Core Image Kernel Language
Reference

Developer

Contents

Overview
ClKernel Function Requirements

Data Types

Scalar TYpes e e e e e e e e e e e e s e
Vector TYPES . . . v o e o e
Matrix TYPES o e e e e e e e e e e e e e e
Sampler TYPES o e

Operators

Functions

Relational Functions L e e e e e e e e e e
Math Functions L L e e e e e e e e e e
Trigonometry Functions L e e e e e e e e e e
Matrix Functions L L L e e e e e e e
Geometry FUNCLIONS e e e e e e e e e e e e e e
Color Functions o . L e e e e e e e
Sampling Functions L L e e e e e e e e e e e

Additional Language Features

Globals e e e e e e e
Control FIow e e e e e e e e
Type Qualifiers e e e e e e e
Attributes . . . L L e e e e e e e e

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

2

N o O o1 o g

© ©O© © 00w 00 ®

Overview

The Core Image Kernel Language is a simple shading language that you use to add custom image processing routines
to a Core Image pipeline. This document defines the features supported in Core Image Kernel Language.

Source code written in Core Image Kernel Language should contain one or more image processing routines; optionally,
it can contain other functions called by those routines. The source code is parsed and validated when it's passed to
the APIs that create CIKernel objects. The source code is compiled when CIImage objects that are created using
CIKernel objects are rendered to a CIContext. When rendering, Core Image concatenates kernel functions to
optimize shader programs.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

3

ClKernel Function Requirements

Denote a CIKernel function with the kernel keyword qualifier. The [CIKernel kernelWithString...] API
returns the first kernel-qualified function in the source. Similarly, the [CIKernel kernelsWithString...]
function returns an array of all kernel-qualified functions in the kernel source.

Write CIKernel functions to return a four-element vector type, except for CIWarpKernel functions, which return a
two-element vector type.

The name of your CIKernel must not start with an underscore character (_), which is reserved for Apple’s use.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

4

Data Types

Core Image Kernel Language supports a relatively minimal set of primitive scalar data types, along with their respective
vector and matrix types. Historically, Core Image Kernel Language keywords are derived from the OpenGL Shading
Language (GLSL). Additional Metal-styled type aliases have been added to iOS 12 and macOS 10.14.

Scalar Types

Core Image Kernel Language supports the scalar types listed below:

Type Description

int A signed two's complement 32-bit integer. Cannot be used as the
parameter type of a kernel-qualified function.

bool A conditional data type with value either true or false. true has

integer value 1, and false has integer value 0. Cannot be used as
the parameter type of a kernel-qualified function.

float A 32-bit floating point. Must conform to the IEEE 754 single-precision
storage format.
half’ A 16-bit floating point. Must conform to the IEEE 754 binary16

storage format. Supported only when rendering using a Metal-backed
CIContext; treated as 32-bit floats otherwise.

' Available in iOS 12 and later and macOS 10.14 and later.
Vector Types

Core Image Kernel Language supports n-dimensional vector types derived from the scalar types, where nis 2, 3, or
4.

Type Alias Description

bvec<n> bool<n>' An n-element vector of Boolean values. Cannot
be used as the parameter type of a
kernel-qualified function.

ivec<n> int<n>' An n-element vector of signed two’s complement
32-bit integers. Cannot be used as the parameter
type of a kernel-qualified function.

vec<n> float<n>’ An n-element vector of 32-bit floating point
values.

hvec<n>' half<n>' An n-element vector of 16-bit floating point
values.

' Available in iOS 12 and later and macOS 10.14 and later.

The type __color is an alias to the type vec4 and represents a premultiplied RGBA color.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

5

Matrix Types

Core Image Kernel Language supports n-by-n square matrix types derived from the floating-point scalar types, where
nis 2, 3, or 4.

Type Alias Description

mat<n> float<n>x<n>' An n-by-n square matrix of 32-bit floating-point
values.

hmat<n>' half<n>x<n>" An n-by-n square matrix of 16-bit floating-point
values.

' Available in iOS 12 and later and macOS 10.14 and later.

Sampler Types

Type Alias Description

sample_f' __sample® A sample value from a CIImage represented by a
4D 32-bit floating-point vector. Use as a
parameter type only for representing a sample
from an image. Otherwise behaves as a vec4.

sample_h' A sample value from a CIImage represented by a
4D 16-bit floating-point vector. Use as a
parameter type only for representing a sample
from an image. Otherwise behaves as an hveca.

sampler_f" sampler A sampler for a CIImage that returns 4D 32-bit
floating-point precision samples.
sampler_h' A sampler for a CIImage that returns 4D 16-bit

floating-point precision samples.

