ResEdit Reference

For ResEdit 2.1

Developer Press
0 Apple Computer, Inc. 1995

Apple Computer, Inc.

01991, 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.

1 Infinite Loop

Cupertino, CA 95014

408-996-1010

Apple, the Apple logo, APDA,
AppleLink, HyperCard, Macintosh,
MPW, and MultiFinder are trademarks
of Apple Computer, Inc., registered in
the United States and other countries.
Finder and ResEdit are trademarks of
Apple Computer, Inc.

Adobe Illustrator and Adobe
Photoshop are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a registered service
mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.

Internet is a trademark of Digital
Equipment Corporation.

MacDraw is a trademark of Claris
Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS 1S,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Preface

Contents

Figures and Tables vii

About This Book xi

Chapter 1

Prerequisites xi

What This Manual Contains xi

How to Use This Manual xii

Conventions Used in This Book xii

Graphics xii

Where to Get Information xiii
About APDA xiii

ResEdit Overview 1

Chapter 2

Resources 2
New and Changed Resource Editors in ResEdit 2.1
Editing Resources in ResEdit 3
Uses 4
Extensibility 4
The Resource Development Cycle 5

Getting Started 7

Invoking ResEdit 8
Working With Files 9
Resource Checking 9
Opening a File 10
Menus in ResEdit 12
The File Menu 12
File Information 15
The Edit Menu 16
The Resource Menu 16
The Window Menu 20
The View Menu 20
Starting an Editor 22
Resource ID Numbers 22

iii

Chapter 3 The Bit Editors 25
Overview of the Bit Editors 26
Tools 27
Menus 28
The Transform Menu 28
The Color Menu 28
Editing Cursors 30
Editing Icons 32
Editing 'cicn' Resources 32
The cicn Menu 32
Creating New Color Icons 33
Finder Icons 33
The Icon Menu 34
'TCON' Resources 35
'TCN#' Resources 36
List Resources 37
'SICN' Resources 37
Editing Patterns 38
Relative Patterns 38
Custom Patterns 39
'PAT' Resources 39
'PAT#' Resources 40
‘ppat' Resources 40
‘ppat’ Relative Patterns 41
"ppt#' Resources 41
Desktop Pattern Lists 41
"ppt#' Relative Patterns 41
'FONT' Resources 42
Editing 'FONT' Resources 43
Chapter 4 Other Resource Editors 45

iv

Using the Hexadecimal Editor 46
'WIND', 'ALRT', and 'DLOG' Resources 46
'‘DITL' Resources 52
'‘BNDL' Resources 57
‘clut’ and 'pltt' Resources 60
'INTL', 'itl0’, and 'itl1' Resources 62
'KCHR' Resources 63
The Main 'KCHR' Editor 63
The Character Chart 63
The Table Chart 64
The Virtual Keycode Chart 64
The Keyboard Region 65
The Information Region 65

Editing Dead Keys 65
The Dead-Key Editor 66
The Character Chart 66
The Nomatch Character 66
The Completion and Substitution Character Pair List
The Trash 67
The Information Region 67
The Menus 67
The KCHR Menu 67
The Font Menu 68
The Size Menu 69
'MENU' Resources 69
'TEXT" and 'styl' Resources 73
'vers' Resources 74

Chapter 5 ResEdit Templates 75

66

Template Characteristics 76
Editing 77
PICT' Editing 77
Creating New Templates 78
Template Example 78

Chapter 6 ResEdit Tips 83

Hints and Kinks 84
The '"LAYO' Resource 87
'KCHR' Questions and Answers 91

Chapter 7 The Programmatic Interface 93

Pickers and Editors 94
Code-Containing Resources in the ResEdit Release =~ 94
Samples 94
Sample Editor 95
Sample Picker 95
Sample LDEF 95
Building the Examples 95
Using ResEd 96
Writing a ResEdit Extension 96
ResEdit Menus 97
Pickers 97
ResEdit 2.0 Changes 97

ResEd Changes for the 2.0 Release 98

ResEdit 2.1 changes 99

Required Routines 101

The ResEd Interface 102

Data Structures 103
The Parent Record 103
The Picker Record 104

Other Routines 105
Window Utilities 105
Extended Resource Manager 108
Routines Used by Pickers 110
Routines Used by Editors 112
Routines Used to Start Pickers and Editors 112

Routines Used to Feed Events and Menus to the Appropriate

Picker or Editor 114
Miscellaneous Utilities 114
Pop-up Menus 120
Internal Routines 122

Appendix A The 'KCHR' Resource 127
Basic Theory of Keyboard Operation 127
Generating the Virtual Keycode 127
Exceptions to the Rule 127
Generating the Character Code 127
Dead Keys 127
The Structure of a 'KCHR' Resource 128
Appendix B The 'BNDL' Resource 131
The Structure of a BNDL' Resource 131
Definitions of the BNDL' and 'FREF' Resources 133
Appendix C Resource Types Defined for Rez and ResEdit 135
Appendix D The Macintosh Character Set 141

Index 143

vi

Chapter 2

Chapter 3

Figures and Tables

Getting Started

7

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19

The Bit Editors

ResEdit’s startup display 8

ResEdit File Open dialog box 9

Add Resource Fork alert box 10

A ResEdit 2.1 file window 11

File menu 12

Open Special dialog box 13

A File Info window 13

A Folder Info window 14

Preferences dialog box 15

Edit menu 16

File window Resource menu with * BNDL' type selected
The Resource menu with a picker open 17

There is no template for ' CODE' resources 18
An ' | CN#' Get Info window 18

Aresource type window (with custom picker) 19
The Window menu 20

The View menu and a ResEdit 2.1 file window 21
The View menu and a resource type window 21
Showing type attributes 22

25

16

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17

Bit editor window layout 26
The Transform menu 28
The Color menu 29

' CURS' resource editor 31
Color cursor editing: mask examples 31
Color icon editor 32

Finder icon family editor 34
Icon menu 35

' | CON' resource editor 35
" | CN#' resource editor 36
' SI CN' resource editor 37
Pattern Size dialog box 38

" PAT' resource editor 39

' PAT#' resource editor 40
' ppat' resource editor 40
ppt #' resource editor 41
' FONT' resource editor 43

vii

Chapter 4

Chapter 5

viii

Other Resource Editors 45

Figure 4-1 "W ND' resource editor 47
Figure 4-2 MiniScreen menu 47

Figure 4-3 " ALRT" resource editor 48
Figure 4-4 ' DLOG resource editor 49
Figure 4-5 WIND menu 49

Figure 4-6 Setting ' W ND' characteristics 50
Figure 4-7 ALRT menu 50

Figure 4-8 " ALRT" Stage Info dialog box 51
Figure 4-9 DLOG menu 51

Figure 4-10 Setting ' DLOG characteristics 52
Figure 4-11 ' DI TL' resource editor 53
Figure 4-12 "DI TL' item editor 53

Figure 4-13 DITL menu 54

Figure 4-14 DITL menu View As dialog box 55
Figure 4-15 Alignment menu 56

Figure 4-16 Special parameter strings 56
Figure 4-17 ' BNDL' resource editor, simple view 57
Figure 4-18 The Icon chooser 58

Figure 4-19 ' BNDL' resource editor, extended view 59
Figure 4-20 "clut' resource editor 60
Figure 4-21 clut menu 61

Figure 4-22 Editingan'itl 0" resource 62
Figure 4-23 Editingan'itl 1" resource 62
Figure 4-24 Editing a' KCHR' resource 63
Figure 4-25 Editing a dead key 66

Figure 4-26 The KCHR menu 67

Figure 4-27 Dead Key Edit Dialog Box 68
Figure 4-28 ' MENU' resource editor 69
Figure 4-29 " MENU line item edit 70

Figure 4-30 ' MENU Mark pop-up menu 71
Figure 4-31 ' MENU' Icon Chooser dialog box 71
Figure 4-32 Editing a' crmu' resource 72
Figure 4-33 ' MENU ID dialog box 73

Figure 4-34 " TEXT' and' styl' editor 73
Figure 4-35 Editing a' vers' resource 74

ResEdit Templates 75

Figure 5-1 The template editor for ' Pl CT' 77
Figure 5-2 " TMPL' definition for type ' STR#' 78
Figure 5-3 ' STR#' template in use 79

Chapter 6

Appendix A

Appendix B

Appendix C

Appendix D

ResEdit Tips 83

Figure 6-1 ' RMAP' resource 86

Figure 6-2 ' LAYO template, view 1 87
Figure 6-3 ' LAYO template, view 2 88
Figure 6-4 ' LAYO template, view 3 89
Figure 6-5 ' LAYO template, view 4 89
Figure 6-6 ' LAYO template, view 5 90

The 'KCHR' Resource 127

Figure A-1 Modifier flag high byte 129

The 'BNDL' Resource 131

Figure B-1 Six resources and their relationships 132

Resource Types Defined for Rez and ResEdit 135

Table C-1 Resource types defined for Rez and ResEdit

The Macintosh Character Set 141

135

Figure D-1 Macintosh character set 141

ix

PREFAUCE

About This Book

Prerequisites

ResEditH , an extensible stand-alone resource editor for the Macintosh™
computer, is a powerful tool you can use to speed your software development
process and to create icons, menus, and other resources for Macintosh
programs and files. This manual is a complete reference to ResEdit that
includes introductions to the various resource type editors included in the
program and a discussion of the framework that is provided so that you can
extend the capabilities of the program by adding your own resource pickers
and editors.

To run ResEdit 2.1, the system you use must have at least 128 kilobytes of
ROM and at least 1 megabyte of RAM memory. That is, ResEdit 2.1 doesn't
run on the Macintosh Plus or earlier machines.

ResEdit 2.1 works with system software version 6.0 and later. ResEdit is
compatible with (but does not require) 32-bit QuickDraw[] .

What This Manual Contains

Chapter 1 introduces the concepts behind ResEdit, starting with an overview
of Macintosh resources. Chapter 2 tells you about the user interface. Chapter 3
discusses the editors in ResEdit that handle various kinds of bitmap resources
(cursors, icons, and so on), and Chapter 4 discusses the other built-in editors.
Chapter 5 describes template editing and tells you how to build your own
templates. Chapter 6 contains “hints and kinks” — useful information that
will help you make efficient use of ResEdit. Chapter 7 describes the
programmatic interface to ResEdit and tells you what you need to know to
write your own picker or editor. Appendix A describes the inner workings of
the ' KCHR' editor, Appendix B describes the inner workings of the ' BNDL'
resource, Appendix C lists a number of extant resource types, and Appendix
D is a chart of the regular Macintosh character set.

xi

PREFAUCE

How to Use This Manual

If you have used previous versions of ResEdit, you will probably want to take
a quick look at Chapter 2, which describes the user interface in some detail.
The interface has been changed in version 2.0 and, to a lesser extent, in
version 2.1.

If you have never used ResEdit, you should probably read Chapters 1 and 2
and look over the rest of the book. Use the program for a while, and then look
at the book again. It will probably make a lot more sense after you've actually
played with ResEdit.

Conventions Used in This Book

Graphics

The following visual cues are used throughout this book to identify different
types of information:

Note

A note like this contains information that is interesting but not essential
for an understanding of the main text. O

IMPORTANT
A note like this contains information that is essential. a

WARNING
A warning like this indicates potential problems. a

This manual uses cour i er type to represent code fragments and the names
of procedures.

xii

Most of the artwork in this book is taken directly from Macintosh screens.
Some illustrations show a condensed version of the screen with a sequence of
windows or some particular feature (such as a menu) evident. Others show
only an active window or an alert or dialog box.

PREFAUCE

Where to Get Information

AppleD technical books published by Addison-Wesley, such as Inside
Macintosh, are available at commercial bookstores. Books and manuals
published by Apple are available through APDAD, the Apple Programmers
and Developers Association, at the address listed in the next section. Technical
notes and other materials of interest to Macintosh application developers are
also available from APDA.

About APDA

APDA is Apple’s worldwide source for hundreds of development tools,
technical resources, training products, and information for anyone interested
in developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and
the most popular third-party development tools. APDA offers convenient
payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

xiii

CHAPTER 1

ResEdit Overview

CHAPTER 1

ResEdit Overview

This chapter introduces the concept of resources as they are handled on the Macintosh"
computer, and introduces ResEdit, an interactive, graphics-oriented application for
manipulating resources in Macintosh files. Some Macintosh files don’t contain any
resources, but all applications and most of the System Folder files do.

Resources

One of the differences between Macintosh computers and other computers is the way
Macintosh machines handle resources (typefaces, icons, dialog boxes, and so on). In
the Macintosh world, resources are distinct from data (for example, the text in a
word-processing file). The Macintosh does not insist that resources reside in a central
pool; they may be placed in any file.

In most computers, a file consists of a sequence of bytes, perhaps beginning with a
header that contains some information about the structure of the data contained in the
file, and possibly ending with some sort of trailer. In any case, the file is one sequence of
bytes. In the Macintosh world, by contrast, the file structure is designed to include two
sequences of bytes, a data fork and a resource fork. Any file may contain only a data
fork, only a resource fork, or both. Although a plain HyperCard stack, for example, has
only data in it, people commonly add icons and sounds to their stacks, creating resource
forks for those stacks in the process.

Resources are classified by type. Each type has its own name, which consists of exactly
four characters. Any characters in the Macintosh character set can occur in resource type
names, even unprintable ones, but typically they consist of lower and uppercase letters,
numerals, punctuation marks, and the space and Option-space characters. In this book,
resource type names are surrounded by single straight quotation marks (for example,
"it10").If you see a name that appears to be shorter than four characters (for example,
"snd'), the empty slots are probably filled with spaces. Some resource types are named
and described in Appendix C. There are many different types of resources, and you can
create your own resource types with ResEdit if you don’t find the type you need.

Note

Apple Computer, Inc., reserves all names that don’t contain any
uppercase letters. Any combination with at least one uppercase letter in
it is yours to use, though it is a good idea to avoid using any resource
type name that you know someone else has already used. O

Another feature of this system is that code is regarded as a resource. It even has its own
resource type name (very straightforwardly, ' CODE'). Any application, then, must have
a resource fork, which is where its code resides, along with various other resources, such
as menus.

ResEdit lets you copy and paste all resource types and lets you edit many of them.

(" NFNT" is an exception and is discussed briefly in the section on' FONT' editing in
Chapter 3.) ResEdit actually includes a number of different resource editors: There is a
general resource editor for editing any resource in hexadecimal and ASCII formats, and
there are individual resource editors for various specific resource types. There is also a

2 Resources

CHAPTER 1

ResEdit Overview

template editor which lets you edit some kinds of resources in a dialog box format, with
fields that you can fill in as appropriate. There are predefined templates for quite a few
resources already built into ResEdit, and you can create others. For further information
on template editing and on generating your own templates, see Chapter 5.

New and Changed Resource Editors in ResEdit 2.1

ResEdit 2.1 includes new editors for the following resource types:

= 'crsr' Color cursors

= 'clut’ and' pltt"' Color lookup tables, palettes

= 'ppat’ and' ppt #'Color patterns and pattern lists
s 'styl' /' TEXT' Styled text

m 'vers' Version resource

The editors for the following resource types have been changed:

"DITL Dialog item list

' DLOG Dialog box

' PAT black-and-white pattern

' PAT#' black-and-white pattern list

" | CON Icons (for instance, HyperCard icons)
1 CN# Icons (original Finder icons)

" SICN Small icons

" QURS black-and-white cursors

‘cicn’ Color icons

Finder” icon suite (includes' ICN#' ,"icl4',"icl8' ,"ics#,'ics4',and
'i cs8' resources).

Editing Resources in ResEdit

ResEdit provides three kinds or categories of resource editors: individual editors, a
template editor, and a hexadecimal editor.

Individual resource editors are described in some detail in Chapters 3 and 4. Several of
the resources (' CURS',' FONT' ,' | CON', ' PAT', and so on) that are edited with
individual editors are graphic or pictorial. To edit any of the pictorial resources except

" PI CT", you use bit editors, which are discussed in Chapter 3." Pl CT' resources are
special. The individual editor for ' PI CT' resources only displays them; it does not allow
you to change them.

Some resources are edited with templates. If you open a resource of this kind, you are
presented with a dialog box that contains various labeled fields. You can change the

Editing Resources in ResEdit 3

Uses

CHAPTER 1

ResEdit Overview

contents of the fields. Information on existing templates and on generating your own
templates appears in Chapter 5, and an example of template editing appears in
Chapter 6.

To edit resources for which there is no template or individual editor, you must use the
hexadecimal editoreditors: hexadecimal; unless you write your own templates or editors
for them.

ResEdit is especially useful for creating and changing graphic resources, such as dialog
boxes and icons. For example, you can use ResEdit to try out different formats and
presentations of resources in the process of putting together a quick prototype of a user
interface. Anyone can quickly learn to use ResEdit for translating resources into
languages other than English without having to recompile programs. You can use
ResEdit to modify a program’s resources at any stage in the process of program
development. ResEdit is also useful for modifying the ' LAYO (desktop layout control)
resource in a copy of the Finder so that you can reconfigure some aspects of the desktop
display. See Chapter 6 for more details about the ' LAYO resource.

Extensibility

A key feature of ResEdit is its extensibility. Because it can’t anticipate the formats of all
the different types of resources that you may use, ResEdit is designed so that you can
teach it to recognize and parse new resource types.

There are two ways to extend ResEdit to handle new types:

= You can create templates for your own resource types. ResEdit lets you edit most
resource types by filling in the fields of a dialog box; this is the way you edit the
Finder’s desktop layout control resource, for example. The ordering of the items in
these dialog boxes is determined by a template in ResEdit’s resource fork, and you
can add templates to ResEdit or to the ResEdit Preferences file yourself to edit new
resource types. Resource templates are described in Chapter 5, and the desktop layout
control resource is discussed in some detail in Chapter 6.

= You can program your own special-purpose resource picker or editor (or both) and
add it to either ResEdit or to the ResEdit Preferences file. (The resource picker is the
code that displays all the resources of one type in the resource type window. The
editor is the code that displays and allows you to edit a particular resource. These
pieces of code are separate from the main code of ResEdit.) A set of Pascal or C
routines, called ResEd, is available for this purpose — see Chapter 7 for information.
The advantage of adding your code to the ResEdit Preferences file rather than to
ResEdit itself is that doing so facilitates updating to new versions of ResEdit as they
become available.

Uses

CHAPTER 1

ResEdit Overview

The Resource Development Cycle

ResEdit is often used with Macintosh Programmer’s Workshop (MPWD) and other
program development systems. Once you have created or modified a resource with
ResEdit, you can use the MPW resource decompiler, DeRez, to convert the resource to a
textual representation that can be processed by the resource compiler, Rez. You can then
add comments to this text file or otherwise modify it with the MPW Shell or another text
editor. Rez and DeRez are fully described in the Macintosh Programmer’s Workshop
Reference (MPW Reference). It is not necessary to use Rez or DeRez unless you have some
specific need or desire to modify or comment the code that DeRez produces; the
resources generated by ResEdit are, in general, entirely acceptable.

The Resource Development Cycle

CHAPTER 2

Getting Started

CHAPTER 2

Getting Started

If you are new to ResEdit, you will want to proceed with some caution, as ResEdit is
quite powerful and can easily damage or destroy your files. If you are accustomed to
ResEdit versions prior to 2.0, you will notice that the user interface has been extensively
changed and now conforms more closely to the guidelines established by Apple
Computer, Inc.

Invoking ResEdit

ResEdit is a regular application, so if you are in the Finder or in HyperCard you can start
it up just as you would any other application. If you are using MPW, you can start
ResEdit by entering either of these commands in the MPW Shell:

ResEdi t
ResEdit filel file2 ...

The latter command causes ResEdit to open the named files automatically.

When ResEdit first starts up, it displays an animated startup display. Figure 2-1 shows
one of the stages of this animation.

Figure 2-1 ResEdit’s startup display

ResEdit 2.1

Copyright ©1984-1350,
Apple Camputer, Inc.
A1 rights reserved.

The animation continues until you click the mouse button or press any key. If you click
the mouse button or press an unmodified key, ResEdit presents a dialog box, shown in
Figure 2-2, that lets you create a new file or open an existing one. If you press a

Command-key combination, the startup display is dismissed and ResEdit performs the

8 Invoking ResEdit

CHAPTER 2

Getting Started

action you have requested. This is especially useful for Command-key combinations
assigned to the Open Special menu, described in this chapter. You can, if you wish, use
the Preferences command on the File menu to suppress the dialog box.

Figure 2-2 ResEdit File Open dialog box

[Bazilians Restaurant |]

3 101 Great Banyan Street [{+=— Ntlabatlatti...
[0 Maddalena Berkun-Bazil...
£ Mr. Lorel Bazilian Epacl
3 Morthern Spy Apple Pie

[Placetne, Magistra?

O Sake-no-Kawa-no-Temaki
[0 The Nairobi Trio

[Tribute to Chef Louis

O Two Hundred Motels

3 Where the Rugelach Are
O Yama-Gobuo!

s

Drive

Cancel

4]

You can select a filename by clicking it or by typing one or more characters of the
filename.

Working With Files

ResEdit provides facilities to let you open and create files and perform two levels of
verification on them; it also lets you create, move, and edit resources.

Resource Checking

Sometimes a resource file gets corrupted. This is typically the result of a crash occurring
while the file is being updated. In the past, ResEdit would occasionally crash when you
tried to open a damaged file with it. Versions of ResEdit starting with 2.0 provide
resource file checking facilities to help avoid crashes and to minimize loss of data. The
checking facility does not detect corrupted individual resources; it bases its tests on the
file’s resource map.

When you open a file, ResEdit performs a partial resource check on it. This test verifies
only that the resource map is located after the end of the resource data area, and that the
header, data, and map do not extend beyond the EOF (end-of-file mark) of the resource

Working With Files

CHAPTER 2

Getting Started

fork. If the file does not pass these initial tests, a full test is automatically performed. If
you choose “Verify files when they are opened” in the Preferences dialog box, ResEdit
performs a full test whenever you open a file.

If you want to invoke the full test yourself, choose Verify Resource File from the
File menu.

When it performs a full resource check, ResEdit goes through the entire resource map
and verifies that the type list, the reference lists, and the name list are consistent, that all
resource data areas can be located, and that they do not exceed the available file size. It
also checks for duplicate types, and for duplicate ID numbers within each type. ResEdit
has several techniques for locating the resource map, the existence and location of which
is critical to the process of recovering damaged resource files.

If damage is discovered, the user is offered a repair option. This procedure does not
change the damaged file. Instead, ResEdit creates a new file, extracts all the resources it
can find in the damaged file, and copies them to the new file. It then renames the old file
(with an extension of “(damaged)”. ResEdit also presents the user with status
information about the resources that were extracted.

There is one exception to the rule that the damaged file is not changed: minor damage
occurs whenever a resource file is not properly closed. ResEdit repairs this damage
without asking the user’s permission. (The actual process involved is quite simple:
ResEdit calls the Resource Manager to open the file, calls the Updat eResFi | e routine to
rewrite the resource map, and closes the file.) After performing the repair, it presents an
alert box to inform the user that it has done so.

Opening a File

To list the resource types in a file, select and open the filename from the list in the File
Open dialog box. If you try to open a file that does not have a resource fork, ResEdit
displays a dialog box, shown in Figure 2-3, that asks you whether you want to open the
file anyway. If you permit it to open the file, ResEdit extends the file by creating a
resource fork in it.

Figure 2-3 Add Resource Fork alert box

A The file ‘MRose Funny’ has no
resource fork. Opening it will add one.

Do you wish to open it?

Working With Files

CHAPTER 2

Getting Started

WARNING

You can edit any file shown in the window, including the System file
and ResEdit itself, though there are some restrictions (the Fin%ler and the
Desktop file cannot be opened by ResEdit under MultiFinder , for
example). It's dangerous, though, to edit a file that’s currently in use. In
general, it is much wiser to edit a duplicate instead of the file itself a

When you open a file, a file window appears. This window displays a pictorial list of all
the resource types in that file (see Figure 2-4), unless you choose “by Type” from the
View menu (see Figure 2-18). If you do choose to view the resource list by resource type,
you can also choose to show the total size of each resource type.

Figure 2-4 A ResEdit 2.1 file window

E[[=—— TeachTest ——=1F
B 158 e mE | |
A o@mw =2
E RTE ==
BMNDL CODE ITL

==-1 =
ICNE MENU SIZE
mels o zoel o [EEme
sarels 605 I
100 ity T.0... — =]
[
it wers W [N Ia

When a file window is the active window, you can create new resource types, copy or
delete existing resources, and paste resources from other files into the currently active
one. Here, operations are performed on sets of resources. For example, selecting the
resource type ' ALRT' in a file causes all resources of type ' ALRT' in that file to be
selected as a group. Any operation you then perform on that group affects all' ALRT'
resources in the file. To select more than one resource type, hold down the Command
key while clicking the individual items or click an item at the beginning of the range you
want to select, hold down the Shift key, and click the item at the end of the range. The
Shift key allows you to select the items in a rectangular area. You can then continue to
select or deselect individual resource types with the Command key pressed. (These
techniques also work for selecting individual resources within an open resource type.)

Note

Many applications put more than one resource type at a time into the
scrap when Copy is chosen. For example, when an object is copied in
MacDraw , an' MDPL' resource and a' Pl CT' resource are put into the
scrap. When you paste into the file window in ResEdit, all resources that
are present are pasted. O

Working With Files 11

CHAPTER 2

Getting Started

Note

Starting with version 2.0, you can no longer use ResEdit to delete files;
also, ResEdit does not manipulate or read data forks (this means, for

example, that it cannot copy them). O

Menus in ResEdit

The structure of menus in ResEdit has been changed with the 2.1 release. Five main
menus (File, Edit, Resource, Window, View) are discussed here, and special menus
for particular resources are discussed in the sections on editing those resources, in

Chapters 3 and 4.

The File Menu

Figure 2-5 shows the File menu.

12

Figure 2-5 File menu
“ Pqdtt Hesouree Hindow
New... N
Open... #0
Open Special 4 8 Ball

iinse
]
Beuprt fia

Derbum 1.0

Alex Krislov
HyperCard 1.2.5

Bl inds for Thiy P
Get File/Folder Info.
Uerify...

Modify This Menu..

Page Setup...
Frint...

Preferences...

Quit

The File menu commands act as follows:

New...

Open...

Brings up the New File dialog box.

Brings up a File Open dialog box similar to the one shown in Figure 2-2,

but without a New button.

Open Special

Allows you to open files quickly. The Modify This Menu command,
which always appears at the bottom of the submenu, brings up the dialog
box shown in Figure 2-6. Use this dialog box to add and remove files and

Command-key combinations.

Menus in ResEdit

CHAPTER 2

Getting Started

Figure 2-6 Open Special dialog box

Files on Open Special menu

Alex Krislov
HyperCard 1.2.5
Uerbum 1.0
Bramauae Omd Key
i

Close Closes the currently active window. (Using this command has the same
effect as clicking the close box.)

Save Saves the currently active file, if there is one. Dimmed if no changes have
been made.

Revert File Restores the currently active file, if there is one, to the last version you
saved. Dimmed if no changes have been made.

Get Info for This File

When no file is open, this command is dimmed and cannot be used.

When a file is open, the words This File are replaced by the filename, and

this command is enabled. It displays file information and allows you to
change it. The file information box is shown in Figure 2-7.

Figure 2-7 A File Info window

[[[EE———=—=—= Info for 8 Ball

[Z1[=NI8 Ball
Type |APPL Creator |LWICI0
O system O Invisible Color:| Black]

] On Desk [Inited [Bundle
[Shared O Mo Inits
[J Always switch launch

[JResource map is read only JFile Protect
[Printer driver is MultiFinder compatible []File Busy
Created [2/17/90 10:12:14 PM LIFile Locked

Modified |8/23/90 4:56:01 PM

Size 2820 bytes in resource fork
0 bytes in data fork

Menus in ResEdit

13

CHAPTER 2

Getting Started

Get File/Folder Info...

Figure 2-8

14

Displays file or folder information and allows you to change it. Figure 2-7
shows a File Info window as it appears under system software

version 6.0. Figure 2-8 is a Folder Info window, also for system soft-

ware version 6.0.

A Folder Info window

E[== Info for folder 5t. Millipede of Zipper ===

Folder St. Millipede of Zipper

[(Osystem []lInvisible Color:| Black]

O on Desk [Inited

Verify Resource File...

Page Setup...

Print...

Preferences...

Allows you to check the resource map of a file you specify.
Brings up the Page Setup dialog box.

Allows you to print from almost any picker or editor. When no files are
open, this command is dimmed and cannot be used.

Brings up the dialog box shown in Figure 2-9. This lets you specify
whether you want ResEdit to show its splash screen (Figure 2-1), whether
you want it to start up with a File Open dialog box, whether you want to
be warned if you attempt to open the System file or ResEdit itself, and
whether you want ResEdit to perform a verify operation on files when
you open them. It also allows you to set the sizes of type picker and
resource picker windows, or, if you prefer, to let ResEdit automatically fit
them to the size of your screen. If you have more than one monitor, it lets
you specify whether pickers and editors for color resources should open
on the deepest available display or on the main display if they are not
the same.

Menus in ResEdit

CHAPTER 2

Getting Started

Figure 2-9 Preferences dialog box

Preferences

Window at startup: & None
3 Dpen dialog

[J] show splash-screen at startup

[J Wwarning when System or ReskEdit is opened
[terify files when they are opened

[show color resources on best screen

[Auto-size pickers Width Height

Minimum: Type pickers: H pixels

Resource pickers: |[225 H pixels

Quit Quits ResEdit and returns to the Finder (or the MPW Shell, HyperCard,
or whatever program launched ResEdit).

File Information

The File Info window contains the following information:

The name of the file; its type and creator; a pop-up menu that lets you set the color
in which the file is shown on the screen; two sets of checkboxes (above and below a
horizontal line); the creation and modification dates of the file; and the sizes of both forks.

The checkboxes above the horizontal line are known as Finder Flags. Please see
Macintosh Technical Note 40 and Chapter 9 of Inside Macintosh, Volume VI, for more
information about Finder Flags in general; Appendix B of this book contains information
about how the Bundle bit relates to the ' BNDL' resource.

The checkboxes below the line are as follows: the File Locked bit is the same one that you
find in the Finder’s Get Info box for the file. The Printer Driver Is MultiFinder
Compatible bit means exactly that, and is used only for printer drivers. The File Busy bit
is controlled by the operating system. The Resource Map Is Read Only bit can be set in
Rez, but not in ResEdit. ResEdit cannot change the File Protected bit.

Menus in ResEdit 15

CHAPTER 2

Getting Started

The Edit Menu

Figure 2-10 shows the Edit menu. It has only one unusual feature, the Select Changed
command on the last line. Choose this command to select only those items that have
been changed since the last time you saved your file.

Figure 2-10 Edit menu
s v
Cut *H
Copy *®C
Paste AL
Clear

Eaplinais wi
Select All 3A
Select Changed

The Resource Menu

The Resource menu is configured to provide the commands appropriate for the
frontmost window. The same items are always present on the menu, but their meanings
and wordings may change slightly, depending on the context. The wording of a given
menu item always reflects the action that is taken when you choose it. Figure 2-11 shows
the Resource menu with a resource type picker open and the ' BNDL' type selected.

