main.cpp

 
//
// File:       main.cpp
//
// Version:    <1.0>
//
// Disclaimer: IMPORTANT:  This Apple software is supplied to you by Apple Inc. ("Apple")
//             in consideration of your agreement to the following terms, and your use,
//             installation, modification or redistribution of this Apple software
//             constitutes acceptance of these terms.  If you do not agree with these
//             terms, please do not use, install, modify or redistribute this Apple
//             software.
//
//             In consideration of your agreement to abide by the following terms, and
//             subject to these terms, Apple grants you a personal, non - exclusive
//             license, under Apple's copyrights in this original Apple software ( the
//             "Apple Software" ), to use, reproduce, modify and redistribute the Apple
//             Software, with or without modifications, in source and / or binary forms;
//             provided that if you redistribute the Apple Software in its entirety and
//             without modifications, you must retain this notice and the following text
//             and disclaimers in all such redistributions of the Apple Software. Neither
//             the name, trademarks, service marks or logos of Apple Inc. may be used to
//             endorse or promote products derived from the Apple Software without specific
//             prior written permission from Apple.  Except as expressly stated in this
//             notice, no other rights or licenses, express or implied, are granted by
//             Apple herein, including but not limited to any patent rights that may be
//             infringed by your derivative works or by other works in which the Apple
//             Software may be incorporated.
//
//             The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO
//             WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
//             WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
//             PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
//             ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
//             IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
//             CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//             SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//             INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
//             AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
//             UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
//             OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
 
 
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <OpenCL/opencl.h>
#include "clFFT.h"
#include <mach/mach_time.h>
#include <Accelerate/Accelerate.h>
#include "procs.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <stdint.h>
#include <float.h>
 
#define eps_avg 10.0
 
#define MAX( _a, _b)    ((_a)>(_b)?(_a) : (_b))
 
typedef enum {
    clFFT_OUT_OF_PLACE,
    clFFT_IN_PLACE,
}clFFT_TestType;
 
typedef struct
{
    double real;
    double imag;
}clFFT_ComplexDouble;
 
typedef struct
{
    double *real;
    double *imag;
}clFFT_SplitComplexDouble;
 
cl_device_id     device_id;
cl_context       context;
cl_command_queue queue;
 
typedef unsigned long long ulong;
 
double subtractTimes( uint64_t endTime, uint64_t startTime )
{
    uint64_t difference = endTime - startTime;
    static double conversion = 0.0;
    
    if( conversion == 0.0 )
    {
        mach_timebase_info_data_t info;
        kern_return_t err = mach_timebase_info( &info );
        
        //Convert the timebase into seconds
        if( err == 0  )
            conversion = 1e-9 * (double) info.numer / (double) info.denom;
    }
    
    return conversion * (double) difference;
}
 
void computeReferenceF(clFFT_SplitComplex *out, clFFT_Dim3 n, 
                      unsigned int batchSize, clFFT_Dimension dim, clFFT_Direction dir)
{
    FFTSetup plan_vdsp;
    DSPSplitComplex out_vdsp;
    FFTDirection dir_vdsp = dir == clFFT_Forward ? FFT_FORWARD : FFT_INVERSE;
    
    unsigned int i, j, k;
    unsigned int stride;
    unsigned int log2Nx = (unsigned int) log2(n.x);
    unsigned int log2Ny = (unsigned int) log2(n.y);
    unsigned int log2Nz = (unsigned int) log2(n.z);
    unsigned int log2N;
    
    log2N = log2Nx;
    log2N = log2N > log2Ny ? log2N : log2Ny;
    log2N = log2N > log2Nz ? log2N : log2Nz;
    
    plan_vdsp = vDSP_create_fftsetup(log2N, 2);
    
    switch(dim)
    {
        case clFFT_1D:
            
            for(i = 0; i < batchSize; i++)
            {
                stride = i * n.x;
                out_vdsp.realp  = out->real  + stride;
                out_vdsp.imagp  = out->imag  + stride;
                
                vDSP_fft_zip(plan_vdsp, &out_vdsp, 1, log2Nx, dir_vdsp);
            }
            break;
            
        case clFFT_2D:
            
