Metal Shading Language
Specification

Version 4

Developer

Contents

T INTrOAUCTION.......ceeeeieiciicieiiecreeeeeeeeneeeeecenecenccencenccenscensssnsesnsssnsssnsssnsesnnsnnnes 1
1.1 PUrpose of ThiS DOCUMENTccuveiieieeceee ettt et e et e et e eenee e e reeeeseseenseees 11
1.2 Organization of This SPeCIfiCatioNcccvieiieciecicece e 11
1.3 N LA T Y = = 2 USRS 12
1.4 REFEIENCES.oiceeeeeeeee et ettt et e et e e te e s e e be e te e e be e beeeassenbaesstsebaessseensaesseeenns 12
1.5 V=Y o= 1 I= T T O PSS 12
1.5.1 (@117 4 ToT= o 11 T SRR 12
1.5.2 I 10]] F= 1 =T TR 13
1.5.3 PreproCesSiNg DirECHIVES.......vi ittt et e e te e s ere e e bae e s baeeeneeas 13
1.5.4 TSy 1 o (o] [USSR 13
1.6 (07e]a 0] o)1 [=Tar=TaTo I o £=T o] foTot=Y1= o] SO USSR 13
1.6.1 Preprocessor Compiler OptioNS.........oocviieciieecieecceece et 14
1.6.2 Preprocessor DEfinitiONS ..ottt e 14
1.6.3 Math Intrinsics Compiler OPLiONScccviieciieecieecceece e e 15
1.6.4 Invariance Compiler OPIONScooeiii it 17
1.6.5 Optimization Compiler OPtiONS.......cocciiiiiiicieeeee et rre e s rre e srae e s reeeas 17
1.6.6 Maximum Total Threadgroup Size OPtioN......ceeccveeicieeee e 17
1.6.7 Texture Write ROUNAING MOEoooiiieee ettt 18
1.6.8 Compiler Options to Enable MOAUIES.........oocviiiciieeeeccee ettt 18
1.6.9 Compiler Options to ENable LOGQING.....cccuuiiriiiiciieeciee ettt etre e evre e evae s 19
1.6.10 Compiler Options Controlling the Language Version.........ccccecvveecieeecieeecieescieeeeveenn, 19
1.6.11 Compiler Options to Request or Suppress Warnings.......cccceevveeeeieeecieescieecveeeeveen, 21
1.6.12 LI 1o (=1 o] g Lo [1 o] g =1 £ PP 21
1.6.13 Dynamic Library LinKer OptioNS.........cooiiieiieecieeceeee ettt 21
1.6.14 Options for Compiling to GPU BiNari€sSccceceeeuiieiiieciieeieeteeeee et 21
1.6.15 Options for Generating Metal Library Symbol Files.........cccocveeiiiiiiiieeieieeeeeee. 22
1.7 Metal Coordinate SYSTEMS......oo et bae e e e e e ra e e nreas 22
2 DAt TYPOS . ceeuiuieiereierectncececeecececessecacsssscacsssssacsssssasssssssssssssssassssssassssssassssssasns 25
2.1 oz | F- T g D= o= T I/ o 1= SR 25
2.2 NV ECTON DAtA TYPES ..ttt et ee e e e et e e e e e etteeeeeeaseseeeesneeeeennseeeeeennnes 27
2.2.1 Accessing Vector COMPONENTSooociiiiiiieeeieeetee ettt etre e rre e e eae e s vae e baeeensaas 29
2.2.2 AV/=Te1 (o] gl @o] o Y { £ o3 (o] (=3NS 32
2.2.3 = Lot (= To VL =Yox (o] gl I/ o 1= RS SS 33
2.3 Y Y (g D | = T 1Y/ o 1= RSSO 35
2.3.1 Accessing Matrix COMPONENTSueiiiiiecciie et re e rre e s bae e be e e enrees 37
2.3.2 MaAtriX CONSIIUCTOIS....oiiiieceeeecee et e et te e e ate e s abe e este e sbaeesssaeennseas 37
2.4 SIMD-group MatriX Data TYPES......uiccuiieeieecciee ettt etre e tre e tee e sere e e rre e s saeeesaeesasaeeas 38
2.5 AlIGNMENT Of DAtA TYPES...eiciieiiiee ettt ettt ettt e re e tae e ae e beessseeabe e seeeanean 39
2.6 YN o] g1 (ol D= &= T Y/ o =TSRSS 39

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 2 of 346

2.7 PIXEI DAta TYPES ..eveiiiieeciie ettt ettt et e e e e stee e s te e e s teessstee e stae e sbaeessaeensasesnseaesseananes 39

2.8 BUT OIS .ttt ettt ettt e e e e e e e be e ta e et e e ba e et e e baeeat e e raeeaaeenreeeraeears 41
2.9 TOXTUIES .veii ettt tte e et e e e e sttt e e e s bt e e e e s eaeee e e s ssaeeeeassseeaeaasseeeeeassseaseassaeeesssssenesannnsns 42
2.9.1 TEXEUIE BUFFEIS ..ottt et et e e e s te e baeeabeeans 44
AN L0 TS - 1 0 o] [T (O SUUURPRNE 45
7200 I [4 E- T =Y o] (o Tod <= USRS 48
A VA o [| £=Yo F=) (=T N/ o 1= SRS USURRE 50
2121 Arrays of Textures, Texture Buffers, and Samplers..........cocoeveecieeeeecieceeeceeeceeeeeene 50
21211 Array Element Access with its Operator........cvee i, 51
2.12.1.2 F N g =Y O] o= o | Y SRS 51
2.12.1.3 Constructors for Templated ArTayscceeveeeieecie e 52
2.12.2 Structures of Buffers, Textures, and SAMPIErsSc.oovoveeeeeeeceieeeeeee e 53
213 ArgUMENT BUFFEIS.....iiciiieeeeee ettt ettt et e et e e te et e s te e beeeabe e beessaeesaenes 54
2.131 Tier 2 Hardware Support for Argument BUffers.........ccceeeiieceeeiicceececeeeeeee e 55
204 UNIfOIM TYPB..uiiitiiciiietieeee ettt ettt et e e te e et eeeteesteeeabe e saessse e saessseenbeasssesateeseessssaseessseesaanes 57
2.14.1 The Need for @ UnNiform TYPE ...ttt ettt et et et e e e v eaee s 57
2.14.2 Behavior of the UNIform TYPEccuiieieceeeeeeeee ettt et e ve e ere e 58
2.14.3 UNIfOrm CoNErol FIOWocvieiieieeeeeee ettt ettt et et ere v e veeaee e 59
A LT VA 11 o] =3 U] a Tt (o] o T IF=1 o] L= SRR 59
216 FUNCLioN Groups ATIHDULEoeeeeeeeee ettt ate e erreeeaes 60
217 RAY-TraCIiNG TYPES coeiceiiecieeecieeectee ettt e estteeette e etreesbee e s baeesstee e staeestesesseesssesssessaseessssennnes 61
2171 Ray-Tracing INterseCtion TagsS......cccvviiiiieciieeceecee ettt e e 61
2.17.2 B)V I8/ o= TR USRPRRN 65
2.17.3 Intersection FUNCHION Tabl.........ooo ittt et tre e e re e 65
2.17.4 INtErseCtioN RESUIT TYPE cueiieeiiecieeee et ettt e ere e e bae e b e e 67
2.17.5 Intersection Result REFErENCE TYPE c.ooeeii i et re s 68
2.17.6 1= g=T=Tot (o] gl 1Y o 1= USSP 69
2.17.7 Acceleration StrUCTUIE TYPE ..ottt erre e e bae e eba e e eanees 69
2.17.8 INTErSECION QUETY TYPE ceiiiiiieie ettt re et te e e ate e et e e sete e eabaeesasaeennseas 71
ANk T [01 (=1 o To] F=T o Gl Y/ o 1= OSSPSRt 72
2719 Per-VerteX VAIUES ... ettt ettt tee et e s te e e ate e s eate s esaeesbaeessasesnraeesnsneennes 73
A4 O B Y (=T I o= To =T g Y/ o 1= TSSOt 74
2.201 MESH Grid Property TYP . ettt e e are e e te e sbre e e bae e e saeennneas 74
2.20.2 V=T, o T N/ o= T USSR 74
A T =Y o T=To gl 1Y/ o 1= SRSt 79
2.21.1 (=] oL C T 1N o 1= USSP 79
2.21.2 JLIC=T L Lo g 1Y o 1= ST 80
2.21.2.1 [(o1 ol oo U a T I =T aT=To &3NS P 85
2.21.2.2 Origin-Shifted TENSOIScuiiiiieieeeee ettt ettt ebe e s aae s 85
2.21.2.3 Shader-AlloCated TENSOISuvi ittt e e re e e saae e s baeeesaeean 86
2.21.3 (0feTo) o 1T = U1/ =T o T=ToT gl 1Y/ o 1= T RS 86

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 3 of 346

2.21.3.1)Y U T 87

2.21.3.2 (0FeTo) o =T =) U1V /=T =T 0 1Yo SRS 89
2.22 Type Conversions and Reinterpreting Data.........coccvveieiiicii e 92
2.23 IMPIIiCIt TYPE CONVEISIONS......uviiitieeeiiieciteeeiee e e e erte e ertteeetteesbaeestaeesabaeessseeessseesssseeenssasanes 93
RN 0 1o T=1 - 1 (o PN 94
3.1 Yoz 1T r=ale VA=t (o] g @] o1=T = {o] = TN USSR 94
3.2 Y E Y (g O] o1=T =) o] SR 97
4 AdAreSS SPACES...cccuiiiiiiuiinieiieiieticestessecsstsssesssasse 100
4.1 DEVICE AAArESS SPACEuiiietieecteeeeee ettt te e et estte e e sbae e s ba e e sbae e ssbaeessteesssseeensseeanns 100
4.2 Constant AdArESS SPACEco ittt e et e e be e e te e e be e e nbee e raeeeannes 101
4.3 Thread AQArESS SPACE ...ttt re e s tre e s be e e s ta e e ste e e stee e sbaeesseesanees 102
4.4 Threadgroup AAAreSS SPACE......ccuui ittt et e et e e te e e te e s ntae e raaeeanees 102
4.41 SIMD-Groups and QUAad-GrOUPSccccueeeiiieeiireeireeecteesrreesteeestreeseteeesereeersseeersseessees 103
4.5 Threadgroup Imageblock Address SPaCE.........oovieeciiiecieeceece e e 103
4.6 RAY Data AdAreSS SPACE........uii ettt e et e e rtae e s e e s e tae e s baeesaseesssseeessseeenns 104
4.7 Object Data AdAreSS SPACE.......cccciiiecieeectee ettt re s tre et e e te e e s ste e e sbee s saeeeesaeeeanees 104
4.8 MEMOIY CONEBIENCY ...eoiiceiieeiteeetee ettt et e et e e te e e ete e stte e ebaeesasaeesssaeesssaeassseeessseeensseennns 104
5 Function and Variable Declarations..........ccccceeiieeieniieniiencrencrenceenceencennecnnens 106
51 T8 ox o] 13PTSR 106
5.1.1 VErteX FUNCHIONS ... ittt et e e e ba e e s ba e e be e e nbee e saaeennees 107
5.1.11 Post-Tessellation VerteX FUNCLIONScoociieiiiie et 107
51.1.2 Patch Type and Number of Control Points Per-Patchcccooveiiieiieciicneee, 107
5.1.2 Fragment FUNCHIONSccuiiiiecceece ettt tre et e st e e ve e e snreeeaes 108
5.1.3 Compute FUNCLIONS (KEINEIS) ...oeeeieieieecee ettt ettt e 109
514 VAT 1 o] L= T g o4 To] o 1T 110
5.1.5 Stitchable FUNCHONS.......cooi ettt re e et e 110
5.1.6 INterseCtion FUNCHIONS........oocuiiieecce et re s e st e e eareeeaes 110
51.7 (0] o] [=Tox 21U g o3 4 o] o L3RR 12
5.1.8 MESH FUNCHIONS.......ooieiieeeeece ettt e e e s tr e e s bre e s bae e s nbee s seaeennraeenes 112
5.1.9 B L1 G2 10 T Tod 4 o] o L= RS 113
5.1.10 HOSt NAmME ATIHDULE ..o et re e e sareeeaes 114
511 Templated Qualified FUNCHIONSoooviiiiiieeeceeeeeee et 114
5.1.12 User ANNOtation AtEHDULEcooeeeeeeee e e 115
5.2 Function Arguments and Variables..........oouii ittt 115
5.2.1 Locating Buffer, Texture, and Sampler Argumentsc.cccceeeveeeieecieeciecieecreeeeee e, 116
5.2.11 Vertex Function Example with Resources and Outputs to Device Memory 118
5.2.1.2 R [(=T @] fo [T gl €] foTUT o 1= USRI 119
5.2.2 Attributes to Locate Per-Vertex INPULSooovviieiie et 120
5.2.3 Attributes for Built-in Variables............ccooiiiiieiiieceececeeeee et 122
5.2.3.1 Vertex Function Input AtHbULEScoeviieeeee e 122
5.2.3.2 Post-Tessellation Vertex Function Input Attributes ..., 124

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 4 of 346

5.2.3.3 Vertex Function Output AttribULESooeeuviieieeceee e 125

5.2.3.4 Fragment Function Input AtribULESoouieieiieceeeeeeee e 127
5.2.3.5 Fragment Function Output Attributes.......ccoeeieeeceeeeeeee e, 133
5.2.3.6 Kernel Function Input AttrbULeS........ooviieeeee e 135
5.2.3.7 Intersection Function Input AttribuUtesc..eeeiireiiieeeeeeee e, 140
5.2.3.8 Intersection Function Output Attributescccoveeiee e, 145
5.2.3.9 Object Function INput AttribUTESccceveeeeeeeeee e e 146
5.2.3.10 Mesh Function INput ATHDULESeeeiiieee e 149
5.2.4 INput ASSEMDBIY ATIHDULE .o e 152
5.2.41 Vertex Function Output EXamPle........cueeeviieciieeceeeee ettt 153
5.2.4.2 Fragment Function INput EXample..........oooiieiiieiiieeeeeeeeeee et 154
5.2.4.3 Kernel Function Per-Thread Input EXample ..., 155
5.3 StOrage Class SPECITIEIS ...ccuiiiiecieceeeeeceee ettt et ettt ae e be e aneeareas 156
54 Sampling and Interpolation AttHBULESoee e 156
5.5 Per-Fragment Function Versus Per-Sample FUNCHION.........ccooieciiiecieiccieecee e, 158
5.6 IMAageEbIOCK ATIHIDULES ... et ae e e eareeeaes 158
5.6.1 Matching Data Members of Master and View Imageblockscccceevveeivecivecnnenen. 159
5.6.2 Imageblocks and Raster Order GroUPRS........ceecieeicieeeiiie ettt eere e see s e e e e e saree e 162
5.6.3 Imageblock Layouts for Fragment FUNCLIONScoooiieiiiiiececeeceeeeee e, 163
5.6.3.1 Implicit Imageblock Layout for Fragment Functions...........cccoccveeieicieecieeciecneenee, 164
5.6.3.2 Explicit Imageblock Layout for Fragment FUNCLIONSccveeiieiieiiecieecieeee, 164
5.6.4 Imageblock Layouts in Kernel FUNCLIONScccuviiiieiiieceeeeece e 165
5.6.5 Aliasing Explicit and Implicit IMmageblocksccovieeiiciiceeeee e 166
5.6.6 Imageblocks and Function Constants..........ccocuveiiiiiiiie e 167
5.7 Graphics Function — Signature MatChing.........cccvvieiiicceiceeee e 167
5.7.1 Vertex — Fragment Signature MatChingoocvveeciiicei e 167
5.7.2 Mesh — Fragment Signature MatChingcoccviiriiicii e 171
5.8 Program Scope FUNCLioN COoNSTaNtS........oociiieciiecee ettt 172
5.8.1 Specifying Program Scope Function Constantsccccveeviiieciiieciee e 172
5.8.1.1 Function Constants to Control Code Paths to Compile......cccoveeevievcieeciieeecieens 173
5.8.1.2 Function Constants when Declaring the Arguments of Functions....................... 174
5.8.1.3 Function Constants for Elements of an Input Assembly Structure...................... 176
5.8.1.4 Function Constants for Resource Bindings..........ccoveeveecieeceeecieecieceeceeeee e 177
5.8.1.5 Function Constants for Color Attachments and Raster Order Groups................ 178
5.8.1.6 Function Constants with Elements of a Structurecccocoeeeeeiiereeceecieeeee, 178
5.9 Program Scope Global Built-ins and BindingS.........cocuviiiiiieciiiecieeeeecee e 178
510 Per-Primitive Viewport and Scissor Rectangle Index Selectionccccoeevvveeveecieeennnn. 180
BT Additional RESIMCHIONSviieieeeee ettt ere e s abe e enaee s 180
6 Metal Standard LiDrary ... ceieeiieieiecieceeieecencreceescencencescesscsscsscsscsscssscsns 181
6.1 Namespace and Header FIlES..... ..ottt et eeareeeaes 181
6.2 COMMON FUNCHIONS... ..ttt tte et e e tee e s tr e e s be e e s abe e s stae e stae e ssaeesseeennens 181
6.3 11 C=Te =T gl =l U] [o1 4 o] o 1= PPN 182

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 5 of 346

6.4 REIAtIONAI FUNCIIONS ettt ettt et ettt et eeaaeeeeeeeeasnnnnnnnas 184

6.5 MaAth FUNCHIONS.ottt tte e et e e s ta e e s bae e snbaeesnsaesnnseeenseeanns 185
6.6 MaATFIX FUNCHIONS. ...oiiiiee ettt te e e te e et e e e ba e e s ba e e sabaeessbaeesnteesssseeesseeanns 191
6.7 SIMD-Group Matrix FUNCHONS.........cooiiieiee ettt e e 192
6.7.1 Creating, Loading, and Storing Matrix Elements.........ccccvviriiiiniieciieccee e 192
6.7.2 Y Y (g O] o1=T = 1 o] o T PSP 193
6.8 (€T=To) 0 01=] A5 (o3 =l U] a o1 4o o 1= 194
6.9 Synchronization and SIMD-Group FUNCLIONScccviieiiiicieecee e 195
6.9.1 Threadgroup and SIMD-Group Synchronization Functionsc.ccccoeeeeeiveeicneenee. 195
6.9.2 SIMD-Group FUNCHIONS ..ottt ettt tee e tee et e e ste e eate e e naeeesaaesanns 196
6.9.2.1 EXGMIPIES ..ot re e et et e e te e ebte e s rae e enbaeeenraeanns 202
6.9.3 (@]07=To Bl €] o]0 o 3 =V g Vo 4 o] o 1= 205
R (OB €11 o]] (od= =l Ul Vo 4 o] o 1= J RS 213
6.10.1 Fragment FUNCHIONSccuiiiieeeece ettt ete et tre et e s te e e ave e esareeeaes 213
6.10.1.1 Fragment FUNCioNs — Derivatives..........oooiie et 213
6.10.1.2 Fragment FUNCHIONS — SaMPIESoooeiiieiee ettt 214
6.10.1.3 Fragment Functions — FIOW CONIOl........ccuveiiiiicieeeeeeeeee e e 214
6.11 Pull-Model INterpolation..........cuee it et e e e e et e e aens 215
B.12 TeXtUIrE FUNCHIONSoocieeeee ettt ettt ettt e etee s te e e s e e e s abe e e ataeentae e naeeenstaesnnens 216
6.12.1 LD =) (U] =TT 220
6.12.2 TD TEXEUINE AITAY ..ttt e et e e e etee e e ettt e e e st e e e e saeaaeessssseeesessssaeesenssseaassnssseaeenn 222
6.12.3 24D I =g (8 | (=TSP 224
6.12.3.1 2D Texture Sampling EXampPle.......occuveiiiiecieeceeeee ettt 228
6.12.4 2D TEXEUIE AITAY ...veieiieeeeieeeee ettt ectee e e tee e s tee e s tteessatae e steeestessasaeesnsaeesnsesasnsaeesnsenns 228
6.12.5 G I I I (U= USRS 231
6.12.6 (01U 0TI = 4 (U= R 234
6.12.7 CUDE TEXIUIE AITAY oeeeeieeeeiee ettt e et e e etre e s tae e sbae e srbteeebaaeesbaeesssaeesnseeennens 238
6.12.8 2D MUItISAMPIEA TEXIUIE ..ottt e e et e et e e sate e e abeeenaee s 241
6.12.9 2D Multisampled TEXTUrE AITAYcccuieecieeecieecee ettt eere e ecte e sae e erreesteeeeraeesarnes 242
(O A (O B B I D 1= o) =) (0 | TP SR 242
6.12.11 2D DePth TEXIUME AITAY ...uveeieieeeiieeeteeectteeeee e etee e stee e tee e teesestesssaeessraaesnseeesnsaeessseens 246
6.12.12 2D Multisampled Depth TeXIUIEouvi ettt rre e s 249
6.12.13 2D Multisampled Depth TeXTUre ArTay.......cocceeecieeecieeeciee ettt rre e vre e seee e 250
(O A S O V| o TN B LT o) { g T =) 4 (0 | (USSR 250
6.12.15 CUube Depth TeXTUIE AITAYcccueiicieeeeieeecee ettt et eete e e rte e e rtae e s ste e e s bae e s bae e snsaeennnes 253
6.12.16 Texture BUffer FUNCHIONScc.oooiiiiececececeee ettt ettt 256
6.12.17 Texture Synchronization FUNCHONS..........c..oociiiiieeeceeeee e 257
6.12.18 NUIl TeXtUre FUNCHIONScc.eeie ettt ettt vte e et e st e e ba e e ar e e eaes 258
(I IS (91 F=To =1 o] (o Tod 1Q IV 1 Tox 4 o] o 13U 259
6.13.1 Functions for Imageblocks with Implicit Layout............ccccuvieeiieiciieeeeceeceeeeeees 259
6.13.2 Functions for Imageblocks with Explicit LayOut.........cc.oocvieeiiiiecieeceeeeeecee e 261
6.13.3 Writing an Imageblock Slice to a Regionin a Texturecccceevvveecieeecieeeceeeeieeeee 262

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 6 of 346

6.14 Pack and Unpack FUNCHIONScccuuiieiiieeece ettt tee et e 265

6.14.1 Unpack and Convert Integers to a Floating-Point Vector........ccccoeeevviiciiciiecciens 265
6.14.2 Convert Floating-Point Vector to Integers, then Pack the Integers.............cc........... 267
LG ESTR AN Co] 1 g1 Lol o1U o Tox 4 o] o 1= 30U SR 268
6.15.1 1V =T g Te) YA @] o 1= U USSP 268
6.15.2 I L= Lo IS TeTo] o 1= 268
6.15.3 FENCE FUNCHIONS ..ottt et e et e e e are e sbae e eabaeesabaeenns 269
6.15.4 PN o]0 o Tl 21U g Lo o] o [SRR 269
6.15.4.1 ATOMIC STOre FUNCLIONS ...ttt et rr e et 270
6.15.4.2 ALOMIC LOAd FUNCHIONS ...ttt ee e tre e s e esrne e 270
6.15.4.3 Atomic EXChange FUNCLIONScccuviiiiiieeeeeeeee ettt e 271
6.15.4.4 Atomic Compare and Exchange FUNCHIONSccoooiieiiiecciicceececce e 271
6.15.4.5 Atomic Fetch and Modify FUNCLIONSc.ccocuieiiiiiiiceececeeeeereeee e 272
6.15.4.6 Atomic Modify FUNCHIONS (64 BitS)ccveeiieieeiieeece et 273
6.16 Encoding Commands for Indirect Command BUffersccoveeieevieneicceecie e, 274
6.16.1 Encoding Render Commands in Indirect Command Bufferscccccceeeveeeeeneneen. 274
6.16.2 Encoding Compute Commands in Indirect Command Buffers...........ccccccvvecvveennennnen. 281
6.16.3 Copying Commands of an Indirect Command Buffer..........cccccveeeieiiiiiecceecieenen, 283
6.17 Variable Rasterization RAte........ooouiiiiiieeee et 284
6.18 Ray-Tracing FUNCHONSoeiiiieceeeteee ettt ete e e tte e e ste e e st e e bae e s araeeenes 285
6.18.1 Acceleration Structure FUNCLIONScocuviiiiiiceeee ettt 285
6.18.2 Intersector INterseCt FUNCHIONScooiiieeeeeece e 286
6.18.3 Intersector Functions to Control Traversal Behavior..........ccooeeeieiceiecieccieeeieens 298
6.18.4 Intersector Functions for Ray Contribution and Geometry Multiplier 301
6.18.5 Intersection QUErY FUNCHIONScoouiiiieeeeeeeece ettt et e svae s rae e 302
6.18.6 INdirect INStanCe DESCIIPIOISuviiiie ettt et e e e ae e e eareeeaes 310
6.18.7 Curve Uity FUNCHIONS ...ttt ettt 311
6.18.8 Intersection Function Buffer DeSCriptors.......c.cocievieeiecciiecie et 312
(G K I WoTo [o][o Vel = UTa Vo o o 1< 00 313
7 Metal Performance Primitivesccccceeieeiieiiniiincencenccencencencencencenncenes 315
71 EXECULION SCOPES .ottt ettt ettt e e te e bt e e s ba e e s baeesatae e s baeesnseeesseeensseennns 315
7.2 Tensor Operations (TENSOIOPS) ..uuiieciieeciee et eereeere e stre e st e s treestee e stee e sbeeeesseesnees 316
7.2.1 MatriX MURIPHCAtION ..ot re e e et re e e eareeeaes 317
7.2.2 (07010)Y 701 18] 4To] o [328
8 NUMETICAl COMPIIANCE.....c.cuienieiieiereireieieitneeceereerececessessecessessecsssassssssssssans 331
8.1 INF, NaN, and Denormalized NUMDEIS............oii ittt e e 331
8.2 ROUNAING MOGE ...ttt te e e te e s tte e e bt e e s baeesnsaeessbaeasnsaeessseeessesanns 331
8.3 Floating-Point EXCEPLIONSoiiiieeeeeeee ettt tre e ree e re e e aae e e nreeeaes 331
8.4 ULPS @nd REIAtIVE EITOr....oc ittt ettt ettt tte e e stae e s va e e setae e sbaessaseeeessaesnsaeanns 331
8.5 Edge Case Behavior in FIUSh t0 Zero MOdecocuviieiiiicieeeceeecee et 338
8.6 Conversion Rules for Floating-Point and Integer TYpes........ccccveeieeceeceeecieeceeeeereee, 339

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 7 of 346

8.7 Texture Addressing and Conversion RUIES...........eoocviiieiee et 339

8.7.1 Conversion Rules for Normalized Integer Pixel Data TYpesc.cccceeeeveveeecieecreeennenn, 339
8.7.11 Converting Normalized Integer Pixel Data Types to Floating-Point Values 339
8.7.1.2 Converting Floating-Point Values to Normalized Integer Pixel Data Types. 340
8.7.2 Conversion Rules for Half-Precision Floating-Point Pixel Data Type..........cc........... 341
8.7.3 Conversion Rules for Single-Precision Floating-Point Pixel Data Type.................... 342
8.7.4 Conversion Rules for 10- and 11-bit Floating-Point Pixel Data Type.........cccccuveun... 342
8.7.5 Conversion Rules for 9-bit Floating-Point Pixel Data Type with a 5-bit Exponent. 342
8.7.6 Conversion Rules for Signed and Unsigned Integer Pixel Data Types.........coc....... 343
8.7.7 Conversion Rules for SRGBA and SBGRA TeXIUIEScccuveeeeieieeceieeieecieeeie e, 343
L2 T Vo] o T=1 Lo [} QP 345
9.1 NEW INMETAI 3.2 ..ot e e e e te e e e e e st e e esste e e steesbaeesnbaeasnsaeanns 345

Tables and Figures

Table 1.1. ROUNAING MOUE......c..eiii ettt e rte e e te e e te e e sbae e e ba e e s baeesnbaeesnraeesnseeans 18
Figure 1. Normalized device coordinate SYStemMcocuviieiiicieeceeee e 23
Figure 2. Viewport coordinate SYSTEM ...ttt et tre e e rre e 23
Figure 3. Normalized 2D texture coordinate SYSteMcccviiciiiiciii et 24
Table 2.1. Metal scalar data tYPeS ... e e et rre e erae s 25
Table 2.2. Size and alignment of scalar data typescccccueeeieeciieciieceeeeee e 26
Table 2.3. Size and alignment of vector data typescceeeeeeiecieeceeeeeee e 28
Table 2.4. Size and alignment of packed vector data types.......ccecveeecieeccieecieecee e, 34
Table 2.5. Size and alignment of matrix data types......cceeeviieciiecceeeeeee e 36
Table 2.6. Metal PIXel data tYPESoic e et e s ae e e ae e et e e eeae e saraeean 40
Table 2.7. Sampler state enuMEration ValUEScccueieiiieiieecieeeteeeee ettt eere e 46
Table 2.8. Imageblock slices and compatible target texture formatsc.ccccceeevevieececceeenenee. 49
Table 2.9. INTErseCHON TaGS . .cc it e s e s e e e s ate e e ate e eateeensaeesnsaeaas 62
Table 2.10. Mesh template PaAramELEr ... re e s ree e aeeeas 75
Table 2.11. MeSh verteX attribULES.........oo it re e re e s rae e ree e 75
Table 2.12. Mesh primitive attribDULESc...ei et 76
Table 2.13. MeSh StatiC MEMDEIS ...t re e s ae e s rae e raeeas 77
Table 2.14 Extents template parameters ...t 79
Table 2.15 EXENtS MEMDEr TYPES ..ot re e e ate e e eae e saaae s 79
Table 2.16 Tensor template ParamMeEtErScuvv et e e e et e e s rre e s reeeeasaeeas 81
Table 2.17 Tensor member type definitioncoooiiiieiiiciececeeeee e 82
Table 2.18 Cooperative tensor template parameters........ocvv e 87
Table 2.19 Cooperative tensor type definitionccccveiieeiieciiceeeeeee e 89
Table 5.1. Intersection function Primitive tYPEScceeeiieciiececeeeeeeeee ettt m
Table 5.2. Attributes for vertex function input arguments...........ccveeeeecieciecceccee e 123
Table 5.3. Attributes for post-tessellation vertex function input arguments..........c..cccccuvenee.e. 124
Table 5.4. Attributes for vertex function returN type.......cccueecvveeiieciiciieeeeceeeee e 125
Table 5.5. Attributes for fragment function input arguments...........ccccoeeveeieeciecieccecceeceeeee 128
Table 5.6. Attributes for fragment function tile input arguments...........cccoooveeviiiiieeccieceeee 132
Table 5.7. Attributes for fragment function return typescccveeveeeieciece e 133
Table 5.8. Attributes for kernel function input arguments...........ccveeveeciecieccecceeceecee e 136

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 8 of 346

Table 5.9. Attributes for kernel function tile input arguments...........ccoeeeeiiiiicviccie e, 140

Table 5.10. Attributes for intersection function input argumentscccccceeeveiieececceeccieecieeee, 141
Table 5.11. Attributes for intersection returN tYPEScc.eeevveciieeiiecieeeeeeee e 145
Table 5.12. Attributes for object fUNCLIONcoviiiiie e 147
Table 5.13. Attributes for mesh fUNCHIONcoooiiiiiieeee e 150
Table 6.1. Common functions in the Metal standard libraryc.cocoeeeieeiiecieieeeceeeeeee, 181
Table 6.2. Integer functions in the Metal standard libraryccoeeieiiieiicciiceeeeeeee 182
Table 6.3. Relational functions in the Metal standard libraryc..cocoeeveeieeiieiiecceeceeeeeee 185
Table 6.4. Math functions in the Metal standard library ..o, 185
Table 6.5. Constants for single-precision floating-point math functions............cccccceeeveieneenn. 189
Table 6.6. Constants for half-precision floating-point math functions...........ccccccoeeieeeieeiennn. 190
Table 6.7. Constants for brain floating-point math functionscccocceeeieniiiiiceceee, 190
Table 6.8. Matrix functions in the Metal standard libraryccccveevieeieciiccicceeeceeee e 191
Table 6.9. SIMD-Group matrix load and STOrescceeviiieciiiecece e 192
Table 6.10. SIMD-Group OPEratioNS.......cccuieeiieieciee et erte et ecreesrreesrreesreeessreeessbeeersseessseesnnees 193
Table 6.11. Geometric functions in the Metal standard librarycccocoeeeienieciinecceeeeeee, 194
Table 6.12. Synchronization compute function in the Metal standard libraryccceeeunnn.... 195
Table 6.13. Memory flag enumeration values for barrier functionscccccoeeveeveevieececieeenenn, 196
Table 6.14. SIMD-Group permute functions in the Metal standard library.............ccccvennennen.e. 197
Table 6.15. SIMD-Group reduction functions in the Metal standard librarycccccceeveennene. 200
Table 6.16. Quad-group function in the Metal standard libraryc.ccccceeeveviiecieciecceeeeeee, 206
Table 6.17. Quad-group permute functions in the Metal standard librarycc.ccceeevenenine. 206
Table 6.18. Quad-group reduction functions in the Metal standard library........c.ccccccuveneenninne. 209
Table 6.19. Derivatives fragment functions in the Metal standard libraryc.ccccoeeeveeurennn.e. 214
Table 6.20. Samples fragment functions in the Metal standard librarycc.cccceeeveeerieeveennennee. 214
Table 6.21. Fragment flow control function in the Metal standard library..........ccccccoeeeieerennn.e. 215
Table 6.22. Pull-Model Interpolant methods...........oocviiiiiiciieecee e 215
Table 6.22. CUbE faCe NUMDETcc.vi ettt ettt e e te e e s ae e baeeaaeens 235
Table 6.23. UNPack fUNCHIONSooiiieece ettt et e ve e e s ae e raeeaneens 266
Table 6.24. PACK FUNCLIONSoi ittt ettt ettt e b e e v e ete e beesae e baesaneesaesssaens 267
Table 6.25. AtOMIC OPEIAtIONS....ccuiii ettt et erre e e rte e e rrte e ebae e s ba e e sabaeesnbaeesnsaeennees 273
Table 6.26. Atomic Modify OPEratioNS.........occviieieiceece e e 273
Table 6.27. INTerseCt FUNCHIONcoouiieieeee ettt re et e re e e sae e beeeaaaens 287
Table 6.28. Intersect functions input parameters........ccve e 287
Table 6.29. Intersect functions to control traversal ..., 298
Table 6.30. Intersection qUErY FUNCLIONSccoiiiiiiiiececeeeeete ettt 303
Table 6.31. Intersection query functions with max_levels<Count>cccceviiiiiiceeieennenn, 303
Table 6.32. Intersection query ray value fUNCLIONSccveeiieciiiciieeeceeeee e 304
Table 6.33. Intersection query candidate value functions.........c..cccoecieeiieiieniccecceeceeeeee, 304
Table 6.34. Intersect query committed value fUNCLIONSccveeiieciiciieieeceeee e, 305
Table 6.35. Curve Utility FUNCHIONS..........ooiiiiiceee ettt et et 311
Table 7.1 EXECULION SCOPES ..eoccuieeeiieeetteeectteeectteeetteestteesvteesbae e s baeessbaessssaeesssesanssassnssassssesssseesnsens 315
B o) SN A K=Y 1] (@ o 1O 316
Table 7.3 MatMul2D data type SUPPOITEd........coccuveiiiieceeeeeeee ettt 317
Table 7.4 Additonal MatMul2D data type supported in OS 26.1 and later.........cccceeeevvveecnnnenneen. 318
Table 7.5 MatMul2D descCriptor ParameEters........cuve ettt e e te e e eees 318
Table 7.6 MatMul2D member FUNCHIONSooviiiiiiececeece ettt et 320
Table 7.7 Reduction related functions for cooperative teNSOrscccecveecvevieecieeciecceeceeeieen, 323
Table 7.8 Convolution2d descriptor ParameEtersoocveeeciieecieeecee e e 328

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 9 of 346

Table 7.9 Convolution ruN ParamMEter..........o it bre e b e eaes 329

Table 8.1. Accuracy of single-precision floating-point operations and functions 331
Table 8.2. Accuracy of single-precision operations and functions with fast math enabled.....333
Table 8.3. Accuracy of half-precision floating-point operations and functions......................... 336
Table 8.4. Accuracy of brain floating-point operations and functions..........cccccccceeeeeeceeiieeenen, 338
Table 8.5. Accuracy of brain floating-point operations and functions with fast math enabled 338
Table 8.6. Conversion to a normalized float value............ccooeiieeiiiciieciececeeeeeee e, 340
Table 8.7. Conversion from floating-point to a normalized integer value.........ccccceeevvenrennen.e. 341
Table 8.8. Conversion between integer pixel data typesS.....ccceecveeecieeecie e 343

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 10 of 346

1T Introduction

1.1 Purpose of This Document

Metal enables you to develop apps that take advantage of the graphics and compute
processing power of the GPU. This document describes the Metal Shading Language (MSL),
which you will use to write a shader program, which is graphics and data-parallel compute code
that runs on the GPU. Shader programs run on different programmable units of the GPU. MSL is
a single, unified language that allows tighter integration between the graphics and compute
programs. Since MSL is C++-based, you will find it familiar and easy to use.

MSL works with the Metal framework, which manages the execution and optionally the
compilation of the Metal programs. Metal uses clang and LLVM so you get a compiler that
delivers optimized performance on the GPU.

1.2 Organization of This Specification

This document is organized into the following chapters:

e This chapter, “Introduction,” is an introduction to this document that covers the similarities
and differences between Metal and C++17. It also details the options for the Metal compiler,
including preprocessor directives, options for math intrinsics, and options for controlling
optimization.

e "Data Types" lists the Metal data types, including types that represent vectors, matrices,
buffers, textures, and samplers. It also discusses type alignment and type conversion.

e “Operators” lists the Metal operators.

e "Address Spaces"” describes disjoint address spaces for allocating memory objects with
access restrictions.

e "Function and Variable Declarations” details how to declare functions and variables, with
optional attributes that specify restrictions.

e "Metal Standard Library” defines a collection of built-in Metal functions.

¢ “Numerical Compliance” describes requirements for representing floating-point numbers,
including accuracy in mathematical operations.

iOS and macOS support for features (functions, enumerations, types, attributes, or operators)
described in this document is available since Metal 1, unless otherwise indicated.

For the rest of this document, the abbreviation X.Y stands for “Metal version X.Y"; for example,
2.1indicates Metal 2.1. Please note that though a feature is supported in MSL shading
language, it may not be supported on all GPUs. Please refer to the Metal Feature Set Tables at
developer.apple.com.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 11 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

1.3 New in Metal 4

Metal 4 introduces the following new features:
e C++17 based (section 1.5)
e Sampler LOD bias, minimum and maximum reduction (section 2.10)
¢ Intersection Function Buffers (section 2.17.1, 5.1.6, 5.2.3.7, 6.18.2, 6.18.4,and 6.18.8)
e Per-Vertex values (section 2.19)
e Tensors (section 2.21)
e User annotations (section 5.1.12)
e Texture atomics for cube and cube array textures (section 6.12.6 and 6.12.7)
e Pack and unpack of snorm10a2 (section 6.14)
¢ Indirect command buffer support for raster and depth stencil states (section 6.16.1)

e Metal Performance Primitives (section 7)

1.4 References

Metal
Here is a link to the Metal documentation on apple.com:

https://developer.apple.com/documentation/metal

1.5 Metal and C++17/

Starting in Metal 4, the Metal programming language is a C++17-based specification with
extensions and restrictions. Refer to the C++17 specification (also known as ISO/IEC
14882:2017) for a detailed description of the language grammar. Prior language versions of
Metal are a C++14-based specification with extensions and restrictions.

This section and its subsections describe the modifications and restrictions to the C++17 and
C++14 language supported in Metal.

For more about Metal preprocessing directives and compiler options, see section 1.6 of this
document.

1.5.1 Overloading

Metal supports overloading, as defined by section 13 of the C++17 and C++14 specification.
Metal extends the function overloading rules to include the address space attribute of an
argument. You cannot overload Metal graphics and kernel functions. (For a definition of
graphics and kernel functions, see section 5.1 of this document.)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 12 of 346

https://developer.apple.com/documentation/metal
https://developer.apple.com/documentation/metal

1.5.2 Templates

Metal supports templates, as defined by section 14 of the C++17 and C++14 specification.

1.5.3 Preprocessing Directives

Metal supports the preprocessing directives, as defined by section 16 of the C++17 and C++14
Specification.

1.5.4 Restrictions
All OS: Metal 3.2 and later support lambda expressions.

The following C++17 features are not available in Metal (section numbers in this list refer to the
C++17 Specification):

lambda expressions (section 5.1.2) prior to Metal 3.2
dynamic_cast operator (section 5.2.7)

type identification (section 5.2.8)

new and delete operators (sections 5.3.4 and 5.3.5)
noexcept operator (section 5.3.7)

goto statement (section 6.6)

register, thread_local storage attributes (section 7.1.1)
virtual function attribute (section 7.1.2)

derived classes (section 10, section 11)

exception handling (section 15)

Do not use the C++ standard library in Metal code. Instead, Metal has its own standard library,
as discussed in section 5 of this document.

Metal restricts the use of pointers:

¢ You must declare arguments to Metal graphics and kernel functions that are pointers with
the Metal device, constant, threadgroup, threadgroup_imageblock,
object_data, or ray_data address space attribute. (For more about Metal address
space attributes, see section 4 of this document.)

e Metal 2.3 and later support function pointers.

Metal supports recursive function calls (C++ section 5.2.2, item 9) in compute (kernel) context
starting with Metal 2.4.

You can't call a Metal function main.

1.6 Compiler and Preprocessor

You can use the Metal compiler online (with the appropriate APls to compile Metal sources) or
offline. You can load Metal sources that are compiled offline as binaries, using the appropriate
Metal APIs.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 13 of 346

This section explains the compiler options supported by the Metal compiler and categorizes
them as preprocessor options, options for math intrinsics, options that control optimization,
miscellaneous compilation options, and linking.

1.6.1 Preprocessor Compiler Options

The following options control the Metal preprocessor that runs on each program source before
actual compilation:

-D name
Predefine name as a macro, with definition 1
-D name=definition

Metal tokenizes and processes the contents of definition as if they appearin a
#define directive. This option allows you to compile Metal code to enable or disable
features. You may use this option multiple times, and the preprocessor processes the
definitions in the order in which they appear.

-I dir

Add the directory dir to the search path of directories for header files. This option is
only available for the offline compiler.

1.6.2 Preprocessor Definitions

The Metal compiler sets a number of preprocessor definitions by default, including:
__METAL_VERSION__ // Set to the Metal language revision
__METAL_MACOS__ // Set if compiled with the macOS Metal language
__METAL_IOS__ // Set if compiled with the i0S Metal language

__METAL__ // Set if compiled with the unified Metal language
// Set with —-std=metal3.0 or above

You can use definitions to conditionally apply shading language features that are only available
on later language version (see section 1.6.10 Compiler Options Controlling the Language
Version).

The version number is MajorMinorPatch. For example, for Metal 1.2, patch O,
__METAL_VERSION__ is120; for Metal 2.1, patch 1, __METAL_VERSION__ is 211.

To conditionally include code that uses features introduced in Metal 2, you can use the
preprocessor definition in code, as follows:

#if __METAL_VERSION__ >= 200
// Code that requires features introduced in Metal 2.
#endif

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 14 of 346

1.6.3 Math Intrinsics Compiler Options

The following section describes options to control compiler behavior regarding floating-point
arithmetic, trading off between speed and correctness.

For more about math functions, see section 6.5. For more about the relative errors of ordinary
and fast math functions, see section 8.4.

The options enable or disable the optimizations for floating-point arithmetic that may violate the
IEEE 754 standard. They also enable or disable the high precision variant of math functions for
single precision floating-point scalar and vector types.

The fast math optimizations for floating-point arithmetic include:

¢ No NaNs: Allow optimizations to assume the arguments and result are not NaN (not a
number).

¢ No INFs: Allow optimizations to assume the arguments and result are not positive or
negative infinity.

¢ No Signed Zeroes: Allow optimizations to treat the sign of a zero argument or result as
insignificant.

¢ Allow Reciprocal: Allow optimizations to use the reciprocal of an argument rather than
perform a division.

¢ Allow Reassociation: Allow algebraically equivalent transformations, such as reassociating
floating-point operations that may dramatically change the floating-point results.

¢ Allow Contract: Allow floating-point contraction across statements. For example, allow
fusing a multiple followed by an additional into a single fused-multiply-add.

Metal supports the following options beginning with Xcode 16 and Metal Developer Tools for
Windows 5 (SDK supporting iOS 18 or macOS 15).

—fmetal-math-fp32-functions=<fast|precise>

This option sets the single-precision floating-point math functions described in section
6.5 to call either the fast or precise version. The defaultis fast. For Apple silicon,
starting with Apple GPU Family 4, the math functions honor INF and NaN.

—-fmetal-math—-mode=<fast, relaxed, safe>

This option sets how aggressive the compiler can be with floating-point optimizations.
The defaultis fast.

If you set the option to fast, it lets the compiler make aggressive, potentially lossy
assumptions about floating-point math. These include no NaNs, no INFs, no signed zeros,
allow reciprocal, allow reassociation, and FP contract to be fast.

If you set the option to relaxed, it lets the compiler make aggressive, potentially lossy
assumptions about floating-point math, but honors INFs and NaNs. These include no
signed zeros, allow reciprocal, allow reassociation, and FP contract to be fast. This
supports Apple silicon.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 15 of 346

If you set the option to safe, it disables unsafe floating-point optimizations by preventing
the compiler from making any transformations that might affect the results. This sets the
FP contract to on.

Metal supports the following legacy options:
—ffast-math

Equivalent to -fmetal-math-fp32-functions=fast and -fmetal-math-
mode=fast.

—fno-fast—-math

Equivalent to -fmetal-math—-fp32-functions=precise and -fmetal-math-
mode=safe.

When utilizing fast math in your program, it is important to understand that the compiler can
assume certain properties and make optimizations accordingly. For example, the use of fast
math asserts that the shader will never generate INF or NaN. If the program has an expression
X/Y, the compiler can assume Y is never zero as this could potentially result in positive/negative
infinite or NaN, depending on the value of X. If Y can be zero, you would have an undefined
program if compiled with fast math.

The #pragma metal fp pragmas allow you to specify floating-point options for a source code
section.

The following pragma has the same semantics to allow you to specify precise floating-point
semantics and floating-point exception behavior for a source code section. It can only appear in
file or namespace scope, within a language linkage specification, or at the start of a compound
statement (excluding comments). When using it within a compound statement, the pragma is
active within the scope of the compound statement:

#pragma METAL fp math_mode([relaxed | safe | fastl])

By default, the compiler allows floating-point contractions. For example, axb+c may be
converted to a single fused-multiply-add. These contractions could lead to computation
differences if other expressions are not contracted. To disable allowing the compiler to
contractions, pass the following option:

—ffp—contract=off
The compiler also supports controlling contractions with the following pragma:
#pragma METAL fp contract([off | on | fast])

Using of f disables contractions, on allows contractions with statement, and fast allows
contractions across statements. You can also use:

#pragma STDC FP_CONTRACT OFF

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 16 of 346

1.6.4 Invariance Compiler Options

If you are building with an SDK that supports iOS 14 or macOS 11, you need to pass the
following option to support vertex invariance:

—fpreserve-invariance

Preserve invariant for computations marked with [[invariant]] in vertex shaders. If
notset, [[invariant]] isignored.

In previous versions of Metal, [[invariant]] was a best-effort analysis to mark which
operations need to be invariant and may fail in certain cases. This is replaced with a
conservative invariant model where the compiler marks operations that doesn’t go into an
invariant calculation. This will guarantee anything that is invariant calculation remains invariant.
This option may reduce performance as it may prevent certain optimizations to preserve
invariance.

1.6.5 Optimization Compiler Options
These options control the optimization level of the compiler:
-02

Optimize for performance (default).

-0s

Like —02 with extra optimizations to reduce code size.

1.6.6 Maximum Total Threadgroup Size Option

All OS: Metal 3 and later support maximum total threadgroup size option.

This option specifies the number of threads (value) in a threadgroup for every function in the
translation unit:

—fmax—total-threads—-per-threadgroup=<value>

The attribute [[max_total_threads_per_threadgroup]] function attribute described in
section 5.1.3, section 5.1.7, and section 5.1.8 takes precedence over the compile option. The
value must fit within 32 bits.

This option is useful for setting the option to enable functions compiled for a dynamic library to
be compatible with a PSO.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 17 of 346

1.6.7 Texture Write Rounding Mode

Configure the rounding mode for texture writes to floating-point pixel types by setting the -
ftexture-write-rounding-mode compiler flag to one of the options in Table 1.1.

Table 1.1. Rounding mode

Rounding mode Description
native . , . .
(default) Texture writes use the hardware’s native rounding strategy.
rte

Texture writes round to the nearest even number.
All OS: Metal 2.3 and exture es round to the nearest even numbe

later

rtz

All OS: Metal 2.3 and Texture writes round toward zero.

later

The —ftexture-write-rounding-mode flag is available for these SDKs:

¢ macOS 11 and later
e {0S 14 and later

For more information about which GPU families support rounding modes other than native,
see the Metal Feature Set Tables.

1.6.8 Compiler Options to Enable Modules

The compiler supports multiple options to control the use of modules. These options are only
available for the offline compiler:

—fmodules
Enable the modules feature.
—fimplicit-module-maps

Enable the implicit search for module map files named module.modulemap ora
similar name. By default, —-fmodules enables this option. (The compiler
option —fno—implicit-module—-maps disables this option.)

—fno-implicit-module—-maps

Disable the implicit search for module map files named module .modulemap.
module map files are only loaded if they are explicitly specified with —fmodule-
map—Tile ortransitively used by another module map file.

—fmodules—cache—-path=<directory>

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 18 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

Specify the path to the modules cache. If not provided, the compiler selects a
system-appropriate default.

—fmodule-map-file=<file>

Load the specified module map file, if a header from its directory or one of its
subdirectories is loaded.

If you are building with an SDK that supports iOS 16 or macOS 13, —fmodules has the
following additional options:

—fmodules=[mode]
Supported values for modes are:

stdlib: Enable the modules feature but restrict the search for module maps to
the Metal standard library. Enabled by default with an SDK that supports

iOS 16 or macOS 13.
all: Enable the modules feature (equivalent to —fmodules).
none: Disable the modules feature.

1.6.9 Compiler Options to Enable Logging
All OS: Metal 3.2 and later support logging for Apple silicon.

You need to provide the following compiler option to enable logging (see section 6.19) during
compilation:

—fmetal-enable-logging

1.6.10 Compiler Options Controlling the Language Version

The following option controls the version of the unified graphics and computing language
accepted by the compiler:

—-std=

Determine the language revision to use. A value for this option must be provided, which must
be one of:

+ 1os—-metall.0: Supports the unified graphics and computing language revision 1
programs for iOS 8. [[Deprecated]]

+ 1os—-metall.l: Supports the unified graphics and computing language revision 1.1
programs for iOS 9.

+ 1os—-metall.2: Supports the unified graphics and computing language revision 1.2
programs for iOS 10.

+ 1os—-metal2.0: Supports the unified graphics and computing language revision 2
programs for iOS 11.

+ 1os—-metal2.1: Supports the unified graphics and computing language revision 2.1
programs for iOS 12.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 19 of 346

ios—metal2.2: Supports the unified graphics and computing language revision 2.2
programs for iOS 13.

ios—metal?2. 3: Supports the unified graphics and computing language revision 2.3
programs for iOS 14.

ios—metal2.4: Supports the unified graphics and computing language revision 2.4
programs for iOS 15.

macos—-metall,lorosx—metall.l: Supports the unified graphics and computing
language revision 1.1 programs for macQOS 10.11.

macos—-metall.2orosx—metall. 2: Supports the unified graphics and computing
language revision 1.2 programs for macOS 10.12.

macos—-metal2.0 or osx—-metal2.0: Supports the unified graphics and computing
language revision 2 programs for macOS 10.13.

macos—metal2.1: Supports the unified graphics and computing language revision 2.1
programs for macOS 10.14.

macos—metal2.2: Supports the unified graphics and computing language revision 2.2
programs for macOS 10.15.

macos—metal2. 3: Supports the unified graphics and computing language revision 2.3
programs for macOS 11.

macos—metal2.4: Supports the unified graphics and computing language revision 2.4

programs for macOS 12.

Note that macos—x is available in macOS 10.13 SDK and later.

As of i0S 16, macOS 13, and tvOS 16, Metal has unified the shading language between the
platforms:

metal3.0: Supports the unified graphics and computing language revision 3 programs
for i0OS 16, macOS 13, and tvOS 16.

metal3.1: Supports the unified graphics and computing language revision 3.1
programs for iOS 17, macOS 14, tvOS 17, and visionOS 1.

Only Apple Silicon supports new features in language standard 3.2 and above:

metal3.2: Supports the unified graphics and computing language revision 3.2
programs for iOS 18, macOS 15, tvOS 18, and visionOS 2.

metals. 0: Supports the unified graphics and computing language revision 4 programs
foriOS 26, macOS 26, tvOS 26, and visionOS 26.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 20 of 346

1.6.11 Compiler Options to Request or Suppress Warnings
The following options are available:
-Werror
Make all warnings into errors.
—-w
Inhibit all warning messages.
1.6.12 Target Conditionals

Metal defines several macros which one can use to determine what platform the shader is
running on. The following macros are defined in <TargetConditionals.h>:

TARGET_OS_MAC : Generated code runs under Mac 0S X variant
TARGET_0S_0SX : Generated code runs under 0S X devices
TARGET_OS_IPHONE : Generated code for firmware, devices or simulator
TARGET_0S_IOS : Generated code runs under iOS

TARGET_OS_TV : Generated code runs under tvOS
TARGET_OS_MACCATALYST : Generated code runs under macOS
TARGET_OS_SIMULATOR : Generated code runs under a simulator
TARGET_OS_VISION : Generated code runs under visionOS

(Available in SDKs in late 2023)

Note that this header is not part of <metal_stdlib>.

1.6.13 Dynamic Library Linker Options

The Metal compiler driver can pass options to the linker. Here is a brief description of some of
these options. See the Metal linker for more information:

-dynamiclib

Specify that the output is a dynamic library.

—install_name

Used with —dynamic1ib to specify the location of where the dynamic library is
expected be installed and found by the loader. Use with ®executable_path and
@loader_path.

1.6.14 Options for Compiling to GPU Binaries

The following options are available for compiling to a GPU binary if you are building with an SDK
that supports iOS 16 or macOS 13:

-arch [architecturel

Specify the architecture to build for.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 21 of 346

-gpu—-family [gpu family name]

Specify the architectures associated with the MTLGPUFami 1y to build for. See
MTLGPUFamily in Metal API for the list of available families.

-N [descriptor.mtlp-json]

Specify the pipeline descriptors in Metal script format. The descriptor files must end in
.mtlp-json.

1.6.15 Options for Generating Metal Library Symbol Files

If you are building with an SDK that supports iOS 15 or macOS 12, the following option is
available to generate a Metal library symbol file:

—frecord-sources

Enable the compiler to store source information into the AIR or Metal library file
(.metallib).

—frecord-sources=flat

Enable the compiler to store source information if generating an AIR file. Enable the
compiler to store the source information in a symbol companion file (.metallibsym)
if generating a Metal Library file.

See Generating and loading a Metal library symbol file at developer.apple.com for more
information.

1.7 Metal Coordinate Systems

Metal defines several standard coordinate systems to represent transformed graphics data at
different stages along the rendering pipeline.

A four-dimensional homogenous vector (x, vy, z, w) specifies a three-dimensional point in clip-
space coordinates. A vertex shader generates positions in clip-space coordinates. Metal divides
the X, y, and z values by w to convert clip-space coordinates into normalized device
coordinates.

Normalized device coordinates use a leff-handed coordinate system (see Figure 1) and map to
positions in the viewport. These coordinates are independent of viewport size. The lower-left
corner of the viewport is at an (x, y) coordinate of (-1.0,-1.0) and the upper corner is at
(1.0,1.0). Positive-z values point away from the camera ("into the screen"). The visible
portion of the z coordinate is between 0.0 and 1. 0. The Metal rendering pipeline clips
primitives to this box.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 22 of 346

https://developer.apple.com/documentation/metal/MTLGPUFamily
https://developer.apple.com/documentation/metal/generating-and-loading-a-metal-library-symbol-file

Figure 1. Normalized device coordinate system

(-1,1,1) (1,1,1)

(-1,1,0) (1,1,0)

(0,0,1)
(]

/

[]
(0,0,0

(-1,-1,1)

(1,-1,1

(-1,-1,0) (1,-1,0)

The rasterizer stage transforms normalized-device coordinates (NDC) into viewport coordinates
(see Figure 2). The (x,y) coordinates in this space are measured in pixels, with the origin in
the top-left corner of the viewport and positive values going to the right and down. You specify
viewports in this coordinate space, and the Metal maps NDC coordinates to the extents of the
viewport.

If you are using variable rasterization rate (see Section 6.15), then the viewport coordinate
system is a logical coordinate system independent of the render target's physical layout. A rate
map determines the relationship between coordinates in this logical coordinate system
(sometimes called screen space) and pixels in the render targets (physical coordinates).

Figure 2. Viewport coordinate system

(1024, C

Texture coordinates use a similar coordinate system to viewport coordinates. Texture
coordinates can also be specified using normalized texture coordinates. For 2D textures,
normalized texture coordinates are values from 0.0 to 1.0 in both x and y directions, as seen
in Figure 3. A value of (0.0, 0. 0) specifies the pixel at the first byte of the image data (the top-
left corner of the image). A value of (1.0, 1. 0) specifies the pixel at the last byte of the image
data (the bottom-right corner of the image).

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 23 of 346

Figure 3. Normalized 2D texture coordinate system

(0.0, 0.0) (1.0, 0.0)
. .

(0.5, 0.5)

.
(0.0, 1,0). (1.0, 1.0)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 24 of 346

2 Data Types

This chapter details the Metal data types, including types that represent vectors and matrices.
The chapter also discusses atomic data types, buffers, textures, samplers, arrays, user-defined
structures, type alignment, and type conversion.

2.1 Scalar Data Types

Metal supports the scalar types listed in Table 2.1. Metal does not support the double, 1ong
long, unsigned long long,and long double data types.

Table 2.1. Metal scalar data types

Type Description

bool A conditional data type that has the value of either true or false.
The value true expands to the integer constant 1, and the value
false expands to the integer constant O.

char A signed two's complement 8-bit integer.

int8_t

unsigned char An unsigned 8-bit integer.

uchar

uint8_t

short A signed two's complement 16-bit integer.

intlé_t

unsigned short An unsigned 16-bit integer.

ushort

uintlé_t

int A signed two's complement 32-bit integer.

int32_t

unsigned int An unsigned 32-bit integer.

uint

uint32_t

long A signed two's complement 64-bit integer.

inté64_t

All OS: Metal 2.2 and

later

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 25 of 346

Type

Description

unsigned long
uintés4_t

All OS: Metal 2.2 and
later

An unsigned 64-bit integer.

All OS: Metal 3.1 and
later

half A 16-bit floating-point. The half data type must conform to the
IEEE 754 binary16 storage format.
bfloat A 16-bit brain floating-point. The bf1oat data type is a truncated

version of T1oat for machine learning applications, using an 8-bit
(7 explicitly stored) rather than 24-bit mantissa).

float A 32-bit floating-point. The float data type must conform to the
IEEE 754 single precision storage format.

size_t An unsigned integer type of the result of the sizeof operator.
This is a 64-bit unsigned integer.

ptrdiff_t A signed integer type that is the result of subtracting two pointers.
This is a 64-bit signed integer.

void The void type comprises an empty set of values; it is an

incomplete type that cannot be completed.

Metal supports:

e the T or F suffix to specify a single precision floating-point literal value (suchas 0.5f or

0.5F).

e the h or H suffix to specify a half precision floating-point literal value (such as ©.5h or

0.5H).

e the bf or suffix to specify a brain precision floating-point literal value (such as ©0.5bf or

0.5BF).

e the u or U suffix for unsigned integer literals.
e the 1 or L suffix for signed long integer literals.

Table 2.2 lists the size and alignment of most of the scalar data types.

Table 2.2. Size and alignment of scalar data types

Type Size Alignment
(in bytes) (in bytes)
bool 1 1

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 26 of 346

Type Size Alignment
(in bytes) (in bytes)

char 1 1
int8_t
unsigned char
uchar

uint8_t

short 2 2
intlé_t
unsigned short
ushort
uintlé_t

int 4 4
int32_t
unsigned int
uint
uint32_t

long 8 8
inté4_t
unsigned long
uintés4_t

size t

half

bfloat

A I NN | ©
A I NN | ©

float

2.2 Vector Data Types

Metal supports a subset of the vector data types implemented by the system vector math
library. Metal supported these vector type names, where n is 2, 3, or 4, representing a 2-, 3-, or
4-component vector type, respectively:

e booln

e charn

e shortn
e 1intn

e longn

e ucharn
e ushortn
e uintn

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 27 of 346

ulongn

halfn

bfloatn (Metal 3.1and later)
floatn

Metal also supports vec<T, n> where T is a valid scalar type and n is 2, 3, or 4, representing a
2-, 3-, or 4- component vector type.

Table 2.3 lists the size and alignment of the vector data types.

Table 2.3. Size and alignment of vector data types

Type Size Alignment
(in bytes) (in bytes)

bool?2 2 2

bool3 4 4

bool4 4 4

char2 2 2

uchar?2

char3 4 4

uchar3

char4 4 4

uchar4

short2 4 4

ushort2

short3 8 8

ushort3

shorts 8 8

ushort4

int2 8 8

uint2

int3 16 16

uint3

int4 16 16

uints

long?2 16 16

ulong?2

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 28 of 346

Type Size Alignment
(in bytes) (in bytes)

long3 32 32

ulong3

long4 32 32

ulong4

half2 4 4

half3 8 8

halfs 8 8

bfloat2 4 4

bfloat3 8 8

bfloat4 8 8

float2 8 8

float3 16 16

floats 16 16

221 Accessing Vector Components

You can use an array index to access vector components. Array index 0 refers to the first
component of the vector, index 1 to the second component, and so on. The following examples
show various ways to access array components:

pos = float4(l.0f, 2.0f, 3.0f, 4.0f);

1.0
3.0

float x posl[@]; // x
float z = posl[2]; // z

float4 vA = float4(1.0f, 2.0f, 3.0f, 4.0f);
float4 vB;

for (int 1=0; i<4; 1i++)

vB[i] = vA[i] *x 2.0f // vB = (2.0, 4.0, 6.0, 8.0);

Metal supports using a period (.) as a selection operator to access vector components, using
letters that may indicate coordinate or color data:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 29 of 346

<vector_data_type>.xyzw

<vector_data_type>.rgba

The following code initializes a vector test and then uses the . xyzw or . rgba selection syntax
to access individual components:

int4 test = int4(@, 1, 2, 3);

int a = test.x; // a =10
int b = test.y; // b =1
int ¢ = test.z; // ¢ =2
int d = test.w; // d =3
int e = test.r; // e =10
int f = test.g; // f =1
int g = test.b; // g =2
int h = test.a; // h =3

The component selection syntax allows the selection of multiple components:
floats4 c;

c.xyzw = float4(1.0f, 2.0f, 3.0f, 4.0f);

c.z = 1.0f;

c.xy = float2(3.0f, 4.0f);

c.xyz = float3(3.0f, 4.0f, 5.0f);

The component selection syntax also allows the permutation or replication of components:
float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

float4 swiz = pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)

float4 dup = pos.xxyy; // dup = (1.0f, 1.0f, 2.0f, 2.0f)

The component group notation can occur on the left-hand side (Ivalue) of an expression. To
form the lvalue, you may apply swizzling. The resulting Ivalue may be either the scalar or vector
type, depending on number of components specified. Each component must be a supported
scalar or vector type. The resulting Ivalue of vector type must not contain duplicate
components.

float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);
// pos = (5.0, 2.0, 3.0, 6.0)
float2(5.0f, 6.0f);

POS . XW

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 30 of 346

// pos = (8.0, 2.0, 3.0, 7.0)
pos.wx = float2(7.0f, 8.0f);
// pos = (3.0, 5.0, 9.0, 7.0)

pos.xyz = float3(3.0f, 5.0f, 9.0f);

When assigning a swizzled value to a variable, the GPU may need to read the existing value,
modify it, and write the result back. The assignment to pos. xw in the example above, causes
the GPU to load the float4 value, shuffle values 5.0f and 6.0f intoit, and the write back
the result back into pos. If two threads write to different components of the vector at the same
time, the result is undefined.

The following methods of vector component access are not permitted and result in a compile-
time error:

e Accessing components beyond those declared for the vector type is an error.
2-component vector data types can only access . xy or . rg elements. 3-component vector
data types can only access . xyz or . rgb elements.

float2 pos; // This is a 2-component vector.
pos.x = 1.0f; // x is legal and so is vy.

pos.z = 1.0f; // z is illegal and so is w. z is the 3rd
component.

float3 pos; // This is a 3-component vector.
pos.z = 1.0f; // z is legal for a 3-component vector.
pos.w = 1.0f; // This is illegal. w is the 4th component.
¢ Accessing the same component twice on the left-hand side is ambiguous and is an error:
// This is illegal because 'x' is used twice.
pos.xx = float2(3.0f, 4.0f);
e Accessing a different number of components is an error:
// This is illegal due to a mismatch between float2 and float4.
pos.xy = float4(1.0f, 2.0f, 3.0f, 4.0T);
¢ Intermixing the . rgba and . xyzw syntax in a single access is an error:
float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);
1.0f; // OK
2.0f; // OK

POS. X

pos.g

// These are illegal due to mixing rgba and xyzw attributes.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 31 of 346

pos.xg = float2(3.0f, 4.0f);
float3 coord = pos.ryz;

e A pointer or reference to a vector with swizzles is an error:
float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

my_func(&pos.xy); // This is an illegal pointer to a swizzle.

The sizeof operator on a vector type returns the size of the vector. This is typically the
number of components * size of each component, except for 3-component vectors whose
size is the same as the 4-component vector (see Table 2.3) . For example, sizeof (float4)
returns 16 and sizeof (half4) returns 8.

2.2.2 Vector Constructors

You can use constructors to create vectors from a set of scalars or vectors. The parameter
signature determines how to construct and initialize a vector. For instance, if the vector is
initialized with only a single scalar parameter, all components of the constructed vector are set
to that scalar value.

