
Metal Shading Language
Specification
Version 2.1

 Developer  

1 Introduction 8 ...
1.1 Audience 8 ..

1.2 Organization of this Specification 8 ..

1.3 References 9 ...

1.4 Metal and C++14 9 ...

1.4.1 Overloading 9 ..

1.4.2 Templates 9 ...

1.4.3 Preprocessing Directives 9 ...

1.4.4 Restrictions 9 ..

1.5 Metal Pixel Coordinate System 10 ...

2 Data Types 11 ..
2.1 Scalar Data Types 11 ...

2.2 Vector Data Types 13 ..

2.2.1 Accessing Vector Components 14 ..

2.2.2 Vector Constructors 16 ...

2.2.3 Packed Vector Types 18 ..

2.3 Matrix Data Types 19 ...

2.3.1 Accessing Matrix Components 20 ..

2.3.2 Matrix Constructors 21 ..

2.4 Alignment of Data Types 22 ..

2.5 Atomic Data Types 22 ...

2.6 Pixel Data Types 23 ...

2.7 Buffers 24 ...

2.8 Textures 25 ...

2.8.1 Texture Buffers 27 ...

2.9 Samplers 28 ..

2.10 Imageblocks 30 ...

2.10.1 Imageblocks in Fragment Functions 32 ...

2.10.1.1 Implicit Imageblock Layout for Fragment Functions 32 ...

2.10.1.2 Explicit Imageblock Layout for Fragment Functions 33 ...

2.10.2 Imageblocks in Kernel Functions 34 ..

2.11 Aggregate Types 35 ...

2.11.1 Arrays of Textures, Texture Buffers, and Samplers 35 ..

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 2 184

2.11.1.1 Array Element Access with the [] Operator 36 ..

2.11.1.2 Array Capacity 36 ...

2.11.1.3 Constructors for Templated Arrays 37 ..

2.12 Argument Buffers 38 ...

2.12.1 Tier 2 Hardware Support for Argument Buffers 40 ...

2.13 Uniform Type 42 ...

2.13.1 The Need for a Uniform Type 42 ...

2.13.2 Behavior of the Uniform Type 43 ..

2.13.3 Uniform Control Flow 44 ...

2.14 Type Conversions and Re-interpreting Data 45 ..

2.15 Implicit Type Conversions 46 ..

3 Operators 47 ...
3.1 Scalar and Vector Operators 47 ..

3.2 Matrix Operators 50 ..

4 Function and Variable Declarations 52 ..
4.1 Functions 52 ...

4.1.1 Vertex Functions 52 ..

4.1.1.1 Post-Tessellation Vertex Functions 52 ..

4.1.1.2 Patch Type and Number of Control Points Per-Patch 53 ..

4.1.2 Fragment Functions 53 ...

4.1.3 Compute Functions (Kernels) 54 ..

4.1.4 Tile Functions 55 ...

4.2 Address Space Attributes for Variables and Arguments 55 ..

4.2.1 device Address Space 56 ...

4.2.2 threadgroup Address Space 57 ..

4.2.2.1 SIMD-groups and Quad-groups 57 ...

4.2.3 threadgroup_imageblock Address Space 58 ...

4.2.4 constant Address Space 58 ..

4.2.5 thread Address Space 59 ...

4.3 Function Arguments and Variables 59 ..

4.3.1 Attributes to Locate Buffers, Textures and Samplers 60 ..

4.3.1.1 Vertex Function Example with Resources and Outputs to Device Memory 62

4.3.1.2 Raster Order Groups 63 ..

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 3 184

4.3.2 Struct of Buffers and Textures 64 ..

4.3.3 Attributes to Locate Per-Vertex Inputs 65 ..

4.3.4 Attributes for Built-in Variables 68 ..

4.3.4.1 Vertex Function Input Attributes 69 ..

4.3.4.2 Post-Tessellation Vertex Function Input Attributes 69 ..

4.3.4.3 Vertex Function Output Attributes 70 ...

4.3.4.4 Fragment Function Input Attributes 72 ...

4.3.4.5 Fragment Function Output Attributes 75 ..

4.3.4.6 Kernel Function Input Attributes 77 ..

4.3.5 stage_in Attribute 81 ..

4.3.5.1 Vertex Function Example that Uses the stage_in Attribute 81 ..

4.3.5.2 Fragment Function Example that Uses the stage_in Attribute 82

4.3.5.3 Kernel Function Example that Uses the stage_in Attribute 84 ..

4.4 Storage Class Specifiers 84 ..

4.5 Sampling and Interpolation Attributes 85 ...

4.6 Per-Fragment Function vs. Per-Sample Function 86 ..

4.7 Imageblock Attributes 87 ..

4.7.1 user Attribute for Matching Data Members of Master and View Imageblocks 87

4.7.2 Imageblocks and Raster Order Groups 91 ..

4.7.3 Aliasing Explicit and Implicit Imageblocks 93 ...

4.7.4 Imageblocks and Function Constants 94 ...

4.8 Programmable Blending 94 ..

4.9 Graphics Function – Signature Matching 95 ...

4.9.1 Vertex – Fragment Signature Matching 95 ...

4.10 Program Scope Function Constants 100 ..

4.10.1 Specifying Program Scope Function Constants 100 ..

4.10.1.1 Function Constants to Control Code Paths to Compile 101 ..

4.10.1.2 Function Constants when Declaring the Arguments of Functions 103

4.10.1.3 Function Constants for Elements of a [[stage_in]] Struct 105 ..

4.10.1.4 Function Constants for Resource Bindings 106 ..

4.10.1.5 Function Constants for Color Attachments and Raster Order Groups 107

4.10.1.6 Function Constants with Elements of a Struct 107 ...

4.11 Per-Primitive Viewport and Scissor Rectangle Index Selection 108

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 4 184

4.12 Additional Restrictions 108 ...

5 Metal Standard Library 110 ..
5.1 Namespace and Header Files 110 ...

5.2 Common Functions 110 ..

5.3 Integer Functions 111 ..

5.4 Relational Functions 113 ...

5.5 Math Functions 114 ...

5.6 Matrix Functions 119 ...

5.7 Geometric Functions 120 ..

5.8 Compute Functions 121 ..

5.8.1 Threadgroup and SIMD-group Synchronization Functions 121 ..

5.9 Graphics Functions 122 ..

5.9.1 Fragment Functions 122 ...

5.9.1.1 Fragment Functions – Derivatives 122 ..

5.9.1.2 Fragment Functions – Samples 123 ..

5.9.1.3 Fragment Functions – Flow Control 123 ..

5.10 Texture Functions 124 ...

5.10.1 1D Texture 125 ..

5.10.2 1D Texture Array 125 ...

5.10.3 2D Texture 126 ..

5.10.3.1 2D Texture Sampling Example 127 ..

5.10.4 2D Texture Array 128 ..

5.10.5 3D Texture 128 ..

5.10.6 Cube Texture 129 ..

5.10.7 Cube Array Texture 131 ...

5.10.8 2D Multisampled Texture 132 ...

5.10.9 2D Depth Texture 132 ...

5.10.10 2D Depth Texture Array 133 ..

5.10.11 Cube Depth Texture 134 ...

5.10.12 Cube Array Depth Texture 135 ..

5.10.13 2D Multisampled Depth Texture 137 ...

5.10.14 Texture Buffer Functions 137 ...

5.10.15 Texture Synchronization Functions 137 ..

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 5 184

5.10.16 Null Texture Functions 138 ..

5.11 Imageblock Functions 139 ..

5.11.1 Functions for Imageblocks with Implicit Layout 139 ...

5.11.2 Functions for Imageblocks with Explicit Layout 141 ...

5.11.3 Writing an Imageblock Slice to a Region in a Texture 142 ..

5.12 Pack and Unpack Functions 145 ...

5.12.1 Unpack Integer(s); Convert to a Floating-Point Vector 145 ..

5.12.2 Convert Floating-Point Vector to Integers, then Pack the Integers 146

5.13 Atomic Functions 147 ..

5.13.1 Memory Order 148 ..

5.13.2 Atomic Functions 148 ...

5.13.2.1 Atomic Store Functions 148 ..

5.13.2.2 Atomic Load Functions 149 ...

5.13.2.3 Atomic Exchange Functions 149 ...

5.13.2.4 Atomic Compare and Exchange Functions 150 ..

5.13.2.5 Atomic Fetch and Modify Functions 151 ...

5.14 SIMD-group Functions 152 ...

5.15 Quad-group Functions 158 ...

5.16 Encoding Commands for Indirect Command Buffers 164 ..

5.16.1 Copying Commands of an Indirect Command Buffer 166 ..

6 Compiler and Preprocessor 167 ...
6.1 Preprocessor Compiler Options 167 ...

6.2 Preprocessor Definitions 167 ..

6.3 Math Intrinsics Compiler Options 168 ...

6.4 Compiler Options Controlling the Language Version 168 ...

6.5 Compiler Options to Request or Suppress Warnings 169 ...

7 Numerical Compliance 170 ...
7.1 INF, NaN, and Denormalized Numbers 170 ...

7.2 Rounding Mode 170 ..

7.3 Floating-Point Exceptions 170 ..

7.4 Relative Error as ULPs 170 ..

7.5 Edge Case Behavior in Flush to Zero Mode 177 ..

7.6 Conversion Rules for Floating-Point and Integer Types. 177 ..

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 6 184

7.7 Texture Addressing and Conversion Rules 177 ...

7.7.1 Conversion Rules for Normalized Integer Pixel Data Types 178 ..

7.7.1.1 Converting Normalized Integer Pixel Data Types to Floating-Point Values 178

7.7.1.2 Converting Floating-Point Values to Normalized Integer Pixel Data Types 179

7.7.2 Conversion Rules for Half-Precision Floating-Point Pixel Data Type 180

7.7.3 Conversion Rules for Single-Precision Floating-Point Pixel Data Type 180

7.7.4 Conversion Rules for 11-bit and 10-bit Floating-Point Pixel Data Type 180

7.7.5 Conversion Rules for 9-bit Floating-Point Pixel Data Type with a 5-bit Exponent 181

7.7.6 Conversion Rules for Signed and Unsigned Integer Pixel Data Types 181

7.7.7 Conversion Rules for sRGBA and sBGRA Textures 182...

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 7 184

1 Introduction
This document describes the Metal Unified Graphics and Compute Language. Metal is a C++
based programming language that developers can use to write code that is executed on the
GPU for graphics and general-purpose data-parallel computations. Since Metal is based on
C++, developers will find it familiar and easy to use. With Metal, both graphics and compute
programs can be written with a single, unified language, which allows tighter integration
between the two.

Metal is designed to work together with the Metal framework, which manages the execution,
and optionally the compilation, of Metal code. Metal uses clang and LLVM so developers get a
compiler that delivers close to the metal performance for code executing on the GPU.

1.1 Audience
Developers who are writing code with the Metal framework will want to read this document,
because they will need to use the Metal shading language to write graphics and compute
programs to be executed on the GPU.