16

Figure 2-11
% File Edit

S[1== Font Do

H o otarnnen
ool]
allenele
ool 1110
RS LI

ASFD

File window Resource menu with ' BNDL' type selected

0 e Wlindow Diew
Create New Resource #K
Open BNOL Picker

Baen Heing Yemplate.
Open Picker by ID

Revert BMDL Resources

Bt Besawmee infp Hed

DLOG
0
&

ICH#

EFNT

A

ICON

SIZE

ETAE FREF

riu aHou A1
J5R (A0S
— <HP ©1,2
== b
MEMU PDEF

=]

STR STR#

Menus in ResEdit

CHAPTER 2

Getting Started

The Create New Resource command lets you create any resource type. The Open Picker
command invokes a picker for the particular kind of resource that is selected. This is
reflected in its name, which includes the name of the selected resource type. The Open
Picker by ID command opens the picker window showing the resources ordered by ID
number, regardless of what the last View choice was. This is useful if View by Special has
problems because of a corrupted resource. At this level, the only other command you can
use is the Revert Resources command, which restores the resources to their state in the
last saved version of the file. If you have made changes in individual resources of the
selected type since you last saved the file, you can undo those changes at this point.

Figure 2-12 shows the Resource menu again, this time with a resource picker open. Note
that it is now possible to open a resource with a resource editor or template (if one is
available) or with the hexadecimal editor.

Figure 2-12 The Resource menu with a picker open

% File Edit i Window UView
Create New Resource #K
Open Resource Editor
Open Using Template...
Open Using Hex Editor

Font Do

Revert This Resource

Get Resource Info 1

L]

POST SIZE STR STR® [

Menus in ResEdit 17

CHAPTER 2

Getting Started

Figure 2-13 shows the result of attempting to use the Open Using Template command
ona' CODE' resource. There is, in fact, no template for resources of this type. It is
generally not useful to open a resource of one type with a template for a resource of a
different type.

Figure 2-13 There is no template for ' CODE' resources
% File Edit [EEEE Window Diew
Font Downloader 4.0

§.}T$lé§l HxelE e |
o CODEs from Font Downlo;
[} Size Narme

1 15666

2 27978 Select Template
h 255 102 D
]
FOST SIZE =TR STR W

It is also possible to get information on the selected resource. Figure 2-14 shows the Get
Info window for a resource of type ' | CN#' . This dialog box lets you change the name
and ID number of the resource, and select or deselect some of its attributes.

= System Heap: If this attribute is set, the resource is placed in the system heap unless it
is too large to fit. In that case, the resource is placed in the application heap, as if the
box were not checked. This attribute should not be set for an application’s resources.

18

Figure 2-14 An' | CN#' Get Info window
% File Edit #Zesouwcs Window
[Facadm ICN#s from Facadelcons
ECI== Info for ICN# 3247 from Fagadelcons =Iq|:\|
Type: ICN# Size: 256 == ';E
2080 2247
1o: 3247
Name: (Smyth Dingbat
B Y
Owner type
7216 7EEZ
Owner 10: DRUR |+
_ woer []

Sub 1D: MDEF % l
Attributes: 10355
[JSystem Heap []Locked [Preload .

] Purgeable [OProtected [J]Compressed (.) E
'

Menus in ResEdit

CHAPTER 2

Getting Started

= Purgeable: If this attribute is set, the resource can be purged from memory if more
room is needed. It is typically a good idea to set this attribute.

» Locked: If this attribute is set, the resource is locked in place in the heap and cannot
be moved. This attribute overrides the Purgeable attribute.

» Protected: If this attribute is set, the Resource Manager cannot change the name or ID
number of the resource, modify its contents, or remove the resource from the file that
contains it. The toolbox routine that sets these attributes can be called, however, to
unset this one.

= Preload: Setting this attribute causes the Resource Manager to load the resource into
memory immediately after opening the resource file.

Opening a resource type produces a window that lists each resource of that type in the
file. The list is generated by a resource picker and will take different forms, depending
on the particular resource picker that is displaying it. The general resource picker
displays the resources by type, name, ID number, or order in the file; pickers for specific
resource types generate displays that are appropriate for their type. Figure 2-15 shows a
picker for the ' | CN#' resource type.

You can also write your own pickers. For more information, see Chapter 7.

Figure 2-15 A resource type window (with custom picker)

Fagadelcons |

£ [ELE ICN#s from Facade EE |

ICH#

When a resource type window is the active window, the Edit menu commands have the
following effects:

Undo Not usable.

Cut Removes the resources that are selected, placing them in the ResEdit
scrap. If only one resource is selected, it is placed on the Clipboard.

Copy Copies all the resources that are selected into the ResEdit scrap. If only
one resource is selected, it is copied to the Clipboard.

Paste Copies the resources from the ResEdit scrap (or from the Clipboard) into
the resource type window.

Menus in ResEdit 19

CHAPTER 2

Getting Started

Note

Only resources of the currently open type are copied
into the resource type window. O

Clear Removes the resources that are selected without placing them in the
ResEdit scrap.
Duplicate Creates a duplicate of the selected resources and assigns a unique

resource ID number to each new resource.

When you choose Open Using Template from the Resource menu, a list of templates is
displayed, and you can pick the one you want to use.

The Window Menu

The Window menu, shown in Figure 2-16, gives you an overview of what windows are
currently open and indicates the currently active window with a checkmark. It also lets
you select a new current window. Note that the Window menu is sorted by file rather
than by how close to the front a particular window is.

Figure 2-16 The Window menu

20

% File Edit Resource [JUERTIE sn0L
... SuperClock!3.8 e

dctbs erClock!3.8

miE DLOG 1D - -4048 | i | =

. sootliin F:.lla gl 11e From SuperClock!3

WRT [E[I=——-—= 0no-Sendai o-Sendal =————
BMDLs

3.1 signature: NN . gnpL 1D - 128

F 1D: (0 (should be 0)

wrse String:| 1990, Bazilians Restaurant

The View Menu

The View menu is configured to match the frontmost window. When a file window is
currently active, the View menu lets you show the resource types in a file by icon or type
name, and if you show them by type, it lets you show the size of each type (that is, the
sum of the sizes of all resources within the type). See Figure 2-17.

Menus in ResEdit

CHAPTER 2

Getting Started

Figure 2-17 The View menu and a ResEdit 2.1 file window

% File Edit Resource Window

S=—— Finder == PYIcON
- « by Type

Tgi Count Size

ENTL ! 23 ~Show Size With Type

CODE 11 Q1074

CURS 7 476

DITL 13 2186

DLOG d 225

|CH# Q 2304

LAYD 1 66

MALCS 1 31

MENL g ga7

RES#* 10 516

SICH 2 352

S|E¥ 1 TZ

SIZE 2 20 .

vers 2 az

When a resource type window is the currently active window, the View menu lets you
choose among several viewing styles (see Figure 2-18) and lets you show some attributes
for each resource when you view by ID, Name, Size, or Order in File (see Figure 2-19).
Attributes can be displayed but cannot be edited when you use the Show Attributes
command.

Figure 2-18 The View menu and a resource type window

% File Edit Resource Window

Dno-5endai PS| by 1D
- by Name

Tgﬂ Count Size hu Size
ALET cicns from Ono-Sendai|.»by Order in File
BE o Size Marne by cicn
Bl
E: ATEERER Show Attributes
o 1301 986 "Gray Spiral I
cH 1300 086 "Gray Spiral IV
o 12581 1690
ol 1144 626 “Clarus the DogCow
DA 1145 634 “Polarus the Dog5Std
ol 12580 1690
oy]
I:)I E

Menus in ResEdit 21

CHAPTER 2

Getting Started

Figure 2-19 Showing type attributes

E(I==————— cicns from Dno-Sendai =i —0F—F"———=]

IC Size Sys Purge Lock Protect Preload Comp Mame

“Joe Bitfsplk”
“Gray Spiral |”
1200 “Gray Spiral 1%
1281 : : :
1144 . - - . - "Clarus the DogCow™”
1145 . - - : - "Polarus the DogStarCow”
1280 : : :
i
&

For some resources, the “by Special” line is changed to a type-specific alternate (for
example, “by cicn”, as shown in Figure 2-18). Attributes cannot be displayed in the
special views.

When an individual resource is open, the View menu is not shown.

Starting an Editor

To open an editor for a particular resource in a file, first open the picker for the resource
type. To do this, either double-click the resource type name or select it and choose Open
Picker from the Resource menu. (The command will actually name the resource type. For
example, Open ICON Picker.) Then double-click an individual resource, or select it and
choose Open Resource Editor from the Resource menu. When an editor is invoked, one
or more auxiliary menus may appear, depending on the type of resource you're editing.
Some editors, such as the ' DI TL' editor, allow you to open additional editors for the
elements within the resource. The editors vary in their appearance and function, as
explained in Chapters 3 and 4.

If you choose Open Using Template from the Resource menu or hold down the Option
and Command keys while opening a resource, a list of templates is displayed. You may
then select the template that is appropriate for the resource you are opening. For more
information on editing with templates, see Chapter 5.

Resource ID Numbers

22

Within a given resource type, resource ID numbers must be unique. Resources can, in
general, have any ID number between -32768 and +32767, but you should be aware of
the following restrictions which apply to most resources:

s ID numbers from —32768 to —16385 are reserved. Do not use them!

» ID numbers from —16384 to —1 are used for system resources that are owned by other
system resources. For example, a dialog box used by a desk accessory (the desk
accessory is, itself, a resource of type ' DRVR) would have a number in this range.

Starting an Editor

CHAPTER 2

Getting Started

s ID numbers from 0 to 127 are used for system resources.
= ID numbers from 128 to 32767 are available to you for your uses.

Some system resources own others. The “owner” contains code that reads the “owned”
resource into memory. For example, desk accessories can have their own patterns,
strings, and so on. Please see Chapter 5 of Inside Macintosh, Volume I, for more
information.

Fonts constitute a special case. For information about fonts, see the section on' FONT'
resources in Chapter 3.

Resource ID Numbers

23

CHAPTER 3

The Bit Editors

CHAPTER 3

The Bit Editors

Many important resources on the Macintosh are pictorial. These include cursors, icons,
patterns, and fonts. The ResEdit resource editors that handle pictorial resources are
discussed in this chapter. Other resource editors are discussed in Chapter 4. For
information on templates and resources that are edited via templates, please see
Chapter 5.

Overview of the Bit Editors

Pictorial resource types are edited with a bit or pixel editor. The bit editors in ResEdit 2.1
are all fundamentally alike except for the ' FONT' editor, which is a special case and is
discussed separately.

Figure 3-1 shows the layout of a typical bit editor window.

Figure 3-1 Bit editor window layout

26

]
L]
i

crsr "Fibonacci Kite" 10 = 11235 from

IRk

The bit editor window contains these elements:
= A tool palette at the left edge of the window.

= A selector that brings up a tear-off palette of patterns and (in color editors) another
pair of selectors, below the tool palette, that allow you to select foreground and
background colors. These bring up tear-off color palettes.

= A main editing view that shows an enlarged picture for “fat-bits” editing. The size of
this view varies from editor to editor.

s Full-size images of the resource (in monochrome and, when appropriate, in color) and
its mask (if it has one), to the right of the main editing window.

= In some of the bit editors, views of the resource on various backgrounds, at the right
edge of the window.

Overview of the Bit Editors

CHAPTER 3

The Bit Editors

When you open a resource that involves color, the editor window is placed on the
display with the largest number of colors or gray levels unless you choose otherwise in
the Preferences dialog box, shown in Figure 2-9.

Tools

The tools in the palette behave much as they do in familiar paint programs, with the
exception of the color-dropper and the pencil. The color-dropper lets you pick up the
color of any pixel in the main editing window.

When you are using other drawing tools (for example, the paint bucket), you can access
the color-dropper by holding down the Option key. This does not, however, work with
the eraser, the marquee, or the lasso.

The square containing the color-dropper is empty when you are editing a
black-and-white resource or the mask part or black-and-white image associated with a
color resource.

The middle square on the left side of the tool palette is special, and its content changes
from editor to editor; in Figure 3-1, which shows the ' cr sr' editor, it allows you to
place the cursor’s hotSpot. This is discussed further in the section on cursor editing in
this chapter. In some of the editors this square is empty.

When you are editing a colored resource, the pencil tool behaves slightly differently than
you might expect if you have edited only in black and white previously. If you click a
pixel in the editing view, that pixel changes to the currently selected color. If it is already
the currently selected color, it becomes the background color instead.

Note

If you try to paste more bits than a resource can hold (for example, if
you try to paste a 40- by 40-bit area from a paint program into an

"1 CON' resource, which can hold only a 32- by 32-bit area), ResEdit
pastes the selection centered into the active area, and the boundary of
the selection will be outside the active area of the editing window. You
can drag to reposition the selection. If a marquee selection is already
present in the active area when you perform a paste operation, the

" PI CT" in the Clipboard is scaled into the selection. You cannot paste
into a lasso selection. O

If you cut or copy a marquee selection during editing, you can paste it into a file window
asa' Pl CT' resource. The' PI CT' resource picker does not have to be open when you
cut, copy, or paste. When you pastea' Pl CT' into a color bit editor, the ' PI CT' is
drawn using colors from the resource being edited and the current color palette. If a
pasted ' Pl CT' is drawn with odd or unexpected colors, it is because some colors
present when the ' PI CT' was cut or copied are missing from the current color palette.
You may want to select a more appropriate color palette and paste again.

Overview of the Bit Editors 27

CHAPTER 3

The Bit Editors

Menus

The bit editors have two menus in common: Transform and Color. (Strictly monochrome
resources are an exception; their editors do not have a Color menu.) Some of the editors
also have individual menus, which are discussed in the sections on those resources.

The Transform Menu

The Transform menu is shown in Figure 3-2. It allows you to transform selected regions
in several ways. The Flip Horizontal, Flip Vertical, and Rotate commands are familiar
from paint programs. The Nudge commands move the selected region by 1 pixel in the
indicated direction. (You can also nudge the selected region by using the arrow keys.)
The Flip and Rotate commands require a rectangular (marquee) selection.

28

Figure 3-2 The Transform menu
% File Edit Resource Window a 0 Color cicn
E cicn "Clarus the DogCow” 10| Flip Horizontal fapdai ==

I
Tl
L]

Flip Dertical
Rotate 3T

Nudge Up
Nudge Down
Nudge Left

Nudge Right

W

v Show Grid

The Color Menu

The Color menu is shown in Figure 3-3. It contains a choice of color tables and two other
commands. The color table choice determines what appears in the color pop-up menu or
tear-off color palette. The choices include the standard set, shown in Figure 3-3 and
discussed in this section, as well as any ' ¢l ut' resources you have added to the ResEdit
Preferences file.

Overview of the Bit Editors

CHAPTER 3

The Bit Editors

Figure 3-3 The Color menu

[% File Edit Resource Window Transform ol0 cicn

E[E cicn “Polarus the DogStarCow” 1D = 1145 fro Apple lcon Colors
Recent Colors

« Standard 256 Colors
Standard 16 Colors
Standard 16 Grays
Standard 4 Grays
Color Picker

Foreground <-> Background

Reco ing Palette

Fask

The items on the Color menu include the following;:

Apple Icon Colors
Lets you use a palette of Apple’s recommended colors for Finder icons.

Recent Colors
Lets you use the set of colors currently present in the resource. These may
come from several palettes. This set includes colors that you have selected
since the last time you closed the resource but haven’t used yet. (When
you close a resource, unused colors are automatically removed.)

Standard 256 Colors
Lets you use the standard 8-bit color palette.

Standard 16 Colors
Lets you use the standard 4-bit color palette.

Standard 16 Grays
Lets you use 4 bits of gray levels.

Standard 4 Grays
Lets you use 2 bits of gray levels.

Note

If you have custom entries, they appear between
Standard 4 Grays and Color Picker. O

Color Picker Lets you use the standard Color Picker, with which you can select any of
more than 16 million colors. Try ‘em all!

Foreground <-> Background
Swaps foreground and background colors, without affecting the image.

Overview of the Bit Editors 29

CHAPTER 3

The Bit Editors

Recolor Using Palette
Merely selecting a palette does not change any of the colors in the
resource you're editing. This command recolors the resource using
only colors in the current palette.

Palette choices are different for Finder icons. When you are editing ' i cl 8' or'i cs8
resources, the only color choices available in the Finder icon editor are Apple’s
recommended icon colors and the standard 256-color (8-bit) palette. For ' i ¢l 4' and
"i cs4' resources only the standard 16-color (4-bit) palette is available.

Note
ResEdit automatically removes any unused colors
from a resource when you close it. O

If you hold down the Command key and pick a new color, all pixels of the current
foreground (or background) color are changed to the new color.

Editing Cursors

30

Cursors are pictorial resources of types ' CURS' (B&W) and ' crsr' (color). Figure 3-4
shows the ' CURS' editor; the ' crsr' editor is shown twice in Figure 3-5. In each of
these editors, the middle part of the display has a large image for editing and two
smaller full-scale images (three in the case of ' cr sr' resources). The upper small image
shows the cursor itself. The lower small image is the mask for the cursor, which affects
how the cursor appears on various backgrounds. The pixel in the editing window that is
marked with an X is the cursor’s hotSpot. (The hotSpot is the pixel in the cursor that the
Macintosh recognizes as the cursor’s location. The hotSpot of the familiar arrow cursor,
for example, is its point.) There is a special hotSpot tool on the palette. It is shaped like
an X, as you would expect. To place the hotSpot, click this tool and then click anywhere
in the main image in the editing window.

Along the right edge of the display, the cursor is drawn to scale on five different
background patterns. When the cursor is to be drawn, a hole is first made in the
background by turning off the pixels in the area of the screen covered by the mask. Then
the cursor is overlaid on the hole. (Figure 3-5 shows a pair of explanatory examples.)
Ordinarily, the mask should be just a filled-in outline of the cursor so that the cursor can
be seen clearly. To edit the cursor’s mask, click the small image labeled Mask. It is then
displayed in the editing window. Initially this image is blank; you can drag an upper
image to the Mask image to create a mask, or select the mask and paste an image into it.

Editing Cursors

CHAPTER 3

The Bit Editors
Figure 3-4 ' CURS' resource editor
ECJE CURS “Pascal Mono™ 1D = 14641 from (]
o 1
g x
H E
H EH B
H EENE
H EEHEN
H HEEEN
H E EEEERN
@ B E BN NN

Figure 3-5 shows two almost identical ' cr sr' editing windows. These illustrate the
difference between pasting the black-and-white image (labeled B&W) into the mask (left)
and dragging the black-and-white image to the mask (right). As you can see, the cursor
on the right is entirely opaque: nowhere does the background show through it. The
difference is most clearly visible in the Mask images and in the top-right corner images.

Figure 3-5 Color cursor editing: mask examples

crsr "Wilson-Shea OpenKite" 10 = 235

E[E crsr "Wilson-Shea DropKite" 1D = 523

o '==

EH u e

A1 "

X[nim m B
O Bu a"a” walial
[[Illlll=m
)

[

&

The CURS and crsr menus contain the following command:

Try Pointer ~ Lets you try out your handiwork by having it become the cursor in use
inside ResEdit, in place of the ordinary arrow cursor.

Editing Cursors 31

CHAPTER 3

The Bit Editors

Editing Icons

ResEdit contains editors for all the common icon resource types.

Editing 'cicn' Resources

Ordinary color icons are pictorial resources of type ' ¢ci cn' . Figure 3-6 shows the
' cicn' editor. Please see the inside front cover for a color illustration of the
‘cicn' editor.

You can transfer images among the three small framed views to the right of the main
editing window. These are labeled Color, B&W, and Mask. If you drag across any of
these small views, an outline will detach. You can then move that outline to another
small view. The destination becomes inverted to indicate that releasing the mouse button
will transfer the image. If you transfer the image to the mask, interior bits in the image
are set to black.

At the right edge of the editor display are color and black-and-white examples of how
the icon looks against the current background.

Figure 3-6 Color icon editor

32

crsr "Wilson-5hea OpenkKite" 10 = 235

[E crsr "Wilson-Shea DropKite" 1D = 523

L "== u
4 I. I.I.I .: ==
"
at EEE =
II.I:I. II=:I= ;EE IE'

H ENEEEEE
0 & Mask

(|

(]

[

|

a | |h

The cicn Menu

The cicn menu allows you to choose a background for the display section at the right
edge of the window and to bring up a dialog box that lets you set the horizontal and
vertical sizes of the icon. These sizes are separate; that is, the icon does not have to be a
square. The minimum for both is 8 pixels, and the maximum is 64. The Delete B&W Icon
command is active only when the black-and-white icon is selected and is shown in the
main editing view.

Editing Icons

CHAPTER 3

The Bit Editors

It is possible to create a' ci cn' resource without a black-and-white image, but because
the system uses the image labeled B&W to display the icon on monitors that are set to
black and white or to 4 grays or colors, it is probably a good idea to include it.

Creating New Color Icons

When you create anew ' Ci cn' resource, you get the last color table you selected. The
Color menu, shown in Figure 3-3, lets you choose other color collections. The most
commonly used collection is Standard 256 Colors, which lets you pick colors from the
8-bit system color table. Apple recommends that you use colors in the standard 16- and
256-color collections and specifically the Apple Icon Colors, because these are typically
present whena' ci cn' icon is drawn.

Finder Icons

Finder icons, beginning with system software version 7.0, constitute a suite, or family, of
pictorial resources. These include small and large color icons in 16 and 256 colors (types
"ics4' and'ics8' inthesmallsize,'icl4' and'icl 8' inthe larger size) as well as
small and large monochrome icons, now types' i cs#' and the traditional ' | CN#',
which is discussed later in this chapter. The large icons are 32-by 32-pixels and effective-
ly share the mask of the ' | CN#' type. The small icons are 16-by 16-pixels; they, too,
share a common mask inan ' i cs#' resource.

When you use the color-dropper, remember that the color selection is tied to the depth of
the image. That is, using the color-dropper to pick up the color of a pixel in, for example,
the'icl4' or'ics4' image does not change the color selection in the ' i ¢l 8' and
"ics8' images (and vice versa), nor does it change the “color” selection (black or white)
inthe' | CN#' and'i cs#' images.

Opening any of these resources automatically invokes the Finderd icon editor and
selects the particular resource type for editing, provided Color QuickDraw is present.
The ' | CN#' resource type still has its own individual editor but is typically edited in the
Finder icon editor with the other members of the suite. (Double-clicking a resource of
type ' | CN#' opens the ' | CN#' editor rather than the Finder icon editor if Color
QuickDraw is not present, or if you have installed an' RMAP' resource in the ResEdit
Preferences file to override the Finder Icon editor. See Chapter 6 for details.)

Figure 3-7 shows the Finder icon editor during an' i ¢l 8' edit. The other editing
windows are quite similar, all of them sharing the tool palette; here, as with the ' ci cn’
editor, a monochrome illustration cannot fully represent the appearance of a color screen,
but the figure should give you some idea of the appearance of this editor. Please see the
inside front cover for a color illustration of the Finder icon editor.

Editing Icons 33

CHAPTER 3

The Bit Editors

Figure 3-7 Finder icon family editor

34

Icon Family “Flaming Raku™ 1D = 134 from Ono-Sendai

When you click one of the eight small views labeled with resource type names, the
corresponding icon is opened for editing. The display bar area on the far right shows the
icon in the form of three groups of images against the background that was selected from
the Icons menu. The groups are labeled Normal, Open, and Offline. The display shows
how the icons are drawn by the system software version 7.0 Finder. In each group, the
icon is shown unselected on the left and selected on the right.

The Icon Menu

The Icon menu is shown in Figure 3-8. It allows you to select a background for the
display section at the right edge of the window; it is useful to be able to check the icon
against several different backgrounds. The Delete command allows you to delete the
icon type currently being edited. If a mask is being edited, the Delete Resource command
allows you to delete the monochrome icon (' | CN#' or' i cs#') that contains the mask.

Editing Icons

CHAPTER 3

The Bit Editors

Figure 3-8 Icon menu

% File Edit Resource Window Transform Color D |

E[/=— lcon Family “Flaming Raku” 1D = 134 f| White Background
Gray Background

L 1 Black Background
] Desktop Background
Fallls:)

T
O
o
&)
[

Note

Finder Icon family resources that don’t exist are drawn in gray, except
for masks, which are drawn as black squares. (This allows other family
members to appear in the display bar at the right edge of the editor
before appropriate masks are created for them.) O

'I1CON' Resources

Icons that appear within a program (HyperCard is a good example) are typically
resources of type' | CON' . The ' | CON' editor is shown in Figure 3-9. The ' | CON
resource is relatively simple and consists of a 32- by 32-pixel square, in black and white.
It does not have a mask.

Figure 3-9 "1 CON' resource editor

E[JE= ICON "Bill" 1D = 2002 from HyperCard 1.2.5

r—n

2

Editing Icons 35

CHAPTER 3

The Bit Editors

'ICN#' Resources

The' | CN#' resource, part of the Finder Icon suite in system software version 7.0 and
later, has long been a common target for ResEdit. The icons that you see on the desktop
in system software version 6.0 and earlier, representing applications and their
documents, are all' | CN#' icons, as are folder icons and even the Trash icon. The

"1 CN#' resource type is edited either in the Finder icon editor, or with its own editor.
Both permit you to change any of the pixels in the icon, which are in a 32- by 32-pixel
square. When you double-click a resource of type ' | CN#' , the specific' | CN#' editor is
ordinarily activated only if Color QuickDraw is not present. If you want to edit a
resource of type ' | CN#' alone and you have Color QuickDraw, you need to generate an
" RVAP' resource in your ResEdit Preferences file to override the normal operation of
ResEdit. See Chapter 6 for details.

The' | CN#' editor is shown in Figure 3-10.

Figure 3-10 "1 CN#' resource editor

36

In recent versions of the Finder, ' | CN#' resources are displayed on the screen as
follows: First the mask is used to blank an area of the screen. Then an OR operation is
performed in the same screen area, using the icon as data. (When a highlighted icon is
displayed, the foreground and background “colors”—in this case black and white—are
swapped before the OR operation is performed on the data.) If the mask is not the same
shape as the outline of the icon, the results will in general be unaesthetic unless the
background is black.

Editing Icons

CHAPTER 3

The Bit Editors

List Resources

Some pictorial resources contain sets or lists of pictures. Together these pictures make up
an individual resource. Editors for list resources have two kinds of editing regions. The
first kind is a bit editor, familiar from the editors that have already been described in this
chapter. The second kind is used to manipulate the elements in the list.

As with the other bit editors, the picture currently being edited is shown in a box. To edit
a different picture, click it in the list on the right. You can drag elements to different
positions in the list, and commands on the Edit menu can be used to cut, copy, paste,
clear, or duplicate elements when the list is enabled. You can cut or copy list elements
only when the list is active. It is possible to paste more than one element at a time. Paste
inserts after the currently selected element, or at the end of the list if no element is
currently selected. If there are more elements in the list than will fit in the list display
area, the scroll bar is enabled.

'SICN' Resources

The small icon (" SI CN') editor is shown in Figure 3-11, with the editing window
enabled.

You can add a new small-icon picture by choosing the Insert New SICN command from
the Resource menu.

Figure 3-11 "SI CN' resource editor

E[1E SICN ID = 128 from Ono-Sendai

gfﬂ " R N ﬁ
] =

List Resources 37

CHAPTER 3

The Bit Editors

Editing Patterns

ResEdit 2.1 includes editors for four kinds of pattern resources: ' PAT' (black-and-white
patterns), ' PAT#' (black-and-white pattern lists), ' ppat ' (color patterns), and ' ppt #'
(color pattern lists).

Each pattern editor has a menu; the PAT and PAT# menus have only one command, Try
Pattern. This command makes your pattern the desktop pattern.

The ppat and ppt# menus have two commands. The Pattern Size command brings up a
dialog box, shown in Figure 3-12, that lets you select the size of the basic cell of your
pattern. Patterns are replicated or truncated when resized, not scaled. Remember, the
black-and-white patterns are always 8-by 8-pixels. Only the color patterns are resized.

The Try Pattern command makes your pattern the desktop pattern. When you are in Try
Pattern mode, you can shift back and forth between color and black-and-white versions
of the patterns by clicking their respective pictures in the list area (see Figure 3-15 or
Figure 3-16).

Figure 3-12 Pattern Size dialog box

Pattern Size

8 16 32 64
8 (o [oes] [sesmos] [osss-messne]

16 (2] (o] [Pwel (e

Relative Patterns

The' ppat' and' ppt#' editors support a subset of Relative Patterns. Relative Patterns
are used internally by ResEdit in the pattern palette. The editors support 1-bit patterns
with no color table entries. These patterns are edited in black and white; the current
foreground and background colors replace black and white respectively when the
pattern is actually used. For more information, see Inside Macintosh, Volume V, page 57.

38 Editing Patterns

CHAPTER 3

The Bit Editors

Custom Patterns

You can override the set of patterns provided by ResEdit by installing resources in the
ResEdit Preferences file.

To override the patterns available in the black-and-white bit editors, install a' PAT#'
resource named Fill Patterns into the Preferences file. The first pattern in the list

is the default choice, and it is a good idea to make this a completely filled (that is,
black) pattern.

To override patterns available in the color bit editors, install a' ppt #' resource named
Fill Patterns in the Preferences file. It is a good idea to create relative patterns that adopt
the current foreground and background colors. You may also include absolute colors in
your patterns. (ResEdit does not permit a single pattern to contain both relative and
absolute colors.) When you edit pictorial resource components that are inherently
colorless (masks, for example), black-and-white patterns are shown in the bit editor’s
pattern palette, but internally ResEdit uses the corresponding color patterns. For this
reason, you should make the black-and-white version of each pattern a monochrome
duplicate of the color pattern.

If you do install your own patterns, you should create similar ' PAT#' and ' ppt #'
resources for consistency.

'PAT' Resources

The' PAT' resource (black-and-white pattern) editor is shown in Figure 3-13. It displays
two panels, with the editing area on the left and the pattern shown on the right. The
editing area is small, but it is possible to make some use of the marquee tool.

Figure 3-13 " PAT' resource editor

EC1E PAT ID = -15808 from Syste

Editing Patterns 39

CHAPTER 3

The Bit Editors

'PAT#' Resources

The ' PAT#' resource (black-and-white pattern list) editor is much like the ' SI CN
editor; it is shown in Figure 3-14.

Figure 3-14 ' PAT#' resource editor

ECJE PAT# "Almost Trigonal" 1D =

4]

‘ppat’ Resources

The' ppat' resource (color pattern) editor is shown in Figure 3-15.

The black-and-white pattern is limited to 8-by 8-pixels and cannot be resized, although it
can be edited. It is displayed on the right edge of the editor window. Unless your color
pattern is also 8 pixels square, the black-and-white pattern probably won't look quite
like it, as is evident in Figure 3-15.

Figure 3-15 ' ppat' resource editor

S[[=——— ppat 10 = 129 from Ono-Sendai

s L L L L L L L
s L L L L L L L
s L L L L L L L
s L L L L L L L
s L L L L L L L
s L L L L L L L
s L L L L L L L
A A i i
B& W

Editing Patterns

CHAPTER 3

The Bit Editors

‘ppat’ Relative Patterns

In the ' ppat’' resource picker, if you hold down the Option key before pulling down the
Resource menu, the first item changes to Create New Relative Pattern.

'Ppt#' Resources

The ' ppt #' resource (color pattern list) editor is shown in Figure 3-16. There are three
displays in this editor. The display on the left is a color (or black-and-white) fat-bits
version for editing. The display in the middle shows the resulting pattern at full scale,
both in color and in black and white. The pattern labeled B&W is sized to match the
pattern labeled Color. The display on the right is the list area.

