, 54, 85
Application Memory Size 84
ascent 44
ASCII character set 44
Auto Position 49

B

Background menu 61
Balloon Help 55
bit editor 3, 26
bit editors 85
Blend 61

'BNDL'

 resource editor 57–60, 132

'BNDL'

 resource type 57, 131

BubbleUp

 procedure 115

BuildType

 function 122
Bundle bit 15, 58, 133

C

CallDoEvent

 procedure 114

CallInfoUpdate

 procedure 114

'CDEV'

 resource type 133

CenterDialog

 procedure 115
character-editing panel 43
characters

Option-space 2
unprintable 2

character-selection panel 44

character set
ASCII 44
Macintosh 2, 44

CheckError

 function 115

ChooseIcon

 function 115
cicn menu 32

'cicn'

 resource editor 32–33

'cicn'

 resource type 3, 32
Clear 20
Close 13

CloseNoSave

 function 112
clut menu 61

'clut'

 resource editor 60–61

'clut'

 resource type 3, 28, 60

'cmnu'

 resource editor 69

'cmnu'

 resource type 69
CMY Model 61

'CNTL'

 resource type 53

'CODE'

 resource type 2, 18, 94

ColorAvailable

 function 116
color-dropper tool 27
color-dropper tool 33
Color menu 28

ColorPalettePopupSelect

function 120

color table record 43
commands, menu.

See

 individual
command name

Complement 61

CompressedResource

function 122

ConcatStr

 procedure 116
Convert To Dead Key 68
Copy 19
corrupted resource 9
crsr menu 31

'crsr'

 resource type 3
CURS menu 31

'CURS'

 resource editor 30

'CURS'

 resource type 3, 30
Cut 19

D

damaged resource 9
data fork 2, 12

'dctb'

 resource type 47

DefaultListCellSize

function 110

default System font 42

DeinstallColorPalettePopup

procedure 121

DeRez 5
descent 44
Desktop file 11

rebuilding 59
dialog box 4

User Items in 53
dialog item list 52
Dialog Manager 53

DisplayAlert

 function 116

DisplaySTRAlert

 function 116
DITL menu 54

'DITL'

 resource editor 22, 52–57,
85, 94

'DITL'

 resource type 3, 46, 52, 56,
84, 85

associated with

'ALRT'

 or

'DLOG'

47
DLOG menu 49, 51

'DLOG'

 resource editor 46–52

'DLOG'

 resource type 3, 46, 54, 84,
85

DoEvent

 procedure 96, 97, 101

DoInfoUpdate

 procedure 102

DoKeyScan

 procedure 122

DoMenu

 procedure 97, 102

DoPickBirth

 function 110

DoPopup

 procedure 121

DrawColorPopup

 procedure 121

DrawLDEF

 procedure 110

DrawMBarLater

 procedure 117

DrawPopup

 procedure 121

DrawResource

 procedure 110

'DRVR'

 resource type 22
Duplicate 20
Duplicate Table 68

DupPick

 function 122

E

EditBirth

 procedure 97, 101,
103, 113

Edit Dead Key... 68

Thi d t t d ith F M k 4 0 4

I N D E X

144

Edit menu 16
editors

'ALRT'

46–52
bit 26, 85

'BNDL'

57–60, 132

'cicn'

32–33

'clut'

60

'CMNU'

69

'cmnu'

69

'CURS'

30

'DITL'

22, 52–57, 85, 94

'DLOG'

46–52
Finder icon family 33

'FONT'

42–44
hexadecimal 2

'ICN#'

 35

'ICON'

35
'INTL' 62–63
'itl0' 62–63
'itl1' 62–63
'KCHR' 63–69
'KCHR' dead-key 63
'MENU' 69
'PAT ' 39–40
'pltt' 60–61
'ppat' 40
'SICN' 37
template 3
'TEXT '/'styl' 73–74
upgrading 97–100
'vers' 74
'WIND' 46–52