1.2 Organization of this Specification
This document is organized into the following chapters:

• This chapter, “Introduction,” is an introduction to this document and covers the
similarities and differences between Metal and C++14.

• “Data Types” lists the Metal data types, including types that represent vectors, matrices,
buffers, textures, and samplers. It also discusses type alignment and type conversion.

• “Operators” lists the Metal operators.

• “Function and Variable Declarations” details how functions and variables are declared,
sometimes with attributes that restrict how they are used.

• “Metal Standard Library” defines a collection of built-in Metal functions.

• “Compiler” details the options for the Metal compiler, including pre-processor directives,
options for math intrinsics, and options that control optimization.

• “Numerical Compliance” describes requirements for representing floating-point
numbers, including accuracy in mathematical operations.

A feature (e.g. function, enum, type, or operation) described in this document is available on all
OS since Metal 1.0 unless otherwise indicated.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 8 184

1.3 References
C++14

Stroustrup, Bjarne. The C++ Programming Language (Fourth Edition). Harlow: Addison-Wesley,
2013.

Metal

An overview of the official Metal documentation is located here:

https://developer.apple.com/documentation/metal

1.4 Metal and C++14
The Metal programming language is based on the C++14 Specification (a.k.a., the ISO/IEC
JTC1/SC22/WG21 N4431 Language Specification) with specific extensions and restrictions.
Please refer to the C++14 Specification for a detailed description of the language grammar.

This section and its subsections describe modifications and restrictions to the C++14 language
supported in Metal. Types, operators, attributes, and functions are supported by all OS (i.e., iOS
and macOS) since Metal 1.0 unless specified otherwise.

For the rest of this document, the abbreviation vX.Y stands for Metal version X.Y; for example,
v2.1 indicates Metal version 2.1.

For more information about Metal pre-processing directives and compiler options, see section 6
of this document.

1.4.1 Overloading
Metal supports overloading as defined by section 13 of the C++14 Specification. The function
overloading rules are extended to include the address space attribute of an argument. Metal
graphics and kernel functions cannot be overloaded. (For definition of graphics and kernel
functions, see section 4.1 of this document.)

1.4.2 Templates
Metal supports templates as defined by section 14 of the C++14 Specification.

1.4.3 Preprocessing Directives
Metal supports the pre-processing directives defined by section 16 of the C++14 Specification.

1.4.4 Restrictions
The following C++14 features are not available in Metal (section numbers in this list refer to the
C++14 Specification):

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 9 184

https://developer.apple.com/documentation/metal

• lambda expressions (section 5.1.2)

• dynamic_cast operator (section 5.2.7)

• type identification (section 5.2.8)

• recursive function calls (section 5.2.2, item 9)

• new and delete operators (sections 5.3.4 and 5.3.5)

• noexcept operator (section 5.3.7)

• goto statement (section 6.6)

• register, thread_local storage attributes (section 7.1.1)

• virtual function attribute (section 7.1.2)

• derived classes (section 10, section 11)

• exception handling (section 15)

The C++ standard library must not be used in Metal code. Instead of the C++ standard library,
Metal has its own standard library that is discussed in Chapter 5 of this document.

Metal restricts the use of pointers:

• Arguments to Metal graphics and kernel functions declared in a program that are
pointers must be declared with the Metal device, threadgroup,
threadgroup_imageblock, or constant address space attribute. (See section 4.2 of
this document for more about Metal address space attribute.)

• Function pointers are not supported.

A Metal function cannot be called main.

1.5 Metal Pixel Coordinate System
In Metal, the origin of the pixel coordinate system of a framebuffer attachment is defined at the
top left corner.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 10 184

2 Data Types
This chapter details the Metal data types, including types that represent vectors and matrices.
Atomic data types, buffers, textures, samplers, arrays, and user-defined structs are also
discussed. Type alignment and type conversion are also described.

2.1 Scalar Data Types
Metal supports the scalar types listed in Table 1. Metal does not support the double, long,
unsigned long, long long, unsigned long long, and long double data types.

Table 1 Metal Scalar Data Types

Type Description

bool A conditional data type that has the value of either true or false.
The value true expands to the integer constant 1, and the value
false expands to the integer constant 0.

char
int8_t

A signed two’s complement 8-bit integer.

unsigned char
uchar
uint8_t

An unsigned 8-bit integer.

short
int16_t

A signed two’s complement 16-bit integer.

unsigned short
ushort
uint16_t

An unsigned 16-bit integer.

int
int32_t

A signed two’s complement 32-bit integer.

unsigned int
uint
uint32_t

An unsigned 32-bit integer.

half A 16-bit floating-point. The half data type must conform to the
IEEE 754 binary16 storage format.

float A 32-bit floating-point. The float data type must conform to the
IEEE 754 single precision storage format.

size_t An unsigned integer type of the result of the sizeof operator. This
is a 64-bit unsigned integer.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 11 184

NOTE: Metal supports the standard f or F suffix to specify a single precision floating-
point literal value (e.g., 0.5f or 0.5F). In addition, Metal supports the h or H suffix to
specify a half precision floating-point literal value (e.g., 0.5h or 0.5H). Metal also
supports the u or U suffix for unsigned integer literals.

Table 2 lists the size and alignment of most of the scalar data types.

Table 2 Size and Alignment of Scalar Data Types

ptrdiff_t A signed integer type that is the result of subtracting two pointers.
This is a 64-bit signed integer.

void The void type comprises an empty set of values; it is an
incomplete type that cannot be completed.

Type Description

Type Size
(in bytes)

Alignment
(in bytes)

bool 1 1

char  
int8_t 
unsigned char 
uchar  
uint8_t

1 1

short  
int16_t 
unsigned short 
ushort 
uint16_t

2 2

int  
int32_t 
unsigned int 
uint  
uint32_t

4 4

half 2 2

float 4 4

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 12 184

2.2 Vector Data Types
Metal supports a subset of the vector data types implemented by the system vector math
library.

The vector type names supported are:

booln, charn, shortn, intn, ucharn, ushortn, uintn, halfn, and floatn

where n is 2, 3, or 4 representing a 2-, 3- or 4- component vector type. Table 3 lists the size and
alignment of the vector data types.

Table 3 Size and Alignment of Vector Data Types

Type Size  
(in bytes)

Alignment  
(in bytes)

bool2 2 2

bool3 4 4

bool4 4 4

char2  
uchar2

2 2

char3  
uchar3

4 4

char4  
uchar4

4 4

short2 
ushort2

4 4

short3 
ushort3

8 8

short4 
ushort4

8 8

int2  
uint2

8 8

int3  
uint3

16 16

int4  
uint4

16 16

half2 4 4

half3 8 8

half4 8 8

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 13 184

2.2.1 Accessing Vector Components
Vector components can be accessed using an array index. Array index 0 refers to the first
component of the vector, index 1 to the second component, and so on. The following examples
show various ways to access array components:
pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

float x = pos[0]; // x = 1.0

float z = pos[2]; // z = 3.0

float4 vA = float4(1.0f, 2.0f, 3.0f, 4.0f);

float4 vB;

for (int i=0; i<4; i++)

vB[i] = vA[i] * 2.0f // vB = (2.0, 4.0, 6.0, 8.0);

Metal supports using the period (.) as a selection operator to access vector components, using
letters that may indicate coordinate or color data:
<vector_data_type>.xyzw

<vector_data_type>.rgba

In the following code, the vector test is initialized, and then components are accessed using
the .xyzw or .rgba selection syntax:
int4 test = int4(0, 1, 2, 3);

int a = test.x; // a = 0

int b = test.y; // b = 1

int c = test.z; // c = 2

int d = test.w; // d = 3

int e = test.r; // e = 0

float2 8 8

float3 16 16

float4 16 16

Type Size  
(in bytes)

Alignment  
(in bytes)

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 14 184

int f = test.g; // f = 1

int g = test.b; // g = 2

int h = test.a; // h = 3

The component selection syntax allows multiple components to be selected.

float4 c;

c.xyzw = float4(1.0f, 2.0f, 3.0f, 4.0f);

c.z = 1.0f;

c.xy = float2(3.0f, 4.0f);

c.xyz = float3(3.0f, 4.0f, 5.0f);

The component selection syntax also allows components to be permuted or replicated.

float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

float4 swiz = pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)

float4 dup = pos.xxyy; // dup = (1.0f, 1.0f, 2.0f, 2.0f)

The component group notation can occur on the left-hand side of an expression. To form the
lvalue, swizzling may be applied. The resulting lvalue may be either the scalar or vector type,
depending on number of components specified. Each component must be a supported scalar or
vector type. The resulting lvalue of vector type must not contain duplicate components.

float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

// pos = (5.0, 2.0, 3.0, 6.0)

pos.xw = float2(5.0f, 6.0f);

// pos = (8.0, 2.0, 3.0, 7.0)

pos.wx = float2(7.0f, 8.0f);

// pos = (3.0, 5.0, 9.0, 7.0)

pos.xyz = float3(3.0f, 5.0f, 9.0f);

The following methods of vector component access are not permitted and result in a compile-
time error:

• Accessing components beyond those declared for the vector type is an error. 
2-component vector data types can only access .xy or .rg elements. 
3-component vector data types can only access .xyz or .rgb elements.

float2 pos;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 15 184

pos.x = 1.0f; // is legal; so is y

pos.z = 1.0f; // is illegal; so is w

float3 pos;

pos.z = 1.0f; // is legal

pos.w = 1.0f; // is illegal

• Accessing the same component twice on the left-hand side is ambiguous and is an error.

// illegal - 'x' used twice

pos.xx = float2(3.0f, 4.0f);

• Accessing a different number of components is an error.

// illegal - mismatch between float2 and float4

pos.xy = float4(1.0f, 2.0f, 3.0f, 4.0f);

• Intermixing the .rgba and .xyzw syntax in a single access is an error.

float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

pos.x = 1.0f; // OK

pos.g = 2.0f; // OK

pos.xg = float2(3.0f, 4.0f); // illegal - mixed attributes used

float3 coord = pos.ryz; // illegal - mixed attributes used

• A pointer or reference to a vector with swizzles is an error.

float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

my_func(&pos.xy); // illegal

The sizeof operator on a vector type returns the size of the vector, which is given as the
number of components * size of each component. For example, sizeof(float4) returns 16
and sizeof(half4) returns 8.

2.2.2 Vector Constructors
Constructors can be used to create vectors from a set of scalars or vectors. When a vector is
initialized, its parameter signature determines how it is constructed. For instance, if the vector is
initialized with only a single scalar parameter, all components of the constructed vector are set
to that scalar value.

If a vector is constructed from multiple scalars, one or more vectors, or a mixture of these, the
vector's components are constructed in order from the components of the arguments. The

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 16 184

arguments are consumed from left to right. Each argument has all its components consumed, in
order, before any components from the next argument are consumed.