If you construct a vector from multiple scalars, one or more vectors, or a mixture of scalars and
vectors, Metal consumes the vector's components in order from the components of the
arguments. Metal consumes the arguments from left to right. Metal consumes all of an
argument’s components, in order, before any components from the following argument.

This is a list of constructors for float4:

float4(float x);

float4(float x, float y, float z, float w);
float4(float2 a, float2 b);

float4(float2 a, float b, float c);
float4(float a, float b, float2 c);
float4(float a, float2 b, float c);
float4(float3 a, float b);

float4(float a, float3 b);

float4(floats x);

This is a list of constructors for float3:
float3(float x);

float3(float x, float y, float z);
float3(float a, float2 b);
float3(float2 a, float b);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 32 of 346

float3(float3 x);

This is a list of constructors for float2:
float2(float x);

float2(float x, float y);
float2(float2 x);

The following examples illustrate uses of the constructors:
float x = 1.0f, vy = 2.0f, z = 3.0f, w = 4.0f;

float4 a = float4(0.0f);
float4 b = float4(x, y, z, w);
float2 ¢ = float2(5.0f, 6.0f);
float2 a = float2(x, vy);
float2 b = float2(z, w);
float4 x = float4(a.xy, b.xy);

Under-initializing a vector constructor results in a compile-time error.

2.2.3 Packed Vector Types

You must align the vector data types described in section 2.2 to the size of the vector. You can
also require their vector data to be tightly packed; for example, a vertex structure that may
contain position, normal, tangent vectors and texture coordinates tightly packed and passed as
a buffer to a vertex function.

The supported packed vector type names are:

e packed_charn

e packed_shortn

packed_intn

packed_ucharn

packed_ushortn

packed_uintn

packed_halfn

e packed_bfloatn (Metal 3.1and later)
e packed_floatn

e packed_longn (Metal 2.3 and later)

Where nis 2, 3, or 4, representing a 2-, 3-, or 4-component vector type, respectively. (The
packed_booln vector type names are reserved.)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 33 of 346

Metal also supports packed_vec<T,n> where T is a valid scalar type and n is 2, 3, or 4,

representing a 2-, 3-, or 4-component packed vector type.

Table 2.4 lists the size and alignment of the packed vector data types.

Table 2.4. Size and alignment of packed vector data types

Type

Size (in bytes)

Alignment (in bytes)

packed_char2,
packed_uchar2

2

1

packed_char3,
packed_uchar3

packed_charé4,
packed_uchar4

packed_short2,
packed_ushort2

packed_short3,
packed_ushort3

packed_shorté4,
packed_ushort4

packed_int2,
packed_uint2

packed_int3,
packed_uint3

12

packed_int4,
packed_uint4

packed_half2

packed_half3

packed_half4

packed_bfloat2

packed_bfloat3

packed_bfloat4

packed_float2

packed_float3

A B INIDNINDMNIDNIDNIDN

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 34 of 346

Type Size (in bytes) Alignment (in bytes)
packed_float4 16 4
packed_long2 16 8
packed_long3 24 8
packed_long4 32 8

Packed vector data types are typically used as a data storage format. Metal supports the
assignment, arithmetic, logical, relational, and copy constructor operators for packed vector
data types. Metal also supports loads and stores from a packed vector data type to an aligned
vector data type and vice-versa.

Examples:

device float4 xbuffer;

device packed_float4 xpacked_buffer;
int 1i;

packed_float4 f (buffer[i]);
pack_buffer[i] = buffer[i];

// An operator used to convert from packed_float4 to floaté4.
buffer[i] = float4(packed_buffer[i]);

You can use an array index to access components of a packed vector data type. In Metal 2.1
and later, you can use . xyzw or . rgba selection syntax to access components of a packed
vector data type. The semantics and restrictions when swizzling for packed vector data type
are the same as for vector types.

Example:

packed_float4 f;

fle]l = 1.0f; // OK

f.x = 1.0f; // OK, Metal 2.1 and later.

2.3 Matrix Data Types

Metal supports a subset of the matrix data types implemented by the system math library.
The supported matrix type names are:
e halfnxm

e floatnxm

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 35 of 346

Where n and m are numbers of columns and rows. n and m must be 2, 3, or 4. A matrix of type
floatnxm consists of n floatm vectors. Similarly, a matrix of type halfnxm consists of n
halfm vectors.

Metal also supports matrix<T,c, r>, where Tis a valid floating-point type, ¢ is 2, 3, or 4, and
r is 2, 3, or 4,

Table 2.5 lists the size and alignment of the matrix data types.

Table 2.5. Size and alignment of matrix data types

Type Size (in bytes) Alignment (in bytes)
half2x2 8 4
half2x3 16 8
half2x4 16 8
half3x2 12 4
half3x3 24 8
half3x4 24 8
half4x2 16 4
half4x3 32 8
half4x4 32 8
float2x2 16 8
float2x3 32 16
float2x4 32 16
float3x2 24 8
float3x3 48 16
float3x4 48 16
float4x2 32 8
float4x3 64 16
float4x4 64 16

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 36 of 346

231 Accessing Matrix Components

You can use the array subscripting syntax to access the components of a matrix. Applying a
single subscript to a matrix treats the matrix as an array of column vectors. Two subscripts
select a column and then a row. The top column is column O. A second subscript then operates
on the resulting vector, as defined earlier for vectors.

float4x4 m;

// This sets the 2nd column to all 2.0.

m[1] = float4(2.0f);

// This sets the 1st element of the 1st column to 1.0.
m[o][0] = 1.0f;

// This sets the 4th element of the 3rd column to 3.0.
m[2][3] = 3.0f;

Access floatnxmand halfnxm matrices as an array of n f1loatmor n halfm entries.

Accessing a component outside the bounds of a matrix with a nonconstant expression results in
undefined behavior. Accessing a matrix component that is outside the bounds of the matrix
with a constant expression generates a compile-time error.

2.3.2 Matrix Constructors

Use constructors to create matrices from a set of scalars, vectors, or matrices. The parameter
signature determines how to construct and initialize a matrix. For example, if you initialize a
matrix with only a single scalar parameter, the result is a matrix that contains that scalar for all
components of the matrix's diagonal, with the remaining components initialized to 0. 9. For
example, a call to:

floats4x4(fval);

Where fval is a scalar floating-point value constructs a matrix with these initial contents:
fval 0.0 0.0 0.0

0.0 fval 0.0 0.0

0.0 0.0 fval 0.0

0.0 0.0 0.0 fval

You can also construct a matrix from another matrix that has the same number of rows and
columns. For example:

float3x4(float3x4);
float3x4(half3x4);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 37 of 346

Metal constructs and consumes matrix components in column-major order. The matrix
constructor needs to have just enough specified values in its arguments to initialize every
component in the constructed matrix object. Providing more arguments than necessary results
in an error. Under-initializing a matrix constructor results in a compile-time error.

You can also construct a matrix of type T with n columns and m rows from n vectors of type T
with m components. The following examples are legal constructors:

float2x2(float2, float2);
float3x3(float3, float3, float3);
float3x2(float2, float2, float2);

In Metal 2 and later, a matrix of type T with n columns and m rows can also be constructed from
n * m scalars of type T. The following examples are legal constructors:

float2x2(float, float, float, float);
float3x2(float, float, float, float, float, float);

The following are examples of matrix constructors that Metal doesn't support. You can't
construct a matrix from combinations of vectors and scalars.

// Not supported.
float2x3(float2 a, float b, float2 c, float d);

2.4 SIMD-group Matrix Data Types

All OS: Metal 2.3 and later support SIMD-group matrix types.

Metal supports a matrix type simdgroup_matrix<T,Cols, Rows> definedin
<metal_simdgroup_matrix>. Operations on SIMD-group matrices are executed
cooperatively by threads in the SIMD-group. Therefore, all operations must be executed only
under uniform control-flow within the SIMD-group or the behavior is undefined.

Metal supports the following SIMD-group matrix type names, where T is half, bfloat (in
Metal 3.1 and later) or f1loat and Cols and Rows are 8:

e simdgroup_half8x8
e simdgroup_bfloat8x8 (Metal 3.1and later)
e simdgroup_float8x8

The mapping of matrix elements to threads in the SIMD-group is unspecified. For a description
of which functions Metal supports on SIMD-group matrices, see section 6.7

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 38 of 346

2.5 Alignment of Data Types

You can use the alignas alignment specifier to specify the alignment requirement of a type or
an object. You may also apply the alignas specifier to the declaration of a variable or a data
member of a structure or class. You may also apply it to the declaration of a structure, class, or
enumeration type.

The Metal compiler is responsible for aligning data items to the appropriate alignment as
required by the data type. For arguments to a graphics or kernel function declared to be a
pointer to a data type, the Metal compiler assumes that the object referenced by the pointer is
always appropriately aligned as required by the data type.

2.6 Atomic Data Types
Objects of atomic types are free from data races. If one thread writes to an atomic object while
another thread reads from it, the behavior is well-defined.

Metal supports atomic<T>, where T can be int, uint, bool, or ulong for all OSes that
support Metal 2.4 and later, or T can be float for all OSes that support Metal 3 and later.

Metal provides these type aliases for atomic types:

atomic_int A type of alias of atomic<int> for OSes that support Metal 1 and later.
atomic_uint Atype of alias of atomic<uint> for OSes that support Metal 1 and later.
atomic_bool Atype of alias of atomic<bool> for OSes that support Metal 2.4 and later.
atomic_ulong A type of alias of atomic<ulong> for OSes that support Metal 2.4 and later.

atomic_float Atype of alias of atomic<float> for OSes that support Metal 3 and later.

Metal atomic functions (as described in section 6.15) can only use Metal atomic data types.
These atomic functions are a subset of the C++17 atomic and synchronization functions.

2.7 Pixel Data Types

iOS: Metal 2 and later support pixel data types.
macOS: Metal 2.3 and later support pixel data types.

The Metal pixel data type is a templated type that describes the pixel format type and its
corresponding ALU type. The header <metal_pixel> defines Metal pixel data. The ALU type
represents the type returned by a load operation and the input type specified for a store
operation. Pixel data types are generally available in all address spaces. (For more about
address spaces, see section 4.)

Table 2.6 lists supported pixel data types in MSL, as well as their size and alignment.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 39 of 346

Table 2.6. Metal pixel data types

Pixel data type Supported values Size Alignment
of T (in bytes) (in bytes)
r8unorm<T> half or float 1 1
r8snorm<T> half or float 1 1
rliéunorm<T> float 2 2
rliésnorm<T> float 2 2
rg8unorm<T> half2or float2 2 1
rg8snorm<T> half2or float2 2 1
rgléunorm<T> float2 4 2
rglésnorm<T> float2 4 2
rgba8unorm<T> half4or floats 4 1
srgbha8unorm<T> half4or floats 4 1
rgba8snorm<T> half4or floats 4 1
rgbaléunorm<T> floats 8 2
rgbalésnorm<T> floats 8 2
rgb10a2<T> half4or floats 4 4
rgllbl1ef<T> half3or float3 4 4
rgb9eb5<T> half3or float3 4 4

Only assignments and equality/inequality comparisons between the pixel data types and their
corresponding ALU types are allowed. (The following examples show the buffer (n) attribute,

which is explained in section 5.2.1.)

Example:

kernel void
my_kernel(device rgba8unorm<half4> xp [[buffer(e0)l],

{

uint gid [[thread_position_in_gridll, ..)
rgba8unorm<half4> x = plindex]; half4 val = plgid];

plgid] = val;
plindex] = x;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 40 of 346

Example:

struct Foo {
rgba8unorm<half4> a;
b

kernel void
my_kernel(device Foo xp [[buffer(o)1ll,
uint gid [[thread_position_in_gridll, ..)
{
half4 a = plgid].a;

plgidl.a = a;

2.8 Buffers

MSL implements a buffer as a pointer to a built-in or user defined data type described in the
device, constant, or threadgroup address space. (For more about these address space
attributes, see sections 4.1, 4.2, and 4.4, respectively.)

Ordinary Metal buffers may contain:
+ Basictypessuchas floatand int
* Vector and matrix types
» Arrays of buffer types
» Structures of buffer types

* Unions of buffer types
Note: In Metal 2.3 and later, Metal supports buffers that contain 1ong or ulong data types.

The example below shows buffers as arguments to a function. The first two arguments are
buffers in the device address space. The third argument is a buffer in the constant address
space.

vertex ColorInOut

phong_vertex(const device packed_float3x vertices [[buffer(0)]1],
const device packed_float3x normals [[buffer(1)11,
constant AAPL::uniforms_t& uniforms [[buffer(2)1],
unsigned int vid [[vertex_id]l])

For more about the buffer (n) attribute used in the example, see section 5.2.1.

For details about argument buffers, see section 2.13.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 41 of 346

2.9 Textures

All OS: Metal 3.2 and later support memory_coherence for Apple silicon.

The texture data type is a handle to one-, two-, or three-dimensional texture data that
corresponds to all or a portion of a single mipmap level of a texture.

enum class access { sample, read, write, read_write };

In Metal 3.2 and later, texture supports the optional memory coherence parameter (see section
4.8).

enum memory_coherence {
memory_coherence_threadgroup,
memory_coherence_device

b
The description below uses the Metal 3.2 template definition with the additional optional
coherence parameter. Metal 3.1 and earlier drop that parameter. For example,

// Prior to Metal 3.2
textureld<T, access a = access::sample>

Versus:

// Metal 3.2 and later
textureld<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

The following templates define specific texture data types:

textureld<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

textureld_array<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

texture2d<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

texture2d_array<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

texture3d<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

texturecube<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

texturecube_array<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

texture2d_ms<T, access a = access::read,
memory_coherence ¢ = memory_coherence_threadgroup>

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 42 of 346

texture2d_ms_array<T, access a = access::read,
memory_coherence ¢ = memory_coherence_threadgroup>

To use sample_compare with a depth format, you need to declare one of the following texture
types:

depth2d<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

depth2d_array<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

depthcube<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

depthcube_array<T, access a = access::sample,
memory_coherence ¢ = memory_coherence_threadgroup>

macOS supports texture2d_ms_array and depth2d_ms_array in Metal 2 and later. All other
types supported in Metal 1 and later.

iOS supports all types except texture2d_ms_array and depth2d_ms_array in Metal 1 and
later.

T specifies the color type of one of the components returned when reading from a texture or the
color type of one of the components specified when writing to the texture. For texture types
(except depth texture types), T canbe half, float, short, ushort, int, or uint. For depth
texture types, T must be float.

If Tis int or short, the data associated with the texture must use a signed integer format. If T
isuint or ushort, the data associated with the texture must use an unsigned integer format.
If Tis half, the data associated with the texture must either be a normalized (signed or
unsigned integer) or half-precision format. If T is T1oat, the data associated with the texture
must either be a normalized (signed or unsigned integer), half or single-precision format.

These access attributes describe support for accessing a texture:

e sample — A graphics or kernel function can sample the texture object. sample implies the
ability to read from a texture with and without a sampler.

o read — Without a sampler, a graphics or kernel function can only read the texture object.

e write — A graphics or kernel function can write to the texture object.

e read_write — A graphics or kernel function can read and write to the texture object.

All OS: Metal 1.2 and later support read_write access. Metal 1 and later support other access
qualifiers.

Multisampled textures only support the read attribute. Depth textures only support the
sample and read attributes. Sparse textures do not support write or read_write
attributes.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 43 of 346

The following example uses access qualifiers with texture object arguments:

void foo (texture2d<float> imgA [[texture(0)]1],
texture2d<float, access::read> imgB [[texture(1)]],
texture2d<float, access::write> imgC [[texture(2)]11)
{.}

(For a description of the texture attribute, see section 5.2.1.)

You can use a texture type as the variable type for any variables declared inside a function. The
access attribute for variables of texture type declared inside a function must be
access::readoraccess:sample. Declaring variables inside a function to be a texture type
without using access: :read oraccess:sample qualifiers causes a compilation error.

Examples:

void foo (texture2d<float> imgA [[texture(0)]1],
texture2d<float, access::read> imgB [[texture(1)]],
texture2d<float, access::write> imgC [[texture(2)]11)

{
texture2d<float> x = imgA; // OK
texture2d<float, access::read> y = imgB; // OK
texture2d<float, access::write> z; // This is illegal.
h

In Metal 3.2 and later, you can indicate whether texture operations are coherent across the
device, meaning that texture operations are visible to other threads across thread groups if you
synchronize them properly; for example:

constant texture2d<float, access::sample,
memory_coherence_device> gtex [[texture(2)]11;

constant texture2d<int, access::write,
memory_coherence: :memory_coherence_device>
gtex2 [[texture(8)11;

See section 4.8 for more information about coherence.

291 Texture Buffers
All OS: Metal 2.1 and later support texture buffers.

A texture buffer is a texture type that can access a large 1D array of pixel data and perform
dynamic type conversion between pixel formats on that data with optimized performance.
Texture buffers handle type conversion more efficiently than other techniques, allowing access
to a larger element count, and handling out-of-bounds read access. Similar type conversion can
be achieved without texture buffers by either:

* Reading the pixel data (just like any other array) from a texture object and performing the
pixel transformation to the desired format.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 44 of 346

* Wrapping a texture object around the data of a buffer object, then accessing the shared
buffer data via the texture. This wrapping technique provides the pixel conversion, but
requires an extra processing step, and the size of the texture is limited.

The following template defines the opaque type texture_buffer, which you can use like any
texture:

texture_buffer<T, access a = access::read>
access canbeoneof read, write, or read write.

T specifies the type of a component returned when reading from a texture buffer or the type of
component specified when writing to a texture buffer. For a texture buffer, T can be one of
half, float, short, ushort, int, oruint.

For a format without an alpha channel (such as R, RG, or RGB), an out-of-bounds read returns
(0, @, @, 1).Foraformatwith alpha (such as RGBA), an out-of-bounds read returns (9,
0, 0, 0).Forsome devices, an out-of-bounds read might have a performance penalty.

Metal ignores an out-of-bounds write.

A texture buffer can support more texture data than a generic 1D texture, which has is a
maximum width of 16384. However, you cannot sample a texture buffer.

A texture buffer also converts data, delivering it in the requested texture format, regardless of
the source’s format. When creating a texture buffer, you can specify the format of the data in
the buffer (for example, RGBA8Unorm), and later the shader function can read it as a
converted type (such as float4). As aresult, a single pipeline state object can access data
stored in different pixel formats without recompilation.

A texture buffer, like a texture type, can be declared as the type of a local variable to a shader
function. For information about arrays of texture buffers, see section 2.12.1. For more about
texture buffer, see section 6.12.16.

2.10 Samplers

The sampler type identifies how to sample a texture. The Metal API allows you to create a
sampler object and pass it in an argument to a graphics or kernel function. You can describe a
sampler object in the program source instead of in the API. For these cases, you can only
specify a subset of the sampler state: the addressing mode, filter mode, normalized
coordinates, and comparison function.

Table 2.7 lists the supported sampler state enumerations and their associated values (and
defaults). You can specify these states when initializing a sampler in Metal program source.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 45 of 346

Table 2.7. Sampler state enumeration values

Enumeration

Valid values

Description

coord normalized (default) When sampling from a texture,
pixel specifies whether the texture
coordinates are normalized values.
address repeat Sets the addressing mode for all
mirrored_repeat texture coordinates.
clamp_to_edge (default)
clamp_to_zero
clamp_to_border
s_address repeat Sets the addressing mode for
t_address mirrored_repeat individual texture coordinates.
r_address clamp_to_edge (default)

clamp_to_zero
clamp_to_border

border_ color
macOS: Metal 1.2.

transparent_black
(default)

Specifies the border color to use with
the clamp_to_border addressing

i0S: Metal 2.3. opaque_black mode.
opaque_white
filter nearest (default) Sets the magnification and
linear minification filtering modes for texture
sampling.
mag_Tfilter nearest (default) Sets the magnification filtering mode

linear

for texture sampling.

min_filter

nearest (default)
linear

Sets the minification filtering mode for
texture sampling.

mip_filter

none (default)
nearest
linear

Sets the mipmap filtering mode for
texture sampling. If none, the texture
is sampled as if it has a single mip
level. All samples are read from level
0.

compare_func

never (default)
less
less_equal
greater
greater_equal
equal
not_equal
always

Sets the comparison test used by the
sample_compare and
gather_compare texture functions.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 46 of 346

Enumeration Valid values Description

reduction weighted_average Sets how to compute the filtered pixel
All OS: Metal 2.3 | minimum value by computing the component-
maximum wise to be weighted_average

(default), minimum or maximum.

bias float value The level-of-detail (LOD) bias to apply
All OS: Metal 4.0 before sampling. See the Metal
Feature Set Tables for more
information about which GPU families
support sampler bias.

macOS: Metal 1.2 and later support clamp_to_border address mode and border_color.
iOS: Metal 2.3 and later support clamp_to_border address mode or border_color.

With clamp_to_border, sampling outside a texture only uses the border color for the texture
coordinate (and does not use any colors at the edge of the texture). If the address mode is
clamp_to_border, then border_color is valid.

clamp_to_zerois equivalenttoclamp_to_border with a border color of
transparent_black (0.0, 0.0, 0.0) withthe alpha component value from the texture. If
clamp_to_zero is the address mode for one or more texture coordinates, the other texture
coordinates can use an address mode of clamp_to_border if the border color is
transparent_black. Otherwise, Metal doesn’t define the behavior.

If coordissettopixel,themin_filter andmag_filter values must be the same, the
mip_filter value must be none, and the address modes must be either clamp_to_zero,
clamp_to_border, orclamp_to_edge.

In addition to the enumeration types, you can also specify the maximum anisotropic filtering and
an level-of-detail (LOD) range for a sampler:

max_anisotropy(int value)

lod_clamp(float min, float max)

The following Metal program source illustrates several ways to declare samplers. (The
sampler (n) attribute that appears in the code below is explained in section 5.2.1.) Note that
samplers or constant buffers declared in program source do not need these attribute qualifiers.
You must use constexpr to declare samplers that you initialize in MSL source:

constexpr sampler s(coord::pixel,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 47 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

address::clamp_to_zero,
filter::1linear);

constexpr sampler a(coord::normalized);
constexpr sampler b(address::repeat);

constexpr sampler s(address::clamp_to_zero,
filter::1linear,
compare_func::less);

constexpr sampler s(address::clamp_to_zero,
filter::1linear,
compare_func::less,
max_anisotropy(10),
lod_clamp(0.0f, MAXFLOAT));

kernel void

my_kernel(device float4 xp [[buffer(0)11],
texture2d<float> img [[texture(0)]1],
sampler smp [[sampler(3)1]1],
w)

2.11 Imageblocks

iOS: Metal 2 and later support imageblocks.
macOS: Metal 2.3 and later support imageblocks.

An imageblock is a 2D data structure (represented by width, height, and number of samples)
allocated in threadgroup memory that is an efficient mechanism for processing 2D image data.
Each element of the structure can be a scalar or vector integer or floating-point data type, pixel
data types (specified in Table 2.6 in section 2.7), an array of these types, or structures built
using these types. The data layout of the imageblock is opaque. You can use an (x, y)
coordinate and optionally the sample index to access the elements in the imageblock. The
elements in the imageblock associated with a specific (x, y) are the per-thread imageblock data
or just the imageblock data.

Section 5.6 details imageblock attributes, including the [[imageblock_data(type)]]
attribute. Section 6.13 lists the built-in functions for imageblocks.

Imageblocks are only used with fragment and kernel functions. Sections 5.6.3 and 5.6.4
describe how to access an imageblock in a fragment or kernel function, respectively.

For fragment functions, you can access only the fragment'’s imageblock data (identified by the
fragment's pixel position in the tile). Use the tile size to derive the imageblock dimensions.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 48 of 346

For kernel functions, all threads in the threadgroup can access the imageblock. You typically
derive the imageblock dimensions from the threadgroup size, before you specify the
imageblock dimensions.

An imageblock slice refers to a region in the imageblock that describes the values of a given
element in the imageblock data structure for all pixel locations or threads in the imageblock.
The storage type of the imageblock slice must be compatible with the texture format of the
target texture, as listed in Table 2.8.

Table 2.8. Imageblock slices and compatible target texture formats

Pixel storage type

Compatible texture formats

float, half

R32Float, R16Float, R8Unorm, R8Snorm, R16Unorm, R16Snorm

float2, half2

RG32Float, RG16Float, RGBUnorm, RG8Snorm, RG1é6Unorm,
RG16Snorm

float4, halfs

RGBA32Float, RGBA16Float, RGBA8Unorm, RGBA8Snorm,
RGBA16Unorm, RGBA16Snorm, RGB10A2Unorm, RG11B10OFloat,
RGB9E5Float

int, short

R32Sint, R16Sint, R8Sint

int2, short2

RG32Sint, RG16Sint, RG8Sint

int4, shorts

RGBA32Sint, RGBA16Sint, RGBA8Sint

uint, ushort

R32Uint, R16Uint, R8Uint

uint2, ushort?2

RG32Uint, RG16Uint, RG8Uint

uint4, ushorts4

RGBA32Uint, RGBA16Uint, RGBA8Uint

r8unorm<T> A8Unorm, R8Unorm

r8snorm<T> R8Snorm

riéunorm<T> R16Unorm

rliésnorm<T> R16Snorm

rg8unorm<T> RG8Unorm

rg8snorm<T> RG8Snorm

rgléunorm<T> RG16Unorm

rglésnorm<T> RG16Snorm

rgba8unorm<T> RGBA8Unorm, BGRASUnorm
srgba8unorm<T> | RGBA8Unorm_sRGB, BGRA8Unorm_sRGB

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 49 of 346

Pixel storage type Compatible texture formats

rgba8snorm<T> RGBA8Snorm, BGRASUnorm

rgbaléunorm<T> | RGBAl6Unorm

rgbalésnorm<T> | RGBA1l6Snorm

rgb10a2<T> RGB10A2Unorm
rgllbl1of<T> RG11B1OFloat
rgbh9eb<T> RGB9E5Float

2.12 Aggregate Types

Metal supports several aggregate types: arrays, structures, classes, and unions.

Do not specify a structure member with an address space attribute, unless the member is a
pointer type. All members of an aggregate type must belong to the same address space. (For
more about address spaces, see section 4.)

2121 Arrays of Textures, Texture Buffers, and Samplers

iOS: Metal 1.2 and later support arrays of textures. Metal 2 and later support arrays of samplers.
Metal 2.1 and later support arrays of texture buffers.

macOS: Metal 2 and later support arrays of textures and arrays of samplers. Metal 2.1 and later
support arrays of texture buffers.

Declare an array of textures as either:
array<typename T, size_t N>
const array<typename T, size_t N>

typename is a texture type you declare with the access: :read oraccess: :sample
attribute. Metal 2 and later support an array of writeable textures (access: :write) in macOS.
Metal 2.2 and later, with Apple GPU Family 5 and later, support it in iOS. (For more about
texture types, see section 2.9.)

Construct an array of texture buffers (see section 2.9.1) with the access: : read qualifier
using:

array<texture_buffer<T>, size t N>

Declare an array of samplers as either:

array<sampler, size_t N>

const array<sampler, size_t N>

You can pass an array of textures or an array of samplers as an argument to a function

(graphics, kernel, or user function) or declare an array of textures or samples as a local variable

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 50 of 346

inside a function. You can also declare an array of samplers in program scope. Unless used in
an argument buffer (see section 2.13), you cannot declare an array<T, N> type (an array of
textures, texture buffers, or samplers) in a structure.

MSL also adds support for array_ref<T>. Anarray_ref<T> represents an immutable array
of size () elements of type T. T must be a sampler type or a supported texture type, including
texture buffers. The storage for the array is not owned by the array_ref<T> object. Implicit
conversions are provided from types with contiguous iterators like metal: :array. Acommon
use forarray_ref<T> is to pass an array of textures as an argument to functions so they can
accept a variety of array types.

The array_ref<T> type cannot be passed as an argument to graphics and kernel functions.
However, the array_ref<T> type can be passed as an argument to user functions. The
array_ref<T> type cannot be declared as local variables inside functions.

The member functions listed in sections 2.12.1.1 to 2.12.1.3 are available for the array of
textures, array of samplers, and the array_ref<T> types.

2.12.1.1 Array Element Access with its Operator

Elements of an array of textures, texture buffers, or samplers can be accessed using the []
operator:

reference operator[] (size_t pos);

Elements of an array of textures, texture buffers, or samplers, or a templated type
array_ref<T> can be accessed using the following variant of the [| operator:

constexpr const_reference operator[] (size_t pos) const;

2.12.1.2 Array Capacity

size () returns the number of elements in an array of textures, texture buffers, or samplers:
constexpr size_t size();

constexpr size_t size() const;

Example:

kernel void

my_kernel(const array<texture2d<float>, 10> src [[texture(@)]1l],
texture2d<float, access::write> dst [[texture(10)]11],
w)

{
for (int i=0; i<src.size(); i++)
{
if (is_null_texture(srcl[il))
break;
process_image(src[i], dst);
h
b

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 51 of 346

2.12.1.3 Constructors for Templated Arrays

constexpr array_ref();

constexpr array_ref(const array_ref &);

array_ref & operator=(const array_ref &);

constexpr array_ref(const T % array, size_t length);

template<size_t N>
constexpr array_ref(const T(&a)[N]);

template<typename T>
constexpr array_ref<T> make_array_ref(const T * array, size_t
length)

template<typename T, size_t N>
constexpr array_ref<T> make_array_ref(const T(&a)[N])

Examples of constructing arrays:

float4 foo(array_ref<texture2d<float>> src)

{
floats4 clr(e.0f);
for (int 1=0; i<src.size; 1i++)
{
clr += process_texture(src[il);
h
return clr;
b

kernel void

my_kernel_A(const array<texture2d<float>, 10> src [[texture(0)]],
texture2d<float, access::write> dst [[texture(10)]11],
)

float4 clr = foo(src);
}

kernel void

my_kernel_B(const array<texture2d<float>, 20> src [[texture(0)]1],
texture2d<float, access::write> dst [[texture(10)]11],
w)

float4 clr = foo(src);

Below is an example of an array of samplers declared in program scope:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 52 of 346

constexpr array<sampler, 2> = { sampler(address::clamp_to_zero),
sampler(coord: :pixel) };

2.12.2 Structures of Buffers, Textures, and Samplers

Arguments to a graphics, kernel, visible, or user function can be a structure or a nested
structure with members that are buffers, textures, or samplers only. You must pass such a
structure by value. Each member of such a structure passed as the argument type to a graphics
or kernel function can have an attribute to specify its location (as described in section 5.2.1).

Example of a structure passed as an argument:

struct Foo {
texture2d<float> a [[texture(©)]l];
depth2d<float> b [[texture(1)]1]1;
¥

[[kernell] void
my_kernel(Foo f)
{.}

You can also nest structures, as shown in the following example:

struct Foo {
texture2d<float> a [[texture(©)l];
depth2d<float> b [[texture(1)1]1;
¥

struct Bar {

Foo f;

sampler s [[sampler(0)]1];
o

[[kernell] void
my_kernel(Bar b)
{.}

Below is an example of invalid use-cases that shall result in a compilation error:

struct MyResources {
texture2d<float> a [[texture(©)1];
depth2d<float> b [[texture(1)]1]1;
int c;

};

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 53 of 346

[[kernell] void
my_kernel(MyResources r) // This is an illegal use.
{..}

2.13 Argument Buffers

All OS: Metal 2 and later support argument buffers.

Argument buffers extend the basic buffer types to include pointers (buffers), textures, texture
buffers, and samplers. However, argument buffers cannot contain unions. The following
example specifies an argument buffer structure called Foo for a function:

struct Foo {
texture2d<float, access::write> a;
depth2d<float> b;
sampler c;
texture2d<float> d;
device float4x e;
texture2d<float> T;
texture_buffer<float> g;
int h;
o
kernel void
my_kernel(constant Foo & f [[buffer(0)1])
{..}

Arrays of textures and samplers can be declared using the existing array<T, N> templated
type. Arrays of all other legal buffer types can also be declared using C-style array syntax.

Members of argument buffers can be assigned a generic [[1d (n)]] attribute, where nis a
32-bit unsigned integer that can be used to identify the buffer element from the Metal API.
Argument buffers can be distinguished from regular buffers if they contain buffers, textures,
samplers, or any element with the [[1d]] attribute.

The same index may not be assigned to more than one member of an argument buffer.
Manually assigned indices do not need to be contiguous, but they must be monotonically
increasing. In the following example, index 0 is automatically assigned to fool. The

[[id(n) 1] attribute specifies the index offsets for the t1 and t2 structure members. Since
f002 has no specified index, it is automatically assigned the next index, 4, which is determined
by adding 1 to the maximum ID used by the previous structure member.

struct Foo {
texture2d<float> t1 [[id(1)]1];
texture2d<float> t2 [[id(3)]1];
b
struct Bar {
Foo fool; // fool assigned idx ©, tl and t2 assigned idx 1 and 3
Foo foo2; // foo2 assigned idx 4, tl and t2 assigned idx 5 and 7
b

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 54 of 346

If you omit the [[1d]] attribute, Metal automatically assigns an ID according to the following
rules:

1. Metal assigns IDs to structure members in order, by adding 1 to the maximum ID of the
previous structure member. In the example below, the indices are not provided, so
indices @ and 1 are automatically assigned.

struct MaterialTexture {
texture2d<float> tex; // Assigned index ©
float4 uvScaleOffset; // Assigned index 1
¥

2. Metal assigns IDs to array elements in order, by adding 1 to the maximum ID of the
previous array element. In the example below, indices 1-3 are automatically assigned to
the three array elements of texsl. Indices 4-5 are automatically assigned to the fields
inmaterials[0], indices 6-7tomaterials[1], andindices 8-Qtomaterials[2].
The [[1d(20) 1] attribute starts by assigning index 20 to constants.

struct Material {
float4 diffuse; // Assigned index ©
array<texture2d<float>, 3> texsl; // Assigned indices 1-3
MaterialTexture materials[3]; // Assigned indices 4-9
int constants [[1d(20)]1] [4]; // Assigned indices 20-23
¥

3. If a structure member or array element E is itself a structure or array, Metal assigns
indices to its structure members or array elements according to rules 1 and 2
recursively, starting from the ID assigned to E. In the following example, index 4 is
explicitly provided for the nested structure called normal, so its elements (previously
defined as tex and uvScaleOffset) are assigned IDs 4 and 5, respectively. The
elements of the nested structure called specular are assigned IDs 6 and 7 by adding
one to the maximum ID (5) used by the previous member.

struct Material {
MaterialTexture diffuse; // Assigned indices 90, 1
MaterialTexture normal [[id(4)1]; // Assigned indices 4, 5
MaterialTexture specular; // Assigned indices 6, 7

ks

4. Metal assigns IDs to top-level argument buffer arguments starting from 0, according to
the previous three rules.

2131 Tier 2 Hardware Support for Argument Buffers

With Tier 2 hardware, argument buffers have the following additional capabilities that are not
available with Tier 1 hardware.

You can access argument buffers through pointer indexing. This syntax shown below refers to
an array of consecutive, independently encoded argument buffers:

kernel void
kern(constant Resources xresArray [[buffer(0)11)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 55 of 346

{
constant Resources &resources = resArray[3];
¥

struct TStruct {
texture2d<float> tex:
o
kernel void
kern(constant TStruct *xtextures [[buffer(0)1]);

To support GPU driven pipelines and indirect draw calls and dispatches, you can copy
resources between structures and arrays within a function, as shown below:

kernel void

copy(constant Foo & src [[buffer(0)l],
device Foo & dst [[buffer(1)1]1])

{
dst.a = src.d;

Samplers cannot be copied from the thread address space to the device address space. As a
result, samplers can only be copied into an argument buffer directly from another argument
buffer. The example below shows both legal and illegal copying:

struct Resources {
sampler sam;

b

kernel void

copy(device Resources *src,
device Resources *dst,
sampler saml)

{
constexpr sampler sam2;
dst—->sam = src->sam; // Legal: device —-> device
dst—->sam = saml; // Illegal: thread —-> device
dst—>sam = sam2; // Illegal: thread —-> device

b

Argument buffers can contain pointers to other argument buffers:

struct Textures {
texture2d<float> diffuse;
texture2d<float> specular;
o
struct Material {
device Textures xtextures;
o

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 56 of 346

fragment floats
fragFunc(device Material & material);

2.14 Uniform Type

All OS: Metal 2 and later support uniform types.

2141 The Need for a Uniform Type

In the following function example, the variable i is used to index into an array of textures given
by texInput. The variable i is nonuniform; that is, it can have a different value for threads
executing the graphics or kernel function for a draw or dispatch call, as shown in the example
below. Therefore, the texture sampling hardware must handle a sample request that can refer
to different textures for threads executing the graphics or kernel function for a draw or dispatch
call.

kernel void

my_kernel(array<texture2d<float>, 10> texInput,
array<texture2d<float>, 10> texOutput,
sampler s,

uint2 gid [[thread_position_in_gridl])

{
int 1 = ..;
float4 color = texInput[il.sample(s, float2(gid));
texOutput[i].write(color, float2(gid));

ks

If the variable 1 has the same value for all threads (is uniform) executing the graphics or kernel
function of a draw or dispatch call and if this information was communicated to the hardware,
then the texture sampling hardware can apply appropriate optimizations. A similar argument
can be made for texture writes, where a variable computed at runtime is used as an index into
an array of textures or to index into one or more buffers.

To indicate that this variable is uniform for all threads executing the graphics or kernel function
of a draw or dispatch call, MSL adds a new template class called uniform (available in the
header metal_uniform) that can be for declaring variables inside a graphics or kernel
function. This template class can only be instantiated with arithmetic types (such as Boolean,
integer, and floating-point) and vector types.

The code below is a modified version of the previous example, where the variable 1 is declared
asauniformtype:

kernel void

my_kernel(array<texture2d<float>, 10> texInput,
array<texture2d<float>, 10> texOutput,
sampler s,

ey

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 57 of 346

uint2 gid [[thread_position_in_gridl])

{
uniform<int> 1 = ..;
float4 color = texInput[il.sample(s, float2(gid));
texOutput[i].write(color, float2(gid));

b

2.14.2 Behavior of the Uniform Type

If a variable is of the uniformtype, and the variable does not have the same value for all
threads executing the kernel or graphics function, then the behavior is undefined.

Uniform variables implicitly type convert to nonuniform types. Assigning the result of an
expression computed using uniform variables to a uniform variable is legal but assigning a
nonuniform variable to a uniform variable results in a compile-time error. In the following
example, the multiplication legally converts the uniform variable x into nonuniform product z.
However, assigning the nonuniform variable z to the uniform variable b results in a compile-
time error.

uniform<int> x = ..;
int y = ..;
int z = xxy; // Here, x converts to a nonuniform for a multiply.

uniform<int> b = z; // Illegal; causes a compile-time error.

To declare an array of uniform elements:

uniform<float> bar[10]; // Elements stored in bar array are uniform.

The uniformtype is legal for both parameters and the return type of a function. For example:
uniform<int> foo(..); // foo returns a uniform integer value.

int bar(uniform<int> a, ..);

It is legal to declare a pointer to a uniform type, but not legal to declare a uniform pointer. For
example:

device uniform<int> *ptr; // Values pointed to by ptr are uniform.

uniform<device int x> ptr; // Illegal; causes a compile-time error.

The results of expressions that combine uniform with nonuniform variables are nonuniform. If
the nonuniform result is assigned to a uniform variable, as in the example below, the behavior is
undefined. (The front-end might generate a compile-time error, but it is not guaranteed to do
so0.)

uniform<int> 1 = ..;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 58 of 346

int j = ..}
if (i < j) { // Nonuniform result for expression (i < j).

i++; // Causes a compile-time error, undefined behavior.

The following example is similar:

bool p = .. // Nonuniform condition.

uniform<int> a = .., b = ..;

uniform<int> ¢ = p ? a : b; // Causes a compile-time error,
// undefined behavior.

2143 Uniform Control Flow

When a control flow conditional test is based on a uniform quantity, all program instances follow
the same path at that conditional test in a function. Code for control flow based on uniform
quantities should be more efficient than code for control flow based on nonuniform quantities.

2.15 Visible Function Table

All OS: Metal 2.3 and later support visible function table.

Defined in the header <metal_visible_function_table>, you use the
visible_function_table type to represent a table of function pointers to visible functions
(see section 5.1.4) that the system stores in device memory. In Metal 2.3 and later, you can use
it in a compute (kernel) function. In Metal 2.4 and later, you can use it in fragment, vertex, and
tile functions. It is an opaque type, and you can’t modify the content of the table from the GPU.
Youcanuseavisible_function_table typein anargument buffer or directly passitto a
qualified function using a buffer binding point.

Todeclareavisible_function_table type with a template parameter T where
T is the signature of the function stored in the table, use the following template function.

visible_function_table<typename T>

The following example shows how to declare a table that is compatible with a function whose
definitionis “[[visible]] int func(float f)":

visible function_table<int(float)> functions;

To get a visible function pointer from the table, use the [| operator:

using fnptr = T (%) (..) [[visiblell
fnptr operator[](uint index) const;

size() returns the number of function pointer entries in the table:
uint size() const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 59 of 346

empty () returns true if the table is empty:
bool empty() const

The following function can be used to determine if a table is a null visible_function_table.
Anull visible_function_table is a table that is not pointing to anything.

bool is_null_visible_function_table(visible_function_table<T>);
The following example shows how the table can be passed in a buffer:

using TFuncSig = void(float, int);

kernel void F(uint tid [[thread_position_in_grid]l],
device floatx buf [[buffer(0)1],
visible_function_table<TFuncSig> table [[buffer(1)11)

uint tsize = table.size();
table[tid % tsizel(bufl[tid]l, tid);

2.16 Function Groups Attribute

All OS: Metal 2.3 and later support [[function_groups]].

The optional [[function_groups]] attribute can be used to indicate the possible groups of
functions being called from an indirect call through a function pointer or
visible_function_table. Thisis a compiler hint to enable the compiler to optimize the call
site. The groups of functions are specified as string literal arguments of the attribute. This
attribute can be applied in three different contexts:

e Variable declarations with an initializer expression — It affects all indirect call
expressions in the initializer expressions.

e Expression statements — It affects all the indirect call expressions of the given
expression.

¢ Return statements — It affects all the indirect call expressions of the return value
expression.

The following examples show how [[function_groups]] can be used:

float h(visible_function_table<float(float)> table,
float (xfnptr[31)(float))
{
// An indirect call to table[@] is restricted to “groupl”.

[[function_groups("groupl")]] float x = table[0](1.0f);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 60 of 346

// An indirect call to " fnptr[@] can call any function.
x += fnptr[0]1(2.0f);

// An indirect call to “fnptr[1] is restricted to
// "“group2"+"group3".
[[function_groups("group2", "group3")]l]l return x + fnptr[1]1(3.0f);

2.17 Ray-Tracing Types

All OS: Metal 2.3.and later support ray-tracing types.

The header <metal_raytracing> defines these types in the namespace
metal::raytracing. InMetal 2.3 and later, these types are only supported in a compute
function (kernel functions) except where noted below. In Metal 2.4 and later, they are also
supported in vertex, fragment, and tile functions. In Metal 3.1 and later, ray tracing supports
curves and multilevel instancing.

2171 Ray-Tracing Intersection Tags
All OS: Metal 2.3.and later support ray-tracing intersection tags.

The header <metal_raytracing> defines intersection_tags inthe namespace
metal::raytracing. They are listed in Table 2.9 and are used in ray tracing when defining:

e intersection functions ([[1ntersection]] section 5.1.6)

e intersection function tables (intersection_function_table section 2.17.3)

e intersectionresults (intersection_result section 2.17.4)

e intersector types and associated functions (intersector section 6.18.2)

e acceleration structure types (acceleration_structure section 2.17.7 and 6.18.1)
e intersection queries (intersection_query section 6.18.5).

The tags are used to configure the ray tracing process and control the behavior and semantics
of the different types and tables. The tags identify the type of accelerator structure being
intersected, the built-in parameters available for intersection functions, the type of intersection
function in an intersection function table, the methods available on intersector type or
intersection query object, and the data returned in an intersection result type.

The intersection_tags must match in tag type and order between related uses of
intersection_function_table, intersection_result, intersector, and
intersection_query, or the compiler will generate an error. The acceleration structure type
being intersected must match the ordering of instancing, primitive_motion, and
instance_motion tags if they are present on the other ray tracing types used to intersect the
acceleration structure. When calling intersection functionsinan intersection function
table, you need to ensure they use the same ordered set of tags, or else the result is undefined.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 61 of 346

Table 2.9. Intersection tags

Intersection tag Description

instancing This tag indicates intersection functions can read the
built-in instance_idandforuser_instance_id
as described in section 5.2.3.7, and the acceleration

structure is an instance acceleration structure.

The
intersector<intersection_tags...>::interse
ct () function and intersection_query<
intersection_tags...> assume thatthe
acceleration structure needs to be an
instance_acceleration_structure and it returns
the instance_id value.

ErLEgE Gt This tag indicates triangle intersection functions can

read input parameters with barycentric_coordor
front_facing attribute as described in section
5.2.3.7. This tag cannot be used in defining an
acceleration structure.

The
intersector<intersection_tags...>::interse
ct() function and intersection_query<
intersection_tags...> returnsthe
triangle_barycentric_coordand
triangle_front_facing values.

world_space_data This tag indicates intersection functions declared with
this tag can query world_space_origin,
world_space_direction,

object_to_world transform, and

world _to_object_transform

as described in section 5.2.3.7. This tag cannot be
used in defining an acceleration structure or
intersection_qguery. It enables support for world
space datain intersector and
intersection_function_table.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 62 of 346

Intersection tag

Description

primitive_motion
All OS: Metal 2.4 and later

This tag enables support for primitive level motion in
intersector,
intersection_function_table, and
acceleration structures.

instance_motion
All OS: Metal 2.4 and later

This tag enables support for instance level motion in
intersector,
intersection_function_table, and
acceleration structure.

extended_limits
All OS: Metal 2.4 and later

This tag indicates acceleration structures passed to
intersection functions are built with extended limits for
the number of primitives, number of geometries,
number of instances, and increases the number of bits
used for visibility masks. This tag cannot be used in
defining an acceleration structure.

curve_data
All OS: Metal 3.1and later

This tag makes the curve_parameter of the curve
intersection point available as a field of
intersection_result object from methods of the
intersection_guery objects, and as input
parameter to intersection functions as described in
section 5.2.3.7.

max_levels<Count>
All OS: Metal 3.1 and later

This tag enables support for multilevel instancing in
intersector, intersection_query and
intersection_function_table. It cannot be
used in acceleration structures. Count is a template
parameter that determines the maximum number of
acceleration structure levels that can be traversed. It
must be between [2, 16] for intersection_query.
It must be [2, 32] for intersector. For
intersection_function_table, it needs to
match it use with intersection_query or
intersector.

intersection_function_buffer

All OS: Metal 4 and later

This tag signals that this intersection function is
available for use in an intersection function buffer.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 63 of 346

Intersection tag

Description

user_data

This tag makes the "user data" pointer available as a

All OS: Metal 4 and later parameter marked by user_data_buffer to the

function, which is available to pass resources (or any
other data) to the intersection function intended for
use in an intersection function buffer.

In Metal 2.3 and later, the following are valid combinations of intersection tags:

e notags

e triangle_data

e instancing
e 1instancing,
e 1instancing,

e 1instancing,

triangle_data
world_space_data

triangle_data, world_space_data

Metal 2.4 and later add the following additional valid combinations:

e primitive_motion

e triangle_data, primitive_motion

e 1instancing,
e 1instancing,
e 1instancing,

e 1instancing,

primitive_motion
triangle_data, primitive_motion
world_space_data, primitive_motion

triangle_data, world_space_data, primitive_motion

e 1instance_motion

e 1instancing,
e 1instancing,
e 1instancing,
e 1instancing,
e 1instancing,
e 1instancing,
e 1instancing,

e 1instancing,

instance_motion

triangle_data, instance_motion

world_space_data, instance_motion

triangle_data, world_space_data, instance_motion
primitive_motion, instance_motion

triangle_data, primitive_motion, instance_motion
world_space_data, primitive_motion, instance_motion

triangle_data, world_space_data, primitive_motion,

instance_motion

The extended_limits tag may be added to all combinations listed above.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 64 of 346

In Metal 3.1 and later, curve_data may be added to all combinations listed above. The
intersection tag max_levels<Count> may be added to any combination above containing
instancing.

In Metal 4 and later, intersection_function_buffer may be added to all combinations
listed above. The tag user_data may only be used in combination with
intersection_function_buffer.

2.17.2 Ray Type

The ray structure is a container for the properties of the ray required for an intersection.

struct ray
{
ray(float3 origin = 0.0f, float3 direction = 0.0f,
float min_distance = 0.0f, float max_distance = INFINITY);
float3 origin;
float3 direction;
float min_distance;
float max_distance;
o

Theray'soriginand direction field are in world space. When a ray object is passed into a
custom intersection or triangle intersection function, the min_distance and max_distance
fields will be based on the current search interval: As candidate intersections are discovered,
max_distance will decrease to match the newly narrowed search interval. Within intersection
functions, the originand direction are in object space.

A ray can be invalid. Examples of invalid rays include:

INFs or NaNsinoriginordirection

min_distance ==NaNormax_distance == NaN

min_distance == INF (Note that max_distance may be positive INF).
length(ray.direction) ==0.0

min_distance >max_distance

min_distance <0.0ormax_distance <0.0

The ray direction does not need to be normalized, although it does need to be nonzero.

2.17.3 Intersection Function Table

The intersection_function_table<intersection_tags...> structure type
describes a table of custom intersection functions passed into the shader as defined from
section 5.1.6. The intersection tags are defined from Table 2.9. The intersection tags on
intersection_function_table type and the intersection functions must match. An
example of such a declaration is:

intersection_function_table<triangle_data, instancing>
intersectionFuncs;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 65 of 346

Call the following function to check if the intersection_function_tableisnull:

bool
is_null _intersection_function_table(
intersection_function_table< intersection_tags...>)

Call the following member function to check if the intersection_function_tableis
empty:

bool empty() const

Call the following member function to return the number of entries in
intersection_function_table:

uint size() const

Metal 3 supports the following function: get_buffer and
get_visible_function_table.

Call the following member function to return the buffer at index from the
intersection_function_table, where T is a pointer or reference in the device or
constant address space:

template<typename T>
T get_buffer(uint index) const

Call the following member function to return the visible function_table<T> atindex
fromthe intersection_function_table. T is the signature of the function stored in the
table.

template <typename T> visible_function_table<T>
get_visible_function_table(uint index) const;

Metal 3.1 supports the following functions: set_buffer and
set_visible function_table.

Call the following member functions to set the device or constant buffer object at the
index positioninthe intersection_function_table entry.

void set_buffer(const device void *buf, uint index)
void set_buffer(constant void xbuf, uint index)

Call the following member function to set the visible function_table atthe index
position inthe intersection_function_table, where T is the signature of the function
stored in the table.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 66 of 346

template<typename T>
void set_visible_function_table(visible_function_table<T> vft,
uint index)

217.4 Intersection Result Type

The results of an intersection return in an
intersection_result<intersection_tags...> structure where
intersection_tags are defined in Table 2.9. The return structure is defined as:

class intersection_type {

none,

triangle,

bounding_box,

curve // Available in Metal 3.1 and later.
3

template <typename...intersection_tags>
struct intersection_result

{
intersection_type type;
float distance;
uint primitive_id;
uint geometry_id;

const device void *primitive_data; // Available in Metal 3 and
// later.

// Available only if intersection_tags include instancing without

// max_levels<Count>.

uint instance_id;

uint user_instance_id; // Available in Metal 2.4 and
// later.

// In Metal 3.1 and later, replace instance_id and
// user_instance_id with an array if intersection_tags
// include instancing and max_levels<Count>.
uint instance_count; // The number of instances
// intersected by the ray.
uint instance_id[Count - 11; // The instance IDs of instances
// intersected by the ray.
uint user_instance_id[Count - 11; // The user instance IDs of
// instances intersected by
// the ray.

// Available only if intersection_tags include triangle_data.
float2 triangle_barycentric_coord;
bool triangle_front_facing;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 67 of 346

// In Metal 2.4 and later, the following is available only if
// intersection_tags include world_space_data and instancing.
float4x3 world_to_object_transform;
float4x3 object_to_world_transform;

// In Metal 3.1 and later, the following is available only if
// intersection_tags include curve_data.
float curve_parameter;

b
If a ray isinvalid, an intersection: :none is returned.
The distance returned is in world space.
For vertex attributes v0, v1, and v2, the attribute value at the specified triangle barycentric
point is:
vl x triangle_barycentric_coord.x +
v2 x triangle_barycentric_coord.y +

vl *x (1.0f - (triangle_barycentric_coord.x +
triangle_barycentric_coord.y))

2.17.5 Intersection Result Reference Type

All OS: Metal 3.2 and later support intersection_result_ref<intersection_tags..>
for Apple silicon. The Metal Feature Set Table lists the supported hardware.

In some use cases, it's possible to avoid a copy of intersection_result by using
intersection_result_ref<intersection_tags..> whose lifetime is the duration of
the lambda function that passes to the intersector intersect function (see section 6.18.2).
The intersection_result_ref<intersection_tags..> structure where
intersection_tags are definedin Table 2.9.

template <typename...intersection_tags>
struct intersection_result _ref {
public:
intersection_type get_type() const;
float get_distance() const;
uint get_primitive_id() const;
uint get_geometry_id() const;
const device void *get_primitive_data() const;

float3 get_ray_origin() const;
float3 get_ray_direction() const;
float get_ray_min_distance() const;

// Available only if intersection_tags include instancing without.
// max_levels<Count>.

uint get_instance_id() const;

uint get_user_instance_id() const;

// Available only if intersection_tags include instancing with
// max_levels<Count>.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 68 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

uint get_instance_count() const;
uint get_instance_id(uint depth) const;
uint get_user_instance_id(uint depth) const;

// Available only if intersection_tags include triangle_data.
float2 get_triangle_barycentric_coord() const;
bool is_triangle_front_facing() const;

// Available only if intersection_tags include curve_data.
float get_curve_parameter() const;

// Available only if intersection_tags include world_space_data
// and instancing.

float4x3 get_object_to_world_transform() const;

float4x3 get_world_to_object_transform() const;

};

2.17.6 Intersector Type

The intersector<intersection_tags. . .> structure type defines an object that
controls the acceleration structure traversal and defines functions to intersect rays like
intersect().Usethe intersection_tags (described in Table 2.9) when creating the
intersector to specialize on which types of acceleration structure it operates on and which
functions are available (see section 6.18.2). Intersection tags on the intersector type must
match their associated intersection function (section 5.1.6), or the behavior is undefined.

// Create a default intersector.
intersector<> primitivelIntersector;

// Create a specialized intersector to support triangle and
// world space data.

intersector<triangle_data, instancing, world_space_data>
instancelnter;

The intersector<intersection_tags. . .> struct type provides a convenience type for
the intersection result type defined in section 2.17.6:

intersector<intersection_tags...>::result

2.17.7 Acceleration Structure Type

All OS: Metal 2.3 and later support acceleration structure types.

All OS: Metal 2.4 and later support acceleration structure templatized types.

Metal 2.3 and later support two types of acceleration structure:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 69 of 346

e primitive_acceleration_structure
e 1instance_acceleration_structure.

These are opaque objects that can be bound directly using buffer binding points or via
argument buffers:

struct AccelerationStructs {
primitive_acceleration_structure prim_accel;
instance_acceleration_structure inst_accel;
array<primitive_acceleration_structure, 2> prim_accel_array;
array<instance_acceleration_structure, 2> inst_accel_array;
o

[[kernelll

void

intersectInstancesKernel(
primitive_acceleration_structure prim_accel [[buffer(0)11,
instance_acceleration_structure inst_accel [[buffer(1)1],
device AccelerationStructs *accels [[buffer(3)11) {..}

It is possible to create default initialized variables of such types, and the default value is the
null value for the acceleration structures.

In Metal 2.4 and later, the acceleration structure is replaced with a templatized type
acceleration_structure<intersection_tags..>. The template parameter
intersection_tags can be empty or a combination of instancing,
primitive_motion, orinstance_motion as definedin Table 2.9. Intersection tags. For
example, the following defines an instance acceleration structure that supports primitive
motion:

acceleration_structure<instancing, primitive_motion> accel_struct;

The following combinations of tags can be used to declare a primitive acceleration structure:
e notags
e primitive_motion

The following combinations of tags can be used to declare an instance acceleration structure:
e instancing
e instancing, primitive_motion
e 1instancing, instance_motion

e instancing, primitive_motion, instance_motion

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 70 of 346

To maintain backward compatibility, primitive_acceleration_structure is aliased to
acceleration_structure<>and instance_acceleration_structure is aliased to
acceleration_structure<instancing>.

As before, these are opaque objects that can be bound directly using buffer binding points or
via argument buffers:

struct AccelerationMotionStructs {
acceleration_structure<primitive_motion> prim_motion_accel;
acceleration_structure<instancing,
instance_motion> inst_motion_accel;
array<acceleration_structure<>, 2> prim_accel_array;
array<acceleration_structure<instancing>, 2> inst_accel_array;
o

[[kernelll
void
intersectMotionKernel(
acceleration_structure<primitive_motion> prim [[buffer(15)11,
acceleration_structure<instancing,
primitive_motion, instance_motion>
inst [[buffer(16)11,

device AccelerationMotionStructs xaccels [[buffer(17)11])
{..}

When binding these acceleration structures from the Metal API to the compute or graphic
functions, the acceleration structure’s type must match what is defined in the shader. For
instance acceleration structures, you can bind instance acceleration structures without support
for primitive_motion to a shader that expects instance acceleration structures with
primitive_motion. For example, a Metal buffer with an instance acceleration structure that
can be passed to a shader with acceleration_structure<instancing> can also be
given to a shader with acceleration_structure<instancing, primitive_motion>
This capability allows you to write one shader function that can handle either an acceleration
structure with or without primitive_motion atthe cost of the ray tracing runtime checking
for primitive motion. To avoid this cost, write two functions where one uses an acceleration
structure with primitive_motion and one without.

See section 6.18.1 for the functions to call if the acceleration structure is null.

2.17.8 Intersection Query Type
All OS: Metal 2.4 and later support intersection query types.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 71 of 346

The intersection_gquery<intersection_tags...> type defines an object that enables
users to fully control the ray tracing process and when to call custom intersection code. The
intersection query object provides a set of functions to advance the query through an
acceleration structure and query traversal information. Use the intersection_tags (defined
in Table 2.9) when creating the intersection_query<intersection_tags...> typeto
specialize the type of acceleration structure and what functions are available (see section
6.18.5). It supports the following combinations of intersection tags:

e no tags
e triangle_data
e instancing
e instancing, triangle_data
Metal 3.1 supports the following additional combinations:
e instancing, max_levels<Count>
e instancing, triangle_data, max_levels<Count>

In Metal 3.1 and later, curve_data may be added to all combinations listed above.

The intersection_guery<intersection_tags. . .> type has the following restrictions:
e it cannot be used for members of a structure/union
e it cannot be returned from a function
e it cannot be assigned to

These restrictions prevent the intersection query object from being copied.

2.18 Interpolant Type

All OS: Metal 2.3 and later support interpolant types.

The interpolant type interpolant<T, P> definedin <metal_interpolate>isa
templatized type that encapsulates a fragment shader input for pull-model interpolation
(section 6.11). Type parameters T and P represent the input's data type and perspective-
correctness, respectively. Supported values for T are the scalar and vector floating-point types.
Supported values of P are the types interpolation: :perspective and
interpolation::no_perspective.

You can declare a variable with the interpolant<T, P> type only in the following contexts:

e As afragment shader input argument with [[stage_in]]. Such a declaration must
match a corresponding vertex shader output argument of type T with the same name or
[[user(name) 1] attribute. The declaration can’t have a sampling-and-interpolation
attribute (section 5.4).

e Asalocal or temporary variable, which needs to be initialized as a copy of the above.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 72 of 346

An interpolant<T, P> variable is not automatically convertible to a value of type T. Instead,
retrieve a value by calling one of several interpolation methods (see section 6.11). The
interpolation shall be perspective-correct if the value of P is

interpolation: :perspective.

2.19 Per-Vertex Values

All OS: Metal 4 and later support per -vertex values.

The vertex value type vertex_value<T> definedin <metal_vertex_value>isa
templatized type to provide access to the per-vertex value (preraster per-vertex triangle
attributes) in the fragment shader. You can declare a variable with vertex_value<T> as a
fragment shader input argument where type T must match the corresponding type in the
vertex output.

Call the following function to return the per-vertex value (non-interpolated value) at index i:

enum class vertex_index { first, second, third };
T get(vertex_index 1);

The following example shows a shader that computes the interpolated value as a dot product
between the non-interpolated values and the barycentric weights:

struct vertex_in {

float3 position [[attribute(©)]1];
float4 color [[attribute(1)1];

+;

struct vertex_out {

float4 position [[positionl];
float4 color;

+;

[[vertex]] vertex_out vert(vertex_in vert_in [[stage_inl]) { .. }

struct fragment_in {
floats4 position [[position]];
float3 barycentric_coords [[barycentric_coord,
center_no_perspectivell;
vertex_value<float4> color;
+;

struct fragment_out {
float4 color;
o

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 73 of 346

[[fragment]] fragment_out frag(fragment_in frag_in [[stage_inll) {
fragment_out frag_out;
auto bc frag_in.barycentric_coords;
auto cl1 = frag_in.color.get(vertex_index::first);
auto c2 = frag_in.color.get(vertex_index::second);
auto c3 = frag_in.color.get(vertex_index::third);
frag_out.color = ¢l * bc.x + c2 * bc.y + ¢c3 * bc.z;
return frag_out;

2.20 Mesh Shader Types

All OS: Metal 3 and later support mesh shader types. Metal uses these types in the mesh
pipeline to render geometry and defines them in the header <metal_mesh>.

2.201 Mesh Grid Property Type
All OS: Metal 3 and later support mesh grid property types.

An object function (see section 5.1.7) can use the mesh_grid_properties type to specify
the size of the mesh grid to dispatch for a given threadgroup from the object stage.

Call the following member function to control the number of threadgroups of the mesh grid that
will be dispatched.

void set_threadgroups_per_grid(uint3)

If the member function set_threadgroups_per_grid for a given threadgroup of the object
grid is never called, then no mesh grid will be dispatched for the given object grid threadgroup.
Callsto set_threadgroups_per_grid behave as a write to threadgroup memory
performed by each thread.

2.20.2 Mesh Type
All OS: Metal 3 and later support mesh types.

A mesh function (see section 5.1.8) can use an argument of type mesh<V, P, NV, NP, t>
structure type to represent the exported mesh data. Table 2.10 describes the mesh template
parameters.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 74 of 346

Table 2.10. Mesh template parameter

Template | Description
parameter
Vv Vis the vertex type.
P P is the primitive type.
NV NV is the maximum number of vertices.
NP NP is the maximum number of primitives.
t t specifies the topology of the mesh. It is one of the following enumeration values:
enum topology {
point,
line,
triangle
b

A valid vertex type V follows the same rules as the vertex function return type defined in section
5.2.3.3 with the following restrictions. The vertex type can be either

¢ A float4 represents the vertex position

or a user defined structure:

e Includes a field with the [[position]] attribute.

e May include other fields of scalar or vector of integer or floating-point type.

e Supports the following attributes from Table 2.11. Each attribute can be used once
within the vertex type.

Table 2.11. Mesh vertex attributes

Attribute Corresponding Description
data types

clip_distance floator Distance from the vertex to the clipping
float[n] plane.

n needs to be
known at compile
time

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 75 of 346

Attribute Corresponding Description

data types

invariant Not applicable; Marks the output position such that if the
needs to be used | sequence of operations used to compute
with the output position in multiple vertex

[[position]] |shadersisidentical, there is a high
likelihood that the resulting output
position computed by these vertex
shaders are the same value. Requires
users to pass -fpreserve—-invariance.
See the description below for more

information.
point_size float Size of a point primitive.
position floats The transformed vertex position.
shared Not applicable If present, then for every

amplification_id, the output shall
have the same value.

A valid primitive type follows the same rules as fragment input section 5.2.3.4. A valid primitive
type is either:

e void indicating no per-primitive type.
or a user-defined structure:
¢ Includes fields of scalar or vector of integer or floating-point type.

e Supports only the following attributes from Table 2.12. Each attribute can be used once
within the primitive type.

Table 2.12. Mesh primitive attributes

Attribute Corresponding Description
data types
primitive_culled bool If set to true, the primitive is not
rendered.
primitive_id uint The per-primitive identifier used with
barycentric coordinates.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 76 of 346

Attribute

Corresponding
data types

Description

render_target_array_ind
ex

uchar, ushort,
oruint

The render target array index, which
refers to the face of a cubemap, data
at a specified depth of a 3D texture,
an array slice of a texture array, an
array slice, or face of a cubemap
array. For a cubemap, the render
target array index is the face index,
which is a value from 0 to 5. For a
cubemap array the render target
array index is computed as: array
slice index * 6 + face index.

viewport_array_index

uchar, ushort, or
uint

The viewport (and scissor rectangle)
index value of the primitive.

If the mesh<V, P, NV, NP, t>does notspecify a field with [[primitive culled]],
the behavior is the primitive is rendered. If the fragment shader reads the field, the value read is
false because that fragment invocation belongs to a nonculled primitive.

Interpolation and sampling qualifiers are accepted on the vertex and primitive type members.
The behavior is specified in section 5.2.3.4.

To minimize the possible user errors in mesh-fragment linking, the names of fields for user-
defined vertex and primitive type needs to be unique between the vertex and primitive type.

An example of mesh<V, P, NV,
struct VertexOut {

NP, t>is:

float4 position [[position]];

h
struct PrimitiveOut
{

i

float color [[flat]l];

using custom_mesh_t = metal::mesh<VertexOut, PrimitiveOut, 64, 64,
metal::topology::triangle>;

The mesh types contain the following static data member below.

Table 2.13. Mesh static members

Member variable Description

uint max_vertices

The maximum number of vertices in the mesh (NV).

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 77 of 346

Member variable Description

UAME 2 _PIETIEL Y E The maximum number of primitives in the mesh (NP).

uint

indices per primitive The number of indices per primitive based on topology t.

uint max_indices . - .
- The maximum number of indices (max_primitive *

indices_per_primitive).

