
QUICKTIME

1.0: “YOU

OUGHTA BE

IN PICTURES”

GUILLERMO A. ORTIZ
QuickTime is Apple’s new architecture for enabling the Macintosh to
handle time-based data. The recently introduced QuickTime 1.0 makes
it easy for you to add dynamic media like video and sound into your
applications—and that’s just the beginning. Two sample programs
show you how to do the two most basic (and important) QuickTime
tasks: playing existing movies and creating new ones.

The world isn’t standing still—it’s moving, fast—and Apple intends to stay at the
front of the race. When Apple came out with the Lisa® and then the Macintosh, the
idea of a document file that mimicked a piece of paper was a big deal. But now it’s
not. Users have taken the “paper” metaphor for granted and are now looking for new
metaphors that increase their ability to communicate. One way to do that is to allow
documents and applications to contain and display data that changes.

QuickTime™ is more than just the ability to record and play back movies—it’s a
fundamental addition to the Macintosh Operating System. Just as QuickDraw™ gave
the original Macintosh the edge of sophisticated graphics in 1984, QuickTime will
give the Macintosh another edge over other computers: the built-in ability to handle
data that changes with time.

Until now, the Macintosh Toolbox has not provided a standard way of dealing with
dynamic media, and some developers have come up with their own solutions,
especially in the areas of video and sound. Unfortunately, this has resulted in
confusion and a lack of standards and basic system support for these data types.
Apple has created QuickTime to provide a standard way of dealing with data that
changes with time. Even more important, QuickTime gives you the necessary
support software so that you can spend your time using new data types instead of
designing, implementing, and maintaining them.

QuickTime 1.0 works on all color-capable Macintosh computers running Color
QuickDraw (models with either a 68020 or 68030 processor) and either System 6.0.7
or System 7.0; a later version will add QuickTime support for monochrome, 68000-
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

7GUILLERMO ORTIZ Instead of giving you
details about his life, Guillermo would like to
share with you a passage from a soon to be
published book. Some say that his affinity for this
book tells you much more about Guillermo than
we ever could.

Tired, hungry, and thirsty after a long and
arduous trek, DunKennsan, also known after his

conversion as “He who seeks the Light,” entered
Brucewhandra’s cave, and, without waiting for
the religious man to acknowledge his presence,
he posed the question burning in his mind: “Why
‘QuickTime’?” As a response, Brucewhandra, the
man called the Wisest, kept repeating the mantra
now famous among the true followers: “Calls that
take a Movie can take a Track or a Media. Calls
that take a Track can take a Media. Calls that

d e v e l o p Summer 1991

8

based Macintoshes. As a result, you, the developer, can take it for granted that
QuickTime will be available on any Macintosh running your software.

QuickTime 1.0 makes it possible for your program to manipulate the audio/video
sequences we call movies. (The size, duration, and quality of the average movie
largely depends on how much disk space you have for movie files.) It also includes
routines for the compression and decompression of still and dynamic images (which
should encourage you to use color images without worrying about how much space
they take up).

The result of all this is something that you’ll like very much: applications and
documents that give users a richer experience with your product than they can get
with non-QuickTime Macintosh applications or applications on other platforms.
QuickTime will make possible a new generation of Macintosh software and hardware
solutions that until now have been available only using expensive and narrow-
purpose hardware.

ENOUGH MARKETING STUFF! NOW THE DETAILS . . .
QuickTime 1.0 contains the following parts:

• Movie Toolbox. This contains the calls needed for playing and
recording dynamic media. It communicates with the necessary
components for the type of media being used.

• Component Manager. Previously called the Thing Manager in
internal circles, this piece of QuickTime provides a high-level
interface that allows applications to communicate during run time
with a collection of software objects. These components,
affectionately called Things, provide a variety of functions. At
present, these functions include image compressing and
decompressing, movie data handling, video digitizing, and
playback controlling.

• Image Compression Manager. This tool handles the interaction
among the components that compress and decompress image
data. Its services are available both for movie making and playing
and for the compression and decompression of still images.

MOVIE TOOLBOX
The basic component of QuickTime is the movie. At its highest level, a movie
contains one or more tracks, each of which points to data of one type (see Figure 1).
A movie also includes its time scale, duration, size, location and poster information,
current selection and insertion point (if any), preferred volume, image scaling and
positioning matrix, and other information (more on this later).
take a Media can take a Track.” After sixty-one
nights and sixty days DunKennsan left.

From DunKennsan, the Favorite Disciple, by Lord
James Batson. Any resemblance to any real
person or event is intentional and should be
construed as such.•

In the future, QuickTime will be able to do
things like control audio-visual equipment and
manipulate custom-defined types of data (such as
scientific instrument data). Also remember that
QuickTime will become even more powerful
when compression and decompression hardware
becomes cheaper and is found in most users’
computers.•

A movie contains any number of tracks (it’s true that a movie can have zero tracks,
but that’s kind of a boring case). Each track has a media associated with it, which
points to the “raw” data that the track draws from when it plays. Other track
parameters include time scale, duration, time offset within the movie, audio volume,
and track type. The track edit list is the list of media subsegments that define the
track’s output.

Each media references a file that contains its raw data; the file can be any place you
can put a random-access stream of data—it can be in the file containing the movie, a
nearby file, or even a file elsewhere on the network! If more than one media in the
movie references the same data file, the different types of data may be interleaved
within the file.

As Figure 2 shows, each media is associated with exactly one track and vice versa.
Because the track can map nonlinearly to the media (as is the case in Figure 2), you
can edit a movie by simply changing a few pointers rather than having to move large
pieces of data around. Two or more tracks can be members of a movie’s alternate
group; when the user picks one of these tracks to be active, QuickTime does not use
any of the other alternate tracks.