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.y; j++)
                {
                    stride = j * n.x + i * n.x * n.y;
                    out_vdsp.realp = out->real + stride;
                    out_vdsp.imagp = out->imag + stride;
                    
                    vDSP_fft_zip(plan_vdsp, &out_vdsp, 1, log2Nx, dir_vdsp);
                }
            }
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.x; j++)
                {
                    stride = j + i * n.x  * n.y;
                    out_vdsp.realp = out->real + stride;
                    out_vdsp.imagp = out->imag + stride;
                    
                    vDSP_fft_zip(plan_vdsp, &out_vdsp, n.x, log2Ny, dir_vdsp);
                }
            }
            break;
            
        case clFFT_3D:
            
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.z; j++)
                {
                    for(k = 0; k < n.y; k++)
                    {
                        stride = k * n.x + j * n.x * n.y + i * n.x * n.y * n.z;
                        out_vdsp.realp = out->real + stride;
                        out_vdsp.imagp = out->imag + stride;
                        
                        vDSP_fft_zip(plan_vdsp, &out_vdsp, 1, log2Nx, dir_vdsp);
                    }
                }
            }
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.z; j++)
                {
                    for(k = 0; k < n.x; k++)
                    {
                        stride = k + j * n.x * n.y + i * n.x * n.y * n.z;
                        out_vdsp.realp = out->real + stride;
                        out_vdsp.imagp = out->imag + stride;
                        
                        vDSP_fft_zip(plan_vdsp, &out_vdsp, n.x, log2Ny, dir_vdsp);
                    }
                }
            }
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.y; j++)
                {
                    for(k = 0; k < n.x; k++)
                    {
                        stride = k + j * n.x + i * n.x * n.y * n.z;
                        out_vdsp.realp = out->real + stride;
                        out_vdsp.imagp = out->imag + stride;
                        
                        vDSP_fft_zip(plan_vdsp, &out_vdsp, n.x*n.y, log2Nz, dir_vdsp);
                    }
                }
            }
            break;
    }
    
    vDSP_destroy_fftsetup(plan_vdsp);
}
 
void computeReferenceD(clFFT_SplitComplexDouble *out, clFFT_Dim3 n, 
                      unsigned int batchSize, clFFT_Dimension dim, clFFT_Direction dir)
{
    FFTSetupD plan_vdsp;
    DSPDoubleSplitComplex out_vdsp;
    FFTDirection dir_vdsp = dir == clFFT_Forward ? FFT_FORWARD : FFT_INVERSE;
    
    unsigned int i, j, k;
    unsigned int stride;
    unsigned int log2Nx = (int) log2(n.x);
    unsigned int log2Ny = (int) log2(n.y);
    unsigned int log2Nz = (int) log2(n.z);
    unsigned int log2N;
    
    log2N = log2Nx;
    log2N = log2N > log2Ny ? log2N : log2Ny;
    log2N = log2N > log2Nz ? log2N : log2Nz;
    
    plan_vdsp = vDSP_create_fftsetupD(log2N, 2);
    
    switch(dim)
    {
        case clFFT_1D:
            
            for(i = 0; i < batchSize; i++)
            {
                stride = i * n.x;
                out_vdsp.realp  = out->real  + stride;
                out_vdsp.imagp  = out->imag  + stride;
                
                vDSP_fft_zipD(plan_vdsp, &out_vdsp, 1, log2Nx, dir_vdsp);
            }
            break;
            
        case clFFT_2D:
            
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.y; j++)
                {
                    stride = j * n.x + i * n.x * n.y;
                    out_vdsp.realp = out->real + stride;
                    out_vdsp.imagp = out->imag + stride;
                    
                    vDSP_fft_zipD(plan_vdsp, &out_vdsp, 1, log2Nx, dir_vdsp);
                }
            }
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.x; j++)
                {
                    stride = j + i * n.x  * n.y;
                    out_vdsp.realp = out->real + stride;
                    out_vdsp.imagp = out->imag + stride;
                    
                    vDSP_fft_zipD(plan_vdsp, &out_vdsp, n.x, log2Ny, dir_vdsp);
                }
            }
            break;
            
        case clFFT_3D:
            
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.z; j++)
                {
                    for(k = 0; k < n.y; k++)
                    {
                        stride = k * n.x + j * n.x * n.y + i * n.x * n.y * n.z;
                        out_vdsp.realp = out->real + stride;
                        out_vdsp.imagp = out->imag + stride;
                        
                        vDSP_fft_zipD(plan_vdsp, &out_vdsp, 1, log2Nx, dir_vdsp);
                    }
                }
            }
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.z; j++)
                {
                    for(k = 0; k < n.x; k++)
                    {
                        stride = k + j * n.x * n.y + i * n.x * n.y * n.z;
                        out_vdsp.realp = out->real + stride;
                        out_vdsp.imagp = out->imag + stride;
                        