This is a complete list of constructors that are available for float4:

float4(float x);

float4(float x, float y, float z, float w);

float4(float2 a, float2 b);

float4(float2 a, float b, float c);

float4(float a, float b, float2 c);

float4(float a, float2 b, float c);

float4(float3 a, float b);

float4(float a, float3 b);

float4(float4 x);

This is a complete list of constructors that are available for float3:

float3(float x);

float3(float x, float y, float z);

float3(float a, float2 b);

float3(float2 a, float b);

float3(float3 x);

This is a complete list of constructors that are available for float2:

float2(float x);

float2(float x, float y);

float2(float2 x);

The following examples illustrate uses of the constructors:

float x = 1.0f, y = 2.0f, z = 3.0f, w = 4.0f;

float4 a = float4(0.0f);

float4 b = float4(x, y, z, w);

float2 c = float2(5.0f, 6.0f);

float2 a = float2(x, y);

float2 b = float2(z, w);

float4 x = float4(a.xy, b.xy);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 17 184

Under-initializing a vector constructor is a compile-time error.

2.2.3 Packed Vector Types
The vector data types described in section 2.2 are aligned to the size of the vector. Developers
can also require their vector data to be tightly packed; for example, a vertex struct that may
contain position, normal, tangent vectors and texture coordinates tightly packed and passed as
a buffer to a vertex function.

The packed vector type names supported are:

packed_charn, packed_shortn, packed_intn, packed_ucharn, packed_ushortn,
packed_uintn, packed_halfn, and packed_floatn

where n is 2, 3, or 4 representing a 2-, 3- or 4- component vector type, respectively. (The
packed_booln vector type names are reserved.)

Table 4 lists the size and alignment of the packed vector data types.

Table 4 Size and Alignment of Packed Vector Data Types

Type Size (in bytes) Alignment (in bytes)

packed_char2,
packed_uchar2

2 1

packed_char3,
packed_uchar3

3 1

packed_char4,
packed_uchar4

4 1

packed_short2,
packed_ushort2

4 2

packed_short3,
packed_ushort3

6 2

packed_short4,
packed_ushort4

8 2

packed_int2,
packed_uint2

8 4

packed_int3,
packed_uint3

12 4

packed_int4,
packed_uint4

16 4

packed_half2 4 2

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 18 184

Packed vector data types are typically used as a data storage format. Loads and stores from a
packed vector data type to an aligned vector data type and vice-versa, copy constructor and
assignment operator are supported. The arithmetic, logical and relational operators are also
supported for packed vector data types.

Examples:
device float4 *buffer;

device packed_float4 *packed_buffer;

int i;

packed_float4 f (buffer[i]);

pack_buffer[i] = buffer[i];

// operator to convert from packed_float4 to float4

buffer[i] = float4(packed_buffer[i]);

Components of a packed vector data type can be accessed with an array index. However,
components of a packed vector data type cannot be accessed with the .xyzw or .rgba
selection syntax.

Example:
packed_float4 f;

f[0] = 1.0f; // OK

f.x = 1.0f; // Illegal - compilation error

2.3 Matrix Data Types
Metal supports a subset of the matrix data types implemented by the system math library.

The matrix type names supported are:

halfnxm and floatnxm

packed_half3 6 2

packed_half4 8 2

packed_float2 8 4

packed_float3 12 4

packed_float4 16 4

Type Size (in bytes) Alignment (in bytes)

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 19 184

Where n and m are numbers of columns and rows. n and m must be 2, 3, or 4. A matrix of type
floatnxm is composed of n floatm vectors. Similarly, a matrix of type halfnxm is composed of
n halfm vectors.

Table 5 lists the size and alignment of the matrix data types.

Table 5 Size and Alignment of Matrix Data Types

2.3.1 Accessing Matrix Components
The components of a matrix can be accessed using the array subscripting syntax. Applying a
single subscript to a matrix treats the matrix as an array of column vectors. Two subscripts
select a column and then a row. The top column is column 0. A second subscript then operates
on the resulting vector, as defined earlier for vectors.

Type Size (in bytes) Alignment (in bytes)

half2x2 8 4

half2x3 16 8

half2x4 16 8

half3x2 12 4

half3x3 24 8

half3x4 24 8

half4x2 16 4

half4x3 32 8

half4x4 32 8

float2x2 16 8

float2x3 32 16

float2x4 32 16

float3x2 24 8

float3x3 48 16

float3x4 48 16

float4x2 32 8

float4x3 64 16

float4x4 64 16

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 20 184

float4x4 m;

// sets the 2nd column to all 2.0

m[1] = float4(2.0f);

// sets the 1st element of the 1st column to 1.0

m[0][0] = 1.0f;

// sets the 4th element of the 3rd column to 3.0

m[2][3] = 3.0f;

The floatnxm and halfnxm matrices can be accessed as an array of n floatm or n halfm
entries.

Accessing a component outside the bounds of a matrix with a non-constant expression results
in undefined behavior. Accessing a matrix component that is outside the bounds of the matrix
with a constant expression generates a compile-time error.

2.3.2 Matrix Constructors
Constructors can be used to create matrices from a set of scalars, vectors or matrices. When a
matrix is initialized, its parameter signature determines how it is constructed. For example, if a
matrix is initialized with only a single scalar parameter, the result is a matrix that contains that
scalar for all components of the matrix’s diagonal, with the remaining components initialized to
0.0. For example, a call to:

float4x4(fval);

where fval is a scalar floating-point value constructs a matrix with these initial contents:

fval 0.0 0.0 0.0

0.0 fval 0.0 0.0

0.0 0.0 fval 0.0

0.0 0.0 0.0 fval

A matrix can also be constructed from another matrix that is of the same size; i.e., has the same
number of rows and columns. For example,

float3x4(float3x4);

float3x4(half3x4);

Matrix components are constructed and consumed in column-major order. The matrix
constructor must have just enough values specified in its arguments to initialize every
component in the constructed matrix object. Providing more arguments than necessary results
in an error. Under-initializing a matrix constructor results in a compile-time error.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 21 184

A matrix of type T with n columns and m rows can also be constructed from n vectors of type T
with m components. The following examples are legal constructors:

float2x2(float2, float2);

float3x3(float3, float3, float3);

float3x2(float2, float2, float2);

Since Metal v2.0, a matrix of type T with n columns and m rows can also be constructed from n
* m scalars of type T. The following examples are legal constructors:

float2x2(float, float, float, float);

float3x2(float, float, float, float, float, float);

The following are examples of matrix constructors that are not supported. A matrix cannot be
constructed from combinations of vectors and scalars.

// not supported

float2x3(float2 a, float b, float2 c, float d);

2.4 Alignment of Data Types
The alignas alignment specifier can be used to specify the alignment requirement of a type or
an object. The alignas specifier may be applied to the declaration of a variable or a data  
member of a struct or class. It may also be applied to the declaration of a struct, class, or
enumeration type.

The Metal compiler is responsible for aligning data items to the appropriate alignment as  
required by the data type. For arguments to a graphics or kernel function declared to be a
pointer to a data type, the Metal compiler can assume that the pointee is always appropriately
aligned as required by the data type.

2.5 Atomic Data Types
Objects of atomic types are the only Metal shading language objects that are free from data
races. If one thread writes to an atomic object while another thread reads from it, the behavior is
well-defined.

These atomic types are supported:

atomic_int All OS: since v1.0

atomic_uint All OS: since v1.0

atomic_bool iOS: since v2.0; macOS: no support

atomic<T> iOS: since v2.0; macOS: no support

atomic<T> represents templated types, where T can be int, uint, or bool.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 22 184

The Metal atomic data type is restricted for use by Metal atomic functions, as described in
section 5.13. These atomic functions are a subset of the C++14 atomic and synchronization
functions.

2.6 Pixel Data Types
All OS: pixel data types supported since v2.0.

The Metal pixel data type is a templated type that describes the pixel format type and its  
corresponding ALU type. The ALU type represents the type returned by a load operation  
and the input type specified for a store operation. The pixel data types are generally  
available in all address spaces (for details on address spaces, see section 4.2).

Table 6 lists supported pixel data types in the Metal shading language, as well as their size and
alignment.  

Table 6 Metal Pixel Data Types

Pixel Data Type Supported values
of T

Size  
(in bytes)

Alignment  
(in bytes)

r8unorm<T> half or float 1 1

r8snorm<T> half or float 1 1

r16unorm<T> float 2 2

r16snorm<T> float 2 2

rg8unorm<T> half2 or float2 2 1

rg8snorm<T> half2 or float2 2 1

rg16unorm<T> float2 4 2

rg16snorm<T> float2 4 2

rgba8unorm<T> half4 or float4 4 1

srgba8unorm<T> half4 or float4 4 1

rgba8snorm<T> half4 or float4 4 1

rgba16unorm<T> float4 8 2

rgba16snorm<T> float4 8 2

rgb10a2<T> half4 or float4 4 4

rg11b10f<T> half3 or float3 4 4

rgb9e5<T> half3 or float3 4 4

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 23 184

Only assignments and equality/inequality comparisons between the pixel data types and their
corresponding ALU types are allowed. (The buffer(n) attribute that appears in the code below
is explained in section 4.3.1.)

Example:

kernel void

my_kernel(device rgba8unorm<half4> *p [[buffer(0)]],

 uint gid [[thread_position_in_grid]], …)

{

rgba8unorm<half4> x = p[index]; half4 val = p[gid];

…

p[gid] = val;

p[index] = x;

}

Example:

struct Foo {

rgba8unorm<half4> a;

};

kernel void

my_kernel(device Foo *p [[buffer(0)]],

 uint gid [[thread_position_in_grid]], …)

{

half4 a = p[gid].a;

…

p[gid].a = a;

}

2.7 Buffers
Metal implements buffers as a pointer to a built-in or user defined data type described in the
device, threadgroup, or constant address space. (Refer to section 4.2 for a full description
of these address attributes.). These buffers can be declared in program scope or passed as
arguments to a function.

Examples:

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 24 184

device float4 *device_buffer;

struct my_user_data {

float4 a;

float b;

int2 c;

};

constant my_user_data *user_data;

Ordinary Metal buffers may contain:

• Basic types such as float and int

• Vector and matrix types

• Arrays of buffer types

• Structs of buffer types

• Unions of buffer types

For argument buffers, see section 2.12.

2.8 Textures
The texture data type is a handle to one-, two-, or three-dimensional texture data that
corresponds to all or a portion of a single mipmap level of a texture. The following templates
define specific texture data types:

enum class access { sample, read, write, read_write };

texture1d<T, access a = access::sample>

texture1d_array<T, access a = access::sample>

texture2d<T, access a = access::sample>

texture2d_array<T, access a = access::sample>

texture3d<T, access a = access::sample>

texturecube<T, access a = access::sample>

texturecube_array<T, access a = access::sample>

texture2d_ms<T, access a = access::read>

Textures with depth formats must be declared as one of the following texture data types:

depth2d<T, access a = access::sample>

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 25 184

depth2d_array<T, access a = access::sample>

depthcube<T, access a = access::sample>

depthcube_array<T, access a = access::sample>

depth2d_ms<T, access a = access::read>

T specifies the color type of one of the components returned when reading from a texture or the
color type of one of the components specified when writing to the texture. For texture types
(except depth texture types), T can be half, float, short, ushort, int, or uint. For depth
texture types, T must be float.

