fft_execute.cpp

 
//
// File:       fft_execute.cpp
//
// Version:    <1.0>
//
// Disclaimer: IMPORTANT:  This Apple software is supplied to you by Apple Inc. ("Apple")
//             in consideration of your agreement to the following terms, and your use,
//             installation, modification or redistribution of this Apple software
//             constitutes acceptance of these terms.  If you do not agree with these
//             terms, please do not use, install, modify or redistribute this Apple
//             software.¬
//
//             In consideration of your agreement to abide by the following terms, and
//             subject to these terms, Apple grants you a personal, non - exclusive
//             license, under Apple's copyrights in this original Apple software ( the
//             "Apple Software" ), to use, reproduce, modify and redistribute the Apple
//             Software, with or without modifications, in source and / or binary forms;
//             provided that if you redistribute the Apple Software in its entirety and
//             without modifications, you must retain this notice and the following text
//             and disclaimers in all such redistributions of the Apple Software. Neither
//             the name, trademarks, service marks or logos of Apple Inc. may be used to
//             endorse or promote products derived from the Apple Software without specific
//             prior written permission from Apple.  Except as expressly stated in this
//             notice, no other rights or licenses, express or implied, are granted by
//             Apple herein, including but not limited to any patent rights that may be
//             infringed by your derivative works or by other works in which the Apple
//             Software may be incorporated.
//
//             The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO
//             WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
//             WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
//             PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
//             ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
//             IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
//             CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//             SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//             INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
//             AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
//             UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
//             OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
 
 
#include "fft_internal.h"
#include "clFFT.h"
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
 
#define max(a,b) (((a)>(b)) ? (a) : (b))
#define min(a,b) (((a)<(b)) ? (a) : (b))
 
static cl_int
allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize)
{
    cl_int err = CL_SUCCESS;
    if(plan->temp_buffer_needed && plan->last_batch_size != batchSize) 
    {
        plan->last_batch_size = batchSize; 
        size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float);
        
        if(plan->tempmemobj)
            clReleaseMemObject(plan->tempmemobj);
            
        plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
    }
    return err; 
}
 
static cl_int
allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize)
{
    cl_int err = CL_SUCCESS;
    cl_int terr;
    if(plan->temp_buffer_needed && plan->last_batch_size != batchSize) 
    {
        plan->last_batch_size = batchSize; 
        size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float);
        
        if(plan->tempmemobj_real)
            clReleaseMemObject(plan->tempmemobj_real);
 
        if(plan->tempmemobj_imag)
            clReleaseMemObject(plan->tempmemobj_imag);          
            
        plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
        plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &terr);
        err |= terr;
    }   
    return err;
}
 
void
getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems)
{
    *lWorkItems = kernelInfo->num_workitems_per_workgroup;
    int numWorkGroups = kernelInfo->num_workgroups;
    int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup;
    
    switch(kernelInfo->dir)
    {
        case cl_fft_kernel_x:
            *batchSize *= (plan->n.y * plan->n.z);
            numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize/numXFormsPerWG + 1) : (*batchSize/numXFormsPerWG);
            numWorkGroups *= kernelInfo->num_workgroups;
            break;
        case cl_fft_kernel_y:
            *batchSize *= plan->n.z;
            numWorkGroups *= *batchSize;
            break;
        case cl_fft_kernel_z:
            numWorkGroups *= *batchSize;
            break;
    }
    
    *gWorkItems = numWorkGroups * *lWorkItems;
}
 
cl_int 
clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, 
                         cl_mem data_in, cl_mem data_out, 
                         cl_int num_events, cl_event *event_list, cl_event *event )
{   
    int s;
    cl_fft_plan *plan = (cl_fft_plan *) Plan;
    if(plan->format != clFFT_InterleavedComplexFormat)
        return CL_INVALID_VALUE;
    
    cl_int err;
    size_t gWorkItems, lWorkItems;
    int inPlaceDone;
    
    cl_int isInPlace = data_in == data_out ? 1 : 0;
    
    if((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS)
        return err; 
    
    cl_mem memObj[3];
    memObj[0] = data_in;
    memObj[1] = data_out;
    memObj[2] = plan->tempmemobj;
    cl_fft_kernel_info *kernelInfo = plan->kernel_info;
    int numKernels = plan->num_kernels;
    
    int numKernelsOdd = numKernels & 1;
    int currRead  = 0;
    int currWrite = 1;
    