                        vDSP_fft_zipD(plan_vdsp, &out_vdsp, n.x, log2Ny, dir_vdsp);
                    }
                }
            }
            for(i = 0; i < batchSize; i++)
            {
                for(j = 0; j < n.y; j++)
                {
                    for(k = 0; k < n.x; k++)
                    {
                        stride = k + j * n.x + i * n.x * n.y * n.z;
                        out_vdsp.realp = out->real + stride;
                        out_vdsp.imagp = out->imag + stride;
                        
                        vDSP_fft_zipD(plan_vdsp, &out_vdsp, n.x*n.y, log2Nz, dir_vdsp);
                    }
                }
            }
            break;
    }
    
    vDSP_destroy_fftsetupD(plan_vdsp);
}
 
double complexNormSq(clFFT_ComplexDouble a)
{
    return (a.real * a.real + a.imag * a.imag);
}
 
double computeL2Error(clFFT_SplitComplex *data, clFFT_SplitComplexDouble *data_ref, int n, int batchSize, double *max_diff, double *min_diff)
{
    int i, j;
    double avg_norm = 0.0;
    *max_diff = 0.0;
    *min_diff = 0x1.0p1000;
    
    for(j = 0; j < batchSize; j++)
    {
        double norm_ref = 0.0;
        double norm = 0.0;
        for(i = 0; i < n; i++) 
        {
            int index = j * n + i;
            clFFT_ComplexDouble diff = (clFFT_ComplexDouble) { data_ref->real[index] - data->real[index], data_ref->imag[index] - data->imag[index] };
            double norm_tmp = complexNormSq(diff);
            norm += norm_tmp;
            norm_ref += (data_ref->real[index] * data_ref->real[index] + data_ref->imag[index] * data_ref->imag[index]);
        }
        double curr_norm = sqrt( norm / norm_ref ) / FLT_EPSILON;
        avg_norm += curr_norm;
        *max_diff = *max_diff < curr_norm ? curr_norm : *max_diff;
        *min_diff = *min_diff > curr_norm ? curr_norm : *min_diff;
    }
    
    return avg_norm / batchSize;
}
 
void convertInterleavedToSplit(clFFT_SplitComplex *result_split, clFFT_Complex *data_cl, int length)
{
    int i;
    for(i = 0; i < length; i++) {
        result_split->real[i] = data_cl[i].real;
        result_split->imag[i] = data_cl[i].imag;
    }
}
 
int runTest(clFFT_Dim3 n, int batchSize, clFFT_Direction dir, clFFT_Dimension dim, 
            clFFT_DataFormat dataFormat, int numIter, clFFT_TestType testType)
{   
    cl_int err = CL_SUCCESS;
    int iter;
    double t;
    
    uint64_t t0, t1;
    int mx = (int)log2(n.x);
    int my = (int)log2(n.y);
    int mz = (int)log2(n.z);
 
    int length = n.x * n.y * n.z * batchSize;
        
    double gflops = 5e-9 * ((double)mx + (double)my + (double)mz) * (double)n.x * (double)n.y * (double)n.z * (double)batchSize * (double)numIter;
    
    clFFT_SplitComplex data_i_split = (clFFT_SplitComplex) { NULL, NULL };
    clFFT_SplitComplex data_cl_split = (clFFT_SplitComplex) { NULL, NULL };
    clFFT_Complex *data_i = NULL;
    clFFT_Complex *data_cl = NULL;
    clFFT_SplitComplexDouble data_iref = (clFFT_SplitComplexDouble) { NULL, NULL }; 
    clFFT_SplitComplexDouble data_oref = (clFFT_SplitComplexDouble) { NULL, NULL };
    
    clFFT_Plan plan = NULL;
    cl_mem data_in = NULL;
    cl_mem data_out = NULL;
    cl_mem data_in_real = NULL;
    cl_mem data_in_imag = NULL;
    cl_mem data_out_real = NULL;
    cl_mem data_out_imag = NULL;
    