NOTE: If T is int or short, the data associated with the texture must use a signed
integer format. If T is uint or ushort, the data associated with the texture must use an
unsigned integer format. If T is half, the data associated with the texture must either be
a normalized (signed or unsigned integer) or half precision format. If T is float, the data
associated with the texture must either be a normalized (signed or unsigned integer),
half or single precision format.

The access attribute describes how the texture can be accessed. The supported access
attributes are:

• sample – The texture object can be sampled. sample implies the ability to read from a
texture with and without a sampler.

• read – Without a sampler, a graphics or kernel function can only read the texture object.

• write – A graphics or kernel function can write to the texture object.

• read_write – A graphics or kernel function can read and write to the texture object.

All OS: read_write access supported since v1.2. Other access qualifiers since v1.0.

NOTE: For multisampled textures, only the read attribute is supported. For depth
textures, only the sample and read attributes are supported.

The following example uses access qualifiers with texture object arguments.

void foo (texture2d<float> imgA [[texture(0)]],

 texture2d<float, access::read> imgB [[texture(1)]],

texture2d<float, access::write> imgC [[texture(2)]])

{…}

(See section 4.3.1 for a description of the texture attribute.)

A texture type can also be used as the variable type for any variables declared inside a function.
The access attribute for variables of texture type declared inside a function must be
access::read or access:sample. Declaring variables inside a function to be a texture type
without using access::read or access:sample qualifiers causes a compilation error.

Examples:

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 26 184

void foo (texture2d<float> imgA [[texture(0)]],

 texture2d<float, access::read> imgB [[texture(1)]],

texture2d<float, access::write> imgC [[texture(2)]])

{

 texture2d<float> x = imgA; // legal

 texture2d<float, access::read> y = imgB; // legal

 texture2d<float, access::write> z; // illegal

 …

}

2.8.1 Texture Buffers
All OS: texture buffers supported since v2.1.

A texture buffer is a texture type that can access a large 1D array of pixel data and perform
dynamic type conversion between pixel formats on that data with optimized performance.
Texture buffers handle type conversion more efficiently than other techniques, allowing access
to a larger element count, and handling out-of-bounds read access. Similar type conversion can
be achieved without texture buffers by either:

• reading the pixel data (just like any other array) from a texture object and performing the
pixel transformation to the desired format, or

• wrapping a texture object around the data of a buffer object, and then accessing the
shared buffer data via the texture. (This wrapping technique provides the pixel
conversion, but requires an extra processing step, and the size of the texture is limited.)

The following template defines the opaque type texture_buffer, which is used like any
texture:

texture_buffer<T, access a = access::read>

access can be one of read, write, or read_write.

T specifies the type of a component returned when reading from a texture buffer or the type of a
component specified when writing to a texture buffer. For a texture buffer, T can be one of half,
float, short, ushort, int, or uint.

For a format without an alpha channel (e.g., R, RG, or RGB), An out-of-bounds read returns (0, 0,
0, 1). For a format with alpha (e.g., RGBA), an out-of-bounds read returns (0, 0, 0, 0). For some
devices, an out-of-bounds read might have a performance penalty.

An out-of-bounds write is ignored.

A texture buffer can support more texture data than a generic 1D texture, which is limited to a
width of 16384. However, a texture buffer cannot be sampled.

A texture buffer also converts data, delivering it in the requested texture format, regardless of
the source’s format. When creating a texture buffer, you can specify the format of the data in
the buffer (for example, RGBA8Unorm), and later the shader function can read it as a  

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 27 184

converted type (such as float4). As a result, a single pipeline state object can access data
stored in different pixel formats without recompilation.

A texture buffer, like a texture type, can be declared as the type of a local variable to a shader
function.

See section 2.11.1 for arrays of texture buffers. See section 5.10.14 for texture buffer function
details.

2.9 Samplers
The sampler type identifies how to sample a texture. The Metal API allows you to create a
sampler object and pass it in an argument to a graphics or kernel function. A sampler object can
also be described in the program source instead of in the API. For these cases we only allow a
subset of the sampler state to be specified: the addressing mode, filter mode, normalized
coordinates and comparison function.

Table 7 describes the list of supported sampler state enums and their associated values (and
defaults). These states can be specified when a sampler is initialized in Metal program source.

Table 7 Sampler State Enumeration Values

Enum Name Valid Values Description

coord normalized (default)
pixel

Specifies whether the texture
coordinates when sampling from a
texture are or are not normalized
values.

address repeat
mirrored_repeat
clamp_to_edge (default)
clamp_to_zero
clamp_to_border

Sets the addressing mode for all
texture coordinates.

s_address
t_address
r_address

repeat
mirrored_repeat
clamp_to_edge (default)
clamp_to_zero
clamp_to_border

Sets the addressing mode for
individual texture coordinates.

border_color 
macOS: v1.2
iOS: no support

transparent_black (default) 
opaque_black 
opaque_white

Specifies the border color to be used
with the clamp_to_border
addressing mode.

filter nearest (default)
linear

Sets the magnification and
minification filtering modes for texture
sampling.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 28 184

macOS: clamp_to_border address mode and border_color support since v1.2.

iOS: no support for clamp_to_border address mode or border_color.

With clamp_to_border, sampling outside a texture only uses the border color for the texture
coordinate (and does not use any colors at the edge of the texture). If the address mode is
clamp_to_border, then border_color is valid.

clamp_to_zero is equivalent to clamp_to_border with a border color of transparent_black
(0.0, 0.0, 0.0) with the alpha component value from the texture. If clamp_to_zero is specified
as the address mode for one or more texture coordinates, the other texture coordinates can use
an address mode of clamp_to_border if and only if the border color is transparent_black.
Otherwise the behavior is undefined.

If coord is set to pixel, the min_filter and mag_filter values must be the same, the
mip_filter value must be none, and the address modes must be either clamp_to_zero,
clamp_to_border or clamp_to_edge.

In addition to the enumeration types, the following types can also be specified with a sampler:

max_anisotropy(int value)

lod_clamp(float min, float max)

The following Metal program source illustrates several ways to declare samplers. (The
sampler(n) attribute that appears in the code below is explained in section 4.3.1.) Note that
samplers or constant buffers declared in program source do not need these attribute qualifiers.
Samplers that are initialized in the Metal shading language source are declared with constexpr.

constexpr sampler s(coord::pixel,

mag_filter nearest (default)
linear

Sets the magnification filtering mode
for texture sampling.

min_filter nearest (default)
linear

Sets the minification filtering mode for
texture sampling.

mip_filter none (default)
nearest
linear

Sets the mipmap filtering mode for
texture sampling. If none, then only
one level-of-detail is active.

compare_func never (default)
less
less_equal
greater
greater_equal 
equal
not_equal
always

Sets the comparison test that is used
by the sample_compare and
gather_compare texture functions.  

Enum Name Valid Values Description

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 29 184

 address::clamp_to_zero,

 filter::linear);

constexpr sampler a(coord::normalized);

constexpr sampler b(address::repeat);

constexpr sampler s(address::clamp_to_zero,

 filter::linear,

 compare_func::less);

constexpr sampler s(address::clamp_to_zero,

 filter::linear,

 compare_func::less,

 max_anisotropy(10),

 lod_clamp(0.0f, MAXFLOAT));

kernel void

my_kernel(device float4 *p [[buffer(0)]],

 texture2d<float> img [[texture(0)]],

 sampler smp [[sampler(3)]],

 …)

{

 …

}

2.10 Imageblocks
iOS: imageblock support since v2.0.

macOS: no support for imageblocks.

An imageblock is a 2-dimensional data structure (represented by width, height, and number of
samples) allocated in threadgroup memory that is designed as an efficient mechanism for
processing 2-dimensional image data. The data layout of the imageblock is opaque. The
elements in the imageblock can be accessed using an (x, y) coordinate and optionally the
sample index. The elements in the imageblock associated with a specific (x, y) are referred to as
the per-thread imageblock data or as just the imageblock data.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 30 184

Imageblocks are only used with fragment and kernel functions.

For fragment functions, the imageblock dimensions are derived from the tile size. For kernel
functions, the developer specifies the imageblock dimensions, which are typically derived from
the threadgroup size. For fragment functions, only the fragment’s imageblock data (i.e.,
identified by the fragment’s pixel position in the tile) can be accessed. For kernel functions, all
threads in the threadgroup can access the imageblock.

The imageblock data is described as a struct. Each element of the struct can be a scalar or
vector integer or floating-point data type, pixel data types (specified in Table 6 in section 2.6),
an array of these types, or structs built using these types.

Built-in functions for imageblocks are listed in section 5.11.

An imageblock slice refers to a region in the imageblock that describes the values of a given
element in the imageblock data struct for all pixel locations or threads in the imageblock. The
storage type of the imageblock slice must be compatible with the texture format of the target
texture, as listed in Table 8.

Table 8 Imageblock Data Type and Compatible Target Texture Format

Pixel Storage Type Compatible Texture Formats

float, half R32Float, R16Float, A8Unorm, R8Unorm, R8Snorm, R16Unorm,
R16Snorm

float2, half2 RG32Float, RG16Float, RG8Unorm, RG8Snorm, RG16Unorm,
RG16Snorm

float4, half4 RGBA32Float, RGBA16Float, RGBA8Unorm, RGBA8Snorm,
RGBA16Unorm, RGBA16Snorm, RGB10A2Unorm, RG11B10Float,
RGB9E5Float

int, short R32Sint, R16Sint, R8Sint

int2, short2 RG32Sint, RG16Sint, RG8Sint

int4, short4 RGBA32Sint, RGBA16Sint, RGBA8Sint

uint, ushort R32Uint, R16Uint, R8Uint

uint2, ushort2 RG32Uint, RG16Uint, RG8Uint

uint4, ushort4 RGBA32Uint, RGBA16Uint, RGBA8Uint

r8unorm<T> A8Unorm, R8Unorm

r8snorm<T> R8Snorm

r16unorm<T> R16Unorm

r16snorm<T> R16Snorm

rg8unorm<T> RG8Unorm

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 31 184

Sections 2.10.1 and 2.10.2 describe how an imageblock is accessed in a fragment or kernel
function, respectively.

2.10.1 Imageblocks in Fragment Functions
In a fragment function, the imageblock can be accessed in two ways:

• as a color attachment where the storage layout of the imageblock is not known in the
fragment function (implicit imageblock layout). An implicit imageblock layout uses the
existing color attachment attribute. See section 2.10.1.1.