    // at least one external dram shuffle (transpose) required
    if(plan->temp_buffer_needed) 
    {
        // in-place transform
        if(isInPlace) 
        {
            inPlaceDone = 0;
            currRead  = 1;
            currWrite = 2;
        }
        else
        {
            currWrite = (numKernels & 1) ? 1 : 2;
        }
        
        while(kernelInfo) 
        {
            if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible) 
            {
                currWrite = currRead;
                inPlaceDone = 1;
            }
            
            s = batchSize;
            getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
            err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
            err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
            err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
            err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
            
            err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
            if(err)
                return err;
            
            currRead  = (currWrite == 1) ? 1 : 2;
            currWrite = (currWrite == 1) ? 2 : 1; 
            
            kernelInfo = kernelInfo->next;
        }           
    }
    // no dram shuffle (transpose required) transform
    // all kernels can execute in-place.
    else {
        
        while(kernelInfo)
        {
            s = batchSize;
            getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
            err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
            err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
            err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
            err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
        
            err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
            if(err)
                return err;     
            
            currRead  = 1;
            currWrite = 1;
            
            kernelInfo = kernelInfo->next;
        }
    }
    
    return err;
}
 
cl_int 
clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, 
                      cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
                      cl_int num_events, cl_event *event_list, cl_event *event)
{   
    int s;
    cl_fft_plan *plan = (cl_fft_plan *) Plan;
    
    if(plan->format != clFFT_SplitComplexFormat)
        return CL_INVALID_VALUE;
    
    cl_int err;
    size_t gWorkItems, lWorkItems;
    int inPlaceDone;
    
    cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0;
    
    if((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS)
        return err; 
    
    cl_mem memObj_real[3];
    cl_mem memObj_imag[3];
    memObj_real[0] = data_in_real;
    memObj_real[1] = data_out_real;
    memObj_real[2] = plan->tempmemobj_real;
    memObj_imag[0] = data_in_imag;
    memObj_imag[1] = data_out_imag;
    memObj_imag[2] = plan->tempmemobj_imag;
        
    cl_fft_kernel_info *kernelInfo = plan->kernel_info;
    int numKernels = plan->num_kernels;
    
    int numKernelsOdd = numKernels & 1;
    int currRead  = 0;
    int currWrite = 1;
    
    // at least one external dram shuffle (transpose) required
    if(plan->temp_buffer_needed) 
    {
        // in-place transform
        if(isInPlace) 
        {
            inPlaceDone = 0;
            currRead  = 1;
            currWrite = 2;
        }
        else
        {
            currWrite = (numKernels & 1) ? 1 : 2;
        }
        
        while(kernelInfo) 
        {
            if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible) 
            {
                currWrite = currRead;
                inPlaceDone = 1;
            }
            
            s = batchSize;
            getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
            err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
            err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
            err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
            err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
            err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
            err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
            
            err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
            if(err)
                return err;         
            
            currRead  = (currWrite == 1) ? 1 : 2;
            currWrite = (currWrite == 1) ? 2 : 1; 
            
            kernelInfo = kernelInfo->next;
        }           
    }
    // no dram shuffle (transpose required) transform
    else {
        
        while(kernelInfo)
        {
            s = batchSize;
            getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
            err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
            err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
            err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
            err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
            err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
            err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
        
            err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
            if(err)
                return err; 
            
            currRead  = 1;
            currWrite = 1;
        
            kernelInfo = kernelInfo->next;
        }
    }
    
    return err;
}
 
cl_int 
clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array, 
                         unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
{
    cl_fft_plan *plan = (cl_fft_plan *) Plan;
    
    unsigned int N = numRows*numCols;
    unsigned int nCols = numCols;
    unsigned int sRow = startRow;
    unsigned int rToProcess = rowsToProcess;
    int d = dir;
    int err = 0;
    
    cl_device_id device_id;
    err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
    if(err)
        return err;
    
    size_t gSize;
    err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
    if(err)
        return err;
          
    gSize = min(128, gSize);
    size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
    size_t numLocalThreads[1]  = { gSize };
    
    err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array);
    err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow);
    err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols);
    err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N);
    err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess);
    err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d);
    
    err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);            
    
    return err; 
}
 
cl_int 
clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag, 
                     unsigned numRows, unsigned numCols, unsigned startRow, unsigned rowsToProcess, clFFT_Direction dir)
{
    cl_fft_plan *plan = (cl_fft_plan *) Plan;
    
    unsigned int N = numRows*numCols;
    unsigned int nCols = numCols;
    unsigned int sRow = startRow;
    unsigned int rToProcess = rowsToProcess;
    int d = dir;
    int err = 0;
    
    cl_device_id device_id;
    err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
    if(err)
        return err;
    
    size_t gSize;
    err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
    if(err)
        return err;
          
    gSize = min(128, gSize);
    size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
    size_t numLocalThreads[1]  = { gSize };
    
    err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real);
    err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag);
    err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow);
    err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols);
    err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N);
    err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess);
    err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d);
    
    err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);            
    
    return err; 
}