Figure 3-16 ' ppt #' resource editor

SCIE ppt# “Butler’s Bane” 1D = 999 from Ono-Sendai =

Desktop Pattern Lists

Desktop patterns, that is, patterns you can select in the general control panel, are found
in the ' ppt #' resource with ID number 0 in the System file. These patterns are restricted
to 8-by 8-pixels in size and must contain exactly 8 colors. ResEdit will enforce these
restrictions if you edit your System file directly. If you edit' ppt #' resource ID 0 from
any file other than your System file, ResEdit displays an alert box asking if the resource
is a desktop pattern list. You must answer yes if you want to use the resulting patterns in
your active System file. If you answer no, any changes you make are likely to cause the
number of colors in the pattern to change, and you won't be able to use the result on
your desktop. There is no convenient way to create a new desktop pattern list. You
should begin with a copy of the ' ppt #' resource with ID 0 from the System file.

'ppt#' Relative Patterns

If you hold down the Option key before pulling down the Resource menu, the first
item changes to Insert Relative Pattern. You cannot insert relative patterns into a desktop
pattern list.

Editing Patterns 41

CHAPTER 3

The Bit Editors

'FONT' Resources

42

The Font editor is a bit editor. It has not been changed from its state in previous versions
of ResEdit and will be familiar if you have used ResEdit before; if you need to edit fonts
extensively and especially if you need to create new fonts, you should probably use one
or more of the excellent third-party utilities that are now available.

The ' FONT' resource is one of two major ways of representing bitmap (screen) fonts for
the Macintosh. (The ' NFNT" resource, described briefly later in this section, is the other.)
The' FONT' resource contains a series of pictures that typically represent items in the
Macintosh character set, though they need not do so. A chart of the Macintosh character
set is presented in Appendix D.

Because the Macintosh displays a character of type on its screen as a bitmap, however, it
is possible for the pictures to be just that—pictures. ' FONT' resources in the Macintosh
world can contain scanned images and other pictures just as easily as they can contain
the alphabet, numerals, and punctuation marks.

Macintosh computers can modify elements of a font—for example, they can embolden
fonts or cause them to slant for an approximation of italics. Print quality on dot-matrix
printers (and screen-display accuracy as well) can be improved, however, by providing
extra fonts that are constructed with those styles built into them."' FONT' resources
typically come in families, so that it is possible to display text on the screen (and print it
on dot-matrix printers) in several styles, most commonly roman, bold, italic, and a
bold-italic combination, without taking processor time to calculate the way SDLICh styles
should look. These families can also correspond to downloadable PostScript ™ fonts for
laser printers and typesetters.

If you use ResEdit to examine a file of fonts from a recent Macintosh system software
version, you will find that it contains three kinds of resources: ' FOND' ,' FONT' , and
"vers' . (arecord of the version number of the release). The' FOND' resource “owns”
one or more sizes of a particular font and contains kerning tables and other important
information about the ' FONT' resources it owns. The ' FOND' resource has a unique ID
number, from which the ID numbers of its subsidiary ' FONT" s are calculated. To find
the ID number of a particular ' FONT' resource, take the ID number of the parent

" FOND' , multiply by 128, and add the point size of the ' FONT' . For example, ' FONT'
ID 268 corresponds to New York (family ID 2), in 12 point size.

The ID numbers of ' FOND' resources may be from 0 (Chicago, the default System font)
to 255, inclusive. Apple reserves ID numbers from 0 through 127. Unfortunately, there
are a great many bitmap fonts (vastly more, in fact, than 255), so occasional ID number
collisions are unavoidable. Version 3.8 and later versions of the Font/DA Mover attempt
to resolve such collisions, as do some third-party system-enhancer packages.

There is also another, newer kind of font resource, type ' NFNT" . Like ' FONT' resources,
" NFNT" resources are also owned by ' FOND' resources. ID numbering of ' NFNT" fonts
is, however, not keyed to the ID number of the parent' FOND' . Arbitrary numbering of

" NFNT" resources helps avoid font ID number collisions and facilitates resolution of

'FONT' Resources

CHAPTER 3

The Bit Editors

conflicts when they do occur. ' NFNT' fonts, moreover, can contain and display more
than 1-bit per pixel and can be assigned absolute colors with a corresponding ' f ct b’
resource, which is a color table record. (Font color table records are discussed in Inside
Macintosh, Volume V, in the section on the Color Manager. The Font Manager is
discussed in some detail in Inside Macintosh, Volumes IV and V.) ResEdit does not allow
you to edit' NFNT" fonts, but you can use it to copy and move them. You can also use
version 3.8 and later versions of the Font/DA Mover. At least one third-party editor for
" NFNT" fonts is available.

Editing 'FONT' Resources

Fonts are edited with a bit editor that is a subset of the bit editors for other pictorial
resources. This editor hDas several of the tools you are probably familiar with from such
programs as MacPaint .

The editing window for ' FONT' resources is divided into four panels: a character-
editing panel, a sample text panel, a character-selection panel, and a typical set of
graphics tools. These panels are shown in Figure 3-17.

Figure 3-17 " FONT" resource editor
E[1==——== New York 18 from Full N¥ Set, through ?2
Beauty is momentary in
’ the mind - / The fitful
tracing of a portal / But
ufs in the flesh it is
Il immortal - W. Stevens
un T
.=IIIIIIIE. : :
b uilm allln @ A B
3
e s
ASCH Offzet width Location
65 1 16 203

The character-editing panel;, on the left side of the window, shows an enlargement of
the selected character. You can edit it, as with the other bit editors for pictorial resources,
by clicking bits on and off with the pencil. Drag the black triangles at the bottom of the
character-editing panel to set the left and right bounds of the character (that is, the
character width). Two of the three triangles at the left side of the panel control the ascent
and descent of characters in the font. If you want to increase the ascent or descent, move
the appropriate triangle first. If you put pixels outside the indicated area and then move
the triangle, those pixels are wiped out.

'FONT' Resources 43

44

CHAPTER 3

The Bit Editors

WARNING

Changing the ascent or descent of a character changes
the ascent or descent for the entire font. a

The third triangle on the left shows the location of the i.”"FONT" editor: baseline’;, which
is fixed and is displayed only for reference. Below the panel are the character number
(labeled ASCII), and the character’s offset, width, and location, all in decimal notation.

Note

The correspondence between the Macintosh character set number and a
real ASCII number is limited. Strictly speaking, ASCII is a set of 128
characters, numbered from 00 ($00, the NULL character) through 127
($7F, the DEL character), and is intended to represent a basic character
set rather than any font or typeface, in a relatively universally
understood form. Because the Macintosh character set is oriented
toward electronic publishing, which has more (and different)
requirements, it has twice as many possible character numbers. (See the
section on the' KCHR' editor later in this chapter.) For ordinary text
fonts, characters 0 through 127 of a Macintosh font are the ASCII
character set. For Symbol, ITC Zapf Dingbats , and the various pictorial
fonts, however, the correspondence with the ASCII character set is
minimal. The Macintosh character set is shown in Appendix D. O

The sample text panel, at the upper right, displays a sample of text in the font currently
being edited. (You can change this text by clicking in the text panel and using normal
Macintosh editing techniques.)

The character-selection panel is below the text panel. You can select a character to edit
by typing it (using the Shift and Option keys if necessary), or by clicking it in the row of
three characters shown. To move upward through the character number range, click the
right character in the row; to move downward, click the left character. The character you
select is boxed in the center of the row. (To scroll quickly, click the right or left character
and drag the pointer outside the selection panel, to the right or left.)

The graphics tools panel, directly below the character-selection panel, offers several
familiar graphics-manipulation tools, including the pencil, eraser, circles, and rectangles.
The filled shapes always use a solid black pattern. The ' FONT' editor also includes the
marquee tool and the lasso as panel selections.

Any changes you make in the character-editing panel are reflected in the text panel and
the character-selection panel, except on monitors displaying more than two colors or
gray levels.

You can also change the name of a font. The font name is stored in two places: as the
name of the ' FOND' resource of that font family, and as the name of the size 0" FONT'
resource. To change the font name, select the individual ' FOND' resource with the name
you wish to change, and choose Get Info from the File menu. To maintain consistency,
you should also change the name of the 0 point' FONT' resource. This resource does not
show up in the normal display of all fonts in a file. To display it, hold down the Option
key while you open the ' FONT' type from the file window. You will see a generic list of
fonts. Select the font with the name you wish to change, and choose Get Info.

'FONT' Resources

CHAPTER 4

Other Resource Editors

CHAPTER 4

Other Resource Editors

Many resources are not of an inherently pictorial nature. ResEdit’s editors for these
resources and its generalized (hexadecimal) editor are discussed in this chapter. For
information on editing template resources, please see Chapter 5.

Using the Hexadecimal Editor

The hexadecimal resource editor is invoked if you hold down the Option key while
opening a resource or choose Open Using Hex Editor from the Resource menu. It is also
invoked if you open a resource for which there is no individual editor or template. This
editor allows you to edit the resource as hexadecimal or ASCII data. The hex editor can
edit resources larger than 255Kb. If a resource is between 256Kb and 511Kb in size, each
click in the up or down scroll arrow causes a scroll of two lines; if between 512Kb and
767Kb, each click causes a scroll of three lines; and so on. (The scroll bars keep track of
position with an integer, which is a single byte and thus is limited to values between 0
and 255.)

If you enter hexadecimal text when you are using this editor, the editor maintains byte
alignment of the incoming data. Thus, if you type 2 into an empty byte, the editor
displays 02. If you then type A the editor displays 2A.

The hex editor has a Search menu. It allows you to search for the occurrence of a pattern
in the resource being displayed and allows you to enter the pattern in either hexadecimal
or Macintosh character set notation, the latter being loosely described as ASCII, though it
is actually considerably larger than the true ASCII set. See Appendix D for a chart of the
Macintosh character set. The hex editor also allows you to move to a specified offset
from the beginning of the resource you're editing.

'WIND', 'ALRT', and 'DLOG' Resources

These three resource types are edited with a tightly interrelated set of editors, so they are
considered here as a group.

"WND resources display windows on the screen. Figure 4-1 shows the ' W ND

resource editor. At the top of the editing window is a pictorial list of the selectable
window styles. Below that is a miniscreen that shows a small picture of the window. You
can move and size the window in the miniscreen.

The MiniScreen menu, shown in Figure 4-2, contains a set of screen sizes for you to
choose from, and an Other command. It defaults to the dimensions of the Macintosh SE
monitor. The Other command lets you add one new size. If you want still more sizes,
you can add an appropriate menu to the ResEdit Preferences file.

46 Using the Hexadecimal Editor

CHAPTER 4

Other Resource Editors

Figure 4-1 "W ND' resource editor

WIND “(by Greg Bear)” 1D = 1958 from a Burning Woman

] [N N

Flla_Edil Mesource Window Color: (" Default
@ Custom

Content: El Frame: El
Title text: [Jlll] wightight:]
Title bar: E'

Initially visibl
Top: Bottom: | 176 CJ Initially visible
[Close box

Figure 4-2 MiniScreen menu

MiniScreen [

+312 1 342 - Classic
912 4384 -12" RGB
640 1 <400 - Portable
640 # 480 - B&LW or 13" RGB
640 ® 870 - Portrait
1152 % 870 - Two-page

DOther...

In Figure 4-1, Custom Color has been selected, and controls that allow you to select
colors for various parts of the window are visible. When you choose Custom Color,
ResEdit createsa' actb',' dctb',or' wet b' resource that corresponds to the' WND' ,
"ALRT', or' DLOG resource you are editing. The first time you change a color, ResEdit
reminds you that you are creating a new resource and that if you remove the parent
resource you should also remove the extra' actb',"' dctb', or' wetb' thatis left
behind.

"ALRT' and' DLOG resources display, respectively, alert and dialog boxes. Editing
"ALRT' and' DLOG resources is much like editing' W ND' resources, except that the
corresponding ' DI TL" resource is automatically opened if you double-click the picture
of the alert or dialog box after opening the resource. (See the next section.) You can select
a particular ' DI TL' resource to go with a given' ALRT' or' DLOG resource, but the
default is one that has the same ID number as the parent resource.' ALRT' resources
have a fixed format, so you cannot select a window type, nor do you have the options of
selecting initial visibility or the presence of a close box."' DLOG resources do allow these
options.

'WIND', 'ALRT', and 'DLOG' Resources 47

CHAPTER 4

Other Resource Editors

Figure 4-3 shows an' ALRT' resource open for editing. Just as with the ' W ND' resource
example, the editor displays a miniscreen view of the resource.

Figure 4-3 " ALRT" resource editor

48

E[=== ALRT “Croaker Courtbouillon™ 10 = 3333 from Ono-Sendai

o Flia E Baciourca Window Color: @ Default
) Custom

W, ww| | e wuiTorod UnoHpoCted
ErTor 0, | murt e g ww,
povisagm nouey tw reterel |

DITL 1D:

Top: Buttum:
Left: Hight:

Note

The first item in the ' DI TL' associated with any ' ALRT' resource must
be a button. The system has no way of telling what is where, so it always
regards the first item as a button. Using the Set' ALRT' Stage Info
command from the ALRT menu, you can specify either item 1 or item 2
as the default at any of the four stages of the alert. If item 1 is the

default, of course, item 2 need not be a button. By an informal conven-
tion in Macintosh programming, item 1 is the OK button and item 2 is
the Cancel button if there is a Cancel button. This convention is reflected
in the dialog box associated with the Set' ALRT' Stage Info command. O

Figure 4-4 shows a' DLOG resource open for editing.

'WIND', 'ALRT', and 'DLOG' Resources

CHAPTER 4

Other Resource Editors

Figure 4-4 ' DLOG resource editor

== DLOG “Wallace Greenslade, R.1.P.” ID = 1961 from Ono-5Sendai

s I [][RI

o Fllo Edll Beaourca Window

Color: (@ Default
) Custom

DITL 1D:

[Initially visible

Top: Bottom:[166 |
Left: Right: [JcClose box

When you display an individual ' WND ," ALRT" , or' DLOG resource, a corresponding
menu appears. The WIND menu is shown in Figure 4-5, the ALRT menu in Figure 4-7,
and the DLOG menu in Figure 4-9. These menus are very similar.

Figure 4-5 WIND menu

Set 'WIND' Characteristics...
Preview at Full S5ize
Auto Position...
v MNever Use Custom 'WDEF' for Drawing

Show Height & Width
+5how Bottom & Right

Use Color Picker

They have the following commands in common:

Preview at Full Size
Displays the resource sized as it is in normal display. Click the mouse to
return to the editor.
Auto Position...
Allows System 7.0 to position the window automatically when it is drawn.
Show Height & Width

Changes the editable fields at the bottom of the window to show relative
size/ position information.

'WIND', 'ALRT', and 'DLOG' Resources 49

CHAPTER 4

Other Resource Editors

Show Bottom & Right
Changes the editable fields at the bottom of the window to show absolute
size/position information.

Use Color Picker
Lets you use the Color Picker instead of the standard 256-color palette
when you set the colors of the various parts of the resource.

The WIND menu contains the following commands in addition to those already
discussed:

Set' WND' Characteristics
Brings up a dialog box, shown in Figure 4-6, that allows you to title the
window and set its r ef Con and pr ocl D. If the pr ocl Dis not the one
associated with any of the pictures at the top of the main window, none of
the pictures is selected.

Figure 4-6 Setting' W ND' characteristics

'WIND' Characteristics

Window title: Night Scented Stock

Never Use Custom ' WDEF' for Drawing
This command defaults to true. It causes the resource to be drawn with
the standard ' WDEF' resource from the System file regardless of the value
you assign to the pr ocl D.

Figure 4-7 ALRT menu

50

Set 'ALAT Stage Info...
Preview at Full Size
Auto Position...

v« Show Height & Width
Show Bottom & Right

Use Color Picker

'WIND', 'ALRT', and 'DLOG' Resources

CHAPTER 4

Other Resource Editors

The ALRT menu contains the following command in addition to those already discussed:

Set' ALRT' Stage Info
Brings up a dialog box, shown in Figure 4-8, that allows you to set the
display conditions for the resource at different stages. You can select how
many beeps you want to sound, up to three; whether the OK or Cancel
button (actually item 1 or item 2 of the associated ' DI TL' resource) is the
default; and whether the alert box is to be drawn for each stage. The
stages correspond to successive occurrences of the alert condition,
although stage 4 is for four or more occurrences. Please see Inside
Macintosh, Volume I, page 409, for further information.

Figure 4-8 " ALRT' Stage Info dialog box

'ALRT' Stages

Stage Alert box Default button Sounds
4 B O Be
Figure 4-9 DLOG menu

Set 'DLOG' Characteristics...
Preview at Full Size
Auto Position...
v MNever use custom 'WDEF' for drawing

+Show Height & Width
Show Bottom & Right

Use Color Picker

The DLOG menu contains the following commands in addition to those already
discussed:

Set' DLOG Characteristics
Brings up a dialog box, shown in Figure 4-10, that allows you to title the
window and set its r ef Con and pr ocl D. If the pr ocl Dis not the one
associated with any of the pictures at the top of the main window, none of
the pictures is selected.

'WIND', 'ALRT', and 'DLOG' Resources 51

CHAPTER 4

Other Resource Editors

Figure 4-10 Setting ' DLOG characteristics

'DLOG' Characteristics

Window title: |This is the BBC.. |

Never Use Custom ' WDEF' for Drawing
This command defaults to true. It causes the resource to be drawn with
the standard ' WDEF' resource from the System file regardless of the value
you assign to the procl D.

'DITL' Resources

52

The' DI TL' (dialog item list) resource editor can be invoked directly or from the

"ALRT' and' DLOG editors. When you first invoke it, it displays an image of the items
from the list just as they would be displayed in a dialog or alert box. When you select an
item, a dotted rectangle is drawn around it. The rectangle has a size box in its lower-right
corner so that you can change its size. If you choose Select All, ResEdit first deselects any
selected items, and then selects all items in their order in the item list. You can move an
item by dragging it.

The' DI TL' editor uses the Dialog Manager to display ' DI TL' resources. This ensures
that they look the same when your application displays them as they do in the editor.

Figure 4-11 shows the ' DI TL' corresponding to' DLOG resource ID 5120 from the
Finder. This is the Get Info box.

‘DITL' Resources

CHAPTER 4

Other Resource Editors

Figure 4-11

"DI TL'

resource editor

-

o Fllg Edil Beaource Window

Top:

Buttnm:[
Left: D Hight:[

[J= DITL 1D = 5120 from Finder ==
Button
[< Check Box
2 | @ radio Button
— | B control
E ontro
T: Static Text
s Edit Text
16
not available L7 &, teon
....... !__ Picture
E User Item
[10] [nd=0]

mfral

To create a new item, drag the type you want from the item palette. To open an item,

either double-click it, or select it and press the Return key.

If you open an item, the item editor, shown in Figure 4-12, is invoked. If you hold down
the Option key while opening a' CNTL' ,' | CON' , or' PI CT" resource, the hexadecimal

editor is invoked. If you hold down the Option and Command keys while opening a

"CNTL'," 1 CON , or' PI CT" resource or if you choose the appropriate Open command

from the Resource menu, a specific editor for the particular resource is started. Some

dialog items are listed as User Items. These are defined in the application, rather than in
the Dialog Manager, and are actually built only when you run the application. The item
editor has one pop-up menu, which allows you to change the type of the item. Different
item types have slightly different editor windows; if another resource (a picture or icon,
for example) is referred to by the item, you can select it by ID number. That information
takes the place of the Text window in Figure 4-12.

Figure 4-12

"DI TL'

item editor

O

Edit DITL item #2 from Ono-Sendai

Static Text vI

LL:DIHI0h, no! | have suffered Unexpected

[Enabled

Error “0. Now | must go away from
you, perhaps never to return!!

Top:

Left:

Bottom:

Right: (257

'DITL' Resources

53

CHAPTER 4

Other Resource Editors

Because they are linked, the ' DI TL' resource is usually given the same ID number as
the parent' DLOG or' ALRT' resource. This is not necessary, however, and you can
assignany ' DI TL' resource to any ' ALRT' or' DLOG resource.

Figure 4-13 DITL menu

54

Renumber Items...
Set Item Number...
Select Item Number...
Show Item Numbers

Align To Grid
Grid Settings...

Show AIl 1tems
Use Item’s Rectangle

Diew As...

Balloon Help...

The DITL menu, shown in Figure 4-13, contains the following commands:

Renumber Items
Allows you to renumber items in the' DI TL' resource. Remember that
item number 1ina' DI TL' used by an' ALRT' must be a button.

Set Item Number...
Allows you to specify a new number for a selected item. Some of the
items may be renumbered when you do so.

Select Item Number...
Allows you to select an item by specifying its number. This is useful for
items that are obscured by other items or are outside the window. Once
you have selected an item, you can open it by pressing the Return key.

Show Item Numbers
Sets the display to show the number of each item in the ' DI TL' resource.
If you hold down the Option key, the current setting of this command is
temporarily toggled.

Align To Grid
Aligns the items on an invisible grid, the size of which defaults to 10 by
10 pixels. If you change the location of an item while Align To Grid is on,
the location is adjusted such that the upper-left corner lies on the grid
point nearest to the location you gave. If you change an item’s size, it is
constrained to be a multiple of the current grid setting in each dimension.

Grid Settings...
Allows you to set the horizontal and vertical grid sizes. These both
default to 10 pixels.

‘DITL' Resources

CHAPTER 4

Other Resource Editors

Show All Items
Adjusts the window size so that all items in the item list are visible in the
window (or makes the window as large as the current screen size allows,
if the screen is smaller). The window size that your program will use
when it displays the' DI TL' is actually stored in the parent' ALRT' or
" DLOG resource; this command is present solely for your convenience
when you are editing the dialog items.

Use Item’s Rectangle
This command is enabled only for ' CNTL' ,' | CON', and ' PI CT'
resources. When you choose it, the rectangle specified by the ' DI TL'
item, rather than the default rectangle, is used when the ' DI TL' resource
is displayed. This is important for pictorial resources in particular, so that
the whole picture, rather than some random part of the picture, is shown.

View As... Brings up a dialog box, shown in Figure 4-14, that allows you to set the
typeface and size in which Edit Text and Static Text items are displayed in
the editor. As you can see from the figure, this command does not actually
change the resource itself. It is useful if you are designing a dialog box
that is to be displayed using a different font from the default font of the
editor, which is 12-point Chicago.

Figure 4-14 DITL menu View As dialog box

"liew As" only changes the font
and size when viewed. It does
not modify any resources.

Font:| Chicago - |

Size: | 12w

Cancel 0K

Balloon Help...
Brings up a dialog box with items that relate to Balloon Help in system
software release 7.0. There are three types of Balloon Help items; they can
be added and deleted with this command. ResEdit always puts Balloon
Help items at the end of the item list.

'DITL' Resources 55

CHAPTER 4

Other Resource Editors

Figure 4-15 shows the Alignment menu. In this illustration, both of the items in the
" DI TL' have been selected.

Figure 4-15 Alignment menu

2 Align Left Sides
& Align Right Sides

& RAlign Vertical Centers
== Align Horizontal Centers

The first six items are enabled only when two or more items are selected. The last
two items may pertain to one or more items at a time. Use of all of these items is
straightforward.

Any or all of four special items can be used in static textina' DI TL' item orina

" STR#' resource. Each is built of a caret (") followed by a number from 0 to 3. The text
of these items can be set by calling the ParamText toolbox procedure. An example of a

" DI TL' with these items is shown in Figure 4-16. Please see Inside Macintosh, Volume I,
page 421, for further information.

Figure 4-16 Special parameter strings

56

E[I==—— DITL ID = 132 from Finder
H Are you sure you want to completely [4]
! replace contents of
CRr [Aa] E

|u.lith contents uiil
i ™ [All? |l

[ok [[cancel2]

'DITL' Resources

CHAPTER 4

Other Resource Editors

'BNDL' Resources

To date, ' BNDL' resources have been mysterious, opaque, and difficult to learn about.

They are associated historically with a fairly complex set of concepts, but in fact their
only function is to bring together an application’s documents (including the application
file itself) and their icons for the Finder. Any application that has a distinct icon on the
desktop also contains a' BNDL' resource. For more details on the structure and concept
of the' BNDL' resource, please refer to Appendix C, “The ' BNDL' Resource.”

The ' BNDL' editor in ResEdit 2.1 helps you create a bundle consisting of the necessary
"BNDL',"' FREF', and Finder icon resources and saves you the trouble of dealing with
the internal workings of the bundle concept. The basic view you get when you first bring
up the ' BNDL' editor is shown in Figure 4-17. (The extended view is shown in

Figure 4-19.)

Figure 4-17 " BNDL' resource editor, simple view

1= BMNOL 1D = 128 from TeachText

Signature:
Type Finder Icons
i
APPL 1
TEHT
tiro
]

The Finder bundles together documents, applications, and their icons with a four-
character signature, which must be unique for every application. All the necessary
resources to do this are stored in the so-called Desktop file (or in the desktop database in
system software version 7.0). This signature is shown in the first line of the window. All
characters in the Macintosh character set (see Appendix D) are allowed in the signature.
To register a unique signature for your own application, please contact Macintosh
Developer Technical Support at Apple Computer, Inc.

This signature is used as the creator code for all files that are part of the bundle (the
creator code is a property of every file and can be set using the Get File/Folder Info
command on the File menu). Every file on the Macintosh also has a file type, which

is another four-character field (several standard file types are defined: APPL for
application, TEXT for plain text document, PICT for picture files, and so on). This file
type is used not only to differentiate among different kinds of files but also to associate

'BNDL' Resources 57

CHAPTER 4

Other Resource Editors

distinct icons with different files having the same creator (that is, those that belong to the
same application). This is what the list in the bottom part of the ' BNDL' editor window
does. To create a new file type and its icon, choose Create New File Type from the
Resource menu. Enter the file type in the left column and open the Finder Icon field in
the right column by selecting Choose Icon from the BNDL menu or by double-clicking
the field.

Figure 4-18 shows the Icon chooser. Here you can either select an existing icon for your
file type, or you can create your own by pressing the New button. Note that even though
the ' BNDL' editor shows the entire Finder icon family, because of screen real estate
considerations you will see only a list of ' | CN#' resources in this window. Versions of
the Finder before system software release 7.0 use only ' | CN#' icons.

Figure 4-18 The Icon chooser

58

% File Edit Resource Window QERNIN

TeachText

s Y= R

BNDLs from TeachText |
o BWOL ID = 128 from TeachText |
! Signature: E Choose an icon for the type ttwo:
.. ﬁ
Type Fi
APPL £ 129 128
i TEHT
ttro 3]
Hwo New [H l Cancel l FEE 4
]

Once you have associated all your file types with distinct icons (remember to include the
file type APPL for your application itself), you need take only a few more steps to make
the Finder display your icons.

Choose either the Get File/Folder Info command or the Get Info for This File command
from the File menu, and select your application from the resulting list of files. Now set
the file type to APPL and the creator to the signature you have entered in the ' BNDL'
resource. Then set the Bundle bit and clear the Inited bit. This tells the Finder that your
application contains a' BNDL' resource and that it hasn’t already seen your file. If the
Finder doesn’t immediately show your new icon, select your application and use the Get
Info command in the Finder.

‘BNDL' Resources

CHAPTER 4

Other Resource Editors

Note

Once the Finder has seen your ' BNDL' resource and loaded the icons
into its Desktop file, it will never again look at your ' BNDL' , even if you
clear the Inited bit.

In order to change the' BNDL' resource or to change some icons, you
must either remove your ' BNDL' resource from the Desktop file
manually using ResEdit (this works, but is not recommended) or
recreate the Desktop file. To do this, hold down the Option and
Command keys while restarting your Macintosh computer. The Finder
will then ask you if you want to rebuild the Desktop file. Remember that
when you do this, you lose all comments you may have entered in the
Get Info windows in the Finder in system software previous to system
software version 7.0. O

If you want to move information from one file type to another within the ' BNDL'
resource you can do so by using the commands on the Edit menu. For copying
operations, all necessary information (including the Finder icons) is copied with the file
type. If you clear or cut a file type in the ' BNDL' resource, please note that for safety
reasons the Finder icons are not removed (because good icons are hard to design, it is
generally considered better to waste a few bytes than to delete one accidentally).

If you ever need to tinker with the internal workings of the ' BNDL' resource, you can
edit all information stored in the ' BNDL' and associated ' FREF' resources by choosing
Extended View from the BNDL menu. See Figure 4-19.

Figure 4-19 ' BNDL' resource editor, extended view

[[==————=— BNDL ID = 128 from TeachText

Signature: E
10:[0 | (should be 0)

@ String: |TeachTth, lersion 1.2 |

FREF Finder Icons
local res ID iType |local jres ID i ICN* icld4 ic18 ics®icsd iesS

0 128 APPL (0O 128
1 129 TEHT 1 129
2 130 ttro 2 130

&l

For historical reasons the third line of the extended view, which displays the contents of
the signature resource, is labeled O String. This is because before the introduction of the
"vers' resource to keep track of version information, the signature resource was used
to store such information. Today the Finder ignores the contents of the signature

'BNDL' Resources 59

CHAPTER 4

Other Resource Editors

resource unless the' vers' resources are missing. In that case the Finder displays the
contents in its Get Info window. The ' ver s' resource and its editor are described in
detail in this chapter.

'clut’ and "pltt' Resources

The' cl ut' (color look-up table) and ' pl tt' (palette) resources are used to store color
and gray-scale information. They are largely interchangeable, but the ' pl tt" resource
type contains usage information in addition to the information contained in a corre-
sponding ' cl ut' resource. Palettes are associated with windows. For more information,
see the Palette Manager and Color Manager chapters in Inside Macintosh, Volume V.
ResEdit 2.1 includes an editor for' cl ut' and ' pltt' resources, showninits' cl ut'
version in Figure 4-20.

Figure 4-20 ' cl ut' resource editor

60

S[[=— clut “Heap o' Grays™ ID = 1111 from ResEdit Preferences

red: [20303]F by [HTIM New: _l

Green: 20303 |} by 500 |

Blue: [20303 || by [500 |

If you click any color patch, the editor draws a marquee around it to indicate that it is
selected. Shift-click to make an extended selection. When a single color patch is selected,
you can change its value by typing new numbers into the boxes labeled Red, Green, and
Blue at the bottom of the editing window;, or by clicking the up or down arrows.

The arrows change the indicated value by the amount shown but cannot create a value
that is greater than 65535 or less than 0. For example, if the change size is set to 500 and
you attempt to decrease a value that is already less than 500 by clicking the correspond-
ing down arrow, the value is set to 0. The default change size is 500, as shown in

Figure 4-20.

To create a new color patch, choose Insert New Color from the Resource menu or press
Command-K. To remove a color patch you must use Cut or Clear, because the Delete key
changes only the contents of the labeled boxes.

‘clut’ and 'pltt' Resources

CHAPTER 4

Other Resource Editors

Figure 4-21

H3faa4]
Complement
Load Colors...

clut menu

REB Mpiipd
w LMY Model
HSB Model
HLS Model

The clut menu, shown in Figure 4-21, contains the following commands:

Blend

Complement
Load Colors...

RGB Model
CMY Model
HSB Model
HLS Model

Generates a ramp, or blend, between the endpoints of a selected range of
colors. If only three color patches are selected, the middle color will be set
to a value halfway between the extremes. If fewer than three color patches
are selected, this command is dimmed and cannot be used.

Changes the values of selected colors to the values of their complements.