Each media references “raw” data of one type—for QuickTime 1.0, either video or
sound. It also contains its duration, time scale, priority, language, quality, media type,
and handler. The media handler knows how to play back its data at the right time.

The poster is the single frame (in the movie) that the creator of a movie considers as
best conveying the spirit of the movie. You can think of it as the frame you would like
to show if motion were not possible—for example, when printing the document that

Track

1

2

3

4

5

6

Video

Audio (alternate track, Spanish)

Audio (alternate track, English)

Time

Video

Audio

Video

Figure 1
A Movie and Its Tracks
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

9
One common use for alternate audio
tracks is to let the user watch the movie in the
(human) language of her or his choice—for
example, tracks 4 and 5 in Figure 1. A movie
could also contain alternate video tracks—for
example, tracks to be played using hardware
decompression (for one track) or software
decompression (for the other). In such a case, the
video would play on any Macintosh with

QuickTime, but it would play better on one with
hardware decompression.•

d e v e

10
Movie
(has multiple tracks)

Track
(maps nonlinearly

to one media)

Media
(belongs to one track,
maps linearly to data)

Data

Figure 2
Basic Components of a Movie
 l o p Summer 1991
contains the movie. The poster is usually a frame from the movie the user sees, but it
can be an arbitrary frame from a video track that is not visible in the normal movie.

The preview is a short piece of the movie that best conveys the spirit of the movie.
Note that although a preview is associated with a movie, the data (frames) associated
with the preview may not be part of the movie the user sees. In movie terms, the
track associated with the preview may not be part of the regular movie playback.

Although in the normal situation a movie file contains the data for its tracks (in
which case it’s called self-referenced data), it’s possible for the data associated with a
media to reside in a file separate from the movie, anywhere on the network.

Future releases of QuickTime are expected to extend the referencing capabilities of
media to allow for data being acquired as the movie plays along—as, for example,
data coming from a CD player or a video digitizer board.

To recap: A movie may contain any number of tracks. These tracks do not need to be
playing at the same time, and as a matter of fact, a track doesn’t need to become
active at all. Several tracks can belong to a movie’s alternate group, and only one of
them can play at a time.

COMPONENT MANAGER
One very important architectural feature of QuickTime 1.0 is its extensibility. Let’s
take a video track as an example. When the Movie Toolbox (the subset of QuickTime
that deals with movies) finds out it needs to play back this track, it calls the video
media handler (which is a component). The handler in turn calls the Image
Compression Manager, telling it the type of compression used. The Image
Compression Manager then calls the Component Manager to find out if a
corresponding decompressor component is available. If so, the Image Compression
Manager can use this component without having to know all the details about the
particular decompressor component needed. Of course, this is just one example;
several different compression and decompression techniques are available, and the
Component Manager allows the caller to choose a certain type of component by
supplying additional information about it.

Let’s study the decompressor component with subtype 'rpza', which has the
following structure:

ComponentResource:
ComponentDescription /* Registration Parameters */

componentType: imdc
componentSubType: rpza
componentManufacturer: appl
componentFlags: 0x00000447 /* binary 0100 0100 0111 */
componentFlagsMask: 0

resourceSpec /* resource where component code is found */
type: cdec /* the code is in a resource of type 'cdec' */
id: 0x000A /* with id of 10 */

resourceSpec /* resource with name string */
type: STR /* 'STR ' resource */
id: 0x000B /* with id of 11 */

resourceSpec /* resource with info string */
type: STR /* 'STR ' resource */
id: 0x000B /* with id of 11 */

resourceSpec /* resource with icon */
type: ICON /* 'ICON' resource */
id: 0x000B /* with id of 11 */

The registration parameters allow the Component Manager searching for a
component of type 'imdc' (image decompression) to narrow the search to a
component of subtype 'rpza', made by 'appl' (Apple Computer, Inc.). The parameters
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

11

d e v e l o p Summer 1991

12
include the componentFlags and componentFlagsMask fields, which help determine
how to search for a given component. Note that the subtype field can be omitted if
no more information is considered necessary for the type of component in question.

For example, the componentFlags field in the example above indicates that the
decompressor can do the following:

bit 0 scale on decompress
bit 1 mask on decompress
bit 2 use matrix for blending on decompress
bit 6 spool (used for compression and decompression)
bit 10 do fast dithering

The cleared bits have meaning, too. For example, the cleared bit 3 means that this
component cannot use a matrix for the placement and scaling of the decompressed
image.

The ComponentResource (shown above) also contains the type and ID of the
resource where the code that performs the actual work is located. In addition, it
contains the type and ID for resources containing the name string, info string, and
icon associated with the component.

In short, the Component Manager can help applications access certain services by
function rather than by name; Figure 3 shows how an application can call the
Component Manager to interact with different types of components. When an
application registers a component, it’s guaranteeing that the component supports the
basic set of calls defined for the type. This enables applications to find components
by their function without having to know exact names or locations.

COMPRESSION AND DECOMPRESSION
Following the basic concepts of the Component Manager, the Image Compression
Manager provides applications with a common interface to compression and
decompression “engines” that’s independent of devices and drivers. Figure 4 shows
how the Image Compression Manager interacts with the Movie Toolbox, the
Component Manager, and the application.

The services provided through the Image Compression Manager allow applications
to compress still images as well as sequences of images (such as those found in video
track media). In the case of image sequences, the Image Compression Manager also
provides optional support for the differencing of frames—that is, storing only the
pixels that differ from the previous frame to reduce the size of the movie data.

Given that these compression techniques are tightly coupled to the type of data
they’re supposed to handle, the Image Compression Manager does not work for
sound, text, or any type of data other than images.