• or as a struct used to declare the imageblock data when the storage layout of the
imageblock is explicitly specified in the fragment function (explicit imageblock layout).
See section 2.10.1.2.

2.10.1.1 Implicit Imageblock Layout for Fragment Functions

The imageblock data (i.e., all the data members in the imageblock associated with a pixel) can
be accessed in a fragment function. Metal creates an implicit imageblock that matches the
behavior of color attachments (for input to and output from a fragment function). In this mode,
the types associated with the color attachments, as described in the fragment function, are the
ALU types (i.e., the types used to perform computations in the fragment function). The Metal
runtime defines the actual storage (i.e., pixel) format to be used.

When accessing the imageblock data as color attachments, the pixel storage types described in
section 2.6 cannot be declared in the imageblock slice struct.

rg8snorm<T> RG8Snorm

rg16unorm<T> RG16Unorm

rg16snorm<T> RG16Snorm

rgba8unorm<T> RGBA8Unorm, BGRA8Unorm

srgba8unorm<T> RGBA8Unorm_sRGB, BGRA8Unorm_sRGB

rgba8snorm<T> RGBA8Snorm, BGRA8Unorm

rgba16unorm<T> RGBA16Unorm

rgba16snorm<T> RGBA16Snorm

rgb10a2<T> RGB10A2Unorm

rg11b10f<T> RG11B10Float

rgb9e5<T> RGB9E5Float

Pixel Storage Type Compatible Texture Formats

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 32 184

For an imageblock data implicit layout of type T, T is a struct where each member satisfies one
of the following:

• have a color attachment (see the [[color(m)]] attribute in Table 12 of section 4.3.4).
The color index m must be unique for each member (and sub-member) of T.

• be a struct type with members that satisfy the constraint on the list.

2.10.1.2 Explicit Imageblock Layout for Fragment Functions

The imageblock data with explicit layout (i.e., the imageblock layout is declared in the shading
function, not via the runtime as done for color attachments) is declared as a struct.

Each data member of the per-fragment imageblock data can be a scalar or vector integer or
floating-point data type, one of the pixel data types described in section 2.6, an array of these
types, or a struct built with these types. The data members of the imageblock struct use the
appropriate alignment rules for each data member type declared in the struct to determine the
actual struct layout and size.

A fragment function can read one or more data members in the per-fragment imageblock data
and write to one or more data members in the per-fragment imageblock data. The input and
output imageblock data to a fragment function can be declared as a struct. The input and
output imageblock structs can be the fully explicit imageblock struct (referred to as the master
explicit imageblock struct) or be a subset of the master explicit imageblock struct (referred to as
the imageblock view struct). For the latter case, the [[imageblock_data(type)]] attribute
must be used with the input and output imageblock data struct specified on a fragment
function, where type specifies the fully explicit imageblock data struct.

If the [[imageblock_data(type)]] attribute is specified on the input argument or output
struct element without type, the fragment function is assumed to use the master explicit
imageblock data struct on the input or output.

Example:

struct I {

float a [[raster_order_group(0)]];

};

struct FragOut {

float c [[color(0)]];

I i [[imageblock_data]];

};

fragment FragOut

my_fragment(I i [[imageblock_data]])

{

FragOut fragOut;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 33 184

…

return fragOut;

}

Fragment functions can access both an implicit imageblock and an explicit imageblock as
separate input arguments, or as fields in a return struct.

Example:

struct I {

float a [[raster_order_group(0)]];

};

struct FragOut {

float c [[color(0)]];

I i [[imageblock_data]];

};

fragment FragOut

my_fragment(I i [[imageblock_data]],

 float c [[color(0)]])

{

FragOut fragOut;

…

return fragOut;

}

By default, the explicit imageblock storage is separate from the storage of the implicit
imageblock. To share storage between the explicit imageblock and implicit imageblock, see
section 4.7.3.

2.10.2 Imageblocks in Kernel Functions
The imageblock<T> type (defined in the header <metal_imageblocks>) can only be used for
arguments declared in a kernel function or in a user function that is called by a kernel function.
Only a kernel function can have an argument declared as an imageblock<T> type. The data in
an imageblock is visible only to threads in a threadgroup.

This imageblock argument to a kernel function is declared as the following templated type:

class imageblock_layout_explicit;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 34 184

class imageblock_layout_implicit;

template<typename T, typename L>

struct imageblock;

with the following restrictions:

• L is either imageblock_layout_explicit or imageblock_layout_implicit,

• T is a struct, and

• each member of T may be any of the following:

• scalars

• vectors and packed vectors

• pixel data types

• an array with elements that are one of the types on this list

• a struct with members that are one of the types on this list

For an imageblock with implicit layout (imageblock_layout_implicit), each member of the
struct may have a color attachment (see the [[color(m)]] attribute in Table 12 of section
4.3.4). The color index m must be unique for each member (and sub-member) of T.

If no imageblock layout is specified by the user, the compiler deduces the layout based on T. If T
is not compatible with an implicit or explicit imageblock, a compiler error is generated.

Both explicit and implicit imageblocks can be passed as arguments to a kernel function. This
also makes it easy to share explicit and implicit imageblock structs between fragment and
kernel functions. By default, the explicit imageblock storage is separate from the storage of the
implicit imageblock. To share storage between the explicit imageblock and implicit imageblock,
see section 4.7.3.

 
2.11 Aggregate Types
Metal supports several aggregate types: arrays, structs, classes, and unions.

Do not specify a struct member with an address space attribute, unless the member is a pointer
type. All members of an aggregate type must belong to the same address space. (See section
4.2 for details on address spaces.)

2.11.1 Arrays of Textures, Texture Buffers, and Samplers
iOS: arrays of textures supported since v1.2; arrays of samplers since v2.0; arrays of texture
buffers since v2.1. 
macOS: arrays of textures supported since v2.0; arrays of samplers since v2.0; arrays of texture
buffers since v2.1.

An array of textures is declared as either:

array<typename T, size_t N>

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 35 184

const array<typename T, size_t N>
typename shall be a texture type (see section 2.8) declared with the access::read or
access::sample attribute.

An array of texture buffers (see section 2.8.1) with the access::read qualifier is constructed
using:

array<texture_buffer<T>, size t N>

An array of samplers is declared as either:

array<sampler, size_t N>
const array<sampler, size_t N>
An array of textures or an array of samplers can be passed as an argument to a function
(graphics, kernel, or user function) or be declared as a local variable inside a function. An array
of samplers can also be declared in program scope. Unless used in an argument buffer (see
section 2.12) an array<T, N> type used to declare an array of textures, texture buffers, or
samplers cannot be declared in a struct.

The Metal shading language also adds support for array_ref<T>. An array_ref<T>
represents an immutable array of size() elements of type T. T must be a sampler type or a
supported texture type, including texture buffers. The storage for the array is not owned by the
array_ref<T> object. Implicit conversions are provided from types with contiguous iterators
like metal::array. A common use for array_ref<T> is to pass an array of textures as an
argument to functions so they can accept a variety of array types.

The array_ref<T> type cannot be passed as an argument to graphics and kernel functions.
However, the array_ref<T> type can be passed as an argument to user functions. The
array_ref<T> type cannot be declared as local variables inside functions.

The member functions listed in sections 2.11.1.1 to 2.11.1.3 are available for the array of textures,
array of samplers, and the array_ref<T> types:

2.11.1.1 Array Element Access with the [] Operator

Elements of an array of textures, texture buffers, or samplers can be accessed using the []
operator:

reference operator[] (size_t pos);

Elements of an array of textures, texture buffers, or samplers, or a templated type
array_ref<T> can be accessed using the following variant of the [] operator:

constexpr const_reference operator[] (size_t pos) const;

2.11.1.2 Array Capacity

size() returns the number of elements in an array of textures, texture buffers, or samplers.

constexpr size_t size();

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 36 184

constexpr size_t size() const;
Examples:

kernel void

my_kernel(const array<texture2d<float>, 10> src [[texture(0)]],

 texture2d<float, access::write> dst [[texture(10)]],

…)

{

 for (int i=0; i<src.size(); i++)

 {

 if (is_null_texture(src[i]))

 break;

 process_image(src[i], dst);

 }

}

2.11.1.3 Constructors for Templated Arrays

constexpr array_ref();

constexpr array_ref(const array_ref &);

array_ref & operator=(const array_ref &);

constexpr array_ref(const T * array, size_t length);

template<size_t N>

constexpr array_ref(const T(&a)[N]);

template<typename T>

constexpr array_ref<T> make_array_ref(const T * array, size_t length)

template<typename T, size_t N>

constexpr array_ref<T> make_array_ref(const T(&a)[N])

Examples of constructing arrays:

float4 foo(array_ref<texture2d<float>> src)

{

 float4 clr(0.0f);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 37 184

 for (int i=0; i<src.size; i++)

 {

 clr += process_texture(src[i]);

 }

 return clr; 
}

kernel void

my_kernel_A(const array<texture2d<float>, 10> src [[texture(0)]],

 texture2d<float, access::write> dst [[texture(10)]],

 …)

{

 float4 clr = foo(src);

 …

}

kernel void

my_kernel_B(const array<texture2d<float>, 20> src [[texture(0)]],

 texture2d<float, access::write> dst [[texture(10)]],

 …)

{

 float4 clr = foo(src);

 …

}

Below is an example of an array of samplers declared in program scope:

constexpr array<sampler, 2> = { sampler(address::clamp_to_zero),

 sampler(coord::pixel) };

2.12 Argument Buffers
All OS: argument buffers supported since v2.0.

Argument buffers extend the basic buffer types to include pointers (buffers), textures, texture
buffers, and samplers. However, argument buffers cannot contain unions. The following
example demonstrates an argument buffer structure called Foo that is specified in a function:

struct Foo {

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 38 184

texture2d<float, access::write> a;

depth2d<float> b;

sampler c;

texture2d<float> d;

device float4* e;

texture2d<float> f;

texture_buffer<float> g;

int h;

};

kernel void

my_kernel(constant Foo & f [[buffer(0)]])

{…}

Arrays of textures and samplers can be declared using the existing array<T, N> templated
type. Arrays of all other legal buffer types can also be declared using C-style array syntax.

Members of argument buffers can be assigned a generic [[id(n)]] attribute, where n is a 32-
bit unsigned integer that can be used to identify the buffer element from the Metal API.
Argument buffers can be distinguished from regular buffers if they contain buffers, textures,
samplers, or any element with the [[id]] attribute.