Call the following member function to set the vertex at index I in the range [9,
max_vertices):

void set_vertex(uint I, V v);

If P is not void, call the following member function to set the primitive at index | in the range [9,
max_primitive):

void set_primitive(uint I, P p);

Call the following member to set the primitive count where c is in the range [0,
max_primitivel:

void set_primitive_count(uint c);

Call the following member to set the index where | is in the range [0, max_indices):

void set_index(uint I, uchar v);

It is legal to call the following set_indices functions to set the indices if the position in the
index buffer is valid and if the position in the index buffer is a multiple of 2 (uchar2 overload)
or 2 (uchar4 overload). The index I needs to be in the range [0, max_indices).

void set_indices(uint I, uchar2 v);
void set_indices(uint I, uchar4 v);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 78 of 346

2.21 Tensor Types

All OS: Metal 4 and later support tensor types.

Tensors are multidimensional data structures that are fundamental for machine learning. The

tensor has:

e data type (all elements are of the same type)

¢ rank that represents the number of dimensions in the tensor

e layout that represents the extents (size of each dimension) and strides (hnumber of
elements to skip past to get to the next element)

Metal defines two types of tensors:

e tensor<..> passed to shaders via arguments, global bindings, argument buffers, or
allocated in the shader. Threads can access the storage based on the address space
(constant, device, threadgroup, or thread) of the tensor element type.

e cooperative_tensor<..>whose storageisin thread and pre-partitioned among a
set of participating threads.

2211 Extents Type

The header <metal_tensor> defines the extents type. The type extents<IndexType,
size_t.. Extents> represents the multidimensional index space of tensors.

Table 2.14 Extents template parameters

Template Description

parameter

IndexType IndexType is the type used for the size of each dimension and for index
calculations. It can be any signed or unsigned integer type.

Extents Extents represent the extent (size of an integer interval) for each dimension (rank
index). If the extent is determined dynamically (for example, if the size of the
dimension is unknown at compile time), use dynamic_extent. Otherwise, the
value must be representable in IndexType.

Table 2.15 Extents member types

Type Description

index_type | Type used for the size of each dimension and for index calculations based on
IndexType.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 79 of 346

Type Description

size_type |Type used to describe extents.

rank_type | Type used for rank.

A convenient alias template dextents<class IndexType, size_t Rank> is provided
for extents where Extents for all dimensions is dynamic_extent.

Call the following member function to get the number of dimensions in extents:

static constexpr rank_type rank();

Call the following member function to get the number of dimensions in extents that are
dynamic:

static constexpr rank_type rank_dynamic();

Call the following member function to get the size of an extents at a certain rank index:

static constexpr size_t static_extent(rank_type r);

Call the following member function to get dynamic extent size of an extents at a certain rank
index:

constexpr index_type extent(rank_type r);

2.21.2 Tensor Type

The header <metal_tensor> definesthe tensor<ElementType, Extents,
DescriptorType, class.. Tag> type. Use this type to pass tensors to shaders via
arguments, global bindings, or argument buffers. You can also use this type to create tensors in
the shader. Table 2.16 describes the template parameters you can specify when instantiating
the template.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 80 of 346

Table 2.16 Tensor template parameters

Template
parameter

Description

ElementType

ElementType is the fully qualified type of the underlying type in the tensor.
A fully qualified type includes the value type contained in the tensor, the
address space of the underlying storage, and its coherence.

e The value type can be one of half, bfloat, float, char, uchar,
short, ushort, int, uint, long, or ulong.

e The address spaceis constant, device, threadgroup, or thread
(see section 4).

e Thevaluecanbe const, volatile, orcoherent(device) (see
section 4.8).

Extents

Extents describes the dimensions of the tensor using extents<..> (see
section 2.21.1). The extent IndexType can be one of short, ushort, int,
uint, long, or ulong.

DescriptorType

DescriptorType describes where the descriptor lives. It can be either:
tensor_handle: tensor contains a handle to the tensor descriptor, or
tensor_inline: tensor holds the tensor descriptor.

The defaultis tensor_handle.

Tags

Tags contains the additional compile-time properties. The only supported
tagis tensor_offset which you can only use if the DescriptorTypeis
tensor_handle. A tensor marked with that tag holds a set of offsets that
shift the origin of the tensor (see section 2.21.2.2).

Table 2.17 describes the member types defined by tensor<ElementType, Extents,
DescriptorType, Tags..>.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 81 of 346

Table 2.17 Tensor member type definition

Type defined Description

element_type The fully qualified element type with which you specialized the tensor type.

value_type The unqualified equivalent to element_type.

extents_type The extents type with which you the specialized the tensor type (section
2.21.1).

index_type The type you use for extents, strides, and indices.

size_type The unsigned equivalent of index_type.

rank_type The type you used for the rank of the tensor.

All tensors support the following constructors:

tensor() thread;

// Copy constructors

tensor(const thread tensor &) thread;

tensor(const device tensor &) thread;

tensor(const device coherent(device) tensor &) thread;

// Conversion constructor extent <-> dextent.
tensor(const thread tensor<element_type,
OtherExtents,
tensor_handle,
Tags...> &other) thread;
tensor(const device tensor<element_type,
OtherExtents,
tensor_handle,
Tags...> &other) thread;
tensor(const device device(coherent)tensor<element_type,
OtherExtents,
tensor_handle,
Tags...> &other) thread;
tensor(const constant tensor<element_type,
OtherExtents,
tensor_handle,
Tags...> &other) thread;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 82 of 346

// Conversion constructor tensor_handle,
// tensor_offset <- tensor_handle.
tensor(const thread tensor<element_type,
OtherExtents,
tensor_handle> &other) thread;
tensor(const device tensor<element_type,
OtherExtents,
tensor_handle> &other) thread;
tensor(const device device(coherent)
tensor<element_type,
OtherExtents,
tensor_handle> &other) thread;
tensor(const constant tensor<element_type,
OtherExtents,
tensor_handle> &other) thread;

Call the following member function to get the rank (number of dimensions) of the tensor:

static constexpr size_t get_rank();

Call the following member function to get the static extent size (size of a dimension) of the
tensor along the r'" dimension:

static constexpr size_t get_static_extent(rank_type r);

For example, if extents<int, 32, 64> ofthetensorthenget_static_extent(9)
returns 32 and get_static_extent (1) is 64.

Call the following member function to determine if the extent is static along the r'"" dimension:

static constexpr bool_has_static_extent(rank_type r);

Call the following member function to determine if the tensor has static extents:

static constexpr bool has_all_static_extent();

Call the following member function to get the extent of the tensor along the r' dimension:

index_type get_extent(rank_type 1);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 83 of 346

Call the following member function to get the stride of the tensor along the r'" dimension:

index_type get_stride(rank_type 1);

Call the [] operator to get a reference to an element of a tensor at multidimensional index. If
the index is out of bounds of the tensor, access to the element results in undefined behavior.

template<class.. OtherIndexTypes>
reference operator[](OtherIndexTypes..index);

template<class OtherIndexTypes>
reference operator[](
thread const array<OtherIndexTypes, get_rank()> &index);

Call the following member function to load an element of a tensor at index. The get function
supports broadcast semantics where if the multidimension index at i is greater than zero and
get_extent (i), the effective index is 0. If the effective index is out of bounds of the tensor,
the load returns the default value.

template<class.. OtherIndexTypes>
value_type get(OtherIndexTypes..index);

template<class OtherIndexTypes>
value_type get(
thread const array<OtherIndexTypes, get_rank()> &index);

Call the following member function to store a value v to an element of a tensor at index. If the
index is out of bounds of the tensor, the GPU drops the store.

template<class.. OtherIndexTypes>
void set(value_type v, OtherIndexTypes..index);

template<class OtherIndexTypes>
void set(value_type, v,
thread const array<OtherIndexTypes, get_rank()> &index);

Call the following member function to get a slice of a tensor whose origin is shifted by index
and whose extents are S1iceExtents. The returned slice tensor has the same
DescriptorType as the original tensor and is either an origin-shifted tensor (see section
2.21.2.2) or a shader-allocated tensor (see section 2.21.2.3). If OtherExtents is
dynamic_extent, slice returns the remaining elements starting from index. If this causes
the tensor to be out of bounds of the input tensor, it results in undefined behavior.

template<size_t.. SliceExtents, class.. OtherIndexTypes>
tensor<ElementType, SliceExtents, DescriptorType, SliceTags..>
slice(OtherIndexTypes.. index);

See section 2.21.2.2 for some examples.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 84 of 346

2.21.2.1 Host-bound Tensors

Host-bound tensors are tensors that are allocated and set up on the host. To declare a host-
bound tensor, specify tensor_handle tothe DescriptorType template parameter. The
ElementType may be qualified with either the device or constant address spaces.

[[kernelll
void gemm(tensor<device half, dextents<int, 2>,
tensor_handle> ta [[buffer(0)]ll],
tensor<constant float, dextents<int, 2>> tb [[buffer(1)1]1)
{..}

The example above defines ta as a tensor allocated in device memory with value type of
half. It defines tb as a tensor allocated in constant memory with value type of f1loat. Note
that since the default DescriptorTypeis tensor_handle, it is unnecessary to pass it in
this case.

2.21.2.2 Origin-shifted Tensors

Origin-shifted tensors are host-bound tensors tagged with tensor_offset. Origin-shifted
tensors have their origin shifted by a set of offsets (in number of elements) relative to the base
tensor. Calculate the new extents of the tensor relative to the origin, that is, for dimension 1:

get_extent(i) = base.get_extent(i) — offset(i);

For example, you can get an origin-shifted tensor using the s11ice member function of
tensor. The return tensor aliases the memory of the base tensor. The first call to slice returns
a tensor with dynamic extents because the remaining number of elements in the tensor is based
on the original tensor and the shifted origin. The second call returns a 16x16x16 tensor whose
origin starts at (32, 32, 32) of the base tensor. The last call returns a 16x16x16 tensor
whose origin starts at (16, 16, 32) of the base tensor.

[[kernel 1]
void offsetTensor(tensor<device float,
extents<int, 64, 128, 256>> tbase) {
// Origin-shifted tensor.
tensor<device float, dextents<int, 3>,

tensor_handle, tensor_offset> t3 tbase.slice(8, 16, 32);

// 0Origin-shifted 16x16x16 tensor.
tensor<device float, extents<int, 16, 16, 16>,
tensor_handle, tensor_offset> t4 =
tbase.slice<16, 16, 16>(32, 32, 32);

// Origin-shifted tensor.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 85 of 346

auto tb5 = tbase.slice<16, 16, 16>(16, 16, 32);
}

2.21.2.3 Shader-Allocated Tensors

Shader-allocated (inline) tensors are tensors allocated directly inside a shader. To declare a
shader-allocated tensor, specify tensor_inline tothe DescriptorType template
parameter. You may qualify ElementType with either the device, constant,
threadgroup, or thread address spaces. You can't define shader allocated tensor types in
an aggregate type (see section 2.12).

Shader-allocated tensors support the following additional constructors:

// Raw constructor with pointer, extents, strides.
tensor(data_handle_type ptr,
thread const OtherExtentsType &_extents,
thread const array<OtherStrideType, get_rank()>&_strides)
thread;

// Raw constructor with pointer, extents (with implied packed
// layout for strides).
template <class OtherExtentsType,
tensor(data_handle_type ptr,
thread const OtherExtentsType &_extents) thread;

The example below shows a use of the constructor:

[[kernell] void funcl(threadgroup half xbuf) {
tensor<threadgroup half, dextents<int, 3>, tensor_inline>
t1(buf, dextents<int, 3>(16, 32, 64));
auto t2 = tensor(buf, dextents<int, 3>(16, 32, 64));

2.21.3 Cooperative Tensor Type

The header <metal_cooperative_tensor> defines the
cooperative_tensor<ElementType, Extents, Layout> type. The
cooperative_tensor represents a tensor with elements that are partitioned across a set of
participating threads in thread memory. Each thread has access to only the elements in its
partition. These threads belong to the same threadgroup and may be spread across
consecutive SIMD-groups. You can't define a cooperative_tensor in an aggregate type
(see section 2.12).

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 86 of 346

Table 2.18 Cooperative tensor template parameters

Template Description
parameter

ElementType ElementType is the type of the underlying type in the tensor. For cooperative
tensor, the address space is thread.

Extents Extents describes the dimensions of the tensor using extents<..> (see
section 2.21.1).

Layout Layout specifies the mapping of the multidimensional coordinate space of
the tensor to the prepartitioned storage for each thread.

You typically don't construct cooperative_tensor directly as the Layout is device
specific. Instead, you use libraries such as Metal Performance Primitives (see section 7), a
library of optimized primitives that include operators that work on tensors such as matrix
multiplication and convolution. You create them using the tensor operations, which use them to
store intermediate results. The tensor operation determines an efficient and performant
Layout foracooperative_tensor based on its usage and the GPU.

2.21.3.1 Layout

Layout is an opague object that provides the following interface that describes the
configuration of the cooperative_tensor. The layout is used by the
cooperative_tensor toimplement its various functions. You don't usually need to call
these functions.

Call the following function to return the amount of storage each thread needs to allocate for the
cooperative_tensor:

static size_t thread_storage_size();

Call the following function to return the alignment of storage each thread needs to allocate for
the cooperative_tensor:

static const_expr size_t thread_storage_align();

Call the following function to return the maximum number of elements that the
cooperative_tensor can hold per thread:

static thread_size_type get_capacity(const thread void *xthis);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 87 of 346

Call the following function to determine if the element at 1dx is valid:

static bool is_valid_element(const thread void *, uintlé6 idx);

Call the following function to get the pointer to the element at idx. If the idx is invalid, the
result is undefined. :

static thread void *
get_element_pointer(const thread void *, uintlé6_t idx);

Call the following function to return the index given the pointer to the element. If the pointer is
not a valid element of the cooperative_tensor, the result is undefined.

static uintlé6_t
get_element_index(const thread void *storage,
const thread void *element);

Call the following function to return the set of multi-dimensional index at 1dx:

template <class OtherIndexType, size_t Rank>
static array<OtherIndexType, Rank>
get_multidimensional_index(const thread void *, uintlé_t idx);

Call the following function to load elements belonging to this thread into per-thread storage:

template <class T, class E, class D, class... Tags>
static void load(thread void *storage,
const thread tensor<T, E, D, Tags...> &);

Call the following function to store elements belonging to this thread from per-thread storage
into the destination tensor:

template <class T, class E, class D, class... Tags>
static void store(const thread void *storage,
const thread tensor<T, E, D, Tags...> &);

The following function implements this interface when FromIterator can be converted to
Tolterator:

template <class FromIterator, class Tolterator>

static uintlé6_t map_index(const thread void *from_storage,
uintlé_t from_idx,
const thread void *to_storage);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 88 of 346

2.21.3.2 Cooperative Tensor

Table 2.19 Cooperative tensor type definition

Type defined

Description

element_type

The fully qualified element type with which you specialized the
cooperative_tensor type.

value_type

The unqualified equivalent to element_type

extents_type

The extents type with which you specialized the
cooperative_tensor type (section 2.21.1).

index_type The index type you used for extents.
size_type The unsigned equivalent of index_type.
rank_type The type you used for the rank of the cooperative_tensor

(viaextents).

thread_index_type

The index type you used to index per-thread storage.

thread_size_type

The unsigned equivalent of thread_index_type.

data_handle_type

Pointer tothe element_type.

reference

Reference to the element_type.

const_reference

const equivalent of reference.

iterator

Random access iterator to element_type.

const_iterator

const equivalent of iterator.

layout

The layout with which you specialized the
cooperative_tensor type.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 89 of 346

Call the following member function to get the rank of the cooperative tensor:

static constexpr rank_type get_rank();

Call the following member function to cooperatively load all elements from a tensor t into the
cooperative tensor. The function supports broadcast semantics where a tensor is expanded
into a compatible cooperative tensor. Two tensors are compatible for broadcasting if they have
the same rank and when iterating over the dimensions, the sizes are equal or the tensor we are
loading from is size 1. For example, you can load a tensor a 64x1 tensor intoa 64x2
cooperative tensor.

template<class T, class E, calls D, class..>
void load(const thread tensor<T, E, D, ..> &t) thread;

Call the following member function to cooperatively store all elements from a cooperative
tensor into the tensor t. The function supports broadcast semantics as described in the load.
For example, you can store a 64x1 cooperative tensortoa64x2 tensor.

template<class T, class E, calls D, class..>
void store(thread tensor<T, E, D, ..> &t) thread const;

Call the following member function to the maximum number of elements that are private to this
thread. This value is uniform across all threads participating in the cooperative tensor.

thread_size_type get_capacity() thread const;

Call the [] operator to get a reference to an element of a cooperative tensor at 1dx. If the 1dx
is out-of-bound of the cooperative tensor, access to the element results in undefined behavior.

reference operator[](thread_index_type idx);
const_reference operator[](thread_index_type idx) const;

Call the following member function to get the value at it, idx, or ptr from memory owned by
this thread:

value_type get(const_iterator it) thread const;
value_type get(thread_index_type idx) thread const;
value_type get(const thread element_type *ptr) thread const;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 90 of 346

Call the following member function to set the value at it, idx, or ptr from memory owned by
this thread:

void set(iterator it, value_type v) thread;
void set(thread_index_type idx, value_type v) thread;
void set(thread element_type *ptr, value_type v) thread;

Call the following member function to get the logical multidimensional index that corresponds
tothe elementat it, idx, or ptr:

array<index_type, get_rank()>
get_multidimensional_index(const_iterator it) thread const;

array<index_type, get_rank()>
get_multidimensional_index(thread_index_type idx) thread const;

array<index_type, get_rank()>
get_multidimensional_index(
const thread element_type xptr) thread const;

Call the following member function to determine if the element pointed to by it, idx, or ptris
valid. If the return value is false, the element is invalid, and access to it is undefined behavior.

bool is_valid_element(const_iterator it) const;
bool is_valid_element(thread_index_type idx) const;
bool is_valid_element(const thread element_type xptr) const;

Call the following member functions to return an iterator to the beginning, which corresponds to
the same element at index 0:

iterator begin() thread;
const_iterator begin() thread const;

Call the following member functions to return an iterator to the end:

iterator end() thread;
const_iterator end() thread const;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 91 of 346

Call the following member functions to return an iterator corresponding to the element
corresponding to idx or ptr:

iterator get_iterator(thread_index_type idx) thread;
const_iterator get_iterator(thread_index_type idx) thread const;

iterator get_iterator(const thread element_type xptr) thread;
const_iterator get_iterator(
const thread element_type *ptr) thread const;

Call the following functions that point to the element in this cooperative_tensor that
corresponds to the element pointed to by it from another cooperative_tensor. These
functions may be exposed if the layout of two cooperative_tensors are compatible.

template<class OtherIterator>
iterator map_iterator(const thread OtherIterator &it);

template<class OtherIterator>
const_iterator map_iterator(
const thread OtherIterator &it) const;

2.22 Type Conversions and Reinterpreting Data

The static_cast operator converts from a scalar or vector type to another scalar or vector
type using the default rounding mode with no saturation (when converting to floating-point,
round ties to even; when converting to an integer, round toward zero). If the source type is a
scalar or vector Boolean, the value false is converted to zero, and the value true is
converted to one.

Metal adds an as_type<type-id> operator to allow any scalar or vector data type (that is not
a pointer) to be reinterpreted as another scalar or vector data type of the same size. The bits in
the operand are returned directly without modification as the new type. The usual type
promotion for function arguments is not performed.

For example, as_type<float>(0x3f800000) returns 1. 0T, which is the value of the bit
pattern 0x3T800000 if viewed as an IEEE-754 single precision value.

Using the as_type<type-1id> operator to reinterpret data to a type with a different number
of bytes results in an error.

Examples of legal and illegal type conversions:

float f = 1.0f;
// Legal. Contains: 0x3f800000
uint u = as_type<uint>(f);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 92 of 346

// Legal. Contains:
// (int4) (0x3f800000, 0x40000000, 0x40400000, 0x40800000)

floats f float4(1.0f, 2.0f, 3.0f, 4.0f);
int4 1 = as_type<int4>(f);

int 1i;

// Legal.

short2 j = as_type<short2>(1i);

half4 T;
// Error. Result and operand have different sizes
float4 g = as_type<floats>(f);

floats4 T
// Legal. g.xyz has same values as f.xyz.
float3 g = as_type<float3>(f);

2.23 Implicit Type Conversions

Implicit conversions between scalar built-in types (except void) are supported. When an implicit
conversion is done, it is not just a re-interpretation of the expression's value but a conversion of
that value to an equivalent value in the new type. For example, the integer value 5 is converted
to the floating-point value 5. 0. A bfloat is an extended floating-point type that only allows
implicit conversion to a type of greater floating-point rank. While bf1oat can be implicitly
converted to float, it cannot be implicitly converted to half, and neither float nor half can be
implicitly converted to bfloat.

All vector types are considered to have a higher conversion rank than scalar types. Implicit
conversions from a vector type to another vector or scalar type are not permitted and a
compilation error results. For example, the following attempt to convert from a 4-component
integer vector to a 4-component floating-point vector fails.

int4 1;

float4 f = i; // Results in a compile error.

Implicit conversions from scalar-to-vector types are supported. The scalar value is replicated in
each element of the vector. The scalar may also be subject to the usual arithmetic conversion to
the element type used by the vector.

For example:
float4 £ = 2.0F; // f = (2.0f, 2.0f, 2.0f, 2.0f)

Implicit conversions from scalar-to-matrix types and vector-to-matrix types are not supported
and a compilation error results. Implicit conversions from a matrix type to another matrix, vector
or scalar type are not permitted and a compilation error results.

Implicit conversions for pointer types follow the rules described in the C++17 Specification.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 93 of 346

http://f.xyz/

3

Operators

All OS: Metal 1 and later support scalar, vector, and matrix operators.

For indirect command buffers, the assignment operator (=) does not copy the contents of a
command. For more about copying commands in indirect command buffers, see section 6.16.3.

3.1

Scalar and Vector Operators

This section lists both binary and unary operators and describes their actions on scalar and
vector operands.

1.

The arithmetic binary operators, add (+), subtract (—), multiply (*) and divide (/), act
upon scalar and vector, integer, and floating-point data type operands. Following the
usual arithmetic conversions, all arithmetic operators return a result of the same built-in
type (integer or floating-point) as the type of the operands. After conversion, the
following cases are valid:

e If the two operands of the arithmetic binary operator are scalars, the result of the
operation is a scalar.
e If one operand is a scalar, and the other operand is a vector,

e The scalar converts to the element type that the vector operand uses.

e The scalar type then widens to a vector that has the same number of
components as the vector operand.

o Metal performs the operation componentwise, which results in a same size
vector.

e If the two operands are vectors of the same size, Metal performs the operation
componentwise, which results in a same size vector.

Division on integer types that result in a value that lies outside of the range bounded by
the maximum and minimum representable values of the integer type, such as
TYPE_MIN/-1 for signed integer types or division by zero, does not cause an exception

but results in an unspecified value. Division by zero for floating-point types results in +«»

or NaN, as prescribed by IEEE-754. (For more about the numerical accuracy of floating-
point operations, see section 8.)

Because bfloat and half are not implicitly convertible to each other, the operators do
not support mixing bfloat and half.

The modulus operator (%) acts upon scalar and vector integer data type operands. The
modulus operator returns a result of the same built-in type as the type of the operands,
after the usual arithmetic conversions. The following cases are valid:

e If the two operands of the modulus operator are scalars, the result of the operation is
a scalar.
e If one operand is a scalar, and the other is a vector:

e The scalar converts to the element type of the vector operand.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 94 of 346

e The scalar type then widens to a vector that has the same number of
components as the vector operand.

o Metal performs the operation componentwise, which results in a same-size
vector.

e If the two operands are vectors of the same size, Metal performs the operation
componentwise, which results in a same-size vector.

For any component computed with a second operand that is zero, the modulus operator
result is undefined. If one or both operands are negative, the results are undefined.
Results for other components with nonzero operands remain defined.

If both operands are nonnegative, the remainder is nonnegative.

The arithmetic unary operators (+ and —) act upon scalar and vector, integer, and
floating-point type operands.

The arithmetic post- and pre-increment and decrement operators (— and ++) have
scalar and vector integer type operands. All unary operators work componentwise on
their operands. The result is the same type as the operand. For post- and pre-increment
and decrement, the expression needs to be assignable to an 1value. Pre-increment
and predecrement add or subtract 1 to the contents of the expression on which they
operate, and the value of the pre-increment or predecrement expression is the resulting
value of that modification. Post-increment and post-decrement expressions add or
subtract 1 to the contents of the expression on which they operate, but the resulting
expression has the expression’s value before execution of the post-increment or post-
decrement.

The relational operators [greater-than (>), less-than (<), greater-than or equal to (>=),
and less-than or equal to (<=)] act upon scalar and vector, integer, and floating-point
type operands. The result is a Boolean (bool type) scalar or vector. After converting the
operand type, the following cases are valid:

e If the two operands of the relational operator are scalars, the result of the operation
is a Boolean.
e If one operand is a scalar, and the other is a vector:

e The scalar converts to the element type of the vector operand.

e The scalar type then widens to a vector that has the same number of
components as the vector operand.

o Metal performs the operation componentwise, which results in a Boolean vector.

e If the two operands are vectors of the same size, Metal performs the operation
componentwise, which results in a same-size Boolean vector.

If either argument is a NaN, the relational operator returns false. To test a relational
operation on any or all elements of a vector, use the any and all built-in functions in
the context of an 1 (..) statement. (For more about any and all functions, see
section 6.4.)

The equality operators, equal (==) and not equal (! =), act upon scalar and vector,
integer and floating-point type operands. All equality operators result in a Boolean scalar
or vector. After converting the operand type, the following cases are valid:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 95 of 346

10.

1.

e If the two operands of the equality operator are scalars, the result of the operation is
a Boolean.
e If one operand is a scalar, and the other is a vector:

e The scalar converts to the element type of the vector operand.

e The scalar type then widens to a vector that has the same number of
components as the vector operand.

o Metal performs the operation componentwise, which results in a Boolean vector.

e If the two operands are vectors of the same size, Metal performs the operation
componentwise, which results in a same-size Boolean vector.

All other cases of implicit conversions are illegal. If one or both arguments is NaN, the
equality operator equal (==) returns false. If one or both arguments is NaN, the
equality operator not equal (! =) returns true.

The bitwise operators [and (&), or (|), exclusive or ("), not (~)] can act upon all scalar
and vector built-in type operands, except the built-in scalar and vector floating-point

types.

e For built-in vector types, Metal applies the bitwise operators componentwise.
e If one operand is a scalar and the other is a vector,

e The scalar converts to the element type used by the vector operand.

e The scalar type then widens to a vector that has the same number of
components as the vector operand.

e Metal performs the bitwise operation componentwise resulting in a same-size
vector.

The logical operators [and (&&), or (| |)] act upon two operands that are Boolean
expressions. The result is a scalar or vector Boolean.

The logical unary operator not (!) acts upon one operand that is a Boolean expression.
The result is a scalar or vector Boolean.

The ternary selection operator (? :) acts upon three operands that are expressions
(expl?exp?2:exp3). This operator evaluates the first expression expl, which must
result in a scalar Boolean. If the result is true, the second expression is evaluated; if
false, the third expression is evaluated. Metal evaluates only one of the second and
third expressions. The second and third expressions can be of any type if:

e The types of the second and third expressions match.

e There is a type conversion for one of the expressions that can make their types
match (for more about type conversions, see section 2.12).

e One expression is a vector and the other is a scalar, and the scalar can be widened
to the same type as the vector type. The resulting matching type is the type of the
entire expression.

The ones' complement operator (~) acts upon one operand that needs to be of a scalar
or vector integer type. The result is the ones' complement of its operand.

The right-shift (>>) and left-shift (<<) operators act upon all scalar and vector integer
type operands. For built-in vector types, Metal applies the operators componentwise.
For the right-shift (>>) and left-shift (<<) operators, if the first operand is a scalar, the

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 96 of 346

rightmost operand needs to be a scalar. If the first operand is a vector, the rightmost
operand can be a vector or scalar.

Theresultof E1 << E2is E1 left-shifted by the 10g2 (N) least significant bits in E2
viewed as an unsigned integer value:

e If E1lis ascalar, Nis the number of bits used to represent the data type of E1.
e Orif E1lis avector, N is the number of bits used to represent the type of E1
elements.

For the left-shift operator, the vacated bits are filled with zeros.

Theresultof E1 >> E2is E1 right-shifted by the 1092 (N) least significant bits in E2
viewed as an unsigned integer value:

e If Elis ascalar, Nis the number of bits used to represent the data type of E1.
e Orif E1lis avector, Nis the number of bits used to represent the data type of E1
elements.

For the right-shift operator, if E1 has an unsigned type or if E1 has a signed type and a
nonnegative value, the vacated bits are filled with zeros. If E1 has a signed type and a
negative value, the vacated bits are filled with ones.

12. The assignment operator behaves as described by the C++17 Specification. For the
lvalue = expression assignment operation, if expression is a scalar type and
lvalue is a vector type, the scalar converts to the element type used by the vector
operand. The scalar type then widens to a vector that has the same number of
components as the vector operand. Metal performs the operation componentwise,
which results in a same size vector.

Other C++17 operators that are not detailed above — such as sizeof (T), unary (&) operator,
and comma (,) operator — behave as described in the C++17 Specification.

Unsigned integers shall obey the laws of arithmetic modulo 2n, where n is the number of bits in
the value representation of that particular size of integer. The result of signed integer overflow
is undefined.

For integral operands the divide (/) operator yields the algebraic quotient with any fractional
part discarded. (This is often called truncation towards zero.) If the quotient a/b is
representable in the type of the result, (a/b)*xb + a%b is equal to a.

3.2 Matrix Operators

The arithmetic operators add (+), subtract (—) operate on matrices. Both matrices must have
the same numbers of rows and columns. Metal applies the operation componentwise resulting
in the same size matrix. The arithmetic operator multiply (*) acts upon:

e ascalar and a matrix
a matrix and a scalar
a vector and a matrix
a matrix and a vector
a matrix and a matrix

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 97 of 346

If one operand is a scalar, the scalar value is multiplied to each component of the matrix
resulting in the same-size matrix. A right vector operand is treated as a column vector and a left
vector operand as a row vector. For vector-to-matrix, matrix-to-vector, and matrix-to-matrix
multiplication, the number of columns of the left operand needs to be equal to the number of
rows of the right operand. The multiply operation does a linear algebraic multiply, yielding a
vector or a matrix that has the same number of rows as the left operand and the same number
of columns as the right operand.

The following examples presume these vector, matrix, and scalar variables are initialized. The
order of partial sums for the vector-to-matrix, matrix-to-vector, and matrix-to-matrix
multiplication operations described below is undefined.

float3 v;
float3x3 m, n;
float a = 3.0f;

The matrix-to-scalar multiplication:
float3x3 ml =m % a;

is equivalent to:

mi[e1[0] = m[o][0]
mi[01[1] = m[O][1]
mi[01[2] = m[O][2]
mi[1]1[0] = m[1]1[0]
mi[21]1[1] = m[2]1[1]
mi[1]1[2] = m[2]1[2]
mi[2]1[0] = m[2][0]
mi[2]1[1] = m[2]1[1]
mi[2]1[2] = m[2][2]

* X X X K X X X X
Q

The vector-to-matrix multiplication:
float3 u = v *x m;

is equivalent to:

u.x = dot(v, m[o]);
u.y = dot(v, m[1]);
u.z = dot(v, m[2]);

The matrix-to-vector multiplication:

float3 u =m *x v;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 98 of 346

is equivalent to:

u.x = mlO]l.x x v.x + m[1].x * v.y + m[2].x * v.z;

u.y = mlol.y x v.x + m[1].y * v.y + m[2].y * v.z;

u.z = mlOl.z x v.x + m[1].z % v.y + m[2].z % v.z;

The matrix-to-matrix multiplication:

float3x3 r = m *x n; // m, n are float3x3

is equivalent to:

r[0].x = m[@].x *x n[@].x + m[1].x *x n[@].y + m[2].x * n[@].
r[e]l.y = m[@].y x n[@].x + m[1].y *x n[@].y + m[2].y * n[@].
r[0].z = m[O].z x n[@]l.x + m[1].z x n[@].y + m[2].z * n[@].
r[1].x = m[O].x *x n[1].x + m[1].x * n[1]l.y + m[2].x * n[1].
r[1].y = m[O].y x n[1]l.x + m[1].y * n[1].y + m[2].y * n[1].
r[1]l.z = m[O].z x n[1].x + m[1].z * n[1]l.y + m[2].z * n[1].
r[2].x = m[O].x *x n[2].x + m[1].x * n[2].y + m[2].x * n[2].
r[2].y = mlO]l.y x n[2].x + m[1].y *x n[2].y + m[2].y * n[2].
r[2].x = mlO].z x n[2].x + m[1].z *x n[2].y + m[2].z * n[2].

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 99 of 346

4 Address Spaces

The Metal memory model describes the behavior and structure of memory objects in MSL
programs. An address space attribute specifies the region of memory from where buffer
memory objects are allocated. These attributes describe disjoint address spaces that can also
specify access restrictions:

e device (see section 4.1)

e constant (see section 4.2)

e thread (see section 4.3)

e threadgroup (see section 4.4)

e threadgroup_imageblock (see section 4.5)
e ray_data (see section 4.6)

e o0bject_data (see section 4.7)

All OS: Metal 1 and later support the device, threadgroup, constant, and thread
attributes. Metal 2.3 and later support ray_data attributes. Metal 3 and later support
object_data attributes.

iOS: Metal 2 and later support the threadgroup_imageblock attribute.
macOS: Metal 2.3 and later support the threadgroup_imageblock attribute.

All arguments to a graphics or kernel function that are a pointer or reference to a type needs to
be declared with an address space attribute. For graphics functions, an argument that is a
pointer or reference to a type needs to be declared in the device or constant address
space. For kernel functions, an argument that is a pointer or reference to a type needs to be
declared inthe device, threadgroup, threadgroup_imageblock, or constant address
space. The following example introduces the use of several address space attributes. (The
threadgroup attribute is supported here for the pointer 1_data only if foo is called by a
kernel function, as detailed in section 4.4.)

void foo(device int *g_data,
threadgroup int *1_data,
constant float *c_data)
{..}

The address space for a variable at program scope needs to be constant.

Any variable that is a pointer or reference needs to be declared with one of the address space
attributes discussed in this section. If an address space attribute is missing on a pointer or
reference type declaration, a compilation error occurs.

4.1 Device Address Space

The device address space name refers to buffer memory objects allocated from the device
memory pool that are both readable and writeable.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 100 of 346

A buffer memory object can be declared as a pointer or reference to a scalar, vector or user-
defined structure. In an app, Metal API calls allocate the memory for the buffer object, which
determines the actual size of the buffer memory.

Some examples are:

// An array of a float vector with four components.
device float4 *color;

struct Foo {
float al3];
int b[2];
¥

// An array of Foo elements.

device Foo *my_info;

Because you always allocate texture objects from the device address space, you don't need the
device address attribute for texture types. You cannot directly access the elements of a
texture object, so use the built-in functions to read from and write to a texture object (see
section 6.12).

4.2 Constant Address Space

The constant address space name refers to buffer memory objects allocated from the device
memory pool that are read-only. You must declare variables in program scope in the constant
address space and initialize them during the declaration statement. The initializer(s) expression
must be a core constant expression. (Refer to section 5.20 of the C++17 specification.) The
compiler may evaluate a core constant expression at compile time. Variables in program scope
have the same lifetime as the program, and their values persist between calls to any of the
compute or graphics functions in the program.

constant float samples[] = { 1.0f, 2.0f, 3.0f, 4.0f };
Pointers or references to the constant address space are allowed as arguments to functions.

Writing to variables declared in the constant address space is a compile-time error. Declaring
such a variable without initialization is also a compile-time error.

Buffers in the constant address space passed to kernel, vertex, and fragment functions have
minimum alignment requirements based on the GPU. See "Minimum constant buffer offset
alignment” in the Metal Feature Set Tables for more information.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 101 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

4.3 Thread Address Space

The thread address space refers to the per-thread memory address space. Variables
allocated in this address space are not visible to other threads. Variables declared inside a
graphics or kernel function are allocated in the thread address space.

[[kernell] void
my_kernel(..)

{
// A float allocated in the per-thread address space
float x;
// A pointer to variable x in per-thread address space
thread float *x p = &x;

¥

4.4 Threadgroup Address Space

A GPU compute unit can execute multiple threads concurrently in a threadgroup, and a GPU can
execute a separate threadgroup for each of its compute units.

Threads in a threadgroup can work together by sharing data in threadgroup memory, which
is faster on most devices than sharing data in device memory. Use the threadgroup
address space to:

¢ Allocate a threadgroup variable in a kernel, mesh, or object function.
¢ Define a kernel, fragment, or object function parameter that's a pointer to a threadgroup
address.

See the Metal Feature Set Tables to learn which GPUs support threadgroup space
arguments for fragment shaders.

Threadgroup variables in a kernel, mesh, or object function only exist for the lifetime of the
threadgroup that executes the kernel. Threadgroup variables in a mid-render kernel function
are persistent across mid-render and fragment kernel functions over a tile.

This example kernel demonstrates how to declare both variables and arguments in the
threadgroup address space. (The [[threadgroup]] attribute in the code below is
explained in section 5.2.1.)

kernel void
my_kernel(threadgroup float xsharedParameter [[threadgroup(®)l11],
w)
{
// Allocate a float in the threadgroup address space.
threadgroup float sharedFloat;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 102 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

// Allocate an array of 10 floats in the threadgroup address
space.
threadgroup float sharedFloatArray[10];

}

For more information about the [[threadgroup(0) 1] attribute, see section 5.2.1.

441 SIMD-Groups and Quad-Groups

macOS: Metal 2 and later support SIMD-group functions. Metal 2.1 and later support quad-
group functions.

iOS: Metal 2.2 and later support some SIMD-group functions. Metal 2 and later support quad-
group functions.

Within a threadgroup, you can divide threads into SIMD-groups, which are collections of
threads that execute concurrently. The mapping to SIMD-groups is invariant for the duration of
a kernel's execution, across dispatches of a given kernel with the same launch parameters, and
from one threadgroup to another within the dispatch (excluding the trailing edge threadgroups
in the presence of nonuniform threadgroup sizes). In addition, all SIMD-groups within a
threadgroup needs to be the same size, apart from the SIMD-group with the maximum index,
which may be smaller, if the size of the threadgroup is not evenly divisible by the size of the
SIMD-groups.

A quad-group is a SIMD-group with the thread execution width of 4.

For more about kernel function attributes for SIMD-groups and quad-groups, see section
5.2.3.6. For more about threads and thread synchronization, see section 6.9 and its
subsections:

e For more about thread synchronization functions, including a SIMD-group barrier, see
section 6.9.1.

e For more about SIMD-group functions, see section 6.9.2.

e For more about quad-group functions, see section 6.9.3.

4.5 Threadgroup Imageblock Address Space

The threadgroup_imageblock address space refers to objects allocated in threadgroup
memory that are only accessible using an imageblock<T, L> object (see section 2.11). A
pointer to a user-defined type allocated in the threadgroup_imageblock address space
can be an argument to a tile shading function (see section 5.1.9). There is exactly one
threadgroup per tile, and each threadgroup can access the threadgroup memory and the
imageblock associated with its tile.

e Variables allocated in the threadgroup_imageblock address space in a kernel function
are allocated for each threadgroup executing the kernel, are shared by all threads in a
threadgroup, and exist only for the lifetime of the threadgroup that executes the kernel.
Each thread in the threadgroup uses explicit 2D coordinates to access imageblocks. Do not
assume any spatial relationship between the threads and the imageblock. The threadgroup
dimensions may be smaller than the tile size.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 103 of 346

4.6 Ray Data Address Space

All OS: Metal 2.3 and later support ray_data address space.

The ray_data address space refers to objects allocated in a memory that is only accessible in
an intersection function (see section 5.1.6) for ray tracing. Intersection functions can read and
write to a custom payload using [[payload]] attribute (see Table 5.10) inthe ray_data
address space. When a shader calls intersect () (see section 6.18.2) with a payload, the
system copies the payload to the ray_data address space, calls the intersection function, and
when the intersection function returns, it copies the payload back out.

4.7 Object Data Address Space

All OS: Metal 3 and later support object_data address space.

Object functions use the object_data address space to pass a payload to a mesh function
(see section 5.2.3.9). The object_data address space behaves like the threadgroup
address space in that the programming model is explicitly cooperative within the threadgroup.
Use the threads in the threadgroup to efficiently compute the payload and value
mesh_grid_properties::set_threadgroups_per_grid. The payloadinthe
object_data address space is not explicitly bound or initialized, and the implementation
manages its lifetime.

4.8 Memory Coherency

All OS: Metal 3.2 and later support coherent (device) qualifierand memory_coherence
on textures for Apple silicon.

Memory operations in Metal have a concept of a scope of coherency. For a store, the scope of
coherence describes the set of threads that may observe the result of the store if you properly
synchronize them, and for a load, it describes the set of threads with stores the load may
observe if you properly synchronize them. Metal has the following scope of coherence:

e Thread coherence — memory writes are only visible to the thread.

e Threadgroup coherence — memory writes are only visible to threads within their
threadgroup.

e Device coherence — memory writes are visible to all threads on the device, that is,
threads across threadgroups.

Memory in the thread address space has thread coherence, and memory in the
threadgroup address space has threadgroup coherence. By default, memory in the device
address space has threadgroup coherence.

Metal 3.2 and later support the coherent (device) qualifiers for buffers and
memory_coherence_device for textures to indicate that the object has device coherence,
that is, memory operations are visible across threads on the device if you properly synchronize
them.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 104 of 346

[[kernell] void example(
coherent device float *xdptrl,

coherent(device)
texture2d<float,
texture2d<float,

{..}

device float4 *xdptr2,

access::read, memory_coherence_device> tex,
access::read,

memory_coherence: :memory_coherence_device> tex2)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 105 of 346

5 Function and Variable Declarations

This chapter describes how you declare functions, arguments, and variables. It also details how
you often use attributes to specify restrictions to functions, arguments, and variables.

51 Functions

Metal 1 and later support the kernel, vertex, and fragment attributes for every OS. Metal
2.3 and later support the C++ attributes:

e [[vertex]]orvertex (See section5.1.1)

e [[fragment]]or fragment (See section 5.1.2)
e [[kernell]orkernel (See section 5.1.3)

e [[visiblel] (See section 5.1.4)

e [[stitchablel] (See section5.1.5)

e [[intersection(..)]] (See section 5.1.6)

e [[object]] (See section 5.1.7)

e [[meshl]] (See section 5.1.8)

Make a function accessible to the Metal APl by adding one of these function attributes at the
start of a function, which makes it a qualified function. Kernel, vertex, and fragment functions
can't call one another without triggering a compilation error, but they may call other functions
thatuse the [[visible]] attribute. They can also call functions with the
[[intersection(..) 1] attribute by calling intersect () (see section 6.18.2).

In Metal 2.1 and earlier, the Metal compiler ignores namespace identifiers for kernel, vertex, and
fragment functions. In Metal 2.2 and later, if you declare a qualified function within a
namespace, you must include the namespace identifier with the function's name each time you
refer it to a Metal Framework API. This example declares two kernel functions in different
namespaces.

namespace outer {
[[kernell] void functionA() {..}
namespace inner {
[[kernell] void functionB() {..}

}

Refer to a function in a namespace by prepending the function’s name with the namespace's
identifier followed by two colons:

Outer::functionA

Similarly, refer to a function in a nested namespace by prepending the function’s name with all
namespaces in order and separating each with two colons:

Outer::inner::functionB

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 106 of 346

511 Vertex Functions

You can declare the vertex (orin Metal 2.3 and later, [[vertex]]) attribute only for a
graphics function. Metal executes a vertex function for each vertex in the vertex stream and
generates per-vertex output. The following example shows the syntax for declaring a vertex:

vertex void
my_vertex_func(..)
{.}

[[vertex]] void
vertex_func2(..)
{..}

For a vertex function, the return type identifies the output generated by the function. If the
vertex function does not generate output, it shall return void and can only be used in a render
pipeline with rasterization disabled.

5.1.1.1 Post-Tessellation Vertex Functions
All OS: Metal 1.2 and later support post-tessellation vertex functions (patch attribute).

The post-tessellation vertex function calculates the vertex data for each surface sample on the
patch produced by the fixed function tessellator. The inputs to the post-tessellation vertex
function are:

e Per-patch data.
e Patch control point data.
e The tessellator stage output (the normalized vertex location on the patch).

The post-tessellation vertex function generates the final vertex data for the tessellated
triangles. For example, to add additional detail (such as displacement mapping values) to the
rendered geometry, the post-tessellation vertex function can sample a texture to modify the
vertex position by a displacement value.

After the post-tessellation vertex function executes, the tessellated primitives rasterize.

The post-tessellation vertex function is a vertex function identified using the ordinary vertex
function attribute.

5.1.1.2 Patch Type and Number of Control Points Per-Patch
The [[patch]] attribute is required for the post-tessellation vertex function.

For macOS, the [[patch(patch-type, N) 11 attribute must specify both the patch type
(patch-type iseither quad or triangle) and the number of control points in the patch (N
needs to be a value from 0 to 32). For iOS, specifying the patch-type is required, but the
number of control points is optional.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 107 of 346

If the number of control points are specified in the post-tessellation vertex function, this
number must match the number of control points provided to the drawPatches or
drawIndexedPatches API.

Example:

[[patch(quad) 1]

[[vertex]] vertex_output
my_post_tessellation_vertex(..)
{.}

[[patch(quad, 16)1]
[[vertex]] vertex_output

my_bezier_vertex(..)
{..}

5.1.2 Fragment Functions

You can declare the fragment or since Metal 2.3 [[fragment]] attribute only for a
graphics function. Metal executes a fragment function for each fragment in the fragment
stream and their associated data and generates per-fragment output. The following example
shows the syntax for declaring a fragment function with the fragment attribute:

[[fragment]]
void my_fragment_func(..)
{..}

fragment
void my_fragment_func2(..)
{..}

For graphics functions, the return type identifies whether the output generated by the function
is either per-vertex or per-fragment. If the fragment function does not generate output, it
returns void.

To request performing fragment tests before the fragment function executes, use the
[[early_fragment_tests]] function attribute with a fragment function, as shown in the
example below.

[[early_fragment_tests]]
fragment floats
my_fragment(..)

{.}

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 108 of 346

It is an error if the return type of the fragment function declared with the
[[early_fragment_tests]] attribute includes a depth or stencil value; that is, if the return
type of this fragment function includes an element declared with the
[[depth(depth_argument)]l]or[[stencil]] attribute.

Itisan errortousethe [[early_fragment_tests]] attribute with any function that is not a
fragment function; that is, not declared with the Tragment attribute.

51.3 Compute Functions (Kernels)

A compute function (also called a kernel) is a data-parallel function that is executed over a 1-,
2-, or 3D grid. The following example shows the syntax for declaring a compute function with
the kernel or since Metal 2.3 [[kernel]] attribute:

[[kernell]
void my_kernel(..) {..}

kernel
void my_kernel2(..) {..}

Functions declared with the kernel or [[kernel]] attribute must return void.

Youcanusethe [[max_total_threads_per_threadgroup]] function attribute with a
kernel function to specify the maximum threads per threadgroup. The value must fit within 32
bits.

Below is an example of a kernel function that uses this attribute:

[[max_total_threads_per_threadgroup(x)]]
kernel void

my_kernel(..)

{..}

If the [[max_total_threads_per_threadgroup]] value is greater than the
[MTLDevice maxThreadsPerThreadgroup] property, then compute pipeline state
creation fails.

In Metal 4 and later, you canuse the [[required_threads_per_threadgroup]] function
attribute with a kernel function to specify the number of threads per threadgroup. The value
must fit within 32 bits. If the [[required_threads_per_threadgroup]] valueis set and
the [MTLDevice requiredThreadsPerThreadgroup] property is set, the values must
be the same; otherwise, the compute pipeline state creation fails.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 109 of 346

https://developer.apple.com/documentation/metal/mtldevice/maxthreadsperthreadgroup
https://developer.apple.com/documentation/metal/mtldevice/maxthreadsperthreadgroup

514 Visible Functions
All OS: Metal 2.3 and later support [[visible]] functions.

A function witha [[visible]] attribute is a function that's visible from the Metal framework
API: that is, you can get a MTLFunction object of this function. It is legal to take the address of
a visible function and get a visible function pointer. You can use the visible function pointers
withthe visible_function_table type (section 2.15). It is legal for other functions to
directly call a visible function. Note that visible function, like other qualified functions, is
split into their own translation unit. When a function directly calls a visible function, pass itin
the pipeline descriptor.

The following example withthe [[visible]] attribute:

[[visible]l] float my_visible(device int *data, int data_offset) {..}

5.1.5 Stitchable Functions
All OS: Metal 2.4 and later support [[stitchable]] functions.

A functionwitha [[stitchable]] attribute is a function that can be used in the
MTLFunctionStitchingGraph. The [[stitchable]] attribute implies [[visiblel],
which means that stitchable functions can be used in all contexts where a visible function can
be used as described in Sec 5.1.4. The compiler generates additional metadata for stitchable
functions to enable these functions to be used in the MTLFunctionStitchingGraph. Note
that the metadata will increase the code size of this function.:

[[stitchablel] float my_func(device float *data, texture2d<float>
tex) {..}

5.1.6 Intersection Functions

All OS: Metal 2.3 and later support [[intersection(primitive_type,
intersection_tags..]] functions.

You can declare a custom intersection function to use with ray tracing by using the
[[intersection(primitive_type, intersection_tags..)]] attribute. Metal calls
intersection functions when the shader calls intersect () (see section 6.18) to determine if a
potential ray intersection is valid or if traversal should continue. Note that intersection functions
can't start new rays. Table 5.1. Intersection function primitive types lists the intersection types
Metal supports.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 110 of 346

https://developer.apple.com/documentation/metal/mtlfunctionstitchinggraph
https://developer.apple.com/documentation/metal/mtlfunctionstitchinggraph

Table 5.1. Intersection function primitive types

Primitive type Description

triangle Indicates that this is an intersection function that
extends the default triangle intersection test.

bounding_box Indicates that this is an intersection function which is run
when a ray intersects the bounding box.

curve Indicates that this is an intersection function that
All OS: Metal 3.1 and later. extends the default curve intersection test.

You may pass zero or more intersection tags as described in Table 2.9 from section 2.17. Some
examples are:

[[intersection(triangle, triangle_data, instancing,
world_space_data)]l

bool trianglelIntersectionFunction(...) {..}

[[intersection(bounding_box, triangle_data, instancing,
world_space_data)]l

UserResult boundingBoxIntersectionFunction(...) {..}

The intersection function primitive_type and intersection_tags control the allowable
input and output attributes (see Section 5.2.3.7).

Intersection functions support passing buffer arguments from device and constant address
space.

Intersection functions don't support passing texture arguments to an intersection function.
However, you can pass a texture using an argument buffer.

Intersection functions don't support threadgroup memory.

Intersection functions don't support threadgroup_barrier or simdgroup_barrier. If
they are used, the result is undefined.

Intersection functions may or may not be run in the same SIMD-group as the thread which
launched the intersection operation: The implementation is permitted to regroup or repack
candidate intersections to improve efficiency before launching SIMD-groups to do intersection
testing.

If the acceleration structure traversal finds a procedural box primitive, and the intersection
function is a triangle tester (or vice versa), this is an application error and behavior is undefined.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 111 of 346

51.7 Object Functions
All OS: Metal 3 and later support [[object]] functions.

A function with an [[object]] attribute is an object function in the mesh pipeline. An object
function is a data-parallel function executed over a 1-, 2-, or 3D compute grid that can launch
compute grids to a second mesh stage and with a data payload. Object functions must return
void.

Input built-in variables to object functions are described in section 5.2.3.9. The [[payload]]
attribute tags a buffer that the object function exports to the mesh shader as a read-only buffer.
It may be specified once per function.

Youcanusethe [[max_total_threads_per_threadgroup]] function attribute with an
object function to specify the maximum threads per threadgroup. The value must fit within 32
bits.

Youcanusethe [[max_total_threadgroups_per_mesh_grid(size)]] on an object
function to specify the maximum threadgroups per mesh grid. The following is an example
using the [[object]] attribute.

#define kMeshThreadgroups 32

struct ObjectOutput {

// User—-defined payload; one entry for each mesh threadgroup.

// This is an array because the data is shared by the mesh grid.
float valuel[kMeshThreadgroups];

b

[[object, max_total_threadgroups_per_mesh_grid(kMeshThreadgroups) 1]

void objectShader(uint threadgroup_size [[threads_per_threadgroupl],
uint lane [[thread_index_in_threadgroupl],
object_data ObjectOutput& output [[payloadll,
mesh_grid_properties mgp) {..}

5.1.8 Mesh Functions
All OS: Metal 3 and later support [[mesh]] functions.

A function with a [[mesh]] attribute is a mesh function in the mesh pipeline. A mesh function
is a data-parallel function that can optionally export a mesh object representing a chunk of
geometry to the rasterization pipeline. The mesh object is a parameter of the mesh function. If
no mesh object is exported, rasterization is disabled. Input built-in variables to mesh functions
are described in section 5.2.3.10. Mesh functions must return void.

Youcanusethe [[max_total_threads_per_threadgroup]] function attribute with a
mesh function to specify the maximum threads per threadgroup. The value must fit within 32
bits. The following is an example using the [[mesh 1] attribute:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 112 of 346

struct vertex_t {
float4 clip_pos [[position]];
float3 world_pos;
float3 color;
// other user-defined properties
o
struct primitive_t {
float3 normal;
o

// A mesh declaration that can export one cube.
using cube_mesh_t = metal::mesh<vertex_t, primitive_t,
8 /*kcornersx/,
6%2 /xfacesx/,
metal::topology::triangle>;
struct view_info_t {
float4x4 view_proj;
o
struct cube_info_t {
float4x3 world;
float3 color;
o

[[mesh, max_total_threads_per_threadgroup(12)1]]
void cube_stage(cube_mesh_t output,
const object_data cube_info_t &cube [[payloadll,
constant view_info_t &view [[buffer(e)]l],
uint gid [[threadgroup_position_in_grid]l],
uint lane [[thread_index_in_threadgroupll) {..}

51.9 Tile Functions
iOS: Metal 2 and later support tile functions.
macOS: Metal 2.3 and later support tile functions.

A tile shading function is a special type of compute kernel or fragment function that can execute
inline with graphics operations and take advantage of the Tile-Based Deferred Rendering
(TBDR) architecture. With TBDR, commands are buffered until a large list of commands
accumulates. The hardware divides the framebuffer into tiles and then renders only the
primitives that are visible within each tile. Tile shading functions support performing compute
operations in the middle of rendering, which can access memory more efficiently by reducing
round trips to memory and utilizing high-bandwidth local memory.

A tile function launches a set of threads called a dispatch, which is organized into threadgroups
and grids. You may launch threads at any point in a render pass and as often as needed. Tile
functions barrier against previous and subsequent draws, so a tile function does not execute
until all earlier draws have completed. Likewise, later draws do not execute until the tile function
completes.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 113 of 346

GPUs always process each tile and each dispatch to completion. Before processing the next
tile, all draws and dispatches for a tile launch in submission.

Tile functions have access to 32 KB of threadgroup memory that may be divided between
imageblock storage and threadgroup storage. (For more information about the threadgroup
memory size, see section 4.4.) The imageblock size is dependent on the tile width, tile height,
and the bit depth of each sample. Either the render pass attachments (which use implicit
imageblock layout; see section 5.6.3.1) or function-declared structures (which use explicit
imageblock layout; see section 5.6.3.2) determines the bit depth of the sample. For more about
how kernel functions utilize the threadgroup_imageblock address space, see section 4.5.

5.1.10 Host Name Attribute
All OS: Metal 2.2 and later support the host name attribute.

In Metal 2.2 and later, you can override the default name that the Metal Framework API uses to
refer to a qualified function. Add the [[host_name (name) 1] attribute to the function
declaration, where name is the string literal that the Metal Framework API will use to reference
the function name. The compiler raises a compile time error if you give different functions the
same name. For example:

// Metal API name 1is abc
[[host_name("abc")1] [[kernell] void funcA() {}

// Metal API name is Xyz
[[host_name("xyz")1] [[kernell] void funcX() {}

5.1.11 Templated Qualified Functions
All OS: Metal 2.2 and later support the template qualified functions.

In Metal 2.2 and later, you can use templates for qualified functions (for example, vertex,
fragment, visible, and kernel functions) declarations. You must explicitly instantiate the
template to force the compiler to emit code for a given specialization. For example:

template<typename T>

kernel void bar(device T *x) { .. }

// Explicit specialization of “bar<T>" with [T = int]
template kernel void bar(device int x);

The compiler gives all specializations the same name unless one uses the
[[host_name(name)]] attribute to provide a different name for each specialization.

// Explicit specialization of “bar<T>" with [T = int] and host_name
// "bar_int"

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 114 of 346

template [[host_name("bar_int")]] kernel void bar(device int *);

// Explicit specialization of “bar<T>" with [T = float] and
// host_name "bar_float"
template [[host_name("bar_float")]] kernel void bar(device float *);

5.1.12 User Annotation Attribute
All OS: Metal 4 and later support the user annotation attribute.

You can annotate a qualified function with a name and look it up using the Metal Framework
reflection API. Add the [[user_annotation(”string”) 1] attribute to a qualified function
where string is the annotation you want to associate with a function. When you add a
user_annotation attribute to a templated qualified function, all instantiations inherit that
annotation unless you override it using a user_annotation attribute on that instantiation. For
example:

[[user_annotation("basecase"), kernell] void funcB() {..}

template<typename T> [[user_annotation("Tcase"), kernell]
void funcTmpl(device T *x) {..}

// Inherit from user_annotation.
template [[host_name(”funcImplInt”), kernelll]
void funcImpl(device int*x x) {..}

// Override user_annotation.

template [[host_name(“funcImplFloat”),
user_annotation("FPoverride"),
kernelllll]

void funcImpl(device floatx x) {..}

When looking up the annotation for the TuncB using the Metal Framework API, you get back
basecase. For funcImplInt, yougetback Tcase, and for funcImplFloat, you get back
FPoverride.

5.2 Function Arguments and Variables

Most inputs and outputs to graphics (vertex or fragment) and kernel functions are passed as
arguments. (Initialized variables in the constant address space and samplers declared in
program scope are inputs and outputs that do not have to be passed as arguments.)

In Metal 3.1 and later provide built-in input variables for kernel, mesh, and object shaders that
you declare in program scope, avoiding the need for passing them as arguments. This applies if
you don't use them in a dynamic library or a separately compiled binary function. In Metal 3.2

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 115 of 346

and later provide built-in input variables that you can also use in a dynamic library or a
separately compiled binary functions for Apple silicon.

In Metal 3.2 and later, you can declare device, constant, and threadgroup buffers,
texture, and sampler in the program scope (see section 5.9). Unlike when passing as
arguments in a shader, you can't assume different global variables are non-aliased. You need to
specify the binding indexes because Metal can't set them automatically.

Arguments to graphics and kernel functions can be any of the following:

e Device buffer — A pointer or reference to any data type in the device address space (see
section 2.8).

¢ Constant buffer — A pointer or reference to any data type in the constant address space
(see section 2.8).

e A texture object (see section 2.9) or an array of textures.

e A texture_buffer object (see section 2.9.1) or an array of texture buffers.

e A sampler object (see section 2.10) or an array of samplers.

e A buffer shared between threads in a threadgroup — a pointer to a type in the
threadgroup address space that can only be used as arguments for kernel functions.

e Animageblock (see section 2.11).

¢ An argument buffer (see section 2.13).

A visible function table (see section 2.15) for kernel functions. In Metal 2.4 and later, visible

function table can also be used in graphic functions.

An intersection function table (see section 2.17.3) for kernel functions.

An acceleration structure (see section 6.18.1) for intersection functions.

A tensor (see section 2.21).

A structure with elements that are buffers, textures, or texture buffers.

Buffers (device) specified as argument values to a graphics or kernel function cannot alias; that
is, a buffer passed as an argument value cannot overlap another buffer passed to a separate
argument of the same graphics or kernel function.

You cannot declare arguments to graphics and kernel functions to be of type size_t,
ptrdiff_t, ora structure and/or union that contains members declared to be one of these
built-in scalar types.

The arguments to these functions are often specified with attributes to provide further
guidance on their use. Attributes are used to specify:

e Theresource location for the argument (see section 5.2.1).

e Built-in variables that support communicating data between fixed-function and
programmable pipeline stages (see section 5.2.3).

¢ Which data is sent down the pipeline from vertex function to fragment function (see section
5.2.4).

5.21 Locating Buffer, Texture, and Sampler Arguments

For each argument, an attribute can be optionally specified to identify the location of a buffer,
texture, or sampler to use for this argument type. The Metal framework API uses this attribute to
identify the location for these argument types.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 116 of 346

e Device buffers, constant buffers, acceleration_struct<..>,
intersection_function_table<..>, and tensors: [[buffer(index)]]

e Textures (including texture buffers): [[texture(index) 1]

e Samplers: [[sampler(index) 1]

e Threadgroup buffers: [[threadgroup(index) 1]

The index value is an unsigned integer that identifies the location of an assigned buffer,
texture or sampler argument. (A texture buffer is a specific type of texture.) The proper syntax
is for the attribute to follow the argument or variable name.

The example below is a simple kernel function, add_vectors, that adds an array of two
buffers in the device address space, 1nA and 1nB, and returns the result in the buffer out. The
attributes (buffer (index)) specify the buffer locations for the function arguments.

[[kernell] void

add_vectors(const device float4 *inA [[buffer(0)1],
const device float4 *inB [[buffer(1)]1],
device float4 xout [[buffer(2)1],
uint id [[thread_position_in_grid]])

out[id] = inA[id] + inB[id];

The example below shows attributes used for function arguments of several different types (a
buffer, a texture, and a sampler):

[[kernel]] void

my_kernel(device float4 xp [[buffer(0)11],
texture2d<float> img [[texture(@)]1],
sampler sam [[sampler(1)1])

{1}

If the location indices are not specified, the Metal compiler assigns them using the first available
location index. In the following example, src is assigned texture index 0, dst texture index 1, s
sampler index 9, and u buffer index 0:

kernel void

my_kernel(texture2d<half> src,
texture2d<half, access::write> dst,
sampler s,
device myUserInfo *u)

{..}

In the following example, some kernel arguments have explicitly assigned location indices and
some do not. src is explicitly assigned texture index 0, and f is explicitly assigned buffer index
10. If you assign location indices using function constants (section 5.8), the compiler does not

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 117 of 346

consider those entries when assigning indices. The other arguments are assigned the first
available location index: dst texture index 1, s sampler index 0, and u buffer index 0.

kernel void

my_kernel(texture2d<half> src [[texture(0)]],
texture2d<half, access::write> dst,
sampler s,
device myUserInfo *u,
device float xf [[buffer(10)]1])

{..}

Each attribute (buffer, threadgroup, texture, and sampler) represents a group of
resources. The 1ndex values specified on the arguments shall be unique within each resource
group. Multiple buffer, texture or sampler arguments with the same index value generate a
compilation error unless they are declared with a function constant attribute (see section 5.8.1).

5.2.1.1 Vertex Function Example with Resources and Outputs to Device Memory

The following example is a vertex function, render_vertex, which outputs to device memory
in the array xform_output, which is a function argument specified with the device attribute
(introduced in section 4.1). All the render_vertex function arguments are specified with the
buffer(0), buffer(1), buffer(2),and buffer(3) attributes (introduced in section
5.2.1). For more about the position attribute shown in this example, see section 5.2.3.3.

struct VertexOutput {
float4 position [[position]];
float4 color;
float2 texcoord;

o

struct VertexInput {
float4 position;
float3 normal;
float2 texcoord;
o

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTSI;

float4 light_color[MAX_LIGHTSI;

float4 light_attenuation_factors[MAX_LIGHTS];
o

vertex void

render_vertex(const device VertexInputx v_in [[buffer(0)11],
constant float4x4& mvp_matrix [[buffer(1)11,
constant LightDesc& light_desc [[buffer(2)11],

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 118 of 346

device VertexOutputkx xform_output [[buffer(3)11,
uint v_id [[vertex_id]l])

VertexOutput v_out;

v_out.position = v_in[v_id].position * mvp_matrix;
v_out.color = do_lighting(v_in[v_id].position,
v_in[v_id].normal, light_desc);

v_out.texcoord = v_in[v_id].texcoord;

// Output the position to a buffer.
xform_output[v_id] = v_out;

5.2.1.2 Raster Order Groups
All OS: Metal 2 and later support raster order group attributes.

Loads and stores to buffers (in device memory) and textures in a fragment function are
unordered. The [[raster_order_group(index) 1] attribute used for a buffer or texture
guarantees the order of accesses for any overlapping fragments from different primitives that
map to the same (x, y) pixel coordinate and sample, if per-sample shading is active.

The [[raster_order_group(index)]] attribute can be specified on a texture (which is
always in device memory) or a buffer that is declared in device memory, but not in either the
threadgroup or constant address space. The [[raster_order_group(index)]]
attribute cannot be used with a structure or class.

Fragment function invocations that mark overlapping accesses to a buffer or texture with the
[[raster_order_group(index)]] attribute are executed in the same order as the
geometry is submitted. For overlapping fragment function invocations, writes performed by a
fragment function invocation to a buffer or texture marked with the
[[raster_order_group(index)]] attribute needs to be available to be read by a
subsequent invocation and must not affect reads by a previous invocation. Similarly, reads
performed by a fragment function invocation must reflect writes by a previous invocation and
must not reflect writes by a subsequent invocation.

The indexin[[raster_order_group(index) 1] is aninteger value that specifies a
rasterizer order ID, which provides finer grained control over the ordering of loads and stores.
For example, if two buffers A and B are marked with different rasterizer order ID values, then
loads and stores to buffers A and B for overlapping fragments can be synchronized
independently.

Example:

fragment void
my_fragment(texture2d<float, access::read_write> texA
[[raster_order_group(@), texture(o)ll],
)
{
ushort2 coord;
float4 clr = texA.read(coord);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 119 of 346

// do operations on clr
clr = ..;
texA.write(clr, coord);

For an argument buffer, youcanuse the [[raster_order_group(index)]] attribute on a
buffer or texture member in a structure.