' Available in iOS 12 and later and macOS 10.14 and later.
% Available in iOS 8 and later and macOS 10.11 and later.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

6

Operators

Core Image Kernel Language supports the following operators on scalar, vector, and matrix types:

Category Operators Supported Types

Basic Math +—%/ Vectors, matrices, and mixed types
Assignment =+=-=x%= /= Vectors, matrices, and mixed types
Comparison ==1=<=>=2 Vectors, matrices, and mixed types
Bitwise Logic =~ 1 " & | Vector types

Boolean Logic ! && | | Vector types

In addition, the ternary conditional operatora ? b : cis supported, where a is a scalar Boolean expression, and b
and c are values of the same type.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

7

Functions

You can write custom functions in Core Image Kernel Language with standard C syntax. Functions are overloadable.
Most functions operate elementwise on vectors and matrices. Tables of built-in Core Image Kernel Language functions

are written in the following type shorthand:

o bvec represents any of bvec2, bvec3, bvec4
e ivecrepresentsany of ivec2, ivec3, ivecé4

e vec represents any of vec2, vec3, vec4, hvec2, hvec3, hvec4

e anyvec represents any vector type

o typerepresents any of float, vec2, vec3, vec4, half, hvec2, hvec3, hvec4
* mat represents any of mat2, mat3, mat4, hmat2, hmat3, hmat4

Relational Functions

Function

Returns

bool any(bvec)
bool all(bvec)
bool not(bvec)

true if any argument is true
true if all arguments are true
true if no argumentis true

bvec equal(anyvec, anyvec) Elementwise equality of two vectors
bvec notEqual(anyvec, anyvec) Elementwise inequality of two vectors
bvec lessThan(anyvec, anyvec) Elementwise < of two vectors

bvec lessThanEqual(anyvec, anyvec) Elementwise = of two vectors

Elementwise > of two vectors
Elementwise = of two vectors
Elementwise (c<@) ? a : b

bvec greaterThan(anyvec, anyvec)
bvec greaterThanEqual(anyvec, anyvec)
type compare(type c, type a, type b)

Math Functions

Function Returns

type pow(type a, type b) a to the power of b

type exp(type) e to the power of value
type log(type) log base e of value

type exp2(type) 2 to the power of value
type log2(type) log base 2 of value

type sqrt(type) Square root of value

type inversesqrt(type) Inverse square root of value

Absolute value

Closest integer less than or equal to value
Closest integer greater than or equal to value
x — floor(x)

x —y x floor(x/y)

Minimum of two values

type abs(type)

type floor(type)

type ceil(type)

type fract(type x)

type mod(type x, type y)

type min(type)

type max(type)

type clamp(type x, typea, typeb)

Maximum of two values
min(max(x,a),b)

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

8

Function

Returns

type
type
type
type
type
type
type

clamp(type x, floata, floathb)
mix(type x, type y, type a)
mix(type x, type y, float a)
step(type edge, type x)
step(float edge, type x)
sign(type x)

smoothstep(type edged, type

edgel, type x)

type

smoothstep(float edged,

float edgel, type x)

min(max(x,a),b)

x*(1-a) + yx*a

xk(1l-a) + yx*a

X < edge ? 0 : 1

X < edge ? 0 : 1
X<0?-1?2x>0:1:0

0if x = edge0, 1if x =z edgel, Hermite in between

0if x = edge0, 1if x =z edgel, Hermite in between

Trigonometry Functions

Function Returns

type radians(type) Degrees converted to radians
type degrees(type) Radians converted to degrees

type sin(type) Sine of an angle in radians

type cos(type) Cosine of an angle in radians

type tan(type) Tangent of an angle in radians

type asin(type) Inverse sine as an angle between 0 and Tt

type acos(type) Inverse cosine as an angle between -11/2 and +1t/2
float atan(float) Inverse tangent as an angle between -1/2 and +11/2
float atan(vec2) Inverse tangent of .y/ . x as an angle between -1t and 1t

vec2 sincos(float) Vector containing sine and cosine of an angle
vec2 cossin(float) Vector containing cosine and sine of an angle

Matrix Functions

Function

Returns

mat matrixCompMult(mat x, mat y) Elementwise product of two matrices

float determinant(mat)
mat determinant(mat)
mat inverse(mat)

Scalar determinant of a matrix
Transpose of a matrix
Inverse of a matrix

Geometry Functions

Function

Returns

float dot(type x, type y) Scalar dot product of two vectors

float length(type)

Scalar length of a vector

float distance(type x, type y) Lengthofthex - y vector

float normalize(type)

Length-1 vector in the same direction

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

9

Function Returns

vec3 cross(vec3 x, vec3 y) Vector cross product of x and y

Color Functions

Function Returns

vec4|hvecsd Multiplies red, green, and blue components of the parameter by

premultiply(vec4|hvec4) its alpha component.

vec4|hvecsd If the alpha component of the parameter is greater than O,

unpremultiply(vec4|hvec4) divides the red, green, and blue components by alpha. If alpha
is 0, this function returns the parameter.

vec3|hvec3 abs(s) < 0.04045 ? (s / 12.92) : sign(s) x*

srgb_to_linear(vec3|hvec3) pow(abs(s)*0.947867298578199 +
0.052132701421801, vec3(2.4))

vec3|hvec3 abs(s) < 0.0031308 ? (s * 12.92) : sign(s) *

linear_to_srgb(vec3|hvec3) pow(abs(s), vec3(1.0/2.4)) % 1.055 — 0.055)

vec4|hvecs unpremultiply(s);srgb_to_linear(s.rgb);premultiply(s);

srgb_to_linear(vec4|hvec4)

vec4|hvecsk unpremultiply(s);linear_to_srgb(s.rgb);premultiply(s);

linear_to_srgb(vec4|hvecs)