The same index may not be assigned to more than one member of an argument buffer. Manually
assigned indices do not need to be contiguous, but they must be monotonically increasing. In
the example below, index 0 is automatically assigned to foo1. The [[id(n)]] attribute
specifies the index offsets for the t1 and t2 struct members. Since no index is specified for
foo2, it is automatically assigned the next index, 4, which is determined by adding 1 to the
maximum ID used by the previous struct member.

struct Foo {

texture2d<float> t1 [[id(1)]];

texture2d<float> t2 [[id(3)]];

};

struct Bar {

Foo foo1; // foo1 assigned idx 0, t1 and t2 assigned idx 1 and 3

Foo foo2; // foo2 assigned idx 4, t1 and t2 assigned idx 5 and 7

};

If the [[id]] attribute is omitted, an ID is automatically assigned according to the following
rules:

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 39 184

1. IDs are assigned to struct members in order, by adding 1 to the maximum ID used by the
previous struct member. In the example below, the indices are not provided, so indices 0
and 1 are automatically assigned.

struct MaterialTexture {

texture2d<float> tex; // Assigned index 0

float4 uvScaleOffset; // Assigned index 1

};

2. IDs are assigned to array elements in order, by adding 1 to the maximum ID used by the
previous array element. In the example below, indices 1-3 are automatically assigned to
the three array elements of texs1. Indices 4-5 are automatically assigned to the fields in
materials[0], indices 6-7 to materials[1], and indices 8-9 to materials[2]. The
[[id(20)]] attribute starts by assigning index 20 to constants.

struct Material {

float4 diffuse; // Assigned index 0

array<texture2d<float>, 3> texs1; // Assigned indices 1-3

MaterialTexture materials[3]; // Assigned indices 4-9

int constants [[id(20)]] [4]; // Assigned indices 20-23

};

3. If a struct member or array element E is itself a struct or array, its struct members or array
elements are assigned indices according to rules 1 and 2 recursively, starting from the ID
assigned to E. In the example below, index 4 is explicitly provided for the nested struct
called normal, so its elements (previously defined as tex and uvScaleOffset) are
assigned IDs 4 and 5, respectively. The elements of the nested struct called specular
are assigned IDs 6 and 7 by adding one to the maximum ID (5) used by the previous
member.

struct Material {

MaterialTexture diffuse; // Assigned indices 0, 1

MaterialTexture normal [[id(4)]]; // Assigned indices 4, 5

MaterialTexture specular; // Assigned indices 6, 7

}

4. Top-level argument buffer arguments are assigned IDs starting from 0, according to rules
1-3.

2.12.1 Tier 2 Hardware Support for Argument Buffers
With Tier 2 hardware, argument buffers have the following additional capabilities that are not
available with Tier 1 hardware.

Argument buffers can be accessed through pointer indexing. This syntax shown below refers to
an array of consecutive, independently encoded argument buffers:

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 40 184

kernel void

kern(constant Resources *resArray [[buffer(0)]])

{

constant Resources &resources = resArray[3];

}

kernel void

kern(constant texture2d<float> *textures [[buffer(0)]]);

To support GPU driven pipelines and indirect draw calls and dispatches, resources can be
copied between structs and arrays within a function, as shown below:

kernel void

copy(constant Foo & src [[buffer(0)]],

device Foo & dst [[buffer(1)]])

{

dst.a = src.d;

…

}

Samplers cannot be copied from the thread address space to the device address space. As a
result, samplers can only be copied into an argument buffer directly from another argument
buffer. The example below shows both legal and illegal copying:

struct Resources {

sampler sam;

};

kernel void

copy(device Resources *src,

device Resources *dst,

sampler sam1)

{

constexpr sampler sam2;

dst->sam = src->sam; // Legal: device -> device

dst->sam = sam1; // Illegal: thread -> device

dst->sam = sam2; // Illegal: thread -> device

}

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 41 184

Argument buffers can contain pointers to other argument buffers:

struct Textures {

texture2d<float> diffuse;

texture2d<float> specular;

};

struct Material {

device Textures *textures;

};

fragment float4

fragFunc(device Material & material);

2.13 Uniform Type
All OS: uniform types supported since v2.0.

2.13.1 The Need for a Uniform Type
In the following function example, the variable i is used to index into an array of textures given
by texInput. The variable i is non-uniform; i.e., it can have a different value for threads
executing the graphics or kernel function for a draw or dispatch call, as shown in the example
below. Therefore, the texture sampling hardware has to handle a sample request that can refer
to different textures for threads executing the graphics or kernel function for a draw or dispatch
call.

kernel void

my_kernel(array<texture2d<float>, 10> texInput,

array<texture2d<float>, 10> texOutput,

sampler s,

…,

uint2 gid [[thread_position_in_grid]])

{

int i = …;

float4 color = texInput[i].sample(s, float2(gid));

…;

texOutput[i].write(color, float2(gid));

}

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 42 184

If the variable i has the same value for all threads (i.e., uniform) executing the graphics or kernel
function of a draw or dispatch call and if this information was communicated to the hardware,
then the texture sampling hardware can apply appropriate optimizations. A similar argument can
be made for texture writes, where a variable computed at runtime is used as an index into an
array of textures or to index into one or more buffers.

To indicate that this variable is uniform for all threads executing the graphics or kernel function
of a draw or dispatch call, the Metal shading language adds a new template class called uniform
(available in the header metal_uniform) that can be used to declare variables inside a graphics
or kernel function. This template class can only be instantiated with arithmetic types (i.e.,
Boolean, integer, and floating-point types) and vector types.

The code below is a modified version of the previous example, where the variable i is declared
as a uniform type:

kernel void

my_kernel(array<texture2d<float>, 10> texInput,

array<texture2d<float>, 10> texOutput,

sampler s,

…,

uint2 gid [[thread_position_in_grid]])

{

uniform<int> i = …;

float4 color = texInput[i].sample(s, float2(gid));

…;

texOutput[i].write(color, float2(gid));

}

2.13.2 Behavior of the Uniform Type
If a variable is of the uniform type, and the variable does not have the same value for all
threads executing the kernel or graphics function, then the behavior is undefined.

Uniform variables implicitly type convert to non-uniform types. Assigning the result of an
expression computed using uniform variables to a uniform variable is legal, but assigning a non-
uniform variable to a uniform variable results in a compile-time error. In the following example,
the multiplication legally converts the uniform variable x into non-uniform product z. However,
assigning the non-uniform variable z to the uniform variable b results in a compile-time error.

uniform<int> x = …;

int y = …;

int z = x*y; // x is converted to a non-uniform for a multiply

uniform<int> b = z; // illegal; compile-time error

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 43 184

To declare an array of uniform elements:

uniform<float> bar[10]; // elements stored in bar array are uniform

The uniform type is legal for both parameters and the return type of a function. For example:

uniform<int> foo(…); // foo returns a uniform integer value

int bar(uniform<int> a, …);

It is legal to declare a pointer to a uniform type, but not legal to declare a uniform pointer. For
example:

device uniform<int> *ptr; // values pointed to by ptr are uniform

uniform<device int *> ptr; // illegal; compile-time error

The results of expressions that combine uniform with non-uniform variables are non- uniform. If
the non-uniform result is assigned to a uniform variable, as in the example below, the behaviors
is undefined. (The front-end might generate a compile-time error, but it is not guaranteed to do
so.)

uniform<int> i = …;

int j = …;

if (i < j) { // non-uniform result for expression (i < j)

…

i++; // compile-time error, undefined behavior

}

The following example is similar:

bool p = … // non-uniform condition.

uniform<int> a = …, b = …;

uniform<int> c = p ? a : b; // compile-time error, undefined behavior

2.13.3 Uniform Control Flow
When a control flow conditional test is based on a uniform quantity, all program instances follow
the same path at that conditional test in a function. Code for control flow based on uniform
quantities should be more efficient than code for control flow based on non-uniform quantities.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 44 184

2.14 Type Conversions and Re-interpreting Data
The static_cast operator is used to convert from a scalar or vector type to another scalar or
vector type with no saturation and with a default rounding mode (i.e., when converting to
floating-point, round to nearest even; when converting to integer, round toward zero). If the
source type is a scalar or vector Boolean, the value false is converted to zero and the value
true is converted to one.

Metal adds an as_type<type-id> operator to allow any scalar or vector data type (that is not a
pointer) to be reinterpreted as another scalar or vector data type of the same size. The bits in
the operand are returned directly without modification as the new type. The usual type
promotion for function arguments is not performed.

For example, as_type<float>(0x3f800000) returns 1.0f, which is the value of the bit pattern
0x3f800000 if viewed as an IEEE-754 single precision value.

Using the as_type<type-id> operator to reinterpret data to a type with a different number of
bytes results in an error.

Examples of legal and illegal type conversions:

float f = 1.0f;

// Legal. Contains: 0x3f800000

uint u = as_type<uint>(f);

// Legal. Contains:

// (int4)(0x3f800000, 0x40000000, 0x40400000, 0x40800000)

float4 f = float4(1.0f, 2.0f, 3.0f, 4.0f);

int4 i = as_type<int4>(f);

int i;

// Legal.

short2 j = as_type<short2>(i);

half4 f;

// Error. Result and operand have different sizes

float4 g = as_type<float4>(f);

float4 f;

// Legal. g.xyz has same values as f.xyz.

// g.w is undefined

float3 g = as_type<float3>(f);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 45 184

http://f.xyz

2.15 Implicit Type Conversions
Implicit conversions between scalar built-in types (except void) are supported. When an implicit
conversion is done, it is not just a re-interpretation of the expression's value but a conversion of
that value to an equivalent value in the new type. For example, the integer value 5 is converted
to the floating-point value 5.0.

All vector types are considered to have a higher conversion rank than scalar types. Implicit
conversions from a vector type to another vector or scalar type are not permitted and a
compilation error results. For example, the following attempt to convert from a 4-component
integer vector to a 4-component floating-point vector fails.

int4 i;

float4 f = i; // compile error.

Implicit conversions from scalar-to-vector types are supported. The scalar value is replicated in
each element of the vector. The scalar may also be subject to the usual arithmetic conversion to
the element type used by the vector or matrix.

For example:

float4 f = 2.0f; // f = (2.0f, 2.0f, 2.0f, 2.0f)

Implicit conversions from scalar-to-matrix types and vector-to-matrix types are not supported
and a compilation error results. Implicit conversions from a matrix type to another matrix, vector
or scalar type are not permitted and a compilation error results.

Implicit conversions for pointer types follow the rules described in the C++14 Specification. 

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 46 184

3 Operators
All OS: scalar, vector, and matrix operators supported since v1.0.

For indirect command buffers, the assignment operator (=) does not copy the contents of a
command. For more detail on copying commands in indirect command buffers, see section
5.16.1

3.1 Scalar and Vector Operators
1. The arithmetic operators, add (+), subtract (-), multiply (*) and divide (/), operate on

scalar and vector, integer and floating-point data types. All arithmetic operators return a
result of the same built-in type (integer or floating-point) as the type of the operands,
after operand type conversion. After conversion, the following cases are valid:

• The two operands are scalars. In this case, the operation is applied, and the result is a
scalar.

• One operand is a scalar, and the other is a vector. In this case, the scalar is converted to
the element type used by the vector operand. The scalar type is then widened to a vector
that has the same number of components as the vector operand. The operation is
performed component-wise, which results in a same size vector.