5.2.2 Attributes to Locate Per-Vertex Inputs

A vertex function can read per-vertex inputs by indexing into a buffer(s) passed as arguments
to the vertex function using the vertex and instance IDs. In addition, you can also declare per-
vertex input with the [[stage_1in]] attribute and pass that input as an argument. For per-
vertex input passed as an argument declared with the [[stage_1in]] attribute, each element
of the per-vertex input must specify the vertex attribute location as

[[attribute(index)]].For more aboutthe [[stage_in]] attribute, see section 5.2.4.

The index value is an unsigned integer that identifies the assigned vertex input location. The
proper syntax is for the attribute to follow the argument or variable name. The Metal API uses
this attribute to identify the location of the vertex buffer and describe the vertex data such as
the buffer to fetch the per-vertex data from, its data format, and its stride.

The following example shows how to assign vertex attributes to elements of a vertex input
structure that is passed to a vertex function using the stage_1in attribute:

struct VertexInput {
float4 position [[attribute(0)]11]1;
float3 normal [[attribute(1)1];
half4 color [[attribute(2)1]1;
half2 texcoord [[attribute(3)1];
o

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTS];

float4 light_color[MAX_LIGHTS];

float4 light_attenuation_factors[MAX_LIGHTS];
o

constexpr sampler s = sampler(coord::normalized,
address::clamp_to_zero,
filter::1linear);

vertex VertexOutput

render_vertex(VertexInput v_in [[stage_in]],
constant float4x4& mvp_matrix [[buffer(1)11,
constant LightDesc& lights [[buffer(2)11],
uint v_id [[vertex_idl])

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 120 of 346

VertexOutput v_out;

return v_out;

The example below shows how both buffers and the stage_1n attribute can be used to fetch
per-vertex inputs in a vertex function:

struct VertexInput {
float4 position [[attribute(0)]11]1;
float3 normal [[attribute(1)1]1;
b

struct VertexInput2 {
half4 color;
half2 texcoord[4];
o

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTSI;

float4 light_color[MAX_LIGHTSI;

float4 light_attenuation_factors[MAX_LIGHTS];
o

constexpr sampler s = sampler(coord::normalized,
address::clamp_to_zero,
filter::1linear);

vertex VertexOutput

render_vertex(VertexInput v_in [[stage_in]],
VertexInput2 v_in2 [[buffer(e)1],
constant float4x4& mvp_matrix [[buffer(1)11,
constant LightDesc& lights [[buffer(2)11],
uint v_id [[vertex_id]l])

VertexOutput vOut;

return vOut;

A post-tessellation vertex function can read the per-patch and patch control-point data. The
post-tessellation vertex function specifies the patch control-point data as the following
templated type:

patch_control_point<T>

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 121 of 346

Where T is a user defined structure. Each element of T must specify an attribute location using
[[attribute(index)11.

All OS: Metal 1.2 and later support patch control-point templated types.
The patch_control_point<T> type supports these member functions:

e constexpr size_t size() const;, which returns the number of control-points in the
patch.

e constexpr const_reference operator[] (size_t pos) const;, which
returns the data for a specific patch control point that pos identifies.

Example:

struct ControlPoint {
int3 patchParam [[attribute(0)]1];
float3 P [[attribute(1)]1];
float3 P1 [[attribute(2)1];
float3 P2 [[attribute(3)1];
float2 vSegments [[attribute(4)]1];

};

struct PerPatchData {
float4 patchConstant [[attribute(5)]1]1;
float4 someOtherPatchConstant [[attribute(6)1];
¥

struct PatchData {
patch_control_point<ControlPoint> cp; // Control-point data
PerPatchData patchData; // Per—patch data

b

[[patch(quad)]]
vertex VertexOutput
post_tess_vertex_func(PatchData input [[stage_in 1}, ..)

{1}

5.2.3 Attributes for Built-in Variables

Some graphics operations occur in the fixed-function pipeline stages and need to provide
values to or receive values from graphics functions. Built-in input and output variables are used
to communicate values between the graphics (vertex and fragment) functions and the fixed-
function graphics pipeline stages. Attributes are used with arguments and the return type of
graphics functions to identify these built-in variables.

5.2.3.1 Vertex Function Input Attributes

Table 5.2 lists the built-in attributes that can be specified for arguments to a vertex function
and the corresponding data types with which they can be used.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 122 of 346

Table 5.2. Attributes for vertex function input arguments

Attribute

Corresponding data
types

Description

amplification_count
macOS: Metal 2.3 and
later

iOS: Metal 2.2 and later

ushortoruint

The number of output vertices
produced for each vertex instance.
The default value for
[[amplification_count]lis1,
which indicates that vertex
amplification is disabled.

amplification_id
macOS: Metal 2.3 and
later

iOS: Metal 2.2 and later

ushortoruint

The array index offset mappings for
viewport and render target array
indices, which enables routing an
amplified vertex to a different
viewport and render target. The value
for [[amplification_id]l]isin
therange [0,
amplification_count).

base_instance

ushortoruint

The base instance value added to
each instance identifier before
reading per-instance data.

base_vertex

ushortoruint

The base vertex value added to each
vertex identifier before reading per-
vertex data.

instance_id

ushortoruint

The per-instance identifier, which
includes the base instance value if
one is specified. If the type for
declaring [[instance_id]]is
uint, the type for declaring
[[base_instance]] needstobe
uint orushort. If the type for
declaring [[instance_id]]is
ushort, the type for declaring
[[base_instance]] needstobe
ushort.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 123 of 346

Attribute

Corresponding data
types

Description

vertex_id

ushortoruint

The per-vertex identifier, which
includes the base vertex value if one
is specified. If the type for declaring
[[vertex_id]]is uint, the type
for declaring [[base_vertex]]
needs to be uint or ushort. If the
type for declaring [[vertex_id]]
is ushort, the type for declaring
[[base_vertex]] needsto be
ushort.

5.2.3.2 Post-Tessellation Vertex Function Input Attributes

Table 5.3 lists the built-in attributes that can be specified for arguments to a post-tessellation
vertex function and the corresponding data types with which they can be used.

All OS: Metal 1.2 and later support all attributes in Table 5.3.

Table 5.3. Attributes for post-tessellation vertex function input arguments

Attribute

Corresponding data
types

Description

base_instance

ushortoruint

The base instance value added to
each instance identifier before
reading per-instance data.

instance_id

ushortoruint

The per-instance identifier, which
includes the base instance value if
one is specified. If the type for
declaring [[instance_id]1]is
uint, the type for declaring
[[base_instance]] needstobe
uint orushort. If the type for
declaring [[instance_id]]is
ushort, the type for declaring
[[base_instance]] needs to be
ushort.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 124 of 346

Attribute

Corresponding data
types

Description

patch_id

ushortoruint

The patch identifier.

position_in_patch

float2or float3

Defines the location on the patch
being evaluated. For quad patches,
must be float?2. For triangle
patches, must be float3.

5.2.3.3 Vertex Function Output Attributes

Table 5.4 lists the built-in attributes that can be specified for a return type of a vertex function
or the members of a structure that a vertex function returns (and their corresponding data

types).

All OS: Metal 1 and later support all attributes in Table 5.4 unless otherwise indicated.

Table 5.4. Attributes for vertex function return type

Attribute Corresponding Description
data types

clip_distance float or Distance from vertex to clipping plane.
floatln]

n needs to be
known at compile
time

invariant

All OS: Metal 2.1 and later.

Not applicable;
needs to be used
with
[[position]]

Marks the output position such that if the
sequence of operations used to compute
the output position in multiple vertex
shaders is identical, there is a high
likelihood that the resulting output
position computed by these vertex
shaders are the same value. Requires
users to pass -fpreserve—-invariance.
See the description below for more
information.

point_size

float

Size of a point primitive

position

floats4

The transformed vertex position

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 125 of 346

Attribute Corresponding Description

data types
render_target_array_ind |uchar, ushort, | The array index that refers to one of:
ex oruint 1) an array slice of a texture array,
macOS: Metal 1.1 and later. 2) data at a specified depth of a 3D
iOS: Metal 2.1 and later. texture,

3) the face of a cubemap, or
4) a specified face of a specified array
slice of a cubemap array.

shared Not applicable If present, then for every

macOS: Metal 2.3 and later. amplification_id, the output has the
iOS: Metal 2.2 and later. same value.

viewport_array_index uchar, ushort, | The viewport (and scissor rectangle)
macOS: Metal 2 and later. oruint index value of the primitive.

iOS: Metal 2.1 and later.

A cubemap is represented as a render target array with six layers, one for each face, and
[[render_target_array_index]] isthe face index, which is a value from 0 to 5. For a
cubemap array, the [[render_target_array_index]] is computed as:
array_slice_index x 6 + face_index.

You must return the same value of [[render_target_array_index]] for every vertexin a
primitive. If values differ, the behavior and value passed to the fragment function are undefined.
The same behavior applies to primitives generated by tessellation. If
[[render_target_array_index]] is out-of-bounds (that is, greater than or equal

to renderTargetArraylLength), the hardware interprets this value as 0. For more about
[[render_target_array_index]] as fragment function input, see section 5.2.3.4.

[[viewport_array_index]] enables specifying one viewport and scissor rectangle from
multiple active viewports and scissor rectangles. If the vertex function does not specify
[[viewport_array_index]], the output viewport array index value is 0. For more about
[[viewport_array_index]], see section 5.10.

[[invariant]] indicates that the floating-point math used in multiple function passes must
generate a vertex position that matches exactly for every pass. [[invariant]] may only be
used for a position in a vertex function (fields with the [[position]] attribute) to indicate the
result of the calculation for the output is invariant. Compilers prior to iOS 14 and macOS 11, the
calculation is likely (although not guaranteed) to be invariant. This calculation is now
guaranteed to be invariant when passing -fpreserve—-invariance option or setting the
preserveInvariance onthe MTLCompilerOptions from the Metal API for runtime
compilation. Note that [[invariant]] isignored if the options are not passed. This position
invariance is essential for techniques such as shadow volumes or a z-prepass.

If the return type of a vertex function is not void, it must include the vertex position. If the
vertex return type is float4, then it always refers to the vertex position, and the

[[position]] attribute must not be specified. If the vertex return type is a structure, it must
include an element declared with the [[position]] attribute.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 126 of 346

The following example describes a vertex function called process_vertex. The function
returns a user-defined structure called VertexOutput, which contains a built-in variable that
represents the vertex position, so it requires the [[position]] attribute.

struct VertexOutput {
float4 position [[position]];
float4 color;
float2 texcoord;

vertex VertexOutput
process_vertex(..)

{
VertexOutput v_out;
// Compute per-vertex output.
return v_out;

¥

Post-tessellation vertex function outputs are the same as a regular vertex function.

If vertex ampilification is enabled, and if a vertex output variable has the same value for every
[[amplification_id]] attribute, the vertex output is considered shared. A vertex output
that is shared may use a single varying output slot, which is a limited resource. Vertex outputs
that are not shared consume more than one varying output slot. (The Metal framework call
[MTLRenderPipelineDescriptor maxVertexAmplificationCount] returns the
number of varying slots that may be used to pass the amplified data to fragment function
invocations, which impacts the number of total available varying slots.)

By default, all built-in vertex outputs are shared, except for those withthe [[position]]
attribute. By default, all other vertex outputs are not shared. To explicitly specify that the output
is shared, use the [[shared]] attribute with a vertex output variable.

If the shader compiler can deduce that a vertex output variable has the same value for every
amplification_id, the compiler may mark that vertex output as shared. The compiler may
not mark vertex outputs as shared in any of these cases:

e The output value dependsonthe [[amplification_id]].
¢ An atomic read-modify-write operation returns the output value.
e The shader loads the output value from volatile memory.

5.2.3.4 Fragment Function Input Attributes

Table 5.5 lists the built-in attributes that can be specified for arguments of a fragment function
(and their corresponding data types).

If the return type of a vertex function is not void, it must include the vertex position. If the
vertex return type is float4, this always refers to the vertex position (and the [[position]]
attribute need not be specified). If the vertex return type is a structure, it must include an
element declared with the [[position]] attribute.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 127 of 346

Table 5.5. Attributes for fragment function input arguments

Attribute

Corresponding
data types

Description

amplification_count
macOS: Metal 2.3 and later.
iOS: Metal 2.2 and later.

ushort oruint

The number of output vertices
produced for each vertex instance.

amplification_id
macOS: Since Metal 2.3 and
later.

iOS: Metal 2.2 and later.

ushortoruint

The array index offset mappings for
viewport and render target array
indices, which enables routing an
amplified vertex to a different
viewport and render target.

barycentric_coord
macOS: Metal 2.2 and later.
iOS: Metal 2.3 and later.

float, float2,
or float3

The barycentric coordinates.

color(m)
macOS: Metal 2.3 and later.
iOS: Metal 1 and later.

floatn, halfn,
intn, uintn,
shortn, or
ushortn

m needs to be known
at compile time

The input value read from a color
attachment. The index m indicates
which color attachment to read from.

front_facing

bool

This value is true if the fragment
belongs to a front-facing primitive.

point_coord

float2

Two-dimensional coordinates, which
range from 0.0 to 1.0 across a point
primitive, specifying the location of
the current fragment within the point
primitive.

position

floats4

Describes the window-relative
coordinate (x, vy, z, 1/w) values
for the fragment.

primitive_id
macOS: Metal 2.2 and later.
iOS: Metal 2.3 and later.

uint

The per-primitive identifier used with
barycentric coordinates.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 128 of 346

Attribute

Corresponding
data types

Description

render_target_array_ind
ex

macOS: Metal 1.1 and later.
iOS: Metal 2.1 and later.

uchar, ushort,
oruint

The render target array index, which
refers to the face of a cubemap, data
at a specified depth of a 3D texture,
an array slice of a texture array, an
array slice, or face of a cubemap
array. For a cubemap, the render
target array index is the face index,
which is a value from 0 to 5. For a
cubemap array the render target
array index is computed as: array
slice index * 6 + face
index.

sample_id uint The sample number of the sample
currently being processed.

sample_mask uint The set of samples covered by the
primitive generating the fragment
during multisample rasterization.

sample_mask, uint The set of samples covered by the

post_depth_coverage
iOS: Metal 2 and later.
macOS: Metal 2.3 and later.

primitive generating the fragment
after application of the early depth
and stencil tests during multisample
rasterization. The
early_fragment_tests attribute
needs to be used on the fragment
function; otherwise, the compilation
fails.

thread_index_in_quadgro
up
All OS: Metal 2.2 and later.

ushortoruint

The scalar index of a thread within a
quad-group.

thread_index_in_simdgro

up
All OS: Metal 2.2 and later.

ushortoruint

The scalar index of a thread within a
SIMD-group.

threads_per_simdgroup
All OS: Metal 2.2 and later.

ushortoruint

The thread execution width of a
SIMD-group.

viewport_array_index
macOS: Metal 2 and later.
iOS: Metal 2.1 and later.

uint

The viewport (and scissor rectangle)
index value of the primitive.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 129 of 346

A variable declared with the [[position]] attribute as input to a fragment function can only
be declared with the center_no_perspective sampling and interpolation attribute. (See
section 5.4.)

For [[color(m) 1], mis used to specify the color attachment index when accessing (reading
or writing) multiple color attachments in a fragment function.

The [[sample_mask]] attribute can only be declared once for a fragment function input.

Thevalue of [[render_target_array_index]] inthe fragment function is the same value
written from the vertex function, even if the specified value is out of range.

For more about [[viewport_array_index]], see section 5.10.

The default value for [[amplification_count]]is 1, which indicates that vertex
amplification is disabled.

The value for [[amplification_id]] shall beintherange [0,
amplification_count).

For a specified [[amplification_id]] attribute value, the
[[viewport_array_index]]and [[render_target_array_index]] built-in
fragment input values are added to (offset by) the values that the corresponding
MTLVertexAmplificationViewMapping structure provides.

The following example describes the structure MyVertexOut that is both a vertex function
return type and a fragment function input type. MyVertexOut uses the
[[amplification_id]] attribute for the input argument amp_1id to amplify the position
and ampData members. Use of the [[shared]] attribute explicitly ensures the texcoord
member as having the same value for all varyings under vertex amplification, as described in
section 5.2.3.3.

In the vertex function myVertex, the [[amplification_id]] and
[[amplification_count]] attributes specify the vertex function input variables for vertex
amplification, as detailed in section 5.2.3.1. The shader compiler deduces that the normal
member has the same value for every [[amplification_id]], sothe compiler marks it as
shared in vertex output.

In the fragment function myFragment, the same [[amplification_id]] and
[[amplification_count]] attributes specify fragment function input variables. If vertex
amplification is enabled, then amp_1id determines the mapping
(MTLVertexAmplificationViewMapping structure) from which to select the viewport
array index (viewportArrayIndexOffset member).

struct MyVertexIn {
float4 position [[attribute(©)]1]1;
float3 normal [[attribute(1)]1]1;
float3 tangent [[attribute(2)1]1];
float2 texcoord [[attribute(3)]1];
o

struct MyVertexOut {
float4 position [[position]];
float3 normal;
float3 tangent;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 130 of 346

float3 bitangent;

float2 texcoord [[shared]]; // Explicitly shared.

float ampData;

ushort viewport [[viewport_array_index]]; // Implicitly shared
I

constexpr ushort MAX_AMP = 2;

vertex MyVertexOut myVertex(MyVertexIn in [[stage_inl],
constant float4x4 view_proj[MAX_AMPI,
constant float data[MAX_AMP],
ushort amp_id [[amplification_id]l],
ushort amp_count
[[amplification_countl]l, ...)
{
MyVertexOut vert;
// Deduced amplified
vert.position = view_proj[amp_id] * in.position;
vert.normal in.normal; // Deduced shared
vert.tangent e
vert.bitangent
vert.texcoord
vert.ampData
vert.viewport
return vert;

.
* I

datalamp_id]l; // Not shared
1;

}

fragment float4 myFragment(MyVertexOut in [[stage_in 11,
ushort amp_id [[amplification_id]],
ushort amp_count [[amplification_count]l],

R I
// For MTLVertexAmplificationViewMapping = {{1,3},{2,4}}
// when amp_id == 0, in.viewport ==
// when amp_id == 1, in.viewport ==

ushort viewport = in.viewport;

A fragment function input declared with the [[barycentric_coord]] attribute can only be
declared with either the center_perspective (default) orcenter_no_perspective
sampling and interpolation attributes. The barycentric coordinates and per-pixel primitive ID
can be passed as fragment function input in structures organized as shown in these examples:

struct FragmentInput® {
uint primitive_id [[primitive_id]];
// [[center_perspective]] is the default, so it can be omitted.
float3 barycentric_coord [[barycentric_coord,
center_perspectivell;
I

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 131 of 346

struct FragmentInputl {
uint primitive_id [[primitive_id]l];
float2 linear_barycentric_coord [[barycentric_coord,
center_no_perspectivell;
o

By storing the barycentric coordinates and per-pixel primitive ID, your shader can manually read
and interpolate the vertices of a drawn primitive within the fragment phase or defer this
interpolation to a separate pass. In the deferred interpolation scenario, you can use a thin buffer
during the geometry pass to store a minimal set of surface data, including pre-clipped
barycentric coordinates. At a later stage, you must have enough data to reconstruct the original
vertex indices from the primitive ID data and to correlate the barycentric coordinates to those
vertex indices.

When applying the barycentric_coord attribute to an input argument (or to a field of an
argument) with more components than the dimension of the primitive, the remaining elements
are initialized with 0. 0 f. For example, for

fragment floats
frag (float3 coord [[barycentric_coordl]) { ... }

e When drawing a point, coord.yzis float2(0.0f).
e When drawing a line, coord.zis 0.0f.

When applying the barycentric_coord attribute to an input argument (or to a field of an
argument) with fewer components than the dimension of the primitive, the remaining elements
are ignored.

Table 5.6 lists attributes that can be specified for tile arguments that are input to a fragment
function. The data types for declaring [[pixel_position_in_tile]] and
[[pixels_per_tile]] must match.

Table 5.6. Attributes for fragment function tile input arguments

Attribute Corresponding data Description
types

pixel_position_in_tile ushort2oruint2 (x, y) position of the fragment in
the tile.

pixels_per_tile ushort2oruint2 (width, height) of the tile in
pixels.

tile_index ushort oruint 1D tile index.

render_target_array_ind |uchar, ushort, The render target array index,

ex oruint which refers to the face of a
cubemap, data at a specified
depth of a 3D texture, an array
slice of a texture array, an array

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 132 of 346

Attribute Corresponding data Description
types

slice, or face of a cubemap
array. For a cubemap, the render
target array index is the face
index, which is a value from 0 to
5. For a cubemap array the
render target array index is
computed as: array slice
index * 6 + face index.

macOS: Metal 2.3 and later support all attributes in Table 5.6.
iOS: Metal 2 and later support all attributes in Table 5.6.

[[tile_index]]isavaluefrom [0, n), where nisthe number of tiles in the render target.

5.2.3.5 Fragment Function Output Attributes

The return type of a fragment function describes the per-fragment output. You must use the
attributes listed in Table 5.7 to specify that a fragment function can output one or more render-
target color values, a depth value, a sampling coverage mask, or a stencil reference value. If the
depth value is not output by the fragment function, the depth value generated by the rasterizer
is output to the depth attachment.

Table 5.7. Attributes for fragment function return types

Attribute Corresponding Description

data types
color(m) floatn, halfn, | Color value output for a color attachment.
All OS: Metal 1 and later. intn, uintn,

shortn, or m is the color attachment index and needs to
color(m), index(1) ushortn be known at compile time. The index 1 can be
All OS: Metal 1.2 and later. used to specify one or more colors output by a

fragment function for a given color attachment
and is an input to the blend equation.

depth(depth_argument) float Depth value output using the function
All OS: Metal 1 and later. specified by depth_argument.
sample_mask uint Coverage mask.

All OS: Metal 1 and later.

stencil uint Stencil reference value to be used in a
All OS: Metal 2.1 and later. stencil test.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 133 of 346

The color attachment index m for fragment output is specified in the same way as it is for
[[color(m) 1] for fragment input (see discussion for Table 5.5). Multiple elements in the
fragment function return type that use the same color attachment index for blending needs to
be declared with the same data type.

If there is only a single-color attachment in a fragment function, then [[color(m) 11 is
optional. If [[color(m) 1] is not specified, the attachment index is 0. If multiple color
attachments are specified, [[color(m) 1] needs to be specified for all color values. See
examples of specifying the color attachment in sections 5.5 and 5.8.1.5.

If index (1) is not specified in the attribute, the default is an index of 0. If index (1) is
specified, the value of 1 needs to be known at compile time.

If a fragment function writes a custom depth value, specify the depth_argument parameter
as any, greater, or less. The setting controls how the depth(depth_argument) attribute
on a fragment output interacts with the default depth value that the compiler generates for you.
Set depth_argument to:

any — Accept any values.
greater — Only accept values that are greater than the default depth.
less — Only accept values that are less than the default depth.

Your app may exhibit unpredictable results if fragment output marked with
depth(depth_argument) produces a value that conflicts with the depth_argument
setting.

You cannot use the [[stencil]] attribute in fragment-based tile shading functions. The
[[stencil]] attribute is not compatible withthe [[early_fragment_tests]]function
attribute.

If the fragment function does not output the stencil value, the
setStencilReferenceValue: or
setStencilFrontReferenceValue:backReferenceValue: method of
MTLRenderCommandEncoder can set the stencil reference value.

The following example shows how color attachment indices can be specified. Color values
written in c1r_f write to color attachment index 0, c1r_1 to color attachment index 1, and
clr ui to color attachment index 2.

struct MyFragmentOutput {
// Color attachment ©
float4 clr_f [[color(@)1];

// Color attachment 1
int4 clr_i [[color(1)11];

// Color attachment 2
uint4 clr_ui [[color(2)11;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 134 of 346

fragment MyFragmentOutput
my_fragment(..)

{
MyFragmentOutput f;
f.clr_f = ..;
return f;

I

If a color attachment index is used as both an input to and an output of a fragment function, the
data types associated with the input argument and output declared with this color attachment
index must match.

5.2.3.6 Kernel Function Input Attributes

When a kernel function is submitted for execution, it executes over an N-dimensional grid of
threads, where N is one, two, or three. A thread is an instance of the kernel function that
executes for each point in this grid, and thread_position_in_grid identifies its position in
the grid.

Within a compute unit, a threadgroup is partitioned into multiple smaller groups for execution.
The execution width of the compute unit, referred to as the threads_per_simdgroup,
determines the recommended size of this smaller group. For best performance, make the total
number of threads in the threadgroup a multiple of the threads_per_simdgroup.

Threadgroups are assigned a unique position within the grid (referred to as
threadgroup_position_in_grid). Threads are assigned a unique position within a
threadgroup (referred to as thread_position_in_threadgroup). The unigue scalar index
of a thread within a threadgroup is given by thread_index_in_threadgroup.

Each thread's position in the grid and position in the threadgroup are N-dimensional tuples.
Threadgroups are assigned a position using a similar approach to that used for threads.
Threads are assigned to a threadgroup and given a position in the threadgroup with
components in the range from zero to the size of the threadgroup size in that dimension minus
one.

When a kernel function is submitted for execution, the number of threadgroups and the
threadgroup size are specified, or the number of threads in the grid and the threadgroup size
are specified. For example, consider a kernel function submitted for execution that uses a 2D
grid where the number of threadgroups specified are (Wx, Wy) and the threadgroup size is
(Sx, Sy).Let (wx, wy) be the position of each threadgroup in the grid
(threadgroup_position_in_grid)and (1x, 1ly) be the position of each thread in the
threadgroup (thread_position_in_threadgroup).

The thread position in the grid (thread_position_in_grid)is:
(gx, gy) = (wx * Sx + 1x, wy *x Sy + ly)
The grid size (threads_per_grid)is:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 135 of 346

(Gx, Gy) =

(Wx % Sx, Wy *x Sy)

In cases other than a tile function, the thread index in the threadgroup
(thread_index_in_threadgroup) is determined by:

ly * Sx + 1x

For a tile function, the thread index is not a linear mapping from the 1x and 1y values. Each
thread in a tile function is guaranteed to get a unique index in the range [0, Sx * Sy).

Within a threadgroup, threads are divided into SIMD-groups in an implementation-defined
fashion. Any given thread in a SIMD-group can query its SIMD lane ID and which SIMD-group it

is a member of.

Table 5.8 lists the built-in attributes that can be specified for arguments to a kernel function
and the corresponding data types with which they can be used. In Metal 3.1 and later, provide
the built-in attributes can be specified on global (program scope) variables to be used in a

kernel context.

Table 5.8. Attributes for kernel function input arguments

Attribute

Corresponding
data types

Description

dispatch_quadgroups_per_th
readgroup

macOS: Metal 2.1 and later

iOS: Metal 2 and later

ushortoruint

The quad-group execution width
of a threadgroup specified at
dispatch.

dispatch_simdgroups_per_th
readgroup

macOS: Metal 2 and later

iOS: Metal 2.2 and later

ushortoruint

The SIMD-group execution width
of a threadgroup specified at
dispatch.

dispatch_threads_per_threa
dgroup
All OS: Metal 1 and later

ushort,
ushort2,
ushort3,
uint,uint2, or
uint3

The thread execution width of a
threadgroup for threads specified
at dispatch.

grid_origin
All OS: Metal 1.2 and later

ushort,
ushort2,
ushort3,

uint, uint2, or
uint3

The origin (offset) of the grid over
which compute threads that read
per-thread stage-in data are
launched.

grid_size
All OS: Metal 1.2 and later

ushort,
ushort2,
ushort3,
uint,uint2, or
uint3

The maximum size of the grid over
which compute threads that read
per-thread stage-in data are
launched.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 136 of 346

Attribute

Corresponding
data types

Description

guadgroup_index_in_threadg
roup

macOS: Metal 2.1 and later

iOS: Metal 2 and later

ushort oruint

The scalar index of a quad-group
within a threadgroup.

guadgroups_per_threadgroup
macOS: Metal 2.1 and later
iOS: Metal 2 and later

ushortoruint

The quad-group execution width
of a threadgroup.

simdgroup_index_in_threadg
Toup

macOS: Metal 2 and later

iOS: Metal 2.2 and later

ushort oruint

The scalar index of a SIMD-group
within a threadgroup.

simdgroups_per_threadgroup
macOS: Metal 2 and later
iOS: Metal 2.2 and later

ushortoruint

The SIMD-group execution width
of a threadgroup.

thread_execution_width
All OS: Metal 1 and later

[[Deprecated as of Metal 3 — use
threads_per_simdgroup]]

ushort oruint

The thread execution width of a
SIMD-group (compute unit).

thread_index_in_quadgroup
macOS: Metal 2.1 and later
iOS: Metal 2 and later

ushortoruint

The scalar index of a thread within
a quad-group.

thread_index_in_simdgroup
macOS: Metal 2 and later
iOS: Metal 2.2 and later

ushort oruint

The scalar index of a thread within
a SIMD-group.

thread_index_in_threadgrou

p
All OS: Metal 1 and later

ushortoruint

The scalar index of a thread within
a threadgroup.

thread_position_in_grid
All OS: Metal 1 and later

ushort,
ushort2,
ushorts,

uint, uint2, or
uint3

The thread's position in an N-
dimensional grid of threads.

thread_position_in_threadg
roup
All OS: Metal 1 and later

ushort,
ushort2,
ushort3,

uint, uint2, or
uint3

The thread’'s unique position within
a threadgroup

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 137 of 346

Corresponding

uint, uint2, or
uint3

Attribute data types Description
‘_chreadgroup_pos1t10n_1n_gr ushort, The threadgroup’s unique position
e VSO, within a grid
All OS: Metal 1 and later ushorts, grid.

threadgroups_per_grid
All OS: Metal 1 and later

ushort,
ushort2,
ushort3,
uint,uint2, or
uint3

The number of threadgroups in a
grid.

threads_per_grid
All OS: Metal 1 and later

ushort,
ushort2,
ushort3,

uint, uint2, or
uint3

The grid size.

threads_per_simdgroup
macOS: Metal 2 and later
iOS: Metal 2.2 and later

ushortoruint

The thread execution width of a
SIMD-group (compute unit).

threads_per_threadgroup
All OS: Metal 1 and later

ushort,
ushort2,
ushort3,

uint, uint2, or
uint3

The thread execution width of a
threadgroup.

All OS: Metal 1.2 and later support grid_originand grid_size.

macOS: Metal 2 and later support SIMD-group attributes. Metal 2.1 and later support quad-

group attributes. Metal 1 and later support other attributes.

iOS: Metal 2 and later support SIMD-group and quad-group attributes. Metal 1 and later support

all other attributes.

All OS: Metal 3.1 and later support global (program scope) variables. You can specify these
attributes except when using them in a dynamic library or a separately compiled binary
function. In Metal 3.2 and later, you can also use global variables in a dynamic library or a
separately compiled binary function for Apple silicon.

For standard Metal compute functions (other than tile functions), SIMD-groups are linear and
one-dimensional. (Threadgroups may be multidimensional.) The number of SIMD-groups in a
threadgroup ([[simdgroups_per_threadgroup]]) is the total number threads in the
threadgroup ([[threads_per_threadgroup]]) divided by the SIMD-group size

([[threads_per_simdgroupl]):

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 138 of 346

simdgroups_per_threadgroup = ceil(threads_per_threadgroup/
threads_per_simdgroup)

Similarly, the number of quad-groups in a threadgroup (quadgroups_per_threadgroup) is
the total number of threads in threadgroup divided by 4, which is the thread execution width of
a quad-group:

quadgroups_per_threadgroup = ceil(threads_per_threadgroup/4)

For tile functions, threads are arranged as 2 x 2 quads. For a 2D grid where the number of
threadgroups specified are (Wx, Wy), simdgroups_per_threadgroup is computed by:

simdgroups_per_threadgroup = ceil(Wx/2) * 2 x ceil(Wy/2) % 2 /
threads_per_simdgroup

simdgroups_per_threadgroup =
ceil(Wx/2)xceil(Wy/2)*4/threads_per_simdgroup

For tile functions, quadgroups_per_threadgroup is computed by:
ceil(wWx/2) * 2 x ceil(Wy/2) *x 2 / 4
quadgroups_per_threadgroup = ceil(Wx/2) x ceil(Wy/2)

guadgroups_per_threadgroup

[[dispatch_simdgroups_per_threadgroup]l] and
[[dispatch_quadgroups_per_threadgroup]] are similarly computed for threads
specified at dispatch.

SIMD-groups execute concurrently within a given threadgroup and make independent forward
progress with respect to each other, in the absence of threadgroup barrier operations. The
thread index in a SIMD-group (given by [[thread_index_in_simdgroup]])is avalue
between 0 and SIMD-group size —1, inclusive. Similarly, the thread index in a quad-group
(givenby [[thread_index_in_quadgroup]]) is a value between 0 and 3, inclusive.

In Metal 2 and later, the number of threads in the grid does not have to be a multiple of the
number of threads in a threadgroup. It is therefore possible that the actual threadgroup size of a
specific threadgroup may be smaller than the threadgroup size specified in the dispatch. The
[[threads_per_threadgroup]] attribute specifies the actual threadgroup size for a given
threadgroup executing the kernel. The [[dispatch_threads_per_threadgroup]]
attribute is the threadgroup size specified at dispatch.

Notes on kernel function attributes:

e Thetypefordeclaring [[thread_position_in_grid]l], [[threads_per_gridl],
[[thread_position_in_threadgroupl], [[threads_per_threadgroupll,
[[threadgroup_position_in_gridl],
[[dispatch_threads_per_threadgroupl],and [[threadgroups_per_grid]]
needs to be a scalar type or a vector type. If it is a vector type, the number of components
for the vector types for declaring these arguments need to match.

e The data types for declaring [[thread_position_in_grid]] and
[[threads_per_grid]] need to match.

e The datatypes for declaring [[thread_position_in_threadgroupl],
[[threads_per_threadgroupl], and
[[dispatch_threads_per_threadgroup]] need to match.

e If[[thread_position_in_threadgroupl]istypeuint, uint2, oruints3,
[[thread_index_in_threadgroup]] needs to be type uint.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 139 of 346

e Thetypesfordeclaring [[thread_index_in_simdgroupl],
[[threads_per_simdgroupl], [[simdgroup_index_in_threadgroup]l],

[[simd

[[dispatch_simdgroups_per_threadgroupll,

groups_per_threadgroupll,

[[quadgroup_index_in_threadgroupll], [[quadgroups_per_threadgroupl],
and [[dispatch_quadgroups_per_threadgroup]] needtobe ushortoruint.
The types for declaring these built-in variables need to match.

e [[threads_per_simdgroupl]land[[thread_execution_width]] are aliases of
one another that reference the same concept.

Table 5.9. Attributes for kernel function tile input arguments

oruint

Attribute Corresponding data Description
types
render_target_array_index |uchar, ushort, The render target array index,

which refers to the face of a
cubemap, data at a specified
depth of a 3D texture, an array
slice of a texture array, an array
slice, or face of a cubemap
array. For a cubemap, the render
target array index is the face
index, which is a value from 0 to
5. For a cubemap array the
render target array index is
computed as: array slice
index * 6 + face index.

macOS: Metal 2.3 and later support all attributes in Table 5.9.

iOS: Metal 2

and later support all attributes in Table 5.9.

5.2.3.7 Intersection Function Input Attributes

Table 5.10 lists the built-in attributes that can be specified for arguments to a custom
intersection function (see section 5.1.6). Some built-in attributes can be used when specific
values of primitive_type and intersection_tags are specified on the intersection

function.

For example, instance_id is availableif intersection_tags contains instancing:

[[intersection(triangle, triangle_data, instancing,
world_space_data)]l

bool trianglelIntersectionFunction(..., uint id [[instance_idl], ..)

{1}

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 140 of 346

Any such restriction is listed in the description of the attribute.

Table 5.10. Attributes for intersection function input arguments

Corresponding

payload

Passed by reference.

Attribute data types Description
origin float3 Ray origin in object space.
direction float3 Ray direction in object space.
min_distance float Ray min distance.
Passed by reference. Returns the
current closest intersection max
max_distance float FilgFance. Theilntersectc?r |n|t|gllzes the
initial value with the ray's maximum
distance and the value decreases as the
intersector finds intersections.
User defined payload passed by the
User type. calling thread. Needs to be specified to

allow matching payload table by
intersect () (section 6.18.2).

geometry_id

ushortoruint

The per-geometry id.

primitive_id

ushortoruint

The per-primitive identifier. For curves,
this is a curve segment index.

instance_id

ushort,uint or
array_ref<uint>

The per-instance identifier. Available if
intersection_tags include
instancing. In Metal 3.1 and later, if
intersection_tags include
max_levels<Count>, the type must
be array_ref<uint>. Otherwise, it is
ushortoruint.

Page 141 of 346

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Attribute

Corresponding
data types

Description

world_space_origin

float3

Origin in world space. Available if
intersection_tags include
world_space_data.

world_space_direction

float3

Direction in world space. Available if
intersection_tags include
world_space_data.

barycentric_coord

float2

The barycentric coordinates. Available if
the primitive_typeis triangle
and intersection tag include
triangle_data.

front_facing

bool

This value is true if the triangle front
face is visible from the ray origin.
Available if intersection_tags
include triangle_data.

distance

float

Distance along the ray at the triangle
intersection. Available if the
primitive_typeis triangle.

opaque

bool

If this primitive should be considered
opaque or not. Available if the
primitive_typeisa
bounding_box.

instance_intersection_

function_table_offset

ushortoruint

Offset into the intersection function
table used to select the intersection
instance.

geometry_intersection_

function_table offset

ushort oruint

Offset into the geometry object used to
select to select the intersection
instance.

time
All OS: Metal 2.4 and later

float

Ray intersection time. Available if
intersection_tags include
primitive_motion.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 142 of 346

Corresponding

Attribute data types Description
motion_start_time oat ,';‘AOt'If)T)ft?frt'tl?e for tthcs.geomtetry.
All OS: Metal 2.4 and later Avallable It 1ntersection_tags
include primitive_motion.
. . Motion end time for this geometry.
motion_end_time float Available if intersection_tags

All OS: Metal 2.4 and later

include primitive_motion.

key_frame_count
All OS: Metal 2.4 and later

ushortoruint

Number of key frames. Available if
intersection_tags include
primitive_motion.

object_to_world transf

Object space to world space
transformation matrix. Available if
intersection_tags include
instancing and

orm float4x3 1d data. If

All OS: Metal 2.4 and later worlid_space_data.lt
intersection_tags include
instance_motion, the matrix is
interpolated based on the time.
World space to object space
transformation matrix. Available if

world_to_object_transf }ntirse(.:tlon_c’lcags el

orm float4x3 instancing an

All OS: Metal 2.4 and later

world_space_data.lf
intersection_tags include
instance_motion, the matrix is
interpolated based on the time.

user_instance_id
All OS: Metal 2.4 and later

ushort, uint or
array_ref<uint>

User defined instance id. Available if
intersection_tags include
instancing. In Metal 3.1 and later, if
intersection_tags include
max_levels<Count>, the type must
be array_ref<uint>. Otherwise, it is
ushortoruint.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 143 of 346

Attribute

Corresponding
data types

Description

primitive_data
All OS: Metal 3 and later

const device Tx
or
const device T&

Per-primitive data. The data is read-only
and passed in the device address
space.

curve_parameter
All OS: Metal 3.1 and later

float

The value which you need to pass to the
curve basis functions to reconstruct the
position corresponding to the
intersection along the curve segment.
This will be exactly 0.0F or 1. 0F if, and
only if, the ray intersects a curve end
cap or elbow. Available if
intersection_tags include
curve_data. See section 6.18.7 for a
set of curve utility functions.

function_id
All OS: Metal 4 and later

ushortoruint

Specifies the index you use to
determine the intersection function
being invoked by the GPU. Available if
intersection_tags include
intersection_function_buffer.

user_data_buffer
All OS: Metal 4 and later

const device Tx
or
const device T&

User data passed. Available if
intersection_tags include
intersection_function_buffer
and user_data.

For vertex attributes v0, v1, and v2, the attribute value at the specified barycentric point is:

vl x barycentric_coord.x +
v2 x barycentric_coord.y +
vl x (1.0f — (barycentric_coord.x + barycentric_coord.y))

The type for a parameter with the [[payload]] attribute is of the form ray_data T &.ltis
passed by reference to the intersection functions, and it is allocated in the ray_data address
space. The type T of the payload can be or contain the following types:

e deviceorconstant pointers or references

e integer types
e enumeration types

¢ floating-point types

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 144 of 346

e vector types

e arrays of such types

e structure and union (except for atomic<T’>and imageblock<T'>).

5.2.3.8 Intersection Function Output Attributes

Table 5.11 lists the built-in attributes that can be specified for a return type of a
[[intersection(primitive_type, intersection_tags..)]] function (and their

corresponding data types).

Table 5.11. Attributes for intersection return types

Attribute

Corresponding
data types

Description

accept_intersection

bool

If true, this primitive becomes the next committed
hit: if it is the nearest, it will be returned from
intersect().

continue_search

bool

If the hit is accepted

([[accept_intersection]] == true),
continue_search indicates if the search should
continue. If continue_searchis true,
intersect () will continue to search for a closer hit.
If false, no further searching is done. The current
nearest hit is returned from intersect ().

Defaults to true. Even if true is returned, a
committed hit will immediately halt searching if
accept_any_intersection() is true.

distance

float

This returns the distance along the ray of a hit found
within the bounding box. If the hit is rejected
([[accept_intersection]] == false), this
return value is ignored. Available if the
primitive_typeisabounding_box.

For triangle intersection functions, [[accept_intersection]] is the only required return
value. If the function returns a bool without an attribute, then it is assumed to be
[[accept_intersectionl]l.

The value of [[distance]] needs to be greater than or equal to the value of
[[min_distance]] and it needs to be less than or equal to the value of

[[max_distance]] and within the custom primitive's bounding box (inclusive), or the results
are undefined. If the value of [[distance]] is the same as the value of
[[max_distancel], then accepting this hit takes precedence over the previous hit at the

same distance.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 145 of 346

Any changes made to the ray payload take effect regardless of how the intersection function
returns: Rejected primitives can have side effects to memory that are observed by future
intersection shader threads.

Writes to device memory also occur even for rejected primitives. Those writes are visible to
other threads via the usual memory consistency and coherency rules (at present, only atomics
will be coherent, and only relaxed consistency is supported). Intersection functions may be
invoked even if the ray does not intersect the primitive's bounding box. For example,
implementations may group multiple primitives into one acceleration structure leaf node.

Below is an example of an intersection function of a bounding box:

struct IntersectionResult {
bool continueSearch [[continue_search]];
bool accept [[accept_intersectionl]];
float distance [[distancell;
b
[[intersection(bounding_box) 1]
IntersectionResult sphereIntersectionFunction(
float3 origin [[origin]l],
float3 direction [[directionl],
uint primitiveIndex [[primitive_id]],
ray_data float2& resources [[payloadll,
float min_distance [[min_distancell],
float max_distance [[max_distancell)
{..}

5.2.3.9 Object Function Input Attributes

All OS: In Metal 3.1 and later, you can specify these attributes on global variables except when
using them in a dynamic library or a separately compiled binary function.

Object functions use the same execution model as a kernel function (see section 5.2.3.6),
where it executes over an N-dimensional grid of threads. Object functions arguments can be
samplers, textures, arguments of type mesh_grid_properties, and buffers in the
device, constant, and threadgroup address space.

Object functions support a subset of the built-in attributes of a kernel function and
[[amplification_count]]and [[payload]]. The semantics of
[[amplification_count]] isthe same asin section 5.2.3.1 Vertex Function Input
Attributes. Table 5.12 lists the built-in attributes that can be specified for arguments to an
object function and the corresponding data types with which they can be used. Metal 3.1 and
later provide the built-in attributes in Table 5.12, which you can specify on program scope
variables, except for amplification_count and payload.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 146 of 346

Table 5.12. Attributes for object function

Attribute

Corresponding
data types

Description

amplification_count

ushortoruint

The number of output vertices
produced for each vertex
instance.

dispatch_quadgroups_per_thr
eadgroup

ushortoruint

The quad-group execution width
of a threadgroup specified at
dispatch.

dispatch_simdgroups_per_thr
eadgroup

ushortoruint

The SIMD-group execution width
of a threadgroup specified at
dispatch.

dispatch_threads_per_thread
group

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The thread execution width of a
threadgroup for threads
specified at dispatch.

payload

Pointer or I-value
reference to user-
defined T in
object_data
address space

The payload is data passed to
the mesh shader from the object
shader. The payload pointer or
reference is the same for all
threads in the threadgroup. The
payload memory is assumed
uninitialized at the entry of the
object function.

guadgroup_index_in_threadgr
oup

ushort oruint

The scalar index of a quad-group
within a threadgroup.

guadgroups_per_threadgroup

ushortoruint

The quad-group execution width
of a threadgroup.

simdgroup_index_in_threadgr
oup

ushortoruint

The scalar index of a SIMD-
group within a threadgroup.

simdgroups_per_threadgroup

ushortoruint

The SIMD-group execution width
of a threadgroup.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 147 of 346

Attribute

Corresponding
data types

Description

thread_index_in_quadgroup

ushortoruint

The scalar index of a thread
within a quad-group.

thread_index_in_simdgroup

ushortoruint

The scalar index of a thread
within a SIMD-group.

thread_index_in_threadgroup

ushortoruint

The scalar index of a thread
within a threadgroup.

thread_position_in_grid

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The thread's position in an N-
dimensional grid of threads.

thread_position_in_threadgr
oup

ushort,
ushort2,
ushorts,

uint, uint2, or
uint3

The thread's unique position
within a threadgroup

threadgroup_position_in_gri
d

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The threadgroup’s unique
position within a grid.

threadgroups_per_grid

ushort,
ushort2,
ushorts,

uint, uint2, or
uint3

The number of threadgroups in a
grid.

threads_per_grid

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The grid size.

threads_per_simdgroup

ushortoruint

The thread execution width of a
SIMD-group.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 148 of 346

Corresponding

Attribute data types

Description

ushort,
ushort2,
ushort3,

uint, uint2, or
uint3

The thread execution width of a
threadgroup.

threads_per_threadgroup

Object function attributes have the same restrictions as kernel function attributes:

e Thetypefordeclaring [[thread_position_in_grid]l], [[threads_per_grid]l],
[[thread_position_in_threadgroupl], [[threads_per_threadgroupll,
[[threadgroup_position_in_gridl],
[[dispatch_threads_per_threadgroupl],and [[threadgroups_per_grid]]
needs to be a scalar type or a vector type. If it's a vector type, the number of components
for the vector types for declaring these arguments need to match.

e The data types for declaring [[thread_position_in_grid]] and
[[threads_per_grid]] need to match.

e The datatypes for declaring [[thread_position_in_threadgroupl],
[[threads_per_threadgroupl], and
[[dispatch_threads_per_threadgroup]] need to match.

e If[[thread_position_in_threadgroup]l]istypeuint, uint2oruint3,
[[thread_index_in_threadgroup]] needs to be type uint.

e Thetypesfordeclaring [[thread_index_in_simdgroupl],
[[threads_per_simdgroupl], [[simdgroup_index_in_threadgroup]l],
[[simdgroups_per_threadgroupl],
[[dispatch_simdgroups_per_threadgroupll,
[[quadgroup_index_in_threadgroupll], [[quadgroups_per_threadgroupl],
and [[dispatch_quadgroups_per_threadgroup]lneedtobe ushortoruint. The
types for declaring these built-in variables need to match.

5.2.3.10 Mesh Function Input Attributes

All OS: In Metal 3.1 and later, you can specify these attributes on global variables except when
using them in a dynamic library or a separately compiled binary function.

Mesh functions use the same execution model as a kernel function (see section 5.2.3.6), where
it executes over an N-dimensional grid of threads. Mesh functions arguments can be from
samplers, textures, arguments of type mesh<V, P, NV, NP, t>, and buffers of
device and constant. If the mesh function hasamesh<V, P, NV, NP, t>argument, it
points to an opaque handle for memory representing the mesh to export. The underlying
memory referenced by the mesh<V, P, NV, NP, t>argumentis shared among threads of
a given threadgroup.

Mesh functions support a subset of the built-in attributes of a kernel function and also
[[amplification_count]], [[amplification_id]],and [[payload]] attributes.
The semantics of [[amplification_count]l]land [[amplification_id]] isthe same
as in section 5.2.3.1 Vertex Function Input Attributes. Table 5.13 lists the built-in attributes that

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 149 of 346

can be specified for arguments to a mesh function and the corresponding data types with
which they can be used. Metal 3.1 and later provide the built-in attributes in Table 5.13, which
you can specify on program scope variables, except for amplification_count,

amplification_id, and payload.

Table 5.13. Attributes for mesh function

Attribute

Corresponding
data types

Description

amplification_count

ushortoruint

The number of output vertices
produced for each primitive
instance.

amplification_id

ushortoruint

The array index offset mappings
for viewport and render target
array indices, which enables
routing an amplified vertex to a
different viewport and render
target.

dispatch_quadgroups_per_th
readgroup

ushortoruint

The quad-group execution width
of a threadgroup specified at
dispatch.

dispatch_simdgroups_per_th
readgroup

ushort oruint

The SIMD-group execution width
of a threadgroup specified at
dispatch.

dispatch_threads_per_threa
dgroup

ushort,
ushort2,
ushort3,

uint, uint2, or
uint3

The thread execution width of a
threadgroup for threads specified
at dispatch.

payload

Pointer or I-value
reference to user-
defined T in
object_data
address space.
Needs to be const
qualified.

The payload is data passed to the
mesh shader from the object
shader. The payload pointer or
reference is the same for all
threads in the mesh grid. The
payload memory is read-only in
the mesh function.

quadgroup_index_in_threadg
roup

ushortoruint

The scalar index of a quad-group
within a threadgroup.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 150 of 346

Attribute

Corresponding
data types

Description

quadgroups_per_threadgroup

ushortoruint

The quad-group execution width
of a threadgroup.

simdgroup_index_in_threadg
roup

ushortoruint

The scalar index of a SIMD-group
within a threadgroup.

simdgroups_per_threadgroup

ushortoruint

The SIMD-group execution width
of a threadgroup.

thread_index_in_quadgroup

ushortoruint

The scalar index of a thread within
a quad-group.

thread_index_in_simdgroup

ushortoruint

The scalar index of a thread within
a SIMD-group.

thread_index_in_threadgrou
p

ushortoruint

The scalar index of a thread within
a threadgroup.

thread_position_in_grid

ushort,
ushort2,
ushorts,

uint, uint2, or
uint3

The thread's position in an N-
dimensional grid of threads.

thread_position_in_threadg
roup

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The thread's unique position within
a threadgroup

threadgroup_position_in_gr
id

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The threadgroup’s unique position
within a grid.

threadgroups_per_grid

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The number of threadgroups in a
grid.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 151 of 346

Attribute

Corresponding
data types

Description

threads_per_grid

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The grid size.

threads_per_simdgroup

ushortoruint

The thread execution width of a
SIMD-group.

threads_per_threadgroup

ushort,
ushort2,
ushorts,
uint,uint2, or
uint3

The thread execution width of a
threadgroup.

Mesh function attributes have the same restrictions as kernel function attributes:

e Thetypefordeclaring [[thread_position_in_gridl]l], [[threads_per_grid]l],
[[thread_position_in_threadgroupl], [[threads_per_threadgroupll,
[[threadgroup_position_in_grid]],
[[dispatch_threads_per_threadgroupl],and [[threadgroups_per_grid]]
needs to be a scalar type or a vector type. If it's a vector type, the number of components
for the vector types for declaring these arguments need to match.

e The data types for declaring [[thread_position_in_grid]] and
[[threads_per_grid]] need to match.

e The datatypes for declaring [[thread_position_in_threadgroupl],
[[threads_per_threadgroupl], and
[[dispatch_threads_per_threadgroup]] need to match.

e If[[thread_position_in_threadgroup]l]istypeuint, uint2oruint3,
[[thread_index_in_threadgroup]] needs to be type uint.

e Thetypesfordeclaring [[thread_index_in_simdgroupl],
[[threads_per_simdgroupll], [[simdgroup_index_in_threadgroup]l],
[[simdgroups_per_threadgroupl],

[[dispatch_simdgroups_per_threadgroupll,

[[quadgroup_index_in_threadgroupl], [[quadgroups_per_threadgroupl],
and [[dispatch_quadgroups_per_threadgroup]] needtobe ushortoruint.
The types for declaring these built-in variables need to match.

5.24 Input Assembly Attribute

Vertex function output and the rasterizer-generated fragments become the per-fragment
inputs to a fragment function. The [[stage_in]] attribute can assemble the per-fragment

inputs.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 152 of 346

A vertex function can read per-vertex inputs by indexing into buffer(s) passed as arguments to
the vertex function using the vertex and instance IDs. To assemble per-vertex inputs and pass
them as arguments to a vertex function, declare the inputs with the [[stage_in]] attribute.

A kernel function reads per-thread inputs by indexing into buffer(s) or texture(s) passed as
arguments to the kernel function using the thread position in grid or thread position in
threadgroup IDs. In addition, to pass per-thread inputs as arguments to a kernel function,
declaring the inputs with the [[stage_in]] attribute.

You can declare only one argument of the vertex, fragment, or kernel function with the
[[stage_in]] attribute. For a user-defined structure declared withthe [[stage_in]1]
attribute, the members of the structure can be:

e A scalarinteger or floating-point value.
e A vector of integer or floating-point values.
e Aninterpolant<T, P> value for fragment function input.

You cannot use the stage_1in attribute to declare members of the structure that are packed
vectors, matrices, structures, bitfields, references or pointers to a type, or arrays of scalars,
vectors, or matrices.

5.2.41 Vertex Function Output Example

The following example shows how to pass per-vertex inputs using the stage_1in attribute:

struct VertexOutput {
float4 position [[position]];
float4 color;
float2 texcoord;

o

struct VertexInput {
float4 position [[attribute(0)]11]1;
float3 normal [[attribute(1)1];
half4 color [[attribute(2)1];
half2 texcoord [[attribute(3)1];
o

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTS];

float4 light_color[MAX_LIGHTS];

float4 light_attenuation_factors[MAX_LIGHTS];
o

constexpr sampler s = sampler(coord::normalized,
address::clamp_to_zero,
filter::1linear);
2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 153 of 346

vertex VertexOutput

render_vertex(VertexInput v_in [[stage_in]],
constant float4x4& mvp_matrix [[buffer(1)11,
constant LightDesc& lights [[buffer(2)11],
uint v_id [[vertex_idl])

{
VertexOutput v_out;
v_out.position = v_in.position *x mvp_matrix;
v_out.color = do_lighting(v_in.position, v_in.normal, lights);
return v_out;
b

5.2.4.2 Fragment Function Input Example

An example in section 5.2.3.3 previously introduces the process_vertex vertex function,
which returns a VertexOutput structure per vertex. In the following example, the output from
process_vertexis pipelined to become input for a fragment function called
render_pixel, so the first argument of the fragment function uses the [[stage_in]]
attribute and uses the incoming VertexOutput type. (In render_pixel, the imgA and imgB
2D textures call the built-in function sample, which is introduced in section 6.12.3).

struct VertexOutput2 {
float4 position [[position]];
float4 color;
float2 texcoord;

o

struct VertexInputData {
float4 position;
float3 normal;
float2 texcoord;

o

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTSI;

float4 light_color[MAX_LIGHTSI;

float4 light_attenuation_factors[MAX_LIGHTS];
o
constexpr sampler s = sampler(coord::normalized,
address::clamp_to_edge,

filter::1linear);

vertex VertexOutput2

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 154 of 346

render_vertex(const device VertexInputData *xv_in [[buffer(0)11,
constant float4x4& mvp_matrix [[buffer(1)11,
constant LightDesc& lights [[buffer(2)11],
uint v_id [[vertex_idl])

VertexOutput v_out;

v_out.position = v_in[v_id].position * mvp_matrix;
v_out.color = do_lighting(v_in[v_id].position,
v_in[v_id].normal, lights);

v_out.texcoord = v_in[v_id].texcoord;

return v_out;

}

fragment floats

render_pixel(VertexOutput2 input [[stage_in]],
texture2d<float> imgA [[texture(©)]1],
texture2d<float> imgB [[texture(1)11)

{
float4 tex_clr@ = imgA.sample(s, input.texcoord);
float4 tex_clrl = imgB.sample(s, input.texcoord);
// Compute color.
float4 clr = compute_color(tex_clre, tex_clrl, ..);
return clr;

b

5.2.4.3 Kernel Function Per-Thread Input Example

The following example shows how to use the stage_1in attribute to pass per-thread inputs.
The stage_1in attribute in a kernel function allows you to decouple the data type for declaring
the per-thread inputs in the function from the actual data type used to store the per-thread
inputs.

struct PerThreadInput {
float4 a [[attribute(0)]1];
float3 b [[attribute(1)1];
half4 ¢ [[attribute(2)11];
half2 d [[attribute(3)1];
¥

kernel void
my_kernel(PerThreadInput thread_input [[stage_in]],

uint t_id [[thread_position_in_gridl])
{..}

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 155 of 346

5.3 Storage Class Specifiers

Metal supports the static and extern storage class specifiers. Metal does not support the
thread_local storage class specifiers.

You can only use the extern storage-class specifier for functions and variables declared in
program scope or for variables declared inside a function. The static storage-class specifier
is only for device variables declared in program scope (see section 4.2) and is not for variables
declared inside a graphics or kernel function. The following example incorrectly uses the
static specifier for the variables b and c declared inside a kernel function:

extern constant float4 noise_table[2561];
static constant float4 color_table[256] = {..}; //Here, static is OK.

extern void my_foo(texture2d<float> img);
extern void my_bar(device float *a);

[[kernell] void
my_kernel(texture2d<float> img [[texture(0)]1],
device float xptr [[buffer(9)1])

{
extern constant float4 a;
static constant float4 b; // Here, static is an error.
static float c; // Here, static is an error.
my_foo(img);
my_bar(ptr);

b

5.4 Sampling and Interpolation Attributes

Sampling and interpolation attributes are used with inputs to fragment functions declared with
the stage_1in attribute except for members of type interpolant<T, P>. The attribute
determines what sampling method the fragment function uses and how the interpolation is
performed, including whether to use perspective-correct interpolation, linear interpolation, or
no interpolation.

The sampling and interpolation attribute can be specified on any stage_1in structure member
whose type is scalar and vector. The sampling and interpolation attributes supported are:

e center_perspective

e center_no_perspective

e centroid_perspective

e centroid_no_perspective
e sample_perspective

e sample_no_perspective

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 156 of 346

e flat

center_perspective is the default sampling and interpolation attribute, with the following
exceptions:

e For avariable with the [[position]] attribute, the only valid sampling and interpolation
attribute is center_no_perspective.
e For aninteger variable, the only valid sampling and interpolation attribute is f1lat.

A perspective attribute (center_perspective, centroid_perspective, or
sample_perspective) indicates the values across a primitive are interpolated in a
perspective-correct manner. A nonperspective attribute (center_no_perspective,
centroid_no_perspective,or sample_no_perspective) indicates the values across a
primitive are linearly interpolated in screen coordinates.

The center attribute variants (center_perspective and center_no_perspective)
cause sampling to use the center of each pixel.

The sampling attribute variants (sample_perspective and sample_no_perspective)
cause interpolation at a sample location rather than at the pixel center. With one of these
attributes, the fragment function (or code blocks in the fragment function) that use these
variables execute per-sample rather than per-fragment.

If a centroid attribute variant is specified (centroid_perspective and
centroid_no_perspective), the interpolation point sampled needs to be within both the
primitive and the centroid of the pixel.

The following example demonstrates how to specify the interpolation of data for different
members of a user-defined structure:

struct FragmentInput {

float4 pos [[center_no_perspectivell;

float4 color [[center_perspectivell;

float2 texcoord;

int index [[flat]];

float f [[sample_perspectivell;

interpolant<float4, interpolation::perspective> icolor;
o

In Metal 2.4 and later, the sample and interpolation attribute can also be specified on any
stage_1in structure member whose type is structure. All the members in the structure inherit
the specified sampling and interpolation qualifiers. Field declarations in a structure where
sampling and interpolation qualifiers have been inherited are valid only if one of the following is
true:

e The type of field is compatible with the inherited qualifiers.
e The field declaration does not have a sampling, and interpolation qualifiers attribute.

¢ The field declaration has the same sampling, and interpolation qualifiers attribute as the
inherited one.

The following example demonstrates how to specify the interpolation on structure types.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 157 of 346

struct VOut {
float4 pos [[positionl];
¥

struct POut {
float4 coloro;
float4 colorl;
o

[[mesh]l] void mesh_function(mesh<VOut, POut, 3, 1,
topology::triangle> m)

struct FragmentInput {

VOut vin;

POut pin [[center _perspectivell;
b

5.5 Per-Fragment Function Versus Per-Sample Function

You typically execute the fragment function per-fragment. The sampling attribute identifies if
fragment input interpolation is per-sample or per-fragment. Similarly, the [[sample_id]]
attribute identifies the current sample index, and the [[color (m)]] attribute identifies the
destination fragment color or sample color (for a multisampled color attachment) value. If you
use any of these attributes with arguments to a fragment function, the fragment function may
execute per-sample instead of per-pixel. (The implementation may decide to only execute the
code that depends on the per-sample values to execute per-sample and the rest of the
fragment function may execute per-fragment.)

Only the inputs with sample access specified (or declared with the [[sample_id]] or
[[color(m) 1] attribute) differ between invocations per-fragment or per-sample, whereas
other inputs still interpolate at the pixel center.

The following example uses the [[color (m)]] attribute to specify that this fragment function
executes on a per-sample basis:

[[fragment]] float4

my_fragment(float2 tex_coord [[stage_inll],
texture2d<float> img [[texture(0)]1],
sampler s [[sampler(0)]1],
float4 framebuffer [[color(0)]])

return ¢ = mix(img.sample(s, tex_coord), framebuffer,
mix_factor);

5.6 Imageblock Attributes

iOS: Metal 2 and later support imageblocks.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 158 of 346

macOS: Metal 2.3 and later support imageblocks for Apple silicon.

This section and its subsections describe several attributes for imageblocks, including the
[[imageblock_data(type) 1] attribute that specifies input and output imageblock with an
explicit imageblock layout for a fragment function.

5.6.1 Matching Data Members of Master and View Imageblocks

You canuse the [[user (name)]] attribute to specify an attribute name for a data member of
the imageblock data type for a fragment function. If the imageblock structure specified in a
fragment function is a subset of the master explicit imageblock structure, the following rules
match data members declared in the imageblock structure used in a fragment function with
corresponding data members declared in the master explicit imageblock structure:

» Every attribute name given by [[user (name)]] needs to be unique for each data
member in the imageblock.

* The attribute name given by [[user (name)]] for a data member needs to match with
a data member declared in the master explicit imageblock structure, and their associated
data types needs to also match.

e Ifthe [[user(name)]] attribute is not specified, the data member name and type
declared in the imageblock data type for a fragment function and the master imageblock
structure needs to match. Additionally, the data member cannot be within a nested
structure that is either within the view imageblock structure or within the master
imageblock structure.

The following example shows the [[user (name)]] attribute in declarations of data members
in master and view imageblock structures:

// The explicit layout imageblock data master structure.

struct IM {
rgba8unorm<half4> a [[user(my_a), raster_order_group(0)]1];
rgb9e5<float4> b [[user(my_b), raster_order_group(0)]1];
int ¢ [[user(my_c), raster_order_group(0)]1];
float d [[user(my_d), raster_order_group(0)]];

o

// The explicit layout imageblock data view structure for input.
struct IVIn {

rgb9e5<float4> x [[user(my_b)I1]; // Maps to IM::b

float y [[user(my_d)]1]l; // Maps to IM::d
b

// The explicit layout imageblock data view structure for output.
struct IVOut {

int z [[user(my_c) 11; // Maps to IM::c
o

// The fragment return structure.
struct FragOut {

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 159 of 346

im::d

// IVOut is a view of the master IM.
IVOut i [[imageblock_data(IM) 11;
+

// IVIn is a view of the master IM.
[[fragment]] FragOut
my_fragment(IVIn i [[imageblock_data(IM)11, ..) {
FragOut fragOut;
W = 1.x;
w = 1.y;
fragOut.i.z = ..;
return fragOut;
b

The following example shows the declaration of data members in master and view imageblock
structures without the [[user (name)]] attribute:

struct IM {
rgba8unorm<half4> a [[raster_order_group(0)1]1];
rgbh9e5<float4> b [[raster_order_group(9)]1];
int ¢ [[raster_order_group(0)]1]1;
float d [[raster_order_group(0)1]1;

3

struct IVIn {
rgb9e5<float4> b; // Maps to IM::b
float d; // Maps to IM::d

3

struct IVOut {
int c; // Maps to IM::c
h

struct FragOut {
IVOut i [[imageblock_data(IM)11;
I

fragment FragOut
my_fragment(IVIn i [[imageblock_data(IM)11, ..) {
FragOut fragOut;
.= 1.b;
. = 1.d;
fragOut.i.c = ..;
return fragOut;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 160 of 346

im::b

You can declare nested structures in the master imageblock and view imageblock structures.
The following example shows how to use nested structures in an imageblock with data
members declared with the [[user (name)]] attribute:

struct A {
rgba8unorm<half4> a [[user(A_a)ll;
rgb9e5<floats> b [[user(A_b)1];

o
struct B {
int a [[user(B_a), raster_order_group(1)]];
float b [[user(B_b), raster_order_group(2)1]1;
o
struct IM {
A a [[user(A), raster_order_group(0)]1];
B b [[user(B)]l];
o

struct IVIn {
A x [Luser(A)1]; // Maps to IM::a
¥

struct IVOut {

By [[user(B)]]l; // Maps to IM::b

rgbh9e5<float4> z [[user(A_b)1]l; // Maps to IM::A::b
o

struct FragOut {
IVOut i [[imageblock_data(IM)11;
b

fragment FragOut

my_fragment(IVIn i [[imageblock_data(IM)1], ..) {
FragOut fragOut;
w = 1.X;
fragOut.i.y.a
fragOut.i.y.b el
fragOut.i.z = ..;
return fragOut;

Each field of a view structure must correspond to exactly one master structure field. A master
structure field can refer to a top-level structure field as well as a field within a nested structure.
It is illegal for two or more view structure fields to alias the same master structure field.