    if(dataFormat == clFFT_SplitComplexFormat) {
        data_i_split.real     = (float *) malloc(sizeof(float) * length);
        data_i_split.imag     = (float *) malloc(sizeof(float) * length);
        data_cl_split.real    = (float *) malloc(sizeof(float) * length);
        data_cl_split.imag    = (float *) malloc(sizeof(float) * length);
        if(!data_i_split.real || !data_i_split.imag || !data_cl_split.real || !data_cl_split.imag)
        {
            err = -1;
            log_error("Out-of-Resources\n");
            goto cleanup;
        }
    }
    else {
        data_i  = (clFFT_Complex *) malloc(sizeof(clFFT_Complex)*length);
        data_cl = (clFFT_Complex *) malloc(sizeof(clFFT_Complex)*length);
        if(!data_i || !data_cl)
        {
            err = -2;
            log_error("Out-of-Resouces\n");
            goto cleanup;
        }
    }
    
    data_iref.real   = (double *) malloc(sizeof(double) * length);
    data_iref.imag   = (double *) malloc(sizeof(double) * length);
    data_oref.real   = (double *) malloc(sizeof(double) * length);
    data_oref.imag   = (double *) malloc(sizeof(double) * length);  
    if(!data_iref.real || !data_iref.imag || !data_oref.real || !data_oref.imag)
    {
        err = -3;
        log_error("Out-of-Resources\n");
        goto cleanup;
    }
 
    int i;
    if(dataFormat == clFFT_SplitComplexFormat) {
        for(i = 0; i < length; i++)
        {
            data_i_split.real[i] = 2.0f * (float) rand() / (float) RAND_MAX - 1.0f;
            data_i_split.imag[i] = 2.0f * (float) rand() / (float) RAND_MAX - 1.0f;
            data_cl_split.real[i] = 0.0f;
            data_cl_split.imag[i] = 0.0f;           
            data_iref.real[i] = data_i_split.real[i];
            data_iref.imag[i] = data_i_split.imag[i];
            data_oref.real[i] = data_iref.real[i];
            data_oref.imag[i] = data_iref.imag[i];  
        }
    }
    else {
        for(i = 0; i < length; i++)
        {
            data_i[i].real = 2.0f * (float) rand() / (float) RAND_MAX - 1.0f;
            data_i[i].imag = 2.0f * (float) rand() / (float) RAND_MAX - 1.0f;
            data_cl[i].real = 0.0f;
            data_cl[i].imag = 0.0f;         
            data_iref.real[i] = data_i[i].real;
            data_iref.imag[i] = data_i[i].imag;
            data_oref.real[i] = data_iref.real[i];
            data_oref.imag[i] = data_iref.imag[i];  
        }       
    }
    
    plan = clFFT_CreatePlan( context, n, dim, dataFormat, &err );
    if(!plan || err) 
    {
        log_error("clFFT_CreatePlan failed\n");
        goto cleanup;
    }
    
    //clFFT_DumpPlan(plan, stdout);
    
    if(dataFormat == clFFT_SplitComplexFormat)
    {
        data_in_real = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, length*sizeof(float), data_i_split.real, &err);
        if(!data_in_real || err) 
        {
            log_error("clCreateBuffer failed\n");
            goto cleanup;
        }
        
        data_in_imag = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, length*sizeof(float), data_i_split.imag, &err);
        if(!data_in_imag || err) 
        {
            log_error("clCreateBuffer failed\n");
            goto cleanup;
        }
        
        if(testType == clFFT_OUT_OF_PLACE)
        {
            data_out_real = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, length*sizeof(float), data_cl_split.real, &err);
            if(!data_out_real || err) 
            {
                log_error("clCreateBuffer failed\n");
                goto cleanup;
            }
            
            data_out_imag = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, length*sizeof(float), data_cl_split.imag, &err);
            if(!data_out_imag || err) 
            {
                log_error("clCreateBuffer failed\n");
                goto cleanup;
            }           
        }
        else
        {
            data_out_real = data_in_real;
            data_out_imag = data_in_imag;
        }
    }
    else
    {
        data_in = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, length*sizeof(float)*2, data_i, &err);
        if(!data_in) 
        {
            log_error("clCreateBuffer failed\n");
            goto cleanup;
        }
        if(testType == clFFT_OUT_OF_PLACE)
        {
            data_out = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, length*sizeof(float)*2, data_cl, &err);
            if(!data_out) 
            {
                log_error("clCreateBuffer failed\n");
                goto cleanup;
            }           
        }
        else
            data_out = data_in;
    }
        
            
    err = CL_SUCCESS;
    