Application

'imco' component
'imdc' component 1
'imdc' component 2

'clok' component

'imco'
'rpza'
'appl'

0
0

Registered
components

'imco' component
description

Component
Manager

'clok' component'imdc' component 2'imdc' component 1

'imco' component

Macintosh

N˙?zNVHÁ

;|ınIÌıt

+LıpBß/:

8?<©†.+G

ıjJıjf

Bg©Ø>=G

Bn/ıjNºC

¶LflÄN^Nu

WAVENVHÁ

(mı¶(T>R

G8á>æl��

o/-ıjNº
Cj/ı¶Nº
CbN˙�X>
SGœ¸+tp
ıv+tpı~
+tpıÜ+t
pıé<ºlf
<4p�ÕÌ
ı™;FıtN
˙<4pÕÌı
™�F;Fıt
<4pÕÌı™
;Fı¶Lflp
+tpıÜ+t

6000426 7A93A0C

4700046 C000008

52474EF AFFE2A9

371B7C0 001FA90

A8523F3 C000242

67201FA 0324EFA

006A0C6 D0003F9

346C000 00A526D

F9344EF A00083B

7C0001F 9343E2D

4E49EDF C902F34

6000426 7A93A0C

4700046 C000008

0000000 14EFA62

FC4E56F FFE48E7

03084A2 E000867

00004E2 F2DFCA0

4267A93 53E3C00

010C470 0046E00

00223C0 75346E5

4E49EDF C902F34

6000426 7A93A0C

4700046 C000008

Figure 3
Component Manager Interactions
The Image Compression Manager accepts the input data as either a PICT or a
pixMap; obviously, the first format is most often used for still images and the second
for sequences of video. Since images can be very large (even when compressed), in
both cases the Image Compression Manager allows for the calling application to
provide spooling routines that feed the Image Compression Manager source data as
needed and write the resulting compressed data to disk. The Image Compression
Manager can also translate between pixMaps of varying bit depth. This simplifies the
manipulation of an image split across monitors of two different bit depths; it also
extends a compressor or decompressor’s ability to manipulate images that (because of
incompatible pixel bit depths) it would otherwise not be able to handle.

In the case of pictures, the Image Compression Manager provides a set of high-level
calls that allow applications to compress and play back PICT resources and files.
Although these compression facilities are available to applications that call them,
even applications that know nothing about QuickTime’s compression facilities can
play back pictures containing compressed images. (This can occur because
QuickTime-unaware applications calling DrawPicture will automatically invoke the
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

13

d e v

14
Image Compression Manager, which will decompress the image automatically and
hand the application the uncompressed PICT image it was expecting.) In other
words, when QuickTime is present, you can use compressed PICTs as part of your
application and know that any PICT-reading application can open them correctly.

The Image Compression Manager provides a simple and at the same time powerful
system for compressing images. Since the mechanism is based in the workings of the
Component Manager, adding new compression engines is as simple as dropping a
'thng' file into the Extensions folder of the System Folder (for System 7.0, or into
the System Folder itself for System 6.0.7). Even when the exact decompressor
component is not available to decompress the data, the Image Compression Manager
will find a substitute if any is available. High-level calls are provided for applications
to access these features in a nearly effortless manner.

Photo
Hardware

Decompressor

Acme
Animation

Decompressor
Video

Decompressor

Photo
Software

Compressor
Animation

Compressor
Video

Compressor

NuBus™ JPEG
Compression/

Decompression card

Color
QuickDraw

Image
Compression

Manager

Component
Manager

Movie
ToolboxApplication

Display

Figure 4
Image Compression Manager Interactions
 e l o p Summer 1991

QUICKTIME SAMPLE CODE
We’ll now directly explore the QuickTime features that you can immediately put
into your applications. We’ll follow two samples, each of which accomplishes one of
the two basic QuickTime functions: playing back a movie (which most applications
should be able to do) and creating a movie (which you’ll need to know how to do if
your application creates new movies).

PLAYING BACK A MOVIE
To show the basic steps necessary to open movie files and play them back, we’ll use
the sample application SimpleInMovie. (You can find the source code for this on the
latest Developer Essentials disc.) This program presents the user with a dialog for
opening a movie and plays the movie back in a window. SimpleInMovie uses
QuickTime’s standard movie controller (which is itself a component) to let the user
start or stop the movie as well as scan back and forth within it. Some commands for
the movie controller are implemented as menu commands to show how a program
can control the controller component.

But first, a few words . . . Before we look at the SimpleInMovie source code, we
need to make several new distinctions. The most important distinction is that of a
public movie versus a playable movie. A playable movie is what the Movie Toolbox
manipulates; it has all the information needed for it to be played or edited. In
contrast, a public movie is used only for data interchange, and it contains all the
information needed to create a playable movie. A playable movie must be converted
to a public movie (which is stored as a resource of type 'moov', pronounced “moo-
vee”) before it can be stored to disk or put into the Clipboard. QuickTime provides
two calls to convert between the two forms: GetMoviePublicMovie converts a public
movie into a playable movie, and MakePublicMovie does the opposite.

To summarize, a playable movie is what the Movie Toolbox plays back; it has all the
media handlers instantiated and is ready to go. A public movie is strictly a static
representation used when the movie is to be transferred or copied.

QuickTime gives you wide latitude in choosing the location of the raw data
associated with a media, so we need to look at a few alternatives. A movie file has a
file type of 'MooV'. We’ll call a movie file “normal” if it contains exactly one 'moov'
resource.