EditorWindSetup function 106
eraser tool 27
extensibility of ResEdit 4

F

'fctb' resource type 43
File attributes 15
File Busy bit 15
file info box

settable flags 15
File Locked bit 15
File menu 12–16
File Protected bit 15
files

Desktop 11
ICON.LDEF 95
ICON.Pick 95
ResEdit Preferences 28, 39, 81, 85
Resedit Preferences 96
Types.R 133
XXXX.Edit 95

file type 57, 132
file window 11
Finder 11, 87
Finder Flags 15
Finder icon family 33
Finder icon family resource

editor 33
FindOwnerWindow function 117
FixHand procedure 117
FlashDialogItem procedure 117
FloatingWindowSetup

function 106
folder icon 36
'FOND' resource type 42
Font/DA Mover 42, 43
Font Manager 43
FONT menu 68
'FONT' resource editor

ascent of character 44
descent of character 44

'FONT' resource editor 42–44
'FONT' resource type 23, 42
fork

data 2
resource 2

FrameDialogItem procedure 117
'FREF' resource type 57, 131
functions
AlreadyOpen 105
BuildType 122
CheckError 115
ChooseIcon 115
CloseNoSave 112
ColorAvailable 116
ColorPalettePopupSelect

120
CompressedResource 122
DefaultListCellSize 110
DisplayAlert 116
DisplaySTRAlert 116
DoPickBirth 110
DupPick 122
EditorWindSetup 106
FindOwnerWindow 117
FloatingWindowSetup 106
GetQuickDrawVars 118
GetResEditScrapFile 122
GetSScreenRect 118
GetType 123
HandleCheck 118
IsThisYours 98
MapResourceType 123
NeedToRevert 112
PickerWindSetup 107

PickStdHeight 111
PickStdWidth 111
PlaySyncSound 123
PrintSetup 119
REAddNewRes 108
REBeautifulUnique1ID 108
RECount1Resources 108
RECount1Types 108
REGet1IndResource 108
REGet1NamedResource 109
REGet1Resource 109
REGet1ResourceSpecial 109
RENewUniqueRes 109
ResEdID 119
ResEditRes 123
RestoreRemovedResources 1

23
RevertThisResource 110
StandardFilter 120
SysResFile 124
WasAborted 120
WasItLoaded 112
WindAlloc 107
WindList 124

G

general editor. See hexadecimal
editor

GetErrorText procedure 122
Get File/Folder Info 14
Get Info for This File 13
Get Info window 18
GetNamedStr procedure 117
GetNewDialog 96
GetQuickDrawVars

procedure 118
GetResEditScrapFile

function 122
GetStr function 118
GetStr procedure 118
GetType function 123
GetWindowTitle procedure 106
GiveEBirth procedure 112
GiveSubEBirth procedure 113
GiveThisEBirth procedure 113
graphical resource editor 26
graphic resource 4
graphics tools panel 44
Grid Settings 54
GrowMyWindow procedure 111

I N D E X

145

H

HandleCheck procedure 118
hardware requirements xi
hexadecimal editor 4, 46
HLS Model 61
HSB Model 61

I, J

'icl4' resource type 3, 33
'icl8' resource type 3, 33
'ICN#' resource editor 33
'ICN#' resource picker 19
'ICN#' resource type 3, 35
icon 4
ICON.LDEF file 95
Icon menu 34
ICON.Pick file 95
'ICON' resource editor 35
'ICON' resource type 3, 27, 35, 53
icons

folder 36
monochrome 34
Trash 36

Icons menu 34
Icon Vert. phase 89
'ics4' resource type 3, 33
'ics8' resource type 3, 33
'ics#' resource type 3, 33
ID number

local 131
resource 131

ID number restriction 22
Inited bit 58
'INIT' resource type 133
Insert 37
InstallColorPalettePopup

procedure 121
'INTL' resource editor 62–63
'INTL' resource type 62
IsThisYours function 98
'itl0' resource editor 62–63
'itl0' resource type 62
'itl1' resource editor 62–63
'itl1' resource type 62

K

'KCHR' dead-key editor 63
KCHR menu 67, 91
'KCHR' resource editor 63–69

'KCHR' resource type 63, 91–92,
127–129, 133

'KCHR' with Macintosh SE,
Macintosh Plus, or Macintosh
512K enhanced 69

'KMAP' resource type 127

L

lasso tool 27
'LAYO' resource type 4, 76, 87
'LDEF' resource type 94
list separator 81
Load Colors 61
local ID number 131

M

MacApp
permanent menu 69
temporary menu 69

Macintosh character set 2, 44
Macintosh Programmer’s

Workshop 5
MapResourceType function 123
marquee tool 27
mask 34
'MBAR' resource type 87
'mctb' resource type 69
'MDEF' resource type 73
'MDPL' resource type 11, 84
memory requirements xi
'MENU' resource editor 69
'MENU' resource ID 87
'MENU' resource type 69
menus