    t0 = mach_absolute_time();
    if(dataFormat == clFFT_SplitComplexFormat)
    {
        for(iter = 0; iter < numIter; iter++)
            err |= clFFT_ExecutePlannar(queue, plan, batchSize, dir, data_in_real, data_in_imag, data_out_real, data_out_imag, 0, NULL, NULL);
    }
    else
    {
        for(iter = 0; iter < numIter; iter++) 
            err |= clFFT_ExecuteInterleaved(queue, plan, batchSize, dir, data_in, data_out, 0, NULL, NULL);
    }
    
    err |= clFinish(queue);
    
    if(err) 
    {
        log_error("clFFT_Execute\n");
        goto cleanup;   
    }
    
    t1 = mach_absolute_time(); 
    t = subtractTimes(t1, t0);
    char temp[100];
    sprintf(temp, "GFlops achieved for n = (%d, %d, %d), batchsize = %d", n.x, n.y, n.z, batchSize);
    log_perf(gflops / (float) t, 1, "GFlops/s", "%s", temp);
 
    if(dataFormat == clFFT_SplitComplexFormat)
    {   
        err |= clEnqueueReadBuffer(queue, data_out_real, CL_TRUE, 0, length*sizeof(float), data_cl_split.real, 0, NULL, NULL);
        err |= clEnqueueReadBuffer(queue, data_out_imag, CL_TRUE, 0, length*sizeof(float), data_cl_split.imag, 0, NULL, NULL);
    }
    else
    {
        err |= clEnqueueReadBuffer(queue, data_out, CL_TRUE, 0, length*sizeof(float)*2, data_cl, 0, NULL, NULL);
    }
    
    if(err) 
    {
        log_error("clEnqueueReadBuffer failed\n");
        goto cleanup;
    }   
 
    computeReferenceD(&data_oref, n, batchSize, dim, dir);
    
    double diff_avg, diff_max, diff_min;
    if(dataFormat == clFFT_SplitComplexFormat) {
        diff_avg = computeL2Error(&data_cl_split, &data_oref, n.x*n.y*n.z, batchSize, &diff_max, &diff_min);
        if(diff_avg > eps_avg)
            log_error("Test failed (n=(%d, %d, %d), batchsize=%d): %s Test: rel. L2-error = %f eps (max=%f eps, min=%f eps)\n", n.x, n.y, n.z, batchSize, (testType == clFFT_OUT_OF_PLACE) ? "out-of-place" : "in-place", diff_avg, diff_max, diff_min);
        else
            log_info("Test passed (n=(%d, %d, %d), batchsize=%d): %s Test: rel. L2-error = %f eps (max=%f eps, min=%f eps)\n", n.x, n.y, n.z, batchSize, (testType == clFFT_OUT_OF_PLACE) ? "out-of-place" : "in-place", diff_avg, diff_max, diff_min);         
    }
    else {
        clFFT_SplitComplex result_split;
        result_split.real = (float *) malloc(length*sizeof(float));
        result_split.imag = (float *) malloc(length*sizeof(float));
        convertInterleavedToSplit(&result_split, data_cl, length);
        diff_avg = computeL2Error(&result_split, &data_oref, n.x*n.y*n.z, batchSize, &diff_max, &diff_min);
        
        if(diff_avg > eps_avg)
            log_error("Test failed (n=(%d, %d, %d), batchsize=%d): %s Test: rel. L2-error = %f eps (max=%f eps, min=%f eps)\n", n.x, n.y, n.z, batchSize, (testType == clFFT_OUT_OF_PLACE) ? "out-of-place" : "in-place", diff_avg, diff_max, diff_min);
        else
            log_info("Test passed (n=(%d, %d, %d), batchsize=%d): %s Test: rel. L2-error = %f eps (max=%f eps, min=%f eps)\n", n.x, n.y, n.z, batchSize, (testType == clFFT_OUT_OF_PLACE) ? "out-of-place" : "in-place", diff_avg, diff_max, diff_min); 
        free(result_split.real);
        free(result_split.imag);
    }
    
cleanup:
    clFFT_DestroyPlan(plan);    
    if(dataFormat == clFFT_SplitComplexFormat) 
    {
        if(data_i_split.real)
            free(data_i_split.real);
        if(data_i_split.imag)
            free(data_i_split.imag);
        if(data_cl_split.real)
            free(data_cl_split.real);
        if(data_cl_split.imag)
            free(data_cl_split.imag);
        