Brings up a dialog box that allows you to load colors and gray levels from
the available palettes and color look-up tables. These include the standard
8-bit (256-color) set, the standard 4-bit set, black-and-white, Apple’s
recommended colors for icons, and any others that are available in the
ResEdit Preferences file or in any other files you have open. Using this
command replaces the current colors with the new ones.

These commands allow you to select from one of four models for
handling colors. The models are:

RGB: Red/Green/Blue

CMY: Cyan/Magenta/ Yellow
HSB: Hue/Saturation/Brightness
HLS: Hue/Lightness/Saturation

RGB is the default model.

The pltt menu is identical to the clut menu except that it includes a Usage command that
brings up a dialog box in which you can specify usage information for the particular
"pltt' resource.

The Sort menu (not shown) allows you to sort by any of the three criteria of the current

model. That is,

or blue.

if you are using the RGB model, it lets you sort by amount of red, green,

The Background menu (not shown) lets you choose white, gray, or black as the back-
ground color of the area of the editing window having no color patches, including the

border around

the patches.i).’editors: 'clut”;

‘clut’ and 'pltt' Resources 61

CHAPTER 4

Other Resource Editors

'INTL', 'itl0', and 'itl1' Resources

The' I NTL' resource combines the functionality of the' i t1 0" and'itl 1" resources.
Thatis,' | NTL' “US” ID=01isthesameas'itl 0" “US”ID=0,and"' | NTL' “US” ID =
listhesameas'itl 1" “US” ID = 0. These resources are used in international localiza-
tion. For further information, see Inside Macintosh, Volume V, Chapter 16. Each of these
resources (whether you edit them as' I NTL' oras'itl 0" and'itl 1")isshownasa
window with a set of boxes to be filled in and some buttons that can be clicked.

Figures 4-22 and 4-23 show the windows for' i t1 0" and'itl 1" resources.

Figure 4-22 Editingan'itl 0" resource

[(E=————==itI0 “U5” 1D = 0 from System ="Fie0e————=
Mumbers: Decimal Point:

[] Leading Currency Symbol
[] Minus sign for negative
[Trailing decimal zeros

Thousands separator:
($1,23450) List separator:
($0.5) ; ($0.5) Currency:

[Leading integer zero

Short Date: Date separator: [JLeading O for day

Date Order:| M/D/Y +| []Leading 0 for month

11416490 [Include century

I“‘"“I

Time: Time separator: |: [Leading O for seconds
5:01:04 PM Morning trailer: | AM [Leading O for minutes
5:01:04 AM Evening trailer: | PM [Leading 0 for hours

24-hour trailer: [12-hour time cycle

Country:[00 - USA *| [metric Version: EI

Figure 4-23 Editingan'itl 1" resource

62

ES[[=——=— itll “US" ID = O from System
Names for months Names for days

July Sunday

February August Monday

March September Tuesday

= Wednesday

April October Thursday

May November Friday

June December Saturday

D| Day v|D| Month v|D| Date v|D| Year YID

Use Elcharacters to abbreviate names []Leading 0 in Date
[] Suppress Date

Country Code:[00 - USA A

Y | I [Suppress Day
Fri, Mav 13, 1990 lersion: El [Suppress Month
Friday, Movember 13, 1990 [J Suppress Year

'INTL', 'itl0', and 'itl1' Resources

CHAPTER 4

Other Resource Editors

'"KCHR' Resources

The ' KCHR' resource controls keyboard mapping. The main ' KCHR' editing screen is
shown in Figure 4-24, with the Command and Shift keys pressed; the dead-key editor
is shown in Figure 4-25. Appendix A contains an in-depth discussion of the ' KCHR
resource itself, and a short section of ' KCHR questions and answers appears in
Chapter 6.

Figure 4-24 Editing a' KCHR' resource

Ell KCHR “US™ 1D = 0 from Ono-Sendai

O] Jofele| [plale]t[=ls]-[$]%][a]y mEEE 7501 o
oo rfalolalglale][=]il—] |afs [t = (0|0}
oo [zlelrlp]elclilelz{-]"].|ofjd 1 0 [0]0f
O0[«|s|c|s]|els|elilal=]v]~]. o]z 1 [O]of
Ol0(¢|4|p|T]d]t[a]ilsl=g]lfl |w|lolih]s 2 |0]0f
O0[%[s|E|ufelu|s[il=]p]|= Al e |4 3EIEI§
ol0|&|6|r|vw|f|v|alalglalal«]z]" iz |6 4 |0]0f
O[O0 [?|e|w|eg|w|al[d|8[E]= &[4 E=x]5] SEIEIE
olof¢|s{a|x|n]|=|afe|a|O]-]s]z c = 6 (O[O

oy |alr{vlilylalale|n] [e{a]{"|{v|s [7 |o|O

ol=|:{7lelil=]alalm]r] [~]i HE 0|0

O+ ||l k]e]ala] |2]al=]i b |- /ls |O]O

of.[<[c]{s]t]1]a]a DA g8 |/ Os [O]OF

Of-|=|M[]|m[i]c|n|=|02[5]- [} wl|i|n ol |ofof

0 = |M|an|~]&|10 #|E|fi|d e |l |m oo

0 ; ol s ~ 0

2 [3 14 |5
o fw le [r [1]
s o [r [a

The Main 'KCHR' Editor

The display for the main' KCHR' editor (Figure 4-24) is divided into five parts, which
are described in the sections that follow.

The Character Chart

The character chart is the large rectangle at the upper-left corner of the display.

This chart shows the 256 characters that make up the currently selected font. It displays
the character generated by the currently pressed key, by highlighting it. You can also
display a character by clicking with the mouse in either the keyboard region or the
virtual keycode chart. These characters can be assigned to keys on the keyboard. To

'KCHR' Resources 63

64

CHAPTER 4

Other Resource Editors

assign a character to a key, drag the character either to a keycap in the keyboard region
or to the virtual keycode chart. You cannot assign characters to the Command, Option,
Shift, Caps Lock, Control, Return, or Enter keys.

The Table Chart

The table chart is at the upper-right corner of the display.

The Shift, Caps Lock, Option, Command, and Control keys are considered to be modifiers.
No combination of modifier keys generates a character code unless some other key is
also pressed. The table chart shows which table is used by the currently depressed
modifier key combination.

Please note that although there are 256 possible combinations of modifier keys, most
versions of the' KCHR' resource use only 8 tables, and very few ever use more than 16.
This is because similar modifier key combinations are frequently mapped to the same
table. For example, in the U.S." KCHR' resource, all combinations involving the Control
key point to Table 6. Also, the Caps Lock and Shift combination points to Table 1 (which
is pointed to by the Shift key) rather than Table 2 (which is pointed to by the Caps Lock
key on its own).

To change the table used by a modifier key combination, press that combination of
modifier keys and click a different table. The mapping is changed by the editor. This
feature is probably of very little use, and the information is included here for
completeness. Here is a listing of the tables as they are pointed to by various modifier
key combinations in the U.S. " KCHR', as supplied:

s Table 0 is shown when none of the modifier keys is pressed, or when the Command
key or Command and Shift keys are pressed.

» Table 1 is shown when the Shift key or Caps Lock and Shift keys are pressed.
s Table 2 is shown when the Caps Lock key is pressed.

s Table 3 is shown when the Option key is pressed.

» Table 4 is shown when the Shift and Option keys are pressed.

» Table 5 is shown when the Caps Lock and Option keys are pressed.

» Table 6 is shown when the Option and Command keys are pressed.

s Table 7 is shown when the Control key (and any other keys) are pressed.

The Virtual Keycode Chart

The virtual keycode chart is at the top of the display, slightly to the right of center.

This chart shows all 128 keycodes in the current table and highlights the keycode that is
generated if you press a particular key with the current modifier key combination. These
keycodes come from the keyboard and are virtual in the sense that further translation
has to take place before a Macintosh character set number results and a character can be
displayed.

'KCHR' Resources

CHAPTER 4

Other Resource Editors

The Keyboard Region

The keyboard region occupies the bottom of the display, below the character chart and
the virtual keycode chart.

This area reflects a particular keyboard layout. You can choose a different keyboard for
displaying E’lche virtual keycodes by using the View As command on the KCHR menu.
The Apple Extended Keyboard and Extended Keyboard II have two sets of modifier
keys, and you can use the Uncouple Modifier Keys command, also on the KCHR menu,
to get access to the alternate modifier keys (the ones on the right side of the keyboard,
which are usually coupled with the ones on the left side). If you do not have the Apple
Extended Keyboard or Extended Keyboard II connected to your Macintosh, you cannot
choose the Uncouple Modifier Keys command.

Note that the modifier keys shown in the keyboard picture have a gray border. This
border has two purposes:

= It reminds you that you cannot drag a character from the character chart onto a
modifier key.

= It helps you find the modifier keys in the virtual keycode chart. (They have a gray
border there, too.)

Note also that if you press the Option key, some keys in the display are shown with solid
black borders. These are “dead” keys. If you click a dead key, the special editor for dead
keys is invoked. For more information on editing dead keys, see “Editing Dead Keys,”
later in this chapter.

The Information Region

The information region is at the right edge of the display, below the table chart.

This small box shows you the current character code and virtual keycode (if there are
any), both in hexadecimal form.

Editing Dead Keys

Some combinations of keys do not immediately specify a character. Because nothing
appears on the screen and the cursor does not move when these combinations are
pressed, they are called dead keys. They act to modify the next key that is pressed after
the dead key is released. The special editor for dead keys is shown in Figure 4-25.

'KCHR' Resources 65

CHAPTER 4

Other Resource Editors

Figure 4-25 Editing a dead key

66

E[1==== Dead Key #0 (Table 3, Key $0E) from Ono-5endai
o] [olele| |plale|t|=]s]-t]* ’
ooy |aQlalgli(e||=]i|—] & A
olo [zlelelelc|clilelz]-]"].|n £
Ol0|#|3|(C|5]|c|s|B|i|&]|=|+]|*]|, |0 i
Ol0|s|4(D|T|d|t|7|1|§|F|f o | T &
O[0)%|&|E|U|e|u|&[i|*]|p[= At o
O|0|&|6|F|V|f|w|a|A|F|d[A]|x|B]" A
O[O0 7G| g |w|a|d|f|Z|«|2[4&]7 é
O[O0 |6[H|X|[h|=x[aa|@|[T|~|¥][E i
oD leliv|ily|alale|al [c[E]" 8
alol=[:{rlz]jlelalalm]] |/]i i
OO0+ |, (B[k[{[a|a] [2]|a]s]i

0|, |=|L|v|L]|]I|&]n ¢« |
Of-|=[M[] |m|}|c|d|[#|0]&]:]]
Of0].|=|W|ala|~|&|d|ZE|le|E|f|e

g0/ |z|o|_|o|Ofé|a|d|@|e(d|s

The Dead-Key Editor

The display for the dead-key editor is divided into five functional sections.

The Character Chart

The character chart is on the left side of the editing window.

This chart displays the character codes and is used to assign a different character code to
either a completion character, a substitution character, or the nomatch character; you
assign a code by dragging the character to its new location. If you drag a character to one
of the empty slots (displayed in gray) in the completion and substitution character pair
list, you automatically add a new pair.

The Nomatch Character

If the character typed after the dead key doesn’t fit, a nomatch character is displayed,
followed by the character you have typed. For example, Option-E must be followed by a
vowel; it doesn’t make much sense to put an accent mark on a k. The nomatch character
for the current dead key is shown in the upper-right corner of the window.

The Completion and Substitution Character Pair List

The completion and substitution pair list is just to the right of the character chart.

This list shows the translation rules for the dead key that is currently selected. There are
two columns, allowing for a total of 32 dead keys. The left half of each column shows all
completion characters; the right half shows all substitution characters. If the character
typed after the dead key is one of the completion characters, the matching substitution
character is actually produced. For example, pressing Option-e and then e produces the
character é.

'KCHR' Resources

CHAPTER 4

Other Resource Editors

The Trash

To remove a completion/substitution character pair, just drag either character from that
pair in the completion/substitution pair list to the Trash icon in the lower-right corner of
the window.

The Information Region

The information region is on the right edge of the window, and contains the word Char:.

This area contains the character code in hexadecimal form whenever you click one of the
other parts of the editor.

The Menus
The' KCHR' editor has three menus: KCHR, Font, and Size.

The KCHR Menu

This menu is shown in Figure 4-26.

Figure 4-26 The KCHR menu

KCHR |-
Diew As...
Uncouple Modifier Keys

New Table
Duplicate Table

Remove Unused Tables
Remove Duplicate Tables

Edit Dead Key...
Convert To Dead Key
Bempur Dead Yoy

The KCHR menu contains the following commands:

View As... If you have the Key Layout file (Which has been part of the system
software since version 4.2) in your System Folder, you’'ll be presented
with a list of keyboards to be used for displaying the virtual keycodes.
Note that you are not changing the layout of a particular keyboard, but
the ' KCHR' resource that is used by all keyboards and is based on the ISO
(International Standards Organization) Apple Desktop Bus™ (ADB)
keyboard.

Uncouple Modifier Keys
This command is enabled when you have an ADB extended keyboard
connected to your computer. It can be used to uncouple the right modifier
keys (see the note immediately following) and thus edit the tables used
by them. Please note that the ' KCHR editor automatically recouples
them whenever you bring another window to the front or close the editor.

'KCHR' Resources 67

CHAPTER 4

Other Resource Editors

Note

When you choose the Uncouple Modifier Keys command, you must also
use the View As command to set the current keyboard to a keyboard
that supports uncoupled modifier keys. To avoid confusion, and because
not all keyboards support this decoupling, it is recommended that you
not make use of this command. O

New Table Creates a new empty table.

Duplicate Table
Creates an identical copy of the current table.

Remove Unused Tables
Looks for tables that are not used by any modifer key combination, and
removes them.

Remove Duplicate Tables
Checks for tables that are identical, reassigns modifier key combinations
as necessary to one table, and removes any duplicates.

Edit Dead Key...
Displays a dialog box (see Figure 4-27) containing a list of all dead keys
and lets you select one to edit. Note that there is a shortcut to edit dead
keys: You can either click a dead key on the screen, or press the dead key
on the keyboard. In either case the dead-key editor will automatically
appear.

Figure 4-27 Dead Key Edit Dialog Box

68

Please select the dead key you want to edit:

Dead Key #0 (Table 3, Key $0E) - Note:
Dead Key #1 (Table 3, Key $32) ~ The character shown in the

Dead Key #2 (Table 3, Key $22) - list is the “NoMatch”

Dead Key #3 (Table 3, Key $20) ~ character generated by

Dead Key #4 (Table 3, Key $20) ~ the corresponding dead
key.

[[0K]] [Eancel]

Convert To Dead Key
Whenever you hold down a key with any combination of modifier keys
and choose this menu command, the key will be converted to a dead key.
You can then use the Edit dead key command to define all valid
completion and substitution characters for the new dead key.

Remove Dead Key
This command is enabled only when a dead-key window is open. It
removes the dead key currently being edited from the dead-key list,
converting it into a live key in the process.

The Font Menu

This menu lets you choose a font for displaying the characters in the editor’s window.

'KCHR' Resources

CHAPTER 4

Other Resource Editors

The Size Menu

This menu lets you choose a size for the characters displayed in the editor’s window. All
characters in the window are automatically resized.

Note

If you are editing ' KCHR' resources on a Macintosh SE, Macintosh Plus,
or Macintosh 512K enhanced, the ' KCHR' editor automatically sets the
size to 9 points so that the editing window fits on the screen. O

'MENU' Resources

Menus are an important part of the Macintosh user interface and are found in all
applications and many desk accessories. They are stored in resources of types ' MENU
(regular menus), 'cmnu' (MacApp! temporary menus; these are converted into ' MENU
resources by PostRez during the MacApp build process, so you will never find one in an
application), ' CMNU (MacApp permanent menus; these will be supported in future
versions of MacApp), and ' ntt b' (menu color tables for any of the preceding types).
The' crmu’ and ' CMNU types differ from regular menus in that they have an addi-
tional command number field stored for each item in the menu. ResEdit 2.1 supports
editing of all these menu resource types with a new editor that automatically integrates
the color information stored in the ' ntt b' resources and thereby allows editing of
menus in color. See the inside front cover for a color illustration of menu editing.

The display of the menu editor, shown in Figure 4-28, is divided into two sections. The
left side shows the entire menu, and the right side displays detailed information about
the item selected on the left side. To accommodate menus with many items, the box on
the left side has a scroll bar.

Figure 4-28 ' MENU resource editor

w File Edit Resource Window MENU Sigis [Knobs |
E] MENU “Knobs™ 1D = 132 from Box 8 for Mac 11
Entire Menu: [< Enabled
Shorter Lines ®E Wi

Longer Lines #L Title: ® ST TER

) % (Apple menu)

Faster

Slower G Color

itte: (]
Item Text Default: El
Menu Background: :l

4]

'MENU' Resources 69

CHAPTER 4

Other Resource Editors

If the title of the menu is selected, the editor not only allows you to change the title but
also displays some information about the entire menu. You can enable or disable the
entire menu and also select colors for the menu’s title, for the item text default, and for
the menu background. On machines capable of displaying color, the color patches are
pop-up menus that let you choose a color from a palette corresponding to the pixel-
depth of the deepest device intersecting the window. Should you want or need to enter a
color in RGB values, you can choose Use Color Picker from the MENU menu and set the
color using the standard color picker. On monochrome machines the color picker is
opened whenever you click the color patch, because a palette cannot be displayed
adequately. Since the Apple character can’t easily be generated on some keyboards, there
is also a convenient radio button to make the menu title the Apple character instead of
text entered in the box. If you do enter the Apple character, the editor automatically
selects the radio button. In some typefaces there are two Apple characters, only one of
which causes the editor to select the radio button. You can enter it by typing Control-T.
The other Apple is Option-Shift-K.

When you create a new menu, there are no items to select in order to start the editing
process. You can choose Create New Item from the Resource menu, type Command-K, or
press the Return key.

When you choose an individual menu item, the display changes to the one shown in
Figure 4-29. You can either edit the text of the item directly or you can use the radio
button to make the item a separation line (which you can also do by entering a hyphen
in the text box). You can use the Style menu to select a different style (bold, italic, and so
on) for each item, and you can enable or disable the item with the checkbox in the
upper-right corner. For each item you can assign a Command-key equivalent (the Menu
Manager is not case sensitive, so for esthetic reasons and consistency you should use
only uppercase characters) and an item mark, which you can choose from an extensible
pop-up menu shown in Figure 4-30. Both the Command-key equivalent and the Mark
character can be displayed in color. If you want to do that, select a color from the
corresponding color palette pop-up menus.

Figure 4-29 " MENU line item edit

70

E[I=————= MENU “Knobs” ID = 132 from Box & for Mac ||

Knobs Selected Item: (<] Enabled
Shorter Lines ®E
Longer Lines #L Text: @ |Mure Packed |

#0
More Packed % [(separator line)
Faster
Slower £ Color
[] has Submenu Text: _l

Cmd-Key: IEI El
mark:_None] [

|

‘MENU' Resources

CHAPTER 4

Other Resource Editors

Figure 4-30 " MENU Mark pop-up menu

E[[[==—= MENU “Knobs” 1D = 132 from Box 8 for Mac Il
Knobs Selected Item: [<] Enabled
Shorter Lines ®E [
Text: ® |Lunger Lines |
[(separator line)
Faster
Slower A Color

[has Submenu

I r
W
+*
o
Mark] None — ||

Other...

=

|

To make an important item look unique, you can put an icon in front of the item’s text.
Use the Choose Icon command from the MENU menu to get the dialog box shown in
Figure 4-31.

Figure 4-31 ' MENU Icon Chooser dialog box

% File Edit Resource Window QEEILITN style | 1Zotz! |

MENU ID = 128 from Ono-Sendai
1Zo0tz! Selected Item: [< Enabled
Take Leaflet
Read Leaflet Iﬁl ' .
Don’t take me fo Choose an icon for this menu item:
supnick’s Cat (:i\
220 iiewr 318 z12
A 4
310 =00 E4T

@ Normal lcons (ICON) New l Cancel l

) Reduced lcons (ICON)
O small Icons (SICN) [a1t | [ok]

Because of Menu Manager restrictions, the icon’s ID must be in the range of 257 to 511 in
order for it to be used in a menu. All other icons are displayed in gray. If a regular item
seems to be too large for your menu, you can select the Reduced Icons (ICON) radio
button to shrink the icon to a more convenient 16- by 16-pixel size or you can add a
small icon (resource type ' SI CN') instead of a regular one. If you later want to remove
the icon from an item, choose Remove Icon from the MENU menu. So that the window

'MENU' Resources 71

CHAPTER 4

Other Resource Editors

will not appear cluttered, the menu on the left side of the editing window does not
show icons.

If you want to see how your menu looks in real life, you can try it out at the right edge of
the menu bar. Its title is outlined with a black border to show you that this is not a
regular menu but a sample of the menu you are editing.

Sometimes a menu may become overcrowded with items. That’s when you should start
to think about organizing the items in groups and making the menu hierarchical. The
menu editor helps you create submenus by providing you with the option to turn any
item into a submenu just by clicking a checkbox. To edit the items of the submenu, either
choose Open Submenu from the Resource menu or double-click on the item’s text.

If you happen to edita’' crmu' or' CMNU resource for inclusion in a MacApp program,
you will notice that an additional field in the item’s display lets you set the command
number for each item. This is shown in Figure 4-32, just to the right of center.

Figure 4-32 Editing a' cnmu’ resource

72

E[I=—————-= cmnu ID = 128 from Ono-5endai
You're my FATHER??77 | Selected Item: [< Enabled
| Have you now!! K|
Trust the Horse, Luke Text: @® |Trust the Fnords, Luke/| |
Trust the Norse, Luke]
Trust the Bourse, L... () e (separator line)
Trust the Course, L...
! Cmd-Num:
Trust the Morse, Lu... D Color
Trust the Gorse, Luke [] has Submenu Teut: _I
Trust the Fnords, L...
Cmd-Key: I:I _l
5 mark: [None v | [

The menu editor also lets you rearrange the items in your menu. You can either use the
standard commands on the Edit menu, or you can put an item in a new position by
dragging it around in the menu on the left side of the window. As you move the item
around, a black line between items shows you where the item will move if you release
the mouse button.

Selecting colors from the various pop-up palettes actually modifies an' ntt b’ resource
(menu color table), which is transparently generated and changed for you. If you want to
get rid of the colors you have set, you can reset the' ntt b’ resource by choosing Use
Default Colors from the MENU menu.

The ' MENU resource has two assigned ID numbers. One of these is the resource ID
number; it is set by getting information on the resource from the picker window or the
editor window. This is the ID number that always appears in the picker window. The
other is the menu ID number; it is set inside the editor and is returned by the Menu
Manager of the Macintosh toolbox in response to MenuSelect and MenuKey calls.

‘MENU' Resources

CHAPTER 4

Other Resource Editors

Keeping these two numbers the same, while not required, avoids confusion, and in fact
they default to the same number. See Chapter 6 for more information.

The corresponding ' MDEF' ID number is almost always 0. This refers to the standard
' MDEF' in the System file, which is generally appropriate. Some menus (palettes, for
example) do, however, need to be drawn differently. These could use separate ' MDEF'
resources and hence would not have 0 in this field. Figure 4-33 shows the ' MENU and
" MDEF' ID number dialog box.

Figure 4-33 ' MENU ID dialog box

Flease enter the Menu 1D and
the resource 1D of the MDEF to
be used below.

Menu ID:
MDEF 1D: D

Cancel 114

"TEXT' and 'styl' Resources

When styled text is copied to the clipboard or stored in a resource file by applications,
the style information pertaining to the text and the text itself are stored in two resources,
one of type ' TEXT', and one of type ' st yl ' . Previous versions of ResEdit have allowed
template editing of the ' TEXT' resource, but have not allowed access to ' st yl'
information. The ' TEXT' /' styl "' editor, shown in Figure 4-34, has menus for Font,
Size, and Style, and works much as you would expect a text editor to.

Figure 4-34 ' TEXT' and' styl' editor

TEHT/styl “Patrick’s Admonition” 1D = 440 from Ono-Sendai
Same of the other programs on this disk are similarly free; some, however,
are shareware, which you will of course pay for if they're of use to wou.

[

(Don’t be a chindz. If a piece of shareware helps you detect and/or
cure a virus, you've already gotten more value out of it than the
shareware fee can possibly cover.)

— Patrick Nielsen Hayden

& L

'TEXT' and 'styl' Resources 73

CHAPTER 4

Other Resource Editors

If you attempt to opena’ styl ' resource, the editor is invoked with the associated
" TEXT' resource. A' styl' resource doesn’t make much sense without some text to
which it can be applied.

'vers' Resources

The ' vers' resource is typically part of a Macintosh application but can be found in
any file. It is defined as a general source of version information, but currently displays its
information in the Get Info window displayed by the Finder.

The ' vers' editor is shown in Figure 4-35. The “Version number” is displayed in three
parts, with a fourth “Non-release” part below. The allowable ranges for these numbers
are as follows: main number: 0-99; second part: 0-9; third part: 0-9; fourth part: 0-255.
The editor will reject numbers outside the allowable ranges, even though it appears to
accept and save them; if you close and reopen the resource, they show up as 0. If your
version number has letters in it, you should put the letters only in the short and long
version strings. The Release and Country Code items are pop-up menus. Release allows
you to select from Development, Alpha, Beta, and Final; Country Code is a longer list,
currently containing 54 countries. The short version string should, in general, contain
only the ordinary version number (for example, 2.1a5); the long version string can also
include copyright notices, authors’ names, release dates, and other relevant information.
It is displayed in the Get Info window.

Figure 4-35 Editinga' vers' resource

74

ST=——— vers 1D = 1 from ResEdit
Uersion number: || . |I | . |I] |
Release:| Final w| Non-release: El
Country Code: 00 - USA - |

Short version string: |2. |

Long version string (visible in Get Info):

2.1, @Apple Computer, Inc. 1984-1990

‘'vers' Resources

CHAPTER 5

ResEdit Templates

CHAPTER 5

ResEdit Templates

One generic way of editing a resource is to fill in the fields of a dialog box. The contents
of the dialog box are specified by a template contained, typically, in ResEdit’s own
resource fork or in the ResEdit Preferences file. This chapter discusses template editing
and tells you how to create your own templates.

Template Characteristics

76

If you open an actual resource of any of the types listed in this chapter, you will find
yourself editing in a dialog box, the contents of which are specified by the template of
the same name as that resource type. (For example, the ' LAYO resource, discussed
further in Chapter 6, is controlled by the ' TMPL' resource named LAYO in ResEdit.) The
template specifies the format of the resource and also specifies what labels should be put
beside the editText items in the dialog box used for editing the resource.

Note

A template can contain a maximum of 2048 fields. For the purpose of
enumerating, a field is defined as any item that is drawn on the screen.
That is, a label counts as a field, as does a separator, and so on. This
limiting number of 2048 is reached rather easily, particularly in resources
with repeating lists, as for example, ' pltt'. O

The' TMPL' resource inside ResEdit is recursive, in the sense that the contents of each
of these named ' TMPL' resources is itself a template. (There is even, of course, one

for' TMPL' itself.) As of late 1990, ResEdit contains ' TMPL' resources for these
resource types:

"act b’ "acur' " ALRT' " APPL' " BNDL' 'cctb'
"clut' ' CMDK' " CMNU 'cmu!’ " CNTL' ' CTY#'
"dct b’ "DI TL' ' DLOG ' DRVR ' FBTN "fctb'
"FDI R "finf' "fld# ' FOND " FONT' ' FREF'
' FRSV "fval' '"FWD " GNRL " hwi n' "icnt!
"inbb' "indm "infa' "infs' "inpk' "inra'
"insc' itlb "itlc itk ' LAYO ' MBAR
' ncky' 'nct b’ ' MENU "nrct’ ' PAPA ' Pl CK
' PI CT "pltt’ ' PCST ' ppat"’ ' PRCO' ' PRC3'
' PSAP' 'grsc' "resf’ " RVAP' " ROv#' " RVEW
"scrn' "SI GN 'Sl ZE 'STR ' STR#' ' TEXT'
" TMPL' " TOAL! "vers' "wet b’ "W ND ‘wstr'

Template Characteristics

Editing

CHAPTER 5

ResEdit Templates

When you are editing a template, the Tab key moves you forward from field to field
within the template. Shift-Tab moves you backward. Here, however, the term field means
an active area with an editable value in it. Fields are shown on the screen as boxes.

To add a new field to a repeating sequence in a template, select a separator, which is
usually a set of asterisks (*****), and choose Create New Field from the Resource menu.

Some templates control windows or resources that contain rectangles. Some of these
templates will have a Set button that lets you draw a rectangle on the screen to delimit
the resource. The pixel numbers for the rectangle are automatically copied to the appro-
priate fields in the template. There is a Set button in the ' LAYO template, which is
discussed in Chapter 6; another is shown in Figure 5-1.

Values can be entered into numeric fields in either decimal or hexadecimal notation.
You can enter a hexadecimal number into any numeric field by preceding it with a dollar

sign ($).

'PICT' Editing

There is a custom editor for ' Pl CT' resources, but it only displays the resources at full
size, and does not permit you to alter them. You can edit' Pl CT' resources with the
template that exists for them, which is shown in Figure 5-1, by choosing Open Using
Template from the Resource menu. If you click the Set button, you can then draw a
rectangle on the screen to define the size of the picture frame that is used when the
resource is displayed. Otherwise, you can define the size of the frame by entering values
in the fields as you would in any template.

Figure 5-1 The template editor for ' Pl CT'

] PICT “Navigator” 1D = 128 from HyperCard

Size

Rect

Opcodes
00 o1 45 01 A0 93 00 oC
0o o0 0o oo 00 41 00 &0
0o o0 0o oo 0o 41 00 5F
0o o0 0o oo 0o 41 00 5F
00 00 oc 08 0o oo o1 oo
00 o1 0o oo 01 FE 00 oC

0g 00 00 01 0o oo 01 0o
0o 01 FE 00 Oc 03 00 0o
01 oo oo ot 00 30 01 FE
0o oc 03 oo 0o 01 0o 18
01 00 78 01 EE 00 00 0OF

Editing 77

CHAPTER 5

ResEdit Templates

For other examples of template editing, see the description of the ' STR#' resource
template in this chapter and the description of the ' LAYO resource in Chapter 6.

Creating New Templates

You can generate templates for your own resource types. These templates, which are
resources of type ' TMPL' , need not reside within ResEdit. The ResEdit Preferences file
in the System Folder is a good place to keep them.

Template Example

The' TMPL' resource inside ResEdit with name STR# is shown in Figure 5-2. It is shown
here as a ready example of what' TMPL' innards look like on the screen.

78

Figure 5-2 " TMPL' definition for type ' STR#'
el TMPL “STR#" ID = 258 from ResEdit 2.1b4 ==
{7
13 dkkkk
Label r'h_lrnEitr-ing:s;
Tupe OCHT
27 EREAE
Label |>«mm« |

3] Ak

Label |The string |
Type FSTR

ERREIEC LY

Figure 5-3 shows the same template being used to edit an actual ' STR#' resource.
You can see the correspondence between the items in the ' TMPL' resource and the
resulting display.