ALRT 49, 51
Background 61
cicn 32
clut 61
Color 28
crsr 31
CURS 31
DITL 54
DLOG 49, 51
Edit 16
File 12–16
FONT 68
Icon 34
Icons 34
KCHR 67, 91

MiniScreen 46
PAT 38
pltt 61
ppat 38
ppt# 38
Resource 16
SIZE 69
Sort 61
Style 70
Transform 28
View 20–22
WIND 49, 50
Window 20

MetaKeys procedure 118
MiniScreen menu 46
monochrome icon 34
MPW DeRez command 79
MPW resource compiler and

decompiler 5
MultiFinder 11, 87

N

NeedToRevert function 112
Never Use Custom 'WDEF' for

Drawing 50, 52
New 12
New Table 68
'NFNT' resource type 2, 42
NoDoubleClickHere

procedure 112

O

Open 12
Open Special 12
Open Using Template 20
Option key 46, 53
Option-space character 2

P

Page Setup 14
paint bucket tool 27
ParamText procedure 56
PassEvent procedure 114
PassMenu procedure 114
Paste 19
PAT menu 38

I N D E X

146

'PAT ' resource editor 39–40
'PAT ' resource type 3, 38, 39
pencil tool 27
PickBirth procedure 101
picker record definition 104
pickers 94
'ICN ' 19
'PICT' 85

PickerWindSetup function 107
PickEvent procedure 101, 111
PickInfoUp procedure 111
PickMenu procedure 111
'PICK' resource type 95, 97, 100
PickStdHeight function 111
PickStdWidth function 111
pictorial resource 3
pictorial resource editor 26
Pictorial resource type 26
'PICT' picker 85
'PICT' resource type 11, 27, 53,

77, 84, 85
Pig mode 86
pixel editor 26
PlaySyncSound function 123
pltt menu 61
'pltt' resource editor 60–61
'pltt' resource type 3, 60
PostRez 69
ppat menu 38
'ppat' resource editor 40
'ppat' resource type 3, 38, 40
ppt menu 38
'ppt#' resource editor 38, 41
'ppt#' resource type 41
Preferences 14

storing 125
'PREF' resource type 125
Preview at Full Size 49
Print 14
Printer Driver Is MultiFinder

Compatible bit 15
PrintSetup function 119
PrintWindow procedure 119
procedures
AbleMenu 115
Abort 114
BubbleUp 115
CallDoEvent 114
CallInfoUpdate 114
CenterDialog 115
ConcatStr 116
DeinstallColorPalettePopup

121
DoEvent 96, 97, 101
DoInfoUpdate 102

DoKeyScan 122
DoMenu 97, 102
DoPopup 121
DrawColorPopup 121
DrawLDEF 110
DrawMBarLater 117
DrawPopup 121
DrawResource 110
EditBirth 97, 101, 103, 113
FixHand 117
FlashDialogItem 117
FrameDialogItem 117
GetErrorText 122
GetNamedStr 117
GetStr 118
GetWindowTitle 106
GiveEBirth 112
GiveSubEBirth 113
GiveThisEBirth 113
GrowMyWindow 111
InstallColorPalettePopup

121
MetaKeys 118
NoDoubleClickHere 112
ParamText 56
PassEvent 114
PassMenu 114
PickBirth 101
PickEvent 101, 111
PickInfoUp 111
PickMenu 111
PrintWindow 119
REAddResource 108
REGet1IndType 109
RERemoveAnyResource 109
ResourceIDHasChanged 123
ScrapCopy 123
ScrapEmpty 124
SendRebuildToPicker 124
SendRebuildToPickerAndFile

124
SetETitle 107
SetResChanged 112
SetTheCursor 119
ShowInfo 120
TypeToString 120
UseAppRes 120
WindOrigin 124
WindReturn 107
WritePreferences 125