        if(data_in_real)
            clReleaseMemObject(data_in_real);
        if(data_in_imag)
            clReleaseMemObject(data_in_imag);
        if(data_out_real && testType == clFFT_OUT_OF_PLACE)
            clReleaseMemObject(data_out_real);
        if(data_out_imag && clFFT_OUT_OF_PLACE)
            clReleaseMemObject(data_out_imag);
    }
    else 
    {
        if(data_i)
            free(data_i);
        if(data_cl)
            free(data_cl);
        
        if(data_in)
            clReleaseMemObject(data_in);
        if(data_out && testType == clFFT_OUT_OF_PLACE)
            clReleaseMemObject(data_out);
    }
    
    if(data_iref.real)
        free(data_iref.real);
    if(data_iref.imag)
        free(data_iref.imag);       
    if(data_oref.real)
        free(data_oref.real);
    if(data_oref.imag)
        free(data_oref.imag);
    
    return err;
}
 
bool ifLineCommented(const char *line) {
    const char *Line = line;
    while(*Line != '\0')
        if((*Line == '/') && (*(Line + 1) == '/'))
            return true;
        else
            Line++;
    return false;
}
 
cl_device_type getGlobalDeviceType()
{
    char *force_cpu = getenv( "CL_DEVICE_TYPE" );
    if( force_cpu != NULL )
    {
        if( strcmp( force_cpu, "gpu" ) == 0 || strcmp( force_cpu, "CL_DEVICE_TYPE_GPU" ) == 0 )
            return CL_DEVICE_TYPE_GPU;
        else if( strcmp( force_cpu, "cpu" ) == 0 || strcmp( force_cpu, "CL_DEVICE_TYPE_CPU" ) == 0 )
            return CL_DEVICE_TYPE_CPU;
        else if( strcmp( force_cpu, "accelerator" ) == 0 || strcmp( force_cpu, "CL_DEVICE_TYPE_ACCELERATOR" ) == 0 )
            return CL_DEVICE_TYPE_ACCELERATOR;
        else if( strcmp( force_cpu, "CL_DEVICE_TYPE_DEFAULT" ) == 0 )
            return CL_DEVICE_TYPE_DEFAULT;
    }
    // default
    return CL_DEVICE_TYPE_GPU;
}
 
void 
notify_callback(const char *errinfo, const void *private_info, size_t cb, void *user_data)
{
    log_error( "%s\n", errinfo );
}
 
int
checkMemRequirements(clFFT_Dim3 n, int batchSize, clFFT_TestType testType, cl_ulong gMemSize)
{
    cl_ulong memReq = (testType == clFFT_OUT_OF_PLACE) ? 3 : 2;
    memReq *= n.x*n.y*n.z*sizeof(clFFT_Complex)*batchSize;
    memReq = memReq/1024/1024;
    if(memReq >= gMemSize)
        return -1;
    return 0;
}
 
int main (int argc, char * const argv[]) {
    
    test_start();
    
    cl_ulong gMemSize;
    clFFT_Direction dir = clFFT_Forward;
    int numIter = 1;
    clFFT_Dim3 n = { 1024, 1, 1 };
    int batchSize = 1;
    clFFT_DataFormat dataFormat = clFFT_SplitComplexFormat;
    clFFT_Dimension dim = clFFT_1D;
    clFFT_TestType testType = clFFT_OUT_OF_PLACE;
    cl_device_id device_ids[16];
    
    FILE *paramFile;
            
    cl_int err;
    unsigned int num_devices;
    
    cl_device_type device_type = getGlobalDeviceType(); 
    if(device_type != CL_DEVICE_TYPE_GPU) 
    {
        log_info("Test only supported on DEVICE_TYPE_GPU\n");
        test_finish();
        exit(0);
    }
    
    err = clGetDeviceIDs(NULL, device_type, sizeof(device_ids), device_ids, &num_devices);
    if(err) 
    {       
        log_error("clGetComputeDevice failed\n");
        test_finish();
        return -1;
    }
    
    device_id = NULL;
    
    unsigned int i;
    for(i = 0; i < num_devices; i++)
    {
        cl_bool available;
        err = clGetDeviceInfo(device_ids[i], CL_DEVICE_AVAILABLE, sizeof(cl_bool), &available, NULL);
        if(err)
        {
             log_error("Cannot check device availability of device # %d\n", i);
        }
        