• The two operands are vectors of the same size. In this case, the operation is performed
component-wise, which results in a same size vector.

Division on integer types that results in a value that lies outside of the range bounded by the
maximum and minimum representable values of the integer type, such as TYPE_MIN/-1 for
signed integer types or division by zero does not cause an exception but results in an
unspecified value. Division by zero for floating-point types results in ±infinity or NaN, as
prescribed by the IEEE-754 standard. (For details about numerical accuracy of floating-
point operations, see section 7.)

2. The operator modulus (%) operates on scalar and vector integer data types. All
arithmetic operators return a result of the same built-in type as the type of the operands,
after operand type conversion. The following cases are valid:

• The two operands are scalars. In this case, the operation is applied, and the result is a
scalar.

• One operand is a scalar, and the other is a vector. In this case, the scalar is converted to
the element type used by the vector operand. The scalar type is then widened to a vector
that has the same number of components as the vector operand. The operation is
performed component-wise, which results in a same size vector.

• The two operands are vectors of the same size. In this case, the operation is performed
component-wise, which results in a same size vector.

The resulting value is undefined for any component computed with a second operand that is
zero, while results for other components with non-zero operands remain defined. If both

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 47 184

operands are non-negative, the remainder is non-negative. If one or both operands are
negative, results are undefined.

3. The arithmetic unary operators (+ and -) operate on scalar and vector, integer and
floating-point types.

4. The arithmetic post- and pre-increment and decrement operators (-- and ++) operate on
scalar and vector integer types. All unary operators work component-wise on their
operands. The result is the same type they operated on. For post- and pre-increment
and decrement, the expression must be assignable to an l-value. Pre-increment and pre-
decrement add or subtract 1 to the contents of the expression they operate on, and the
value of the pre-increment or pre-decrement expression is the resulting value of that
modification. Post-increment and post-decrement expressions add or subtract 1 to the
contents of the expression they operate on, but the resulting expression has the
expression’s value before the post-increment or post-decrement was executed.

5. The relational operators greater than (>), less than (<), greater than or equal (>=), and
less than or equal (<=) operate on scalar and vector, integer and floating-point types.
The result is a Boolean (bool type) scalar or vector. After operand type conversion, the
following cases are valid:

• The two operands are scalars. In this case, the operation is applied, resulting in a bool.

• One operand is a scalar, and the other is a vector. In this case, the scalar is converted to
the element type used by the vector operand. The scalar type is then widened to a vector
that has the same number of components as the vector operand. The operation is
performed component-wise, which results in a Boolean vector.

• The two operands are vectors of the same type. In this case, the operation is performed
component-wise, which results in a Boolean vector.

The relational operators always return false if either argument is a NaN. To test a relational
operation on any or all elements of a vector, use the any and all built-in functions (defined
in section 5.4) in the context of an if(…) statement.

6. The equality operators, equal (==) and not equal (!=), operate on scalar and vector,
integer and floating-point types. All equality operators result in a Boolean (bool type)
scalar or vector. After operand type conversion, the following cases are valid:

• The two operands are scalars. In this case, the operation is applied, resulting in a bool.

• One operand is a scalar, and the other is a vector. In this case, the scalar is converted to
the element type used by the vector operand. The scalar type is then widened to a vector
that has the same number of components as the vector operand. The operation is
performed component-wise, resulting in a Boolean vector.

• The two operands are vectors of the same type. In this case, the operation is performed
component-wise resulting in a same size Boolean vector.

All other cases of implicit conversions are illegal. If one or both arguments is “Not a
Number” (NaN), the equality operator equal (==) returns false. If one or both arguments is
“Not a Number” (NaN), the equality operator not equal (!=) returns true.

7. The bitwise operators and (&), or (|), exclusive or (^), not (~) operate on all scalar and
vector built-in types except the built-in scalar and vector floating-point types. For built-

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 48 184

in vector types, the operators are applied component-wise. If one operand is a scalar and
the other is a vector, the scalar is converted to the element type used by the vector
operand. The scalar type is then widened to a vector that has the same number of
components as the vector operand. The operation is performed component-wise
resulting in a same size vector.

8. The logical operators and (&&), or (||) operate on two Boolean expressions. The result is a
scalar or vector Boolean.

9. The logical unary operator not (!) operates on a Boolean expression. The result is a scalar
or vector Boolean.

10. The ternary selection operator (?:) operates on three expressions (exp1 ? exp2 : exp3).
This operator evaluates the first expression exp1, which must result in a scalar Boolean.
If the result is true, it selects to evaluate the second expression; otherwise it evaluates
the third expression. Only one of the second and third expressions is evaluated. The
second and third expressions can be any type, as long their types match, or there is a
conversion in section 2.11 that can be applied to one of the expressions to make their
types match, or one is a vector and the other is a scalar in which case the scalar is
widened to the same type as the vector type. This resulting matching type is the type of
the entire expression.

11. The ones’ complement operator (~). The operand must be of a scalar or vector integer
type, and the result is the ones’ complement of its operand.

The operators right-shift (>>), left-shift (<<) operate on all scalar and vector integer types.
For built-in vector types, the operators are applied component-wise. For the right-shift (>>),
left-shift (<<) operators, if the first operand is a scalar, the rightmost operand must be a
scalar. If the first operand is a vector, the rightmost operand can be a vector or scalar.  
 
The result of E1 << E2 is E1 left-shifted by log2(N) least significant bits in E2 viewed as an
unsigned integer value, where N is the number of bits used to represent the data type of E1,
if E1 is a scalar, or the number of bits used to represent the type of E1 elements, if E1 is a
vector. The vacated bits are filled with zeros.  
 
The result of E1 >> E2 is E1 right-shifted by log2(N) least significant bits in E2 viewed as
an unsigned integer value, where N is the number of bits used to represent the data type of
E1, if E1 is a scalar, or the number of bits used to represent the type of E1 elements, if E1 is
a vector. If E1 has an unsigned type or if E1 has a signed type and a nonnegative value, the
vacated bits are filled with zeros. If E1 has a signed type and a negative value, the vacated
bits are filled with ones.

12. The assignment operator behaves as described by the C++14 Specification. For the
lvalue = expression assignment operation, if expression is a scalar type and lvalue is
a vector type, the scalar is converted to the element type used by the vector operand.
The scalar type is then widened to a vector that has the same number of components as
the vector operand. The operation is performed component-wise, which results in a
same size vector.

Operators not described above that are supported by C++14 (such as sizeof(T), unary (&)
operator, and comma (,) operator) behave as described in the C++14 Specification.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 49 184

Unsigned integers shall obey the laws of arithmetic modulo 2n, where n is the number of bits in
the value representation of that particular size of integer. The result of signed integer overflow is
undefined.

For integral operands the divide (/) operator yields the algebraic quotient with any fractional
part discarded. (This is often called truncation towards zero.) If the quotient a/b is
representable in the type of the result, (a/b)*b + a%b is equal to a.

3.2 Matrix Operators
The arithmetic operators add (+), subtract (-) operate on matrices. Both matrices must have the
same numbers of rows and columns. The operation is done component-wise resulting in the
same size matrix. The arithmetic operator multiply (*) operates on:

• a scalar and a matrix,

• a matrix and a scalar,

• a vector and a matrix,

• a matrix and a vector,

• or a matrix and a matrix.

If one operand is a scalar, the scalar value is multiplied to each component of the matrix
resulting in the same size matrix. A right vector operand is treated as a column vector and a left
vector operand as a row vector. For vector – matrix, matrix – vector and matrix – matrix
multiplication, the number of columns of the left operand is required to be equal to the number
of rows of the right operand. The multiply operation does a linear algebraic multiply, yielding a
vector or a matrix that has the same number of rows as the left operand and the same number
of columns as the right operand.

The examples below presume these vector, matrix, and scalar variables are initialized. The order
of partial sums for the vector-to-matrix, matrix-to-vector, and matrix-to-matrix multiplication
operations described below is undefined.

float3 v;

float3x3 m, n;

float a = 3.0f;

The matrix-to-scalar multiplication

float3x3 m1 = m * a;

is equivalent to:

m1[0][0] = m[0][0] * a;

m1[0][1] = m[0][1] * a;

m1[0][2] = m[0][2] * a;

m1[1][0] = m[1][0] * a;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 50 184

m1[1][1] = m[1][1] * a;

m1[1][2] = m[1][2] * a;

m1[2][0] = m[2][0] * a;

m1[2][1] = m[2][1] * a;

m1[2][2] = m[2][2] * a;

The vector-to-matrix multiplication

float3 u = v * m;

is equivalent to:

u.x = dot(v, m[0]);

u.y = dot(v, m[1]);

u.z = dot(v, m[2]);

The matrix-to-vector multiplication

float3 u = m * v;

is equivalent to:

u.x = m[0].x * v.x + m[1].x * v.y + m[2].x * v.z;

u.y = m[0].y * v.x + m[1].y * v.y + m[2].y * v.z;

u.z = m[0].z * v.x + m[1].z * v.y + m[2].z * v.z;

The matrix-to-matrix multiplication

float3x3 r = m * n; // m, n are float3x3

is equivalent to:

r[0].x = m[0].x * n[0].x + m[1].x * n[0].y + m[2].x * n[0].z;

r[0].y = m[0].y * n[0].x + m[1].y * n[0].y + m[2].y * n[0].z;

r[0].z = m[0].z * n[0].x + m[1].z * n[0].y + m[2].z * n[0].z;

r[1].x = m[0].x * n[1].x + m[1].x * n[1].y + m[2].x * n[1].z;

r[1].y = m[0].y * n[1].x + m[1].y * n[1].y + m[2].y * n[1].z;

r[1].z = m[0].z * n[1].x + m[1].z * n[1].y + m[2].z * n[1].z;

r[2].x = m[0].x * n[2].x + m[1].x * n[2].y + m[2].x * n[2].z;

r[2].y = m[0].y * n[2].x + m[1].y * n[2].y + m[2].y * n[2].z;

r[2].x = m[0].z * n[2].x + m[1].z * n[2].y + m[2].z * n[2].z;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 51 184

4 Function and Variable Declarations
This chapter describes how functions, arguments, and variables are declared. It also details how
attributes are often used with functions, arguments, and variables to specify restrictions.

4.1 Functions
All OS: kernel, vertex, and fragment attributes supported since v1.0.

Metal supports the following function attributes that restrict how a function may be used:
vertex, fragment, and kernel, which are detailed in sections 4.1.1, 4.1.2, and 4.1.3,
respectively. These function attributes are used at the start of a function, before its return type.

Functions that use a kernel, vertex or fragment function attribute must not call functions
that also use these attributes, or a compilation error results.

Functions that use a kernel, vertex or fragment function attribute can be declared within a
namespace.