Q

Quit 15

R

RAM requirements xi
REAddNewRes function 108
REAddResource procedure 108
REBeautifulUnique1ID

function 108
rebuilding a Desktop file 59
RECount1Resources

function 99, 108
RECount1Types function 99, 108
REGet1IndResource

function 99, 108
REGet1IndType procedure 99,

109
REGet1NamedResource

function 99, 109
REGet1Resource function 99, 109
REGet1ResourceSpecial

function 99, 109
Relative Patterns 38
Remove Dead Key 68
Remove Duplicate Tables 68
Remove Unused Tables 68
RENewUniqueRes function 109
Renumber Items 54
RERemoveAnyResource

procedure 109
ResEd 4, 96
ResEdID function 119
ResEdit Preferences file 28, 39, 81,

85, 96
ResEditRes function 123
resource 4
resource file checking 9
resource fork 2
ResourceIDHasChanged

procedure 123
resource ID number 22, 131
Resource Map Is Read Only bit 15
Resource menu 16
resource picker 19
resources 2

corrupted 9
damaged 9
pictorial 3
signature 59

resource type name 2

I N D E X

147

resource types 19
'actb' 47
'ALRT' 46, 54, 85
'BNDL' 57, 131
'CDEV' 133
'cicn' 3, 32
'clut' 3, 28, 60
'cmnu' 69
'CNTL' 53
'CODE' 2, 18, 94
'crsr' 3
'CURS' 3, 30
'dctb' 47
'DITL' 3, 46, 52, 56, 84, 85
'DLOG' 3, 46, 54, 84, 85
'DRVR' 22
'fctb' 43
'FOND' 42
'FONT' 23, 42
'FREF' 57, 131
'icl4' 3, 33
'icl8' 3, 33
'ICN#' 3, 35
'ICON' 3, 27, 35, 53
'ics#' 3, 33
'ics4' 3, 33
'ics8' 3, 33
'INIT' 133
'INTL' 62
'itl0' 62
'itl1' 62
'KCHR' 63, 91–92, 127–129, 133
'KMAP' 127
'LAYO' 4, 76, 87
'LDEF' 94
'MBAR' 87
'mctb' 69
'MDEF' 73
'MDPL' 11, 84
'MENU' 69
'NFNT' 2, 42
'PAT#' 3, 38, 39
'PICK' 95, 97, 100
'PICT' 11, 27, 53, 77, 84, 85
'pltt' 3, 60
'ppat' 3, 38, 40
'ppt#' 3, 38, 41
'PREF' 125
'RMAP' 33, 86
'RSSC' 94, 96, 103
'SICN' 3, 37, 71
'STR#' 56, 78
'styl' 3, 73
'TEXT' 73
'TMPL' 76, 78

'vers' 3, 42, 60, 74
'wctb' 47
'WIND' 46

RestoreRemovedResources
function 123

Revert File 13
RevertThisResource

function 110
Rez 5
RGB Model 61
'RMAP' resource type 33, 86
ROM requirements xi
'RSSC' resource type 94, 96, 103

S

sample text panel 44
Save 13
ScrapCopy procedure 123
ScrapEmpty procedure 124
Select Item Number 54
SendRebuildToPickerAndFile

procedure 124
SendRebuildToPicker

procedure 124
Set 'ALRT' Stage Info 51
Set 'DLOG' Characteristics 51
SetETitle procedure 107
Set Item Number 54
SetResChanged procedure 112
SetTheCursor procedure 119
Set 'WIND' Characteristics 50
Show All Items 55
Show Bottom & Right 50
Show Height & Width 49
ShowInfo procedure 120
Show Item Numbers 54
'SICN' resource editor 37
'SICN' resource type 3, 37, 71
signature resource 59
SIZE menu 69
software requirements xi
Sort menu 61
StandardFilter function 120
storing preferences 125
straight quotation mark 2
'STR#' resource type 56, 78
Style menu 70
'styl' resource type 3, 73
Subeditor 94, 113
SysResFile function 124

T

template 3, 4, 20
template editor 3
'TEXT' resource type 73
'TEXT'/'styl' resource

editor 73–74
'TMPL' resource type 76, 78
tools

color-dropper 27, 33
eraser 27
lasso 27
marquee 27
paintbucket 27
pencil 27

Transform menu 28
Trash icon 36
Try Pointer 31
type checking 80
Types.R file 133
TypeToString procedure 120

U

Uncouple Modifier Keys 67
Undo 19
unprintable character 2
UseAppRes procedure 120
Use Color Picker 50
Use Item’s Rectangle 55
USES declaration 96