A movie file whose data fork contains only the media data referenced by the movie
and no more is called a flattened movie. Specifically, it does not contain media frames
that aren’t referenced by the track to which they belong—for example, the unshaded
media frames in Figure 2. A flattened movie is handy for transporting a movie in toto
to another Macintosh computer. QuickTime provides a FlattenMovie call to create
such a movie file.
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

15A movie file containing multiple 'moov'
resources would be atypical. In such a case,
the application must inform the user of the
existence of multiple movies and give the user a
way to choose one of them. The Movie Toolbox
can handle such files, but Apple discourages you
from creating them. Most applications will just
use the first 'moov' resource found in the movie
file.•

d e v e l o p Summer 1991

16
The single-fork file is another type of movie file. Here, not only the media data but
also the 'moov' resource data are in the file’s data fork. (You might use a single-fork
file when exporting to a non-Macintosh computer that doesn’t have separate data
and resource forks.) You can make a single-fork file by calling FlattenMovie with the
proper parameters. QuickTime can automatically read these files.

Another possibility is that the movie’s media point to data that are not in the movie
file’s data fork but in a different file; this is very common when you’re about to edit a
movie. Remember that to edit a track, you need only change pointers to the media; if
you had to cut/copy/paste the actual image data (which can be multiple megabytes in
length), editing operations could take an inordinate amount of time and disk space.

Back to the code. We can now proceed to examine SimpleInMovie’s source code.
Note that in the listing below, the comments help describe only those calls that have
directly to do with playing movies. The full source code of this program (on the
Developer Essentials disc) contains numerous other comments on the details that
pertain to all normal Macintosh operations.

As is the case with most parts of the Macintosh Toolbox, the Movie Toolbox has to
be initialized. In our sample, the initialization is done as follows:

void InitMovieStuff()
{
ComponentDescription controllerDescriptor;
long version;
extern Boolean DoneFlag;
extern Component movieControllerComponent;

/* We have to fill in the fields for the player descriptor in order
to get the standard movie controller component. */

controllerDescriptor.componentType = 'play';
controllerDescriptor.componentSubType = 0;
controllerDescriptor.componentManufacturer = 0;
controllerDescriptor.componentFlags = 0;
controllerDescriptor.componentFlagsMask = 0;

/* We'll use gMoviesInited as a flag for everything; false means that
the Movie Toolbox or standard player couldn't be initialized. */

gMoviesInited = false; /* so pessimistic */

if (!(Gestalt(gestaltQuickTime, &version)))
if (!(EnterMovies()))

if (movieControllerComponent = FindNextComponent((Component)0,
&controllerDescriptor)) /* No error means we're OK. */

gMoviesInited = true; /* Good! */

if (!gMoviesInited) {
Alert(rBadMooviesALRT, nil); /* Inform user we're bailing out. */
DoneFlag = true;

}
}

EnterMovies initializes the Movie Toolbox. In an application, this must be balanced
by ExitMovies (or Bad Things will happen to your application). If you’re calling
EnterMovies from a nonapplication environment (such as an XCMD), you must call
ExitMovies to balance the calls and ensure that all memory allocated and all globals
are disposed of.

Normally, when an application presents a movie, it also wants to give the user some
basic control over the playing of the movie. QuickTime provides a tool that lets
developers add such control easily: a component called the standard movie controller
(the horizontal bar at the bottom of the window in Figure 5).

Getting and using the component. To use a component, you first have to get it,
which means you must fill in a ComponentDescription. Our example specifies only
the basic type, but the subtype, manufacturer, and flags fields allow you to specify the
component in greater detail. If, for example, you were looking for a compressor, the
type would be 'imco' for an “image compressor” or 'imdc' for an “image
decompressor.” In addition, the subtype could be 'rpza', 'rle ', or 'jpeg' (or others),
each of which specifies a specific implementation of compression or decompression.

Although an application can register components “live” (that is, after the application
has started up), the normal way they get registered is during system startup, at which
time the Component Manager registers all components found in files of type 'thng'
in the Extensions folder of the System Folder (for System 7.0, or in the System
Folder itself for System 6.0.7). Because this happens automatically, the application
can find a specific component by making the following call:

Figure 5
The Standard Controller
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

17

d e v e l o p Summer 1991

18
FindNextComponent((Component)0, &controllerDescriptor);

This call tells the Component Manager to find the component that matches the
descriptor (controllerDescriptor); passing 0 in the first parameter tells the
Component Manager to return the first one of this type that it finds. In the case of a
more extensive search, you may want to continue the search; you would then pass the
last component found to get the next in the list that matches the descriptor.

Once you know that the component exists, you have to open it. A component (if it’s
so designed) can be accessed multiple times simultaneously. Each time a component
is opened, the calling application receives what is known as an instance of the
component. The instance is what the application uses to maintain communication
with the component. In our sample, we get an instance of the standard movie
controller by calling OpenComponent(movieControllerComponent), where
movieControllerComponent is the value returned by FindNextComponent. So keep
in mind that there’s a difference between a component and an instance of the
component.

Once we’ve done the initialization, the user can select a file, and we can then proceed
to set up showing the movie. The code that gets the movie looks like this:

if (OpenMovieFile(&(reply.sfFile), &movieResFile, fsRdPerm, nil)) {
DoReportFailure();
return; /* and go back */

}
else {

if (!(err = NewMovieFromFile(&moov, movieResFile, &resID, nil,
0, &wasChanged))) {

if (err = GetMoviesError())
DebugStr("\perror after NewMovieFromFile");

}
else {

DebugStr("\pCould not get the moov ");
err = -1; /* err set will make it skip the rest */

}
CloseMovieFile(movieResFile);

}

Given an FSSpec (which, in this example, is reply.sfFile), the call OpenMovieFile
returns the reference number for the resource fork of the file, once it has been
opened. (In the code above, the reference number is in the parameter movieResFile.)
It can also return the data reference for the movie, but in this example we pass nil,
which indicates that we don’t need it; we would need it if we were going to add tracks
to the movie. (Later in this article, the section “Creating a Movie” gives more details
on data references.)