Sampling Functions
destCoord

float2 destCoord()

Returns the position, in working space coordinates, of the pixel currently being computed. The destination space
refers to the coordinate space of the image you're rendering.

sample

floats4 sample(sampler_f src, float2 coord)

half4 sample(sampler_h src, float2 coord)

Returns the pixel value produced from sampler src at the position coord, where coord is specified in the sampler’s
coordinate system.

samplerTransform

float2 samplerTransform(sampler_f src, float2 coord)

float2 samplerTransform(sampler_h src, float2 coord)

Returns the position in the coordinate space of the src argument that's associated with the position defined in working
space coordinates coord. Working space coordinates reflect any transformations that you've applied to the working
space.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

10

For example, if you're producing a pixel in the working space, and you need to retrieve the pixels that surround this
pixel in the original image, you'd make calls similar to the following, where d is the location of the pixel you're producing
in the working space, and image is the image source for the pixels.

vec2(-1.0,-1.90));
vec2(+1.0,-1.0));
vec2(-1.0,+1.0));
vec2(+1.0,+1.0));

samplerTransform(src, d
samplerTransform(src, d
samplerTransform(src, d
samplerTransform(src, d

+ + + +

samplerCoord

float2 samplerCoord(sampler_f src)
float2 samplerCoord(sampler_h src)

Returns the position, in sampler space, of the sampler src that's associated with the current output pixel after applying
any transformation matrix associated with src. The sample space refers to the coordinate space you're texturing from.
If your source data is tiled, the sample coordinate will have an offset (dx/dy). You can convert a destination location
to the sampler location using the samplerTransform function, which is equivalent to samplerTransform(src,

destCoord()).

samplerExtent

float4 samplerExtent(sampler_f src)
float4 samplerExtent(sampler_h src)

Returns the extent (x, y, width, height) of the sampler in world coordinates as a four-element vector. If the
extent is infinite, the vector (-INF,—INF, INF, INF) is returned.

samplerOrigin

float2 samplerOrigin(sampler_f src)
float2 samplerOrigin(sampler_h src)

Returns the origin of the sampler extent; equivalent to samplerExtent(src).xy
samplerSize

float2 samplerSize(sampler_f src)
float2 samplerSize(sampler_h src)

Returns the size of the sampler extent; equivalent to samplerExtent(src).zw.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

i

Additional Language Features

Globals

Core Image Kernel Language supports declaring global scope constants of scalar, vector, or matrix type.

const float rotation = 1.6180339887498;
const vec2 dé5illuminant = vec2(0.31271, ©0.32902);

Control Flow

Core Image Kernel Language supports the following standard control statements from C:

if, then, else, for, while, break, continue
Type Qualifiers

On macOS 10.10 and earlier, you could qualify sampler parameters as __table to alter the behavior of ROI callbacks
for that sampler, but now this qualifier has no effect.

Attributes

For kernel functions, you can use optional attributes to indicate additional kernel properties.

kernel vec4 myColorKernel(sample_f s) __attribute__((<attribute_list>))
{
return s;

b
<attribute_list> is a comma-separated list of attribute keywords or attribute(value) pairs.

Core Image Kernel Language supports the following kernel function attribute:

Attribute Description

outputFormat Specifies the desirable output format of a kernel function.
The format argument should be the name of a CIFormat,
like __attribute__(outputFormat(kCIFormatAS8)).

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

12

Copyright and Notices

[

Apple Inc.

Copyright © 2018 Apple Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electronic, photocopying,
recording, or otherwise, without prior written permission of Apple Inc., with the following exceptions: Any person is hereby authorized to store documentation
on a single computer or device for personal use only and to print copies of documentation for personal use provided that the documentation contains Apple’s
copyright notice.

No licenses, express or implied, are granted with respect to any of the technology described in this document. Apple retains all intellectual property rights
associated with the technology described in this document. This document is intended to assist application developers to develop applications only for Apple-
branded products.

Apple Inc.

One Apple Park Way
Cupertino, CA 95014
USA

408-996-1010

Apple is a trademark of Apple Inc., registered in the U.S. and other countries.

APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED "AS IS,"” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT,
ERROR OR INACCURACY IN THIS DOCUMENT, even if advised of the possibility of such damages.

Some jurisdictions do not allow the exclusion of implied warranties or liability, so the above exclusion may not apply to you.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

13

	Core Image Kernel Language Reference
	Overview
	CIKernel Function Requirements
	Data Types
	Scalar Types
	Vector Types
	Matrix Types
	Sampler Types

	Operators
	Functions
	Relational Functions
	Math Functions
	Trigonometry Functions
	Matrix Functions
	Geometry Functions
	Color Functions
	Sampling Functions

	Additional Language Features
	Globals
	Control Flow
	Type Qualifiers
	Attributes