Creating New Templates

CHAPTER 5

ResEdit Templates

Figure 5-3

' STR#' template in use

[[==———= STR#* ID = 200 from TeachText

Hum5trings 20

1) dokkws

The string

| Uersiaon 1.2

2 kR

The string

|TeuchText

3] Ak

The string

|2 1986-1988 Apple Computer, Inc. |

4] ok

The string

|Brgun Stearns

5 ok

You can look through the other templates and compare them with the structures of their
corresponding resources to get a feel for how you might define your own resource
template. (If you use MPW, note that these templates are equivalent to the resource type
declarations contained in the {RIncludes} directory—refer also to the DeRez command in
the MPW Reference, and the appropriate chapters of Inside Macintosh.)

These are the types you may choose from for your editable data fields:

DBYT, DWRD, DLNG
HBYT, HWRD, HLNG
AWRD, ALNG

FBYT, FWRD, FLNG

HEXD

PSTR
LSTR
WSTR

ESTR, OSTR

CSTR

ECST, OCST

BOOL

Creating New Templates

Decimal byte, decimal word, decimal long word
Hex byte, hex word, hex long word

Word align, long align

Byte fill, word fill, long fill (with 0)

Hex dump of remaining bytes in resource (This can only be
the last type in a resource.)

Pascal string (length byte followed by the characters)
Long string (length long followed by the characters)
Same as LSTR, but a word rather than a long word

Pascal string padded to even or odd length (needed for
DITL resources)

C string (characters followed by a null)

Even-padded C string, or odd-padded C string (padded
with nulls)

Boolean (two bytes)

79

80

CHAPTER 5

ResEdit Templates

BBIT

TNAM
CHAR
RECT
Hnnn

Cnnn

POnn

Note

Binary bit (There must be 8 or an even multiple of 8 of
these; if fewer than 8 bits are defined, you must include
placeholder bits.)

Type name (four characters, like OSType and ResType)
A single character

An 8-byte rectangle

A 3-digit hex number; displays nnn bytes in hex format

A C string that is nnn hex bytes long (The last byte is
always a 0, so the string itself occupies the first nnn-1 bytes.)

A Pascal string that is nn hex bytes long (The length byte
is not included in nn, so the string occupies the entire
specified length.)

Scrolling can become extremely slow if a template
contains many BBIT or BOOL items. O

ResEdit does the appropriate type checking for you when you put the editing dialog

window away.

The template mechanism is flexible enough to describe a repeating sequence of items
within a resource, asin' STR#' ,' DI TL' , and .' MENU resources. You can also have
repeating sequences within repeating sequences, as in' BNDL' resources. To terminate
a repeating sequence, put the appropriate code in the template as follows:

LSTZ

LSTE

ZCNT
LSTC

LSTE

OCNT
LSTC

LSTE

LSTB

LSTE

Creating New Templates

List Zero-List End. Terminated by a 0 byte (as in' MENU
resources).

Zero Count/List Count-List End. Terminated by a zero-based
word count that starts the sequence (asin' DI TL' resources).

One Count/List Count-List End. Terminated by a one-based
word count that starts the sequence (as in"' STR#' resources).

List Begin—List End. Ends at the end of the resource. (As in
"acur' and' APPL' resources.)

CHAPTER 5

ResEdit Templates

The LSTB (list-begin) code begins the repeating sequence of items, and the LSTE code is
the end. Labels for these codes are usually set to the string "*****". Both of these codes are
required. It is generally advisable to keep the beginning and ending labels identical to
each other and to have them be no more than five characters long.

Your template does not have to be inside ResEdit; it can be in any open file. (The pre-
ferred location is the ResEdit Preferences file in your System Folder.) Note that if more
than one currently open file contains a template for your resource type, the one in the
most recently opened file is used when you edit resources of your type. To create a
template, follow these steps:

1.
2.

6.

Open the file into which you want to put your template.

Open the' TMPL' type window. (If no resources of type' TMPL' exist in the file,
choosing Create New Resource from the Resource Menu in the File window opens
both the picker and the editor, eliminating step 3.)

. Choose Create New Resource from the Resource menu.
. Select the (1)*****) list separator by clicking it.

. Choose Insert New Field(s) from the Resource menu. You may now begin entering the

label, type pairs that define the template. Before closing the template editing window,
choose Get Info from the Resource menu and set the name of the template to the
four-character name of your resource type.

Close the file window and save changes.

The next time you try to edit or create a resource of the new type, you'll get the dialog
box in the format you have specified.

Creating New Templates 81

CHAPTER 6

ResEdit Tips

CHAPTER 6

ResEdit Tips

As with any other utility, ResEdit takes some getting used to. This chapter presents a few
handy tips and a few “hints and kinks” to help you become more comfortable with the
capabilities of the program.

Hints and Kinks

84

Some of the examples and suggestions given here are oversimplified to help new users
of ResEdit and users who may not be fully familiar with the user interface of the
Macintosh computer.

= At the risk of being slightly repetitive, and because these things can be important, it is
suggested once again that you edit resources in a copy of your target file, rather than
in the original.

= If you choose Get Info for ResEdit (from the Finder), you will find that Application
Memory Size is set to 500K. If you are editing large resources 500K is not sufficient,
and you should give ResEdit more memory.

= The following sequence of steps can be used to copy a' Pl CT' resource from most
drawing or painting programs into another file:
1. Open the file that contains the graphic you want to turnintoa' Pl CT" resource.
2. Select and copy the part of the graphic you want.
3. Start ResEdit and open the file you want to store the ' PI CT' resource in.
4

. Openthe' PI CT' picker for that file (if the file already has' PI CT' resources in it)
by double-clicking the ' PI CT" type or by clicking the ' PI CT" type and choosing
Open' PI CT' Picker from the Resource menu. If the file does not already contain
the' PI CT' resource type, create one, which opens the picker and the editor. Close
the editor and delete the new resource to get an empty (but open) picker.

5. Choose Paste from the Edit menu or use the Command-V key combination.
If you paste with the file window open instead of the ' PI CT' picker window, you
will get both the ' PI CT' and the application’s private resource type (for example,
" MDPL' if your' PI CT' is from MacDraw).

s Toadd a picture toa' DLOG resource:
1. Get a picture. Add it to the ' PI CT" resources in your file. (See the previous tip.)
2. Choose the Get Resource Info command from the Resource menu.

3. Choose Copy from the Edit menu to put the ID number of the new ' PI CT" in
the scrap.

(Instead of steps 2, 3, and 7 here, you can read the ID number from the screen when
you copy the ' PI CT' resource, and type it into the ' DI TL' item yourself. ResEdit 2.1
displays the ID number of each ' PI CT' resource.)

4. Gotothe' DI TL' resource that belongs to the' DLOG resource you are adding the
picture to.

5. Draga' PI CT' from the palette.

6. Choose Open as Dialog Item from the Resource menu or press the Return key. This
invokes the Dialog Item editor.

Hints and Kinks

CHAPTER 6

ResEdit Tips

7. Paste the ID number from the scrap.

8. Close the Dialog Item editor.

9. Choose Use Item’s Rectangle from the DITL menu.
10. Position the picture by dragging it.

s When you make your own template resources, you may want them to display your
own icon instead of the question mark that ResEdit ordinarily displays. Here’s how
you do it:

1. Get or make an icon, of resource type ' | CON' for black and white or of resource
type' i cl 4' if you want it to display in color.

2. Put it into the ResEdit Preferences file and give it the same name as your ' TMPL'
resource.

» If you are using any of the bit editors and you make a selection with the marquee and
then cut or copy it, you can paste it into either a file window or the ' PI CT" picker as
a' PI CT' resource.

s There are keyboard equivalents for many operations you would ordinarily perform
with the mouse. Try selecting a file in the File Open dialog box by typing the first
letter or two, then opening it with the Return key; you can do the same with resource
types, and then with individual resources. (With individual resources, you can type
the ID number or the name.) The arrow keys also work—for example, in a file list, you
can go down the list with the down-arrow key.

» There is a hidden Change Color command in the bit editors. If you hold down the
Command key and pick a new color, all pixels of the current foreground (or back-
ground) color are changed to the new color.

» In general, it is a good idea to use the same ID for an' ALRT' or' DLOG resource and
its associated ' DI TL' resource, though this practice is not required.

s Other shortcuts and handy items:
o In a resource picker: use Option—-double-click for the Open Using Hex command.

o In aresource picker: use Option-Command-double-click for the Open Using
Template command.

o In the resource picker, Option-Command-Shift-double-click (or Shift-Open Using
Template) displays the template-type dialog box without the list of templates. (You
can enter the template type you want.) If you are operating from a floppy disk, this
can be a fast method.

o Option-Cut and Option-Copy append the cut or copied item to the scrap. At the
individual item editor level, holding down the Option key does not change the
action of the Cut or Copy command.

o Inthe' DI TL' editor: use Option-Command—double-click on any resource item to
open it using its normal editor rather than the' DI TL' item editor.

o Command-click in a picker for disjoint selection.

o Shift-click in a picker to extend a selection. (In a pictorial display such as the one
for' | CON' resources, the selection will extend as a rectangle.)

o Using Shift-Create New Resource to create a new resource type gives you the “new
type” dialog box without the list of resources. You must, of course, enter the
resource type you want rather than selecting it from the list. If you are operating
from a floppy disk, this can be a fast method.

Hints and Kinks 85

CHAPTER 6

ResEdit Tips

o Option-Create New Resource normally creates a new resource and opens it using
the hexadecimal editor. If you are creating a' ppat' or' ppt#' resource, however,
it creates a new relative pattern.

= If you hold down the Command, Option, and Shift keys while choosing About
ResEdit from the Apple menu, you can toggle a special stress-testing mode (“Pig
mode”). In this mode, ResEdit performs a compact-memory operation and a
purge-memory operation each time it receives an event from the queue, excepting null
events. This feature was designed as an aid to debugging ResEdit itself, and is clearly
something most people will never have any use for. It is suggested that you avoid
invoking this mode unless you are writing an editor and feel a need to stress-test it.

= Because' DI TL' and' ALRT' resources are ordinarily displayed where you put them
in the window, there is some chance that they may be mispositioned. That is, if you
don’t have your code display these resources exactly where you want them, they
could show up where you don’t want them. To be sure that a dialog box shows up
where you want it, mark it as invisible and reposition it exactly in your code. Have
your code mark it visible right after displaying it. (This avoids various
embarrassments.)

= If you have Color QuickDraw, but you want to be able to open the ' | CN#' editor by
double-clicking a resource of type ' | CN#' (rather than opening the Finder icon
family editor), you can make a resource of type ' RMAP' in the ResEdit Preferences
file. This resource should look like the one shown in Figure 6-1. Notice that the name
of the' RVAP' resource is the name of the resource you will be opening, and the
MapTo field contains the name of the editor you want to invoke. Set the name of the
" RVAP' resource as usual, with the Get Resource Info command from the Resource
menu. If you set Editor Only? to 1, the ' RMAP' is used for the editor but not for the
template, if one exists.

Figure 6-1 " RMAP' resource

E[1= RMAP “ICN#" ID = 128 from ResEdit Preferences

i
Editor only?
Exception i]
count
1) ks
|
]

= If you hold down the Option and Command keys and choose About ResEdit from the
Apple menu, you get a list of credits that tells you who has worked on the program.

Hints and Kinks

CHAPTER 6

ResEdit Tips

= Although under ordinary conditions the menu ID number and the' MENU resource
ID are kept identical to one another, there is one situation in which you may want to
make them different. If you are using an ordinary debugger to disassemble and walk
through the main event loop of your program, it is convenient to have the Menu
Manager return numbers like 1, 2, 3, 4, and 5 for the menus in your program. You
would therefore set the menu ID fields of your menus to consecutive integers. Then
you might create a' MBAR' resource with ID 128 and list the ' MENU resource IDs of
your menus in it. You need only call Get NewiBar (128) in your program to install
all of the menus. When you are debugging, a call to MenuSel ect (for example)
returns a value of $00030004 if the fourth item in the third menu has been chosen. This
is rather more convenient than seeing $00820004 and having to translate $82 to 130
decimal, and then remembering that 130 was your third menu. If you use a high-level
debugger, this approach is unnecessary.

The 'LAYO' Resource

One of the resources inside the Finder is of particular interest, because in system
software release 6 it controls a number of defaults, most of which are part of the layout
of your desktop. Itis the ' LAYO resource. To open the Finder with ResEdit, you must be
running under the Finder itself (rather than under MultiFinder), or you must edit a copy
of the Finder. It is, of course, suggested that you edit a copy. If MultiFinder is running
and you try to open the currently active Finder, you get an error message telling you that
the Finder is already open from another application.

If you are in a risk-taking mood (or if you have done this a few hundred times already
and have become inured to it), boot without MultiFinder, open the Finder, and choose
the ' LAYO resource type. There is only one ' LAYO resource, ID number 128. Open it.

The first part of the template is shown in Figure 6-2.

Figure 6-2 ' LAYO template, view 1
S[I=———= LAY0 ID = 128 from Finder
Hgt
Top line -21
break

Bottom line 17
break

Printing hdr |42
higt

Printing 32

footon bot

Hints and Kinks 87

CHAPTER 6

ResEdit Tips

The first two items control the display font—that is, the font that prints out under the
icons on your desktop. The default is 9-point Geneva, as shown. If you dislike sans-serif
fonts, you can easily change the first two items to 2 and 9, for New York at 9 points, or to
20 and 10 (or even 12), for Times at 10 or 12 points; the 9-point version of Times is

very small.

The line of numbers labeled Window Rect in Figure 6-3 allows you to specify the default
folder (and disk) window size and location.

88

Figure 6-3 " LAYO template, view 2
E[[==—= LAY0 ID = 128 from Finder

footer hgt

Window Rect |62 |[14 [[zs0 [[+18 |(Bet)

Line spacing

Tab stop |1

Tab stop 2

Tab stop 3

Tab stop 4

Tab stop 5

Tab stop 6 324

Tab stop 7 456

I]

If you like, you can specify these defaults by clicking the Set button and then drawing a
rectangle on the screen. Please note that if MultiFinder is running when you edit the

" LAYO resource in a copy of the Finder, and you try to start your rectangle in an area of
the screen that has something other than a ResEdit window in it, you will find yourself
summarily ejected from ResEdit into whatever you have clicked. The cure is straight-
forward: Move a ResEdit window to the area where you want to start drawing your
rectangle before you click the Set button, or use the number fields instead of the Set
button. You can also explicitly set the locations of the seven tab stops the Finder uses for
displaying information about files when you view them by name, date, size, or kind.

Abit further down the template are the numbers that control the placement of the icons
themselves, as shown in Figure 6-4.

Hints and Kinks

CHAPTER 6

ResEdit Tips
Figure 6-4 " LAYO template, view 3
Ell LAYO 1D = 128 from Finder

Reserued |$DD

spacing

spacing

phase

Horz.

lert.

L1

Some people dislike having icons with long names overlapping and obscuring the names

of other icons. One solution to this problem is to change the value of “Icon Vert. phase”.
Figure 6-4 shows some modified numbers, rather than the defaults supplied with the

system release.

WARNING

Do not set “Icon Vert. phase” to exactly half the value of “Icon Vert.
spacing” unless you like system crashes. a

Figure 6-5 shows some unused bits and three commands, the first of which (“Use zoom
Rects”) is on by default. If you set it to FALSE, the Finder will open and close windows
slightly faster, because it won’t use its “zoom” visual effect.

Figure 6-5 " LAYO template, view 4
El LAY0 1D = 128 from Finder

dote

Use zoom o w1

Rects

Skip trash [ON] R

warnings

Always grid {0 (OB

drogs

Unused 4 @0 (SR]

Unused 3 w0 SR]

Unused 2 w0 o1

Unused 1 w0 o1

Hints and Kinks

89

CHAPTER 6

ResEdit Tips

“Skip trash warnings” prevents the system from asking whether you really want to
throw away applications or System files. Because you can avoid the warning by holding
down the Option key when you throw things into the Trash, this seems a bit extreme.
Moreover, it can be quite dangerous, depending on what you tend to throw out and how
attentive you are about it.

If you don’t like having to clean up your windows, try turning on “Always grid drags”.
This option makes the icons stick in place at the grid spacing specified in the part of the
template shown in Figure 6-4. Some people prefer to be able to put them anywhere and
therefore eschew this option.

The Watch Thresh setting (not visible in any of the figures) allows you to adjust how
long the Finder will wait during lengthy operations such as file copying before it
displays a wristwatch icon with animated hands. The time is expressed in 60ths of a
second. If you make it too short, the cursor will jitter and change shape too often. Some
older Finders do not make use of this option.

Figure 6-6 shows a few more unused bits and the end of the template.

90

Figure 6-6 " LAYO template, view 5
E[[=——— LAY0 ID = 128 from Finder
Unused 5 w0 1
Unused 4 w0 1
Use Phys o w1

lcon
Title Click o (OB]
Copy Inherit @O SR]

Mew Fald w0 SR]
Imherit

Color Style D

windows

Use Phys Icon is handy if you have a Macintosh II or Macintosh SE with two floppy disk
drives. If this option is on, the icon you get when you insert a floppy disk into your
machine indicates which drive the floppy disk is in. The disk location is certainly easy
enough to recall just after you put the disk in, but you may forget it later. Knowing
which drive a floppy disk is in may not be a major issue, but is certainly a pleasant
convenience. This option also includes distinctive icons for an external hard disk and a
CD-ROM drive.

Title Click lets you double-click the title bar of a folder’s window to bring the parent
folder’s window to the front (or to open it if it is not already open). This feature can be
quite handy.

When you create folders on an AppleShareEI server, New Fold Inherit causes them to get
their privileges from the parent folder, and when you duplicate existing folders on an

Hints and Kinks

CHAPTER 6

ResEdit Tips

AppleTalkD server, Copy Inherit causes the copies to inherit their privileges from the
originals.

The “Max # of windows” field allows you to set the maximum number of windows the
Finder can have open at any one time. Increasing this number causes the Finder to need
more memory. Under MultiFinder, you may have to increase the memory allocation for
the Finder if you make this number much larger than the default.

Some of the items in the ' LAYO template have not been discussed here. Of these, some
are not yet in use, and are so marked. Others are either arcane or self-evident.

'KCHR' Questions and Answers

= How do I change the character generated by Shift-e?

Shift-e normally generates a capital E character. To make this key combination
generate a different character, simply hold down the Shift key and use the mouse to
drag a character from the character chart to the e key on the keyboard.

You will notice that when you press the Shift key, the table that is highlighted in
the table list changes. (For most key layouts, the highlight switches from Table 0 to
Table 1.) This change shows you that any character changes you make will be made
in the highlighted table. When you make Shift-e generate a different character, you
are changing every modifier key combination that uses the highlighted table. For
example, if Option-Shift used the same table as Shift, you would also have changed
the character generated by Option-Shift-e.

= How do I change the behavior of a modifier key combination?

For example, suppose you wanted Option-Shift-a to generate a different character
from that generated by Option-Command-Shift-a. If you hold down the Option and
Shift keys and then press and release the Command key, you will notice that (for most
key layouts) the highlighted table does not change. If you want these two modifier
key combinations to be different, you need to create a new table for one of them. To do
this, you can use either the New Table command or the Duplicate Table command
from the KCHR menu. If you want to create only a few differences, you should use
the Duplicate Table command. In our example, we want only Option-Command-
Shift-a to be different, so we would do the following:

1. Press and hold down the Option, Command, and Shift keys.
2. Choose Duplicate Table from the KCHR menu.

3. Select the new table that was added to the end of the list (while still holding down
the modifier keys).

4. Choose OK in the alert box that appears.
5. Drag the character from the character chart to the key that you want to change
(while still holding down all of the modifier keys).
= How do I remove a table that is no longer being used?

If you have reassigned a modifier key combination so that a table is no longer used,
you can remove the table by choosing “Remove unused tables” from the KCHR
menu. If there are unused or duplicate tables present when you close the editor, you
will be asked whether they should be removed.

Hints and Kinks 91

CHAPTER 6

ResEdit Tips

s How do I create a dead key?

You can create a dead key (such as Option-e in most key layouts) by choosing
“Convert to dead key” from the KCHR menu while holding down the key. For
example, follow these steps to make Option-k into a dead key:

1. Press and hold down the Option and k keys.

2. Choose “Convert to dead key” from the KCHR menu.

3. Release the keys.

4. Once again, press Option and k to activate the dead-key editor.

= How do I remove a dead key?
Follow these steps:
1. Select the dead key to display the dead-key editor.
2. Choose “Remove dead key” from the KCHR menu.

» How do I create a new completion/substitution pair in the dead-key editor?

When the dead-key editor is active, you can drag characters from the character chart
to the completion /substitution pair list. The character on the left in the list is the
completion character, and the character on the right is the substitution character. For
example, Option-E followed by Shift-E produces the E character.

» How do I delete a completion/substitution pair in the dead-key editor?

To delete a completion/substitution pair, drag either character from that pair in the
completion /substitution pair list to the Trash in the lower-right corner of the window.

Hints and Kinks

CHAPTER 7

The Programmatic Interface

CHAPTER 7

The Programmatic Interface

You may want to create and edit your own types of resources. You can write pickers and
editors as extensions to ResEdit in Pascal or C, and put them in the ResEdit Preferences
file in your System Folder. This chapter describes this process and discusses necessary
and optional functions and procedures.

Pickers and Editors

Pickers and editors are separate from ResEdit’s main code and therefore may be
supplied by user-written software.

The picker is given the resource type information and should display all resources of that
type in the current resource file, using a suitable display format. If the picker is given an
Open call and there is a suitable editor, it should launch that editor. You need not supply
your own picker; if a custom picker is not available, the standard picker is used to show
a list of resources with their names and IDs.

The editor is the code that displays and lets you edit a particular resource. The editor is
given a handle to the resource object and should open an edit window for you.

Code-Containing Resources in the ResEdit Release

94

ResEdit includes three different types of resources that contain code. Much of the code is
in the normal ' CODE' resources. The editors and pickers are found in the' RSSC
resources, and the LDEEF (or list definition) procedures are found in the' LDEF' resources.
The resource names of the pickers and editors are very important. The resource name of
the' RSSC resource for a picker should be the resource type that the picker will pick. The
resource name for an editor should be the resource type that the editor will edit, with a
commercial “at” sign (@) in front of it. Subeditors (described in the section “Routines
used to start pickers and editors” later in this chapter) should have a dollar sign ($) in
front of the resource type name. For example, the ' DI TL' picker can be found in an

' RSSC' resource with the name DITL. The ' DI TL' editor can be found in an' RSSC
resource with the name @DITL, and the ' DI TL' subeditor in an' RSSC resource with
the name $DITL.

Samples

A sample resource editor, picker, and LDEF are included with ResEdit. The samples are
provided in both C and Pascal and use the MPW 3.2 environment, the MPW C or Pascal
Compiler, and the MPW Assembler. The appropriate build files and makefiles are

also provided.

Pickers and Editors

CHAPTER 7

The Programmatic Interface

Sample Editor

A sample ResEdit editor is provided in the file XXXX.Edit. In this sample, XXXX
represents your resource type. The sample editor will simply display a window and
invert its contents. Since the details of editing your resource are known only to you, it
is up to you to fill in the code necessary to make this sample into a real editor.

The sample editor is initialized by means of the Edi t Bi r t h procedure when a resource
of type XXXX must be edited. Edi t Bi rt h is passed two handles: a handle to the
resource to be edited (the same handle that would be received by using a Get Resour ce
call) and a handle back to the picker that launched the editor.

The editor then creates a window and sets up any data structures needed to operate.
Because it may be loaded in and out of memory during any given session and because
it doesn’t have access to global variables, it creates a handle to a data structure to hold
all data that needs to be preserved between calls. Note that the handle to the edit data
structure is stored in the window’s r ef Con parameter. ResEdit uses this data structure
to identify which editor or picker is to receive a given event.

ResEdit determines which editor should receive which events, so you need to worry
only about events that affect your editor. During an update event, the Begi nUpdat e
and EndUpdat e calls are done by ResEdit, not by the extension program.

Sample Picker

A sample ResEdit picker is provided in the file ICON.Pick. The sample picker is an

"I CON' picker. The' | CON' LDEEF (in the file ICON.LDEF) is included with this
example so that you can see the interaction between a picker and its LDEF. ResEdit
normally usesa' Pl CK' resource for the ' | CON' picker. If you want to try the example
picker you will have to delete the' PI CK' resource named “ICON” from ResEdit.

Sample LDEF

A sample ResEdit LDEF is provided in the file ICON.LDEF. An LDEF is a list definition
procedure used to customize the way the List Manager draws and highlights cells. For
more information, see Inside Macintosh, Volume IV, Chapter 30, and Technical Introduction
to the Macintosh Family, Chapter 3. In ResEdit, LDEFs are used to customize the look of
the picker windows. LDEFs are generally very simple procedures that draw or highlight
a single cell of a list. The sample LDEF is the ' | CON' LDEF from ResEdit. This LDEF is
used to display a file’s icons.

Building the Examples

You can build the examples by using the build scripts provided in the folder appropriate
to the language that you are using. The build scripts assume that ResEdit and the
Examples folder will be found in the directory {boot}ResEdit:. If these files are located
elsewhere, the build script files should be modified accordingly.

If ResEdit is successfully located, the makefile instructions will install the editor, picker,
and LDEFs directly into ResEdit. When you experiment with changing any of these files,

Code-Containing Resources in the ResEdit Release 95

CHAPTER 7

The Programmatic Interface

you may want to do your build into a duplicate copy of ResEdit rather than your
original. If anything goes wrong, you can easily make a fresh duplicate of ResEdit to
continue your experiments.

Using ResEd

The program you write must be a Pascal unit or C header file and library. Its interface
with ResEdit is established by the MPW unit ResEd, contained in the file ResEd.p or
ResEd.h. If your unit is written in Pascal, it must begin with a USES declaration for
this unit.

The assembly-language code that “opens up” ResEdit and activates your program is
contained in the file RSSC.a. It must be linked with your Pascal or C module. When
you open a resource of your type, ResEdit will call this code.

If your build script does not automatically install your editor or picker, place it in
ResEdit’s file by using ResEdit itself, with the type ' RSSC and a unique ID number.
Please use an ID number between 2500 and 3000 to avoid future conflicts. Use a range of
ten numbers, starting with the number that is ten times your editor’s ID number for
other resources, such as' DLOG or' MENU . For example, if your editor has ID 2560,
your ' DLOG should have ID 25600. Your editor’s name in the ResEdit file must be of the
form @ABCD, where ABCD is the name you have assigned to the new type it edits.
Install your picker (also of type ' RSSC') with the name ABCD (without the commercial
“at” sign).

Writing a ResEdit Extension

96

Here are two things to remember when writing a ResEdit extension:

= Always know which resource you are requesting and where it will come from. The
ResEdit Preferences file is always the current resource file. This avoids inadvertently
loading resources from the file being edited. (For example, Get NewDi al og could
load a' CDEF' resource from the file being edited instead of from the System file.)
Always use ResEdit’s versions of the resource manager calls to be sure you get the
resource from the correct file.

= Your editor may be called with an empty handle in order to create an entirely new
instance of the type you edit.

In all of these procedures, remember to lock any handle that is going to be dereferenced
(for example, in a Pascal wi t h statement). For example, in Pascal, the first instructions in
the DoEvent procedure should be

Bubbl eUp(Handl e(obj ect));
HLock(Handl e(obj ect)) ;

Using ResEd

CHAPTER 7

The Programmatic Interface

It is important to call the Bubbl eUp procedure to avoid heap fragmentation. Remember
to unlock the object at the end of the procedure!

If any of these procedures will need access to the current port, especially Edi t Bi rt h,
DoEvent , and DoMenu, call

Set Port (object””. w nd)
if you are writing in Pascal, or
Set Port ((*object)->w nd)

if you are writing in C.

ResEdit Menus

ResEdit 2.1 guarantees the following conditions when an activate event is received:
File menu All items are enabled.

Editmenu All text is set to default strings except Select All and Select Changed. If a
picker window is being activated, all items are enabled. If an editor or
floating window is being activated, all but duplicate, select all and select
changed are enabled.

Resource menu
All text is set to default strings except Get Resource Info. If a picker
window is being activated, all items are enabled. If an editor or float-
ing window is being activated, only Revert and GetInfo are enabled.

Pickers

It's easy to create a new picker with ResEdit 2.1. All you needisa' Pl CK' resource
and an' LDEF' to draw and highlight the cells. You can use the ' Pl CK' template to
create a' Pl CK' resource and create a new ' LDEF' using the example code. The

"PI CK' resource contains the same fields that you would normally initialize in the

Pi ckBi rt h procedure before you call DoPi ckBi rt h. You should put the same values
into the resource that you would store into the Pi ckRec data structure.

ResEdit 2.0 Changes

Here’s what you have to do to upgrade an editor to ResEdit 2.0:
s Change the name field of your parent record from STR64 to STR255.

s Add Abl eMenu for the Resource menu on activate:

Abl eMenu (rsrcMenu, rsrcEditor);

Writing a ResEdit Extension 97

98

CHAPTER 7

The Programmatic Interface

Change Abl eMenu for the File menu to

Abl eMenu (fileMenu, fileAll);

s Add Printltem to the DoMenu procedure:

printltem
Print Wndow (NIL);

= In DoMenu, change Revert|ltemtorsrcRevert|temand Get | nf ol t emto
rsrcGet | nf ol t em Move them from the File menu to the Resource menu.

s Add the | sThi sYour s function and be sure to make it public. See the example code
for details.

= Edi t or WndSet up now requires awi ndowKi nd parameter and a dl ogl D
parameter; Wi ndowKi nd should be the resource ID of the editor or picker (returned
by ResEdl D), and dl ogl Dshould be noDi al og or the resource ID of a dialog box
to be used for the window.

» WndOri gi nnow takes a Par ent Handl e parameter and requires that the
wi ndowkKi nd field of the argument window be set to the resource ID of the editor.

ResEd Changes for the 2.0 Release

Please note these changes:

= Pi ckRec was changed to remove some unused fields and add other fields for the
View menu.

= Par ent Rec was changed to include an STR255 instead of STR64.
= Menu and string constants were changed.

= Several procedures have interface changes; these are the new interfaces:

FUNCTI ON EditorWndSetup (dl ogl D: | NTEGER; col orki nd: Col or Type;
wi dth, height: INTEGER, VAR wi ndowTitle, w ndowNare:
STR255; addFrom BOOLEAN;, w ndowKi nd: | NTECGER; father:
Par ent Handl e) : W ndowPt r;

PROCEDURE W ndOrigin (w. WndowPtr; dad: ParentHandl e);

PROCEDURE Pi ckMenu (tossOnCl ose: BOOLEAN;, nenu, item | NTEGER
pi ck: Pi ckHandl e);

Writing a ResEdit Extension

CHAPTER 7

The Programmatic Interface

ResEdit 2.1 changes

Here’s the information you need to update an editor from ResEdit 2.0 to ResEdit 2.1:

» The Par ent Rec data structure has changed, as have all other derived structures. Five
new fields have been added. You should initialize them as follows:

edi t or W ndow,

"PAT '; { or whatever }

HoneResFile (thing); { thing is the res handle
passed to EditBirth }

wi ndowType :
t heResType :
theResFil e :

codeRes| D : = ResEdl D,
t heResToEdit := thing;

= You no longer have to start the name saved in Par ent Rec with an edi t or NameChr.
the wi ndowType field of Par ent Rec now indicates that an editor owns the window.

The boolean color parameter of Edi t or W ndSet up has changed to a tri-state
col or Ki nd parameter. If you don’t need a color window, change FALSE to noColor.

You may no longer need to set and reset the menus when you receive activate and
deactivate events. See the section on ResEdit menus in this chapter.