Once the resource fork is open, we call NewMovieFromFile, which when successful
returns the playable movie. NewMovieFromFile first gets the 'moov' resource (which
is a public movie), creates a movie, and then resolves its data references.

Apple has provided calls such as OpenMovieFile and NewMovieFromFile to simplify
things for you. Though it is possible for you to make the low-level calls needed to
make a playable movie from a public one, we don’t recommend it. You run the risk of
confusing the Movie Toolbox, which may result in incorrect values for the self-
referenced data references (which indicate that the data is in the same file as the
'moov' resource). Both OpenMovieFile and NewMovieFromFile handle this
situation correctly when they resolve the data references.

In our sample, when calling NewMovieFromFile, we pass 0 for the ID, meaning that
we’ll take the first 'moov' resource found. We also pass nil for a name pointer, since
we don’t plan to display the name or change it. We proceed to close the file by
calling CloseMovieFile. (If we were editing the movie, we would not close the movie
file here.)

Now that we have a movie, the next step is to adjust the movie box so that the movie
appears in the right place in our GWorld (the window in which the movie appears):

GetMovieBox(moov, &moovBox); /* Get the movie box. */
OffsetRect(&moovBox, -moovBox.left, -moovBox.top); /* topleft=0 */
SetMovieBox(moov, &moovBox);

What is a movie box? Figure 6 shows how the Movie Toolbox calculates the
rectangle known as the movie box and displays a multitrack movie in an application’s
window.

• Pieces 1 and 2: For each track, the Movie Toolbox takes the
intersection of the source rect of the track and the track’s clip
region (both of these entities share the same coordinate system).
The resulting area is transformed into the movie’s coordinate
system using the track’s matrix. In piece 1, the track’s clip region
is smaller than the image. The clip region of piece 2 is the same
size as the track’s source rect.

• Piece 3. The MovieSrcBoundsRgn is the union of all the clipped
track regions. In this example, there are two regions. Note that
the MovieSrcBoundsRgn includes both the striped and unstriped
parts of piece 3.

• Piece 4. The MovieSrcClipRgn is the region in which the Movie
Toolbox is to display the movie. It clips the image to the areas
marked with diagonal and vertical stripes.
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

19

d e v e l o p Summer 1991

20
• Piece 5, 6, and 7. Piece 5 is the image resulting from the
intersection of pieces 3 and 4. The MovieBox, piece 7, is the
minimum rectangle that contains piece 5, mapped into the local
coordinates of piece 6, the MovieGWorld (which belongs to the
application that’s showing the movie).

• Piece 8. The MovieDisplayClipRgn is the last clip applied to the
movie before it’s displayed.

• Piece 9. The application displays only the intersection of pieces 7
and 8, which includes the minimal rectangle enclosing the
diagonally and vertically striped areas.

When QuickTime plays a movie, it doesn’t take the GWorld’s clip region into
account; the GWorld’s clip takes effect at the level of the application running the
movie. If your application draws into the window where a movie is playing, you want
to be sure that the MovieGWorld’s clip region excludes the part being drawn by the
Movie Toolbox; in Figure 6, this would be the striped regions within piece 8 and the
smallest rectangle that contains them.

The last clip applied by the Movie Toolbox occurs when it applies the movie display
clip region (piece 8 in Figure 6). This clipping area is not, in the strict sense of the
word, part of the movie; it is only a run-time option and is not saved in the public
movie. (This allows your application to apply a final clip of the movie within your
application’s GWorld.) If, for example, you used a triangular movie display clip
region to clip a larger movie image, the movie would appear in its window as shown
in Figure 7.

Now that such an important question has been taken care of, we can go back to the
sample code. The main idea here is that the movie box probably does not have its top
left corner set to (0,0). So if left to chance, the movie may not be visible in the
GWorld (CGrafPort) used to display it, since its coordinate system is the GWorld’s.
The code then translates the resulting movie to the top left corner of our window,
thus ensuring that it will be visible. Figure 8 shows how the movie box can also be
used to scale the resulting image.

Our sample application then creates a window for the movie and stores with it the
player instance (obtained by calling OpenComponent(movieControllerComponent))
and the movie associated with that window.

Adding the controller. Then we call MCNewAttachedController. The objective
here is to put together the movie, the player instance, and the window. Although we
recommend that you use the standard controller, it’s not the only way to control
movies; you can do it all “by hand” if you want tighter control—but you must be
careful to do it right.
For your information, the “MC” in
QuickTime-related names stands for “Movie
Controller.”•

MCNewAttachedController sets the destination window as the GWorld for the
movie and for the drawing of the control, and it attaches the control instance to the
movie being played.

Then we must call SetMovieActive to enable the movie to be serviced by calls to
MoviesTask; StartMovie then sets it in motion. MoviesTask has to be called
periodically (normally as part of the normal idle processing in the event loop) for the
movie to display successive frames without erratic playback.

MovieSrcBoundsRgn
(union of heavily outlined areas)

TrackSrcRect (and its image)

TrackSrcClipRgn (inner rectangle)

TrackSrcRect (and its image)

TrackSrcClipRgn
(same size as TrackSrcRect)

MovieSrcClipRgn

MovieBox

The visible result is the
intersection of pieces 7 and 8

MovieDisplayClipRgn

1.

2.

3.

4.

7.

9.

8.

MovieDisplayBoundsRgn
(union of heavily outlined areas)

5.

MovieGWorld6.