Example of illegal use:

struct M {
struct A {

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 161 of 346

im::b

int a [[user(x)]1];

¥

b [[user(y), raster_order_group(0)]1]1;
o
struct V {

int a [[user(x)1];

M::A b [[user(y)]]l; // Illegal: b aliases with a
o

fragment void
f(V i [[imageblock_data(M)11])
{.}

Explicit imageblock types cannot have data members declared with the [[color(n) 1]
attribute.

5.6.2 Imageblocks and Raster Order Groups

In a kernel function, a [[raster_order_group(index)]] attribute specified on data
members of an imageblock is ignored.

In a fragment function, you must specify the [[raster_order_group(index)]] attribute
for data members of the master explicit imageblock data structure.

If the master explicit imageblock structure contains data members that are structures, you can
specify the [[raster_order_group(index) 1] attribute for all data members in the nested
structure or just the nested structure. If you specify the
[[raster_order_group(index)]] attribute for the nested structure, then it applies to all
data members of the nested structure, and no data member in the nested structure can have
the [[raster_order_group(index)]] attribute declared.

You optionally may specify the [[raster_order_group(index)]] attribute for data
members of an imageblock view structure, butthe [[raster_order_group(index) 1]
must match the same [[raster_order_group(index)]] specified on the data member of
the master explicit imageblock structure.

The following example shows how you can specify the [[raster_order_group(index)]]
attribute for data members of a master imageblock. Because the
[[raster_order_group(index)]] attribute specifies the S structure member of the
gBufferData structure, you cannot use this attribute on any members of the S structure.

struct S {
rgb%9e5<half3> normal;
float factor;

o

struct gBufferData {
half3 color [[raster_order_group(0)]1]1;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 162 of 346

S s [[raster_order_group(1)1];
rgb11b10f<half3> lighting [[raster_order_group(2)1]1;
b

Data members declared as an array have a single raster order group associated with all
members of the array. The following example shows how you can specify the
[[raster_order_group(index)]] attribute for a data member of a master imageblock
that is an array of a structure type.

struct S {
rgb%9e5<half3> normal;
float factor;

o
struct IM {

half3 color [[raster_order_group(0)]1]1;

S s [[raster_order_group(1)11[2];

rgb11b10f<half3> lighting [[raster_order_group(2)11];
o

The following example shows an incorrect use of the [[raster_order_group(index) 1]
attribute where data member s is an array of a structure of type S with members that specify
raster order groups that result in a compilation error.

struct S {
rgb9e5<half3> normal [[raster_order_group(9)1];
float factor [[raster_order_group(1)]];

¥

struct IM {
half3 color [[raster_order_group(0)]1]1;
S s[2]; // This causes a compilation error.
rgb11b10f<half3> lighting [[raster_order_group(2)11];
b

5.6.3 Imageblock Layouts for Fragment Functions
In a fragment function, you can access the imageblock in two ways:
* As acolor attachment, where the storage layout of the imageblock is not known in the

fragment function. An implicit imageblock layout uses the existing color attachment
attribute. (For more about the implicit imageblock layout, see section 5.6.3.1.)

» As astructure for declaring the imageblock data where the fragment function explicitly
specifies the storage layout of the imageblock. (For more about the explicit imageblock
layout, see section 5.6.3.2.)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 163 of 346

5.6.3.1 Implicit Imageblock Layout for Fragment Functions

You can access the imageblock data (all the data members in the imageblock associated with a
pixel) in a fragment function. Metal creates an implicit imageblock that matches the behavior of
color attachments (for input to and output from a fragment function). In this mode, the types
associated with the color attachments, as described in the fragment function, are the ALU
types (that is, the types used to perform computations in the fragment function). The Metal
runtime defines the actual pixel storage format.

When accessing the imageblock data as color attachments, you cannot declare the pixel
storage types described in section 2.7 in the imageblock slice structure.

For an imageblock data implicit layout of type T, T is a structure where each member satisfies
one of the following:

» Have a color attachment (see the [[color (m) 1] attribute in Table 5.5 of section
5.2.3.4). The color index m needs to be unique for each member (and sub-member) of T.

» Be a structure type with members that satisfy the constraint on the list.

5.6.3.2 Explicit Imageblock Layout for Fragment Functions

The imageblock data with explicit layout has its layout declared in the shading function, not via
the runtime as is done for color attachments. You declare the imageblock data for an explicit
layout as a structure. Each data member of the per-fragment imageblock data can be:

A scalar or vector, integer or floating-point data type.
One of the pixel data types described in section 2.7.
An array of these types.

e Ora structure built with these types.

The data members of the imageblock structure use the appropriate alignment rules for each
data member type declared in the structure to determine the actual structure layout and size.

A fragment function can read one or more data members in the per-fragment imageblock data
and write to one or more data members in the per-fragment imageblock data. You can declare
the input and output imageblock data to a fragment function as a structure. The input and
output imageblock structures can be the fully explicit imageblock structure (referred to as the
master explicit imageblock structure), or be a subset of the master explicit imageblock
structure (referred to as the imageblock view structure). For the latter, use the
[[imageblock_data(type) 1] attribute with the input and output imageblock data
structure specified on a fragment function, where type specifies the fully explicit imageblock
data structure.

If you specify the [[imageblock_data]l attribute on the input argument or output
structure element without type, by default the fragment function uses the master explicit
imageblock data structure on the input or output.

Example:

struct I {
float a [[raster_order_group(0)1]1;
¥

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 164 of 346

struct FragOut {

float ¢ [[color(@)11;

I i [[imageblock_datall;
b

fragment FragOut
my_fragment(I i [[imageblock_datall)

{
FragOut fragOut;

return fragOut;

Fragment functions can access both an implicit imageblock and an explicit imageblock as
separate input arguments, or as fields in a return structure.

Example:

struct I {
float a [[raster_order_group(0)1]1;

};

struct FragOut {

float ¢ [[color(@)11;

I i [[imageblock_datall;
b

[[fragment]] FragOut
my_fragment(I i [[imageblock_datall,
float ¢ [[color(@)1])

{
FragOut fragOut;

return fragOut;

By default, the explicit imageblock storage is separate from the storage of the implicit
imageblock. To share storage between the explicit imageblock and implicit imageblock, see
section 5.6.5.

5.6.4 Imageblock Layouts in Kernel Functions

The imageblock<T> type (defined in the header <metal_imageblocks>) can only be used
for arguments declared in a kernel function or in a user function that is called by a kernel
function. Only a kernel function can have an argument declared as an imageblock<T> type.
The data in an imageblock is visible only to threads in a threadgroup.

This imageblock argument to a kernel function is declared as the following templated type:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 165 of 346

class imageblock_layout_explicit;

class imageblock_layout_implicit;

template<typename T, typename L>

struct imageblock;

With the following restrictions:
« Liseither imageblock_layout_explicit orimageblock_layout_implicit
« Tis astructure; members of T can be any of the following:

scalars

vectors and packed vectors

pixel data types
« an array with elements that are one of the types on this list

« a structure with members that are one of the types on this list

For an imageblock with implicit layout (imageblock_layout_implicit), each member of
the structure may have a color attachment (see the [[color (m) 1] attribute in Table 5.5 of
section 5.2.3.4). The color index m needs to be unique for each member (and sub-member) of
T.

If you do not specify an imageblock layout, the compiler deduces the layout based on T. If T is
not compatible with an implicit or explicit imageblock, a compiler error occurs.

Both explicit and implicit imageblocks can be arguments to a kernel function. This also makes it
easy to share explicit and implicit imageblock structures between fragment and kernel
functions. By default, the explicit imageblock storage is separate from the storage of the
implicit imageblock. To share storage between the explicit imageblock and implicit imageblock,
see section 5.6.5.

5.6.5 Aliasing Explicit and Implicit Imageblocks

By default, explicit and implicit imageblocks do not alias. To alias the allocation of an explicit
imageblock with the implicit imageblock fully or partially, you can use the following attributes to
specify an explicit imageblock:

[[alias_implicit_imageblock]]
[[alias_implicit_imageblock_color(n)]1]

The [[alias_implicit_imageblock]] attribute specifies that the explicit imageblock
allocation completely aliases the implicit imageblock.

The [[alias_implicit_imageblock_color(n)]] attribute specifies that the explicit
imageblock allocation aliases the implicit imageblock starting at a specific color attachment
givenby color(n).If nis avalue that is between the smallest and largest declared
attachments, inclusive, but n references an undeclared attachment, then a compile-time error
occurs. If n is a value that exceeds the number of declared attachments, then compilation
succeeds, but the attribute is ignored.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 166 of 346

The behavior of accessing data members of an aliased implicit imageblock with an explicit
imageblock is undefined if the kernel or fragment function modifies the aliased imageblock data
members using the explicit imageblock and its associated member functions.

Example:

struct I {
rgbha8unorm<half4> a;
rgh9eb<float4> b;
int c;
float d;

o

struct FragOut {

float4 finalColor [[color(e)1];

I i [[imageblock_data, alias_implicit_imageblock_color(1)1]11];
o

[[fragment]] FragOut
my_fragment(I i [[imageblock_datall, ..)

{
FragOut fragOut;
return fragOut;
b
5.6.6 Imageblocks and Function Constants

Donotuse [[function_constant(name)]] with data members of an imageblock
structure either as input to or as returned output from a fragment or kernel function.

5.7 Graphics Function — Signature Matching

A graphics function signature is a list of parameters that are either input to or output from a
graphics function.

5.71 Vertex — Fragment Signature Matching

You can pass two kinds of data between a vertex and fragment function: user-defined and
built-in variables.

You can declare the per-instance input to a fragment function with the [[stage_in]]
attribute. These are output by an associated vertex function.

You can declare built-in variables with one of the attributes defined in section 5.2.3. Examples
of variables that use these attributes are:

e The vertex function output (with the [[position]], [[point_sizell, or
[[clip_distance]] attribute).

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 167 of 346

e The rasterizer output (withthe [[point_coord]], [[front_facingl],
[[sample_id]]l,or [[sample_mask]] attribute).
e A fragment function input that refers to a framebuffer color value (with [[color]1]).

Always return a built-in variable that specifies the [[position]] attribute. For built-in
variables with either the [[point_size]lor [[clip_distance]] attribute, that attribute
must also specify the corresponding vertex function output. If they are used and read in a
fragment function, the shader has undefined behavior.

You may also declare built-in variables that are rasterizer output or refer to a framebuffer color
value as the fragment function input with the appropriate attribute.

You can also use the attribute [[user (name)]] syntax to specify an attribute name for any
user-defined variable.

A vertex function and a fragment function have matching signatures if:

e Thereis no input argument with the [[stage_in]] attribute declared in the fragment
function.

e For a fragment function argument declared with [[stage_1in]1, each element in the type
associated with this argument can be one of the following: a built-in variable generated by
the rasterizer, a framebuffer color value passed as input to the fragment function, or a user-
generated output from a vertex function. For built-in variables generated by the rasterizer or
framebuffer color values, there is no requirement to associate a matching type with
elements of the vertex return type. For elements that are user-generated outputs, the
following rules apply:

If you specify an attribute name for an element using [[user (name) 11, the attribute name
must match with an element in the return type of the vertex function. If you do not specify the
[[user(name)]] attribute name, then the argument name and types must match. In either
case, their corresponding data types must also match or the fragment function argument type
needsto be interpolant<T, P>, where T is the element’s type in the vertex return type.

Below is an example of using compatible signatures together (my_vertex and my_fragment,
ormy_vertex and my_fragment2) to render a primitive:

struct VertexOutput {
float4 position [[position]];
float3 normal;
float2 texcoord;

o

vertex VertexOutput
my_vertex(..)

{
VertexOutput v;

return v;

}

fragment floats
my_fragment(VertexOutput f [[stage_inl]l, ..)
{

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 168 of 346

float4 clr;

return clr;
h

fragment floats
my_fragment2(VertexOutput f [[stage_inl],
bool is_front_face [[front_facingll, ..)

{
float4 clr;

return clr;

The following is an example of compatible signatures:

struct VertexOutput {
float4 position [[positionl];
float3 vertex_normal [[user(normal)l];
float2 texcoord [[user(texturecoord)]ll;
¥

struct FragInput {
float3 frag_normal [[user(normal)ll;
float4 position [[positionl];
float4 framebuffer_color [[color(@)]1];
bool is_front_face [[front_facingll];
¥

vertex VertexOutput
my_vertex(..)

{
VertexOutput v;

return v;

}

fragment floats
my_fragment(FragInput f [[stage_inll, ..)
{

float4 clr;

return clr;

The following is an example of compatible signatures:

struct VertexOutput {

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 169 of 346

float4 position [[position]];

float3 normal;
float2 texcoord;
¥

vertex VertexOutput
my_vertex(..)

{
VertexOutput v;

return v;

¥

fragment floats
my_fragment(float4 p [[positionl], ..)
{

float4 clr;

return clr;

Below is an example of incompatible signatures. The data type of normal in VertexOutput
(float3) does not match the type of normal in FragInput (half3):

struct VertexOutput {
float4 position [[position]];

float3 normal;
float2 texcoord;

b

struct FragInput {
float4 position [[position]];
half3 normal;

¥

vertex VertexOutput
my_vertex(..)

{
VertexOutput v;

return v;

}

fragment floats
my_fragment(FragInput f [[stage_inll, ..)
{

float4 clr;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 170 of 346

return clr;

Below is another example of incompatible signatures. The attribute index of normal in
VertexOutput (normal) does not match the index of normal in FragInput (foo):

struct VertexOutput {

float4 position [[position]];

float3 normal [[user(normal)ll;

float2 texcoord [[user(texturecoord)]ll;
o

struct FragInput {
float3 normal [[user(foo)ll;
float4 position [[positionl];
o

vertex VertexOutput
my_vertex_shader(..)

{
VertexOutput v;

return v;

}

fragment floats
my_fragment_shader(FragInput f [[stage_inl], ..)
{

float4 clr;

return clr;
b

5.7.2 Mesh — Fragment Signature Matching

You can pass the two kinds of data from vertex (V) and primitive (P) of mesh<V, P, NV, NP,
t> from the mesh function to the fragment function: user-defined and built-in variables. The
per-vertex mesh outputs defined in vertex (V) are always interpolated, whereas the per-
primitive mesh outputs defined in primitive (P) are never interpolated. Due to this difference,
the rules for signature matching of user-generated output have been adjusted from those
described in section 5.7.1 Vertex — Fragment Signature Matching.

A given fragment input matches a user-generated mesh output from vertex (V) and primitive (P)
if the following is true:

e If you specify an attribute name for an element using [[user (name) 11, the attribute
name must match with an element in the return type of the mesh output.

e If you do not specify the [[user (name)]] attribute name, then the argument name
and types must match.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 171 of 346

In either case, their corresponding data types must also match, or the fragment function
argument type needs to be interpolant<T, P>, where T is the element’s type in the vertex
return type.

A mesh function and a fragment function have matching signatures for user-generated inputs
with user-generated mesh outputs if:

e For agiven user-generated fragment input with a f1at interpolation:

o There is a matching per-primitive mesh output, and the output is propagated to
the fragment input without interpolation.

o There is a matching per-vertex mesh output, and the output for the provoking
vertex is propagated to the fragment input without interpolation.

e For agiven user-generated fragment input with a non f1lat interpolation:

o There is a matching per-primitive mesh output, and the output is propagated to
the fragment input without interpolation.

o There is a matching per-vertex mesh output, and the output is interpolated
across the primitive in the same method as nonflat vertex outputs are
interpolated.

5.8 Program Scope Function Constants

All OS: Metal 1.2 and later support function constants. In Metal 2 and later, you can use a
function constant to specify the binding number for a resource (see section 5.8.1.4), to specify
the index forthe color () or raster_order_group attributes (section 5.8.1.5), and to
identify that a structure element is optional (section 5.8.1.6).

Function constants enable the generation of multiple variants of a function. Without using
function constants, you can compile one function many times with different preprocessor
macro defines to enable different features (an ubershader). Using preprocessor macros for
ubershaders with offline compiling can result in many variants and a significant increase in the
size of the shading function library assets. Function constants provide the same ease of use as
preprocessor macros but moves the generation of the specific variants to the creation of the
pipeline state, so you don't have to compile the variants offline.

5.8.1 Specifying Program Scope Function Constants

Program scope variables declared with (or initialized with) the following attribute are function
constants:

[[function_constant(index)]]
The value index needs to be between 0 and 65535.
In Metal, function constants can:

e Control code paths that get compiled.
e Specify the optional arguments of a function (graphics, kernel, or user functions).
e Specify optional elements of a structure with the [[stage_in]] attribute.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 172 of 346

You don't initialize function constants in the Metal function source. Instead, you specify their
values when creating a specialized function (MTLFunction) using an MTLFunctionDescriptor
in the Metal API. The index value specifies a location index that can refer to the function
constant variable (instead of by its name) in the runtime.

Examples:
constant int a [[function_constant(0)]1]1;
constant bool b [[function_constant(2)11]1;

Function constants can only be a scalar or vector type. Using a user-defined type or an array of
a scalar or vector type for a function constant results in a compilation error.

You specify the value of function constants a and b during the creation of the render or
compute pipeline state.

You can also use function constants to initialize variables in program scope declared in the
constant address space.

Examples:

constant int a [[function_constant(0)]1];
constant bool b [[function_constant(2)1];
constant bool ¢ = ((a == 1) && b);

constant int d = (a * 4);

You can use the following built-in function to determine if a function constant has been defined
and is available. name refers to the function constant variable.

bool is_function_constant_defined(name)
Returns true if the function constant variable is defined and false otherwise.

If a function constant variable value is not defined during the creation of the pipeline state and if
the graphics or kernel function specified with the render or compute pipeline state uses these
function constants, 1s_function _constant_defined(name) returns false.

5.8.1.1 Function Constants to Control Code Paths to Compile

Consider the following function which uses preprocessor macros for function constants:

struct VertexOutput {
float4 position [[positionl];
float4 color;

o

struct VertexInput {
float4 position [[attribute(0)]11]1;
float4 offset [[attribute(1)1];
float4 color [[attribute(2)1]1;
o

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 173 of 346

vertex VertexOutput
myVertex(VertexInput vIn [[stage_in]])
{

VertexOutput vOut;

vOut.position = vIn.position;
#ifdef OFFSET_DEFINED

vOut.position += vIn.offset;
#endif

#ifdef COLOR_DEFINED
vOut.color = vIn.color;
#else
vOut.color = float4(0.0f);
#endif

return vOut;

The corresponding function written using function constant variables is:

constant bool offset_defined [[function_constant(0)]1];
constant bool color_defined [[function_constant(1)]1];

vertex VertexOutput
myVertex(VertexInput vIn [[stage_in]])

{
VertexOutput vOut;
vOut.position = vIn.position;
if (offset_defined)
vOut.position += vIn.offset;
if (color_defined)
vOut.color = vIn.color;
else
vOut.color = float4(0.0f);
return vOut;
b

5.8.1.2 Function Constants when Declaring the Arguments of Functions

You can declare an argument to a graphics, kernel, or other user function with the
[[function_constant(name)]] attribute to identify that the argument is optional. The
name attribute refers to a function constant variable. If the value of the function constant
variable given by name is nonzero or true (determined during creation of the pipeline state),
the declaration of the argument is in the function signature. If the value of the function constant

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 174 of 346

variable given by name is 0 or false, the argument is not declared in the function signature. If
name refers to a function constant variable that has not been defined (determined during the
creation of the pipeline state), the behavior is the same as if the value of
is_function_constant_defined(name) is false.

Consider the following fragment function that uses preprocessor macros in its function
declaration:

fragment half4
myFragment (
constant GlobalUniformData *globalUniform [[buffer(0)1],
constant RenderUniformData_ModelWithLightmap
xrenderUniform [[buffer(1)11],
constant MaterialUniformData
smaterialUniform [[buffer(2)]1],
texture2d<float> DiffuseTexture [[texture(©)]],
texture2d<float> LightmapTexture [[texture(1)]1],
texture2d<float> FogTexture [[texture(3)1],
#ifdef MED_QUALITY
texture2d<float> LookupTexture [[texture(4)]1],
#endif
#ifdef REALTIME_SHADOW
texture2d<float> RealtimeShadowMapTexture [[texture(10)11],
#endif
sampler DiffuseTextureSampler [[sampler(0)11,
sampler LightmapTextureSampler [[sampler(1)]1],
sampler FogTextureSampler [[sampler(3)11],
#ifdef MED_QUALITY
sampler LookupTextureSampler [[sampler(4)11,
#endif
#ifdef REALTIME_SHADOW
sampler RealtimeShadowMapTextureSampler [[sampler(10)]1],
#endif
VertexOutput fragIn [[stage_inll])

Here is the corresponding fragment function, after using function constants instead of #1fdef
statements to rewrite the previous code:

constant bool realtime_shadow [[function_constant(@)1];
constant bool med_quality [[function_constant(1)]1];
constant bool med_quality_defined =
is_function_constant_defined(med_quality);

constant bool realtime_shadow_defined =
is_function_constant_defined(realtime_shadow) ;

fragment half4
myFragment (
constant GlobalUniformData *globalUniform [[buffer(0)1],
constant RenderUniformData_ModelWithLightmap
srenderUniform [[buffer(1)1],

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 175 of 346

constant MaterialUniformData
*materialUniform [[buffer(2)1]11],
texture2d<float> DiffuseTexture [[texture(0)]1],
texture2d<float> LightmapTexture [[texture(1)]1],
texture2d<float> FogTexture [[texture(3)1],
texture2d<float> LookupTexture [[texture(4),
function_constant(med_quality_defined)]],
texture2d<float> RealtimeShadowMapTexture [[texture(10),
function_constant(realtime_shadow_defined) 1],
sampler DiffuseTextureSampler [[sampler(0)11,
sampler LightmapTextureSampler [[sampler(1)]1],
sampler FogTextureSampler [[sampler(3)11],
sampler LookupTextureSampler [[sampler(4),
function_constant(med_quality_defined)]],
sampler RealtimeShadowMapTextureSampler [[sampler(10),
function_constant(realtime_shadow_defined) 11,
VertexOutput fragIn [[stage_inll])

Below is another example that shows how to use function constants with arguments to a
function:

constant bool hasInputBuffer [[function_constant(0)1]1;

kernel void kernelOptionalBuffer(
device int xinput [[buffer(0), function_constant(hasInputBuffer)]1],
device int s*output [[buffer(1)11,
uint tid [[thread_position_in_grid]l])

{
if (hasInputBuffer)
output[tid] = inputA[@] * tid;
else
output[tid] = tid;
¥

5.8.1.3 Function Constants for Elements of an Input Assembly Structure

Youcanusethe [[function_constant(name) 1] attribute to specify elements of an input
assembly structure (declared with the [[stage_1in]] attribute) as optional. If the value of the
function constant variable given by name is nonzero or true (determined during the creation
of the render or compute pipeline state), the element in the structure is declared in the function
signature. If the value of the function constant variable given by name is @ or false, the
element is not declared in the structure.

Example:

constant bool offset_defined [[function_constant(0)]1];
constant bool color_defined [[function_constant(1)11]1;

struct VertexOutput {
float4 position [[position]];

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 176 of 346

};

float4 color;

struct VertexInput {

};

float4 position [[attribute(@)]1];
float4 offset [[attribute(1),
function_constant(offset_defined)]];
float4 color [[attribute(2),
function_constant(color_defined)1];

vertex VertexOutput
myVertex(VertexInput vIn [[stage_in]])

{

}

VertexOutput vOut;

vOut.position = vIn.position;
if (offset_defined)
vOut.position += vIn.offset;

if (color_defined)

vOut.color = vIn.color;
else

vOut.color = float4(0.0f);

return vOut;

5.8.1.4 Function Constants for Resource Bindings

All OS: Metal 2 and later support using a function constant to specify resource bindings.

An argument to a graphics or kernel functions that is a resource (buffer, texture, or sampler)
can use a function constant to specify its binding number. The function constant needs to be a

scalar integer type.

Example:

constant int indexA [[function_constant(0)1]1;

constant int indexB = indexA + 2;

constant int indexC [[function_constant(1)1]1;
constant int indexD [[function_constant(2)1]1;

[[kernel]] void

my_kernel(constant UserParams& params [[buffer(indexA)l1],

{..

device T x p [[buffer(indexB)]],

texture2d<float> texA [[texture(indexC)]11],

sampler s [[sampler(indexD)11, ..)
¥

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 177 of 346

5.8.1.5 Function Constants for Color Attachments and Raster Order Groups

All OS: Metal 2 and later support using a function constant to specify a color attachment or a
raster order group attribute index.

The [[color(n)]lor[[raster_order_group(index)]] index can also be a function
constant. The function constant used needs to be a scalar integer type.

Example:

constant int colorAttachment® [[function_constant(@)]];
constant int colorAttachmentl [[function_constant(1)1];
constant int group® [[function_constant(2)1];

struct FragmentOutput {
float4 color® [[color(colorAttachment®)]1];
float4 colorl [[color(colorAttachmentl)]11];
¥

[[fragment]] FragmentOutput
my_fragment(texture2d<float> texA [[texture(9),
raster_order_group(groupd)l]l, ..)

{..}

5.8.1.6 Function Constants with Elements of a Structure

All OS: Metal 2 and later support using a function constant to identify that a structure element is
optional.

To identify that an element of a structure is optional, you can specify the
[[function_constant(name)]] attribute with elements of a structure that is the return
type of a graphics or user function or is passed by value as an argument to a kernel, graphics, or
user function. The behavior is similar to function constants for elements with the
[[stage_in]] attribute, as described in section 5.8.1.3.

If the value of the function constant variable given by name is nonzero or true (determined
during the render or compute pipeline state creation), the element in the structure is declared in
the function signature. If the value of the function constant variable given by name is O or
false, the element is not considered to be declared in the structure. If name refers to a
function constant variable that is undefined, the behavior is the same as if
is_function_constant_defined(name) returns false.

5.9 Program Scope Global Built-ins and Bindings

In Metal 3.1 and later, you can define global variables using attributes defined in Table 5.8 and
use them in a kernel (including tile), mesh, or object context. The global variables cannot be
used in a dynamic library or a separately compiled binary function. In Metal 3.2 and later, you
can use global variables in a dynamic library or a separately compiled binary function for Apple
silicon.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 178 of 346

Example:
uint2 gid [[thread_position_in_grid]l];

float4 get_color(texture2d<float> texInput, sampler s) {
return texInput.sample(s, float2(gid));
¥

[[kernell] void my_kernel(texture2d<float> texInput, sampler s, ...){
auto color = get_color(texInput, s);

}...

In Metal 3.2 and later, you can declare device, constant, and threadgroup buffers,
textures, and samplers in the program scope (see section 5.2). Unlike when passing as
arguments in a shader, you can’t assume different global variables are non-aliased. Instead,
specify the binding indexes because the system can't set them automatically.

Example:

device void * constant b_d [[buffer(e) 11;
constant void x constant b_c [[buffer(1) 11;
threadgroup void * constant b_t [[threadgroup(2) 11;
texture2d<float> constant t [[texture(0) 11;
sampler constant s [[sampler(o) 11;

constant array<sampler, 4> ss [[sampler(1) 11;

It's possible to declare global bindings with external linkage, but you need to annotate them
with the resource binding and have a complete type. Note that the declaration and the
definition binding and type must match.

// Declaration
extern constant texture2d<float> t [[texture(©) 11;

// Definition
constant texture2d<float> t [[texture(9) 11;

You can bind a resource to multiple global variables if they share the same type and binding
index.

Example:

constant texture2d<float, access::write> t_w_1 [[texture(1)1];
// legal

constant texture2d<float, access::write> t_w_2 [[texture(1)1];
// illegal!

constant texture2d<float, access::read_write> t_w_3 [[texture(1)]1];

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 179 of 346

5.10 Per-Primitive Viewport and Scissor Rectangle Index
Selection

macOS: Metal 2 and later support the viewport_array_index attribute.
iOS: Metal 2.1 and later support the viewport_array_index attribute.

The [[viewport_array_index]] attribute supports built-in variables as both vertex output
and fragment input. With [[viewport_array_index]], the vertex function output specifies
the rasterization viewport and scissor rectangle from the arrays specified by the
setViewports:count: and setScissorRects:count: framework calls, respectively.

The unclamped value of the vertex function output for [[viewport_array_index]]is
provided as input to the fragment function, even if the value is out of range.

The behavior of the fragment function with an unclamped [[viewport array_index]]
value depends upon the implementation. Either Metal can render every primitive to
viewport/scissor rectangle O, regardless of the passed value, or Metal can render to the nth
viewport/scissor rectangle, where n is the clamped value. (Hardware that does not support this
feature acts as only one viewport and one scissor rectangle are permitted, so the value for
[[viewport_array_index1]is0.)

You can specify [[viewport_array_index]] in a post-tessellation vertex function. You
cannot specify [[viewport_array_index]] inthe tessellation factor buffer.

Specifying [[viewport_array_index]] as fragment function input counts against the
number of input assembly components available. (Input assembly components are the
fragment function inputs declared with the stage_1in qualifier.)

You must return the same value of [[viewport_array_index]] for every vertexina
primitive. If the values differ, the behavior and the value passed to the fragment function are
undefined. The same behavior applies to primitives generated by tessellation.

5.11 Additional Restrictions

MSL functions and arguments have these additional restrictions:

¢ Writes to a buffer from a vertex function are not guaranteed to be visible to reads from the
associated fragment function of a given primitive.

e If a vertex function does writes to one or more buffers or textures, its return type needs to
be void.

e The return type of a vertex or fragment function cannot include an element that is a packed
vector type, matrix type, a structure type, a reference, or a pointer to a type.

e The number of inputs to a fragment function declared with the stage_1in attribute is
limited. The input limits differ for different feature sets. The Metal Feature Set Tables lists
the specific limits below “Implementation Limits by GPU Family”. (An input vector counts as
n input scalars, where n is the number of components in the vector.)

e The argument type for arguments to a graphics or kernel function cannot be a derived class.
Also, the type of an argument to a graphics function that is declared with the stage_in
attribute cannot be a derived class.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 180 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

6 Metal Standard Library

This chapter describes functions in the Metal Standard Library (MSLib).

6.1 Namespace and Header Files

Metal declares all MSLib functions and enumerations in the metal namespace. In addition to
the header files described in the MSLib functions, the <metal stdlib> header is available
and can access all the functions supported by the MSLib.

6.2 Common Functions

The header <metal common> defines the functions in Table 6.1. T is one of the scalar or

vector half or float floating-point types.

Table 6.1. Common functions in the Metal standard library

Built-in common functions

Description

T clamp(T x, T minval,
T maxval)

Returns fmin(fmax(x, minval), maxval).

Results are undefined if minval > maxval.

T mix(T x, Ty, T a)

Returns the linear blend of x and y implemented
as:
x + (y — x) *x a

or:
(1 -a) * x + a xvy
a needs to be avalueintherange ©.0 to1.0.If

aisnotintherange 0.0 to 1.0, thereturn
values are undefined.

T saturate(T x)

Clamp the specified value within the range of 0.0
to1.0.

T sign(T x)

Returns 1.0ifx > 0,-0.0ifx = -0.0,+0.0
if x = +0.0,or=1.0if x < 0.Returns 0.0 if x
is a NaN.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 181 of 346

Built-in common functions

Description

T smoothstep(T edge®, T edgel,
T x)

Returns 0.0 if x <= edge®,and 1.0 if x >=
edgel and performs a smooth Hermite
interpolation between 0 and 1 when edge® < x
< edgel. This is useful in cases where you want
a threshold function with a smooth transition.

This is equivalent to:

t = clamp((x — edge@)/(edgel —
edge@), 0, 1);

return t x t x (3 — 2 % t);

Results are undefined if edge@ >= edgel orif
X, edge0, or edgelis a NaN.

T step(T edge, T x)

Returns 0.0 if x < edge; otherwise, it returns
1.0.

For single precision floating-point, Metal also supports a precise and fast variant of the
following common functions: clamp and saturate. The difference between the Fast and
precise function variants handle NaNs differently. In the fast variant, the behavior of NaNs is
undefined, whereas the precise variants follow the IEEE 754 rules for NaN handling. The
ffast—-math compiler option (refer to section 1.6.3) selects the appropriate variant when
compiling the Metal source. In addition, the metal: :precise and metal: : fast nested
namespaces provide an explicit way to select the fast or precise variant of these common

functions.

6.3 Integer Functions

The header <metal_integer> defines the integer functions in Table 6.2. T is one of the
scalar or vector integer types. Tu is the corresponding unsigned scalar or vector integer type.
T32 is one of the scalar or vector 32-bit int or uint types.

Table 6.2. Integer functions in the Metal standard library

Built-in integer functions

Description

T abs(T x)

Returns | x|.

Tu absdiff(T x, T vy)

Returns | x—y | without modulo overflow.

T addsat(T x, T vy)

Returns x + vy and saturates the result.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 182 of 346

Built-in integer functions

Description

T clamp(T x, T minval,

Returns min(max(x, minval), maxval).

T maxval)
Results are undefined if minval > maxval.
T clz(T x) Returns the number of leading 0-bits in x,
starting at the most significant bit position. If x is
0, returns the size in bits of the type of x or
component type of x, if x is a vector
T ctz(T x) Returns the count of trailing 9-bits in x. If x is 9,

returns the size in bits of the type of x orif x isa
vector, the component type of x.

T extract_bits(T x,
uint offset,
uint bits)
All OS: Metal 1.2 and later

Extract bits [offset, of fset+bits—1] from x,
returning them in the least significant bits of the
result.

For unsigned data types, the most significant
bits of the result are set to zero. For signed data
types, the most significant bits are set to the
value of bit of fset+bits—1.

If bits is zero, the result is zero. If the sum of
offset and bits is greater than the number of
bits used to store the operand, the result is
undefined.

T hadd(T x, T vy)

Returns (x + y) >> 1.The intermediate sum
does not modulo overflow.

T insert_bits(T base,
T insert,
uint offset,
uint bits)
All OS: Metal 1.2 and later

Returns the insertion of the bits least-
significant bits of insert into base.

The result has bits [offset, offset+bits-1]
taken from bits [0, bits—-1] of insert, and all
other bits are taken directly from the
corresponding bits of base. If bits is zero, the
resultis base. If the sumof offset and bits
is greater than the number of bits used to store
the operand, the result is undefined.

T32 mad24(T32 x, T32 y, T32 z)

All OS: Metal 2.1 and later

Uses mul24 to multiply two 24-bit integer
values x and vy, adds the 32-bit integer result to
the 32-bit integer z, and returns that sum.

T madhi(T a, T b, T c)

Returnsmulhi(a, b) + c.

T madsat(T a, T b, T c)

Returnsa * b + c and saturates the result.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 183 of 346

Built-in integer functions

Description

T max(T x, T vy)

Returns y if x < vy, otherwise it returns x.

T max3(T x, Ty, T z)
All OS: Metal 2.1 and later

Returns max (x, max(y, z)).

T median3(T x, Ty, T z)
All OS: Metal 2.1 and later

Return the middle value of x, y, and z.

T min(T x, T vy)

Returns y if y < X, otherwise, it returns x.

T min3(T x, Ty, T z)
All OS: Metal 2.1 and later

Returnsmin(x, min(y, z)).

T32 mul24(T32 x, T32 vy)
All OS: Metal 2.1 and later

Multiplies two 24-bit integer values x and y and
returns the 32-bit integer result. x and y are 32-
bit integers but only the low 24 bits perform the
multiplication. (See details following this table.)

T mulhi(T x, T y)

Computes x * y and returns the high half of
the product of x and .

T popcount(T x)

Returns the number of nonzero bits in x.

T reverse_bits(T x)
All OS: Metal 2.1 and later

Returns the reversal of the bits of x. The bit
numbered n of the result is taken from bit (bits
—1) — n of x, where bits is the total number of
bits used to represent x.

T rhadd(T x, T y)

Returns (x + y + 1) >> 1.The intermediate
sum does not modulo overflow.

T rotate(T v, T 1)

For each element in v, the bits are shifted left by
the number of bits given by the corresponding
element in i. Bits shifted off the left side of the
element are shifted back in from the right.

T subsat(T x, T vy)

Returns x — vy and saturates the result.

The mul24 function only operates as described if x and y are signed integers and x and y are
intherange [-2723, 2723 -11, orif x and y are unsigned integers and x and y are in the
range [0, 2724 -11.If x and y are not in this range, the multiplication result is
implementation-defined.

6.4 Relational Functions

The header <metal_relational> defines the relational functions in Table 6.3. T is one of
the scalar or vector floating-point types including bfloat types. T1 is one of the scalar or
vector integer or Boolean types. Tb only refers to the scalar or vector Boolean types.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 184 of 346

Table 6.3. Relational functions in the Metal standard library

Built-in relational functions

Description

bool all(Tb x)

Returns true only if all components of x are true

bool any(Tb x)

Returns true only if any component of x are true.

Tb

isfinite(T x)

Test for finite value.

Tb

1sinf(T x)

Test for infinity value (positive or negative).

Tb

isnan(T x)

Test for a NaN.

Tb

isnormal(T x)

Test for a normal value.

Tb

isordered(T x, T vy)

Test if arguments are ordered. 1sordered() takes
arguments x and y and returns the result
(x == x) && (y == vy).

Tb

isunordered(T x, T vy)

Test if arguments are unordered. isunordered()
takes arguments x and y and returns true if x or y is
NaN; otherwise, returns false.

Tb

not(Tb x)

Returns the componentwise logical complement of x.

Ti

T select(T a, T b, Th c)

select(Ti a,
Ti b,
Tb ¢)

For each component of a vector type,
result[i] = c[i] ? b[i] : alil

For a scalar type,
result = c ? b : a

Tb

signbit(T x)

Test for sign bit. Returns true if the sign bit is set for the
floating-point value in x; otherwise, returns false.

6.5 Math Functions

The header <metal_math> defines the math functions in Table 6.4. T is one of the scalar or
vector half or float floating-point types. T1i refers only to the scalar or vector integer types.

Table 6.4. Math functions in the Metal standard library

Built-in math functions

Description

T acos(T x)

Compute arc cosine of x.

T acosh(T x)

Compute inverse hyperbolic cosine of x.

T asin(T x)

Compute arc sine function of x.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 185 of 346

Built-in math functions

Description

T asinh(T x)

Compute inverse hyperbolic sine of x.

T atan(T y_over_x) Compute arc tangent of x.

T atan2(T y, T x) Compute arc tangent of y over x.

T atanh(T x) Compute hyperbolic arc tangent of x.

T ceil(T x) Round x to integral value using the round to
positive infinity rounding mode.

T copysign(T x, T vy) Return x with its sign changed to match the sign
of y.

T cos(T x) Compute cosine of x.

T cosh(T x) Compute hyperbolic cosine of x.

T cospi(T x) Compute cos (1tx).

T divide(T x, T vy) Compute x / .

T exp(T x) Exponential base e function.

T exp2(T x) Exponential base 2 function.

T explo(T x) Exponential base 10 function.

T fabs(T x) Compute absolute value of a floating-point

T abs(T x) number.

T fdim(T x, T vy) X — yifx > y;+0if x <= y.

T floor(T x) Round x to integral value using the round to

negative infinity rounding mode.

T fma(T a, T b, T c)

Returns the correctly rounded floating-point
representation of the sum of c with the infinitely
precise product of a and b. Rounding of
intermediate products shall not occur. Edge
case behavior is per the IEEE 754-2008
standard.

T fmax(T x, T vy)
T max(T x, T vy)

Returns y if x < vy, otherwise returns x. If one
argument is a NaN, fmax () returns the other
argument. If both arguments are NaNs, fmax ()
returns a NaN. If x and y are denormals and the
GPU doesn't support denormals, either value
may be returned.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 186 of 346

Built-in math functions

Description

T fmax3(T x, Ty, T z)
T max3(T x, Ty, T z)
All OS: Metal 2.1 and later

Returns fmax(x, fmax(y, z)).

T fmedian3(T x, Ty, T z)
All OS: Metal 1 and later

T median3(T x, T vy,
All OS: Metal 2.1 and later

T z)

Returns the middle value of x, y, and z. (If one
or more values are NaN, see discussion after
this table.)

T fmin(T x, T vy)
T min(T x, T vy)

Returns y if y < X, otherwise it returns x. If one
argument is a NaN, fmin () returns the other
argument. If both arguments are NaNs, fmin ()
returns a NaN. If x and y are denormals and the
GPU doesn't support denormals, either value
may be returned.

T fmin3(T x, Ty, T z)
T min3(T x, Ty, T z)
All OS: Metal 2.1 and later

Returns fmin(x, fmin(y, z)).

T fmod(T x, T vy)

Returns x — y *x trunc(x/y).

T fract(T x)

Returns the fractional part of x that is greater
than or equal to O or less than 1.

T frexp(T x, Ti
&exponent)

Extract mantissa and exponent from x. For each
component the mantissa returned is a float with
magnitude in the interval [1/2, 1) or O. Each
component of x equals mantissa returned *
2exp.

Ti ilogb(T x)

Return the exponent as an integer value.

T 1ldexp(T x, Ti k)

Multiply x by 2 to the power k.

T log(T x) Compute the natural logarithm of x.

T 1log2(T x) Compute the base 2 logarithm of x.

T logle(T x) Compute the base 10 logarithm of x.

T modf(T x, T &intval) Decompose a floating-point number. The modf

function breaks the argument x into integral and
fractional parts, each of which has the same
sign as the argument. Returns the fractional
value. The integral value is returned in intval.

T nextafter(T x, T vy)
All OS: Metal 3.1 and later

Return next representable floating-point value
after x in the direction of y. If x equals vy, return

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 187 of 346

Built-in math functions Description

y. Note that if both x and y represent the
floating-point zero values, the result has sign of
y. If either x or y is NaN, return NaN.

T pow(T x, T vy) Compute x to the power y.
T powr(T x, T vy) Compute x to the power vy, where x is >= 0.
T rint(T x) Round x to integral value using round ties to

even rounding mode in floating-point format.

T round(T x) Return the integral value nearest to x, rounding
halfway cases away from zero.

T rsqrt(T x) Compute inverse square root of x.

T sin(T x) Compute sine of x.

T sincos(T x, T &cosval) |Compute sine and cosine of x. Return the
computed sine in the function return value, and
return the computed cosine in cosval.

T sinh(T x) Compute hyperbolic sine of x.

T sinpi(T x) Compute sin(mx).

T sqrt(T x) Compute square root of x.

T tan(T x) Compute tangent of x.

T tanh(T x) Compute hyperbolic tangent of x.

T tanpi(T x) Compute tan(mx).

T trunc(T x) Round x to integral value using the round

toward zero rounding mode.

For fmedian3, if all values are NaN, return NaN. Otherwise, treat NaN as missing data and
remove it from the set. If two values are NaN, return the non-NaN value. If one of the values is
NaN, the function can return either non-NaN value.

For single precision floating-point, Metal supports two variants for most of the math functions
listed in Table 6.4: the precise and the fast variants. See Table 8.2 in section 8.4 for the list of
fast math functions and their precision. The ffast—math compiler option (refer to section
1.6.3) selects the appropriate variant when compiling the Metal source. In addition, the
metal::preciseandmetal: :fast nested namespaces provide an explicit way to select
the fast or precise variant of these math functions for single precision floating-point.

Examples:
float x;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 188 of 346

float a = sin(x); // Use fast or precise version of sin based on
// whether you specify —ffast-math as
// compile option.

float b
float c

fast::sin(x); // Use fast version of sin().

precise::cos(x); // Use precise version of cos().

All OS: Metal 1.2 and later support the constants in Table 6.5 and Table 6.6.

Table 6.5 lists available symbolic constants with values of type f1oat that are accurate within
the precision of a single-precision floating-point number.

Table 6.5. Constants for single-precision floating-point math functions

Constant name Description

MAXFLOAT Value of maximum noninfinite single precision floating-point number.
HUGE_VALF A positive float constant expression. HUGE _VALF evaluates to +infinity.
INEINITY ;Or\]fci:rc])i?;tant expression of type float representing positive or unsigned
NAN A constant expression of type float representing a quiet NaN.

M_E_F Value of e

M_LOG2E_F Value of log-e

M_LOG1OE_F Value of logiee

M_LN2_F Value of loge2
M_LN1O_F Value of loge10
M_PI_F Value of t

M PI 2 F Value of /2
M PI 4 F Value of /4
M_1 PI_F Value of 1 /1
M 2 PI F Value of 2/ 1
I\:_Z_SQRTPI_ Value of 2 / v

M_SQRT2_F Value of v2

M _SQRT1 2 F | Valueof1/+2

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 189 of 346

Table 6.6 lists avai

lable symbolic constants with values of type half that are accurate within

the precision of a half-precision floating-point number.

Table 6.6. Constants for half-precision floating-point math functions

Constant name Description

MAXHALF Value of maximum noninfinite half precision floating-point number.
HUGE_VALH A positive half constant expression. HUGE_VALH evaluates to +infinity.
M_E_H Value of e

M_LOG2E_H Value of log-e

M_LOG10E_H Value of logiee

M_LN2 H Value of loge2

M_LN10_H Value of loge10

M_PI_H Value of mt

M_PI_2 H Value of /2

M_PI 4 H Value of i/ 4

M_1 PI H Value of 1 /1

M 2 PI H Value of 2/ 1

M_2 SQRTPI_H | Value of 2/~m

M_SQRT2_H Value of v2

M_SQRT1_2 H |Valueof1/+2

Table 6.7 lists avai

lable symbolic constants with values of type bf1loat that are accurate within

the precision of a brain floating-point number.

Table 6.7. Constants for brain floating-point math functions

Constant name

Description

MAXBFLOAT

Value of maximum noninfinite bf1oat floating-point number.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 190 of 346

Constant name Description
HUGE_VALBF A positive half constant expression. HUGE_VALBF evaluates to +infinity.
M_E_BF Value of e
M_LOG2E_BF Value of log-e
M_LOG10E_BF Value of logiee
M_LN2_BF Value of loge2
M_LN10_BF Value of loge10
M_PI_BF Value of t
M_PI_2 BF Value of /2
M_PI_4 BF Value of i/ 4
M_1 PI_BF Value of 1 /1
M 2 PI BF Value of 2/ 1
M_2 SQRTPI_BF |Valueof2/~m
M_SQRT2_BF Value of v2
M_SQRT1_2_BF Value of 1 /+2

6.6 Matrix Functions

The header <metal matrix> defines the functions in Table 6.8. Tis float or half.

Table 6.8. Matrix functions in the Metal standard library

Built-in matrix functions

Description

float determinant(floatnxn)
half determinant(halfnxn)

Compute the determinant of the matrix. The
matrix needs to be a square matrix.

floatmxn transpose(floatnxm)
halfmxn transpose(halfnxm)

Transpose a matrix.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 191 of 346

Example:

float4x4s mA;

float det

= determinant(mA);

6.7/ SIMD-Group Matrix Functions

The header <metal_simdgroup_matrix> defines the SIMD-group Matrix functions.

6.7.1 Creating, Loading, and Storing Matrix Elements

Metal Shading Library supports the following functions to initialize a SIMD-group matrix with a
value, load data from threadgroup or device memory, and store data to threadgroup or device

memory.

Table 6.9. SIMD-Group matrix load and stores

Functions

Description

simdgroup_matrix<T,Cols,Rows>(T dval)

Creates a diagonal matrix with the
given value.

simdgroup_matrix<T,Cols, Rows>
make_filled_simdgroup_matrix(T value)

Initializes a SIMD-group matrix
filled with the given value.

thread
const
ulong
ulong?2
bool

void simdgroup_load(

simdgroup_matrix<T,Cols,Rows>& d,
threadgroup T *src,
elements_per_row = Cols,
matrix_origin = 0,
transpose_matrix = false)

Loads data from threadgroup
memory into a SIMD-group matrix.
The elements_per_row
parameter indicates the number of
elements in the source memory
layout.

thread
const
ulong
ulong?2
bool

void simdgroup_load(

simdgroup_matrix<T,Cols,Rows>& d,
device T *src,

elements_per_row = Cols,
matrix_origin = 0,
transpose_matrix = false)

Loads data from device memory
into a SIMD-group matrix. The
elements_per_row parameter
indicates the number of elements
in the source memory layout.

thread

ulong
ulong?2
bool

void simdgroup_store(

simdgroup_matrix<T,Cols,Rows> a,

threadgroup T *dst,

elements_per_row = Cols,
matrix_origin = 0,
transpose_matrix = false)

Stores data from a SIMD-group
matrix into threadgroup memory.
The elements_per_row
parameter indicates the number of
elements in the destination
memory layout.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 192 of 346

Functions

Description

void simdgroup_store(
thread simdgroup_matrix<T,Cols,Rows> a,
device T xdst,
ulong elements_per_row = Cols,
ulong2 matrix_origin = 0,
bool transpose_matrix = false)

Stores data from a SIMD-group
matrix into device memory. The
elements_per_row parameter
indicates the number of elements
in the destination memory layout.

6.7.2 Matrix Operations

SIMD-group matrices support multiply-accumulate and multiple operations.

Table 6.10. SIMD-Group operations

Operations Description
void simdgroup_multiply_accumulate(Returnsd = a * b + ¢
thread simdgroup_matrix<T,Cols,Rows>& d,
thread simdgroup_matrix<T,K,Rows>& a,
thread simdgroup_matrix<T,Cols, K>& b,
thread simdgroup_matrix<T,Cols,Rows>& c)
void simdgroup_multiply(Returnsd = a * b

thread simdgroup_matrix<T,Cols,Rows>& d,
thread simdgroup_matrix<T, K, Rows>& a,
thread simdgroup_matrix<T,Cols, K>& b)

*

Returnsa * b

Here is an example of how to use SIMD-group matrices:

kernel void float_matmad(device float *pMatA, device float xpMatB
device float *pMatC, device float *pMatR)

{

simdgroup_float8x8 sgMatA;
simdgroup_float8x8 sgMatB;
simdgroup_float8x8 sgMatC;
simdgroup_float8x8 sgMatR;

simdgroup_load(sgMatA, pMatA);
simdgroup_load(sgMatB, pMatB);
simdgroup_load(sgMatC, pMatC);

simdgroup_multiply_accumulate(sgMatR, sgMatA, sgMatB, sgMatC);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 193 of 346

simdgroup_store(sgMatR, pMatR);

6.8 Geometric Functions

The functions in Table 6.11 are defined in the header <metal_geometric>. T is a vector
floating-point type (floatn or halfn). Ts refers to the corresponding scalar type. (If T is
floatn, the scalartype Tsis float.If Tishalfn, Tsishalf.)

Table 6.11. Geometric functions in the Metal standard library

Built-in geometric functions

Description

T cross(T x, T y)

Return the cross product of x and y.
T needs to be a 3-component vector type.

Ts distance(T x, T vy)

Return the distance between x and vy,
whichis length(x-y)

Ts distance_squared(T x, T vy)

Return the square of the distance between x and .

Ts dot(T x, T vy)

Return the dot product of x and v,
whichis x[0] * y[0] + x[1] * y[1] + ..

T faceforward(T N, T I,
T Nref)

If dot (Nref, I)

return —N.

< 0.0 return N, otherwise

Ts length(T x)

Return the length of vector x,
whichis sqrt(x[0]12 + x[1]2 + ..)

Ts length_squared(T x)

Return the square of the length of vector x,
whichis (x[012 + x[1]12 + ..)

T normalize(T x)

Return a vector in the same direction as x but with
a length of 1.

T reflect(T I, T N)

For the incident vector I and surface orientation N,
compute normalized N (NN), and return the
reflection direction: I — 2 * dot (NN, I)
NN.

T refract(T I, T N, Ts eta)

For the incident vector I and surface normal N, and
the ratio of indices of refraction eta, return the
refraction vector.

The input parameters for the incident vector I and
the surface normal N needs to already be
normalized to get the desired results.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 194 of 346

For single precision floating-point, Metal also supports a precise and fast variant of the
following geometric functions: distance, length, and normalize. To select the appropriate
variant when compiling the Metal source, use the Tfast—math compiler option (refer to
section 1.6.3). In addition, the metal: :precise and metal: : fast nested namespaces are
also available and provide an explicit way to select the fast or precise variant of these geometric
functions.

6.9 Synchronization and SIMD-Group Functions

You can use synchronization and SIMD-group functions in:

e [[kernell] functions
e [[fragment]] functions
e [[visiblel]] functions that kernel or fragment functions call

6.9.1 Threadgroup and SIMD-Group Synchronization Functions

The <metal_compute> header defines the synchronization functions in Table 6.12, which
lists threadgroup and SIMD-group synchronization functions it supports.

Table 6.12. Synchronization compute function in the Metal standard library

Built-in threadgroup function Description

void All threads in a threadgroup executing the
threadgroup_barrier(mem_flags kernel, fragment, mesh, or object need to
flags) execute this function before any thread can

continue execution beyond the
threadgroup_barrier.

void All threads in a SIMD-group executing the
simdgroup_barrier(mem_flags kernel, fragment, mesh, or object need to
flags) execute this function before any thread can
macOS: Metal 2 and later continue execution beyond the

iOS: Metal 1.2 and later simdgroup_barrier.

A barrier function (threadgroup_barrier or simdgroup_barrier) acts as an execution
and memory barrier. All threads in a threadgroup (or SIMD-group) executing the kernel need to
encounter the threadgroup_barrier (or simdgroup_barrier) function. On Apple
silicon, a thread that has ended no longer participates or blocks remaining threads at a barrier.

If threadgroup_barrier (or simdgroup_barrier) isinside a conditional statement and if
any thread enters the conditional statement and executes the barrier function, then all threads
in the threadgroup (or SIMD-group) need to enter the conditional and execute the barrier
function.

If threadgroup_barrier (or simdgroup_barrier) isinside aloop, for each iteration of
the loop, if any thread in the threadgroup (or SIMD-group) executes the barrier, then all threads

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 195 of 346

in the threadgroup (or SIMD-group) need to execute the barrier function before any threads
continue execution beyond the barrier function.

The threadgroup_barrier (or simdgroup_barrier) function can also queue a memory
fence (for reads and writes) to ensure the correct ordering of memory operations to
threadgroup or device memory.

Table 6.13 describes the bit field values for the mem_flags argument to
threadgroup_barrier and simdgroup_barrier. The mem_flags argument ensures the
correct memory is in the correct order between threads in the threadgroup or SIMD-group (for
threadgroup_barrier or simdgroup_barrier), respectively.

Table 6.13. Memory flag enumeration values for barrier functions

Memory flags (mem_flags) | Description

mem_none The flag sets threadgroup_barrier or
simdgroup_barrier to only act as an execution barrier
and doesn't apply a Memory fence.

mem_device The flag ensures the GPU correctly orders the memory
operations to device memory for threads in the threadgroup
or SIMD-group.

mem_threadgroup The flag ensures the GPU correctly orders the memory
operations to threadgroup memory for threads in a
threadgroup or SIMD-group.

mem_texture The flag ensures the GPU correctly orders the memory

macOS: Metal 1.2 and later operations to texture memory for threads in a threadgroup or

iOS: Metal 2 and later SIMD-group for a texture with the read_write access
qualifier.

mem_threadgroup_image | The flag ensures the GPU correctly orders the memory
block operations to threadgroup imageblock memory for threads in
a threadgroup or SIMD-group.

mem_object_data The flag ensures the GPU correctly orders the memory
operations to object_data memory for threads in the
threadgroup or SIMD-group.

6.9.2 SIMD-Group Functions

The <metal_simdgroup> header defines the SIMD-group functions for kernel and fragment
functions. macOS supports SIMD-group functions in Metal 2 and later, and iOS supports most
SIMD-group functions in Metal 2.2 and later. Table 6.14 and Table 6.15 list the SIMD-group
functions and their availabilities in iOS and macOS. See the Metal Feature Set Tables to
determine which GPUs support each table.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 196 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

SIMD-group functions allow threads in a SIMD-group (see section 4.4.1) to share data without
using threadgroup memory or requiring any synchronization operations, such as a barrier.

An active thread is a thread that is executing. An jinactive thread is a thread that is not executing.
For example, a thread may not be active due to flow control or when a task has insufficient work
to fill the group. A thread needs to only read data from another active thread in the SIMD-group.

Helper threads may also be active and inactive. For example, if a helper thread finishes
executing, it becomes an inactive helper thread. Helper threads for SIMD-group functions can
be active or inactive. Use simd_is_helper_thread() (see Table 6.14) to inspect whether a
thread is a helper thread.

Table 6.14 uses the placeholder T to represent a scalar or vector of any integer or floating-point
type, except:

e bool

e long

e ulong

e void

e size t

e ptrdiff_t

For bitwise operations, T1 needs to be an integer scalar or vector.
See 6.9.2.1 after the table for examples that use SIMD-group functions.
Table 6.14. SIMD-Group permute functions in the Metal standard library

Built-in SIMD-group functions Description

Returns a simd_vote mask that represents
the active threads.

This function is equivalent to simd_ballot
macOS: Metal 2.1 and later (true)and sets the bits that represent active
iOS: Metal 2.2 and later threads to 1, and inactive Threads to 9.

simd_vote
simd_active_threads_mask()

Returns true if all active threads evaluate

bool simd_all(bool expr)
expr to true.

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Returns true if at least one active thread

bool simd_any(bool expr) evaluates Expr to true.

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Returns a wrapper type — see the simd_vote
example — around a bitmask of the evaluation
macOS: Metal 2.1 and later of the Boolean expression for all active

iOS: Metal 2.2 and later threads in the SIMD-group for which expr is
true. The function sets the bits that
correspond to inactive threads to 0.

simd_vote simd_ballot (bool expr)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 197 of 346

Built-in SIMD-group functions

Description

T simd_broadcast(T data,
ushort broadcast_lane_id)

macOS: Metal 2 and later
iOS: Metal 2.2 and later

Broadcasts data from the thread whose
SIMD lane ID is equal to
broadcast_lane_id.

The specification doesn’t define the behavior
when broadcast_lane_idisn't a valid
SIMD lane ID or isn't the same for all threads
in a SIMD-group.

T simd_broadcast _first(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Broadcasts data from the first active thread
— the active thread with the smallest index —
in the SIMD-group to all active threads.

bool simd_is_first()

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Returns true if the current thread is the first
active thread — the active thread with the
smallest index — in the current SIMD-group;
otherwise, false.

T simd_shuffle(T data,
ushort simd_lane_id)

macOS: Metal 2 and later
iOS: Metal 2.2 and later

Returns data from the thread whose SIMD
lane IDis simd_lane_id. The
simd_lane_1id needs to be a valid SIMD
lane ID but doesn't have to be the same for all
threads in the SIMD-group.

T simd_shuffle_and_fill_down(T data,
T filling_data, ushort delta)

All OS: Metal 2.4 and later

Returns dataor filling_data from the
thread whose SIMD lane ID is the sum of the
caller's SIMD lane ID and delta.

If the sum is greater than the SIMD-group
size, the function copies values from the
lower deltalanesof filling_data into
the upper delta lanes of data.

The value for delta needs to be the same for
all threads in a SIMD-group.

T simd_shuffle_and_fill down(T data,
T filling_data, ushort delta,
ushort modulo)

All OS: Metal 2.4 and later

Returns dataor filling_data for each
vector from the thread whose SIMD lane ID is
the sum of the caller’'s SIMD lane ID and
delta.

If the sum is greater than modulo, the
function copies values from the lower delta
lanes of filling_data into the upper
delta lanes of data.

The value of delta needs to be the same for
all threads in a SIMD-group.

The modulo parameter defines the vector
width that splits the SIMD-group into

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 198 of 346

Built-in SIMD-group functions

Description

separate vectors and must be 2, 4, 8, 16, or
32.

T simd_shuffle_and_fill_up(T data,
T filling_data, ushort delta)

All OS: Metal 2.4 and later

Returns dataor filling_data from the
thread whose SIMD lane ID is the difference
from the caller's SIMD lane ID minus delta.
If the difference is negative, the operation
copies values from the upper delta lanes of
filling_data to the lower delta lanes of
data.

The value of delta needs to be the same for
all threads in a SIMD-group.

T simd_shuffle_and_fill up(T data,
T filling_data, ushort delta,
ushort modulo)

All OS: Metal 2.4 and later

Returns dataor filling_data for each
vector from the thread whose SIMD lane ID is
the difference from the caller's SIMD lane ID
minus delta.

If the difference is negative, the operation
copies values from the upper delta lanes of
filling_data tothe lower delta lanes of
data.

The value of delta needs to be the same for
all threads in a SIMD-group.

The modulo parameter defines the vector
width that splits the SIMD-group into
separate vectors and must be 2, 4, 8, 16, or
32.

T simd_shuffle_down(T data,
ushort delta)

macOS: Metal 2 and later
iOS: Metal 2.2 and later

Returns data from the thread whose SIMD
lane ID is the sum of caller's SIMD lane ID and
delta.

The value for delta needs to be the same for
all threads in the SIMD-group.

This function doesn't modify the upper delta
lanes of data because it doesn't wrap values
around the SIMD-group.

T simd_shuffle_rotate_down(T
data,
ushort delta)

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Returns data from the thread whose SIMD
lane ID is the sum of caller's SIMD lane ID and
delta.

The value for delta needs to be the same for
all threads in the SIMD-group.

This function wraps values around the SIMD-

group.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 199 of 346

Built-in SIMD-group functions

Description

T simd_shuffle_rotate_up(T data,
ushort delta)

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Returns data from the thread whose SIMD
lane ID is the difference from the caller’s
SIMD lane ID minus delta.

The value of delta needs to be the same for
all threads in a SIMD-group.

This function wraps values around the SIMD-

group.

T simd_shuffle_up(T data,
ushort delta)

macOS: Metal 2 and later
iOS: Metal 2.2 and later

Returns data from the thread whose SIMD
lane ID is the difference from the caller’'s
SIMD lane ID minus delta.

The value of delta needs to be the same for
all threads in a SIMD-group.

This function doesn't modify the lower delta
lanes of data because it doesn't wrap values
around the SIMD-group.

Ti simd_shuffle_xor(Ti value,
ushort mask)

macOS: Metal 2 and later
iOS: Metal 2.2 and later

Returns data from the thread whose SIMD
lane ID is equal to the bitwise XOR (") of the
caller's SIMD lane ID and mask. The value of
mask needs to be the same for all threads in a
SIMD-group.

Table 6.15. SIMD-Group reduction functions in the Metal standard library

Built-in SIMD-group functions

Description

Ti simd_and(Ti data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the bitwise AND (&) of data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

bool simd_is_helper_thread()

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns true if the current thread is a helper
thread; otherwise, false.

You call this function from a fragment
function or another function that your
fragment function calls; otherwise, it may
trigger a compile-time error.

T simd_max(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns data with the highest value from
across all active threads in the SIMD-group
and broadcasts that value to all active threads
in the SIMD-group.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 200 of 346

Built-in SIMD-group functions

Description

T simd_min(T data)

macOS: Metal 2.1 and later.
iOS: Metal 2.3 and later.

Returns data with the lowest value from
across all active threads in the SIMD-group
and broadcasts that value to all active threads
in the SIMD-group.

Ti simd_or(Ti data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the bitwise OR (|) of data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

T simd_prefix_exclusive_product
(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

For a given thread, returns the product of the
input values in data for all active threads with
a lower index in the SIMD-group. The first
thread in the group, returns T(1).

T simd_prefix_exclusive_sum (T
data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

For a given thread, returns the sum of the
input values in data for all active threads with
a lower index in the SIMD-group. The first
thread in the group, returns T(9).

T simd_prefix_inclusive_product
(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

For a given thread, returns the product of the
input values in data for all active threads with
a lower or the same index in the SIMD-group.

T simd_prefix_inclusive_sum (T
data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

For a given thread, returns the sum of the
input values in data for all active threads with
a lower or the same index in the SIMD-group.

T simd_product(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the product of the input values in
data across all active threads in the SIMD-
group and broadcasts the result to all active
threads in the SIMD-group.

T simd_sum(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the sum of the input values in data
across all active threads in the SIMD-group
and broadcasts the result to all active threads
in the SIMD-group.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 201 of 346

Built-in SIMD-group functions

Description

Ti simd_xor(Ti data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the bitwise XOR () of data across all

active threads in the SIMD-group and

broadcasts the result to all active threads in

the SIMD-group.

6.9.2.1 Examples

To demonstrate the shuffle functions, start with this SIMD-group’s initial state:

SIMDLanelID] O 1 2 3

4

5

6 7 8 9

10

"

12

13

14

15

data| a | b | c | d

e

f

g|h| 1|73

K

1

m

n

0]

The simd_shuffle_up() function shifts each SIMD-group upward by delta threads. For
example, with a delta value of 2, the function:

e Shifts the SIMD lane IDs down by two
e Marks the lower two lanes as invalid

Computed
SIMD lane ID -2 10 1|2 3/ 4 5 6,7 8 9 1M 11 12 13
valid| © e 1|1]1 11111 11111
data| a bla|b|c|d|e | f|lg|/h|1]37|k|1|m]|n

The simd_shuffle_up() function is a no-wrapping operation that doesn't affect the lower

delta lanes.