= Several procedure names were changed:

NewRes => RENewUni queRes

AddNewRes => REAddNewRes

Beauti f ul Uni quell D => REBeauti f ul Uni quell D
ResEdi t Get 1Resour ce => REGet 1Resour ceSpeci al
RenmoveResour ce => RERenpbveAnyResour ce

Cet 1Res => REGet 1Resource

CGet 11 ndex => REGet 1l ndResource

» Several new procedures have been added:
o Window utilities

Fl oat i ngW ndowSet up

o Extended resource manager

REAddResour ce
RECount 1Resour ces
RECount 1Types

RECet 11 ndType

REGet 1NanmedResour ce

o Routines used to feed events and menus to the appropriate picker or editor

Cal | DoEvent
PassEvent

Writing a ResEdit Extension 99

CHAPTER 7

The Programmatic Interface

o Miscellaneous utilities

Choosel con
Handl eCheck
St andardFi | ter

o Pop-up menus

DoPopup
Dr awPopup

o Internal routines

Conpr essedResour ce
DoKey Scan
Get ResEdi t ScrapFi | e

» The following procedures have been removed:

Cur r ent Res (use Cur ResFi | e instead)
Get IMapEnt ry

My Cal cMask

ScrapPast e

= The following changes have been made for pickers:

o Pi ckRec now includes three new fields:

m nW ndoww dt h
nm nW ndowHei ght
optionCreateStr

o The following fields have been removed from Pi ckRec:

rNum (replaced by theResFile)
drawPr oc (was unused)

scroll (was unused)

pi ckl D (replaced by codeResl D)

o Inmost cases, specific pickers are no longer needed, though you still need an LDEFE.

A new resource type, ' Pl CK' , specifies everything ResEdit needs to know about a
picker (in 20 bytes!). ResEdit 2.1 includes a template for editing ' Pl CK' resources.

100 Writing a ResEdit Extension

CHAPTER 7

The Programmatic Interface

Required Routines

Each picker and editor must contain a set of required procedures. Some of these
procedures are appropriate only for editors, and others are appropriate only for pickers,
but all of them must appear in all editors and pickers.

PROCEDURE EditBirth (theResource: Handl e; dad: ParentHandl e);

This procedure should initialize the editor data structure and create an editor window
for the given resource type. In a picker, this procedure will do nothing and should be
defined as

PROCEDURE EditBirth (theResource: Handl e; dad: ParentHandl e);
BEG N
END;

PROCEDURE Pi ckBirth (theType: ResType; dad: ParentHandl e);

This procedure should initialize the picker data structure and create a picker window for
the given type. Pi ckBi rt h is very similar to Edi t Bi r t h except that it takes a resource
type as a parameter instead of a resource handle. The DoPi ckBi r t h procedure can
usually be used to take care of most initialization for a picker. In an editor, this procedure
will do nothing and should be defined as

PROCEDURE Pi ckBirth (theType: ResType; dad: ParentHandl e);
BEG N
END;

PROCEDURE DoEvent (VAR evt: Event Record; object: ParentHandl e);

DoEvent handles all events for the picker or editor. The object parameter can be locally
defined as whatever type is appropriate (such as a Pi ckHandl e) instead of the generic
Par ent Handl e.

Editors will normally handle all of the events (except those described in the next
paragraph) themselves, whereas pickers should simply call Pi ckEvent .

Many events are handled by the main part of the ResEdit code before the DoEvent
procedure is called. For mouse-down events, ResEdit handles the following events:
pulling down menus, dragging windows, switching between windows, and converting
double-clicks to open commands. Update events call Begi nUpdat e and EndUpdat e
around the call to DoEvent . For key-down events, the DoMenu procedure is called if the
Command key was down (unless the key was Return, Enter, or an arrow key); DoEvent
is called otherwise. MultiFinder suspend and resume events are converted into the
appropriate activate or deactivate events.

Writing a ResEdit Extension 101

CHAPTER 7

The Programmatic Interface

PROCEDURE Dol nf oUpdat e(ol dI D, new D: | NTEGER; obj ect:
Par ent Handl e) ;

This procedure is called when information about a resource—for example, its ID
number—is changed in a Get Info window. (See the Show nf o procedure, discussed
later in this chapter in the section “Miscellaneous Utilities.”) For editors, the

Dol nf oUpdat e procedure should recalculate the window title and the name stored in
the Par ent Handl e and pass the update on to its father by using the Cal | | nf oUpdat e
procedure as follows:

Cal | I nf oUpdat e(ol dI D, newi D, LONG NT(obj ect*~. fat her),
obj ect . fat her . wi nd*. wi ndowKi nd) ;

Pickers should simply call

Pi ckInfoUp (ol dI D, new D, object);
PROCEDURE DoMenu(rmenu, item |NTECGER; object: ParentHandle);

DoMenu handles all menu events for the picker or editor. The object parameter can be
locally defined as whatever type is appropriate (such as a Pi ckHandl e) instead of the
generic Par ent Handl e.

The main part of the ResEdit code takes care of several of the menu-handling details. All
selections from the Apple menu are handled so that the editors and pickers do not need
to know anything about desk accessories. All commands in the File menu are also
handled for you. The Quit command displays the Save Changes dialog box and may
pass a Close command to all editors and pickers. If your editor needs to do some
cleaning up before the Quit command completes, it should do so when it receives a
Close or deactivate command. If “no” is chosen in the Save File dialog box, the frontmost
window receives a deactivate event. No events are passed to any other window. When
your editor receives a Close command, it can call Cl oseNoSave to see whether edit
checking should be performed. If the current file is being closed but the changes are not
being saved, Cl oseNoSave will return TRUE, and edit checking should not be
performed.

Pickers can simply call

Pi ckMenu (nenu, item object);

The ResEd Interface

102

The ResEd unit contains data structures, procedures, and functions that you can access
from your extension program. They are described in the remainder of this chapter.

The ResEd Interface

CHAPTER 7

The Programmatic Interface

Data Structures

The ResEd unit declares the data structures described in this section, which provide
communication between extension programs and ResEdit. Each editor or picker has its
own object handle. The data structure has to start with a handle to its parent’s object,
followed by a unique name. The next field should be the window of the object that may
be used by the child to get back to the father through the r ef Con in the wi ndowRec
record. The next field is the “rebuild” field, a flag used to indicate that a window’s

data (for example, a picker’s list) must be recalculated at the next opportunity. Next

is ar esWasnt Loaded flag, which should be set by calling Was| t Loaded in the

Edi t Bi rt h procedure. If the value of r esWasnt Loaded is FALSE, the resource being
edited should not be released. Next is W ndowTy pe, which indicates the type of the
window. The field TheResType is the type of the resource, TheResFi | e is the file
reference number of the file containing the resource, CodeRes| Dis the ID of the ' RSSC
resource containing the editor or picker, and TheResToEdi t is the resource being
edited. For editors, the rest of the handle can have any format; pickers have additional
data, as described in this chapter. Editors and pickers typically declare additional fields
at the end of the predefined fields and can store in these additional fields global data that
they need to access from the DoEvent , Dol nf oUpdat e, and DoMenu procedures.

The name (in the Par ent Recor d) for a picker should be the name of the file. For
editors, the name should be the complete name (not the window’s title). An example
of a complete name is ALRT ID = -1234 from AFile. This name is used as a unique
identifier for a window. The window’s title is created by Get W ndowTi t | e or

Edi t or W ndSet up, described later in this chapter.

Note

It is important for editors and pickers to follow these conventions for
name and window title. For pickers, it is more important that the
window’s title be unique, and for editors, that the name be unique. The
Al r eadyQpen procedure uses the window’s name and title to deter-
mine whether the window is open. Please refer to the description of

Al r eadyQpen later in this chapter in the section “Window Utilities” for
complete information about how the name and title are used. O

The Parent Record

Here is the parent record:

Possi bl eW ndowTypes =(typePi cker Wndow, resourcePi cker W ndow,

fol derl nf oW ndow, fil el nfoW ndow,
resour cel nf oW ndow, editor W ndow,
fl oati ngW ndow) ;

Parent Ptr = ~Parent Rec;
Par ent Handl e = *"Parent Ptr;

The ResEd Interface

103

CHAPTER 7

The Programmatic Interface

Par ent Rec = RECORD
fat her: Par ent Handl e;
name: str255;
Wi nd: W ndowPeek; { Owni ng wi ndow }
rebuil d: BOOLEAN; { Flag set when wi ndow shoul d
be rebuilt }
res\asnt Loaded: BOOLEAN; { TRUE if the resource should

Wi ndowType:

Possi bl eW ndowTypes;

be rel eased when the w ndow
is closed }

t heResType: ResType; { Type of the resource }
t heResFi | e: | NTEGER; { Honme resfile of the res }
codeResl D: | NTEGER; { Resource ID of the RSSC

resource containing the
pi cker or editor }
t heResToEdi t : Handl e;

END;
The Picker Record
The record for pickers is slightly different from the standard parent record. The first few
fields are the same as those in the parent record, but several extra fields have been added.
Pi ckPtr = "Pi ckRec

Pi ckHandl e = ~Pi ckPtr;

Vi ewTypes = (viewByld, viewByNane, viewBySize,
vi ewByOrder, viewBySpecial);
Pi ckRec = RECORD
fat her: Par ent Handl e; { Back ptr to dad }
f Name: STR255;
wi nd: W ndowPt r; { Picker window }
rebuil d: BOCOLEAN
sparel: BOOLEAN; { Not used here}
wi ndowType: Possi bl eW ndowTypes;
t heResType: ResType; { Type of the resource }
t heResFi | e: | NTEGER, { Hone resfile of the res }
codeRes| D: | NTEGER; { Resource ID of the RSSC
resource containing the
pi cker or editor }
spare: Handl e; { Not used here}
r Type: ResType; { Type for picker. }
rSize: LONG NT; { Size of an enpty resource }
m nW ndoww dt h: | NTEGER, { Used when wi ndow is grown }
m nW ndowHei ght: | NTEGER

104

The ResEd Interface

CHAPTER 7

The Programmatic Interface

i nst ances: Li st Handl e; { List of instances }

nl nsts: | NTEGER, { Nunber of instances }

Vi ewBy: Vi ewTypes; { Current view type }

showAt t ri but es: BOOLEAN; { Show attrs in w ndow?}

| def Type: ResType; { Wich LDEF to use }

t heVi ewMenu: MenuHandl e; { The picker view nmenu }

vi ewMenuMask: LONG NT; { Wiich itens are enabl ed? }

cell Si ze: Cel | ; { Cell size for special view}
{

optionCreateStr: STR255;

END;

Create item nenu text when
the option key is pressed }

Other Routines

The required routines are called by ResEdit itself. Here are others you can use. These are
called by the editor or picker.

Window Utilities

FUNCTI ON Al readyQpen (VAR wi ndowTitl e, wi ndowNane: STR255;
father: ParentHandl e): BOOLEAN,

The Al r eady Open routine checks whether the window is already open. If the window
is open, Al r eadyQpen activates it and returns TRUE. The wi ndowTi t | e and

wi ndowNarre parameters are as defined in the note immediately below. You don’t need
to call this function if you are using the DoPi ckBi rt h, Pi cker W ndSet up, or

Edi t or W ndSet up procedure.

Note

You should call Al r eadyQpen to avoid opening the same resource
twice. Correct functioning of Al r eadyOpen depends on your setting

wi ndowTi t | e and wi ndowNane correctly. For pickers, the window’s
title must uniquely identify the window. For editors, the name stored in
the par ent Rec data structure must uniquely identify the window. The
name is used for editors so that the window title can be simple and
short. For example, the window title for a dialog item might be Edi t

DI TL it em #3, whereas its name would be Edit DI TL item #3 e
DI TL " <resource name>" id = <num> from <filename>. O

The ResEd Interface 105

106

CHAPTER 7

The Programmatic Interface

FUNCTI ON Edi t or WndSet up (dl ogl D: | NTEGER; col or Ki nd: Col or Type;
wi dth, height: INTEGER, VAR wi ndowTitle, w ndowNare:
STR255; addFrom BOOLEAN;, w ndowKi nd: | NTECGER; father:
Par ent Handl €) : W ndowPt r;

The Edi t or W ndSet up function should be called by editors from the Edi t Bi rt h
procedure to set up their windows. The wi ndowTi t | e, wi ndowNane, and addFr om
parameters are passed directly to Get W ndowTi t | e. Refer to the description of

CGet W ndowTi t | e for details about these parameters. The wi ndowName parameter is
returned with the string that should be used for the name in Par ent Recor d. This
routine also takes care of constructing the wi ndowTi t | e and wi ndowNane correctly so
that the window can be uniquely identified. Use the dl ogl D parameter if you want your
window to be a dialog; for normal windows, pass the constant noDi al og. If dl ogl Dis
not set to noDi al og, the width and height parameters should be set to 0 if you want to
use the size stored in the ' DLOG resource. The wi ndowki nd parameter is used to
initialize the window. Pass the result of a ResEd| D call here. The col or Ki nd parameter
can contain noCol or, canCol or, or r equi r esCol or . Ifit’s set to Requi r esCol or,
the window won’t be activated if color is not available.

Note

NIL is returned if the window can’t be allocated for some reason or if
the window is already allocated (that is, an editor is already open). If
NIL is returned, the Edi t Bi r t h procedure should be aborted. O

FUNCTI ON Fl oati ngW ndowSet up (W NDI D: | NTECER,;
fw. Fl oati ngW ndowHandl e;
owner: Parent Handl e;
where: Point): WndowPtr;

The FI oat i ngW ndowSet up function allocates a floating palette window (for example,
the one used by the ' DI TL' editor). The W NDI D parameter specifies the resource ID
ofa' WND' resource that defines the floating window. The Fl oat i ngW ndowHandl e
parameter is the version of Par ent Handl e used by floating windows. The owner
parameter specifies the editor window that will control the floating window. The wher e
parameter specifies the location of the new floating window. If wher e is 0,0 the floating
window will be placed next to the owner window. NIL is returned if the window could
not be created.

PROCEDURE Get W ndowTitl e (VAR wi ndowTitle, w ndowName: STR255;
addFrom BOCOLEAN; father: ParentHandl e);

The Get W ndowTi t | e procedure constructs the window title and name for an editor.
This routine should always be called in the Dol nf oUpdat e procedure, and should be
called in the Edi t Bi r t h procedure if Edi t or W ndSet up is not called. The value in
wi ndowTi t | e should be used for the window’s title. The addFr omparameter deter-
mines whether the name of the file is added to the title. The value in Wi ndowNare
should be saved in the name field of the editor’s data structure. This name is used later

The ResEd Interface

CHAPTER 7

The Programmatic Interface

to identify the window uniquely. On input, Wi ndowTi t | e should contain only the title
or the resource (for example, ' ALRT'), and wi ndowNane should contain the resource
type (for example, ' ALRT'). If Edi t or W ndSet up is not used, the following code
fragment can be used to ensure that the name and title are correct:

Cet Resl nfo(myResource, thel D, theType, w ndowTitle);
TypeToString (theType, w ndowTitle);

Set ETi tl e(myResource, wi ndowTitle);

wi ndowNane : = w ndowTitl e;

GetWndowtitle (w ndowTitle, w ndowNarme, TRUE, parent);

FUNCTI ON Pi cker W ndSet up(col or Ki nd: Col or Type;
ShowTheW ndow. BOCLEAN; wi dth, height: | NTEGER
VAR wi ndowTi tl e: STR255; wi ndowKi nd: | NTEGER;
dad: Parent Handl e): W ndowPtr;

The Pi cker W ndSet up function should be called by pickers from the Pi ckBi rt h
procedure. It is similar to the Edi t or W ndSet up procedure. The ShowTheW ndow
parameter specifies whether the window should be displayed after it is initialized.

PROCCEDURE Set ETitle (h: Handle; VAR title: STR255);

The Set ETi t | e procedure concatenates the resource ID to the resource name and
appends the result to t i t | e. The h parameter is the handle to the resource. You can
use this routine when you are constructing a window’s name or title.

FUNCTI ON W ndAl | oc: W ndowPtr;

The W ndAl | oc function returns a pointer to a window record to be used by your editor
or picker. Using this routine instead of allocating your own window pointer can help
reduce heap fragmentation. Because windows are pointers and must be nonrelocatable
objects in the heap, ResEdit uses this procedure to try to allocate W ndowPt r pointers as
low in the heap as possible. When this procedure is called, it usually returns a

W ndowPt r that it has previously allocated low in the heap.

PROCEDURE W ndReturn (w. W ndowPtr);

W ndRet ur n returns a window pointer that was allocated by W ndAl | oc. Use this
procedure when you terminate your editor or picker and you are finished with its
window. The W ndRet ur n procedure makes the memory used by the window available
to another picker or editor for use as a new window. This helps keep the nonrelocatable
window pointers as low in the heap as possible.

The ResEd Interface 107

108

CHAPTER 7

The Programmatic Interface

Extended Resource Manager

Because the current resource file is always left set to the ResEdit Preferences file (to
avoid loading code resources such as' LDEF' s and ' CDEF' s from the wrong file), you
should always use the extended resource manager calls to get resources from the file
being edited.

FUNCTI ON REAddNewRes (resFile: | NTEGER, hNew. Handl e;
t: ResType; idNew. |NTEGER, s: str255): BOCOLEAN,

The REAddNewRes function has similar parameters to, and performs the same actions
as, the Macintosh procedure AddResour ce. If an error is detected, an alert box is
displayed and FALSE is returned; TRUE is returned otherwise. The r esFi | e parameter
specifies the file to which the resource should be added.

PROCEDURE REAddResource(resFile: |INTEGER theResource: Handl e;
t heType: ResType;thel D. | NTEGER; name: Str255);

The REAddResour ce procedure is similar to the AddResour ce Toolbox procedure
except that it takes r esFi | e as a parameter.

FUNCTI ON REBeauti ful Uni quell D (resFile: | NTECGER;
t: ResType): |NTEGER

This routine should be used instead of the Toolbox procedure Uni quell D. It returns the
first unused resource ID starting with ID 128 in the file specified by r esFi | e.

FUNCTI ON RECount 1Resour ces(resFil e: | NTECER,
theType: ResType): | NTECER

The RECount 1Resour ces function is similar to the Count 1Resour ces Toolbox
procedure except that it takes r esFi | e as a parameter.

FUNCTI ON RECount 1Types (resFile: INTEGER): | NTECER;

The RECount 1Types function is similar to the Count 1Types Toolbox procedure except
that it takes r esFi | e as a parameter.

FUNCTI ON REGet 11 ndResource (resFile: | NTECER,
theType: ResType; index: |NTEGER): Handl e;

The REGet 11 ndResour ce function is similar to the Get 11 ndResour ce trap. The only

differences are that it takes r esFi | e as a parameter, and that if the resource is not
found, it sets ResEr r or to the r esNot Found error and returns NIL.

The ResEd Interface

CHAPTER 7

The Programmatic Interface

PROCEDURE REGet 11 ndType(resFil e: | NTEGER,
VAR t heType: ResType;index: |NTEGER);

The REGet 11 ndType procedure is similar to the Get 11 ndType Toolbox procedure
except that it takes r esFi | e as a parameter.

FUNCTI ON REGet 1NanedResour ce(resFil e: | NTECGER;
t heType: ResType; nane: Str255): Handl e;

The RECet 1NanmedResour ce function is similar to the Get 1NamedResour ce Toolbox
procedure except that it takes r esFi | e as a parameter.

FUNCTI ON REGet 1Resource (resFile: | NTEGER
t heType: ResType; thelD: |NTECER): Handl e;

The REGet 1Resour ce function is similar to the Get 1Resour ce trap. The only
differences are that it takes r esFi | e as a parameter, and that if the resource is not
found, it sets ResEr r or to the r esNot Found error and returns NIL.

FUNCTI ON REGet 1Resour ceSpeci al (resFile: | NTECER;
theType: ResType; ID: I NTEGER;, VAR waslLoaded: BOOLEAN,
VAR error: | NTEGER): Handl e;

The REGet 1Resour ceSpeci al function should be used in place of the Toolbox routine
Cet 1Resour ce. It’s equivalent to Get 1Resour ce except for the fact that it returns a
wasLoaded variable to indicate whether the resource is already in use. If the return
value of wasLoaded is TRUE, the caller should never free the resource with the

Rel easeResour ce procedure.

FUNCTI ON RENewUni queRes (resFile: INTEGER;, s: LONG NT;
t: ResType;): Handl e;

Given a size, s, RENewUni queRes allocates a new handle, clears it, adds it to the
specified resource file as a resource of type t with a unique ID, and returns a handle to
the new resource. If this function fails, it returns a NIL handle.

PROCEDURE RERenoveAnyResource (resFile: | NTEGER,
t heRes: Handl e);

This procedure should always be used in place of the Toolbox call, RmveResour ce. It
correctly handles resources that have the protected attribute set, by unprotecting them
before removing them. The function of this routine is otherwise the same as that of the
RmveResour ce Toolbox procedure.

The ResEd Interface 109

110

CHAPTER 7

The Programmatic Interface

FUNCTI ON Revert Thi sResource (theQoj: Parent Handl e;
res: Handl e): BOCOLEAN,

The Rever t Thi sResour ce function restores a resource being edited to its state before
editing started. The parameter r es is a handle to the resource. The parameter t heQbj is
the Par ent Handl e from the current window. It is needed to determine whether the
resource was newly added. The Rever t Thi sResour ce function returns a value of
FALSE if the resource was newly added by ResEdit (and, therefore, no longer exists after
the reversion), and TRUE otherwise. If the resource has not been changed (its

r esChanged flag is not set), nothing is done.

Routines Used by Pickers

FUNCTI ON Def aul t Li st Cel | Si ze: | NTEGER,

The Def aul t Li st Cel | Si ze function returns the height of a list cell with the
application font (ascent + descent + leading). This function should be used by pickers
that display resources as text strings when setting up their window.

FUNCTI ON DoPi ckBi rt h(col or Ki nd: Col or Type;
bui | dLi st: BOOLEAN; whi ch: Pl CKERTYPE;
pi cker Resl d: | NTECGER; pick: PickHandl e): BOOLEAN,

The DoPi ckBi rt h function takes care of just about everything needed to initialize a
picker. If the value of bui | dLi st is TRUE, the list of all of the resources will be created.
The pi ck parameter is the handle to a partially initialized Pi ckHandl e. The fields that
should be initialized before this procedure is called are: f at her, r Type, vi ewBy,

cel | Si ze, | def Type, mi nW ndowW dt h, and mi nW ndowHei ght . The example
picker shows how these fields should be initialized. The size of the picker’s window is
calculated automatically from cel | Si ze.

PROCEDURE Dr awLDEF (nmessage: | NTECER; | Sel ect: BOOLEAN,
| Rect: Rect; theRes: Handle; id: |NTEGER;
title: STR255; maxH, maxV: | NTECER;
DrawResource: ProcPtr; |h: ListHandle);

The Dr awlDEF procedure is a general-purpose drawing routine for graphic LDEFs such
as' | CON ,' ci cn', and so on. It should be called from an LDEF that is used by a
picker. If ti t | e is an empty string, i d is converted to a string and used as the title. The
dr awPr oc is of the form

PROCEDURE Dr awResource (|l Rect: Rect; theRes: Handle).

Use of this procedure is shown in the example picker LDEF.

The ResEd Interface

CHAPTER 7

The Programmatic Interface

PROCEDURE Gr owMyW ndow (mi nW dt h, m nHei ght: | NTEGER;
wi ndPtr: WndowPtr; |h: ListHandle);

Pickers use this procedure to change the size of their windows. The m nW dt h and
m nHei ght parameters determine the minimum size of the window; wi ndPt r is the
window to be resized; | h is the list that is in the window.

The G- oW W ndow procedure takes care of everything that is necessary to change the
size of a picker’s window. If necessary, the list is resized and redrawn. Two-dimensional
lists (such as those used by the icon picker) are updated to fit as many cells as possible in
the window without requiring horizontal scrolling.

PROCEDURE Pi ckEvent (VAR evt: Event Record; pick: PickHandl e);

The Pi ckEvent procedure handles an event contained in evt for a standard picker
referenced by pi ck. This procedure should be called from your picker’s DoEvent
procedure. It is usually sufficient to call only this routine from DoEvent , with no other
special processing at all.

PROCEDURE Pi ckl nfoUp (ol dI D, newi D: | NTEGER;
pi ck: Pi ckHandl e);

The Pi ckl nf oUp procedure handles the update necessary when a resource’s ID is
changed in the Get Info window. This procedure should be called from your picker’s
Dol nf oUpdat e procedure. It is usually sufficient to call only this routine from

Dol nf oUpdat e, with no other special processing at all.

PROCEDURE Pi ckMenu (nenu, item | NTEGER;, pick: PickHandl e);

Pi ckMenu handles menu commands for a standard picker referenced by pi ck. Pi ckMenu
should be called from your picker’s DoMenu procedure. This routine handles all of the
standard menu commands. It is usually sufficient to call only this routine from DoMenu.

FUNCTI ON Pi ckSt dHei ght: | NTEGER;

This function returns the height in pixels that should be used when creating picker
windows. This value is obtained from the Preferences dialog box. A window of the
specified height is guaranteed to fit on the screen. Because the picker’s size is set by
DoPi ckBi rt h, you should not need to use this procedure.

FUNCTI ON Pi ckSt dW dt h: | NTEGER;

This function returns the width in pixels that should be used when creating picker

windows. This value is obtained from the Preferences dialog box. A window of the
specified width is guaranteed to fit on the screen. Because the picker’s size is set by
DoPi ckBi rt h, you should not need to use this procedure.

The ResEd Interface 111

112

CHAPTER 7

The Programmatic Interface

Routines Used by Editors

FUNCTI ON d oseNoSave: BOOLEAN;

The O oseNoSave function returns a Boolean value that indicates whether data
checking should be performed before closing. A return value of TRUE indicates that
checking should not be performed. For example, if the user is editing a template and
there are errors in the template when the Quit command is chosen, the template editor
should not perform edit checking if No was clicked in the Save Changes dialog box.

FUNCTI ON NeedToRevert (nyW ndow. W ndowPtr; theRes: Handle):
BOCLEAN;

The NeedToRevert function should be called by all editors before they revert their
resource. If the editor’s window is frontmost and the resource has been changed, an alert
box is displayed asking the user to verify that he or she really wants to revert the
resource. If the user does want to revert the resource, the function returns a value of
TRUE. Otherwise it returns a value of FALSE. The myW ndow parameter is a pointer to
the editor’s window. The t heRes parameter is the handle of the resource that is to be
reverted.

PROCEDURE NoDoubl e i ckHer e;

Call this procedure in your mouse-down processing code if you don’t want ResEdit to
convert a double-click at this location to an Open command. This should be used if a
double-click makes sense only in part of your window.

PROCEDURE Set ResChanged (h: Handl e);

The Set ResChanged procedure sets the r esChanged attribute for the specified
resource and also sets the mapChanged attribute for the resource file that contains the
resource. This procedure should be called whenever a resource is changed.

FUNCTI ON Wasl t Loaded: BOOLEAN,

The Was| t Loaded function should be called by every editor in the Edi t Bi rt h
procedure. The returned value should be saved in the Par ent Rec data structure. When
a Close command is received, the resource being edited should be released only if

Was| t Loaded returned FALSE. If the returned value is TRUE, the resource may already
be in use by ResEdit or the system and therefore shouldn’t be released.

Routines Used to Start Pickers and Editors

PROCEDURE G veEBirth (resHandl e: Handl e; pick: PickHandl e);
The G veEBi rt h procedure starts an editor. This routine is used when a picker wants to

start an editor or when an editor wants to start another editor (as when the ' DLOG
editor starts the' DI TL' editor). If the user chooses Open Using Template, or if an editor

The ResEd Interface

CHAPTER 7

The Programmatic Interface

is not found, the ' GNRL" (template) editor is started. If the user chooses Open Using
Hex Editor or if neither an editor nor a template is found, the hexadecimal editor

is started. A call to the appropriate editor’s Edi t Bi rt h procedure is then generated,
as follows:

EditBirth (resHandl e, pick)

In this call, r esHandl e is the handle of the resource to be edited, and pi ck is the
caller’s Par ent Handl e.

Note

When an editor is starting another editor, it is important to remember
that pi ck””. r Type must be set before this routine is called. The
editor’s Par ent Rec will need to be equivalent to a Pi ckRec, at least
down to the r Type field. The G veEBi r t h procedure looks to the

Pi ckHandl e parameter for information (for example, the resource type)
that it needs to start up an editor. O

PROCEDURE G veSubEBirth (resHandl e: Handl e; pick: PickHandl e);

The G veSubEBi rt h procedure starts an editor that edits a part of another type of
resource. For example, the' DI TL' editor uses G veSUbEBI r t h to start the dialog item
editor. The G veSubEBi rt h procedure behaves exactly like G veEBi rt h except that
the name of the resource that it looks for begins with a dollar sign ($) instead of a
commercial “at” sign (@). For example, the name of the' DI TL' editor resource is @DITL
and the name of the ' DI TL' subeditor resource is $DITL. This distinction allows an
editor to use the standard method for editing multiple occurrences of a subtype within
the resource. For example, a dialog item list (' DI TL') typically contains several dialog
items. Calling G veSUubEBi rt h lets the user open multiple dialog items and treat them
in the same way as any other windows.

PROCEDURE G veThi sEBirth (resHandl e: Handl e; pick: PickHandl e;
openThi sType: ResType);

The G veThi sEBi rt h procedure is similar to G veEBi rt h, except that it lets the caller
specify the type of editor to open. The specified editor is opened even if the user chooses
Open Using Template or Open Using Hex Editor. If an editor of the specified type is not
found, a template of the specified type is opened. If a template is not found, the
hexadecimal editor is opened.

The ResEd Interface 113

114

CHAPTER 7

The Programmatic Interface

Routines Used to Feed Events and Menus
to the Appropriate Picker or Editor

PROCEDURE Cal | DoEvent (evt: EventRecord; theW ndow:
W ndowPtr) ;

The Cal | DoEvent procedure calls the DoEvent procedure of the specified window
with the specified event. You normally won’t need to use this procedure.

PROCEDURE Cal | | nfoUpdate (ol dI D, new D: | NTEGER,
refcon: LONG NT; id: INTEGER);

The Cal | I nf oUpdat e procedure passes an information update command to the
specified window. After updating its own window and data structures, each editor’s

Dol nf oUpdat e procedure should call this routine to pass the information update along
to its parent window. This call is necessary since the parent may be displaying data (such
as the ID or name in a picker window) that has been changed. An editor could pass this
information along by making the following call:

Cal I I nf oUpdate (ol did, new d, |ongint(father),
father ™. wi nd™. wi ndowki nd) ;

PROCEDURE PassEvent (evt: EventRecord; father: ParentHandl e);

The PassEvent procedure sends the specified event to all windows opened by the
window owned by the specified Par ent Handl e. You normally won’t need to use this
procedure.

PROCEDURE PassMenu (nenu, item | NTEGER; father:
Par ent Handl e) ;

The PassMenu procedure passes menu commands on to any child pickers or editors that
you have started. For example, when your editor receives a Close command, it should
make this call to pass that command along to any subeditors or information windows
that it has opened:

PassMenu (fileMenu, closeltem nyQoj)

Miscellaneous Utilities

PRCOCEDURE Abort ;

The Abor t procedure sets the abort flag, which will stop any command that is in
progress. The most common use of this command is in stopping the Quit command. For
example, if an error is detected in a template when its window is being closed, the
template editor calls Abor t so that processing of the Quit command will stop and the
error can be corrected.