Figure 6
Displaying a Multitrack Image in an Application’s Window
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

21

d e v e l o p Summer

22
Figure 7
Movie Clipped by Display Clip Region

Original movie Same movie after
InsetRect(&moovBox, 30, 30);
SetMovieBox(moov, &moovBox);Figure 8

Changing the Movie Box
1991

Since in our sample we’re using the standard controller, we call instead
MCIsPlayerEvent, which accomplishes the following: First it calls MoviesTask to
keep the movie (or movies) in motion. Then it performs the tracking of events that
belong to the controller itself (such as button clicks and moving the scroll box as the
movie moves along).

To summarize, the basics of including playback of movies in an application are as
follows:

• Get a public movie and convert it into a playable movie.

• Associate the movie to the GWorld that will display it.

• Set the movie in motion.

• Periodically call MoviesTask to keep the movie in motion.

The above is, necessarily, a simplistic description of the process. By reading
QuickTime’s documentation, you’ll find that the set of calls range from the very
high-level, such as when using the standard controller and the movie file calls, to the
fine-detail calls that allow you to control the movie at the track level, as well as
intermediate-level calls that allow you to control and monitor such movie parameters
as the rate (speed) of the movie and its sound level.

CREATING A MOVIE
The sample source code that we’ll use to discuss the creation of a movie is called
SimpleOutMovies. This program creates a movie that contains two tracks. The first
is a video track made out of frames that are read in from PICT files (this is what you
must do to create a movie from a sequence put together using a rendering package
like MacRenderMan®). The second track uses the data contained in a 'snd ' resource
to add sound to the movie.

Again, we won’t dwell here on the details that aren’t pertinent to the creation of
movies. The curious reader is once more invited to check out the source code files on
this issue’s Developer Essentials disc for the whole story. I can’t help mentioning that
the file-handling part of the code demonstrates how to let the user select a folder and
then access the files in it sequentially; I found writing this an interesting exercise.

SimpleOutMovies first calls the usual initialization stuff, including (since we’re
QuickTime savvy) EnterMovies, the call that initializes the Movie Toolbox. Then it
proceeds to prompt the user to indicate where to put the movie file and what to call
it, followed by a prompt to find the folder with the PICT files. The program also
creates a window to display the frames as they’re processed, sizes the window
according to the frame of the pictures, and starts the real job.
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

23

d e v e l o p Summer 1991

24
The code looks like this:

theErr = CreateMovieFile(&mySpec, 'TVOD', 0, cmfDeleteCurFile);
if (theErr) DebugStr("\pCreateMovieFile Failed");
theErr = OpenMovieFile(&mySpec, &resRefNum, fsRdWrPerm, &mdrh);
if (theErr) DebugStr("\pOpenMovieFile Failed");

After calling CreateMovieFile (passing the FSSpec corresponding to the file the user
wants to create), we call OpenMovieFile. Although we discussed this call earlier,
there’s an important difference: Now we want to use the media data reference (held,
in the code above, in the parameter mdrh).

A media data reference is what the Movie Toolbox uses to find the location of the data
for a given media. In this part of the example, we want to add the data to the same
file we’re creating. That’s why it’s important that, when the call returns, the
parameter mdrh contains the reference to the file being created. Remember that this
type of data reference is called self-referencing because it points to its data as being
in the same file as the 'moov' resource. In the case where the data for a track resides
in a different file, it’s necessary to create a new data reference that points to that file.

Once the file has been opened, we create the movie by calling NewMovie(0, 60).
This creates an empty movie (devoid of tracks) but one that you could play (with,
however, little result). In other words, NewMovie creates what I’ve been calling a
playable movie. The parameters indicate that we want the movie to be created
inactive and that the TimeScale for the movie is 60—in other words, each unit of
time in the movie is 1/60th of a second, equivalent to a Macintosh “tick.” (I might
add that each track has a TimeScale associated with it, but the Movie Toolbox takes
care of synchronizing the individual times.)

Next, we create the video track based on the following two lines of code:

gTrack = NewMovieTrack(gMovie, 0, kTimeScale, frameX, frameY);
gMedia = NewTrackMedia(gTrack, VIDEO_TYPE, mdrh, kTimeScale);

A track contains bookkeeping information associated with the track’s overall data
content. For example, to the new movie track we feed in the following: the movie the
track is part of (in the above code, gMovie), the time offset (0), the scale for the track
(kTimeScale), and the dimensions of the frames as obtained from the PICT frame
(frameX and frameY). kTimeScale in this case is set to 10 (which means that the time
unit for the track is 1/10th of a second).

Then we create the media associated with the track by calling NewTrackMedia. The
parameters establish the type of the media (currently the types defined are
VIDEO_TYPE and SOUND_TYPE; new types will be announced as they’re
defined) and, of course, the time scale for the media. For the last parameter in our
It’s important to note that the time offset is
given in movie time; since we want the track to
start from the beginning of the movie, we pass 0
to NewMovieTrack. Nothing prohibits a track
from starting at a time different from 0; if we
wanted this track to start two seconds into the
movie, we would pass an offset value of 120.•

example we again pass kTimeScale—same as for gTrack—but this is not required;
the media can have a different rate than the associated track. The Movie Toolbox
provides many calls that allow you to convert between times and rates for those cases
when this is necessary.

The next call to the Movie Toolbox is

BeginMediaEdits(gMedia);

This call is needed here because we’re going to add data to the media; in other
words, the data comprising the samples will be moved into the media’s data file.
We’ll see that when adding samples by reference (when the data doesn’t move),
BeginMediaEdits is not necessary.

Capturing the video track. We’re now ready to start collecting samples for our
video track; enter the Image Compression Manager, stage left. In most cases it’s
desirable to compress the images to minimize both the size of the resulting file and
the amount of data that needs to be moved when playing back the movie.