V

Verify Resource File 10, 14
'vers' resource editor 74
'vers' resource type 3, 42, 60, 74
View As... 55, 67
View menu 20–22

W

WasAborted function 120
WasItLoaded function 112
'wctb' resource type 47
WindAlloc function 107
WindList function 124
WIND menu 49, 50
WindOrigin procedure 124

I N D E X

148

Window menu 20
windows

file 11
Get Info 18

'WIND' resource editor 46–52
'WIND' resource type 46
WindReturn procedure 107
WritePreferences

procedure 125

X, Y, Z

XXXX.Edit file 95

	ResEdit Reference
	Contents
	Figures and Tables
	About This Book
	Prerequisites
	What This Manual Contains
	How to Use This Manual
	Conventions Used in This Book
	Graphics
	Where to Get Information
	About APDA

	ResEdit Overview
	Resources
	New and Changed Resource Editors in ResEdit 2.1

	Editing Resources in ResEdit
	Uses
	Extensibility
	The Resource Development Cycle

	Getting Started
	Invoking ResEdit
	Working With Files
	Resource Checking
	Opening a File

	Menus in ResEdit
	The File Menu
	File Information

	The Edit Menu
	The Resource Menu
	The Window Menu
	The View Menu

	Starting an Editor
	Resource ID Numbers

	The Bit Editors
	Overview of the Bit Editors
	Tools
	Menus
	The Transform Menu
	The Color Menu

	Editing Cursors
	Editing Icons
	Editing 'cicn' Resources
	The cicn Menu
	Creating New Color Icons

	Finder Icons
	The Icon Menu

	'ICON' Resources
	'ICN# ' Resources

	List Resources
	'SICN' Resources

	Editing Patterns
	Relative Patterns
	Custom Patterns
	'PAT' Resources
	'PAT# ' Resources
	'ppat' Resources
	'ppat' Relative Patterns

	'ppt# ' Resources
	Desktop Pattern Lists
	'ppt# ' Relative Patterns

	'FONT' Resources
	Editing 'FONT' Resources

	Other Resource Editors
	Using the Hexadecimal Editor
	'WIND', 'ALRT', and 'DLOG' Resources
	'DITL' Resources
	'BNDL' Resources
	'clut' and 'pltt' Resources
	'INTL', 'itl0', and 'itl1' Resources
	'KCHR' Resources
	The Main 'KCHR' Editor
	The Character Chart
	The Table Chart
	The Virtual Keycode Chart
	The Keyboard Region
	The Information Region

	Editing Dead Keys
	The Dead- Key Editor
	The Character Chart
	The Nomatch Character
	The Completion and Substitution Character Pair List
	The Trash
	The Information Region

	The Menus
	The KCHR Menu
	The Font Menu
	The Size Menu

	'MENU' Resources
	'TEXT' and 'styl' Resources
	'vers' Resources

	ResEdit Templates
	Template Characteristics
	Editing
	'PICT' Editing

	Creating New Templates
	Template Example

	ResEdit Tips
	Hints and Kinks
	The 'LAYO' Resource
	'KCHR' Questions and Answers

	The Programmatic Interface
	Pickers and Editors
	Code- Containing Resources in the ResEdit Release
	Samples
	Sample Editor
	Sample Picker
	Sample LDEF

	Building the Examples

	Using ResEd
	Writing a ResEdit Extension
	ResEdit Menus
	Pickers
	ResEdit 2.0 Changes
	ResEd Changes for the 2.0 Release
	ResEdit 2.1 changes
	Required Routines

	The ResEd Interface
	Data Structures
	The Parent Record
	The Picker Record

	Other Routines
	Window Utilities
	Extended Resource Manager
	Routines Used by Pickers
	Routines Used by Editors
	Routines Used to Start Pickers and Editors
	Routines Used to Feed Events and Menus to the Appropriate Picker or Editor
	Miscellaneous Utilities
	Pop- up Menus
	Internal Routines

	The 'KCHR' Resource
	Basic Theory of Keyboard Operation
	Generating the Virtual Keycode
	Exceptions to the Rule

	Generating the Character Code
	Dead Keys

	The Structure of a 'KCHR' Resource

	The 'BNDL' Resource
	The Structure of a 'BNDL' Resource
	Definitions of the 'BNDL' and 'FREF' Resources

	Resource Types Defined for Rez and ResEdit
	The Macintosh Character Set
	Index