The ResEd Interface

CHAPTER 7

The Programmatic Interface

PROCEDURE Abl eMenu (nenu: | NTEGER; enabl e: LONG NT);

The Abl eMenu procedure enables or disables menu items. This procedure differs from
the Resource Manager routines Enabl el t emand Di sabl el t emin that it acts on the
entire menu. The parameter menu is a menu ID; enabl e is a mask. Values used for the
mask can be found in the ResEd file.

PROCEDURE Bubbl eUp (h: Handl e);

The Bubbl eUp procedure sets up the correct heap zone and then calls the Memory
Manager routine MoveHHI . For information about MoveHHi , see Inside Macintosh,
Volume II, Chapter 1. This routine should always be called, to avoid heap fragmentation,
before the Macintosh procedure HLock is called for any handle. Remember to unlock
any handle that you lock!

PROCEDURE Cent er Di al og (theType: ResType; dial og: | NTEGER);

This procedure centers dialogs or alerts on the same screen as the current port, which is
assumed to be a window. If the dialog is in color, it is centered on the deepest screen on
which any portion of the current port appears. The Res Type parameter can be “DLOG”
or “ALRT”; di al og is the resource ID of the dialog or alert. The' DLOG or' ALRT'
resource is loaded into memory and its boundsRect is centered. When you use the
dialog or alert box (for example, in Get NewDi al 0g), the resource will be found in
memory with the correct boundsRect .

FUNCTI ON CheckError (err, msglD: | NTEGER): BOOLEAN,

The CheckError function displays an error alert if the value of er r is not 0. This
routine has built-in alert messages for several errors (such as “disk write-protected”,
“out of memory”, and so on). If the value of nsgl d is negative, a fatal error message is
retrieved from the ' STR#' resource with ID of 128. This resource is preloaded into
memory and may be accessible even if a serious error has occurred. If the value of msgl D
is nonnegative, an error message from the ' STR#' resource with ID of 129 is displayed.
If the error is not one that is built in, the string with an ID of nsgl Dis displayed in the
alert box. TRUE is returned if er r was 0; FALSE otherwise. When adding a new string
for use by CheckEr r or, be sure to add it to the end of the existing list in the ' STR#'
resource.

FUNCTI ON Choosel con(EdHandl e: Par ent Handl e;
VAR | conReslI D: integer; VAR |IconKind: |conType;
di al ogl D: integer): BOOLEAN;

The Choosel con function displays the ' | CON' chooser used by the ' MENU and
"BNDL' editors. The EdHandl e parameter is the Par ent Handl e of the editor
displaying the dialog. Passing onl y| CONin the | conKi nd parameter forces the
IconChooser to not allow reduced ' | CON' s or' SI CN s. Passing onl y| CNPound in the
| conKi nd parameter uses ' | CN#' resources instead of ' | CON' s. Passing any other
value instructs the IconChooser to support regular ' | CON' s, reduced ' | CON' s, and

The ResEd Interface 115

116

CHAPTER 7

The Programmatic Interface

"SI CN s (asinthe' MENU editor). The icon’s resource ID is returned in | conRes| D
(this field also specifies the icon to be selected). The di al ogl Dfield specifies the
resource ID of the dialog to be displayed. You should copy the ' MENU or ' BNDL'
editor’s dialog and make minor changes. Don’t remove any of the existing fields. If you
don’t want some of the fields in your dialog, move them outside of the window bounds.

FUNCTI ON Col or Avai | abl e (needCol or QD: BOOLEAN) : BOCOLEAN,;

The Col or Avai | abl e function returns TRUE if color QuickDraw is available. If the
value of the needCol or QD parameter is TRUE, an alert is displayed if color QuickDraw
is not available.

PROCEDURE Concat Str (VAR strl: STR255; str2: STR255);
The Concat St r procedure concatenates st r 2 to st r 1, leaving the resultin st r 1.

WARNING
This routine does not check for aggregate string lengths
in excess of 255 characters. Please be careful! a

FUNCTI ON Di spl ayAl ert (which: AlertType; id: | NTEGER):
| NTEGER;

The Di spl ayAl ert function displays an alert box with the given i d. This routine
assures that the alert resource is loaded from ResEdit and that the cursor is reset to
an arrow. The whi ch parameter determines the kind of alert box that is displayed.

Al ert Type = (displayTheAl ert, displayStopAl ert, displayNoteAlert,
di spl ayCautionAl ert);

FUNCTI ON Di spl aySTRAl ert (which: Al ert Type; STRNane: STR255;
STRI ndex: | NTEGER): BOOLEAN;

This function is similar to Di spl ayAl ert except that a standard alert box is used and
the text is retrieved from a' STR#' resource. If you want to display an alert box, just
create a' STR#' resource in ResEdit and call this routine with the ' STR#' resource
name and the index in the string list of the string to be used. Whenever possible, this
routine should be used instead of Di spl ayAl ert . TRUE is returned if the OK button
was pressed.

The ResEd Interface

CHAPTER 7

The Programmatic Interface

PROCEDURE Dr awvBar Lat er (forceltNow. BOOLEAN);

The Dr awMBar Lat er procedure should be used instead of the Toolbox Dr awVenuBar
procedure. It will collect updates to the menu bar but actually draw the menu bar only
when no other events are pending. Using this procedure prevents the menu bar from
flashing as menus are added and removed. If the value of f or cel t Nowis TRUE, the
menu bar is drawn immediately and any pending updates are cleared.

FUNCTI ON Fi ndOwner W ndow (t heRes: Handl e): W ndowPeek;

The Fi ndOmner W ndow function checks all of ResEdit’s windows to see if an editor is
open for the specified resource. If you're writing an editor that uses a resource that may
be in use by another editor (for example, two ' DLOG resources may share the same

"Dl TL'), call Fi ndOmner W ndowto determine whether the resource should be released.

PROCEDURE Fi xHand (s: LONG NT; h: Handl e);

The Fi xHand procedure makes sure that the object to which h is a handle is s bytes
long. If it is longer, Fi xHand shortens it; if it's shorter, Fi xHand expands it and fills the
extension with 0.

PROCEDURE Fl ashDi al ogltem (dp: DialogPtr; item integer);

The FI ashDi al ogl t emprocedure causes a dialog button to blink (inverts the button)
for 8 ticks to indicate that the button was selected. This procedure should be called from
a dialog’s filter procedure.

PROCEDURE Fr aneDi al ogltem (dp: DialogPtr; item integer);

The Fr aneDi al ogl t emprocedure draws a frame around a dialog button to indicate
that it is the default button (the button that will be selected when either the Return or the
Enter key is pressed). The dp parameter is a pointer to the dialog record; i t emis the
item number of the button in the corresponding ' DI TL' . This procedure should be
called when an update event is received by a dialog’s filter procedure.

PROCEDURE Get NamedStr (i ndex: | NTEGER, nane: STR255;
VAR str: STR255);

The Get NarmedSt r procedure returns in st r the i ndexth string in the ' STR#' resource

named narre. All strings should be stored in either ' STR#' or' STR resources to
maintain the international localizability of ResEdit.

The ResEd Interface 117

118

CHAPTER 7

The Programmatic Interface

FUNCTI ON Get Qui ckDrawvars: pQui ckDr awvars;

This function returns a pointer to the QuickDraw variables that are normally available to
Macintosh programmers. Because of the way that pickers and editors are implemented,
they do not normally have access to these variables. The following types are used with
this function:

pQui ckDrawars = ~Qui ckDr awvar s;
Qui ckDr awwAr s = RECORD

r andSeed: LONG NT;
screenBits: Bi t Map;

arrow. Cursor;

dkG ay: Pattern;
[t G ay: Pattern;
gray: Patt ern;
bl ack: Pattern;
whi t e: Pattern;
t hePort : Gafbtr;

END; { QuickDrawvars }

FUNCTI ON CGet ScreenRect (roonforlcons: BOOLEAN,
wi nd: wi ndowPtr): Rect;

The Get Scr eenRect function returns the rectangle of the screen containing most of the
specified window. If the value of r oonfor | cons is TRUE, the window is on the main
screen, and the screen is large, there is room for the Finder icons at the right edge. If the
window is on the main screen, the rectangle returned will not include the menu bar.

PROCEDURE Get Str (index, reslD: | NTEGER, VAR str: STR255);

The Get St r procedure returns, in st r, string number i ndex from ResEdit’s ' STR#'
resource with ID of r es| D. All strings should be stored in either ' STR#' or' STR
resources to maintain the international localizability of ResEdit.

FUNCTI ON Handl eCheck (h: Handl e; mnmsgl D: | NTEGER): BOOLEAN;

The Handl eCheck function checks to see if the handle h is NIL or empty. If it is either,
Handl eCheck returns FALSE and displays an error alert, using string nsgl D from
ResEdit’s' STR#' resource ID 129. If the handle ID is OK, Handl eCheck returns TRUE.

PROCEDURE Met aKeys (VAR cnd, shift, opt: BOOLEAN);

The Met aKeys procedure returns the values of the modifier keys from the last event.
Some menu commands that have shortcut key combinations simulate the shortcut
modifier keys when the menu command is selected. For example, when the user chooses
Open Using Template from the Resource menu, Met aKeys indicates that the Command
and Option modifier keys were pressed. Because of these transformations, Met aKeys
should always be used to get the modifier values.

The ResEd Interface

CHAPTER 7

The Programmatic Interface

FUNCTI ON Print Setup: Handl e;

Use Pri nt Set up if you are doing your own printing instead of using Pr i nt W ndow
Return type is actually THPr i nt . The following code can be used to set up your own
printing loop:

nyPrint Handl e : = Print Set up;
| F nyPrintHandl e <> NIL THEN

BEG N
Pr Open;
IF PrError = noErr THEN
BEG N
| F PrJobDi al og(nyPrintHandl e) THEN
BEG N
printingPort := PrQpenDoc(nyPrintHandl e, NIL, NIL);
IF PrError = noErr THEN
BEG N

{do the usual printing |loop here (see TechNote #161)}
{Warni ng: be careful NOT to change the current resfile}

{ or the printing manager will fail}
PrC oseDoc(printingPort);
END;
END;
Pr d ose;
END;
END;

PROCEDURE Pri nt Wndow (toPrint: PicHandle);

The Pr i nt W ndow procedure does just that. If you pass it NIL, it will print an image of
the current window. If you pass it a PicHandle, it will print the picture.

FUNCTI ON ResEdI D: | NTECER,

The ResEdI D function returns the resource ID of the calling picker or editor. This value
should be saved in the wi ndowKi nd field of the editor’s window, and also in the
codeRes| Dfield of the Par ent Rec data structure.

PROCEDURE Set TheCur sor (whi chCursor: | NTEGER);

The Set TheCur sor procedure changes the cursor to the specified cursor resource. The
constant ar r owCur sor defined in the ResEd file should be used to set the cursor to the
arrow. The most common use of this routine is to set the cursor to a watch

(wat chCur sor) during a time-consuming operation.

The ResEd Interface 119

120

CHAPTER 7

The Programmatic Interface

PROCEDURE Showl nfo (h: Handl e; father: ParentHandle);

The Showl nf o procedure puts up a Get Info window for the resource referenced by h
that belongs to the father object referenced by f at her. Your editor should call
Showl nf o when the user chooses Get Info from the File menu.

FUNCTI ON StandardFilter(theDi al og: Dial ogPtr;
VAR t heEvent: EventRecord; VAR itenHit: |NTEGER): BOOLEAN;

The St andar dFi | t er function can be used by any dialog to make the appropriate
responses when the user presses the Return, Enter, Esc, or Command-period keys. Cut,
Copy, and Paste are also supported if there are editable fields in the dialog.

PROCEDURE TypeToString (t: ResType; VAR s: Str255);

The TypeToSt ri ng procedure returns a string consisting of the four characters that
make up the ResType t.

PROCEDURE UseAppRes;

The UseAppRes procedure sets the current resource file to be the ResEdit Preferences
file. If you need to call a Toolbox procedure that looks for resources starting with the
current resource file (Get NewDi al 0g, for example), you need to call UseResFi | e with
the appropriate resource file before you call the Toolbox procedure. Use this routine to
restore ResEdit as the current resource file when you’re done.

FUNCTI ON WasAborted: BOOLEAN,

The WAsAbor t ed function returns the state of the aborted flag (set by the Abor t
procedure previously described). This function is useful, for example, if you have just
called PassMenu with a Close command and you want to know if any of the windows
that were closed encountered a problem.

Pop-up Menus

FUNCTI ON Col or Pal et t ePopupSel ect (whi chW ndow. W ndowPtr ;
i tenBox: Rect; VAR whichCol or: RGBCol or;
CQDi shere: BOOLEAN; useCol or Pi cker: BOOLEAN): BOCLEAN,;

The Col or Pal et t ePopupSel ect function handles nouseDown events in the color
palette pop-up menu. Call this procedure whenever you receive a nouseDown event in
one of your color patches. The whi chW ndow parameter specifies the window
containing the pop-up palette, i t emBox specifies which Rect is to be used to draw the
color patch, whi chCol or is the RGBCol or to be used as default, and CQDi sher e is set
to TRUE when Color QuickDraw is available. If the value of useCol or Pi cker is TRUE,
the color picker dialog is displayed rather than the color pop-up palette. On exit,

whi chCol or contains the RGBCol or selected by the user.

The ResEd Interface

CHAPTER 7

The Programmatic Interface

PROCEDURE Dei nst al | Col or Pal ett ePopup(whi chW ndow. W ndowPtr ;
CQDi shere: Bool ean);

The Dei nst al | Col or Pal et t ePopup procedure removes the palette from the window.
See Col or Pal et t ePopupSel ect for an explanation of the parameters. Call this
procedure before closing the window.

PROCEDURE DoPopup(whi chDi al og: Di al ogPtr;
pronpt Di al ogltem popupDi al ogltem i nteger;
VAR menultem integer; whi chMenu: MenuHandl e);

The DoPopup procedure should be called in response to a mouseDown event in a pop-up
menu. The whi chDi al og parameter specifies the dialog containing the pop-up menu.
The pr onpt Di al ogl t emparameter specifies the item in the dialog containing the
pop-up menu’s prompt and popupDi al ogl t emis the pop-up menu itself. The

menul t emparameter is the current setting and also returns the new setting; whi chMenu
specifies the menu to be displayed.

PROCEDURE Dr awCol or Popup(whi chW ndow. W ndowPtr; itenmBox: Rect;
whi chCol or: RGBCol or; CQDi shere: BOOLEAN);

The Dr awCol or Popup procedure draws the color patch and a drop shadow indicating
that this is actually a pop-up menu. Call this procedure for every pop-up palette
whenever you need to update the window contents. The whi chW ndow parameter
specifies the window containing the pop-up palette, i t enBox specifies the Rect to be
used to draw the color patch, whi chCol or is the RGBCol or to be drawn, and

CQDi sher e is set to TRUE when Color QuickDraw is available.

PROCEDURE Dr awPopup(whi chDi al og: Di al ogPtr; whi chDi al ogltem
whi chMenultem integer; whichMenu: MenuHandl e);

The Dr awPopup procedure should be called when you receive an update event for a
pop-up menu. The whi chDi al og parameter specifies the dialog containing the pop-up
menu, Whi chDi al ogl t emis the item number of the pop-up and whi chMenul t emis
the current setting. The whi chMenu parameter specifies the menu to be drawn.

PROCEDURE | nst al | Col or Pal ett ePopup(whi chW ndow. W ndowPtr ;
CQDi shere, isActive: BOOLEAN);

The | nst al | Col or Pal et t ePopup procedure sets up a palette containing the
approprieate set of system colors for the deepest available device, and associates the
palette with the window specified by whi chW ndow Call this procedure immediately
after opening your window and whenever you receive an update event. The CQDi sher e
parameter should be set to TRUE when Color QuickDraw is available, and i SActi ve
should be set to TRUE only when the window is the frontmost one.

The ResEd Interface 121

CHAPTER 7

The Programmatic Interface

Internal Routines

FUNCTI ON Bui | dType (t: ResType; |: ListHandle): | NTEGER,

Given a list that has been initialized with no rows, Bui | dType builds a list of all
resources of type t from the current resource file. (See the W ndLi st routine described
in this chapter.) This function requires that the r ef Con field of the list contain the

Par ent Handl e of the window owning the list. If Set ResLoad (FALSE) has not been
called, all of the resources will be loaded into memory. The Bui | dType function returns
a count of the number of instances that it adds to the list.

A picker that doesn’t use Pi cker W ndSet up can set up its window with this sequence:

nmyLi st := W ndLi st (myW ndow, myLi stWdth, nyCell Si ze, ResEdid);

nyLi st . ref Con : = Longl nt (myPar ent Handl e) ;

LDoDr am FALSE, nyList); {draw it later}

Nl nsts := Buil dType(nyType, nylList);

LSet Sel ect (TRUE, Cell (0), nyList); {automatically select first cell}
LDoDr awm{ TRUE, nylLi st); {ok to draw it next tine}

FUNCTI ON Compr essedResour ce(t heResource: Handl e): BOOLEAN;

The Conpr essedResour ce function returns TRUE if the specified resource is
compressed using the system software release 7.0 compression technique.

PROCEDURE DoKeyScan (var evt: EventRecord; offset: integer;
| h: ListHandl e);

The DoKey Scan procedure is called for you by Pi ckEvent and shouldn’t be used.

FUNCTI ON DupPick (h: Handle; c: cell; pick: PickHandle):
Handl e;

The DupPi ck function is called from Pi ckMenu and should normally not need to be
called from any other procedures.

PROCEDURE Get Error Text (error: |NTEGER;, VAR error Text:
STR255) ;

The Get Er r or Text procedure returns an error string for the given error. If no specific
error text is found, the text for an I/ O error is returned.

FUNCTI ON Get ResEdi t ScrapFil e: | NTECER;

The Get ResEdi t Scr apFi | e function returns the resource file number of the ResEdit
scrap file. You can use this procedure if you want to do your own scrap manipulation.

122 The ResEd Interface

CHAPTER 7

The Programmatic Interface

FUNCTI ON Get Type (tenplatesOnly: BOOLEAN, VAR s: STR255):
BOOLEAN;

The Get Type function displays a dialog box containing a list of the types of resources
that can be edited. The list contains all types for which there are templates. If the value of
t enpl at esOnl y is FALSE, the list also contains all the types for which there are editors.
The selected type is returned in s. TRUE is returned if a type was selected; FALSE is
returned otherwise.

FUNCTI ON MapResour ceType (editor: BOOLEAN, theRes: Handl e;
ori gResType: ResType): ResType;

This function checks the ' RMAP' resources in ResEdit and the ResEdit Preferences file to
see if the specified resource type should be treated as if it were of a different type.

FUNCTI ON Pl aySyncSound(whi ch: | NTEGER; sndHandl e: Handl e):
BOOLEAN;

This function is used by the ' snd' picker to play sounds.
FUNCTI ON ResEdi t Res: | NTEGER,

The ResEdi t Res procedure returns the resource file ID of ResEdit. This routine is rarely
needed. You can use this routine if you don’t want to release a resource that you have
been editing, if the resource came from ResEdit.

PROCEDURE Resour cel DHasChanged (theCbj: Parent Handl e;
t heType: ResType; thed dlid, theNewl d: |NTECGER);

Call this procedure if you have changed the ID of a resource. If you change a resource ID
and don’t call this routine, revert won’t work properly. The t heQbj parameter is a

handle to the parent record of the editor that is editing the changed resource; t heType is
the resource type; t hed dl d and t heNewl d are the ID numbers involved in the change.

FUNCTI ON Rest or eRenovedResour ces (pick: PickHandl e): BOOLEAN,

This function reverts all resources of the type handled by the picker (pi ck””. r Type).
The pi ck parameter is a handle to the parent record of the picker. This function returns
TRUE if the list needs to be rebuilt.

PROCEDURE ScrapCopy (theType: ResType; VAR h: Handle);

The Scr apCopy procedure copies the handle h into the ResEdit scrap. A different
handle will be returned. If h isn’t a resource, it is added to the scrap with type t heType.

The ResEd Interface 123

124

CHAPTER 7

The Programmatic Interface

PROCEDURE Scr apEnpty;
The Scr apEnpt y procedure empties the ResEdit and desktop scraps.

PROCEDURE SendRebui | dToPi cker (theType: ResType;
parent: Parent Handl e);

This procedure is similar to SendRebui | dToPi cker AndFi | e except that it doesn’t
send the rebuild on to the file (what a surprise!).

PROCEDURE SendRebui | dToPi cker AndFil e (theType: ResType;
par ent: Parent Handl e) ;

This procedure sends a rebuild (sets the rebuild flag in the window’s par ent Recor d) to
all open picker windows of the specified type. A rebuild is also sent to the file picker in
case a new resource type is being added. This routine is useful if an editor creates a
resource of another type. The t heType parameter is the type of resource involved;

par ent is a handle to the parent record of the object that has changed. Editors typically
pass their own parent record in this parameter (not the parent record of the picker that
launched the editor). This routine should be called to make sure that the resource picker
and the file picker are updated to reflect the addition of the new resource. For example,
this routine is called from the ' ALRT' ,' DLOG ,and ' DI TL' editors.

FUNCTI ON SysResFil e: | NTEGER;

This function returns the resource file ID of the System file. It is often necessary to take
special precautions when accessing the System file. This function allows you to take
these precautions without hard-coding a value for the system resource file ID, which
may change in the future.

FUNCTI ON W ndLi st (w. WndowPtr; nAcross: | NTECGER;
cSi ze: Point; drawProc:|NTEGER): ListHandl e;

The W ndLi st function creates a new empty list and returns a handle to that list.; it
should be used by pickers to allocate their lists. This function calls the LNew procedure to
allocate a list. The wparameter specifies the window in which the list will be created, and
nAcr 0ss specifies the number of cells across that the list should contain. The list is
allocated with 0 rows. The ¢Si ze parameter in this function is passed to LNewas its

cSi ze parameter, and dr awPr oc is passed to LNewas its Pr oc parameter. For more
information on lists and a description of the LNew parameters, see the chapter on the List
Manager in Inside Macintosh, Volume IV.

PROCEDURE W ndOrigin (w. WndowPtr; dad: Parent Handl e);

The W ndOri gi n procedure moves the window pointed to by wto the correct location
on the screen. If wis a color window, the window is positioned on the deepest available
display device. This routine guarantees that, if possible, the entire window will be
visible. This procedure requires that the “windowkind” field of wbe set to a ResEdit

The ResEd Interface

CHAPTER 7

The Programmatic Interface

value (for example by a call to ResEdI D), and that the window size be set. If you are
using the Pi cker W ndSet up or Edi t or W ndSet up procedure, you don’t need to call
this procedure.

PROCEDURE Wit ePreferences (prefType: ResType;
prefld: |INTEGER, prefNane: STR255; prefHandl e: Handl e);

You can use Wi t ePr ef er ences to add your own preference resource to the ResEdit
Preferences file. The Pr ef Type parameter is the resource type that you have chosen for
your preference resource. The pr ef | d and pr ef Name parameters are the ID and name
for the resource. The pr ef Handl e parameter is a handle to the preference data itself. To
read your preferences you can use this code:

myPref s: = Get 1INamedResour ce(pr ef Type, pref Nane);

To conform to ResEdit’s standard way of storing preferences, use a type of ' PREF' and
an ID number that’s ten times the ID number of your editor.

The ResEd Interface 125

A PPENDTIX A

The 'KCHR' Resource

This appendix contains more information about the " KCHR' resource, its structure, and
its function. The ' KCHR' resource controls mapping from the keyboard to the resulting
characters. This mapping process involves several areas of the Macintosh architecture.

Basic Theory of Keyboard Operation

In order to appreciate fully the workings of the ' KCHR' editor, you really should be
aware of the process that it controls. Here is a summary.

Generating the Virtual Keycode

Whenever a key on any type of keyboard is pressed, the operating system polls the key
information from the device. It then translates each raw keycode generated by the
keyboard into a virtual keycode and a combination of modifier keys by means of the

" KMAP' resource. The resulting virtual keycode is information about the key being
pressed that is independent of the keyboard type.

Exceptions to the Rule

Some countries have different layouts for different keyboards, mostly for historical
reasons. To deal with those exceptions, the ' i t| k' resource contains a table of trans-
lation rules from a virtual keycode generated by the actually connected keyboard to a
virtual keycode on the ISO ADB keyboard or to whatever keyboard is supported by the
" KCHR' resource for that country.

Generating the Character Code

When the operating system has generated a virtual keycode, the KeyTr ans() procedure
then translates the virtual keycode and the concurrently pressed modifier keys into

a Macintosh character set number based on the tables in the ' KCHR' resource. That
character number and the virtual keycode information are then stored in the event queue
and can be accessed by calling Get Next Event ().

Dead Keys

When you press a dead key, the first thing you’ll notice is that nothing happens
immediately (that is, no event is fed into the queue). When you then press another key,
the Event Manager uses the character number generated by this new key and the

Basic Theory of Keyboard Operation 127

APPENDIX A

The 'KCHR' Resource

previously pressed dead key to determine which character number should be put in the
event queue. This process is used, for example, to generate the German characters with
umlauts A, O, U, §, 6, and ii. You have to press the dead key for a diaeresis (which is
Option-u in the U.S." KCHR') and then press one of the keys that generate the characters
A, 0,1, a, o, or u. (You can also generate i, and & which do not exist in German, but,
depending on the font, possibly not their uppercase equivalents.) If you press a key that
generates none of the defined character numbers for this dead key, the Event Manager
generates the nomatch character (which is, in the case discussed here, the umlaut alone).

The Dead Array contains a list of dead keys. For each dead key it defines the virtual
keycode and the table that is used to trigger the dead-key mechanism. It then lists pairs
of completion characters and substitution characters and, finally, the nomatch characters.
The whole dead-key mechanism can be described as follows:

1. Press a dead key on the keyboard.

2. Press any key that generates a character number that corresponds to a valid
completion character.

You get the corresponding substitution character in the event queue. (If you didn’t press
a valid completion character in step 2, you get the nomatch character.)

The Structure of a ' KCHR' Resource

Here is the definition of a' KCHR' for the resource compiler Rez. (This information can
also be found in the file SysTypes.r in the folder {RIncludes} in MPW.)

type ' KCHR {

i nt eger; /* Version */
wi de array [$100] { /* | ndexes */
byt e;

1
i nteger = $$Count O (Tabl eArray);
array Tabl eArray {
wi de array [$80] { /* ASCI| characters */
char;
1
1
i nteger = $3Count O (DeadArray) ;
array DeadArray {
byt e; /* Tabl e nunber */
byt e; /* Virtual keycode */
i nteger = $$Count OF (Conpl et or Array) ;
wi de array ConpletorArray {
char; /* Conpl eting char */

The Structure of a 'KCHR' Resource

APPENDIX A

The 'KCHR' Resource

char; /* Substituting char */
b
char; /* No match charl */
char; /* No match char?2 */

b
b

Each table in the Table Array describes the virtual keycode-to-character number
translation for one complete layer of the keyboard (that is, for all 128 possible keys). The
Index Array defines the mapping of modifier key combinations to tables. The high byte
of the modifier flag (described in Inside Macintosh, Volume V, Chapter 10) is used as an
index to determine the number of the table to be used for translation. The information in
Inside Macintosh is, however, not complete, because the alternate modifier keys (the Shift,
Option, and Control keys on the right side of the ADB extended keyboard) are not
mentioned. Those keys are normally coupled with the corresponding keys on the left
side. It is possible to uncouple them by sending a command to the keyboard. (See
“Reassigning Right Key Code” in Inside Macintosh, Volume V, Chapter 10.) The correct bit
layout of the high byte is shown in Figure A-1.

Figure A-1 Modifier flag high byte

Zlelsagsfzlto]

1 if alternate Command key down J J
1 if alternate Option key down

1 if alternate Shift key down
1 if Control key down

1 if Option key down -

1if Caps Lock down -
1 if Shift key down -

1 if Command key down -

Suppose you hold down the Option key. This keypress will result in a value of 8 (bit 3 is
set) in the high byte of the modifier flag. Thus the Toolbox Event Manager takes the
value stored in | ndexAr r ay[8] , which is 3 in the current U.S. ' KCHR' , and therefore
uses Table 3 to translate the keycodes to character numbers.

The Structure of a 'KCHR' Resource 129

A PPENDTIX B

The 'BNDL' Resource

The ' BNDL' resource bundles together icons (resource types' | CN#' , ' i cs#',"icl 4",
"icl8',"ics4',"ics8"), file type references (resource type ' FREF'), and the
“signature” resource (whose resource type is identical to the creator field of the appli-
cation file) for the Finder. This enables the Finder to display distinct icons for an applica-
tion and its documents, and also enables it to launch the appropriate application when
the user double-clicks a document.

The Structure of a 'BNDL' Resource

The ' BNDL' resource contains a reference to the signature resource type and ID (for
historical reasons the ID must be 0) as well as a list of resource types (almost always only
"FREF' and' | CN#', although other things are theoretically possible) and | ocal | Dto

r esour cel Dmapping tables. The term local ID is used, because this ID is used within
the ' BNDL' resource itself to tie together the file reference and its icons. When the Finder
copies the " BNDL' resource and all its bundled resources to the Desktop file (or the
desktop database in System 7.0), it actually has to change the resource ID numbers to
avoid ID conflicts within the Desktop file. The local ID numbers remain unchanged.

The signature resource can contain anything you want, although, for historical reasons,
it typically contains some version and copyright information. The resource ID of the
signature resource needs to be 0. If you use the ' BNDL' editor in ResEdit 2.1, this
resource is transparently created and maintained for you.

For every file type that should be displayed with a distinct icon in the Finder, there needs
to be two entries in the' BNDL' resource, which in turn refer to one' FREF' resource, and
one' | CN#' resource (or an entire Finder icon family for system software version 7.0).
The ' FREF' resource contains the four-character file type and a reference to a local ID for
an icon to be used for this file type. Even if you plan to include an entire icon family, you
only need to list the ' | CN#' resource in the ' BNDL' resource. The System 7.0 Finder
automatically recognizes and loads all the other parts of the Finder icon family. The
relationship of local ID numbers and resource ID numbers is shown in Figure B-1.

The Structure of a 'BNDL' Resource 131

APPENDIX B

The 'BNDL' Resource

Figure B-1 Six resources and their relationships

TIXT | 0 | Mustbeo

put a length byle and that
™ many bytes of text here...

BNDL 128
Signature
TTXT
0
Signature
0 128
1 129
Local ID Resource ID
ICN#
AR AT A
1 12
’ [ics8 | 128
LocalID Resource ID _ cs4 | 128
ics# 128
;i_TlS [128
Y [icl4 Y }128
FREF | 128 ICN# | 128
Resource ID
File type \ APPL 2% /
' 0
Icon’s Local ID Aka Local ID 0
»| FREF | 1 ICN#)
Resource ID
File type TEXT
Icon’s Local ID 1
Aka Local ID 0

For the Finder to recognize a' BNDL' resource these conditions must be met:

= The bundle must be complete; that is, all the resources listed here must exist and their
relationships must be defined. If you use the ' BNDL' resource editor built into
ResEdit 2.1, you can be sure that this condition is met.

» The file’s creator must be identical to the signature specified in the ' BNDL' resource
and the file’s file type must be one listed in the ' BNDL' (that is, it must have its own
' FREF' and corresponding ' | CN#'). Typically the file type will be ' APPL' for

132 The Structure of a 'BNDL' Resource

APPENDIX B

The 'BNDL' Resource

application, although any file can contain ' BNDL' resources. Specific examples other
than' APPL' are' | NI T' and' CDEV' . Use the Get File/Folder Info command in the
File menu to change the file’s file type or creator.