After we allocate a buffer that can contain the images we want to use, we call

GetCompressionSize(&pm, &r, theDepth, theQuality, codecType, codecID,
&maxCompressedFrameSize)

The purpose of this call is to find out, using the known parameters for the images, an
estimate of the worst-case size for the resulting image. (In the same manner,
GetCompressionTime can return information concerning the time that it would take
to compress the image.)

After allocating the buffer for the compressed data, we call

CompressSequenceBegin(&seqID, &pm, nil, &r, nil, theDepth, codecType,
codecID, theQuality, mQuality, keyFrameRate, ct,
codecFlagUpdatePrevious, imageDescriptorH);

The parameter seqID points to a variable where the ID of the sequence is stored.
This value is needed to continue adding frames to the sequence. We pass nil for both
the previous pixMap and rectangle; this indicates that the Image Compression
Manager will allocate the GWorld to keep a copy of the image against which the next
frame will be compared. If you wanted to allocate it yourself, you would pass it here.

The overall objective of the code that creates this video sequence is, when going
from frame to frame, to store as little information as possible for each new frame.
Instead of storing a complete image for every frame, we want to add only the
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

25

d e v e l o p Summer 1991

26
difference between a given frame and the key frame (the most recent frame that
contains the complete image).

The Movie Compressor component has a built-in decision maker that determines
when a new key frame is needed. Nevertheless, based on the expected images, the
program can set the maximum number of frames that can be added before a new key
frame is needed. In our case, we pass a value of 10 for the keyFrameRate, which
means that at least every ten frames a key frame of the entire image has to be added
to the sequence. If you want to force the creation of a new key frame every frame,
you can easily do this by calling SetCSequenceQuality and passing 0 for
temporalQuality.

The last parameter to mention is the ImageDescription handle. This handle (which
the calling program has to preallocate) is filled in by the compressor and contains all
the information necessary to reassemble the image. The ImageDescription handle is
required by the media to interpret the data. Later, when we add sound to this movie,
we’ll see how this is handled differently.

Then our code renders one picture in the off-screen GWorld allocated for this
purpose and calls

CompressSequenceFrame(seqID, &pm, &r, codecFlagUpdatePrevious,
*compressedFrameBitsH, &compressedFrameSize, &similarity, nil);

followed by

AddMediaSample(gMedia, compressedFrameBitsH, 0L, compressedFrameSize,
(TimeValue)1, (SampleDescriptionHandle)imageDescriptorH,
1L, similarity?sampleNotSync:0, &sampTime);

Very similar to CompressSequenceBegin, CompressSequenceFrame adds more
frames to a sequence. Note that we have to pass the sequence ID, the
ImageDescription handle, and a VAR parameter named “similarity,” which tells how
close the current frame is to the previous frame (the values range from 0, which
means a key frame was added, to 255, meaning that the two frames are identical).
The compressor has one flag, codecFlagUpdatePrevious, which tells the Image
Compression Manager to copy the current frame to the previous frame’s buffer.

This process is repeated for each frame and, when all the PICTs have been
processed, we close the sequence and add the media to the movie:

CDSequenceEnd(seqID);
EndMediaEdits(gMedia);
InsertTrackMedia(gTrack, 0L, GetMediaDuration(gMedia), 0L,

GetMediaDuration(gMedia));

The important call here is InsertTrackMedia. This call is the final link in adding
samples to a track. When EndMediaEdits executes, the new data samples are already
part of the media. However, the track does not know about the additions that have
just been made, and the call to InsertTrackMedia takes care of that. There are
numerous implications here, but an interesting one is that a segment of the media
can be inserted into the track more than once. Since the time scale of the media and
track are the same, we can use the value of the media’s duration for the track
segment’s duration, too.

At this point we have completed the creation of a movie and have added a video track
to it, so we end with the following:

AddMovieResource(gMovie, resRefNum, &resId, (char *)sfr.fName);
CloseMovieFile(resRefNum);

That’s it—we have a movie that we can play. But we’re missing one thing: sound.
This is not a big deal, since adding sound is very much like what we’ve just done. In
the paragraphs below, we’ll describe what’s different.

Adding sound. Before closing the file in our sample program, SimpleOutMovies,
we must include the routine that handles adding the sound. The process is the same
as it was for video. In this case, the user is prompted for a file containing a sound
resource. When selected, the program reads in the 'snd ' resource and, with that data
at hand, we proceed to fill in the sound description record.

In the QuickTime 1.0 release, the Movie Toolbox can deal only with sound data
made out of sampled sounds; any other data will make no sense. Future releases of
QuickTime will most surely have support for other sound formats. This is why most
of the fields in the sound descriptor record have to be filled with zeros; but based on
the 'snd ' data, we enter the number of channels, the sample size (in bits), and the
frequency of the sampled sound.

Then we start again with

NewMovieTrack(moov, (TimeValue)0, kTimeScale, 0, 0);

Note that for a nonvideo track, the spatial information width and height must be set
to 0. Since we’re adding sound that has been sampled at a rate of 11 kHz, the
constant kTimeScale has been set to this value.

The call to create the new track is followed by

NewTrackMedia(gTrack, SOUND_TYPE, mdrh, kTimeScale);
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

27

d e v e l o p Summer 1991

28
Note that we’re still using the same media data reference that we used for the video
track; this means that we want to continue adding samples to the same file, since
that’s where the parameter mdrh points.

After this we call BeginMediaEdits to start adding samples, followed by
AddMediaSample, EndMediaEdits, and InsertTrackMedia. The difference in this
sequence is that AddMediaSample is called only once; since all the sound data is in
one place, we add it all at once.

Finally, what happens when we don’t want to add the data directly—that is, when it’s
in a file and we don’t want to copy it over to the movie file? In this case we need to
add data by reference and first we need to create a media data reference record.
Although these calls are System 7.0-specific, QuickTime makes sure they work when
running under System 6.0.7.