Similarly, the simd_shuffle_down () function shifts each SIMD-group downward by the

delta threads. Starting with the same initial SIMD-group state, with a de1ta value of 2, the

function:

e Shifts the SIMD lane IDs up by two

e Marks the upper two lanes as invalid

Computed
SIMD lane ID 2 3 4 5,67 8 9 10 11|12 /13 14 15 16 17
valid| 1 | 1 | 1|1 |1 1 1,1(11|12|1)|0) 09
data| c | d|e | f|g| h|1|]J| k|1 m|njo|p|]o]|p
The simd_shuffle_down () function is a no-wrapping operation that doesn't affect the
upper delta lanes.
To demonstrate the shuffle-and-fill functions, start this SIMD-group’s initial state:
SIMD lane ID 0O 1,2 3 4 56 7 8 9 10 11 12 13 14 15
data|a | b|jc|d|e | fT|lg|lh|]s|t]ju|v | w|Xx]|y]|z
filling| fa | fb | fc | fd| fe | ff | fg | fh|fs | ft| fu|fv | fw| fx | fy | fz

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 202 of 346

The simd_shuffle_and_fill_up() function shifts each SIMD-group upward by delta
threads — similar to simd_shuffle_up() — and assigns the values from the upper filling
lanes to the lower data lanes by wrapping the SIMD lane IDs. For example, with a delta value
of 2, the function:

e Shifts the SIMD lane IDs down by two
e Assigns the upper two lanes of f1111ing to the lower two lanes of data

Computed
SIMDlanelD | -2|-1/ 0 | 1|/ 2|3 4| 5/,6 |7 8|9 1 1 12|13

data|fy|fz| a | b | c | d|e | f|g|h|s|t]u|vVv | w]|X

The simd_shuffle_and_fill up() function with the modulo parameter splits the SIMD-
group into vectors, each with size modulo, and shifts each vector by the delta threads. For
example, with a modulo value of 8 and a delta value of 2, the function:

e Shifts the SIMD lane IDs down by two
e Assigns the upper two lanes of each vector in filling to the lower two lanes of each
vectorindata

Computed
SIMDlanelD -2|-1/ 0|1 2| 3 4 5 -2/-10 |1 | 2|3 4 5

data|fg|fh| a | b | c | d|e | f |fy|fz| s |t | u| v | w]|X

The simd_shuffle_and_fill_down () function shifts each SIMD-group downward by
delta threads — like simd_shuffle_down () — and assigns the values from the lower
fi111ing lanes to the upper data lanes by wrapping the SIMD lane IDs. For example, with a
delta value of 2, the function:

e Shifts the SIMD lane IDs up by two
e Assigns the lower two lanes of T1111ing to the upper two lanes of data

Computed
SIMDIlanelID | 2 3 4 5| 6 7 8|9 10 11 12 13|14 15 16 17

data| c | d | e | f|g|h|s | t]u|lVv w|Xx| |y | z|fa|lfb

The simd_shuffle_and_fill_down () function with the modulo parameter splits the
SIMD-group into vectors, each with size modulo and shifts each vector by the delta threads.
For example, with a modulo value of 8 and a delta value of 2, the function:

e Shifts the SIMD lane IDs up by two
e Assigns the lower two lanes of each vector in fi11ing to the upper two lanes of each
vectorindata

Computed
SIMDIlanelID | 2 3 4 5| 6 7 8|9 10 11 12 13|14 15 16 17

data| c | d | e | f|g|h|fa|fb|u| Vv w| x|y | z|fs|ft

Below is an example of how to use these SIMD functions to perform a reduction operation:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 203 of 346

kernel void
reduce(const device int xinput [[buffer(0)11,
device atomic_int xoutput [[buffer(1)11,
threadgroup int xldata [[threadgroup(@)11,
uint gid [[thread_position_in_gridl],
uint 1id [[thread_position_in_threadgroupll],
uint 1size [[threads_per_threadgroupl],
uint simd_size [[threads_per_simdgroupl],
uint simd_lane_id [[thread_index_in_simdgroup]l],
uint simd_group_id [[simdgroup_index_in_threadgroupl])

{
// Perform the first level of reduction.
// Read from device memory, write to threadgroup memory.
int val = inputl[gid] + inputlgid + 1lsizel;
for (uint s=1size/simd_size; s>simd_size; s/=simd_size)
{
// Perform per-SIMD partial reduction.
for (uint offset=simd_size/2; offset>0; offset/=2)
val += simd_shuffle_down(val, offset);
// Write per-SIMD partial reduction value to
// threadgroup memory.
if (simd_lane_id == 0)
ldatal[simd_group_id] = val;
// Wait for all partial reductions to complete.
threadgroup_barrier(mem_flags::mem_threadgroup);
val = (1lid < s) ? 1ldatal[lid] : ©;
b
// Perform final per-SIMD partial reduction to calculate
// the threadgroup partial reduction result.
for (uint offset=simd_size/2; offset>0; offset/=2)
val += simd_shuffle_down(val, offset);
// Atomically update the reduction result.
if (lid == 0)
atomic_fetch_add_explicit(output, val,
memory_order_relaxed);
ks

The simd_active_threads_mask and simd_ballot function usesthe simd_vote

wrapper type (see below), which can be explicitly cast to its underlying type represented by
vote_t.

class simd_vote {

public:
explicit constexpr simd_vote(vote_t v = 0);
explicit constexpr operator vote_t() const;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 204 of 346

// Returns true if all bits corresponding to threads in the

// SIMD-group are set.

// You can use all() with the return value of simd_ballot(expr)
// to determine if all threads are active.

bool all() const;

// Returns true if any bit corresponding to a valid thread in
// the SIMD-group is set.

// You can use any() with the return value of simd_ballot(expr)
// to determine if at least one thread is active.

bool any() const;

private:
// bit i in v represents the 'vote' for the thread in the
// SIMD-group at index i
uintés4_t v;
b

Note that simd_all(expr) is different from simd_ballot(expr).all():
« simd_all(expr) returns true if all active threads evaluate expr to true.

« simd_ballot(expr).all() returns true if all threads were active and evaluated
the exprto true. (simd_vote::all() does notlook at which threads are active.)

The same logic appliesto simd_any, simd_vote::any (), and to the equivalent quad
functions listed in section 6.9.3.

On hardware with fewer than 64 threads in a SIMD-group, the value of the top bits in
simd_vote is undefined. Because you can initialize these bits, do not assume that the top bits
are set to 0.

6.9.3 Quad-Group Functions
macOS: Metal 2.1 and later support quad-group functions.

iOS: Metal 2 and later support some quad-group functions, including quad_broadcast,
quad_shuffle, quad_shuffle_up, quad_shuffle_down, and
quad_shuffle_xor.

A quad-group function is a SIMD-group function (see section 6.9.2) with an execution width of
4. The active and inactive thread terminology is the same as in section 6.9.2.

Helper threads only execute to compute gradients for quad-groups in a fragment shader and
then become inactive.

Kernels and fragment functions can call the quad-group functions listed in Table 6.17 and Table
6.18. Threads may only read data from another active thread in a quad-group. See the Metal
Feature Set Tables to determine which GPUs support each table.

The placeholder T for Table 6.17 and Table 6.18 represents a scalar or vector of any integer or
floating-point type, except:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 205 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

bool

void
size_ t
ptrdiff_t

For bitwise operations, T needs to be an integer scalar or vector.

Table 6.16. Quad-group function in the Metal standard library

Built-in quad-group functions

Description

quad_vote quad_ballot (bool expr)

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Returns a quad_vote bitmask where each
bit indicates where the Boolean expression
expr evaluates to true for active threads in
the quad-group. The function sets the bits
that correspond to inactive threads to 0. See
an example at the end of this section.

Table 6.17. Quad-group permute functions in the Metal standard library

Built-in quad-group functions

Description

T quad_broadcast(T data,
ushort broadcast _lane_id)

macOS: Metal 2 and later
iOS: Metal 2 and later

Broadcasts data from the thread whose quad
lane IDis broadcast_lane_id. The value
forbroadcast_lane_id needstobea
valid quad lane ID that's the same for all
threads in a quad-group.

T quad_broadcast_first(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Broadcasts data from the first active thread
— the active thread with the smallest index —
in the quad-group to all active threads.

T quad_shuffle(T data,
ushort quad_lane_id)

macOS: Metal 2 and later
iOS: Metal 2 and later

Returns data from the thread whose quad
lane ID is the sum of the caller's quad lane ID
and delta.

The value for quad_lane_id needs to be a
valid land ID and may differ from other
threads in the quad-group.

T quad_shuffle_and_fill down(T data,
T filling_data, ushort delta)

All OS: Metal 2.4 and later

Returns dataor filling_data from the
thread whose quad lane ID is the sum of the
caller's quad lane ID and delta.

If the sum is greater than the quad-group
size, the function copies values from the
lower deltalanes of filling_data into
the upper delta lanes of data.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 206 of 346

Built-in quad-group functions

Description

The value for delta needs to be the same for
all threads in a quad-group.

T quad_shuffle_and_fill_down(T data,
T filling_data, ushort delta,
ushort modulo)

All OS: Metal 2.4 and later

Returns dataor filling_data for each
vector, from the thread whose quad lane ID is
the sum of caller’'s quad lane ID and delta.
If the sum is greater than the quad-group
size, the function copies values from the
lower deltalanes of filling_data into
the upper delta lanes of data.

The value of delta needs to be the same for
all threads in a quad-group.

The modulo parameter defines the vector
width that splits the quad-group into separate
vectors and must be 2 or 4.

T quad_shuffle_and_fill up(T data,
T filling_data, ushort delta)

All OS: Metal 2.4 and later

Returns dataor filling_data from the
thread whose quad lane ID is the difference
from the caller's quad lane ID minus delta.
If the difference is negative, the operation
copies values from the upper delta lanes of
filling_data tothe lower delta lanes of
data.

If the difference is negative, the function
shuffles data from filling_data into the
lower delta lanes. The value of delta
needs to be the same for all threads in a
quad-group.

T quad_shuffle_and_fill _up(T data,
T filling_data, ushort delta,
ushort modulo)

All OS: Metal 2.4 and later

Returns dataor filling_data for each
vector from the thread whose quad lane ID is
the difference from the caller's quad lane ID
minus delta.

If the difference is negative, the operation
copies values from the upper delta lanes of
filling_data tothe lower delta lanes of
data.

The value of delta needs to be the same for
all threads in a quad-group.

The modulo parameter defines the width that
splits the quad-group into separate vectors
and must be 2 or 4.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 207 of 346

Built-in quad-group functions

Description

T quad_shuffle_down(T data,
ushort delta)

macOS: Metal 2 and later
iOS: Metal 2 and later

Returns data from the thread whose quad
lane ID is the sum of the caller’s quad lane ID
and delta.

The value for delta needs to be the same for
all threads in a quad-group.

The function doesn’t modify the upper delta
lanes of data because it doesn't wrap values
around the quad-group.

T quad_shuffle_rotate_down(T data,
ushort delta)

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Returns data from the thread whose quad
lane ID is the sum of the caller’s quad lane ID
and delta.

The value for de1ta needs to be the same for
all threads in a quad-group.

This function wraps values around the quad-

group.

T quad_shuffle_rotate_up(T data,
ushort delta)

macOS: Metal 2.1 and later
iOS: Metal 2.2 and later

Returns data from the thread whose quad
lane ID is the difference from the caller’'s quad
lane ID minus delta.

The value for delta needs to be the same for
all threads in a quad-group.

This function wraps values around the quad-

group.

T quad_shuffle_up(T data,
ushort delta)

macOS: Metal 2 and later
iOS: Metal 2 and later

Returns data from thread whose quad lane
ID is the difference from the caller's quad lane
ID minus delta.

The value for delta needs to be the same for
all threads in a quad-group.

This function doesn’t modify the lower delta
lanes of data because it doesn't wrap values
around the quad-group.

T quad_shuffle_xor(T value,
ushort mask)

macOS: Metal 2 and later
iOS: Metal 2 and later

Returns data from the thread whose quad
lane ID is a bitwise XOR (") of the caller’s
quad lane ID and mask. The value of mask
needs to be the same for all threads in a
quad-group.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 208 of 346

Table 6.18. Quad-group reduction functions in the Metal standard library

Built-in quad-group functions

Description

quad_vote quad_active_threads_mask()

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns a quad_vote mask that represents
the active threads.

The function is equivalent to
quad_ballot(true) and sets the bits that
represent active threads to 1 and inactive
threads to 0.

bool quad_all(bool expr)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns true if all active threads evaluate
expr to true.

T quad_and(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the bitwise AND (&) of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

bool quad_any(bool expr)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns true if at least one active thread
evaluates expr to true.

bool quad_is_first()

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns true if the current thread is the first
active thread — the active thread with the
smallest index — in the current quad-group;
otherwise, false.

bool quad_is_helper_thread()

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns true if the current thread is a helper
thread; otherwise, false.

You call this function from a fragment
function or another function that your
fragment function calls; otherwise, it may
trigger a compile-time error.

T quad_max(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns data with the highest value from
across all active threads in the quad-group
and broadcasts that value to all active threads
in the quad-group.

T quad_min(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns data with the lowest value from
across all active threads in the quad-group
and broadcasts that value to all active threads
in the quad-group.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 209 of 346

Built-in quad-group functions

Description

T quad_or(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the bitwise OR (|) of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

T quad_prefix_exclusive_product (T
data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

For a given thread, returns the product of the
input values in data for all active threads with
a lower index in the quad-group. For the first
thread in the group, return T(1).

T quad_prefix_exclusive_sum (T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

For a given thread, returns the sum of the
input values in data for all active threads with
a lower index in the quad-group. For the first
thread in the group, return T(9).

T quad_prefix_inclusive_product (T
data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

For a given thread, returns the product of the
input values in data for all active threads with
a lower or the same index in the quad-group.

T quad_prefix_inclusive_sum (T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

For a given thread, returns the sum of the
input values in data for all active threads with
a lower or the same index in the quad-group.

T quad_product(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the product of the input values in
data across all active threads in the quad-
group and broadcasts the result to all active
threads in the quad-group.

T quad_sum(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the sum of the input values in data
across all active threads in the quad-group
and broadcasts the result to all active threads
in the quad-group.

T quad_xor(T data)

macOS: Metal 2.1 and later
iOS: Metal 2.3 and later

Returns the bitwise XOR (") of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

In a kernel function, quads divide across the SIMD-group. In a fragment function, the lane ID

represents the fragment location in a 2 x 2 quad:

e Lane D O is the upper-left pixel
e Lane ID 1is the upper-right pixel

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 210 of 346

e Lane D 2 is the lower-left pixel
e Lane ID 3is the lower-right pixel

To demonstrate the shuffle functions, start with this quad-group'’s initial state:

Quad lane ID 0 1 2 3

data| a b c d

The quad_shuffle_up() function shifts each quad-group upward by delta threads. For
example, with a delta value of 2, the function:

e Shifts the quad lane IDs down by two
e Marks the lower two lanes as invalid

Computed
quad lane ID -2 -1 0 1

valid| © 0 1 1

data a b a b

The quad_shuffle_up() function is a no wrapping operation that doesn't affect the lower
delta lanes.

Similarly, quad_shuffle_down () function shifts each quad-group downward by delta
threads. Starting with the same initial quad-group state, with a delta of 2, the function:

e Shifts the quad lane IDs up by two
e Marks the upper two lanes as invalid

Computed
quad lane ID 2 3 4 5
valid 1
data C d C d

The quad_shuffle_down () function is a no wrapping operation that doesn't affect the
upper delta lanes.

To demonstrate the shuffle-and-fill functions, start this quad-group’s initial state:

Quad lane ID 0 1 2 3

data| a b c d

filling| fa | fb | fc | fd

The quad_shuffle_and_fill_up() function shifts each quad-group upward by the
delta threads — similar to quad_shuffle_up() — and assigns the values from the upper
f111ing lanes to the lower data lanes by wrapping the quad lane IDs. For example, with a
delta value of 2, the function:

e Shifts the quad lane IDs down by two

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 211 of 346

e Assigns the upper two lanes of f1111ing to the lower two lanes of data

Computed
quad lane ID -2 -1 0 1

data| fc fd a b

The quad_shuffle_and_fill_up() function with the modulo parameter splits the quad-
group into vectors, each with size modulo and shifts each vector by the delta threads. For
example, with a modulo value of 2 and a delta value of 1, the function:

e Shifts the quad lane IDs down by one
e Assigns the upper lane of each vectorin f1111ing to the lower lane of each vectorin data

Computed
quad lane ID -1 0 -1 0

data| fb a fd C

The quad_shuffle_and_fill_down () function shifts each quad-group downward by
delta threads — similar to quad_shuffle_down() — and assigns the values from the lower
f111ing lanes to the upper data lanes by wrapping the quad lane IDs. For example, with a
delta value of 2, the function:

e Shifts the quad lane IDs up by two
e Assigns the lower two lanes of T1111ing to the upper two lanes of data

Computed
quad lane ID 2 3 4 5

data o} d fa fb

The quad_shuffle_and_fill_down () function with the modulo parameter splits the
quad-group into vectors, each with size modulo and shifts each vector by the delta threads.
For example, with a modulo value of 2 and a delta value of 1, the function:

e Shifts the quad lane IDs up by one
e Assigns the lower lane of each vector in T1111ng to the upper lane of each vector in data

Computed
quad lane ID 1 2 1 2

data b fa d fc

The quad_ballot function uses the quad_vote wrapper type, which can be explicitly cast to
its underlying type. (In the following example, note use of vote_t to represent an underlying
type, XXX.)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 212 of 346

class quad_vote {

public:
typedef XXX vote_t;
explicit constexpr quad_vote(vote_t v = 0);
explicit constexpr operator vote_t() const;

// Returns true if all bits corresponding to threads in the
// quad-group (the four bottom bits) are set.
bool all() const;

// Returns true if any bit corresponding to a thread in the
// quad-Group is set.
bool any() const;

b

The quad_vote constructor masks out the top bits (that is, other than the four bottom bits).
Therefore, Metal clears the upper bits, and the bottom four bits don't change when you cast to
vote_t.

6.10 Graphics Functions

The graphics functions in this section and its subsections are defined in the header
<metal_graphics>. You can only call these graphics functions from a fragment function.

6.10.1 Fragment Functions

You can only call the functions in this section (listed in Table 6.19, Table 6.20, and Table 6.21)
inside a fragment function (see section 5.1.2) or inside a function called from a fragment
function. Otherwise, the behavior is undefined and may result in a compile-time error.

Fragment function helper threads may be created to help evaluate derivatives (explicit or
implicit) for use with a fragment thread(s). Fragment function helper threads execute the same
code as the other fragment threads, but do not have side effects that modify the render targets
or any other memory that can be accessed by the fragment function. In particular:

¢ Fragments corresponding to helper threads are discarded when the fragment function
execution is complete without any updates to the render targets.

e Stores and atomic operations to buffers and textures performed by helper threads have no
effect on the underlying memory associated with the buffer or texture.

6.10.1.1 Fragment Functions — Derivatives

Metal includes the functions in Table 6.19 to compute derivatives. T is one of float, float2,
float3, float4, half, half2, half3, or halfa.

Derivatives are undefined within nonuniform control flow.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 213 of 346

Note: In Metal 2.2 and earlier, discard_fragment could make the control flow nonuniform. In
Metal 2.3 and later, discard_fragment does not affect whether the control flow is
considered nonuniform or not. See Section 6.10.1.3 for more information.

Table 6.19. Derivatives fragment functions in the Metal standard library

Built-in fragment functions

Description

T dfdx(T p) Returns a high precision partial derivative of the specified
value with respect to the screen space x coordinate.
T dfdy(T p) Returns a high precision partial derivative of the specified

value with respect to the screen space y coordinate.

T fwidth(T p)

Returns the sum of the absolute derivatives in x and y using
local differencing for p; thatis, fabs (dfdx(p)) +
fabs(dfdy(p))

6.10.1.2 Fragment Functions — Samples

Metal includes the per-sample functions listed in Table 6.20. get_num_samples and
get_sample_position return the number of samples for the color attachment and the
sample offsets for a given sample index. For example, for transparency super-sampling, these
functions can be used to shade per-fragment but do the alpha test per-sample.

Table 6.20. Samples fragment functions in the Metal standard library

Built-in fragment functions

Description

uint get_num_samples()

Returns the number of samples for the
multisampled color attachment.

index)

float2 get_sample_position(uint | Returns the normalized sample offset (x, y) for a

given sample index index. Values of x and y are
in[0.0 .. 1.01].

If you have customized sample positions (set with the setSamplePositions:count:
method of MTLRenderPassDescriptor), get_sample_position(index) returnsthe
position programmed for the specified index.

6.10.1.3 Fragment Functions — Flow Control

The Metal function in Table 6.21 terminates a fragment.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 214 of 346

Table 6.21. Fragment flow control function in the Metal standard library

Built-in fragment functions Description

void discard_fragment(void) Marks the current fragment as terminated and
discards this fragment's output of the fragment
function.

Writes to a buffer or texture from a fragment thread made before calling discard_fragment
are not discarded.

Multiple fragment threads or helper threads associated with a fragment thread execute
together to compute derivatives. In Metal 2.2 and earlier, if any (but not all) of these threads
executes the discard_fragment function, the thread is terminated and the behavior of any
derivative computations (explicit or implicit) is undefined. In Metal 2.3 and later,
discard_fragment marks the fragment as terminated while continuing to execute in parallel
and has no effect on whether derivatives are defined. Even though execution continues, the
write behavior remains the same as before. The fragment will discard the fragment output and
discard all writes to buffer or texture after discard_fragment.

6.11 Pull-Model Interpolation

All OS: Metal 2.3 and later support pull-model interpolation.

The interpolant type interpolant<T, P> (section 2.18) and associated methods are defined
in<metal_interpolate>.Inafragment function, you explicitly interpolate the values of a
interpolant<T, P> type by invoking its methods, as shown below. The interpolant may be
sampled and interpolated multiple times, in different modes, and may be passed to other
functions to be sampled and interpolated there. Perspective correctness is fixed across all
interpolations of the argument by the value of P in its type.

Table 6.22. Pull-Model interpolant methods

Interpolant method Description

T interpolate_at_center() Sample shader input at the center of a pixel,
returning the same value as if the input had type
Twith [[center_perspective]]or
[[center_no_perspectivell.

T interpolate_at_centroid() Sample shader input within the covered area of
the pixel, returning the same value as if the input
had type T with
[[centroid_perspectivellor
[[centroid_no_perspectivell.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 215 of 346

T interpolate_at_offset(float2 | Sample shader input at a specified window-
offset) coordinate offset from a pixel's top-left corner.
Allowable offset components are in the range
[0.0, 1.0) along a 1/16 pixel grid.

T interpolate_at_sample(uint Sample shader input at the location of the
sample) specified sample index, returning the same
value as if the input had type T with
[[sample_perspectivel]or
[[sample_no_perspective]] and was in
the specified per-sample evaluation of the
shader. If a sample of the given index does not
exist, the position of interpolation is undefined.

6.12 Texture Functions

The texture member functions, defined in the header <metal_ texture>, listed in this section
and its subsections for different texture types include:

sample — sample from a texture

sample_compare — sample compare from a texture

gather — gather from a texture

gather_compare — gather compare from a texture

read — sampler-less read from a texture

write — write to a texture

texture query (suchas get_width, get_height, get_num_mip_levels,
get_array_size)

e texture fence

In Metal 3.1 and later, new atomic texture member functions are supported on 1D texture, 1D
texture array, 2D texture, 2D texture array, 3D texture, and texture buffer for int, uint, and
ulong color types:

e atomic_load — atomic load from a texture

atomic_store — atomic store to a texture

atomic_exchange — atomic exchange a value for a texture
atomic_compare_exchange_weak — atomic compare and exchange in a texture
atomic_fetch_op_explicit — atomic fetch and modify where op can be add, and,
max, min, or, sub, or xor for int and uint color type

atomic_max — atomic max in a texture for ulong color type

e atomic_min — atomic minin a texture for ulong color type

Metal 4 adds support for the atomic texture functions for cube texture and cube texture array.

See the Metal Feature Set Tables to determine which GPUs support texture atomics.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 216 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

Metal 3.2 introduces coherence (see section 2.9).

The texture sample, sample_compare, gather, and gather_compare functions take an
offset argument for a 2D texture, 2D texture array, and 3D texture. The offset is aninteger
value applied to the texture coordinate before looking up each pixel. This integer value can be in
the range —8 to +7; the default value is 9.

The texture sample, sample_compare, gather, and gather_compare functions require
that you declare the texture with the sample access attribute. The texture read functions
require that you declare the texture with the sample, read, or read_write access attribute.
The texture write functions require that you declare the texture with the write or
read_write access attribute. (For more about access attributes, see section 2.9.)

The texture sample_compare and gather_compare functions are only available for depth
texture types.

compare_func sets the comparison test for the sample_compare and gather_compare
functions. For more about compare_func, see section 2.10.

Overloaded variants of the texture sample and sample_compare functions with an
lod_options argument are available for a 2D texture, 2D texture array, 2D depth texture, 2D
depth texture array, 3D texture, cube texture, cube texture array, cube depth texture, and cube
depth texture array. (LOD/lod is short for level-of-detail.) The values for 1od_options are:

e level(float lod) — Sample from the specified mipmap level.

e bias(float value) — Apply the specified bias to a mipmap level before sampling.

e gradientx(T dPdx, T dPdy) — Apply the specified gradients with respect to the x
and y directions. The texture type changes the name and the arguments; for example, for
3D textures, the name is gradient3d and the arguments are f1oat3 type.

e min_lod_clamp(float lod) — Specify lowest mipmap level for sampler access, which
restricts sampler access to a range of mipmap levels. (All OS: Support since Metal 2.2.)

In macOS, Metal 2.2 and earlier don't support sample_compare, bias and gradientsx
functions, and 1od needs to be a zero constant. Metal 2.3 and later lift this restriction for Apple
silicon.

In Metal 2.2 and later, you can specify a LOD range for a sampler. You can either specify a
minimum and maximum mipmap level or use min_lod_clamp to specify just the minimum
mipmap level of an open range. When the sampler determines which mipmaps to sample, the
selection is clamped to the specified range.

Clamping the LOD is useful where some of the texture data is not available all the time (for
example, texture streaming). You can create a texture with all the necessary mipmaps and then
can stream image data starting from the smallest mipmaps. When the GPU samples the texture,
it clamps to the mipmaps that already have valid data. When you copy larger mipmaps into the
texture, you reduce the minimum LOD level. As new data becomes ready, you can change the
LOD clamp, which changes the sampling resolution.

The texture sample and sample_compare functions that don't take an explicit LOD or
gradients when you don't call them in a fragment function, have a default LOD of 0. In a
fragment function, the texture sample and sample_compare functions that don't take an
explicit LOD or gradients calculate an implicit LOD by taking the derivative of the texture

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 217 of 346

coordinate passed to the function. The gather and gather_compare functions you don't call
in a fragment function also have a default LOD of 0.

For the gather and gather_compare functions, place the four samples that contribute to
filtering into xyzw components in counter-clockwise order, starting with the sample to the
lower-left of the queried location. This is the same as nearest sampling with unnormalized
texture coordinate deltas at the following locations: (-, +), (+,+), (+,-), (=, =), where the
magnitude of the deltas is always half a pixel.

A read from or write to atexture is out-of-bounds if and only if any of these conditions is
met:

e the coordinates accessed are out-of-bounds

e the level of detail argument is out-of-bounds

e the textureis atexture array (texture?d_array type), and the array slice argument is
out-of-bounds

e thetextureisa texturecube or texturecube_array type, and the face argument is
out-of-bounds

e the texture is a multisampled texture, and the sample argument is out-of-bounds

For all texture types, an out-of-bounds write to atexture is ignored.
For all texture types:

e For components specified in a pixel format, an out-of-bounds read returns a color with
components with the value zero.

e For components unspecified in a pixel format, an out-of-bounds read returns the default
value.

For unspecified color components in a pixel format, the default values are:

e 0, for components other than alpha.
e 1, for the alpha component.

In a pixel format with integer components, the alpha default value is represented as the integral
value 0x1. For a pixel format with floating-point or normalized components, the alpha default
value is represented as the floating-point value 1. 0.

For example, for a texture with the MTLPixelFormatR8Uint pixel format, the default values
for unspecified integer components are G = 9, B =0, and A = 1. For a texture with the
MTLPixelFormatR8Unorm pixel format, the default values for unspecified normalized
componentsare G=0.0,B=0.0,and A =1.0. For a texture with depth or stencil pixel format
(such as MTLPixelFormatDepth24Unorm_Stencil8 or MTLPixelFormatStencil8),
the default value for an unspecified component is undefined.

In macOS, for Metal 2.2 and earlier, 1od needs to be O for texture write functions. Metal 2.3
and later lift this restriction for Apple silicon.

The following texture member functions are available to support sparse textures:

macOS: Metal 2.3 and later support sparse texture functions.
iOS: Metal 2.2 and later support sparse texture functions.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 218 of 346

https://developer.apple.com/documentation/metal/mtlpixelformat/mtlpixelformatstencil8?language=objc

sparse_sample — sample from a sparse texture
sparse_sample_compare — sample compare from a sparse texture
sparse_gather — gather from a sparse texture
sparse_gather_compare — gather compare from a sparse texture

These sparse texture member functions return a sparse_color structure that contains one or
more color values and a residency flag. If any of the accessed pixels is not mapped, resident
issetto false.

template <typename T>
struct sparse_color {
public:
constexpr sparse_color(T value, bool resident) thread;

// Indicates whether all memory addressed to retrieve
// the value was mapped.
constexpr bool resident() const thread;

// Retrieve the color value.

constexpr T const value() const thread;
b
For a sparse texture, to specify the minimum LOD level that the sampler can access, use
min_lod_clamp.

Note:

For sections 6.12.1 through 6.12.16, the following abbreviations are used for the data types of
function arguments and return values:

Tv denotes a 4-component vector type based on the templated type <T> for declaring the
texture type:

e IfTisfloat, Tvis floats.

If Tishalf, Tvishalf4.

If Tisint, Tvisinta.

If Tisuint, Tvisuinta.

If Tis short, Tvis shorta.

If Tisushort, Tvisushorta.

If Tisulong, Tvisulong4 (since Metal 3.1)

Metal does not support sampling of textures when T is ulong. Note that not all operations are
supported on all types.

In Metal 3.1 and later, texture support atomic functions for element T where T is int, uint, or

ulong:

e Whenthe element Tis int or uint, the texture on the Metal needs to be either
MTLPixelFormatR32Uint or MTLPixelFormatR32Sint.

e When the element T is ulong, the texture on the Metal needs to be
MTLPixelFormatRG32Uint.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 219 of 346

The semantics of the atomic texture functions are the same as the atomic functions defined in
Sec 6.15.

sparse_color—Tv denotes a sparse_color structure that contains a four-component
vector of color values, based on the templated type <T>, and a residency flag. These represent
the return values of many sparse texture member functions.

sparse_color—T denotesa sparse_color structure that contains a single value, based on
the templated type <T>, and a residency flag. T typically represents a depth value that a sparse
texture member function returns.

The following functions can be used to return the LOD (mip level) computation result for a
simulated texture fetch:

macOS: Metal 2.2 and later support sparse texture functions.
iOS: Metal 2.3 and later support sparse texture functions.

calculate_unclamped_lod — Calculates the level of detail that would be sampled for the
given coordinates, ignoring any sampler parameter. The fractional part of this value contains
the mip level blending weights, even if the sampler indicates a nearest mip selection.

calculate_clamped_lod — Similartocalculate_unclamped_1lod, but additionally
clamps the LOD to stay:

e within the texture mip count limits
e within the sampler's 1od_clamp min and max values
e less than or equal to the sampler's max_anisotropy value

Only callthe calculate_unclamped_lodandcalculate_clamped_1lod functions from
a fragment function or a function you call with a fragment function; otherwise, the behavior is
undefined.

6.12.1 1D Texture
This member function samples from a 1D texture.
Tv sample(sampler s, float coord) const

These member functions perform sampler-less reads from a 1D texture. Because mipmaps are
not supported for 1D textures, 1od needs to be 0:

Tv read(uint coord, uint lod = 0) const

Tv read(ushort coord,
ushort lod = ©) const// All 0S: Metal 1.2 and later.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 220 of 346

These member functions can write to a 1D texture. Because mipmaps are not supported for 1D
textures, 1od needs to be 0:

void write(Tv color, uint coord, uint lod = 0)

void write(Tv color, ushort coord,
ushort lod = @) // All 0S: Metal 1.2 and later.

These member functions query a 1D texture. Since mipmaps are not supported for 1D textures,
get_num_mip_levels() alwaysreturn @, and 1od needsto be 0 forget_width():

uint get_width(uint lod = @) const

uint get_num_mip_levels() const

This member function samples from a sparse 1D texture in Metal 2.2 and later in iOS, and Metal
2.3 and later in macOS:

sparse_color-Tv sparse_sample(sampler s, float coord) const

These member functions perform a sampler-less read from a sparse 1D texture in Metal 2.2 and
later in iOS, and Metal 2.3 and later in macOS. Because mipmaps are not supported for 1D
textures, 1od needs to be 0:

sparse_color-Tv sparse_read(ushort coord, ushort lod = 0) const

sparse_color-Tv sparse_read(uint coord, uint lod = @) const

These member functions execute an atomic load from a 1D texture in Metal 3.1 and later:

Tv atomic_load(uint coord) const

Tv atomic_load(ushort coord) const

These member functions execute an atomic store to a 1D texture in Metal 3.1 and later:

void atomic_store(Tv color, uint coord) const

void atomic_store (Tv color, ushort coord) const

These member functions execute an atomic compare and exchange to a 1D texture in Metal 3.1
and later:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 221 of 346

bool atomic_compare_exchange_weak(uint coord, thread Tv *expected,
Tv desired) const

bool atomic_compare_exchange_weak(ushort coord, thread Tv *xexpected,
Tv desired) const

These member functions execute an atomic exchange to a 1D texture in Metal 3.1 and later:

Tv atomic_exchange(uint coord, Tv desired) const

Tv atomic_exchange(ushort coord, Tv desired) const

These member functions execute an atomic fetch and modify to a 1D texture in Metal 3.1 and
later, where opis add, and, max, min, or, sub, or xor for int, and uint color type:

Tv atomic_fetch_op(uint coord, Tv operand)

Tv atomic_fetch_op(ushort coord, Tv operand) const

These member functions execute an atomic min or max to a 1D texture in Metal 3.1 and later:

void atomic_min(uint coord, ulong4 operand)
void atomic_min(ushort coord, ulong4 operand)
void atomic_max(uint coord, ulong4 operand)

void atomic_max(ushort coord, ulong4 operand)

6.12.2 1D Texture Array
This member function samples from a 1D texture array:

Tv sample(sampler s, float coord, uint array) const

These member functions perform sampler-less reads from a 1D texture array. Because
mipmaps are not supported for 1D textures, 1od must be a zero constant:

Tv read(uint coord, uint array, uint lod = @) const

Tv read(ushort coord, ushort array,
ushort lod = @) const // All 0S: Metal 1.2 and later.

These member functions write to a 1D texture array. Because mipmaps are not supported for 1D
textures, 1od must be a zero constant:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 222 of 346

void write(Tv color, uint coord, uint array, uint lod = 0)

void write(Tv color, ushort coord, ushort array,
ushort lod = @) // All 0S: Metal 1.2 and later.

These member functions query a 1D texture array. Because mipmaps are not supported for 1D
textures, get_num_mip_levels () always return 9, and 1od must be a zero constant for
get_width():

uint get_width(uint lod = @) const
uint get_array_size() const

uint get_num_mip_levels() const

This function samples from a sparse 1D texture array in Metal 2.2 and later in iOS, and in Metal
2.3 and later in macOS:

sparse_color-Tv sparse_sample(sampler s, float coord, uint array)
const

These functions perform a sampler-less read from a sparse 1D texture array in Metal 2.2 and
later in iOS, and in Metal 2.3 and later in macOS. Because mipmaps are not supported for 1D
texture arrays, 1od must be a zero constant.

sparse_color-Tv sparse_read(ushort coord, ushort array,
ushort lod = @) const

sparse_color-Tv sparse_read(uint coord, uint array,
uint lod = 0) const

These member functions execute an atomic load from a 1D texture array in Metal 3.1 and later:
Tv atomic_load(uint coord, uint array) const

Tv atomic_load(ushort coord, ushort array) const

These member functions execute an atomic store to a 1D texture array in Metal 3.1 and later:
void atomic_store(Tv color, uint coord, uint array) const

void atomic_store (Tv color, ushort coord, ushort array) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 223 of 346

These member functions execute an atomic compare and exchange to a 1D texture array in
Metal 3.1 and later:

bool atomic_compare_exchange_weak(uint coord, uint array,
thread Tv *expected,
Tv desired) const

bool atomic_compare_exchange_weak(ushort coord, ushort array,
thread Tv *expected,
Tv desired) const

These member functions execute an atomic exchange to a 1D texture array in Metal 3.1 and
later:

Tv atomic_exchange(uint coord, uint array, Tv desired) const

Tv atomic_exchange(ushort coord, ushort array, Tv desired) const

These member functions execute an atomic fetch and modify to a 1D texture array in Metal 3.1
and later, where op is add, and, max, min, or, sub, or xor:

Tv atomic_fetch_op(uint coord, uint array,Tv operand)

Tv atomic_fetch_op(ushort coord, ushort array,Tv operand) const

These member functions execute an atomic min or max to a 1D texture array in Metal 3.1 and
later:

void atomic_min(uint coord, uint array, ulong4 operand)
void atomic_min(ushort coord, ushort array, ulong4 operand)
void atomic_max(uint coord, uint array, ulong4 operand)

void atomic_max(ushort coord, ushort array, ulong4 operand)

6.12.3 2D Texture

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (1od_options):

bias(float value)
level(float lod)
gradient2d(float2 dPdx, float2 dPdy)
min_lod_clamp(float lod) // All 0S: Metal 2.2 and later.
2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 224 of 346

These member functions sample from a 2D texture:
Tv sample(sampler s, float2 coord, int2 offset = int2(@)) const

Tv sample(sampler s, float2 coord, lod_options options,
int2 offset = int2(@)) const

Tv sample(sampler s, float2 coord, bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

Tv sample(sampler s, float2 coord, gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

These member functions perform sampler-less reads from a 2D texture:
Tv read(uint2 coord, uint lod = @) const

Tv read(ushort2 coord,
ushort lod = ©) const // All 0S: Metal 1.2 and later.

These member functions write to a 2D texture. In macOS, for Metal 2.2 and earlier, 1od must be
a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.

void write(Tv color, uint2 coord, uint lod = 0)

void write(Tv color, ushort2 coord,
ushort lod = @) // All 0S: Metal 1.2 and later.

This member functions gathers four samples for bilinear interpolation when sampling a 2D
texture:

enum class component {x, vy, z, w};

Tv gather(sampler s, float2 coord, int2 offset = int2(0),
component ¢ = component::x) const

These member functions query a 2D texture query:
uint get_width(uint lod = @) const
uint get_height(uint lod = @) const

uint get_num_mip_levels() const

These member functions sample from a sparse 2D texture in Metal 2.2 and later in iOS, and in
Metal 2.3 and later in macOS:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 225 of 346

sparse_color-Tv sparse_sample(sampler s, float2 coord,
int2 offset = int2(0)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord, bias options,
int2 offset = int2(0)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord,
level options,
int2 offset = int2(0)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(0)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord,
bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(0)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord,
gradient2d grad_options,
int2 offset = int2(0)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord,
gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(0)) const

These member functions perform a sampler-less read from a sparse 2D texture in Metal 2.2 and
later in iOS, and in Metal 2.3 and later in macQOS:

sparse_color-Tv sparse_read(ushort2 coord, ushort lod = @) const

sparse_color-Tv sparse_read(uint2 coord, uint lod = 0) const

This member function gathers four samples for bilinear interpolation from a sparse 2D texture in
Metal 2.2 and later in iOS, and in Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather(sampler s, float2 coord,
int2 offset int2(9),
component c component::x) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result in Metal 2.3 and later in iOS, and in Metal 2.2 and later in macQOS:

float calculate_clamped_lod(sampler s, float2 coord);
float calculate_unclamped_lod(sampler s, float2 coord);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 226 of 346

These member functions execute an atomic load from a 2D texture in Metal 3.1 and later:
Tv atomic_load(uint2 coord) const

Tv atomic_load(ushort2 coord) const

These member functions execute an atomic store to a 2D texture in Metal 3.1 and later:
void atomic_store(Tv color, uint2 coord) const

void atomic_store (Tv color, ushort2 coord) const

These member functions execute an atomic compare and exchange to a 2D texture in Metal 3.1
and later:

bool atomic_compare_exchange_weak(uint2 coord, thread Tv xexpected,
Tv desired) const

bool atomic_compare_exchange_weak(ushort2 coord,thread Tv *xexpected,
Tv desired) const

These member functions execute an atomic exchange to a 2D texture in Metal 3.1 and later:

Tv atomic_exchange(uint2 coord, Tv desired) const

Tv atomic_exchange(ushort2 coord, Tv desired) const

These member functions execute an atomic fetch and modify to a 2D texture in Metal 3.1 and
later, where opis add, and, max, min, or, sub, or xor for int, and uint color type:

Tv atomic_fetch_op(uint2 coord, Tv operand)

Tv atomic_fetch_op(ushort2 coord, Tv operand) const

These member functions execute an atomic min or max to a 2D texture in Metal 3.1 and later:

void atomic_min(uint2 coord, ulong4 operand)
void atomic_min(ushort2 coord, ulong4 operand)
void atomic_max(uint2 coord, ulong4 operand)

void atomic_max(ushort2 coord, ulong4 operand)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 227 of 346

6.12.3.1 2D Texture Sampling Example

The following code shows several uses of the 2D texture sample function, depending upon its
arguments:

texture2d<float> tex;
sampler s;

float2 coord;

int2 offset;

float lod;

// No optional arguments.
float4 clr = tex.sample(s, coord);

// Sample using a mipmap level.
clr = tex.sample(s, coord, level(lod));

// Sample with an offset.
clr = tex.sample(s, coord, offset);

// Sample using a mipmap level and an offset.
clr = tex.sample(s, coord, level(lod), offset);

6.12.4 2D Texture Array

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (1Lod_options):

bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

min_lod_clamp(float lod) // All 0S: Metal 2.2 and later.

These member functions sample from a 2D texture array:

Tv sample(sampler s, float2 coord, uint array,
int2 offset = int2(@)) const

Tv sample(sampler s, float2 coord, uint array, lod_options options,
int2 offset = int2(@)) const

Tv sample(sampler s, float2 coord, uint array, bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const
Tv sample(sampler s, float2 coord, uint array,
gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 228 of 346

These member functions perform sampler-less reads from a 2D texture array:
Tv read(uint2 coord, uint array, uint lod = @) const

Tv read(ushort2 coord, ushort array,
ushort lod = ©) const // All 0S: Metal 1.2 and later.

These member functions write to a 2D texture array. In macQOS, for Metal 2.2 and earlier, 1od
must be a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.

void write(Tv color, uint2 coord, uint array, uint lod = 0)

void write(Tv color, ushort2 coord, ushort array,
ushort lod = @) // All 0S: Metal 1.2 and later.

This member functions gathers four samples for bilinear interpolation when sampling a 2D
texture array:

Tv gather(sampler s, float2 coord, uint array,
int2 offset int2(0),
component ¢ = component::x) const

These member functions query a 2D texture array:
uint get_width(uint lod = @) const
uint get_height(uint lod = @) const
uint get_array_size() const

uint get_num_mip_levels() const

These member functions sample from a sparse 2D texture array in Metal 2.2 and later in iOS,
and in Metal 2.3 and later in macOS:

sparse_color-Tv sparse_sample(sampler s, float2 coord, uint array,
int2 offset = int2(@)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord, uint array,
bias options,
int2 offset = int2(0)) const
sparse_color-Tv sparse_sample(sampler s, float2 coord, uint array,

level options,
int2 offset = int2(@)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord, uint array,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord, uint array,
bias bias_options,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 229 of 346

min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord, uint array,
gradient2d options,
int2 offset = int2(0)) const

sparse_color-Tv sparse_sample(sampler s, float2 coord, uint array,
gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(0)) const

These functions perform a sampler-less read from a sparse 2D texture array in Metal 2.2 and
later in iOS, and in Metal 2.3 and later in macQOS:

sparse_color-Tv sparse_read(ushort2 coord, ushort array,
ushort lod = ©) const

sparse_color-Tv sparse_read(uint2 coord, uint array,
uint lod = 0) const

This function gathers four samples for bilinear interpolation from a sparse 2D texture array in
Metal 2.2 and later in iOS, and in Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather(sampler s, float2 coord, uint array,
int2 offset = int2(0),
component ¢ = component::x) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result in Metal 2.3 and later in iOS, and in Metal 2.2 and later in macQOS:

float calculate_clamped_lod(sampler s, float2 coord);

float calculate_unclamped_lod(sampler s, float2 coord);

These member functions execute an atomic load from a 2D texture array in Metal 3.1 and later:
Tv atomic_load(uint2 coord, uint array) const

Tv atomic_load(ushort2 coord, ushort array) const

These member functions execute an atomic store to a 2D texture array in Metal 3.1 and later:

void atomic_store(Tv color, uint2 coord, uint array) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 230 of 346

void atomic_store (Tv color, ushort2 coord, ushort array) const

These member functions execute an atomic compare and exchange to a 2D texture array in
Metal 3.1 and later:

bool atomic_compare_exchange_weak(uint2 coord, uint array,
thread Tv *expected,
Tv desired) const

bool atomic_compare_exchange_weak(ushort2 coord, ushort array,
thread Tv *expected,
Tv desired) const

These member functions execute an atomic exchange to a 2D texture array in Metal 3.1 and
later:

Tv atomic_exchange(uint2 coord, uint array, Tv desired) const

Tv atomic_exchange(ushort2 coord, ushort array, Tv desired) const

These member functions execute an atomic fetch and modify to a 2D texture array in Metal 3.1
and later, where op is add, and, max, min, or, sub, or xor for int, and uint color type:

Tv atomic_fetch_op(uint2 coord, uint array,Tv operand)

Tv atomic_fetch_op(ushort2 coord, ushort array,Tv operand) const

These member functions execute an atomic min or max to a 2D texture array in Metal 3.1 and
later:

void atomic_min(uint2 coord, uint array, ulong4 operand)
void atomic_min(ushort2 coord, ushort array, ulong4 operand)
void atomic_max(uint2 coord, uint array, ulong4 operand)

void atomic_max(ushort2 coord, ushort array, ulong4 operand)

6.12.5 3D Texture

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (1od_options):

bias(float value)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 231 of 346

level(float lod)
gradient3d(float3 dPdx, float3 dPdy)
min_lod_clamp(float lod) // All 0S: Metal 2.2 and later.

These member functions sample from a 3D texture:
Tv sample(sampler s, float3 coord, int3 offset = int3(0)) const

Tv sample(sampler s, float3 coord, lod_options options,
int3 offset = int3(0)) const

Tv sample(sampler s, float3 coord, bias bias_options,
min_lod_clamp min_lod_clamp_options,
int3 offset = int3(0)) const

Tv sample(sampler s, float3 coord, gradient3d grad_options,
min_lod_clamp min_lod_clamp_options,
int3 offset = int3(0)) const

These member functions perform sampler-less reads from a 3D texture:
Tv read(uint3 coord, uint lod = @) const

Tv read(ushort3 coord,
ushort lod = ©) const // All 0S: Metal 1.2 and later

These member functions write to a 3D texture. In macQS, in Metal 2.2 and earlier, 1od must be
a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.

void write(Tv color, uint3 coord, uint lod = 0)

void write(Tv color, ushort3 coord,
ushort lod = @) // All 0S: Metal 1.2 and later.

These member functions query a 3D texture:

uint get_width(uint lod = @) const
uint get_height(uint lod = ©) const
uint get_depth(uint lod = @) const

uint get_num_mip_levels() const

These functions sample from a sparse 3D texture in Metal 2.2 and later in iOS, and in Metal 2.3
and later in macOS:

sparse_color-Tv sparse_sample(sampler s, float3 coord,
int3 offset = int3(0)) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 232 of 346

sparse_color-Tv sparse_sample(sampler s, float3 coord, bias options,
int3 offset = int3(0)) const

sparse_color-Tv sparse_sample(sampler s, float3 coord,
level options,
int3 offset = int3(0)) const

sparse_color-Tv sparse_sample(sampler s, float3 coord,

min_lod_clamp min_lod_clamp_options, int3 offset = int3(0)) const

sparse_color-Tv sparse_sample(sampler s, float3 coord,
bias bias_options,
min_lod_clamp min_lod_clamp_options,
int3 offset = int3(0)) const

sparse_color-Tv sparse_sample(sampler s, float3 coord,
gradient3d grad_options,
int3 offset = int3(0)) const

sparse_color-Tv sparse_sample(sampler s, float3 coord,
gradient3d grad_options,
min_lod_clamp min_lod_clamp_options,
int3 offset = int3(0)) const

These member functions perform a sampler-less read from a sparse 3D texture in Metal 2.2
and later in iOS, and in Metal 2.3 and later in macOS:

sparse_color-Tv sparse_read(uint3 coord, uint lod = 0) const

sparse_color-Tv sparse_read(ushort3 coord, ushort lod = @) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result in Metal 2.3 and later in iOS, and in Metal 2.2 and later in macQOS:

float calculate_clamped_lod(sampler s, float3 coord)

float calculate_unclamped_lod(sampler s, float3 coord)

These member functions execute an atomic load from a 3D texture in Metal 3.1 and later:
Tv atomic_load(uint3 coord) const

Tv atomic_load(ushort3 coord) const

These member functions execute an atomic store to a 3D texture in Metal 3.1 and later:

void atomic_store(Tv color, uint3 coord) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 233 of 346

void atomic_store (Tv color, ushort3 coord) const

These member functions execute an atomic compare and exchange to a 3D texture in Metal 3.1
and later:

bool atomic_compare_exchange_weak(uint3 coord, thread Tv xexpected,
Tv desired) const

bool atomic_compare_exchange_weak(ushort3 coord,thread Tv *expected,
Tv desired) const

These member functions execute an atomic exchange to a 3D texture in Metal 3.1 and later:

Tv atomic_exchange(uint3 coord, Tv desired) const

Tv atomic_exchange(ushort3 coord, Tv desired) const

These member functions execute an atomic fetch and modify to a 3D texture in Metal 3.1 and
later, where opis add, and, max, min, or, sub, or xor for int, and uint color type:

Tv atomic_fetch_op(uint3 coord, Tv operand)

Tv atomic_fetch_op(ushort3 coord, Tv operand) const

These member functions execute an atomic min or max to a 3D texture in Metal 3.1 and later:

void atomic_min(uint3 coord, ulong4 operand)
void atomic_min(ushort3 coord, ulong4 operand)
void atomic_max(uint3 coord, ulong4 operand)

void atomic_max(ushort3 coord, ulong4 operand)

6.12.6 Cube Texture

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (1od_options):

bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)
min_lod_clamp(float lod) // All 0S: Metal 2.2 and later.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 234 of 346

These member functions sample from a cube texture:
Tv sample(sampler s, float3 coord) const
Tv sample(sampler s, float3 coord, lod_options options) const

Tv sample(sampler s, float3 coord, bias bias_options,
min_lod_clamp min_lod_clamp_options) const

Tv sample(sampler s, float3 coord, gradientcube grad_options,
min_lod_clamp min_lod_clamp_options) const

Table 6.22 describes a cube face and the number used to identify the face.

Table 6.22. Cube face number

Face number Cube face

0 Positive X

—_—

Negative X

Positive Y

Negative Y

Positive Z

a | b~ |0 |DN

Negative Z

This member function gathers four samples for bilinear interpolation when sampling a cube
texture:

Tv gather(sampler s, float3 coord, component c = component::x) const

These member functions perform sampler-less reads from a cube texture:
Tv read(uint2 coord, uint face, uint lod = @) const

Tv read(ushort2 coord, ushort face,
ushort lod = @) const // All 0S: Metal 1.2 and later.

These member functions write to a cube texture. In macOS, for Metal 2.2 and earlier, 1od must
be a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.

void write(Tv color, uint2 coord, uint face, uint lod = @)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 235 of 346

void write(Tv color, ushort2 coord, ushort face,
ushort lod = @) // All 0S: Metal 1.2 and later.

These member functions query a cube texture:
uint get_width(uint lod = @) const
uint get_height(uint lod = @) const

uint get_num_mip_levels() const

These member functions sample from a sparse cube texture in Metal 2.2 and later in iOS, and
Metal 2.3 and later in macOS:

sparse_color-Tv sparse_sample(sampler s, float3 coord) const

sparse_color-Tv sparse_sample(sampler s, float3 coord, bias options)
const

sparse_color-Tv sparse_sample(sampler s, float3 coord,
level options) const

sparse_color-Tv sparse_sample(sampler s, float3 coord,

min_lod_clamp min_lod_clamp_options) const
sparse_color-Tv sparse_sample(sampler s, float3 coord,

bias bias_options,
min_lod_clamp min_lod_clamp_options) const

sparse_color-Tv sparse_sample(sampler s, float3 coord,
gradientcube grad_options) const

sparse_color-Tv sparse_sample(sampler s, float3 coord,
gradientcube grad_options,
min_lod_clamp min_lod_clamp_options) const

These member functions perform a sampler-less read from a sparse cube texture in Metal 2.2
and later in iOS, and Metal 2.3 and later in macQOS:

sparse_color-Tv sparse_read(ushort2 coord, ushort face, ushort lod =
@) const

sparse_color-Tv sparse_read(uint2 coord, uint face, uint lod = 0)
const

This member function gathers four samples for bilinear interpolation from a sparse cube texture
in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 236 of 346

sparse_color-Tv sparse_gather(sampler s, float3 coord,
component ¢ = component::x) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result in Metal 2.3 and later in iOS, and Metal 2.2 and later in macOS:

float calculate_clamped_lod(sampler s, float3 coord);
float calculate_unclamped_lod(sampler s, float3 coord);

These member functions execute an atomic load from a cube texture in Metal 4 and later:
Tv atomic_load(uint2 coord, uint face) const

Tv atomic_load(ushort2 coord, ushort face) const

These member functions execute an atomic store to a cube texture in Metal 4 and later:
void atomic_store(Tv color, uint2 coord, uint face) const

void atomic_store (Tv color, ushort2 coord, ushort face) const

These member functions execute an atomic compare and exchange to a cube texture in Metal 4
and later:

bool atomic_compare_exchange_weak(uint2 coord, uint face,
thread Tv *expected,
Tv desired) const

bool atomic_compare_exchange_weak(ushort2 coord, ushort face,
thread Tv *expected,
Tv desired) const

These member functions execute an atomic exchange to a cube texture in Metal 4 and later:
Tv atomic_exchange(uint2 coord, uint face, Tv desired) const

Tv atomic_exchange(ushort2 coord, ushort face, Tv desired) const

These member functions execute an atomic fetch and modify to a cube texture in Metal 4 and
later, where op is add, and, max, min, or, sub, or xor for int, and uint color type:

Tv atomic_fetch_op(uint2 coord, uint face, Tv operand)

Tv atomic_fetch_op(ushort2 coord, ushort face, Tv operand) const

These member functions execute an atomic min or max to a cube texture in Metal 4 and later:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 237 of 346

void atomic_min(uint2 coord, uint face, ulong4 operand)
void atomic_min(ushort2 coord, ushort face, ulong4 operand)
void atomic_max(uint2 coord, uint face, ulong4 operand)

void atomic_max(ushort2 coord, ushort face, ulong4 operand)

6.12.7 Cube Texture Array

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (1Lod_options):

bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)
min_lod_clamp(float lod) // All 0S: Metal 2.2 and later.

These member functions sample from a cube texture array:
Tv sample(sampler s, float3 coord, uint array) const

Tv sample(sampler s, float3 coord, uint array,
lod_options options) const

Tv sample(sampler s, float3 coord, uint array, bias bias_options,
min_lod_clamp min_lod_clamp_options) const

Tv sample(sampler s, float3 coord, uint array,
gradientcube grad_options,
min_lod_clamp min_lod_clamp_options) const

This member function gathers four samples for bilinear interpolation when sampling a cube
texture array:

Tv gather(sampler s, float3 coord, uint array,
component ¢ = component::x) const

These member functions perform sampler-less reads from a cube texture array:
Tv read(uint2 coord, uint face, uint array, uint lod = @) const

Tv read(ushort2 coord, ushort face, ushort array,
ushort lod = @) const // All 0S: Metal 1.2 and later.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 238 of 346

These member functions write to a cube texture array. In macQOS, for Metal 2.2 and earlier, 1od
must be a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.

void write(Tv color, uint2 coord, uint face, uint array,
uint lod = 0)

void write(Tv color, ushort2 coord, ushort face, ushort array,
ushort lod = @) // All 0S: Metal 1.2 and later.

These member functions query a cube texture array:
uint get_width(uint lod = @) const
uint get_height(uint lod = @) const
uint get_array_size() const

uint get_num_mip_levels() const

These member functions sample from a sparse cube texture array in Metal 2.2 and later in iOS,
and in Metal 2.3 and later in macQOS:

sparse_color-Tv sparse_sample(sampler s, float3 coord,
uint array) const

sparse_color-Tv sparse_sample(sampler s, float3 coord, uint array,
bias options) const

sparse_color-Tv sparse_sample(sampler s, float3 coord, uint array,
level options) const

sparse_color-Tv sparse_sample(sampler s, float3 coord, uint array,
min_lod_clamp min_lod_clamp_options) const

sparse_color-Tv sparse_sample(sampler s, float3 coord, uint array,
bias bias_options,
min_lod_clamp min_lod_clamp_options) const
sparse_color-Tv sparse_sample(sampler s, float3 coord, uint array,
gradientcube options) const

sparse_color-Tv sparse_sample(sampler s, float3 coord, uint array,
gradientcube grad_options,
min_lod_clamp min_lod_clamp_options) const

These member functions perform a sampler-less read from a sparse cube texture array in Metal
2.2 and later in iOS, and in Metal 2.3 and later in macOS:

sparse_color-Tv sparse_read(ushort2 coord, ushort face,
ushort array, ushort lod = @) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 239 of 346

sparse_color-Tv sparse_read(uint2 coord, uint face,
uint array, uint lod = @) const

This member function gathers four samples for bilinear interpolation from a sparse cube texture
array in Metal 2.2 and later in iOS, and in Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather(sampler s, float3 coord, uint array,
component ¢ = component::x) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result in Metal 2.3 and later in iOS, and in Metal 2.2 and later in macQOS:

float calculate_clamped_lod(sampler s, float3 coord);

float calculate_unclamped_lod(sampler s, float3 coord);

These member functions execute an atomic load from a cube texture array in Metal 4 and later:

Tv atomic_load(uint2 coord, uint face, uint array) const

Tv atomic_load(ushort2 coord, ushort face, ushort array) const

These member functions execute an atomic store to a cube texture array in Metal 4 and later:

void atomic_store(Tv color, uint2 coord, uint face,
uint array) const

void atomic_store (Tv color, ushort2 coord, ushort face,
ushort array) const

These member functions execute an atomic compare and exchange to a cube texture array in
Metal 4 and later:

bool atomic_compare_exchange_weak(uint2 coord, uint face,
uint array,
thread Tv *expected,
Tv desired) const

bool atomic_compare_exchange_weak(ushort2 coord, ushort face,
ushort array,
thread Tv *expected,
Tv desired) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 240 of 346

These member functions execute an atomic exchange to a cube texture array in Metal 4 and
later:

Tv atomic_exchange(uint2 coord, uint face, uint array,
Tv desired) const

Tv atomic_exchange(ushort2 coord, ushort face, ushort array,
Tv desired) const

These member functions execute an atomic fetch and modify to a cube texture array in Metal 4
and later, where op is add, and, max, min, or, sub, or xor for int, and uint color type:

Tv atomic_fetch_op(uint2 coord, uint face, uint array, Tv operand)

Tv atomic_fetch_op(ushort2 coord, ushort face, ushort array,
Tv operand) const

These member functions execute an atomic min or max to a cube texture array in Metal 4 and
later:

void atomic_min(uint2 coord, uint face, uint array, ulong4 operand)

void atomic_min(ushort2 coord, ushort face, ushort array,
ulong4 operand)

void atomic_max(uint2 coord, uint face, uint array, ulong4 operand)

void atomic_max(ushort2 coord, ushort face, ushort array,
ulong4 operand)

6.12.8 2D Multisampled Texture
These member functions perform sampler-less reads from a 2D multisampled texture:
Tv read(uint2 coord, uint sample) const

Tv read(ushort2 coord,
ushort sample) const // All 0S: Metal 1.2 and later.

If you have customized sample positions (set with the setSamplePositions:count:
method of MTLRenderPassDescriptor), then read(coord, sample) returns the data
for the sample at the programmed sample position.

These member functions query a 2D multisampled texture:
uint get_width() const
uint get_height() const

uint get_num_samples() const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 241 of 346

These member functions perform a sampler-less read from a sparse 2D multisampled texture in
Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-Tv sparse_read(ushort2 coord, ushort sample) const

sparse_color-Tv sparse_read(uint2 coord, uint sample) const

6.12.9 2D Multisampled Texture Array
macOS: Metal 2 and later support 2D multisampled texture array.
iOS: Metal 2.3 and later support 2D multisampled texture array.

The following member functions can perform sampler-less reads from a 2D multisampled
texture array:

Tv read(uint2 coord, uint array, uint sample) const

Tv read(ushort2 coord, ushort array, ushort sample) const

These member functions query a 2D multisampled texture array:
uint get_width() const

uint get_height() const

uint get_num_samples() const

uint get_array_size() const

These functions perform a sampler-less read from a sparse 2D multisampled texture array in
Metal 2.2 and later in iOS, and in Metal 2.3 and later in macOS:

sparse_color-Tv sparse_read(ushort2 coord, ushort array,
ushort sample) const

sparse_color-Tv sparse_read(uint2 coord, uint array,
uint sample) const

6.12.10 2D Depth Texture

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (1od_options):

bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

min_lod_clamp(float lod) // All 0OS: Metal 2.2 and later.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 242 of 346

These member functions sample from a 2D depth texture:
T sample(sampler s, float2 coord, int2 offset = int2(0)) const

T sample(sampler s, float2 coord, lod_options options,
int2 offset = int2(0)) const

T sample(sampler s, float2 coord, bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

T sample(sampler s, float2 coord, gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

These member functions sample from a 2D depth texture and compare a single component
against the comparison value:

T sample_compare(sampler s, float2 coord, float compare_value,
int2 offset = int2(0)) const

T sample_compare(sampler s, float2 coord, float compare_value,
lod_options options, int2 offset = int2(@)) const

T mustbea float type.

sample_compare performs a comparison of the compare_value value against the pixel
value (1.9 if the comparison passes, and 0. 0 if it fails). These comparison result values per-
pixel are then blended together as in normal texture filtering and the resulting value between
0.0 and 1.0 is returned. In macOS, Metal 2.2 and earlier don't support 1od_options values
level andmin_lod_clamp (the latter, in Metal 2.2 and later); 1od must be a zero constant.
Metal 2.3 and later lift this restriction for 1od_options for Apple silicon.

These member functions perform sampler-less reads from a 2D depth texture:
T read(uint2 coord, uint lod = 0) const

T read(ushort2 coord,
ushort lod = ©) const // All 0S: Metal 1.2 and later.

This built-in function gathers four samples for bilinear interpolation when sampling a 2D depth
texture:

Tv gather(sampler s, float2 coord, int2 offset = int2(@)) const

This member function gathers four samples for bilinear interpolation when sampling a 2D depth
texture and comparing these samples with a specified comparison value (1. 9 if the comparison
passes, and 0. 9 if it fails):

Tv gather_compare(sampler s, float2 coord, float compare_value,
int2 offset = int2(@)) const

T mustbea float type.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 243 of 346

The following member functions query a 2D depth texture:
uint get_width(uint lod = @) const
uint get_height(uint lod = @) const

uint get_num_mip_levels() const

These member functions sample from a sparse 2D depth texture in Metal 2.2 and later in iOS,
and in Metal 2.3 and later in macQOS:

sparse_color-T sparse_sample(sampler s, float2 coord,
int2 offset = int2(@)) const

sparse_color-T sparse_sample(sampler s, float2 coord, bias options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample(sampler s, float2 coord, level options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample(sampler s, float2 coord,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample(sampler s, float2 coord,
bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample(sampler s, float2 coord
gradient2d grad_options,
int2 offset = int2(0)) const

sparse_color-T sparse_sample(sampler s, float2 coord,
gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

These member functions sample from a sparse 2D depth texture and compare a single
component against a comparison value in Metal 2.2 and later in iOS, and in Metal 2.3 and later
in macOS:

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
float compare_value,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
float compare_value,
bias options,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 244 of 346

int2 offset = int2(0)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
float compare_value,
level options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
float compare_value,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord
float compare_value, bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
float compare_value, gradient2d grad_options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
float compare_value, gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

These member functions perform a sampler-less read from a sparse 2D depth texture in Metal
2.2 and later, in iOS and Metal 2.3 and later in macOS:

sparse_color-T sparse_read(ushort2 coord, ushort lod = 0) const

sparse_color-T sparse_read(uint2 coord, uint lod = @) const

This member function gathers four samples for bilinear interpolation from a sparse 2D depth
texture in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather(sampler s, float2 coord,
int2 offset = int2(0),
component ¢ = component::x) const

This member function gathers those samples and compares them against a comparison value
from a sparse 2D depth texture in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather_compare(sampler s, float2 coord,
float compare_value,
int2 offset = int2(0©)) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result in Metal 2.3 and later in iOS, and Metal 2.2 and later in macOS:

float calculate_clamped_lod(sampler s, float2 coord);
float calculate_unclamped_lod(sampler s, float2 coord);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 245 of 346

6.12.11 2D Depth Texture Array

The member functions in this section use the following data types and constructor functions to
set the sampling option fields of their 1od_options parameter:

bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

min_lod_clamp(float lod) // All 0S: Metal 2.2 and later.

These member functions sample from a 2D depth texture array:

T sample(sampler s, float2 coord, uint array,
int2 offset = int2(@)) const

T sample(sampler s, float2 coord, uint array, lod_options options,
int2 offset = int2(@)) const

T sample(sampler s, float2 coord, uint array, bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

T sample(sampler s, float2 coord, uint array,
gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(0)) const

These member functions sample from a 2D depth texture array and compare a single
component to a value where T isa float type:

T sample_compare(sampler s, float2 coord, uint array,
float compare_value,int2 offset = int2(0)) const

T sample_compare(sampler s, float2 coord, uint array,
float compare_value, lod_options options,
int2 offset = int2(0)) const

The 1od_options fields support are:

e Jevel
e bias forall iOS Metal versions and macOS Metal 2.3 and later for Apple silicon
e (gradient foriOS Metal versions and macOS Metal 2.3 and later for Apple silicon
e min_lod_clamp for Metal 2.2 and later
e Must be 0 for Metal 2.2 and later
e Can be any value for all iOS Metal versions and macOS Metal 2.3 and later for Apple
silicon

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 246 of 346

These member functions read from a 2D depth texture array without using a sampler:
T read(uint2 coord, uint array, uint lod = @) const

T read(ushort2 coord, ushort array,
ushort lod = ©) const // All 0S: Metal 1.2 and later.