        if(available)
        {
            device_id = device_ids[i];
            break;
        }
        else
        {
            char name[200];
            err = clGetDeviceInfo(device_ids[i], CL_DEVICE_NAME, sizeof(name), name, NULL);
            if(err == CL_SUCCESS)
            {
                 log_info("Device %s not available for compute\n", name);
            }
            else
            {
                 log_info("Device # %d not available for compute\n", i);
            }
        }
    }
    
    if(!device_id)
    {
        log_error("None of the devices available for compute ... aborting test\n");
        test_finish();
        return -1;
    }
    
    context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);
    if(!context || err) 
    {
        log_error("clCreateContext failed\n");
        test_finish();
        return -1;
    }
    
    queue = clCreateCommandQueue(context, device_id, 0, &err);
    if(!queue || err)
    {
        log_error("clCreateCommandQueue() failed.\n");
        clReleaseContext(context);
        test_finish();
        return -1;
    }  
    
    err = clGetDeviceInfo(device_id, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(cl_ulong), &gMemSize, NULL);
    if(err)
    {
        log_error("Failed to get global mem size\n");
        clReleaseContext(context);
        clReleaseCommandQueue(queue);
        test_finish();
        return -2;
    }
    
    gMemSize /= (1024*1024);
            
    char delim[] = " \n";
    char tmpStr[100];
    char line[200];
    char *param, *val;  
    int total_errors = 0;
    if(argc == 1) {
        log_error("Need file name with list of parameters to run the test\n");
        test_finish();
        return -1;
    }
    
    if(argc == 2) { // arguments are supplied in a file with arguments for a single run are all on the same line
        paramFile = fopen(argv[1], "r");
        if(!paramFile) {
            log_error("Cannot open the parameter file\n");
            clReleaseContext(context);
            clReleaseCommandQueue(queue);           
            test_finish();
            return -3;
        }
        while(fgets(line, 199, paramFile)) {
            if(!strcmp(line, "") || !strcmp(line, "\n") || ifLineCommented(line))
                continue;
            param = strtok(line, delim);
            while(param) {
                val = strtok(NULL, delim);
                if(!strcmp(param, "-n")) {
                    sscanf(val, "%d", &n.x);
                    val = strtok(NULL, delim);
                    sscanf(val, "%d", &n.y);
                    val = strtok(NULL, delim);
                    sscanf(val, "%d", &n.z);                    
                }
                else if(!strcmp(param, "-batchsize")) 
                    sscanf(val, "%d", &batchSize);
                else if(!strcmp(param, "-dir")) {
                    sscanf(val, "%s", tmpStr);
                    if(!strcmp(tmpStr, "forward"))
                        dir = clFFT_Forward;
                    else if(!strcmp(tmpStr, "inverse"))
                        dir = clFFT_Inverse;
                }
                else if(!strcmp(param, "-dim")) {
                    sscanf(val, "%s", tmpStr);
                    if(!strcmp(tmpStr, "1D"))
                        dim = clFFT_1D;
                    else if(!strcmp(tmpStr, "2D"))
                        dim = clFFT_2D; 
                    else if(!strcmp(tmpStr, "3D"))
                        dim = clFFT_3D;                 
                }
                else if(!strcmp(param, "-format")) {
                    sscanf(val, "%s", tmpStr);
                    if(!strcmp(tmpStr, "plannar"))
                        dataFormat = clFFT_SplitComplexFormat;
                    else if(!strcmp(tmpStr, "interleaved"))
                        dataFormat = clFFT_InterleavedComplexFormat;                    
                }
                else if(!strcmp(param, "-numiter"))
                    sscanf(val, "%d", &numIter);
                else if(!strcmp(param, "-testtype")) {
                    sscanf(val, "%s", tmpStr);
                    if(!strcmp(tmpStr, "out-of-place"))
                        testType = clFFT_OUT_OF_PLACE;
                    else if(!strcmp(tmpStr, "in-place"))
                        testType = clFFT_IN_PLACE;                                      
                }
                param = strtok(NULL, delim);
            }
            
            if(checkMemRequirements(n, batchSize, testType, gMemSize)) {
                log_info("This test cannot run because memory requirements canot be met by the available device\n");
                continue;
            }
                
            err = runTest(n, batchSize, dir, dim, dataFormat, numIter, testType);
            if (err)
                total_errors++;
        }
    }
    
    clReleaseContext(context);
    clReleaseCommandQueue(queue);
    
    test_finish();
    return total_errors;        
}