The file’s Bundle bit must be set and the Inited bit must be cleared. The Finder always
sets the Inited bit whenever it finds a new file and reads in some information about it.
By clearing this bit you tell the Finder to reread that information. Use the Get File/
Folder Info command in the File menu to change the Bundle and Inited bits.

There must not already be a' BNDL' resource with the same signature in the Desktop
file (or desktop database in System 7.0). If you want to change an existing bundle (to
modify the icons, for example), you will need to recreate the Desktop file by rebooting
while holding down the Option and Command keys. Note that by doing so, you will
lose all comments you may have entered in the Get Info windows in the Finder in
system software before version 7.0. Alternatively, you can remove the offending
"BNDL' from the Desktop file with ResEdit.

Definitions of the 'BNDL' and 'FREF' Resources

Here are the definitions of the ' BNDL' and ' FREF' resources from the

type ' BNDL' ({
I

MPW Types.R file:
—————————————— BNDL ¢« Bundle------------------------------*/
iteral |ongint; /* Signature */
nt eger; /* Version ID */

nteger = $$Count OF (TypeArray) - 1;

array TypeArray {

literal longint; /* Type */
integer = $$Count O (I DArray) - 1;
wi de array | DArray {

i nteger; /* Local 1D */
i nteger; /* Actual ID */
b
1
1
R R FREF « File Reference------------mommmmomon */
type ' FREF' {
l[iteral Iongint; /* File Type */
i nteger; /* lcon ID */
pstring; /* Fil enane */
1

The Structure of a 'BNDL' Resource 133

A PPENDTIX C

Resource Types Defined for

Rez and ResEdit

This appendix contains a list of some resource types in use at Apple Computer, Inc.,
current as of mid-1990. An attempt has been made to give pertinent information about
what each type is, how it is handled by the resource compiler, Rez, and how it is handled
by ResEdit. This list is neither formal nor exhaustive.

In some entries, a digit appears to the right of a resource type name. This indicates the
particular resource of that type with that ID number.

Table C-1 Resource types defined for Rez and ResEdit

cctb'
CDEF'
cicn'

clut'

Definition

Alert color look-up table
Animated cursor resource

ADB driver loaded before' | NI T' 31
Alert template

Application list (Desktop)
AppleTalk resource

Bitmap

Bundle

RAM cache control code

Control color look-up table

Code for drawing controls

Color icon

Generic color look-up table

For MPW commando interface
MacApp temporary menu resource
Control template

Jump table

Application code

Color cursor

Cache tab (list of possible cache sizes)

Rez ResEdit

Types.r Template
Types.r Template
Types.r Template, Editor
————— Template
Types.r Template, Editor
Types.r Template
Types.r Editor

Types.r Template
Cmdor -
MacAppTypes.r Editor

Types.r Template
Typesr -

continued

135

APPENDIX C

Resource Types Defined for Rez and ResEdit

Table C-1 Resource types defined for Rez and ResEdit

Type

CTy#'
CURS'
dct b’
DI CL'
DI TL'
DLOG
DRVR
DSAT'
errs'
FBTN
fcth'
FCMI"
FDI R
finf'
FKEY'
fld#
FMIR

| CON
| CN#'
icth'
INIT

i nsc'

136

Definition

City list from MAP CDEV
Cursor

Dialog color look-up table

(for MacWorkstation)

Dialog item list

Dialog template

Driver

Startup alerts and code to display them
MacApp error string
MiniFinder button

Font color look-up table
GetInfo comments from Desktop file
MiniFinder button directory ID
Font information

Function Key Code

List of folder names

Format record

Information about folders

Font family description

Font description

File reference

ROM font resources

Font width table

Gamma table (color correction
for screen)

NBP timeout and retry info
for AppleTalk

Icon

Icon list

Color dialog item list

Code that is run at system startup time

Installer script

SysTypes.r
SysTypes.r
Types.r

SysTypes.r

ResEdit
Template

Editor

Template
Template, Editor
Template, Editor
Template

Template
Template
Template
Template
Template

Template
Template, Editor
Template
Template
Template

Template

continued

APPENDIX C

Resource Types Defined for Rez and ResEdit

Table C-1 Resource types defined for Rez and ResEdit

Type

I NTL'

itlo
I NTL'

it
itl2

itl4
itlb
itlc
itk

KCAP

KCHR
KEYC

Definition

International formatting information
(="it10";nolonger used)
International formatting information
International date/time information
(="itl1";nolonger used)
International date/time information

International string comparison
package hooks

International tokenize
International script bundle
International configuration

International exception dictionary for
kchar

Physical layout of keyboard
ASCII mapping (software)

old keyboard layout (used by old
"INIT Oand 1)

Keyboard mapping (hardware)
Keyboard /script icon
Keyboard swapping

Finder layout resource

Code for drawing lists

cdev filtering

Version # in system file

Menu bar

Menu bar definition procedure (code)
Mouse tracking

Menu color look-up table
MacroMaker information
MacroMaker information
Code for drawing menus

MacApp memory utilization

Rez
SysTypes.r

SysTypes.r
SysTypes.r

SysTypes.r
SysTypes.r

SysTypes.r
SysTypes.r
SysTypes.r
SysTypes.r

SysTypes.r
SysTypes.r

SysTypes.r
Types.r
SysTypes.r

Types.r

ResEdit
Editor

Editor
Editor

Editor

Template

Template
Editor

Template
Template

Template
Template
Template
Editor

continued

137

APPENDIX C

Resource Types Defined for Rez and ResEdit

Table C-1 Resource types defined for Rez and ResEdit

Type

MENU
m nf'
mtq'

mt b’

mppc
NBPC
ncts'
NFENT'
nrct'
PACK'

PAPA

PAT '
PAT#'
PDEF'
PI CT
pltt’
POST'
ppat’
ppt #
PREC
PRCO'

PRC3'
PSAFP'
PTCH
grsc'
res!’
ROv#'

scrn'

138

Definition
Menu

Macro info (MacroMaker)

Default queue sizes for Makel Tabl e

MacApp menu table (relate
command # to menu)

MPP configuration resource
NBP configuration (AppleTalk)
List of constants

Font description

Rectangle position list

Packages of code used as ROM
extensions

Printer access protocol address
(AppleTalk)

QuickDraw pattern
QuickDraw pattern List
Code to drive printers
QuickDraw picture

Color palette

PostScript (in Laser Prep file)
Pixel pattern

Array of ' ppat' s

Printer driver’s private data storage

Default page setup info for
printer (' PREC 0)

Print record (' PREC 3)
Just a string

ROM patch

System 7.0 query resource
Resident MacApp segments
ROM resource override

Screen configuration

SysTypes.r
SysTypes.r

MacAppTypes.r
SysTypes.r
SysTypes.r

ResEdit

Template, Editor

Template

Template

Editor
Editor
Template
Template
Template
Template

Template

Template

Template

Template

Template

continued

APPENDIX C

Resource Types Defined for Rez and ResEdit

Table C-1 Resource types defined for Rez and ResEdit

Type Definition Rez ResEdit

'seg!"’ MacApp memory management MacAppTypesr ~ -—-

' SERD RAM serial driver — —

' SI CN Small icon Types.r Editor

"SI GN S Template

' Sl ZE MultiFinder size information Types.r Template

' snd' Sound SysTypesr - (player)

' STR Pascal-style string Types.r Template

' STR#' Pascal-style string list Types.r Template

"styl’ Style information for TextEdit ~ --—-- Editor

" TEXT' Unlabeled string - Template, Editor

"tlst' Titlelist ———

" TMPL' ResEdit template - Template

"vers' Version SysTypes.r Template

"view MacApp view resource ViewTypes.r (ViewEdit, not
ResEdit)

"wet b’ Window color look-up table Types.r Template

" WDEF' Code for drawing windows -

"W ND Window template Types.r Template, Editor

"wstr' Query string used by ' qr sc' resource = ----- Template

139

A PPENDTIX D

The Macintosh Character Set

This appendix contains a chart (Figure D-1) that displays the regular character set for
Macintosh fonts. The first 128 characters correspond to the standard ASCII character

set. Please remember that not all fonts for the Macintosh have these standard characters

in them. Specific examples are Symbol and ITC Zapf Dingbats: there are also many
pictorial fonts available as bitmaps for dot-matrix printing.

Figure D-1 Macintosh character set
0 1 2 3 4 5 6 7 8 9 A B C D E F
Ofnu |dle [sp|O @ |P | |p|A]elt ; t &
1 | soh P11 [A|Qlalq|Alé|°|z]|— 0
2| six "2 (B|R|b|r|C|i |||, |0
3 ex 13 0c|s|cls|Elila]|=2|V]"]|,|0
4| eot Sl4 DT dlt|N|T s |¥|f]| Qm|U
5leng fnak | % |5 |E |U|e|lulO|T e |n]|=|" Al
Olak [syn | & |6 |F |V | E|v|U|a|g|a|O]+]E]"
Tlbel [eb | " |7 |G |W wlal|o|R |[S|m| o)A~
8|bsfean| (|8 |H|X|h|x|2a|o|® |[Qm]|]|E
Ol bejem |) |9 [T |Y|i|y|a]ol|o|m YI|E |~
Al If |sub | * Jolz] jlz|dalol|™]|) [we]/|I
Blwt e[+ [[K [T |Kk|1]3]% s Aol
Cle 6|, [<|L|[Vv]1]1]alu ol Alolil.
Dlafe |- |[=|M|1|m|)]|clulz|lQ|0olali]|”
E[so | >IN |A|ln|~]¢éfn e |G| |0«
FlS (el |z o] _|o|d|le|i|d|o|alfl|O]"
sp Space
dl Delete —
nbsp nonbreaking space (Option-Space on U.S. keyboard)
The key labeled Delete on the U.S. keyboard actually
generates backspace (08) character.
The shaded characters cannot normally be generated
from the Macintosh keyboard or keypad.

141

Index

1)***** 81

A

@ABCD 96

Abl eMenu procedure 115
Abort procedure 114

"actb' resource type 47
Align To Grid 54

Al r eadyOpen function 105
ALRT menu 49, 51

" ALRT' resource editor 46-52
" ALRT' resource type 46, 54, 85
Application Memory Size 84
ascent 44

ASCII character set 44

Auto Position 49

B

Background menu 61

Balloon Help 55

bit editor 3, 26

bit editors 85

Blend 61

" BNDL' resource editor 57-60, 132
" BNDL' resource type 57, 131
Bubbl eUp procedure 115

Bui | dType function 122

Bundle bit 15, 58, 133

C

Cal | DoEvent procedure 114
Cal | I nf oUpdat e procedure 114
' CDEV' resource type 133
Cent er Di al og procedure 115
character-editing panel 43
characters

Option-space 2

unprintable 2
character-selection panel 44

character set
ASCII 44
Macintosh 2, 44

CheckEr ror function 115

Choosel con function 115

cicn menu 32

' ci cn' resource editor 32-33

' cicn' resource type 3,32

Clear 20

Close 13

Cl oseNoSave function 112

clut menu 61

'cl ut' resource editor 60-61

"clut' resource type 3,28, 60

'cmmu’ resource editor 69

'cmmu’ resource type 69

CMY Model 61

" CNTL' resource type 53

' CODE' resource type 2,18, 94

Col or Avai | abl e function 116

color-dropper tool 27

color-dropper tool 33

Color menu 28

Col or Pal et t ePopupSel ect
function 120

color table record 43

commands, menu. See individual
command name

Complement 61

Conpr essedResour ce
function 122

Concat St r procedure 116

Convert To Dead Key 68

Copy 19

corrupted resource 9

crsr menu 31

' crsr' resource type 3

CURS menu 31

' CURS' resource editor 30

' CURS' resource type 3, 30

Cut 19

D

Def aul tLi st Cel | Si ze
function 110
default System font 42
Dei nst al | Col or Pal et t ePopup
procedure 121
DeRez 5
descent 44
Desktop file 11
rebuilding 59
dialog box 4
User Items in 53
dialog item list 52
Dialog Manager 53
Di spl ayAl ert function 116
Di spl aySTRAI ert function 116
DITL menu 54
"DI TL' resource editor 22, 52-57,
85,94
"DI TL' resource type 3, 46, 52, 56,
84, 85
associated with ' ALRT' or
'DLOG 47
DLOG menu 49, 51
' DLOG resource editor 46-52
' DLOG resource type 3, 46, 54, 84,
85
DoEvent procedure 96, 97, 101
Dol nf oUpdat e procedure 102
DoKey Scan procedure 122
DoMenu procedure 97, 102
DoPi ckBi rt h function 110
DoPopup procedure 121
Dr awCol or Popup procedure 121
Dr awl. DEF procedure 110
Dr awmVBar Lat er procedure 117
Dr awPopup procedure 121
Dr awResour ce procedure 110
' DRVR' resource type 22
Duplicate 20
Duplicate Table 68
DupPi ck function 122

E

damaged resource 9
data fork 2,12
"dctb' resource type 47

Edi t Bi rt h procedure 97,101,
103, 113
Edit Dead Key... 68

143

INDEX

Edit menu 16
editors
"ALRT" 46-52
bit 26, 85
" BNDL' 57-60, 132
‘cicn' 32-33
"clut' 60
"CMNU 69
‘cmu' 69
" CURS' 30
"Dl TL' 22,52-57, 85,94
'DLOG 46-52
Finder icon family 33
" FONT' 4244
hexadecimal 2
"I CN#' 35
"I CON 35
"I NTL" 62-63
"itl 0 62-63
"itll 62-63
" KCHR 63-69
' KCHR dead-key 63
"MENU 69
"PAT ' 39-40
"pltt' 60-61
' ppat’' 40
'"SICN 37
template 3
"TEXT ' /' styl' 73-74
upgrading 97-100
‘vers' 74
'WND 46-52
Edi t or W ndSet up function 106
eraser tool 27
extensibility of ResEdit 4

F

‘fctb' resource type 43

File attributes 15

File Busy bit 15

file info box
settable flags 15

File Locked bit 15

File menu 12-16

File Protected bit 15

files
Desktop 11
ICON.LDEF 95
ICON.Pick 95
ResEdit Preferences 28, 39, 81, 85
Resedit Preferences 96
Types.R 133
XXXX.Edit 95

144

file type 57,132
file window 11
Finder 11, 87
Finder Flags 15
Finder icon family 33
Finder icon family resource
editor 33
Fi ndOwmer W ndow function 117
Fi xHand procedure 117
Fl ashDi al ogl t emprocedure 117
FI oat i ngW ndowSet up
function 106
folder icon 36
' FOND' resource type 42
Font/DA Mover 42, 43
Font Manager 43
FONT menu 68
" FONT' resource editor
ascent of character 44
descent of character 44
" FONT' resource editor 42-44
" FONT' resource type 23, 42
fork
data 2
resource 2
FrameDi al ogl t emprocedure 117
' FREF' resource type 57, 131
functions
Al r eadyOpen 105
Bui | dType 122
CheckError 115
Choosel con 115
Cl oseNoSave 112
Col or Avai | abl e 116
Col or Pal et t ePopupSel ect
120
Conpr essedResour ce 122
Def aul tLi st Cel | Si ze 110
Di spl ayAl ert 116
Di spl aySTRAl ert 116
DoPi ckBirth 110
DupPi ck 122
Edi t or W ndSet up 106
Fi ndOmer W ndow 117
Fl oat i ngW ndowSet up 106
CGet Qui ckDrawvar s 118
Get ResEdi t ScrapFi | e 122
CGet SScreenRect 118
CGet Type 123
Handl eCheck 118
| sThi sYours 98
MapResour ceType 123
NeedToRevert 112
Pi cker W ndSet up 107

Pi ckSt dHei ght 111

Pi ckSt dW dt h 111

Pl aySyncSound 123

Print Setup 119

REAddNewRes 108

REBeaut i f ul Uni quell D 108

RECount 1Resour ces 108

RECount 1Types 108

REGet 11 ndResour ce 108

REGet 1NanedResour ce 109

REGet 1Resour ce 109

REGet 1Resour ceSpeci al 109

RENewUni queRes 109

ResEdI D 119

ResEdi t Res 123

Rest or eRenbvedResour ces 1
23

Revert Thi sResour ce 110

St andardFi | ter 120

SysResFil e 124

WasAborted 120

Wasl t Loaded 112

W ndAl | oc 107

W ndLi st 124

G

general editor. See hexadecimal
editor

Get Er r or Text procedure 122

Get File/Folder Info 14

Get Info for This File 13

Get Info window 18

Get NanmedSt r procedure 117

Get NewDi al og 96

Get Qui ckDr awVar s
procedure 118

Get ResEdi t ScrapFi |l e
function 122

Get St r function 118

Cet St r procedure 118

Get Type function 123

Get W ndowTi t | e procedure 106

G veEBi rt h procedure 112

G veSubEBi rt h procedure 113

G veThi SEBi rt h procedure 113

graphical resource editor 26

graphic resource 4

graphics tools panel 44

Grid Settings 54

G owyW ndow procedure 111

INDEX

H

Handl eCheck procedure 118
hardware requirements xi
hexadecimal editor 4, 46
HLS Model 61

HSB Model 61

I, J

"icl4' resource type 3,33
"icl8' resource type 3,33
"I CN#' resource editor 33
"1 CN#' resource picker 19
"1 CN#' resource type 3, 35
icon 4
ICON.LDEF file 95
Icon menu 34
ICON.Pick file 95
"1 CON' resource editor 35
"1 CON' resource type 3,27, 35, 53
icons

folder 36

monochrome 34

Trash 36
Icons menu 34
Icon Vert. phase 89
i cs4' resource type 3,33
"ics8' resource type 3,33
"ics#' resource type 3,33
ID number

local 131

resource 131
ID number restriction 22
Inited bit 58
"INI'T" resource type 133
Insert 37
I nstal | Col or Pal ettePopup

procedure 121

"I NTL' resource editor 62-63
"I NTL" resource type 62
I sThi sYour s function 98
"itl 0" resource editor 62-63
"itl 0" resource type 62
"itl 1l resource editor 62-63
"itl1 resource type 62

K

' KCHR dead-key editor 63
KCHR menu 67,91
" KCHR' resource editor 63-69

" KCHR' resource type 63, 91-92,
127-129, 133

' KCHR with Macintosh SE,
Macintosh Plus, or Macintosh
512K enhanced 69

" KMAP' resource type 127

L

lasso tool 27

" LAYO resource type 4,76, 87
' LDEF' resource type 94

list separator 81

Load Colors 61

local ID number 131

M

MacApp

permanent menu 69

temporary menu 69
Macintosh character set 2, 44
Macintosh Programmer’s

Workshop 5

MapResourceType function 123
marquee tool 27
mask 34
' MBAR' resource type 87
'nmctb' resource type 69
' MDEF' resource type 73
' MDPL' resource type 11, 84
memory requirements Xxi
' MENU resource editor 69
" MENU resource ID 87
" MENU resource type 69
menus

ALRT 49, 51

Background 61

cicn 32

clut 61

Color 28

crsr 31

CURS 31

DITL 54

DLOG 49, 51

Edit 16

File 12-16

FONT 68

Icon 34

Icons 34

KCHR 67, 91

MiniScreen 46

PAT 38

pltt 61

ppat 38

ppt# 38

Resource 16

SIZE 69

Sort 61

Style 70

Transform 28

View 20-22

WIND 49, 50

Window 20
Met aKeys procedure 118
MiniScreen menu 46
monochrome icon 34
MPW DeRez command 79
MPW resource compiler and

decompiler 5

MultiFinder 11, 87

N

NeedToRevert function 112

Never Use Custom ' WDEF' for
Drawing 50, 52

New 12

New Table 68

" NFNT" resource type 2,42

NoDoubl eCl i ckHer e
procedure 112

O

Open 12

Open Special 12

Open Using Template 20
Option key 46, 53
Option-space character 2

P

Page Setup 14

paint bucket tool 27

Par anText procedure 56
PassEvent procedure 114
PassMenu procedure 114
Paste 19

PAT menu 38

145

INDEX

" PAT ' resource editor 39-40
" PAT ' resource type 3, 38, 39
pencil tool 27
Pi ckBi rt h procedure 101
picker record definition 104
pickers 94
"ICN " 19
"PICT" 85
Pi cker W ndSet up function 107
Pi ckEvent procedure 101, 111
Pi ckl nf oUp procedure 111
Pi ckMenu procedure 111
" PI CK' resource type 95,97, 100
Pi ckSt dHei ght function 111
Pi ckSt dW dt h function 111
pictorial resource 3
pictorial resource editor 26
Pictorial resource type 26
"PICT" picker 85
" PI CT" resource type 11, 27, 53,
77,84, 85
Pig mode 86
pixel editor 26
Pl aySyncSound function 123
pltt menu 61
"pltt' resource editor 60-61
"pltt' resource type 3, 60
PostRez 69
ppat menu 38
' ppat ' resource editor 40
' ppat’' resource type 3, 38, 40
ppt menu 38
' ppt #' resource editor 38, 41
' ppt #' resource type 41
Preferences 14
storing 125
' PREF' resource type 125
Preview at Full Size 49
Print 14
Printer Driver Is MultiFinder
Compatible bit 15
Pri nt Set up function 119
Pri nt W ndow procedure 119
procedures
Abl eMenu 115
Abort 114
Bubbl eUp 115
Cal | DoEvent 114
Cal | I nf oUpdat e 114
CenterDi al og 115
Concat Str 116
Dei nst al | Col or Pal et t ePopup
121
DoEvent 96,97, 101
Dol nf oUpdat e 102

146

DoKeyScan 122

DoMenu 97,102

DoPopup 121

Dr awCol or Popup 121

Dr awL.DEF 110

Dr awiVBar Lat er 117

Dr awPopup 121

Dr awResour ce 110

EditBirth 97,101, 103, 113

Fi xHand 117

Fl ashDi al ogl tem 117

FraneDi al ogl tem 117

Cet Error Text 122

Get NanedStr 117

Get Str 118

Cet W ndowTi tl e 106

G veEBirth 112

G veSubEBirth 113

G veThi sEBirth 113

G owWW ndow 111

I nst al | Col or Pal ett ePopup
121

Met aKeys 118

NoDoubl ed i ckHere 112

Par amlext 56

PassEvent 114

PassMenu 114

Pi ckBirth 101

Pi ckEvent 101, 111

Pi ckl nfoUp 111

Pi ckMenu 111

Pri nt W ndow 119

REAddResour ce 108

REGet 11 ndType 109

RERenobveAnyResour ce 109

Resour cel DHasChanged 123

ScrapCopy 123

ScrapEnpty 124

SendRebui | dToPi cker 124

SendRebui | dToPi cker AndFi | e
124

SetETitle 107

Set ResChanged 112

Set TheCur sor 119

Showl nf o 120

TypeToString 120

UseAppRes 120

WndOrigin 124

W ndRet urn 107

Wit ePreferences 125

Quit 15

R

RAM requirements xi
REAddNewRes function 108
REAddResour ce procedure 108
REBeaut i f ul Uni quell D
function 108
rebuilding a Desktop file 59
RECount 1Resour ces
function 99, 108
RECount 1Types function 99, 108
REGet 11 ndResour ce
function 99, 108
REGet 11 ndType procedure 99,
109
REGet 1NarmedResour ce
function 99, 109
REGet 1Resour ce function 99, 109
REGet 1Resour ceSpeci al
function 99, 109
Relative Patterns 38
Remove Dead Key 68
Remove Duplicate Tables 68
Remove Unused Tables 68
RENewUni queRes function 109
Renumber Items 54
RERenbveAnyResour ce
procedure 109
ResEd 4, 96
ResEdI D function 119
ResEdit Preferences file 28, 39, 81,
85, 96
ResEditRes function 123
resource 4
resource file checking 9
resource fork 2
Resour cel DHasChanged
procedure 123
resource ID number 22, 131
Resource Map Is Read Only bit 15
Resource menu 16
resource picker 19
resources 2
corrupted 9
damaged 9
pictorial 3
signature 59
resource type name 2

INDEX

resource types 19

actb'
ALRT'
BNDL'
CDEV'
cicn'
clut'
cmu'
CNTL'
CODE'
crsr'
CURS'
dctb'
DI TL'
DLOG
DRVR
fctb'
FOND
FONT
FREF'
icl4
icl8
| CN#'
| CON
i cs#'
ics4'
ics8'
INT
| NTL'
itlo'
itlh1
KCHR
KIVAP'
LAYO
L DEF'
VBAR
nctb'
VDEF'
VDPL'
MVENU
NFENT
PAT#'
PI CK
PI CT'
pltt’
ppat’
ppt #
PREF'
RVAP'
RSSC
SI CN
STR#'
styl'
TEXT'
TWPL'

47

46, 54, 85
57,131
133

3,32
3,28, 60
69

53
2,18,94

3

3,30

47

3,46, 52, 56, 84, 85
3, 46, 54, 84, 85
22

43

42

23,42
57,131
3,33

3,33

3,35
3,27,35,53
3,33

3,33

3,33

133

62

62

62

63, 91-92, 127-129, 133
127

4,76, 87
94

87

69

73

11, 84

69

2,42

3, 38,39
95, 97, 100
11,27, 53,77, 84, 85
3, 60
3,38, 40
3,38, 41
125

33, 86

94, 96, 103
3,37, 71
56,78
3,73

73

76,78

"vers' 3,42,60,74
'wetb' 47
"WND 46
Rest or eRenovedResour ces
function 123
Revert File 13
Revert Thi sResour ce
function 110
Rez 5
RGB Model 61
" RVAP' resource type 33, 86
ROM requirements xi
" RSSC resource type 94, 96, 103

S

sample text panel 44

Save 13

Scr apCopy procedure 123
Scr apEnpt y procedure 124
Select Item Number 54

SendRebui | dToPi cker AndFi | e

procedure 124
SendRebui | dToPi cker
procedure 124
Set' ALRT" Stage Info 51
Set' DLOG Characteristics 51
Set ETi t | e procedure 107
Set Item Number 54
Set ResChanged procedure 112
Set TheCur sor procedure 119
Set' WND Characteristics 50
Show All Items 55
Show Bottom & Right 50
Show Height & Width 49
Showl nf o procedure 120
Show Item Numbers 54
"SI CN' resource editor 37
"SI CN' resource type 3,37, 71
signature resource 59
SIZE menu 69
software requirements xi
Sort menu 61
St andar dFi | t er function 120
storing preferences 125
straight quotation mark 2
' STR#' resource type 56, 78
Style menu 70
'styl' resource type 3,73
Subeditor 94, 113
SysResFi | e function 124

T

template 3, 4, 20
template editor 3
' TEXT" resource type 73
"TEXT' /' styl"' resource
editor 73-74
" TMPL' resource type 76,78
tools
color-dropper 27, 33
eraser 27
lasso 27
marquee 27
paintbucket 27
pencil 27
Transform menu 28
Trash icon 36
Try Pointer 31
type checking 80
Types.R file 133
TypeToSt ri ng procedure 120

U

Uncouple Modifier Keys 67
Undo 19

unprintable character 2
UseAppRes procedure 120
Use Color Picker 50

Use Item’s Rectangle 55
USES declaration 96

\Y,

Verify Resource File 10, 14

'vers' resource editor 74
‘vers' resource type 3,42, 60, 74
View As... 55, 67

View menu 20-22

w

WasAbor t ed function 120
Wasl t Loaded function 112
"wetb' resource type 47

W ndAl | oc function 107

W ndLi st function 124
WIND menu 49, 50

W ndOri gi n procedure 124

147

INDEX

Window menu 20
windows

file 11

Get Info 18
"W ND' resource editor 46-52
"WND resource type 46
W ndRet ur n procedure 107
WitePreferences

procedure 125

X, Y, Z

XXXX.Edit file 95

148

	ResEdit Reference
	Contents
	Figures and Tables
	About This Book
	Prerequisites
	What This Manual Contains
	How to Use This Manual
	Conventions Used in This Book
	Graphics
	Where to Get Information
	About APDA

	ResEdit Overview
	Resources
	New and Changed Resource Editors in ResEdit 2.1

	Editing Resources in ResEdit
	Uses
	Extensibility
	The Resource Development Cycle

	Getting Started
	Invoking ResEdit
	Working With Files
	Resource Checking
	Opening a File

	Menus in ResEdit
	The File Menu
	File Information

	The Edit Menu
	The Resource Menu
	The Window Menu
	The View Menu

	Starting an Editor
	Resource ID Numbers

	The Bit Editors
	Overview of the Bit Editors
	Tools
	Menus
	The Transform Menu
	The Color Menu

	Editing Cursors
	Editing Icons
	Editing 'cicn' Resources
	The cicn Menu
	Creating New Color Icons

	Finder Icons
	The Icon Menu

	'ICON' Resources
	'ICN# ' Resources

	List Resources
	'SICN' Resources

	Editing Patterns
	Relative Patterns
	Custom Patterns
	'PAT' Resources
	'PAT# ' Resources
	'ppat' Resources
	'ppat' Relative Patterns

	'ppt# ' Resources
	Desktop Pattern Lists
	'ppt# ' Relative Patterns

	'FONT' Resources
	Editing 'FONT' Resources

	Other Resource Editors
	Using the Hexadecimal Editor
	'WIND', 'ALRT', and 'DLOG' Resources
	'DITL' Resources
	'BNDL' Resources
	'clut' and 'pltt' Resources
	'INTL', 'itl0', and 'itl1' Resources
	'KCHR' Resources
	The Main 'KCHR' Editor
	The Character Chart
	The Table Chart
	The Virtual Keycode Chart
	The Keyboard Region
	The Information Region

	Editing Dead Keys
	The Dead- Key Editor
	The Character Chart
	The Nomatch Character
	The Completion and Substitution Character Pair List
	The Trash
	The Information Region

	The Menus
	The KCHR Menu
	The Font Menu
	The Size Menu

	'MENU' Resources
	'TEXT' and 'styl' Resources
	'vers' Resources

	ResEdit Templates
	Template Characteristics
	Editing
	'PICT' Editing

	Creating New Templates
	Template Example

	ResEdit Tips
	Hints and Kinks
	The 'LAYO' Resource
	'KCHR' Questions and Answers

	The Programmatic Interface
	Pickers and Editors
	Code- Containing Resources in the ResEdit Release
	Samples
	Sample Editor
	Sample Picker
	Sample LDEF

	Building the Examples

	Using ResEd
	Writing a ResEdit Extension
	ResEdit Menus
	Pickers
	ResEdit 2.0 Changes
	ResEd Changes for the 2.0 Release
	ResEdit 2.1 changes
	Required Routines

	The ResEd Interface
	Data Structures
	The Parent Record
	The Picker Record

	Other Routines
	Window Utilities
	Extended Resource Manager
	Routines Used by Pickers
	Routines Used by Editors
	Routines Used to Start Pickers and Editors
	Routines Used to Feed Events and Menus to the Appropriate Picker or Editor
	Miscellaneous Utilities
	Pop- up Menus
	Internal Routines

	The 'KCHR' Resource
	Basic Theory of Keyboard Operation
	Generating the Virtual Keycode
	Exceptions to the Rule

	Generating the Character Code
	Dead Keys

	The Structure of a 'KCHR' Resource

	The 'BNDL' Resource
	The Structure of a 'BNDL' Resource
	Definitions of the 'BNDL' and 'FREF' Resources

	Resource Types Defined for Rez and ResEdit
	The Macintosh Character Set
	Index