This member function gathers four samples for bilinear interpolation when sampling a 2D depth
texture array:

Tv gather(sampler s, float2 coord, uint array,
int2 offset = int2(@)) const

This member function gathers four samples for bilinear interpolation when sampling a 2D depth
texture array and compares them to a value where Tv is a float vector type:

Tv gather_compare(sampler s, float2 coord, uint array,
float compare_value, int2 offset = int2(@)) const

The following member functions query a 2D depth texture array:
uint get_width(uint lod = @) const

uint get_height(uint lod = @) const

uint get_array_size() const

uint get_num_mip_levels() const

These member functions sample from a sparse 2D depth texture array, in Metal 2.2 and later in
iOS, and Metal 2.3 and later in macOS:

sparse_color-T sparse_sample(sampler s, float2 coord, uint array,
int2 offset = int2(0®)) const

sparse_color-T sparse_sample(sampler s, float2 coord, uint array,
bias options,
int2 offset = int2(@)) const
sparse_color-T sparse_sample(sampler s, float2 coord, uint array,

level options,
int2 offset = int2(0)) const

sparse_color-T sparse_sample(sampler s, float2 coord, uint array,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(0®)) const
sparse_color-T sparse_sample(sampler s, float2 coord, uint array,
bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(0)) const

sparse_color-T sparse_sample(sampler s, float2 coord, uint array,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 247 of 346

gradient2d grad_options,
int2 offset = int2(0)) const

sparse_color-T sparse_sample(sampler s, float2 coord, uint array,
gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

These functions sample from a sparse 2D depth texture array and compare a single component
to a comparison value, in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
uint array, float compare_value,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
uint array, float compare_value,
bias options, int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
uint array, float compare_value,
level options, int2 offset = int2(®)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
uint array,float compare_value,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
uint array, float compare_value,
bias bias_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
uint array,
float compare_value, gradient2d grad_options,
int2 offset = int2(@)) const

sparse_color-T sparse_sample_compare(sampler s, float2 coord,
uint array,float compare_value,
gradient2d grad_options,
min_lod_clamp min_lod_clamp_options,
int2 offset = int2(0)) const

These functions read from a sparse 2D depth texture array without a sampler, in Metal 2.2 and
later in iOS, and Metal 2.3 and later in macOS:

sparse_color-T sparse_read(ushort2 coord, uint array,
ushort lod = @) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 248 of 346

sparse_color-T sparse_read(uint2 coord, uint array,
uint lod = ©) const

This function gathers four samples for bilinear interpolation from a sparse 2D depth texture
array, in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather(sampler s, float2 coord, uint array,
int2 offset = int2(0),
component ¢ = component::x) const

This function gathers those samples and compares them against a value from a sparse 2D
depth texture array, in Metal 2.2 and later in iOS, and Metal 2.3 and later in macQOS:

sparse_color-Tv sparse_gather_compare(sampler s, float2 coord, uint
array,
float compare_value, int2 offset = int2(@)) const

These functions simulate a texture fetch and return a LOD (mip level) computation result, in
Metal 2.3 and later in iOS, and Metal 2.2 and later in macQOS:

float calculate_clamped_lod(sampler s, float2 coord);

float calculate_unclamped_lod(sampler s, float2 coord);

6.12.12 2D Multisampled Depth Texture

The following member functions can perform sampler-less reads from a 2D multisampled depth
texture:

T read(uint2 coord, uint sample) const

T read(ushort2 coord,
ushort sample) const // All 0S: Metal 1.2 and later.

The following member functions query a 2D multisampled depth texture:
uint get_width() const
uint get_height() const

uint get_num_samples() const

These member functions perform a sampler-less read from a sparse 2D multisampled depth
texture in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-T sparse_read(ushort2 coord, ushort sample) const

sparse_color-T sparse_read(uint2 coord, uint sample) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 249 of 346

6.12.13 2D Multisampled Depth Texture Array
macOS: Metal 2 and later support 2D multisampled depth texture array.
iOS: Metal 2.3 and later support 2D multisampled depth texture array.

The following member functions perform sampler-less reads from a 2D multisampled depth
texture array:

Tv read(uint2 coord, uint array, uint lod = @) const

Tv read(ushort2 coord, ushort array, ushort lod = @) const

The following member functions query a 2D multisampled depth texture array:
uint get_width(uint lod = @) const
uint get_height(uint lod = @) const

uint get_array_size() const

These member functions perform a sampler-less read from a sparse 2D multisampled depth
texture array in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-T sparse_read(ushort2 coord, ushort array,
ushort sample) const

sparse_color-T sparse_read(uint2 coord, uint array,
uint sample) const

6.12.14 Cube Depth Texture

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (1od_options):

bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)
min_lod_clamp(float lod) // All 0S: Metal 2.2 and later.

The following member functions sample from a cube depth texture:
T sample(sampler s, float3 coord) const
T sample(sampler s, float3 coord, lod_options options) const

T sample(sampler s, float3 coord, bias bias_options,
min_lod_clamp min_lod_clamp_options) const

T sample(sampler s, float3 coord, gradientcube grad_options,
min_lod_clamp min_lod_clamp_options) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 250 of 346

The following member functions sample from a cube depth texture and compare a single
component against the specified comparison value:

T sample_compare(sampler s, float3 coord, float compare_value) const

T sample_compare(sampler s, float3 coord, float compare_value,
lod_options options) const

T must be a float type. In macOS, Metal 2.2 and earlier support 1od_options values level
and min_lod_clamp (the latter, in Metal 2.2 and later), and 1od must be a zero constant.
Metal 2.3 and later lift this restriction for 1od_options for Apple silicon.

The following member functions perform sampler-less reads from a cube depth texture:
T read(uint2 coord, uint face, uint lod = ©) const

T read(ushort2 coord, ushort face,
ushort lod = @) const // All 0S: Metal 1.2 and later.

This member function gathers four samples for bilinear interpolation when sampling a cube
depth texture:

Tv gather(sampler s, float3 coord) const

This member function gathers four samples for bilinear interpolation when sampling a cube
texture and comparing these samples with a specified comparison value:

Tv gather_compare(sampler s, float3 coord, float compare_value)
const

T mustbea float type.

The following member functions query a cube depth texture:
uint get_width(uint lod = @) const
uint get_height(uint lod = @) const

uint get_num_mip_levels() const

These member functions sample from a sparse cube depth texture in Metal 2.2 and later in iOS,
and Metal 2.3 and later in macQOS:

sparse_color-T sparse_sample(sampler s, float3 coord) const

sparse_color-T sparse_sample(sampler s, float3 coord,
bias options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
level options) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 251 of 346

sparse_color-T sparse_sample(sampler s, float3 coord,
min_lod_clamp min_lod_clamp_options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
bias bias_options,
min_lod_clamp min_lod_clamp_options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
gradientcube grad_options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
gradientcube grad_options,
min_lod_clamp min_lod_clamp_options) const

These member functions sample from a sparse cube depth texture and compare a single
component against a comparison value in Metal 2.2 and later in iOS, and Metal 2.3 and later in
macOS:

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
float compare_value) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
float compare_value, bias options) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
float compare_value, level options) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
float compare_value,
min_lod_clamp min_lod_clamp_options) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
float compare_value, bias bias_options,
min_lod_clamp min_lod_clamp_options) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
float compare_value,
gradient2d grad_options) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
float compare_value, gradient2d grad_options,
min_lod_clamp min_lod_clamp_options) const

These member functions perform a sampler-less read from a sparse cube depth texture in
Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-T sparse_read(ushort2 coord, ushort face
ushort lod = @) const

sparse_color-T sparse_read(uint2 coord, uint face,
uint lod = 0) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 252 of 346

This member function gathers four samples for bilinear interpolation from a sparse cube depth
texture in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather(sampler s, float3 coord) const

This member function gathers those samples and compare them against a comparison value
from a sparse cube depth texture in Metal 2.2 and later in iOS, and Metal 2.3 and later in
macOS:

sparse_color-Tv sparse_gather_compare(sampler s, float3 coord,
float compare_value) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result in Metal 2.3 and later in iOS, and Metal 2.2 and later in macOS:

float calculate_clamped_lod(sampler s, float3 coord);

float calculate_unclamped_lod(sampler s, float3 coord);

6.12.15 Cube Depth Texture Array

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (1od_options):

bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)
min_lod_clamp(float lod) // All 0S: Metal 2.2 and later.

These member functions sample from a cube depth texture array:
T sample(sampler s, float3 coord, uint array) const

T sample(sampler s, float3 coord, uint array,
lod_options options) const

T sample(sampler s, float3 coord, uint array, bias bias_options,
min_lod_clamp min_lod_clamp_options) const

T sample(sampler s, float3 coord, uint array,
gradientcube grad_options,
min_lod_clamp min_lod_clamp_options) const

These member functions sample from a cube depth texture and compare a single component
against the specified comparison value:

T sample_compare(sampler s, float3 coord, uint array,
float compare_value) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 253 of 346

T sample_compare(sampler s, float3 coord, uint array,
float compare_value, lod_options options) const

T must be a float type. In macOS, Metal 2.2 and earlier support 1od_options values level
and min_lod_clamp (the latter, in Metal 2.2 and later), and 1od must be a zero constant.
Metal 2.3 and later lift this restriction for 1od_options for Apple silicon.

These member functions perform sampler-less reads from a cube depth texture array:
T read(uint2 coord, uint face, uint array, uint lod = @) const

T read(ushort2 coord, ushort face, ushort array,
ushort lod = ©) const // All 0S: Metal 1.2 and later.

This member function gathers four samples for bilinear interpolation when sampling a cube
depth texture:

Tv gather(sampler s, float3 coord, uint array) const

This member function gathers four samples for bilinear interpolation when sampling a cube
depth texture and comparing these samples with a specified comparison value:

Tv gather_compare(sampler s, float3 coord, uint array,
float compare_value) const

T mustbea float type.

These member functions query a cube depth texture:
uint get_width(uint lod = @) const
uint get_height(uint lod = @) const
uint get_array_size() const

uint get_num_mip_levels() const

These member functions sample from a sparse cube depth texture array in Metal 2.2 and later
in i0S, and Metal 2.3 and later in macQOS:

sparse_color-T sparse_sample(sampler s, float3 coord,
uint array) const

sparse_color-T sparse_sample(sampler s, float3 coord,
uint array, bias options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
uint array, level options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
uint array,
min_lod_clamp min_lod_clamp_options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
uint array, bias bias_options,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 254 of 346

min_lod_clamp min_lod_clamp_options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
uint array,
gradientcube grad_options) const

sparse_color-T sparse_sample(sampler s, float3 coord,
uint array,
gradientcube grad_options,
min_lod_clamp min_lod_clamp_options) const

These member functions sample from a sparse cube depth texture array and compare a single
component against a comparison value in Metal 2.2 and later in iOS, and Metal 2.3 and later in
macOS:

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
uint array, float compare_value) const

sparse_color-T sparse_sample_compare(sampler s,float3 coord,
uint array, float compare_value,
bias options) const

sparse_color-T sparse_sample_compare(sampler s,float3 coord,
uint array, float compare_value,
level options) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
uint array, float compare_value,
min_lod_clamp min_lod_clamp_options) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
uint array, float compare_value,
bias bias_options,
min_lod_clamp min_lod_clamp_options) const
sparse_color-T sparse_sample_compare(sampler s, float3 coord,

uint array,float compare_value,
gradient2d grad_options) const

sparse_color-T sparse_sample_compare(sampler s, float3 coord,
uint array, float compare_value,
gradient2d grad_options,
min_lod_clamp min_lod_clamp_options) const

These member functions perform a sampler-less read from a sparse cube depth texture array in
Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-T sparse_read(ushort2 coord, ushort face, ushort array,
ushort lod = @) const

sparse_color-T sparse_read(uint2 coord, uint face, uint array,
uint lod = ©) const

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 255 of 346

This member function gathers four samples for bilinear interpolation from a sparse cube depth
texture array in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather(sampler s, float3 coord,
uint array) const

This member function gathers those samples and compare them against a comparison value
from a sparse 2D depth texture in Metal 2.2 and later in iOS, and Metal 2.3 and later in macOS:

sparse_color-Tv sparse_gather_compare(sampler s, float3 coord,
uint array,
float compare_value) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result in Metal 2.3 and later in iOS, and Metal 2.2 and later in macOS:

float calculate_clamped_lod(sampler s, float3 coord);

float calculate_unclamped_lod(sampler s, float3 coord);

6.12.16 Texture Buffer Functions
All OS: Metal 2.1 and later support texture buffers and these functions.

The following member functions can read from and write to an element in a texture buffer (also
see section 2.9.1):

Tv read(uint coord) const;

void write(Tv color, uint coord);

These member functions execute an atomic load from a texture buffer in Metal 3.1 and later:
Tv atomic_load(uint coord) const

Tv atomic_load(ushort coord) const

These member functions execute an atomic store to a texture buffer in Metal 3.1 and later:
void atomic_store(Tv color, uint coord) const

void atomic_store (Tv color, ushort coord) const

These member functions execute an atomic compare and exchange to a texture buffer in Metal
3.1 and later:

bool atomic_compare_exchange_weak(uint coord, thread Tv *expected,
Tv desired) const

bool atomic_compare_exchange_weak(ushort coord, thread Tv *expected,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 256 of 346

Tv desired) const

These member functions execute an atomic exchange to a texture buffer in Metal 3.1 and later:
Tv atomic_exchange(uint coord, Tv desired) const

Tv atomic_exchange(ushort coord, Tv desired) const

These member functions execute an atomic fetch and modify to a texture buffer in Metal 3.1
and later, where op is add, and, max, min, or, sub, or xor for int, and uint color type:

Tv atomic_fetch_op(uint coord, Tv operand)

Tv atomic_fetch_op(ushort coord, Tv operand) const

These member functions execute an atomic min or max to a texture buffer in Metal 3.1 and
later:

void atomic_min(uint coord, ulong4 operand)
void atomic_min(ushort coord, ulong4 operand)
void atomic_max(uint coord, ulong4 operand)

void atomic_max(ushort coord, ulong4 operand)

The following example uses the read method to access a texture buffer:

kernel void
myKernel(texture_buffer<float, access::read> myBuffer)
{

uint index = ..;

float4 value = myBuffer.read(index);

Use the following method to query the number of elements in a texture buffer:

uint get_width() const;

6.12.17 Texture Synchronization Functions
All OS: Metal 1.2 and later support texture synchronization functions.

The texture fence () member function ensures that writes to the texture by a thread become
visible to subsequent reads from that texture by the same thread (the thread that is performing
the write). Texture types (including texture buffers) that you can declare with the
access::read_write attribute support the Fence function.

void fence()

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 257 of 346

The following example shows how to use a texture fence function to make sure that writes to a
texture by a thread are visible to later reads to the same location by the same thread:

kernel void
my_kernel(texture2d<float, access::read_write> texA,

ushort2 gid [[thread_position_in_grid]l])

{
float4 clr = ..;
texA.write(clr, gid);
// Use fence to ensure that writes by thread are
// visible to later reads by the thread.
texA.fence();
clr_new = texA.read(gid);

b

6.12.18 Null Texture Functions
All OS: Metal 1.2 and later support null texture functions.

macOS: Metal 2 and later support null texture functions for texture2d_ms_array and
depth2d_ms_array.

Use the following functions to determine if a texture is a null texture. If the texture is a null
texture, is_null_texture returns true; otherwise, return false:

bool is_null_texture(textureld<T, access>);

bool is_null_texture(textureld_array<T, access>);
bool is_null_texture(texture2d<T, access>);

bool is_null_texture(texture2d_array<T, access>);
bool is_null_texture(texture3d<T, access>);

bool is_null_texture(texturecube<T, access>);

bool is_null_texture(texturecube_array<T, access>);
bool is_null_texture(texture2d_ms<T, access>);

// Metal 2 and later support texture2d_ms_array in macO0S, and
// Metal 2.3 and later in iO0S.

bool is_null_texture(texture2d_ms_array<T, access>);
bool is_null_texture(depth2d<T, access>);

bool is_null_texture(depth2d_array<T, access>);

bool is_null_texture(depthcube<T, access>);

bool is_null_texture(depthcube_array<T, access>);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 258 of 346

bool is_null_texture(depth2d_ms<T, access>);
// depth2d_ms_array is macOS only, in Metal 2 and later.
bool is_null_texture(depth2d_ms_array<T, access>);

The behavior of calling any texture member function with a null texture is undefined.

6.13 Imageblock Functions

macOS: Metal 2.3 and later support imageblocks for Apple silicon.
iOS: Metal 2 and later support imageblocks.

This section lists the Metal member functions for imageblocks. (For more about the imageblock
data type, see sections 2.11 and 5.6.)

The following member functions query information about the imageblock:
ushort get_width() const;
ushort get_height() const;

ushort get_num_samples() const;

Use the following member function to query the number of unique color entries for a specific
location given by an (x, y) coordinate inside the imageblock:

ushort get_num_colors(ushort2 coord) const;

The following member function returns the color coverage mask (that is, whether a given color
covers one or more samples in the imageblock). Each sample is identified by its bit position in
the return value. If a bit is set, then this indicates that this sample uses the color index.

ushort get_color_coverage_mask(ushort2 coord, ushort color_index)
const;

color_indexisavalue from0toget_num_colors() - 1.

6.13.1 Functions for Imageblocks with Implicit Layout

Use the following functions to read or write an imageblock at pixel rate for a given (x, y)
coordinate inside the imageblock:

T read(ushort2 coord) const;

void write(T data, ushort2 coord);

Use the following member function to read or write an imageblock at sample or color rate.
coord specifies the (x, y) coordinate inside the imageblock, and index is the sample or color
index.

enum class imageblock_data_rate { color, sample };

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 259 of 346

T read(ushort2 coord, ushort index,
imageblock_data_rate data_rate) const;

void write(T data, ushort2 coord, ushort index,
imageblock_data_rate data_rate);

Example:

struct Foo {
float4 a [[color(9)11;
int4 b [[color(1)1];
¥

kernel void
my_kernel(imageblock<Foo, imageblock_layout_implicit> img_blk,
ushort2 1id [[thread_position_in_threadgroupl] ..)

{
Eoo f = img_blk.read(1lid); float4 r = f.a;
¥.a =71;

, Emg_blk.write(f, 1lid);

Use the following member function to write an imageblock with a color coverage mask. You
must use this member function when writing to an imageblock at color rate:

void write(T data, ushort2 coord, ushort color_coverage_mask);

Use the following member functions to get a region of a slice for a given data member in the
imageblock. You use these functions to write data associated with a specific data member
described in the imageblock for all threads in the threadgroup to a specified region in a texture.
color_index refers to the data member declared in the structure type specified in
imageblock<T> withthe [[color(n)]] attribute where nls color_index. size isthe
actual size of the copied slice.

const imageblock_slice<E, imageblock_layout_implicit> slice(ushort
color_index) const;

const imageblock_slice<E, imageblock_layout_implicit> slice(ushort
color_index, ushort2 size) const;

The region to copy has an origin of (0,0). The slice(..) member function that does not have
the argument size copies the entire width and height of the imageblock.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 260 of 346

6.13.2 Functions for Imageblocks with Explicit Layout

Use the following member functions to get a reference to the imageblock data for a specific
location given by an (x, y) coordinate inside the imageblock. Use these member functions when
reading or writing data members in an imageblock At pixel rate.

threadgroup_imageblock Tx data(ushort2 coord);
const threadgroup_imageblock T* data(ushort2 coord) const;

Use the following member functions to get a reference to the imageblock data for a specific
location given by an (x, y) coordinate inside the imageblock and a sample or color index. Use
these member functions when reading or writing data members in an imageblock at sample or
color rate. T is the type specific in the imageblock<T> templated declaration. coord is the
coordinate in the imageblock, and index is the sample or color index for a multisampled
imageblock. data_rate specifies whether the index is a color or sample index. If coord refers
to a location outside the imageblock dimensions or if index is an invalid index, the behavior of
data() is undefined.

enum class imageblock_data_rate { color, sample };

threadgroup_imageblock Tx data(ushort2 coord, ushort index,
imageblock_data_rate data_rate);

const threadgroup_imageblock T* data(ushort2 coord, ushort index,
imageblock_data_rate data_rate) const;

Calling the data(coord) member function for an imageblock that stores pixels at sample or
color rate is equivalent to calling data(coord, 0, imageblock_data_rate::sample).

Example:

struct Foo {
rgbha8unorm<half4> a;
int b;

o

kernel void
my_kernel(imageblock<Foo> img_blk,
ushort2 1id [[thread_position_in_threadgroupl] ..)

{
threadgroup_imageblock Foox f = img_blk.data(1lid);
half4 r = f->a;
f->a = r;

b

Use the following write member function to write an imageblock with a color coverage mask.
You must use this member function when writing to an imageblock at color rate.

void write(T data, ushort2 coord, ushort color_coverage_mask);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 261 of 346

Use the following s11ice member functions to get a region of a slice for a given data member in
the imageblock structure. You use this function to write data associated with a specific data
member described in the imageblock structure for all threads in the threadgroup to a specified
region in a texture.

data_member is a data member declared in the structure type specified in imageblock<T>.
size is the actual size of the copied slice.

const imageblock_slice<E, imageblock_layout_explicit>
slice(const threadgroup_imageblock E& data_member) const;
const imageblock_slice<E, imageblock_layout_explicit>

slice(const threadgroup_imageblock E& data_member, ushort2 size)
const;

The region to copy has an origin of (0,0). The slice(..) member function that doesn’t have
the argument size copies the entire width and height of the imageblock.

6.13.3 Writing an Imageblock Slice to a Region in a Texture

Use the following write (..) member function in these texture types to write pixels associated
with a slice in the imageblock to a texture starting at a location that coord provides.

A write to atexture from an imageblock is out-of-bounds if, and only if, it meets any of these
conditions:

e The accessed coordinates are out-of-bounds.
¢ The level of detail argument is out-of-bounds.
e Any part of the imageblock_slice accesses outside the texture.

An out-of-bounds write to a texture is undefined. Note that the write from
imageblock_slice to atexture must have matching MSAA modes or the result is undefined.

For a 1D texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
uint coord, uint lod = 90);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
ushort coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
uint coord, uint lod = 90);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
ushort coord, ushort lod = 0);

For a 1D texture array:

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
uint coord, uint array, uint lod = 0);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 262 of 346

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
ushort coord, ushort array, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
uint coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
ushort coord, ushort array, ushort lod = 0);

For a 2D texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
uint2 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
ushort2 coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
uint2 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
ushort2 coord, ushort lod = 0);

For a 2D MSAA texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
uint2 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
ushort2 coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
uint2 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
ushort2 coord, ushort lod = 0);

For a 2D texture array:

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
uint2 coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
ushort2 coord, ushort array, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
uint2 coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
ushort2 coord, ushort array, ushort lod = 0);

For a cube texture:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 263 of 346

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
uint2 coord, uint face, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
ushort2 coord, ushort face, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
uint2 coord, uint face, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
ushort2 coord, ushort face, ushort lod = 0);

For a cube texture array

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
uint2 coord, uint face, uint array, uint lod =
0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
ushort2 coord, ushort face, ushort array, ushort
lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
uint2 coord, uint face, uint array, uint lod =
0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
ushort2 coord, ushort face, ushort array, ushort
lod = 0);

For a 3D texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
uint3 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
ushort3 coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
uint3 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
ushort3 coord, ushort lod = 0);

Example:

struct Foo {
half4 a;
int b;
float c;
I

kernel void
my_kernel(texture2d<half> src [[texture(®) 11,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 264 of 346

texture2d<half, access::write> dst [[texture(1l) 11,
imageblock<Foo> img_blk,

ushort2 1id [[thread_position_in_threadgroup 11,
ushort2 gid [[thread_position_in_grid 11])

{
// Read the pixel from the input image using the thread ID.
half4 clr = src.read(gid);
// Get the image slice.
threadgroup_imageblock Foox f = img_blk.data(1lid);
// Write the pixel in the imageblock using the thread ID in
// threadgroup.
f->a = clr;
// A barrier to make sure all threads finish writing to the
// imageblock.
//
// In this case, each thread writes to its location in the
// imageblock so a barrier isn’t necessary.
threadgroup_barrier(mem_flags::mem_threadgroup_imageblock);
// Process the pixels in imageblock, and update the elements in
// slice.
process_pixels_in_imageblock(img_blk, gid, 1id);
// A barrier to make sure all threads finish writing to the
// elements in the imageblock.
threadgroup_barrier(mem_flags::mem_threadgroup_imageblock);
// Write a specific element in an imageblock to the output
// image. Only one thread in the threadgroup performs the
// imageblock write.
if (lid.x == 0 && lid.y == 0)

dst.write(img_blk.slice(f->a), gid);
b

6.14 Pack and Unpack Functions

This section lists the Metal functions, defined in the header <metal_pack>, for converting a
vector floating-point data to and from a packed integer value. Refer to subsections of section
8.7 for details on how to convert from an 8-, 10-, or 16-bit signed or unsigned integer value to a
normalized single- or half-precision floating-point value and vice-versa.

6.14.1 Unpack and Convert Integers to a Floating-Point Vector

Table 6.23 lists functions that unpack multiple values from a single unsigned integer and then
converts them into floating-point values that are stored in a vector.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 265 of 346

Table 6.23. Unpack functions

Built-in unpack functions

Description

float4 unpack_unorm4x8_to_float(uint x)
float4 unpack_snorm4x8_to_float(uint x)
half4 unpack_unorm4x8_to_half(uint x)
half4 unpack_snorm4x8_to_half(uint x)

Unpack a 32-bit unsigned integer
into four 8-bit signed or unsigned
integers and then convert each 8-bit
signed or unsigned integer value to a
normalized single- or half-precision
floating-point value to generate a 4-
component vector.

floats
unpack_unorm4x8_srgb_to_float(uint x)
half4 unpack_unorm4x8_srgb_to_half(uint
X)

Unpack a 32-bit unsigned integer
into four 8-bit signed or unsigned
integers and then convert each 8-bit
signed or unsigned integer value to a
normalized single- or half-precision
floating-point value to generate a 4-
component vector. Ther, g, and b
color values are converted from
sRGB to linear RGB.

float2 unpack_unorm2x16_to_float(uint
X)
float2 unpack_snorm2x16_to_float(uint
X)
half2 unpack_unorm2x16_to_half(uint x)
half2 unpack_snorm2x16_to_half(uint x)

Unpack a 32-bit unsigned integer
into two 16-bit signed or unsigned
integers and then convert each 16-
bit signed or unsigned integer value
to a normalized single- or half-
precision floating-point value to
generate a 2-component vector.

float4 unpack_unorml@a2_to_float(uint
X)

float3 unpack_unorm565_to_float(ushort
X)

half4 unpack_unorml@a2_to_half(uint x)
half3 unpack_unormb565_to_half(ushort x)

Converta 10a2 (1010102) or 565
color value to the corresponding
normalized single- or half-precision
floating-point vector.

float4 unpack_snorml@a2_to_float(uint
X)
half4 unpack_snorml@a2_to_half(uint x)

All OS: Metal 4 and later

Converta 10a2 (1010102) signed
color value to the corresponding
normalized single- or half-precision
floating-point vector.

When converting from a 16-bit unsigned normalized or signed normalized value to a half-
precision floating-point, the unpack_unorm2x16_to_half and
unpack_snorm2x16_to_half functions may lose precision.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 266 of 346

6.14.2

Convert Floating-Point Vector to Integers, then Pack the Integers

Table 6.24 lists functions that start with a floating-point vector, converts the components into
integer values, and then packs the multiple values into a single unsigned integer.

Table 6.24. Pack functions

Built-in pack functions

Description

uint
uint
uint
uint

pack_float_to_unorm4x8(float4 x)
pack_float_to_snorm4x8(float4 x)
pack_half_to_unorm4x8(half4 x)
pack_half_to_snorm4x8(half4 x)

Convert a four-component vector
normalized single- or half-precision
floating-point value to four 8-bit
integer values and pack these 8-bit
integer values into a 32-bit unsigned
integer.

uint

pack_float_to_srgb_unorm4x8(floats

Convert a four-component vector

uint

ushort pack_float_to_unormb565(float3)

pack_half_to_unorml@a2(halfs4)

ushort pack_half_to_unorm565(half3)

X) normalized single- or half-precision

uint pack_half_to_srgb_unorm4x8(half4 floating-point value to four 8-bit

X) integer values and pack these 8-bit
integer values into a 32-bit unsigned
integer. The color values are
converted from linear RGB to sRGB.

uint pack_float_to_unorm2x16(float2 x) Convert a two-component vector of

uint pack_float_to_snorm2x16(float2 x) normalized single- or half-precision

uint pack_half_to_unorm2x16(half2 x) floating-point values to two 16-bit

uint pack_half_to_snorm2x16(half2 x) integer values and pack these 16-bit
integer values into a 32-bit unsigned
integer.

uint pack_float_to_unorml@a2(floats) Convert a three- or four-component

vector of normalized single- or half-
precision floating-point values to a
packed, 10a2 (1010102) or 565
color integer value.

uint
uint

pack_float_to_snorml@a2(float4)
pack_half_to_snorml@a2(half4)

All OS: Metal 4 and later.

Convert a four-component vector of
normalized single- or half-precision
floating-point values to a packed
10a2 (1010102) signed color integer
value.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 267 of 346

6.15 Atomic Functions

The Metal programming language implements a subset of the C++17 atomics and
synchronization operations. Metal atomic functions must operate on Metal atomic data, as
described in section 2.6.

Atomic operations play a special role in making assignments in one thread visible to another
thread. A synchronization operation on one or more memory locations is either an acquire
operation, a release operation, or both. A synchronization operation without an associated
memory location is a fence and can be either an acquire fence, a release fence, or both. In
addition, there are relaxed atomic operations that are not synchronization operations.

There are only a few kinds of operations on atomic types, although there are many instances of
those kinds. This section specifies each general kind.

Atomic functions are defined in the header <metal_atomic>.

6.15.1 Memory Order

The enumeration memory_order specifies the detailed regular (nonatomic) memory
synchronization operations (see section 29.3 of the C++17 specification) and may provide for
operation ordering:

enum memory_order {
memory_order_relaxed,
memory_order_seq_cst
o

For atomic operations other than atomic_thread_fence, memory order_relaxedisthe
only enumeration value. With memory_order_relaxed, there are no synchronization or
ordering constraints; the operation only requires atomicity. These operations do not order
memory, but they guarantee atomicity and modification order consistency. A typical use for
relaxed memory ordering is updating counters, such as reference counters because this only
requires atomicity, but neither ordering nor synchronization.

In Metal 3.2 and later, you can use memory_order_seq_cstonatomic_thread_fenceto
indicate that everything that happens before a store operation in one thread becomes a visible
side effect in the thread that performs the load, and establishes a single total modification order
of all tagged atomic operations.

6.15.2 Thread Scope
All OS: Metal 3.2 and later support thread_scope for Apple silicon.

The enumeration thread_scope denotes a set of threads for the memory order constraint
that the memory_order provides:

enum thread_scope {
thread_scope_thread,
thread_scope_simdgroup,
thread_scope_threadgroup,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 268 of 346

thread_scope_device
h

Informally, the thread scope on a synchronization operation defines the set of threads with
which this operation may synchronize, or which may synchronize with the operation. You use it
with atomic_thread_fence.

6.15.3 Fence Functions
All OS: Metal 3.2 and later support atomic_thread_fence for Apple silicon.

The atomic_thread_fence establishes memory synchronization ordering of nonatomic and
relaxed atomic accesses, according to the memory order and thread scope, without an
associated atomic function:

void atomic_thread_fence(mem_flags flags, memory_order order,
thread_scope scope = thread_scope_device)

A fence operates on the following address space scopes:
threadgroup, if mem_flags include mem_threadgroup

threadgroup_imageblock, if mem_flags include
mem_threadgroup_imageblock

object_data, if mem_flags include mem_object_data
device, if mem_flags include mem_device

texture, ifmem_flags include mem_texture

A fence accepts a scope parameter (see section 6.15.2) that denotes the set of threads for the
fence that the order affects. Depending on the value of order (see section 6.15.1), this
operation:

e has no effects, if order == memory_order_relaxed

e is a sequentially consistent acquire and release fence, if order ==
memory_order_seq_cst

An atomic_thread_fence imposes different synchronization constraints than an atomic
store operation with the same memory_order. An atomic store-release operation prevents all
preceding writes from moving past the store-release, and an atomic_thread_fence with
memory_order_seq_cst ordering prevents all preceding writes from moving past all
subsequent stores within that scope.

6.15.4 Atomic Functions

In addition, accesses to atomic objects may establish interthread synchronization and order
nonatomic memory accesses as specified by memory_order.

In the atomic functions described in the subsections of this section:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 269 of 346

- Arefers to one of the atomic types.
- Crefers to its corresponding nonatomic type.

- Mrefers to the type of the other argument for arithmetic operations. For atomic integer
types, Mis C.

Note that each atomic function may support only some types. The following sections indicate
which type A Metal supports.

All OS: Metal 1 and later support functions with names that end with _explicit (such as
atomic_store_explicitoratomic_load_explicit) unless otherwise indicated. Metal
3 supports the atomic_float for device memory only.

iOS: Metal 2 and later support the atomic_store, atomic_load, atomic_exchange,
atomic_compare_exchange_weak, and atomic_fetch_key functions.

6.15.4.1 Atomic Store Functions

These functions atomically replace the value pointed to by object with desired. These
functions support atomic types A of atomic_int, atomic_uint, atomic_bool, and
atomic_float. Atomic store supports atomic_float only for device memory.

All OS: Support for the atomic_store_explicit function withmemory_order_relaxed
supported, as indicated.

void atomic_store_explicit(threadgroup Ax object, C desired,
memory_order order) // All 0S: Since Metal 2.

void atomic_store_explicit(volatile threadgroup Ax object,
C desired,
memory_order order) // All 0S: Since Metal 1.

void atomic_store_explicit(device Ax object, C desired,
memory_order order) // All 0S: Since Metal 2.

void atomic_store_explicit(volatile device Ax object, C desired,
memory_order order) // All 0S: Since Metal 1.

6.15.4.2 Atomic Load Functions

These functions atomically obtain the value pointed to by object. These functions support
atomic types A of atomic_int, atomic_uint, atomic_bool, and atomic_float. Atomic
load supports atomic_float only for device memory.

All OS: Support for the atomic_load_explicit function with memory_order_relaxed
supported, as indicated.

C atomic_load_explicit(const threadgroup Ax object,
memory_order order) // All 0S: Since Metal 2.

C atomic_load_explicit(const volatile threadgroup Ax object,
memory_order order) // All 0S: Since Metal 1.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 270 of 346

C atomic_load_explicit(const device Ax object,
memory_order order) // All 0S: Since Metal 2.

C atomic_load_explicit(const volatile device Ax object,
memory_order order) // All 0S: Since Metal 1.

6.15.4.3 Atomic Exchange Functions

These functions atomically replace the value pointed to by object with desired and return
the value object previously held. These functions support atomic types A of atomic_int,
atomic_uint, atomic_bool, and atomic_float.

All OS: Support for the atomic_exchange_explicit function with
memory_order_relaxed supported, as indicated.

C atomic_exchange_explicit(threadgroup Ax object,
C desired,
memory_order order) // All 0S: Since Metal 2.

C atomic_exchange_explicit(volatile threadgroup Ax object,
C desired,
memory_order order) // All 0S: Since Metal 1.

C atomic_exchange_explicit(device Ax object,
C desired,
memory_order order) // All 0S: Since Metal 2.

C atomic_exchange_explicit(volatile device Ax object,
C desired,
memory_order order) // All 0S: Since Metal 1.

6.15.4.4 Atomic Compare and Exchange Functions

These compare-and-exchange functions atomically compare the value in xobject with the
value in kexpected. If those values are equal, the compare-and-exchange function performs a
read-modify-write operation to replace *object with desired. Otherwise if those values are
not equal, the compare-and-exchange function loads the actual value from *object into
kexpected. If the underlying atomic value in *kobject was successfully changed, the
compare-and-exchange function returns true; otherwise it returns false. These functions
support atomic types A of atomic_int, atomic_uint, atomic_bool, and
atomic_float.

Copying is performed in a manner similar to std: :memcpy . The effect of a compare-and-
exchange function is:

if (memcmp(object, expected, sizeof(xobject)) == 0) {
memcpy (object, &desired, sizeof(xobject));
} else {

memcpy (expected, object, sizeof(xobject));

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 271 of 346

All OS: Support for the atomic_compare_exchange_weak_explicit function supported
as indicated; support for memory_order_relaxed forindicating success and failure. If the
comparison is true, the value of success affects memory access, and if the comparison is
false, the value of failure affects memory access.

bool atomic_compare_exchange_weak_explicit(threadgroup Ax object,
C xexpected, C desired, memory_order success,
memory_order failure) // All 0S: Since Metal 2.

bool atomic_compare_exchange_weak_explicit(volatile threadgroup Ax
object,
C xexpected, C desired, memory_order success,
memory_order failure) // All 0S: Since Metal 1.

bool atomic_compare_exchange_weak_explicit(device Ax object,
C xexpected, C desired, memory_order success,
memory_order failure) // All 0S: Since Metal 2.

bool atomic_compare_exchange_weak_explicit(volatile device Ax
object,
C xexpected, C desired, memory_order success,
memory_order failure) // All 0S: Since Metal 1.

6.15.4.5 Atomic Fetch and Modify Functions
All OS: The following atomic fetch and modify functions are supported, as indicated.
The only supported value for order ismemory_order_relaxed.

C atomic_fetch_key_explicit(threadgroup A*x object,
M operand,
memory_order order) // All 0S: Since Metal 2.

C atomic_fetch_key_explicit(volatile threadgroup A*x object,
M operand,
memory_order order) // All 0S: Since Metal 1.

C atomic_fetch_key_explicit(device Ax object,
M operand,
memory_order order) // All 0S: Since Metal 2.

C atomic_fetch_key_explicit(volatile device Ax object,
M operand,
memory_order order) // All 0S: Since Metal 1.

The key in the function name is a placeholder for an operation name listed in the first column of
Table 6.25, suchas atomic_fetch_add_explicit. The operations detailed in Table 6.25
are arithmetic and bitwise computations. The function atomically replaces the value pointed to
by object with the result of the specified computation (third column of Table 6.25). The
function returns the value that object held previously. There are no undefined results.

These functions are applicable to any atomic object of type atomic_int,and atomic_uint.
Atomic add and sub support atomic_float only in device memory.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 272 of 346

Table 6.25. Atomic operations

Key Operator | Computation

add + Addition

and & Bitwise and

max max Compute max

min min Compute min

or Bitwise inclusive or
sub = Subtraction

X0r A Bitwise exclusive or

These operations are atomic read-modify-write operations. For signed integer types, the
arithmetic operation uses two's complement representation with silent wrap-around on
overflow.

6.15.4.6 Atomic Modify Functions (64 Bits)

All OS: Metal 2.4 and later support the following atomic modify functions for Apple silicon. See
the Metal Feature Set Tables to determine which GPUs support this feature.

These functions are applicable to any atomic object of type atomic_ulong. The only
supported value for order ismemory_order_relaxed.

void atomic_key_explicit(device Ax object,
M operand,
memory_order order)

void atomic_key_explicit(volatile device Ax object,
M operand,
memory_order order)

The key in the function name is a placeholder for an operation name listed in the first column of
Table 6.26, suchas atomic_max_explicit. The operations detailed in Table 6.26 are
arithmetic. The function atomically replaces the value pointed to by object with the result of
the specified computation (third column of Table 6.26). The function returns void. There are no
undefined results.

Table 6.26. Atomic modify operations

Key Operator | Computation
max max Compute max
min min Compute min

These operations are atomic read-modify-write operations.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 273 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

6.16 Encoding Commands for Indirect Command Buffers

Indirect Command Buffers (ICBs) support the encoding of Metal commands into a Metal buffer
for repeated use. Later, you can submit these encoded commands to the CPU or GPU for
execution. ICBs for both render and compute commands use the command_buffer type to
encode commands into an ICB object (represented in the Metal framework by
MTLIndirectCommandBuffer):

struct command_buffer {
size_t size() const;
o

An ICB can contain either render or compute commands but not both. Execution of compute
commands from a render encoder is illegal. So is execution of render commands from a
compute encoder.

6.16.1 Encoding Render Commands in Indirect Command Buffers
All OS: Metal 2.1 and later support indirect command buffers for render commands.

ICBs allow the encoding of draw commands into a Metal buffer for subsequent execution on the
GPU.

In a shading language function, use the command_buffer type to encode commands for ICBs
into a Metal buffer object that provides indexed access to a render_command structure.

struct arguments {
command_buffer cmd_buffer;
b
kernel void producer(device arguments &args,

ushort cmd_idx [[thread_position_in_grid]])

render_command cmd(args.cmd_buffer, cmd_idx);

render_command can encode any draw command type. The following public interface for
render_command is defined in the header <metal_command_buffer>. To pass
render_pipeline_state objects to your shader, use argument buffers. Within an argument
buffer, the pipeline state can be passed as scalars or in an array.

set_render_pipeline_state(..) and render pipeline states are available in iOS in Metal
2.2 and later, and macOS in Metal 2.1 and later:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 274 of 346

enum class primitive_type { point, line, line_strip, triangle,
triangle_strip };

Metal 4 defines the following structures and enumerations:

enum class cull_mode { none, front, back };
enum class depth_clip_mode { clip, clamp };
enum class triangle_fill_mode { fill, lines };

struct depth_stencil_state {
public:
depth_stencil_state();
depth_stencil_state(const depth_stencil_state &);
depth_stencil_state &operator=(const depth_stencil_state);
};

struct render_command {
public:
explicit render_command(command_buffer icb, unsigned cmd_index);
void set_render_pipeline_state(
render_pipeline_state pipeline_state);

template <typename T ..>

void set_vertex_buffer(device T xbuffer, uint index);
template <typename T ..>

void set_vertex_buffer(constant T xbuffer, uint index);

// Metal 3.1: Supported passing vertex strides.

template <typename T ..>

void set_vertex_buffer(device T xbuffer, size_t stride,
uint index);

template <typename T ..>

void set_vertex_buffer(constant T xbuffer, size_t stride,
uint index);

// Metal 4: Support setting raster states.

void set_cull_mode(cull_mode mode);

void set_front_facing_winding(winding w);

void set_triangle_fill_mode(triangle_fill_mode mode);

// Metal 4: Set depth stencil states.

void set_depth_bias(float bias, float slope_scale, float clamp);
void set_depth_clip_mode(depth_clip_mode mode);

void set_depth_stencil_state(depth_stencil_state state);

template <typename T ..>

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 275 of 346

void set_fragment_buffer(device T xbuffer, uint index);
template <typename T ..>
void set_fragment_buffer(constant T xbuffer, uint index);

void draw_primitives(primitive_type type, uint vertex_start,
uint vertex_count, uint instance_count,
uint base_instance);

// Overloaded draw_indexed_primitives based on index_buffer.
void draw_indexed_primitives(primitive_type type,
uint index_count,
device ushort xindex_buffer,
uint instance_count,
uint base_vertex,
uint base_instance);

void draw_indexed_primitives(primitive_type type,
uint index_count,
device uint *xindex_buffer,
uint instance_count,
uint base_vertex,
uint base_instance);

void draw_indexed_primitives(primitive_type type,
uint index_count,
constant ushort *xindex_buffer,
uint instance_count,
uint base_vertex,
uint base_instance);

void draw_indexed_primitives(primitive_type type,
uint index_count,
constant uint *xindex_buffer,
uint instance_count,
uint base_vertex,
uint base_instance);

// Overloaded draw_patches based on patch_index_buffer and
// tessellation_factor_buffer.
void draw_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint xpatch_index_buffer,
uint instance_count, uint base_instance,
const device MTLQuadTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 276 of 346

void draw_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint xpatch_index_buffer,
uint instance_count, uint base_instance,
const device

MTLTriangleTessellationFactorsHalf
xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint xpatch_index_buffer,
uint instance_count, uint base_instance,
constant MTLQuadTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

void draw_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint xpatch_index_buffer,
uint instance_count, uint base_instance,
constant MTLTriangleTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

void draw_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint xpatch_index_buffer,
uint instance_count, uint base_instance,
const device MTLQuadTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

void draw_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint xpatch_index_buffer,
uint instance_count, uint base_instance,
const device

MTLTriangleTessellationFactorsHalf
xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint xpatch_index_buffer,
uint instance_count, uint base_instance,
constant MTLQuadTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 277 of 346

void draw_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint xpatch_index_buffer,
uint instance_count, uint base_instance,
constant MTLTriangleTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

// Overloaded draw_indexed_patches based on patch_index_buffer,
// control_point_index_buffer and tessellation_factor_buffer.

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint *patch_index_buffer,
const device void *control_point_index_buffer,
uint instance_count, uint base_instance,
const device MTLQuadTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint *patch_index_buffer,
const device void *control_point_index_buffer,
uint instance_count, uint base_instance,
const device MTLTriangleTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint *patch_index_buffer,
const device void *control_point_index_buffer,
uint instance_count, uint base_instance,
constant MTLQuadTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint *patch_index_buffer,
const device void *control_point_index_buffer,
uint instance_count, uint base_instance,
constant MTLTriangleTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 278 of 346

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint *patch_index_buffer,
constant void *control_point_index_buffer,
uint instance_count, uint base_instance,
const device MTLQuadTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint *patch_index_buffer,
constant void *control_point_index_buffer,
uint instance_count, uint base_instance,
const device MTLTriangleTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint *patch_index_buffer,
constant void *control_point_index_buffer,
uint instance_count, uint base_instance,
constant MTLQuadTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
const device uint *patch_index_buffer,
constant void *control_point_index_buffer,
uint instance_count, uint base_instance,
constant MTLTriangleTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint *xpatch_index_buffer,
const device void *control_point_index_buffer,
uint instance_count, uint base_instance,
const device MTLQuadTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 279 of 346

constant uint *patch_index_buffer,

const device void *control_point_index_buffer,

uint instance_count, uint base_instance,

const device MTLTriangleTessellationFactorsHalf
xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint *patch_index_buffer,
const device void *control_point_index_buffer,
uint instance_count, uint base_instance,
constant MTLQuadTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint *patch_index_buffer,
const device void *control_point_index_buffer,
uint instance_count, uint base_instance,
constant MTLTriangleTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint *patch_index_buffer,
constant void *control_point_index_buffer,
uint instance_count, uint base_instance,
const device MTLQuadTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint *xpatch_index_buffer,
constant void *control_point_index_buffer,
uint instance_count, uint base_instance,
const device MTLTriangleTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint *patch_index_buffer,
constant void *control_point_index_buffer,
uint instance_count, uint base_instance,

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 280 of 346

constant MTLQuadTessellationFactorsHalf
xtessellation_factor_buffer,
uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,
uint patch_start, uint patch_count,
constant uint *xpatch_index_buffer,
constant void *control_point_index_buffer,
uint instance_count, uint base_instance,
constant MTLTriangleTessellationFactorsHalf

xtessellation_factor_buffer,

uint instance_stride = 0);

// Reset the entire command. After reset(), without further
// modifications, execution of this command doesn’t perform
// any action.

void reset();

// Copy the content of the “source’ command into this command.
void copy_command(render_command source);
o

When accessing command_buffer, Metal does not check whether the access is within
bounds. If an access is beyond the capacity of the buffer, the behavior is undefined.

The exposed methods in render_command mirror the interface of
MTLIndirectRenderCommand and are similar to MTLRenderCommandEncoder. Notable
differences with MTLRenderCommandEncoder are:

* Calls to draw* methods in render_command encode the actions taken by the
command. If multiple calls are made, only the last one takes effect.

* The tessellation arguments are passed directly in render_command: :draw_patches
and render_command: :draw_indexed_patches. Other calls do not set up the
tessellation arguments.

6.16.2 Encoding Compute Commands in Indirect Command Buffers
iOS: Metal 2.2 and later support indirect command buffers for compute commands.
macOS: Metal 2.3 and later support indirect command buffers for compute commands.

ICBs allow the encoding of dispatch commands into a Metal buffer for subsequent execution on
the GPU.

In a shading language function, use the command_buffer type to encode commands for ICBs
into a Metal buffer object that provides indexed access to a compute_command structure:

struct arguments {
command_buffer cmd_buffer;
2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 281 of 346

¥
[[kernell] void producer(device arguments &args,
ushort cmd_idx [[thread_position_in_grid]l])
{
compute_command cmd(args.cmd_buffer, cmd_idx);

compute_command can encode any dispatch command type. The following public interface
for compute_command is defined in the header <metal_command_buffer>. The
compute_pipeline_state type represents compute pipeline states, which can only be
passed to shaders through argument buffers. Within an argument buffer, the pipeline state can
be passed as scalars or in an array.

struct compute_command {
public:
explicit compute_command(command_buffer icb,
unsigned cmd_index);

void set_compute_pipeline_state(
compute_pipeline_state pipeline);

template <typename T ..>

void set_kernel buffer(device T *buffer, uint index);
template <typename T ..>

void set_kernel buffer(constant T xbuffer, uint index);

// Metal 3.1: Supports passing kernel strides.

template <typename T ..>

void set_kernel buffer(device T *buffer, size_t stride,
uint index);

template <typename T ..>

void set_kernel buffer(constant T xbuffer, size_t stride,
uint index);

void set_barrier();
void clear_barrier();

void concurrent_dispatch_threadgroups(
uint3 threadgroups_per_grid,
uint3 threads_per_threadgroup);
void concurrent_dispatch_threads(uint3 threads_per_grid,
uint3 threads_per_threadgroup);

void set_threadgroup_memory_length(uint length, uint index);
void set_stage_in_region(uint3 origin, uint3 size);
// Reset the entire command. After reset(), without further

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 282 of 346

// modifications. Execution of this command doesn’t perform
// any action.
void reset();

// Copy the content of the “source’ command into this command.
void copy_command(compute_command source);
b

When accessing command_buffer, Metal does not check whether the access is within
bounds. If an access is beyond the capacity of the buffer, the behavior is undefined.

The exposed methods in compute_command mirror the interface of
MTLIndirectComputeCommand and are similar to MTLComputeCommandEncoder.

In an ICB, dispatches are always concurrent. Calls to the concurrent_dispatchs* methods
in compute_command encode the actions taken by the command. If multiple calls are made,
only the last one takes effect.

The application is responsible for putting barriers where they are needed. Barriers encoded in
an ICB do not affect the parent encoder.

The CPU may have initialized individual commands within a command_buffer before the
command_buffer is passed as an argument to a shader. If the CPU has not already initialized
a command, you must reset that command before using it.

6.16.3 Copying Commands of an Indirect Command Buffer

Copying a command structure (either render_command or compute_command) via
operator=does not copy the content of the command, it only makes the destination
command point to the same buffer and index as the source command. To copy the content of
the command, call the copy_command functions listed in sections 6.16.1 and 6.16.2.

Copying is only supported between commands pointing to compatible command buffers. Two
command buffers are compatible only if they have matching ICB descriptors
(MTLIndirectCommandBufferDescriptor objects). The commands themselves must also
refer to valid indexes within the buffers. The following example illustrates using
copy_command to copy the content of a render command from cmd® to cmd1:

struct arguments {
command_buffer cmd_buffer;
render_pipeline_state pipeline_state_0;
render_pipeline_state pipeline_state_1;
o

[[kernell] void producer(device arguments &args) f{
render_command cmd@(args.cmd_buffer, 0);
render_command cmdl(args.cmd_buffer, 1);
cmd@.set_render_pipeline_state(args.pipeline_state_90);

// Make the command at index 1 point to command at index ©.
cmdl = cmdo;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 283 of 346

// Change the pipeline state for the command at index @ in the
// buffer.
cmdl.set_render_pipeline_state(args.pipeline_state_90);

// The command at index 1 in the buffer is not yet modified.
cmdl = render_command(args.cmd_buffer, 1);

// Copy the content of the command at index © to command at
// index 1.
cmdl.copy_command(cmdd);

6.17 Variable Rasterization Rate

iOS: Metal 2.2 and later support variable rasterization rate and the rasterization rate map.
macOS: Metal 2.3 and later support variable rasterization rate and the rasterization rate map.

Variable rasterization rate (VRR) can reduce the shading cost of high-resolution rendering by
reducing the fragment shader invocation rate based on screen position. VRR is especially useful
to avoid oversampling peripheral information in Augmented Reality (AR) / Virtual Reality (VR)
applications.

To support VRR in a shading language function, use the
rasterization_rate_map_decoder structure to describe the mapping of per-layer
rasterization rate data. Each layer contains minimum quality values in screen space and can
have a different physical fragment space dimension. For AR/VR, these quality values are based
on the lens transform or eye-tracking information.

struct rasterization_rate_map_data;

struct rasterization_rate_map_decoder {
explicit rasterization_rate_map_decoder(
constant rasterization_rate_map_data &data) thread;

float2 map_screen_to_physical_coordinates(float2 screen_coordinates,
uint layer_index = @) const thread;
uint2 map_screen_to_physical_coordinates(uint2 screen_coordinates,
uint layer_index = 0) const thread;
float2 map_physical_to_screen_coordinates(float2 physical_coordinates,
uint layer_index = 0) const thread;
uint2 map_physical_to_screen_coordinates(uint2 physical_coordinates,
uint layer_index = ©0) const thread;
o
The VRR map describes the mapping between screen space and physical fragment space and
enables conversion of the rendering results back to the desired screen resolution. To convert
between screen space and physical fragment space in the shader, the app must call the
copyParameterDataToBuffer:offset: method of MTLRasterizationRateMap to fill
the buffer with map data before using any of the conversion functions in the
rasterization_rate_map_decoder structure. Passing anything other than a pointer to

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 284 of 346

the data exported by the copyParameterDataToBuffer:offset: method has an
undefined behavior.

The following example shows how the app must pass the rasterization_rate_map_data
at the shader bind point to the constructor of the rasterization_rate_map_decoder
structure:

[[fragment]] float4 fragment_shader(/*x other arguments */
constant rasterization_rate_map_data &data [[buffer(0)11) {
float2 screen_coords = ...;
rasterization_rate_map_decoder map(data);
float2 physical_coords =
map.map_screen_to_physical_coordinates(screen_coords);

¥

Alternately, the app can compute the offset where the compiled data is stored and use an
explicit cast or pointer arithmetic to form the data for a valid
rasterization_rate_map_data. Since rasterization_rate_map_dataisan
incomplete type, some operations on it are inherently forbidden (such as pointer arithmetic on
the pointer type or sizeof).

6.18 Ray-Tracing Functions

All OS: Metal 2.3 and later support ray-tracing functions.

Metal defines the ray-tracing functions and types in <metal_raytracing> in the namespace
metal::raytracing. Metal 2.3 and later supports them only in a compute function (kernel
function), except where noted below. Metal 2.4 and later offer additional support for them in
vertex, fragment, and tile functions.

6.18.1 Acceleration Structure Functions

In Metal 2.3 and later, you can call one of the following functions to check if an acceleration
structure (see section 2.17.7) is null:

bool
is_null_primitive_acceleration_structure(primitive_acceleration_stru
cture)

bool
is_null_instance_acceleration_structure(instance_acceleration_struct
ure)

In Metal 2.4 and later, you can call the following function to check if an acceleration structure is
null:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 285 of 346

bool
is_null_acceleration_structure(acceleration_structure<intersection_t
ags..>)

In Metal 3.1 and later, you can iterate over the acceleration structure referenced by an instance
acceleration structure using the following functions:

e Call the following function to query the number of instances in an instance acceleration
structure:

uint get_instance_count() const

e Call the following function to retrieve the acceleration structure referenced by an
instance contained in an instance acceleration structure. The return type is the
templatized type defined in section 2.17.7.

template <typename... intersection_tags>
acceleration_structure< intersection_tags...>
get_acceleration_structure(uint instance_id)

If the declared return type does not match the acceleration structure type reference by the
instance contained in an instance acceleration structure, then the results are undefined.
Instance acceleration structures that do not use instance and/or primitive motion tags can be
returned as an acceleration structure type that does contain those tags. For example, an
instance acceleration structure without any motion (instance or primitive) can be returned as:

e acceleration_structure<instancing>
e acceleration_structure<instancing, instance_motion>
e acceleration_structure<instancing, primitive_motion>

e acceleration_structure<instancing, primitive_motion,
instance_motion>

This capability allows you to avoid providing a dedicated intersector for each set of tags when
working with multiple acceleration structure types at the potential performance cost due to
traversing an acceleration structure that does not require those tags.

6.18.2 Intersector Intersect Functions

After creating the intersector<intersection_tags. . .> object (see section 2.17.6),
you can call one of the following intersect functions based on the value of the
intersection_tags.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 286 of 346

Table 6.27. Intersect function

Function

result_type intersect(..parameters..).

Table 6.28 shows the possible parameters for intersect function. All intersect functions
must have ray and accel_struct parameter. The other parameters are optional.

Table 6.28. Intersect functions input parameters

Parameter

Description

ray

Ray properties

accel_struct

Acceleration structure of type acceleration_structure<
intersection_tags...>.

mask Intersection mask to be AND'd with instance mask defined in the
Metal API MTLAccelerationStructurelnstanceDescriptor. Instances
with nonoverlapping masks will be skipped.

time The time associated with the ray. The parameter exists if the

All OS: Metal 2.4 and later.

intersection_tags have primitive_motion or
instance_motion.

func_table Intersection function table of type
intersection_function_table<intersection_tags...>.
See section 2.17.3.

payload User payload object, which is passed by reference. When the user
calls intersect (), the payload parameter is copied to the
ray_data address space and passed to the intersection function.
The result is copied on the exit of the intersection function (section
5.1.6) and the payload object is updated.

ifba If the intersection_tags include

All OS: Metal 4 and later.

intersection_function_buffer, you may optionally pass an
object of type intersection_function_buffer_arguments
(see section 6.18.8). The i fha.intersection_function_buffer
must be uniform within the SIMD-group of the call.

user_data
All OS: Metal 4 and later.

If the intersection_tags include user_data, you may optionally
pass a buffer pointing to user data for the intersection function. If you
pass a buffer, you also need to pass ifba.

The result_typeis

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 287 of 346

using result_type = intersection_result<intersection_tags...>;

The following set of intersect functions are available only if intersection_tags does not
have instancing:

result_type
intersect(
ray ray,
primitive_acceleration_structure accel_struct) const;

result_type
intersect(
ray ray,
primitive_acceleration_structure accel_struct,
intersection_function_table<intersection_tags...> func_table)
const;

template <typename T>
result_type
intersect(
ray ray,
primitive_acceleration_structure accel_struct,
intersection_function_table<intersection_tags...> func_table,
thread T &payload) const;

The following set of intersect functions are available only if intersection_tags has
instancing:

result_type

intersect(
ray ray,
instance_acceleration_structure accel_struct,
uint mask = ~@U) const;

result_type
intersect(
ray ray,
instance_acceleration_structure accel_struct,
intersection_function_table<intersection_tags...> func_table)
const;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 288 of 346

The following set of intersect functions are available only if intersection_tags has
instancingand don'thave an intersection_function_buffer:

template <typename T>
result_type
intersect(
ray ray,
instance_acceleration_structure accel_struct,
intersection_function_table<intersection_tags...> func_table,
thread T &payload) const;

result_type
intersect(

ray ray,

instance_acceleration_structure accel_struct,

uint mask,

intersection_function_table<intersection_tags...> func_table)
const;

template <typename T>

result_type

intersect(
ray ray,
instance_acceleration_structure accel_struct,
uint mask,
intersection_function_table<intersection_tags...> func_table,
thread T &payload) const;

In Metal 2.4 and later, the following set of intersect functions are available if
intersection_tags have primitive_motionorinstance_motion

template <typename T, intersection_tags...>
result_type
intersect(
ray ray,
acceleration_structure< intersection_tags...> accel_struct,
float time) const;

The following set of intersect functions are available only if intersection_tags has
instancingand don'thave an intersection_function_buffer:

template <typename T, intersection_tags...>
result_type

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 289 of 346

intersect(

ray ray,

acceleration_structure< intersection_tags...> accel_struct,
float time,

intersection_function_table<intersection_tags...> func_table)
const;

template <typename T, intersection_tags...>

result_type

intersect(
ray ray,
acceleration_structure< intersection_tags...> accel_struct,
float time,
intersection_function_table<intersection_tags...> func_table,
thread T &payload) const;

In Metal 2.4 and later, the following set of intersect functions are available only if
intersection_tags have instancing and either primitive_motion or
instance_motion:

template <typename T, intersection_tags...>
result_type
intersect(
ray ray,
acceleration_structure< intersection_tags...> accel_struct,
uint mask = ~0U,
float time = 0.0f) const;

The following set of intersect functions are available only if intersection_tags has
instancing, and either primitive_motionorinstance_motion don't have an
intersection_function_buffer:

template <typename T, intersection_tags...>
result_type
intersect(
ray ray,
acceleration_structure< intersection_tags...> accel_struct,
uint mask,
float time,
intersection_function_table<intersection_tags...> func_table)
const;

template <typename T, intersection_tags...>

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 290 of 346

result_type

intersect(
ray ray,
acceleration_structure< intersection_tags...> accel_struct,
uint mask,
float time,
intersection_function_table<intersection_tags...> func_table,
thread T &payload) const;

In Metal 3.2 and later, it's possible to avoid a copy and directly access the memory of the
intersection by using intersection_result_ref<intersection_tags...> (see
section 2.17.5) and the ray_data payload pointer in a callback:

template <typename Callable>
void intersect(..., Callable callback)

template <typename Payload, typename Callable>
void intersect(..., const thread Payload &payload_in,
Callable callback)

The lifetime isthe intersection_result_ref andthe ray_data payload pointer is the
duration of the callback. If you store the intersection_result_ref or payload pointer and
use it after the intersect () call completes, the behavior is undefined because the system
may free the memory. You can’t perform recursive ray tracing within the callback body. After
the callback exits, the shader is free to intersect rays again.

The following is an example of the use of a lambda with the intersection_result_ref:

[[kernell] void trace_rays_with_payload(...) {
intersector<instancing, max_levels<2>, triangle_data> 1i;
i.intersect(ray, acceleration_structure, MyPayload{},

[&](intersection_result_ref<instancing, max_levels<2>,
triangle_data> result,
const ray_data MyPayload &final_payload)
{
result.get_primitive_id();
//
});

In Metal 4 and later, the following set of intersect functions are available only if
intersection_tags hasanintersection_function_buffer and doesn't have
instancing:

result_type
intersect(
2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 291 of 346

ray ray,
acceleration_structure<> accel_struct,
intersection_function_buffer_ifba) const;

template <typename T>
result_type
intersect(
ray ray,
acceleration_structure<> accel_struct,
intersection_function_buffer_ifba,
thread T &payload) const;

In Metal 4 and later, the following set of intersect functions are available only if
intersection_tags hasanintersection_function_buffer and instancing:

result_type

intersect(
ray ray,
acceleration_structure<instancing> accel_struct,
intersection_function_buffer_ifba) const;

template <typename T>
result_type
intersect(
ray ray,
acceleration_structure<instancing> accel_struct,
intersection_function_buffer_ifba,
thread T &payload) const;

result_type
intersect(
ray ray,
uint mask,
acceleration_structure<instancing> accel_struct,
intersection_function_buffer_ifba) const;

template <typename T>

result_type

intersect(
ray ray,
uint mask,
acceleration_structure<instancing> accel_struct,
intersection_function_buffer_ifba,
thread T &payload) const;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 292 of 346

In Metal 4 and later, the following set of intersect functions are available only if
intersection_tags hasanintersection_function_buffer, instancing, and
primitive_motion.
result_type
intersect(
ray ray,
acceleration_structure<instancing, primitive_motion> as,
float time,
intersection_function_buffer_ifba) const;

template <typename T>

result_type

intersect(
ray ray,
acceleration_structure<instancing, primitive_motion> as,
float time,
intersection_function_buffer_ifba,
thread T &payload) const;

result_type
intersect(
ray ray,
uint mask,
float time,
acceleration_structure<instancing, primitive_motion> as,
intersection_function_buffer_ifba) const;

template <typename T>

result_type

intersect(
ray ray,
uint mask,
float time,
acceleration_structure<instancing, primitive_motion> as,
intersection_function_buffer_ifba,
thread T &payload) const;

In Metal 4 and later, the following set of intersect functions are available only if
intersection_tags hasanintersection_function_buffer, instancing, and
instance_motion:

result_type
intersect(

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 293 of 346

ray ray,

acceleration_structure<instancing, instance_motion> as,
float time,

intersection_function_buffer_ifba) const;

template <typename T>

result_type

intersect(
ray ray,
acceleration_structure<instancing, instance_motion> as,
float time,
intersection_function_buffer_ifba,
thread T &payload) const;

result_type
intersect(
ray ray,
uint mask,
float time,
acceleration_structure<instancing, instance_motion> as,
intersection_function_buffer_ifba) const;

template <typename T>

result_type

intersect(
ray ray,
uint mask,
float time,
acceleration_structure<instancing, instance_motion> as,
intersection_function_buffer_ifba,
thread T &payload) const;

In Metal 4 and later, the following set of intersect functions are available only if
intersection_tags hasanintersection_function_buffer, user_data, and
doesn't have instancing:

result_type

intersect(
ray ray,
acceleration_structure<> accel_struct,
intersection_function_buffer_ifba,
const device void *user_data) const;

template <typename T>

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 294 of 346

result_type

intersect(
ray ray,
acceleration_structure<> accel_struct,
intersection_function_buffer_ifba,
const device void *xuser_data,
thread T &payload) const;

In Metal 4 and later, the following set of intersect functions are available only if
intersection_tags hasanintersection_function_buffer, user_data, and
instancing:

result_type
intersect(
ray ray,
acceleration_structure<instancing> accel_struct,
intersection_function_buffer_ifba,
const device void *user_data) const;

template <typename T>

result_type

intersect(
ray ray,
acceleration_structure<instancing> accel_struct,
intersection_function_buffer_ifba,
const device void *xuser_data,
thread T &payload) const;

result_type
intersect(
ray ray,
uint mask,
acceleration_structure<instancing> accel_struct,
intersection_function_buffer_ifba,
const device void *user_data) const;

template <typename T>

result_type

intersect(
ray ray,
uint mask,
acceleration_structure<instancing> accel_struct,
intersection_function_buffer_ifba,
const device void *xuser_data,
thread T &payload) const;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 295 of 346

In Metal 4 and later, the following set of intersect functions are available only if
intersection_tags hasanintersection_function_buffer, user_data,
instancing, and primitive_motion:

result_type
intersect(
ray ray,
acceleration_structure<instancing, primitive_motion> as,
float time,
intersection_function_buffer_ifba,
const device void *user_data) const;

template <typename T>

result_type

intersect(
ray ray,
acceleration_structure<instancing, primitive_motion> as,
float time,
intersection_function_buffer_ifba,
const device void *xuser_data,
thread T &payload) const;

result_type
intersect(
ray ray,
uint mask,
float time,
acceleration_structure<instancing, primitive_motion> as,
intersection_function_buffer_ifba,
const device void *user_data) const;

template <typename T>

result_type

intersect(
ray ray,
uint mask,
float time,
acceleration_structure<instancing, primitive_motion> as,
intersection_function_buffer_ifba,
const device void *xuser_data,
thread T &payload) const;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 296 of 346

In Metal 4 and later, the following set of intersect functions are available only if
intersection_tags hasanintersection_function_buffer, instancing,
user_data,and instance_motion

result_type
intersect(
ray ray,
acceleration_structure<instancing, instance_motion> as,
float time,
intersection_function_buffer_ifba,
const device void *user_data) const;

template <typename T>

result_type

intersect(
ray ray,
acceleration_structure<instancing, instance_motion> as,
float time,
intersection_function_buffer_ifba,
const device void *xuser_data,
thread T &payload) const;

result_type
intersect(
ray ray,
uint mask,
float time,
acceleration_structure<instancing, instance_motion > as,
intersection_function_buffer_ifba,
const device void *user_data) const;

template <typename T>

result_type

intersect(
ray ray,
uint mask,
float time,
acceleration_structure<instancing, instance_motion> as,
intersection_function_buffer_ifba,
const device void *xuser_data,
thread T &payload) const;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 297 of 346

6.18.3 Intersector Functions to Control Traversal Behavior
All OS: Metal 3.1 adds support for curves.

To override the default behavior of the traversal, you can use the following member functions of
intersector<intersection_tags...> object.