In this case, our program goes through the same process as before, asking the user to
select a file with sound data in it:

SFGetFile(dlgPos, "\pSound file:", nil, 1, &typeList, nil, &reply);

where “reply” is an old, trusted SFReply. Once the user selects the file, we call

FSMakeFSSpec(reply.vRefNum, 0, (unsigned char *)reply.fName, mySpec);

passing a pointer to an FSSpec in mySpec.

When we have the FSSpec that describes our sound file, we have to make an alias to
it. We do this by calling

NewAlias(nil, &mySpec, &SoundFileAlias);

From the alias, we create a media data reference by calling

mdrh = NewDataRef(SoundFileAlias);

We then use the parameter mdrh to create the media (gMedia) and immediately call

AddMediaSampleReference(gMedia, 0, fSize, (TimeValue)1,
(SampleDescriptionHandle)sndDescriptH, nSamples, 0, &sampTime);

Note that we pass 0 for the location of the data within the file; fSize is the size of the
samples. If the file cannot be found when opening the movie, the user will be
prompted to locate the missing file. Since we are not adding the sample data directly,
it’s not necessary to call BeginMediaEdits and its companion EndMediaEdits.
We did not have to add the sound all at
once; it would have been possible to have added
samples in smaller chunks if this had been
appropriate. One such example would have
been to allow the Movie Toolbox to play the
sound track by reading in parts of it as needed
(instead of all at once). The other side of the coin
is that there would be more accesses to the disk
and, in instances when the disk media is slow,

this could cause a performance degradation. It’s
recommended that when you create movies, you
perform some tests to find the balance that
provides the best results.•

So now you know how to create a movie file and then the movie itself; you start out
with an empty shell that you must then fill by creating tracks and media. This sample
program also shows how to add media, both directly and by reference.

WHAT’S LEFT?
QuickTime comprises over 500 calls, and it was never the intention of this article to
detail them all. We hope that after reading this article, you will see great possibilities
for QuickTime and will continue collecting information about this new and exciting
technology. Who knows, maybe next time “I’ll see you in the movies!”
QUICKTIME AND THE HUMAN INTERFA
DISTILLED WISDOM FROM THE QUICKTIME HUMAN

The discussions we‘ve had of QuickTime-related human
interface issues could fill more than a thousand books;
below are the main recommendations for a good
interface. Most of these guidelines for using movies come
from the maxim “put the user in control.” Our user-testing
has shown that more often than not you really do need to
do the following things to keep your users happy.

• Users should be able to look at the screen and figure
out which images are movies.

• A movie should open with its poster showing; if it has
no poster, its first frame should be shown. Upon first
playing, the movie should make a visual transition from
the poster state to the movie state. To get back to the
poster, users may reset the movie to the beginning.

• If you allow users to resize movies, the movies should
by default maintain their original aspect ratios.

• Where it makes sense, make handling movies as much
like handling conventional (static) graphics as possible.
For example, in your word processor, resize movies the
same way you do pictures.

• Movies should not play when a document is opened.

• Users should be able to find the controls for playing any
movie easily.

• It should be reasonably obvious not only how to turn the
movie on, but also how to turn it off.
Thanks to Our Technical Reviewers
Jim Batson, Mark Krueger, Scott “Zz” Zimmerman•
CE
 INTERFACE GROUP

• There must always be an easy and immediate way to
stop a movie that’s playing.

• There must be at least a sound mute control, and
preferably a volume control. The sound tracks of
different movies will have different sound levels, and
movies will be played back in different environments—
some that can tolerate loud playback and others that
cannot. Also, it’s highly desirable that users have a
convenient way to adjust the volume of sounds that
accompany the movies. The Sound Control Panel is not
judged to be adequately convenient for this purpose.

• In most applications, single-clicking a movie must select
it, not play it. This allows users to perform operations
on the movie such as Cut, Get Info, “hide controls,”
“resize,” or any number of other operations that your
application might support.

• Double-clicking a movie may cause it to play, but only if
subsequently single- or double-clicking stops it (you
have to test for and ignore any immediate second click
because many users double-click reflexively).

• If you don’t need single-clicking to select a movie,
single-clicking may begin the playing of the movie—just
as long as single-clicking also stops it (and you dispose
of double clicks, both for starting and stopping).

• Don’t mix movies that play on single click with movies
that select on single click.
QUICKTIME 1.0: “YOU OUGHTA BE IN PICTURES” Summer 1991

29

	Cover
	develop Issue 7 TOC
	Editor's Note
	Letters
	QuickTime 1.0 - "You Oughta Be In Pictures"
	ENOUGH MARKETING STUFF! NOW THE DETAILS . . .
	MOVIE TOOLBOX
	COMPONENT MANAGER
	COMPRESSION AND DECOMPRESSION

	QUICKTIME SAMPLE CODE
	PLAYING BACK A MOVIE
	But first, a few words . . .
	Back to the code.
	Getting and using the component.
	What is a movie box?
	Adding the controller.

	CREATING A MOVIE
	Capturing the video track.
	Adding sound.

	WHAT’S LEFT?
	QUICKTIME AND THE HUMAN INTERFACE
	DISTILLED WISDOM FROM THE QUICKTIME HUMAN INTERFACE GROUP

	Scoring Points With TrueType
	Print Hints From Luke & Zz: Help For Your Dialog Appendages
	Threaded Communications With Futures
	Using C++ Objects in a World of Exceptions
	The Subspace Manager in System 7.0
	The Veteran Neophyte: If I Had a Hammer...
	Macintosh Q&A
	Apple II Q&A
	Your Developer Essentials Disc
	Index