Table 6.29. Intersect functions to control traversal

Functions to control traversal behavior

void set_triangle_front_facing_winding(winding)

void set_geometry_cull_mode(geometry_cull_mode)

void set_opacity_cull_mode(opacity_cull_mode)

void force_opacity(forced_opacity)

void assume_geometry_type(geometry_type)

void assume_identity_transforms(bool)

void accept_any_intersection(bool)

Triangles have two sides or "faces". The front facing winding determines which triangle face is
considered the "front" face when viewed from the ray origin. If the vertices appear in clockwise
order when viewed from the ray origin and the front facing winding is clockwise, then the visible
face is the front face. The other face is the back face. If the front facing winding is
counterclockwise, then the opposite is true. Use the following function to change the default
winding (clockwise):

enum class winding {
clockwise,
counterclockwise
o
void set_triangle_front_facing_winding(winding w);

To change the default triangle cull mode (none), use the following function:

enum class triangle_cull_mode {
none,

front,

back

o

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 298 of 346

void set_triangle_cull_mode(triangle_cull_mode tcm);

If the cull mode is set to front, then triangles whose front face is visible from the ray origin
are not considered for intersection. Otherwise, if the cull mode is set to back, then triangles
whose back face is visible from the ray origin are not considered for intersection.

The following function may be used to set the intersector to cull all bounding box or triangle
primitives from the set of candidate geometries. The default geometry cull mode is none.

enum class geometry_cull_mode {

none,

triangle,

bounding_box,

curve // Metal 3.1 and later.
o

void set_geometry_cull_mode(geometry_cull_mode gcm);

The default opacity cull mode is none. Use the following function to change the opacity. See
below on how opacity affects triangle and bounding box primitives.

enum class opacity_cull_mode {
none,
opaque,
non_opaque
o
void set_opacity_cull_mode(opacity_cull_mode ocm);

Call the following function to override per-instance and per-geometry setting of forced
capacity. The default is none.

enum class forced_opacity {
none,
opaque,
non_opaque
b
void force_opacity(forced_opacity fo);

Triangle primitives may also be culled based on their opacity: An opaque triangle will not run
any intersection function. A non_opaque triangle runs its intersection function to accept or
reject the hit.

The PrimitiveAccelerationStructure encodes if the triangle is opaque or
non_opaque by declaring MTLAccelerationStructureGeometryFlagOpaque. The
opaqueness can be overridden by calling intersector.force_opacity (). If used, this

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 299 of 346

takes precedence over the per-instance opaqueness flags
(MTLAccelerationStructureInstanceFlagOpaque and
MTLAccelerationStructureInstanceFlagNonOpaque), which in turn takes
precedence over the per-geometry opaqueness.

For custom bounding box primitives, the opaqueness will be evaluated in the same way as
described for triangles (first intersector.set_opacity_cull_mode(), then
InstanceFlags, then GeometryFlags). The opaque parameter informs the bounding box
intersection program the resolved opaqueness state. The intersection function may then use
this to influence its evaluation of if a hit is encountered or not.

intersector.set_opacity_cull_mode ()skips over primitive types based on their
opaqueness.

If intersector.force_opacity() issettoopaque ornon_opaque, then
intersector.set_opacity_cull_mode () must be none. The reverse is also true:
Opacity Override and Opacity culling cannot be mixed. The results of illegal combinations are
undefined.

Use the following functions to declare if the acceleration structure contains a triangle,
bounding box, and/or curve geometry. The default geometry is geometry_type::triangle
| geometry_type::bounding_box. By default, Metal assumes acceleration structure will
not contain curve geometry to improve performance. Call assume_geometry_type witha
value that includes geometry_type: :curve to enable curves to be intersected in an
intersect call or intersection query step.

enum class geometry_type {
none,
triangle,
bounding_box,
curve, // Metal 3.1 and later.
all
b
void assume_geometry_type(geometry_type gt)

To set the intersector object to assume identify transforms, call the following function with the
value true. The defaultis false.

void assume_identity_transforms(bool value);

To set the intersector object to immediately return the first intersection it finds, call the
following function with the value true. The defaultis false. One use of this function is when
you only need to know if one point is visible from another, such as when rendering shadows or
ambient occlusion.

void accept_any_intersection(bool value);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 300 of 346

In Metal 3.1 and later, use the following functions to add hints to the intersector and
intersection_qguery to specify the curve basis, the number of control points, and the curve
type to optimize traversal for specific curve types:

Note that curve_basis is an enumerated type and not a bitmask.

enum class curve_basis {
bspline,

catmull _rom,

linear,

bezier,

all,

o

enum class curve_type {
round,

flat,

all,

b

Use the following function to set the curve basis function to assume. Defaults to
curve_basis: :all, meaning that all curve basis functions will be enabled.

void assume_curve_basis(curve_basis cb)

Use the following function to set the curve type to assume. Defaults to curve_type::all,
meaning that both curve types will be enabled.

void assume_curve_type(curve_type ct)
Use the following function to set the number of curve control points to assume. Defaults to O,

meaning that any number of control points, as appropriate for the assumed curve basis (if any),
will be enabled. Other valid options are 2, 3, or 4, depending on the curve basis.

void assume_curve_control_point_count(uint n)

6.18.4 Intersector Functions for Ray Contribution and Geometry Multiplier

All OS: Metal 4 adds support to specify Ray Contribution and Geometry Multiplier.

In Metal 4 and later, you can specify the ray contribution and geometry multiplier by adding
state per intersector object if if intersection_tags has
intersection_function_buffer. Note the calculation of base index and geometry
multiplier use the lower 4 bits.

Call the following function to set the base ID. The default value of the base ID is 0.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 301 of 346

void set_base_id(uint index);

Call the following function to set the geometry multiplier on the intersector. The default value of
multiplier is 1.

void set_geometry_multiplier(uint multiplier);

6.18.5 Intersection Query Functions
All OS: Metal 2.4 and later support intersection query functions.
All OS: Metal 3.1 and later support intersection query functions for curves.

To start traversals and query traversal specific information, create an intersection query object
(see section 2.17.8) with a nondefault constructor or first call reset (...). If not called in this
sequence, the behavior is undefined.

Table 6.30, Table 6.32, and Table 6.33 show the list of functions that can be called depending
on the geometry type encountered during the traversal, assuming next () has returned true.
Note that some functions come in pairs: a candidate and a committed primitive. When next ()
is called for the first time, the primitive reported after the traversal is always a candidate until
the user commits the primitive by calling commit_triangle_intersection(),
commit_bounding_box_intersection(),orcommit_curve_intersection() onthe
query object. Note that opaque triangles, tested without user intersection, commit automatically
when intersected.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 302 of 346

Table 6.30. Intersection query functions

Functions Triangle | Bounding Curve
void reset(..)
bool next()
void abort()
intersection_type
get_candidate_intersection_type()

intersection_type
get_committed_intersection_type()

void commit_triangle_intersection()

void
commit_bounding_box_intersection(float distance)

void commit_curve_intersection() V]
All OS: Metal 3.1 and later.

Table 6.31. Intersection query functions with max_levels<Count>
Functions Triangle | Bounding Curve
uint get_candidate_instance_count()
All OS: Metal 3.1 and later.
uint get_candidate_instance_id(uint depth)
All OS: Metal 3.1 and later.
uint get_candidate_user_instance_id(uint depth)
All OS: Metal 3.1 and later.
uint get_committed_instance_count()
All OS: Metal 3.1 and later.
uint get_committed_instance_id(uint depth)
All OS: Metal 3.1 and later.
uint get_committed_user_instance_id(uint depth)

All OS: Metal 3.1 and later.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 303 of 346

Table 6.32. Intersection query ray value functions

Ray values functions Triangle Bounding Curve

float3 get_world_space_ray_origin()

float3 get_world_space_ray_direction()

float get_ray_min_distance()

intersection_params get_intersection_params()
Table 6.33. Intersection query candidate value functions

Candidate intersections value functions Triangle Bounding Curve

float get_candidate_triangle_distance()

uint get_candidate_instance_id()

uint get_candidate_user_instance_id()

uint get_candidate_geometry_id()

uint get_candidate_primitive_id()

float2

get_candidate_triangle_barycentric_coord()

bool is_candidate_non_opaque_bounding_box()

bool is_candidate_triangle_front_facing()

float4x3

get_candidate_object_to_world_transform()

floats4x3

get_candidate_world_to_object_transform()

float3 get_candidate_ray_origin()

float3 get_candidate_ray_direction()

const device void *

get_candidate_primitive_data()
All OS: Metal 3 and later.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 304 of 346

Table 6.34. Intersect query committed value functions

Committed intersections value functions Triangle Bounding Curve
float get_committed_distance()
uint get_committed_instance_id()
uint get_committed_user_instance_id()
uint get_committed_geometry_id()
uint get_committed_primitive_id()
float2
get_committed_triangle_barycentric_coord()

bool is_committed_triangle_front_facing()

float4x3
get_committed_object_to_world_transform()

float4x3
get_committed_world_to_object_transform()

float3 get_committed_ray_origin()
float3 get_committed_ray_direction()
const device void x
get_committed_primitive_data()

All OS: Metal 3 and later.

float get_candidate_curve_parameter() v
All OS: Metal 3.1 and later.

float get_committed_curve_parameter()

All OS: Metal 3.1 and later.

In Metal 3.1 and later, intersection query supports the following functions when specified with
the max_levels<Count> intersection tags:

e Call the following function to query the distance of a candidate triangle hit that needs
consideration:

float get_candidate_triangle_distance();

e Call the following function to query the distance of the currently committed hit:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 305 of 346

float get_committed_distance();

Call the following function to query the top-level structure instance ID for the current
candidate hit:

uint get_candidate_instance_id();

Call the following function to query user instance ID provided by user on the bottom
level acceleration structure for the current candidate hit:

uint get_candidate_user_instance_id();

Call the following function to query the bottom-level structure geometry ID for the
current candidate hit:

uint get_candidate_geometry_id();

Call the following function to query the bottom-level structure primitive ID within the
geometry for the current candidate hit:

uint get_candidate_primitive_id();

Call the following function to query the top-level structure instance ID for the current
committed hit:

uint get_committed_instance_id();

Call the following function to query user instance ID provided by user on the bottom
level acceleration structure for the current committed hit:

uint get_committed_user_instance_id();

Call the following function to query the bottom-level structure geometry ID for the
current committed hit:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 306 of 346

uint get_committed_geometry_id();

Call the following function to query the bottom-level structure primitive ID within the
geometry for the current committed hit:

uint get_committed_primitive_id();

Call the following function to query the ray origin in object space for the current hit
candidate:

float3 get_candidate_ray_origin();

Call the following function to query the ray direction in object space for the current hit
candidate:

float3 get_candidate_ray_direction();

Call the following function to query the ray origin in object space for the current
committed hit:

float3 get_committed_ray_origin();

Call the following function to query the ray direction in object space for the current
committed hit:

float3 get_committed_ray_direction();

Call the following function to query the matrix for transforming ray origin/direction of
current hit candidate from object-space to world-space:

float4x3 get_candidate_object_to_world_transform();

Call the following function to query the matrix for transforming ray origin/direction of
current candidate hit from world-space to object-space:

float4x3 get_candidate_world_to_object_transform();

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 307 of 346

Call the following function to query the matrix for transforming ray origin/direction of
current committed hit from object-space to world-space:

float4x3 get_committed_object_to_world_transform();

Call the following function to query the matrix for transforming ray origin/direction of
current committed hit from world-space to object-space:

float4x3 get_committed_world_to_object_transform();

Call the following function to query the candidate hit location barycentric coordinates.
Valid when get_candidate_intersection_type() returns triangle:

float2 get_candidate_triangle_barycentric_coord();

For vertex attributes v0, v1, and v2, the value at the specified barycentric point is:

vl *x barycentric_coord.x +
v2 * barycentric_coord.y +
vl *x (1.0f - (barycentric_coord.x + barycentric_coord.y))

Call the following function to query the committed hit location barycentric coordinates.
Valid when get_committed_intersection_type() returns triangle:

float2 get_committed_triangle_barycentric_coord();

Call the following function to query if the hit triangle candidate is front or back facing.
Returns true if itis front face and false if it is back face. Valid when
get_candidate_intersection_type() returns triangle:

bool is_candidate_triangle_front_facing();

Call the following function to query if the committed hit is front or back facing. Returns
trueifitis front face and false if it is back face. Valid when
get_committed_intersection_type() returns triangle:

bool is_committed_triangle_front_facing();

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 308 of 346

Call the following function to query the per-primitive data for the current candidate
primitive:

const device void *get_candidate_primitive_data();

Call the following function to query the per-primitive data for the current committed hit:

const device void *get_committed_primitive_datal();

In Metal 3.1 and later, the following two functions can be called when
get_candidate_intersection_type() returns curve and the intersection tag has
curve_data:

Call the following to query the curve parameter for the current candidate curve:
float get_candidate_curve_parameter();

Call the following to query the curve parameter for the current committed intersection.
Valid when get_candidate_intersection_type() returns curve.

float get_committed_curve_parameter();

In Metal 3.1 and later, the rest of the functions in this section can be called when the
intersection tag has max_levels<Count>:

Call the following function to query the number of instances in the candidate
intersection:

uint get_candidate_instance_count();

Call the following function to query the instance ID at level depth in the candidate
intersection.

uint get_candidate_instance_id(uint depth);

Call the following function to query the user instance ID at level depth in the candidate
intersection:

uint get_candidate_user_instance_id(uint depth);

Call the following function to query the number of instances in the committed
intersection:

uint get_committed_instance_count();

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 309 of 346

e Call the following function to query the instance ID at level depth in the committed
intersection:

uint get_committed_instance_id(uint depth);

e Call the following function to query the user instance ID at level depth inthe
committed intersection:

uint get_committed_user_instance_id(uint depth);

6.18.6 Indirect Instance Descriptors

In Metal 3.1 and later, you can fill out indirect instance descriptors from the GPU. Metal provides
the following type definitions:

enum MTLAccelerationStructureInstanceOptions : uint
{
MTLAccelerationStructureInstanceOptionNone = @,
MTLAccelerationStructureInstanceOptionDisableTriangleCulling =
(1 << 9),
MTLAccelerationStructureInstanceOptionTriangleFrontFacingWindingCoun
terClockwise = (1 << 1),
MTLAccelerationStructureInstanceOptionOpaque = (1 << 2),
MTLAccelerationStructureInstanceOptionNonOpaque = (1 << 3),
I

typedef packed_float3 MTLPackedFloat3;
typedef packed_float3 MTLPackedFloat4x3[4];

struct MTLAccelerationStructureInstanceDescriptor
{
MTLPackedFloat4x3 transformationMatrix;
MTLAccelerationStructureInstanceOptions options;
uint mask;
uint intersectionFunctionTableOffset;
uint accelerationStructureIndex;
I

struct MTLAccelerationStructureUserIDInstanceDescriptor
{

MTLPackedFloat4x3 transformationMatrix;

MTLAccelerationStructureInstanceOptions options;

uint mask;

uint intersectionFunctionTableOffset;

uint accelerationStructureIndex;

uint userlID;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 310 of 346

To facilitate filing out the descriptor, Metal provides an implicit conversion from
acceleration_structure<intersection_tags..>toMTLResourcelD.

acceleration_structure<primitive_motion> primitiveAStruct = ..;
MTLResourcelID resource_id = primitiveAStruct;

6.18.7 Curve Utility Functions

Metal 3.1 and later provide a set of curve utility functions that Metal defines in the header
<metal_curves>. It uses the following abbreviations:

Psis float orhalf.

P is a scalar or a vector of Ps. If Psis float, Pis float4.

The functions return the position or the first or second derivative on a curve given a curve
parameter t, and control points po, pl, etc. As shown in Table 6.35, the functions support
quadratic Bézier, cubic Bézier, quadratic B-Spline, cubic B-Spline, cubic Hermite, and Catmull-

Rom curves.
Table 6.35. Curve utility functions
Function Description
P bezier(Returns the position on a quadratic Bézier curve

Ps_t, P po, P pl1, P p2)

P bezier derivative(
Ps_t, P po, P pl, P p2)

Returns the first derivative on a quadratic Bézier curve

P bezier second_derivative(
Ps_t, P po, P pl1, P p2)

Returns the second derivative on a quadratic Bézier
curve

P bezier(
Ps_t, P p9, P pl, P p2, P p3)

Returns the position on a cubic Bézier curve

P bezier derivative(
Ps_t, P po, P pl1, P p2, P p3)

Returns the first derivative on a cubic Bézier curve

P bezier second _derivative(
Ps_t, P p9, P pl, P p2, P p3)

Returns the second derivative on a cubic Bézier curve

P bspline(
Ps_t, P po, P pl1, P p2)

Returns the position on a quadratic B-spline curve

P bspline_derivative(
Ps_t, P po, P pl, P p2)

Returns the first derivative on a quadratic B-spline curve

P bspline_second_derivative(
Ps_t, P po, P pl1, P p2)

Returns the second derivative on a quadratic B-spline
curve

P bspline(
Ps_ t, P p9, P pl, P p2, P p3)

Returns the position on a cubic B-spline curve

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 311 of 346

Function

Description

P bspline_derivative(
Ps_t, P p9, P pl, P p2, P p3)

Returns the first derivative on a cubic B-spline curve

P bspline_second_derivative(
Ps_t, P p9, P pl, P p2, P p3)

Returns the second derivative on a cubic B-spline curve

P hermite(
Ps_t, P po, P pl, P mo, P ml)

Returns the position on a cubic Hermite curve

P hermite derivative(
Ps_t, P po, P pl, P mo, P ml)

Returns the first derivative on a cubic Hermite curve

P hermite_second_derivative(
Ps_t, P p0, P pl, P mo, P ml)

Returns the second derivative on a cubic Hermite curve

P catmull rom(
Ps_t, P p9, P pl, P p2, P p3)

Returns the position on a Catmull-Rom curve

P catmull rom derivative(
Ps_t, P p9, P pl, P p2, P p3)

Returns the first derivative on a Catmull-Rom curve

P catmull rom_second derivative(
Ps_t, P p9, P pl, P p2, P p3)

Returns the second derivative on a Catmull-Rom curve

6.18.8 Intersection Function Buffer Descriptors

In Metal 4 and later, you can use indirect function buffers to associate geometry in a scene with
a set of shaders that operate on that geometry in the acceleration structure. The user provides
a buffer containing intersection_function_buffer_arguments

struct intersection_function_buffer_arguments

{

// Buffer containing instruction function handles aligned

// to 8 bytes.

const device void * intersection_function_buffer;

// Maximum range in bytes

size_t intersection_function_buffer_size;

// The stride between intersection function entries.
size_t intersection_function_stride;

};

The stride, intersection_function_stride, support ranges from [0. 40961 in 8 bytes

increments.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 312 of 346

For convenience, the header provides the Metal
MTLIntersectionFunctionBufferArguments which is convertible to
intersection_function_buffer_arguments

The example above passes a buffer to intersect (see section 6.18.2).

6.19 Logging Functions

All OS: Metal 3.2 and later support logging for Apple silicon.

Metal defines the logging functions and types in <metal_logging>. To enable logging, you
need to set —fmetal-enable-logging (see section 1.6.9).

enum log_type
{
log_type_debug, // Captures verbose information useful only for
// debugging your code.
log_type_info, // Captures information that is helpful to
// troubleshoot problems.
log_type_default,// Captures information that is essential for
// troubleshooting problems.
log_type_error, // Captures errors that occur during the
// execution of your code.
log_type_fault // Captures information about faults and bugs
// in your code.
b

struct os_1log
{

os_log(constant char *subsystem, constant char *category)
constant;

void log_with_type(log_type type, constant char xformat, ...)
constant;

void log_debug(constant char *xformat, ...) constant;

void log_info(constant char xformat, ...) constant;

void log(constant char xformat, ...) constant;

void log_error(constant char *xformat, ...) constant;

void log_fault(constant char *xformat, ...) constant;

};

The os_1og logging methods support most of the format specifiers that std: :printf
supports in C++, with the following exceptions:

« They don't support the %n and %s conversion specifiers.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 313 of 346

They don't support the %@® and %. %P and custom format specifiers that the CPU
os_1log supports.

Metal supports the h1 length modifier for 4-byte types like int and float, which you
need to use when printing vectors.

Vectors may print with
%vInum_elements][length_modifierl[conversion_specifier]. For
example, a float4 can print with %v4h1f while a uchar?2 can print as %v2hhu.

Default argument promotion applies to arguments of half type which promote to the
double type. Default argument promotion doesn’t apply to vectors.

The format string must be a string literal.

Shaders can perform logging by defining an os_10g object and using any of the log member
functions:

constant metal::os_log custom_log("com.custom_log.subsystem",
"custom category");
void test_log(float x) {
if (x < M_PI_F)
custom_log.log("custom message %f", x);
b

A default os_log object os_log_default is available to use instead of a custom os_1og
object:

void test_log(float x) {
if (x < M_PI_F)
os_log_default.log("custom message %f", x);

Metal places messages from the shader into a log buffer with a size that MTLLogState
determines. All the draw/dispatches in a command buffer share the log buffer. The system only
removes the messages from the log buffer when the command buffer completes. Because
multiple command buffers can share a log buffer, the system may block the removal of the
messages until other command buffers complete. When the log buffer becomes full, the system
drops all subsequent messages. Logging resumes after the CPU has an opportunity to empty
the log buffer.

By default, messages that the CPU reads from the log buffer go into the unified logging system
with the corresponding subsystem, category, and level. Messages that os_1log_default logs
go into the CPU unified logging system with the corresponding level and subsystem/category
being nil. For custom handling of shader logging messages, see the Metal API's
addLogHandler.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 314 of 346

https://developer.apple.com/documentation/metal/mtllogstate/addloghandler(_:)

/7 Metal Performance Primitives

All OS: Metal 4 and later support Metal Performance Primitives.

Metal Performance Primitives is a library of optimized primitives that are designed to be
efficient and performant on Apple silicon. The header <MetalPerformancePrimitives/
MetalPerformancePrimitives.h> defines these functions within the namespace mpp.
The tensor_ops namespace, which resides beneath the mpp namespace, contains functions
that operate on tensors, including matrix multiplication and convolution. The functions that
operate on tensor. Tensor Operations (TensorOps), use tensor and cooperative_tensors
(see section 2.21) and have been tuned for Apple silicon GPUs. For a list of supported GPU
families, refer to the Metal Feature Set Tables at developer.apple.com. When instantiating a
TensorOp, you pass the scope of execution for the operation, where scope is the number of
threads cooperating to execute the operation (see section 7.1).

/.1 Execution Scopes

All OS: Metal 4 and later support execution scopes.

Operations like TensorOps can work on a single thread, or cooperatively across threads in a
SIMD-group or multiple SIMD-groups. You use execution scopes to specify the scope of
cooperation. Table 7.1 outlines the types of execution scope.

Table 7.1 Execution scopes

Scope

Description

execution_thread

Indicates the scope of cooperation is a single thread

execution_simdgroups<N>
or
execution_simdgroup for N==1

Indicates the scope of cooperation is N SIMD-
groups. TensorOp support N with a value of 1 or
simdgroups_per_threadgroup

(see section 5.2.3.6)

You can use execution_simdgroup forN = 1.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 315 of 346

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

7.2 Tensor Operations (TensorOps)

All OS: Metal 4 and later support tensor operations (TensorOps).

TensorOps are GPU-accelerated functions that operate on tensors and
cooperative_tensors (see section 2.21). TensorOps are class templates that you
instantiate with a set of properties, including the execution scope, to indicate if the operation
should run on a single thread or cooperatively across threads in a SIMD-group or multiple
SIMD-groups (see section 7.1). When calling the TensorOp run method, all threads must call
the method within that scope, or the result is undefined. For example, if the scope used to
create the TensorOp is execution_simdgroup, you must ensure all threads within the same
SIMD-group call the run method. Note that different SIMD-groups can be divergent with each
other in this case.

TensorOps may use a barrier at the level of the execution scope. For example, if you specify the
scope of an operation to be the entire threadgroup, you should ensure your code would behave
correctly if a barrier is used in the TensorOp implementation.

If the TensorOps writes the result into a tensor whose ElementTypeisin device or
threadgroup address space, you must insert a barrier (see section 6.9.1) at the appropriate
thread scope and set the appropriate memory flags before reading the results. You don’t need
to use a barrier for tensors whose memory is in thread address space or for
cooperative_tensors. For example, if the TensorOp run method writes to a tensor whose
ElementTypeisin threadgroup memory and scope is execution_simdgroups<2>, call
threadgroup_barrier(mem_flags::mem_threadgroup) before reading the result of
the tensor. Another example is if the TensorOp run method writes to a tensor whose
ElementTypeisin device memory and scopeis execution_simdgroup, call
simdgroup_barrier(mem_flags::mem_device) before reading the result of the tensor.

Table 7.2 TensorOps

TensorOp template classes

Description

template <
matmul2d_descriptor Desc,
typename Scope,
class... Args>

matmuld2d

Defines an object to perform a generalized matrix
multiplication:

C =AxB + C

A and B can be host-bound, origin-shifted, or
shader-allocated tensors.

C can be host-bound, origin-shifted, shader-
allocated tensors, or cooperative_tensor.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 316 of 346

TensorOp template classes

Description

See section 7.2.1 for more details.

template <
convolution2d_descriptor Desc,
typename Scope,

Defines an object to perform a 2D convolution that
occurs in neural networks. 2D stands for two spatial
dimensions of width x height. The tensor consumed

typename... ConvArgs> by this op is 4D.
convolution2d
The only Scope current supported is
execution_simdgroups<N> where N is
simdgroups_per_threadgroup.
See section 7.2.2 for more details.
7.21 Matrix Multiplication

The template class matmul2d performs a generalized matrix multiplication of two tensors (C =
AxB) or matrix multiplication accumulated into a tensor (C = A*B + C).

The operation takes an M x K tensor A multiplied by a K x N tensor B and accumulates it into an M
x N tensor C. A and B can be host-bound, origin-shifted, or shader-allocated tensors. C can be
host-bound, origin-shifted, shader-allocated tensors, or cooperative_tensor. Table 7.3

shows the data type combination supported.

Table 7.3 MatMul2D data type supported

Tensor A type Tensor B type Tensor C type
char char int
char half half
char half float
char float float
half char half
half char float
half half half
half half float
half float float
float char float
float half float
float float float

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 317 of 346

Table 7.4 shows additional data types supported in OS 26.1 and later.
Table 7.4 Additional MatMul2D data types supported in OS 26.1 and later

Tensor A type Tensor B type Tensor C type
bfloat bfloat bfloat
bfloat bfloat float
bfloat float float
bfloat char bfloat
bfloat char float
float bfloat float
char bfloat bfloat
char bfloat float
bfloat half bfloat
bfloat half half
bfloat half float
half bfloat bfloat
half bfloat half
half bfloat float

To create the matmul2d, you first build a descriptor using the constructor below.

matmul2d_descriptor(int_M, int N, int K

dynamic_length_v<int>,
bool transpose_left false,

bool transpose_right = false,

bool relaxed_precision = false,

mode matmul_mode = mode::multiply);

Table 7.5 MatMul2D descriptor parameters

Parameter

Description

M, N, K

Tensor dimensions where M x K tensor A, K x N tensor B,
and M x N tensor C.

transpose_left

Transpose matrix A before multiplying. The default is
false.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 318 of 346

Parameter Description

transpose_right Transpose matrix B before multiplying. The default is
false.
relaxed_precision Specifies if the operation can use relaxed precision for

float data type. Relaxed precision allows the operation to
truncate the mantissa before the multiplication. The
defaultis false.

matmul_mode Specifies whether to performamultiply or
multiply_accumulate. The defaultismultiply.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 319 of 346

Table 7.6 MatMul2D member functions

MatMul2D member functions

Description

template <
typename LeftOperandType,
typename RightOperandType,
typename DestinationOperandType>
void run(thread LeftOperandType &left,
thread RightOperandType &right,
thread DestinationOperandType
&destination);

Executes a matrix multiply of
C=AxB where C is the
destination tensor, Ais
left tensor,and Bis right
tensor.

template <
typename LeftOperandType,
typename RightOperandType,
typename ElementType,
typename CoordType = int>
cooperative_tensor<...>
get_destination_cooperative_tensor()
thread const;

Returns a
cooperative_tensor that
can store the result of the
matrix multiply.

template <
typename LeftOperandType,
typename RightOperandType,
typename ElementType,
typename CoordType = int>
cooperative_tensor<...>

nsor() thread const;

get_row_reduction_destination_cooperative_te

Returns a
cooperative_tensor that
can store the result of the row
reduction on the result of the
matrix multiply.

template <typename LeftOperandType,
typename RightOperandType,
typename ElementType,
typename CoordType = int>

cooperative_tensor<...>

_tensor() thread

const;

get_column_reduction_destination_cooperative

Returns a
cooperative_tensor that
can store the result of the
column reduction on the result
of the matrix multiply.

To instantiate the template matmul2d, you pass the descriptor and the execution scope to the

template:

template < matmul2d_descriptor Desc,
typename Scope,
class... Args> matmuld2d;

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 320 of 346

To execute the matrix multiplication, call the matmul2d run method by passing the left tensor
(A), the right tensor (B), and the destination tensor (C):

template <
typename LeftOperandType,
typename RightOperandType,
typename DestinationOperandType>
void run(thread LeftOperandType &left,
thread RightOperandType &right,
thread DestinationOperandType &destination);

See Table 7.3 and Table 7.4 for the element type supported for tensor A, B, C.

The example below illustrates the use of a matmul2d TensorOp with tensors:

#include <metal_ tensor>

#include <MetalPerformancePrimitives/MetalPerformancePrimitives.h>
using namespace metal;

using namespace mpp;

[[kernel 1] void matrixMultiply(
tensor<device half, dextents<int, 2>> a [[buffer(o) 11,
tensor<device half, dextents<int, 2>> b [[buffer(1) 11,
tensor<device half, dextents<int, 2>> c¢ [[buffer(2) 11,
uint2 tgid [[thread_position_in_gridl]) {

// Create a matmul op for a threadgroup made of 4 SIMD-groups.
constexpr auto matmulDescriptor =
tensor_ops::matmul2d_descriptor(64, 32, 0);

tensor_ops::matmul2d<matmulDescriptor,
execution_simdgroups<4>> matmulOp;

// Create the appropriate slice for this threadgroup to work on.

auto mA = a.slice(@, tgid.y *x 64);
auto mB = b.slice(tgid.x * 32, 0);
auto mC = c.slice(tgid.x * 32, tgid.y * 64);

// Execute the operation assuming C is initialized to zero.
matmulOp.run(mA, mB, mC);

Touseacooperative_tensor for the destination of amatmul2d TensorOp, use the
following member function. The function returns a cooperative_tensor whose storage is
divided across the threads in the scope of the matmul2d:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 321 of 346

template <typename LeftOperandType,
typename RightOperandType,
typename ElementType, typename CoordType = int>
cooperative_tensor<...>
get_destination_cooperative_tensor() thread const;

The example below illustrates the use of a matmul2d TensorOp with cooperative_tensor:

#include <metal_tensor>

#include <MetalPerformancePrimitives/MetalPerformancePrimitives.h>
using namespace metal;

using namespace mpp;

[[kernel 1] void gemmBias(
tensor<device float, dextents<int, 2>> a [[buffer(o) 11,
tensor<device float, dextents<int, 2>> b [[buffer(1) 11,
tensor<device float, dextents<int, 2>> c¢ [[buffer(2) 11,
device floatx bufBias [[buffer(3)]11],
uint2 tgid [[thread_position_in_gridl]) {

// Build the bias tensor from the buffer.

array<int,1> stride = {1};

tensor<device float, dextents<int, 1>, tensor_inline>
tBias(bufBias, dextents<int,1>(64), stride);

// Create a matmul op for a threadgroup made of 4 SIMD-groups.
constexpr auto matmulDescriptor =
tensor_ops::matmul2d_descriptor(
64, 32, 0, false, false, false,
tensor_ops::matmul2d_descriptor::mode::multiply_accumulate);

tensor_ops::matmul2d<matmulDescriptor,
execution_simdgroups<4>> matmulOp;

// Create the cooperative tensor.
auto cTc = matmulOp.get_destination_cooperative_tensor<
decltype(a), decltype(b), float>();

// Load the bias, run the matrix multiple and store the result.
cTc.load(tBias);

matmulOp.run(a, b, cTc);

cTc.store(c);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 322 of 346

You can do a row or column sum, max, or min reduction of a cooperative_tensorintoa
destination 1D cooperative_tensor if the scope of the matmul2d is
execution_simdgroup.

Table 7.7 Reduction related functions for cooperative tensors

Reduction related functions

Description

template <
class ElementType,
class SrcExtents,
class DstExtents,
class SrclLayout,
class DstLayout>
inline void reduce_rows(
thread metal::cooperative_tensor<
ElementType, SrcExtents,
SrcLayout> &source,
thread metal::cooperative_tensor<
ElementType, DstExtents,
DstLayout> &destination,
reduction_operation op =
reduction_operation::sum,
ElementType identity =
reduction_operation_identity<
ElementType>::sum_identity);

Returns the reduction of each row
and stores the result into the 1D
destination
cooperative_tensor. The
default is a sum reduction for each
row.

template <
class ElementType,
class SrcExtents,
class DstExtents,
class SrclLayout,
class DstLayout>
inline void reduce_columns(
thread metal::cooperative_tensor<
ElementType, SrcExtents,
SrcLayout> &source,
thread metal::cooperative_tensor<
ElementType, DstExtents,
DstlLayout> &destination,
reduction_operation op =
reduction_operation: :sum,
ElementType identity =
reduction_operation_identity<
ElementType>::sum_identity);

Returns the reduction of each
column and stores the result into
the 1D destination
cooperative_tensor. The
default is a sum reduction for each
column.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 323 of 346

template < Returns true if you can use the

class SrcElementType, result of the reduction with another
class DstElementType, tensor using the map_iterator.
class SrcExtents, To check if the iterators are
class DstExtents, compatible, call the following
class SrclLayout, nonmember function.

class DstLayout>
inline bool is_iterator_compatible(

const thread metal::cooperative_tensor<
SrcElementType,
SrcExtents,
SrcLayout> &source,

const thread metal::cooperative_tensor<
DstElementType,
DstExtents,
DstLayout> &destination);

To get the destination tensor for a row reduction, call the following member function:

template <typename LeftOperandType,

typename RightOperandType,

typename ElementType, typename CoordType = int>
cooperative_tensor<...>
get_row_reduction_destination_cooperative_tensor() thread const;

To get the destination tensor for a column reduction, call the following member function:

template <typename LeftOperandType,
typename RightOperandType,
typename ElementType, typename CoordType = int>
cooperative_tensor<...>
get_column_reduction_destination_cooperative_tensor() thread
const;

Use the enumeration to define the type of reduction:

enum class reduction_operation {
sum, // Take the sum of the element of the row/column.
max, // Take the max value of all elements in row/column.
min, // Take the min value of all elements in row/column.
o

Use the following structure to define the identity value for the type of reduction:

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 324 of 346

template <typename ElementType>

struct reduction_operation_identity

{
static const constant ElementType sum_identity;
static const constant ElementType max_identity;
static const constant ElementType min_identity;

b

Call the following nonmember function to return the reduction of each row and store the result
into the 1D destination cooperative_tensor. The default is a sum reduction for each row.

template <class ElementType, class SrcExtents,
class DstExtents, class SrclLayout,
class DstLayout>
inline void reduce_rows(
thread metal::cooperative_tensor<ElementType, SrcExtents,
SrcLayout> &source,
thread metal::cooperative_tensor<ElementType, DstExtents,
DstlLayout> &destination,
reduction_operation op = reduction_operation::sum,
ElementType identity =
reduction_operation_identity<ElementType>::sum_identity);

Call the following nonmember function to return the reduction of each column and store the
result into the 1D destination cooperative_tensor. The default is a sum reduction for each
column.

template <class ElementType, class SrcExtents, class DstExtents,
class SrclLayout, class DstLayout>
inline void reduce_columns(

thread metal::cooperative_tensor<ElementType, SrcExtents,
SrcLayout> &source,

thread metal::cooperative_tensor<ElementType, DstExtents,
DstlLayout> &destination,

reduction_operation op = reduction_operation::sum,

ElementType identity =

reduction_operation_identity<ElementType>::sum_identity);

The example below demonstrates how to do a row reduction:

[[kernel 1] void gemm_reduce/(

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 325 of 346

tensor<device float, dextents<int, 2>> aT [[buffer(e) 11,
tensor<device float, dextents<int, 2>> bT [[buffer(1) 11,
tensor<device float, dextents<int, 2>> cT [[buffer(2) 11,
tensor<device float, dextents<int, 1>> dR [[buffer(3) 11,
uint2 tgid [[thread_position_in_grid]l]) {

constexpr auto matmulDescriptor =
tensor_ops::matmul2d_descriptor(64, 32, 0);

tensor_ops::matmul2d<matmulDescriptor,
execution_simdgroup> matmulOp;

// Create the cooperative tensor.
auto cTdest = matmulOp.get_destination_cooperative_tensor<
decltype(aT), decltype(bT), float>();

// Run the matrix multiple.
matmulOp.run(aT, bT, cTdest);

// Sum up each row and store the results.
auto cTred =
matmulOp.get_row_reduction_destination_cooperative_tensor<
decltype(aT), decltype(bT), float>();

reduce_rows(cTdest, cTred, tensor_ops::reduction_operation::sum,
0.0f);
cTred.store(dR);

You can use the result of the reduction with another tensor using the map_iterator. To
check if the iterators are compatible, call the following nonmember function.

template <class SrcElementType, class DstElementType,
class SrcExtents, class DstExtents,
class SrclLayout, class DstLayout>
inline bool is_iterator_compatible(
const thread metal::cooperative_tensor<
SrcElementType,
SrcExtents,
SrclLayout> &source,
const thread metal::cooperative_tensor<
DstElementType,
DstExtents,
DstLayout> &destination);

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 326 of 346

The following example shows ause of is_iterator_compatible andmap_iterator:

[[kernel 1] void gemm_map(
tensor<device float, dextents<int, 2>> aT [[buffer(e) 11,
tensor<device float, dextents<int, 2>> bT [[buffer(1) 11,
tensor<device float, dextents<int, 2>> dT [[buffer(2) 11)

constexpr auto matmulDescriptor =
tensor_ops::matmul2d_descriptor(64, 32, 0);

tensor_ops::matmul2d<matmulDescriptor,
execution_simdgroup> matmulOp;

// Create the cooperative tensor.
auto cTdest = matmulOp.get_destination_cooperative_tensor<
decltype(aT), decltype(bT), float>();

// Load the bias, run the matrix multiple, and store the result.
matmulOp.run(aT, bT, cTdest);

auto cTred =
matmulOp.get_row_reduction_destination_cooperative_tensor<
decltype(aT), decltype(bT), float>();

auto identity = metal::numeric_limits<float>::lowest();
reduce_rows(cTdest, cTred, tensor_ops::reduction_operation::min,
identity);

// Check if the iterators are compatible and if so, add
// the min across the rows.
if (tensor_ops::is_iterator_compatible(cTdest, cTred)) {
for (auto it = cTdest.begin(); it != cTdest.end(); it++) {
auto cTred_it = cTred.map_iterator(it);
1t += *cTred_it;
h
b
else {
// Do something else.
b

cTdest.store(dT);

For more detailed information, see the MPPTensorOpsMatMul2d. h header.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 327 of 346

7.2.2 Convolution

The template class convolution2d performs a 2D convolution where 2D stands for two
spatial dimensions of width x height. The operation takes an activation and a weight tensor to
produce a tensor or cooperative_tensor as described in Table 7.8.

To create a convolution2d, you first build a descriptor using the constructor below:

enum class convolution2d_activation_layout {
nhwc,

¥

enum class convolution2d_weights_layout {
hwio,

¥

convolution2d_descriptor(

int4 destination_dimensions,

int4 source_dimensions,

int2 kernel _dimensions,

convolution2d_activation_layout activation_layout =
convolution2d_activation_layout: :nhwc,

convolution2d_weights_layout weight_layout =
convolution2d_weights_layout::hwio,

int2 strides = int2(1, 1),

int2 dilations = int2(1, 1),

int groups = 1,

bool relaxed_precision = false,

mode convolution2d_mode = mode::multiply);

Table 7.8 Convolution2d parameters

Parameter Description

destination_dimensions

Specifies the dimension of the output tensor.

source_dimensions

Specifies the dimension of the input tensor.

kernel_dimensions

Specifies the size of the convolution window.

activation_layout

Specifies the layout of the activation tensor.

weights_layout

Specifies the layout of the weight tensor.

strides

Specifies the stride of the convolution

dilations

Specifies the spacing between kernel elements.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 328 of 346

Parameter Description

groups Specifies the number of groups the input is split to the
channel axis.
relaxed_precision Specifies if the operation can use relaxed precision for

float data type. Relaxed precision allows the operation to
truncate the mantissa before the multiplication.

convolution2d_mode Specifies whether to performamultiply or
multiply_accumulate.

To instantiate the template convolution2d, you pass the descriptor and scope. Currently,
the only scope supported is execution_simdgroups<N> where N is
simdgroups_per_threadgroup.

template <
convolution2d_descriptor Desc,
typename Scope,
typename... ConvArgs>
convolution2d;

To execute the convolution, call the convolution2d run method:

template <typename ActivationTensorType,
typename WeightsTensorType,
typename DestinationTensorType, typename... RunArgs>
void run(thread ActivationTensorType &activation,
thread WeightsTensorType &weights,
thread DestinationTensorType &destination) const;

Table 7.9 Convolution run parameter

Parameter Description

activation The activation tensor with NHWC layout:
N = batch (slowest moving dimension)
H = height
W = width

C = input channels (fastest moving dimension)

weights The weights tensor with HWIO layout:

H = kernel height

W = kernel width

I = input channels

0 = output channels (fastest moving dimension)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 329 of 346

Parameter Description
destination The destination tensor which canbe a tensor ora
cooperative_tensor.Ifitisa tensor, the formatis NHWO
layout:
N = batch (slowest moving dimension)
H = height
W = width
0 = output channels (fastest moving dimension)

For more detailed information, please see the MPPTensorOpsConvolution2d.h header.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 330 of 346

8 Numerical Compliance

This chapter covers how Metal represents floating-point numbers regarding accuracy in
mathematical operations. Metal is compliant to a subset of the IEEE 754 standard.

8.1 INF, NaN, and Denormalized Numbers

INF must be supported for single-precision, half-precision, and brain floating-point numbers.

NaNs must be supported for single-precision, half-precision, and brain floating-point numbers
(with fast math disabled). If fast math is enabled the behavior of handling NaN or INF (as inputs
or outputs) is undefined. Signaling NaNs are not supported.

Denormalized single-precision, half-precision, or brain floating-point numbers passed as input
to or produced as the output of single-precision, half-precision, or brain floating-point
arithmetic operations may be flushed to zero.

8.2 Rounding Mode

Either round ties to even or round toward zero rounding mode may be supported for single-
precision, half-precision, and brain floating-point operations.

8.3 Floating-Point Exceptions

Floating-point exceptions are disabled in Metal.

8.4 ULPs and Relative Error

Table 8.1 describes the minimum accuracy of single-precision floating-point basic arithmetic
operations and math functions given as ULP values. The reference value used to compute the
ULP value of an arithmetic operation is the infinitely precise result.

Table 8.1. Accuracy of single-precision floating-point operations and functions

Math function Minimum accuracy (ULP values)
X +y Correctly rounded
X — Yy Correctly rounded
X %y Correctly rounded
1.0 / x Correctly rounded
x /'y Correctly rounded

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 331 of 346

Math function Minimum accuracy (ULP values)
acos <=4 ulp

acosh <=4 ulp

asin <=4 ulp

asinh <=4 ulp

atan <=5ulp

atan2 <=6 ulp

atanh <=5ulp

ceil Correctly rounded
copysign O ulp

cos <=4 ulp

cosh <=4 ulp

cospil <=4 ulp

exp <=4 ulp

exp2 <=4 ulp

explo <=4 ulp

fabs Oulp

fdim Correctly rounded
floor Correctly rounded
fma Correctly rounded
fmax Oulp

fmin Oulp

fmod Oulp

fract Correctly rounded
frexp Oulp

ilogb O ulp

ldexp Correctly rounded
log <=4 ulp

log2 <=4 ulp

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 332 of 346

Math function

Minimum accuracy (ULP values)

logl1o <=4 ulp

modTf Oulp

nextafter Oulp

pow <=16 ulp

powr <=16 ulp

rint Correctly rounded
round Correctly rounded
rsqrt Correctly rounded
sin <=4 ulp

sincos <=4 ulp

sinh <=4 ulp

sinpi <=4 ulp

sqrt Correctly rounded
tan <=6 ulp

tanpi <=6 ulp

tanh <=5ulp

trunc Correctly rounded

Table 8.2 describes the minimum accuracy of single-precision floating-point arithmetic
operations given as ULP values with fast math enabled (which is the default unless you specify
-fno—fast—-math as a compiler option).

Table 8.2. Accuracy of single-precision operations and functions with fast math

enabled
Math function Minimum accuracy (ULP values)
X +y Correctly rounded
X —y Correctly rounded
X %y Correctly rounded
1.0 / x <=1 ulp for x in the domain of 2% to 2'?°

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 333 of 346

Math function

Minimum accuracy (ULP values)

X /'y <= 2.5 ulp for y in the domain of 27'?® to 2"
acos(x) <=5 ulp for x in the domain [-1, 1]
acosh(x) Implemented as 1og(x + sqrt(x * x — 1.0))
asin(x) <= 5 ulp for x in the domain [-1, 1] and |x| >= 27
asinh(x) Implemented as 1og(x + sqrt(x * x + 1.0))
atan(x) <=5ulp
atanh(x) Implementedas 0.5 * (log((1.0 + x) / (1.0 — x))
atan2(y, x) Implemented as
if x > 0,atan(y / x),
ifx < @andy > 0,atan(y / x) + M_PI_F
ifx < @andy < 0,atan(y / x) — M_PI_F
andif x = @ory = 0,theresultisundefined.
ceil Correctly rounded
copysign Oulp
cos(x) For x in the domain [-pi, pi], the maximum absolute error is <= 27" and
larger otherwise.
cosh(x) Implementedas 9.5 * (exp(x) + exp(-x))
cospi(x) For x in the domain [-1, 1], the maximum absolute error is <= 2" and
larger otherwise.
exp(x) <=3 + floor(fabs(2 * x)) ulp
exp2(x) <=3 + floor(fabs(2 % x)) ulp
explo(x) Implemented as exp2(x * 1log2(10))
fabs O ulp
fdim Correctly rounded
floor Correctly rounded
fma Correctly rounded
fmax O ulp
fmin Oulp
fmod Undefined

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 334 of 346

Math function

Minimum accuracy (ULP values)

fract Correctly rounded

frexp O ulp

ilogb O ulp

ldexp Correctly rounded

log(x) For x in the domain [0.5, 2], the maximum absolute error is <= 272";
otherwise if x > 0 the maximum error is <= 3 ulp; otherwise the
results are undefined.

log2(x) For x in the domain [0.5, 2], the maximum absolute error is <= 27%%
otherwise if x > 0 the maximum error is <= 2 ulp; otherwise the results
are undefined.

logl0(x) Implemented as 1092 (x) * logl0(2)

modf O ulp

pow(x, vy) Implemented as exp2(y * log2(x)).

Undefined for x = @andy = 0.

powr (x, y)

Implemented as exp2(y * log2(x)).
Undefined for x = @andy = 0.

rint Correctly rounded

round(x) Correctly rounded

rsqrt <=2 ulp

sin(x) For x in the domain [-pi, pi], the maximum absolute error is <= 27" and
larger otherwise.

sinh(x) Implementedas 0.5 * (exp(x) — exp(-x))

sincos(x) ULP values as defined for sin(x) and cos(x)

sinpi(x) For x in the domain [-1, 1], the maximum absolute error is <= 27 and
larger otherwise.

sgqrt(x) Implemented as x * rsqrt(x) with special cases handled correctly.

tan(x) Implementedas sin(x) * (1.0 / cos(x))

tanh(x) Implementedas (t — 1.0)/(t + 1.0),wheret = exp(2.0 *
X)

tanpi(x) Implemented as tan(x * pi)

trunc Correctly rounded

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 335 of 346

Table 8.3 describes the minimum accuracy of half-precision floating-point basic arithmetic
operations and math functions given as ULP values. Table 8.3 applies to iOS and macQOS,
starting with Apple GPU Family 4 hardware.

Table 8.3. Accuracy of half-precision floating-point operations and functions

Math function Minimum accuracy (ULP values)
X +y Correctly rounded
X —y Correctly rounded
X %y Correctly rounded
1.0 / x Correctly rounded
x /'y Correctly rounded
acos(x) <=1ulp
acosh(x) <=1ulp
asin(x) <=1ulp
asinh(x) <=1ulp
atan(x) <=1ulp
atanh(x) <=1ulp
atan2(y, x) <=1ulp

ceil Correctly rounded
copysign O ulp

cos(x) <=1ulp

cosh(x) <=1ulp
cospi(x) <=1ulp

exp(x) <=1ulp

exp2(x) <="1ulp
explo(x) <=1ulp

fabs Oulp

fdim Correctly rounded
floor Correctly rounded

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 336 of 346

Math function Minimum accuracy (ULP values)
fma Correctly rounded
fmax Oulp

fmin Oulp

fmod Oulp

fract Correctly rounded
frexp Oulp

ilogb O ulp

ldexp Correctly rounded
log(x) <=1ulp

log2(x) <=1ulp
logl0(x) <="1ulp

modTf Oulp
nextafter Oulp

rint Correctly rounded
round(x) Correctly rounded
rsqrt Correctly rounded
sin(x) <=1ulp

sinh(x) <=1ulp
sincos(x) ULP values as defined for sin(x) and cos(x)
sinpi(x) <=1ulp
sgqrt(x) Correctly rounded
tan(x) <=1ulp

tanh(x) <=1ulp
tanpi(x) <=1ulp

trunc Correctly rounded

Table 8.4 describes the minimum accuracy of brain floating-point basic arithmetic operations
and math functions given as ULP values. Table 8.4 applies to all OS, starting with Apple GPU

Family 6 or Metal GPU Family 3.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.

Page 337 of 346

Table 8.4. Accuracy of brain floating-point operations and functions

Math function Minimum accuracy (ULP values)
X +y Correctly rounded
X — Yy Correctly rounded
X %y Correctly rounded
1.0 / x Correctly rounded
x /'y Correctly rounded

Table 8.5. Accuracy of brain floating-point operations and functions with fast
math enabled

Math function Minimum accuracy (ULP values)

X +y Correctly rounded

X — Yy Correctly rounded

X %y Correctly rounded

1.0 / x <= 0.6 ulp for x in the domain of 27 to 2'%®
X /'y <= 0.6 ulp for y in the domain of 27'?° to 2'%

Even though the precision of individual math operations and functions are specified in Table
8.1, Table 8.2, Table 8.3, Table 8.4, and Table 8.5, the Metal compiler, in fast math mode (see
section 1.6.5), may do various optimization like reassociate floating-point operations that may
dramatically change results in floating-point. Reassociation may change or ignore the sign of
zero, allow optimizations to assume the arguments and result are not NaN or +/-INF, inhibit or
create underflow or overflow and thus cannot be in code that relies on rounding behavior such
as (x + 252) — 252 or ordered floating-point comparisons.

The ULP is defined as follows:

If x is a real number that lies between two finite consecutive floating-point numbers a and b,
without being equal to one of them, then ulp(x) = |b - a|, otherwise ulp(x) isthe
distance between the two nonequal finite floating-point numbers nearest x. Moreover,
ulp(NaN) is NaN.

8.5 Edge Case Behavior in Flush to Zero Mode

If denormalized values are flushed to zero, then a function may return one of four results:
1. Any conforming result when not in flush to zero mode.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 338 of 346

If the result given by step 1is a subnormal before rounding, it may be flushed to zero.

3. Any nonflushed conforming result for the function if one or more of its subnormal
operands are flushed to zero.

4. If the result of step 3 is a subnormal before rounding, the result may be flushed to zero.

In each of the above cases, if an operand or result is flushed to zero, the sign of the zero is
undefined.

8.6 Conversion Rules for Floating-Point and Integer
Types

When converting from a floating-point type to an integer, the conversion uses round toward
zero rounding mode. Use the “round ties to even” or “round toward zero" rounding mode for
conversions from a floating-point or integer type to a floating-point type.

The conversions fromhalf and bfloat to float are lossless. Conversions from float to
half orto bfloat round the mantissa using the round ties to even rounding mode. When
converting a float toahalf, denormalized numbers generated for the half data type may
not be flushed to zero.

When converting a floating-point type to an integer type, if the floating-point value is NaN, the
resulting integer is O.

Note that fast math does not change the accuracy of conversion operations.

8.7 Texture Addressing and Conversion Rules

The texture coordinates specified to the sample, sample_compare, gather,
gather_compare, read, and write functions cannot be INF or NaN. An out-of-bound
texture read returns the default value for each component, as described in section 6.12, and
Metal ignores an out-of-bound texture write.

The following sections discuss the application of conversion rules when reading and writing
textures in a graphics or kernel function. When performing a multisample resolve operation,
these conversion rules do not apply.

8.71 Conversion Rules for Normalized Integer Pixel Data Types

This section discusses converting normalized integer pixel data types to floating-point values
and vice-versa.

8.7.1.1 Converting Normalized Integer Pixel Data Types to Floating-Point Values

For textures that have 8-, 10-, or 16-bit normalized unsigned integer pixel values, the texture
sample and read functions convert the pixel values from an 8- or 16-bit unsigned integer to a
normalized single- or half-precision floating-point value intherange [0.0 .. 1.0].

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 339 of 346

For textures that have 8- or 16-bit normalized signed integer pixel values, the texture sample
and read functions convert the pixel values from an 8- or 16-bit signed integer to a normalized
single- or half-precision floating-point value in therange [-1.0 .. 1.01].

These conversions are performed as listed in the second column of Table 8.6. The precision of
the conversion rules is guaranteed to be <= 1.5 ulp, except for the cases described in the
“Corner Cases" column.

Table 8.6. Conversion to a normalized float value

Convert from Conversionrule to normalized Corner cases
float

1-bit normalized float(c) 0 must convert to 0.0
unsigned integer 1 must convert to 1.0
2-bit normalized float(c) / 3.0 0 must convert to 0.0
unsigned integer 3 must convert to 1.0
4-bit normalized float(c) / 15.0 0 must convert to 0.0
unsigned integer 15 must convert to 1.0
5-bit normalized float(c) / 31.0 0 must convert to 0.0
unsigned integer 31 must convert to 1.0
6-bit normalized float(c) / 63.0 0 must convert to 0.0
unsigned integer 63 must convertto 1.0
8-bit normalized float(c) / 255.0 0 must convert to 0.0
unsigned integer 255 must convert to 1.0
10-bit normalized |float(c) / 1023.0 0 must convert to 0.0
unsigned integer 1023 must convert to 1.0
16-bit normalized | float(c) / 65535.0 0 must convert to 0.0
unsigned integer 65535 must convert to 1.0
8-bit normalized max(-1.09, -128 and -127 must convert to -1.0
signed integer float(c)/127.0) 0 must convert to 0.0

127 must convert to 1.0
16-bit normalized |max(-1.09, -32768 and -32767 must convert to
signed integer float(c)/32767.0) -1.0

0 must convert to 0.0

32767 must convert to 1.0

8.7.1.2 Converting Floating-Point Values to Normalized Integer Pixel Data Types

For textures that have 8-, 10-, or 16-bit normalized unsigned integer pixel values, the texture
write functions convert the single- or half-precision floating-point pixel value to an 8- or 16-bit
unsigned integer.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 340 of 346

For textures that have 8- or 16-bit normalized signed integer pixel values, the texture write
functions convert the single- or half-precision floating-point pixel value to an 8- or 16-bit
signed integer.

NaN values are converted to zero.

Conversions from floating-point values to normalized integer values are performed as listed in
Table 8.7.

Table 8.7. Conversion from floating-point to a normalized integer value

Convert to

Conversion rule to normalized integer

1-bit normalized
unsigned integer

x = min(max(f, 0.0), 1.0)

10:0 = intRTNE(x)

2-bit normalized X = min(max(f *x 3.0, 0.0), 3.0)
unsigned integer | 11:0 = intRTNE(x)

4-bit normalized X = min(max(f x 15.0, 0.0), 15.0)
unsigned integer 13:0 = intRTNE(x)

5-bit normalized X = min(max(f * 31.0, 0.0), 31.0)
unsigned integer | 14:0 = intRTNE(x)

6-bit normalized X = min(max(f *x 63.0, 0.0), 63.0)

unsigned integer

15:0 = intRTNE(x)

8-bit normalized x = min(max(f *x 255.0, 0.0), 255.0)
unsigned integer | 17:0 = intRTNE(x)
10-bit normalized |x = min(max(f * 1023.0, 0.0), 1023.0)

unsigned integer

19:0 = intRTNE(x)

16-bit normalized |result = min(max(f *x 65535.0, 0.0), 65535.0)
unsignedinteger | 115:0 = intRTNE(x)
8-bit normalized result = min(max(f x 127.0, -127.0), 127.0)

signed integer

17:0 = intRTNE(x)

16-bit normalized
signed integer

result = min(max(f *x 32767.0, —-32767.0),32767.0)
115:0 = intRTNE(x)

In Metal 2, all conversions to and from unorm data types round correctly.

8.7.2

For textures that have half-precision floating-point pixel color values, the conversions from
half to float are lossless. Conversions from float to half round the mantissa using the
round ties to even rounding mode. Denormalized numbers for the half data type which may be
generated when converting a float toa half may not be flushed to zero. A f1oat NaN may

Conversion Rules for Half-Precision Floating-Point Pixel Data Type

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 341 of 346

be converted to an appropriate NaN or be flushed to zero in the half type. A float INF must
be converted to an appropriate INF in the half type.

8.7.3 Conversion Rules for Single-Precision Floating-Point Pixel Data Type

The following rules apply for reading and writing textures that have single-precision floating-
point pixel color values:

NaNs may be converted to a NaN value(s) or be flushed to zero.
INFs must be preserved.

Denormalized numbers may be flushed to zero.

All other values must be preserved.

8.7.4 Conversion Rules for 10- and 11-bit Floating-Point Pixel Data Type

The floating-point formats use 5 bits for the exponent, with 5 bits of mantissa for 10-bit
floating-point types, or 6-bits of mantissa for 11-bit floating-point types with an additional
hidden bit for both types. There is no sign bit. The 10- and 11-bit floating-point types preserve
denormalizes.

These floating-point formats use the following rules:

¢ [f the exponent and mantissa are O, the floating-point value is 0.0.

e If the exponent is 31 and the mantissa is != 0, the resulting floating-point value is a NaN.

¢ If the exponent is 31 and the mantissa is O, the resulting floating-point value is positive
infinity.

¢ If O <= exponent <= 31, the floating-point value is 2 ~ (exponent - 15) * (1 + mantissa/N).

e If the exponent is 0 and the mantissa is != 0, the floating-point value is a denormalized
number given as 2 * (exponent — 14) * (mantissa / N). If mantissa is 5 bits, N is 32; if
mantissa is 6 bits, N is 64.

Conversion of a 10- or 11-bit floating-point pixel data type to a half- or single-precision
floating-point value is lossless. Conversion of a half or single precision floating-point value to a
10- or 11-bit floating-point value must be <= 0.5 ULP. Any operation that results in a value less
than zero for these floating-point types is clamped to zero.

8.7.5 Conversion Rules for 9-bit Floating-Point Pixel Data Type with a 5-bit
Exponent

The RGB9E5_SharedExponent shared exponent floating-point format uses 5 bits for the
exponent and 9 bits for the mantissa. There is no sign bit.

Conversion from this format to a half- or single-precision floating-point value is lossless and
computed as 2 ” (shared exponent — 15) * (mantissa/512) for each color channel.

Conversion from a half or single precision floating-point RGB color value to this format is
performed as follows, where N is the number of mantissa bits per component (9), B is the
exponent bias (15) and Emax is the maximum allowed biased exponent value (31).

e Clampthe r, g, and b components (in the process, mapping NaN to zero) as follows:

rc = max(@, min(sharedexpmax, r)
gc = max(@, min(sharedexpmax, g)
bc max (0, min(sharedexpmax, b)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 342 of 346

Where sharedexpmax = ((2N — 1)/2N) * 2(Emax— B).
e Determine the largest clamped component maxc:

maxc = max(rc, gc, bc)
e Compute a preliminary shared exponent expp:

expp = max(-B — 1, floor(log2(maxc)) + 1 + B
e Compute arefined shared exponent exps:

maxs = floor((maxc / 2"(expp-B-N) + 0.5f)
exps = expp, if @ <= maxs < 2N,andexps = expp + 1, if maxs = 2N.

e Finally, compute three integer values in the range 0 to 2N — 1:

rs = floor(rc / 2”*(exps-B-N) + 0.5f)
gs = floor(gc / 2~(exps—-B-N) + 0.5f)
bs = floor(bc / 2”*(exps-B-N) + 0.5f)

Conversion of a half- or single-precision floating-point color values to the
MTLPixelFormatRGB9ES5F1loat shared exponent floating-point value is <= 0.5 ULP.

8.7.6 Conversion Rules for Signed and Unsigned Integer Pixel Data Types

For textures that have an 8- or 16-bit signed or unsigned integer pixel values, the texture
sample and read functions return a signed or unsigned 32-bit integer pixel value. The
conversions described in this section must be correctly saturated.

Writes to these integer textures perform one of the conversions listed in Table 8.8.

Table 8.8. Conversion between integer pixel data types

Convert from To Conversion rule

32-bit signed integer | 8-bit signed integer result =
convert_char_saturate(val)

32-bit signed integer | 16-bit signed integer | result =
convert_short_saturate(val)

32-bit unsigned 8-bit unsigned result =

integer integer convert_uchar_saturate(val)
32-bit unsigned 16-bit unsigned result =

integer integer convert_ushort_saturate(val)

8.7.7 Conversion Rules for sRGBA and sBGRA Textures

Conversion from sRGB space to linear space is automatically done when sampling from an
sRGB texture. The conversion from sRGB to linear RGB is performed before the filter specified
in the sampler specified when sampling the texture is applied. If the texture has an alpha
channel, the alpha data is stored in linear color space.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 343 of 346

Conversion from linear to sSRGB space is automatically done when writing to an sRGB texture. If
the texture has an alpha channel, the alpha data is stored in linear color space.

The following is the conversion rule for converting a normalized 8-bit unsigned integer from an
sRGB color value to a floating-point linear RGB color value (call it c):

if (c <= 0.04045)
result = c / 12.92;
else

result

powr((c + ©.055) / 1.055, 2.4);

The precision of the above conversion must ensure that the delta between the resulting
infinitely precise floating-point value when converting result back to an unnormalized sRGB
value but without rounding to an 8-bit unsigned integer value (call it r) and the original sRGB 8-
bit unsigned integer color value (call it rorig) is <= 0.5; for example:

fabs(r — rorig) <= 0.5

Use the following rules for converting a linear RGB floating-point color value (call it c) to a
normalized 8-bit unsigned integer sRGB value:

if (isnan(c)) c = 0.0;
if (¢ > 1.0)
c =1.9;
else if (c < 0.0)
cC =0.9;
else if (c < 0.0031308)
c = 12.92 % c;
else
c = 1.055 % powr(c, 1.0/2.4) - 0.055;
// Convert to integer scale: ¢ = c *x 255.0.
// Convert to integer: c = c + 0.5.
// Drop the decimal fraction.
// Convert the remaining floating-point(integral) value
// to an integer.

The precision of the above conversion shall be:

fabs(reference result — integer result) < 1.0.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 344 of 346

9 Appendix

9.1 New in Metal 3.2

Metal 3.2 introduces the following new features:

Relaxed Math (section 1.6.3)
Intersection Result Reference (section 2.17.5)

Texture and Buffer Memory Coherency (section 2.9 and section 4.8), Thread Scope
(section 6.15.2), and Fence Functions (section 6.15.3)

Global Bindings (section 5.9)
Logging (section 6.19)

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 345 of 346

[

Apple Inc.

Copyright © 2018-2025 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Inc., with the following
exceptions: Any person is hereby
authorized to store documentation on a
single computer or device for personal
use only and to print copies of
documentation for personal use
provided that the documentation
contains Apple’s copyright notice.

No licenses, express or implied, are
granted with respect to any of the
technology described in this document.
Apple retains all intellectual property
rights associated with the technology
described in this document. This
document is intended to assist
application developers to develop
applications only for Apple-branded
products.

Apple Inc.

One Apple Park Way
Cupertino, CA 95014
408-996-1010

Apple is a trademark of Apple Inc.,
registered in the U.S. and other
countries.

APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,"
AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT, ERROR OR INACCURACY IN
THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the
exclusion of implied warranties or
liability, so the above exclusion may
not apply to you.

2025-10-23 | Copyright © 2025 Apple Inc. | All Rights Reserved.
Page 346 of 346