4.1.1 Vertex Functions
A vertex function is executed for each vertex in the vertex stream, and it generates per-vertex
output. The following example shows the syntax for declaring a vertex function with the vertex
attribute.

vertex void

my_vertex_func(…)

{…}

Only a graphics function can be declared with the vertex attribute. For graphics functions, the
return type identifies whether the output generated by the function is either per-vertex or per-
fragment. If the vertex function does not generate output, it shall return void.

4.1.1.1 Post-Tessellation Vertex Functions

All OS: post-tessellation vertex function (patch attribute) supported since v1.2.

The post-tessellation vertex function calculates the vertex data for each surface sample on the
patch produced by the fixed-function tessellator. The inputs to the post-tessellation vertex
function are:

• the per-patch data,

• the patch control point data, and

• the tessellator stage output (the normalized vertex location on the patch).

The post-tessellation vertex function generates the final vertex data for the tessellated
triangles. For example, to add additional detail (such as displacement mapping values) to the

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 52 184

rendered geometry, the post-tessellation vertex function can sample a texture to modify the
vertex position by a displacement value.

After the post-tessellation vertex function has executed, the tessellated primitives are
rasterized.

The post-tessellation vertex function is a vertex function identified using the ordinary vertex
function attribute.

4.1.1.2 Patch Type and Number of Control Points Per-Patch

The [[patch]] attribute is required for the post-tessellation vertex function.

For macOS, the [[patch(patch-type, N)]] attribute must specify both the patch type
(patch-type is either quad or triangle) and the number of control points in the patch (N must
be a value from 0 to 32). For iOS, specifying the patch-type is required, but the number of
control points is optional.

If the number of control points are specified in the post-tessellation vertex function, this number
must match the number of control points provided to the drawPatches or
drawIndexedPatches API.

Example:

[[patch(quad)]]

vertex vertex_output

my_post_tessellation_vertex(…)

{…}

[[patch(quad, 16)]]

vertex vertex_output

my_bezier_vertex(…)

{…}

4.1.2 Fragment Functions
A fragment function is executed for each fragment in the fragment stream and their associated
data and generates per-fragment output. The following example shows the syntax for declaring
a fragment function with the fragment attribute.

fragment void

my_fragment_func(…)

{…}

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 53 184

Only a graphics function can be declared with the fragment attribute. For graphics functions,
the return type identifies whether the output generated by the function is either per-vertex or
per-fragment. If the fragment function does not generate output, it shall return void.

The [[early_fragment_tests]] function attribute can be used with a fragment function to
request that fragment tests be performed before fragment function execution.

Below is an example of a fragment function that uses this attribute:

[[early_fragment_tests]]

fragment float4

my_fragment(…)

{…}

It is an error if the return type of the fragment function declared with the
[[early_fragment_tests]] attribute includes a depth value; i.e., the return type of this
fragment function includes an element declared with the [[depth(depth_attribute]]
attribute.

It is an error to use the [[early_fragment_tests]] attribute with any function that is not a
fragment function i.e. not declared with the fragment attribute.

4.1.3 Compute Functions (Kernels)
A compute function (a.k.a., kernel) is a data-parallel function that is executed over a 1-, 2- or 3-
dimensional grid. The following example shows the syntax for declaring a compute function with
the kernel attribute.

kernel void

my_kernel(…)

{…}

Functions declared with the kernel attribute must return void.

The [[max_total_threads_per_threadgroup]] function attribute can be used with a kernel
function to specify the maximum threads per threadgroup.

Below is an example of a kernel function that uses this attribute:

[[max_total_threads_per_threadgroup(x)]]

kernel void

my_kernel(…)

{…}

If the [[max_total_threads_per_threadgroup]] value is greater than the [MTLDevice
maxThreadsPerThreadgroup] property, then pipeline state creation shall fail.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 54 184

4.1.4 Tile Functions
iOS: tile function support since v2.0.

macOS: no support for tile functions.

A tile shading function is a special type of compute kernel or fragment function that can
execute inline with graphics operations and take advantage of the tile-based deferred rendering
(TBDR) architecture. With TBDR, commands are buffered until a large list of commands is
accumulated. The hardware divides the framebuffer into tiles and then renders only the
primitives that are visible within each tile. Tile shading functions support performing compute
operations in the middle of rendering, which can access memory more efficiently by reducing
round trips to memory and utilizing high-bandwidth local memory.

A tile function launches a set of threads called a dispatch, which is organized into threadgroups
and grids. Threads may be launched at any point in a render pass and as often as needed. Tile
functions barrier against previous and subsequent draws, so a tile function does not execute
until all earlier draws have completed. Likewise, later draws do not execute until the tile function
completes.

GPUs always process each tile and each dispatch to completion. Before the next tile is
processed, all draws and dispatches for a tile launch in submission.

Tile functions have access to 32KB of threadgroup memory that may be divided between
imageblock storage and threadgroup storage. (For the threadgroup memory size, see section
4.2.2.) The imageblock size is dependent on the tile width, tile height, and the bit depth of each
sample. The bit depth is determined either by the render pass attachments (see implicit
imageblock layout in section 2.10.1.1) or in function-declared structures (see explicit imageblock
layout in section 2.10.1.2). For details on how the threadgroup_imageblock address space is
used in kernel functions, see section 4.2.3.

4.2 Address Space Attributes for Variables and
Arguments
All OS: device, threadgroup, constant, and thread attribute support since v1.0.

macOS: no support for threadgroup_imageblock attribute.

iOS: threadgroup_imageblock attribute support since v2.0.

The Metal shading language implements address space attributes to specify the region of
memory where a function variable or argument is allocated. These attributes describe disjoint
address spaces for variables:

• device (for more details, see section 4.2.1)

• threadgroup (see section 4.2.2)

• threadgroup_imageblock (see section 4.2.3)

• constant (see section 4.2.4)

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 55 184

• thread (see section 4.2.5)

All arguments to a graphics or kernel function that are a pointer or reference to a type must be
declared with an address space attribute. For graphics functions, an argument that is a pointer
or reference to a type must be declared in the device or constant address space. For kernel
functions, an argument that is a pointer or reference to a type must be declared in the device,
threadgroup, threadgroup_imageblock, or constant address space. The following example
introduces the use of several address space attributes. (The threadgroup attribute is
supported here for the pointer l_data only if foo is called by a kernel function, as detailed in
section 4.2.2.)

void foo(device int *g_data,

 threadgroup int *l_data,

 constant float *c_data)

{…}

The address space for a variable at program scope must be constant.

Any variable that is a pointer or reference must be declared with one of the address space
attributes discussed in this section. If an address space attribute is missing on a pointer or
reference type declaration, a compilation error occurs.

4.2.1 device Address Space
The device address space name refers to buffer memory objects allocated from the device
memory pool that are both readable and writeable.

A buffer memory object can be declared as a pointer or reference to a scalar, vector or user-
defined struct. The actual size of the buffer memory object is determined when the memory
object is allocated via appropriate Metal API calls in the host code.

Some examples are:

// an array of a float vector with 4 components

device float4 *color;

struct Foo {

float a[3];

int b[2];

}

// an array of Foo elements

device Foo *my_info;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 56 184

Since texture objects are always allocated from the device address space, the device address
attribute is not needed for texture types. The elements of a texture object cannot be directly
accessed. Functions to read from and write to a texture object are provided.

4.2.2 threadgroup Address Space
Threads are organized into threadgroups. Threads in a threadgroup cooperate by sharing data
through threadgroup memory and by synchronizing their execution to coordinate memory
accesses to both device and threadgroup memory. The threads in a given threadgroup
execute concurrently on a single compute unit on the GPU. A GPU may have multiple compute
units. Multiple threadgroups can execute concurrently across multiple compute units.

The threadgroup address space name is used to allocate variables used by a kernel function
or passed as an argument to a fragment function. (threadgroup space arguments to fragment
functions are only supported on iOS with at least A11 hardware.) Variables declared in the
threadgroup address space cannot be used in vertex functions and cannot be declared
inside a fragment function.

Variables allocated in the threadgroup address space in a kernel function are allocated for
each threadgroup executing the kernel, are shared by all threads in a threadgroup and exist only
for the lifetime of the threadgroup that is executing the kernel.

Variables allocated in the threadgroup address space for a mid-render kernel function are
allocated for each threadgroup executing the kernel and are persistent across mid-render and
fragment kernel functions over a tile.

The example below shows how variables allocated in the threadgroup address space can be
passed either as arguments or be declared inside a kernel function. (The [[threadgroup(0)]]
attribute in the code below is explained in section 4.3.1.)

kernel void

my_kernel(threadgroup float *a [[threadgroup(0)]],

…)

{

// A float allocated in the threadgroup address space

threadgroup float x;

// An array of 10 floats allocated in the

// threadgroup address space

threadgroup float b[10];

…

}

4.2.2.1 SIMD-groups and Quad-groups

macOS: SIMD-group support since v2.0. Quad-group support since v2.1.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 57 184

iOS: No support for SIMD-groups. Quad-group support since v2.0.

Within a threadgroup, threads can be divided into SIMD-groups in an implementation- defined
fashion. Each SIMD-group is a collection of threads that executes concurrently. The mapping to
SIMD-groups is invariant for the duration of a kernel’s execution, across dispatches of a given
kernel with the same launch parameters, and from one threadgroup to another within the
dispatch (excluding the trailing edge threadgroups in the presence of non-uniform threadgroup
sizes). In addition, all SIMD-groups within a threadgroup must be the same size, apart from the
SIMD-group with the maximum index, which may be smaller, if the size of the threadgroup is not
evenly divisible by the size of the SIMD-groups.

A quad-group is a SIMD-group with the thread execution width of 4.

For kernel function attributes for SIMD-groups and quad-groups, see section 4.3.4.6. SIMD-
group functions are described in section 5.14. Quad-group functions are described in section
5.15.

4.2.3 threadgroup_imageblock Address Space
The threadgroup_imageblock address space refers to objects allocated in threadgroup
memory that are only accessible using an imageblock<T, L> object (see section 2.10). A
pointer to a user-defined type allocated in the threadgroup_address address space can be an
argument to a tile shading function (see section 4.1.4). There is exactly one threadgroup per tile,
and each threadgroup can access the threadgroup memory and the imageblock associated with
its tile.

Variables allocated in the threadgroup_imageblock address space in a kernel function are
allocated for each threadgroup executing the kernel, are shared by all threads in a threadgroup,
and exist only for the lifetime of the threadgroup that is executing the kernel. Each thread in the
threadgroup uses explicit 2D coordinates to access imageblocks. Do not assume any particular
spatial relationship between the threads and the imageblock. The threadgroup dimensions may
be smaller than the tile size.

4.2.4 constant Address Space
The constant address space name refers to buffer memory objects allocated from the device
memory pool but are read-only. Variables in program scope must be declared in the constant
address space and initialized during the declaration statement. The initializer(s) expression
must be a core constant expression. (Refer to section 5.19 of the C++14 specification.)
Variables in program scope have the same lifetime as the program, and their values persist
between calls to any of the compute or graphics functions in the program.

constant float samples[] = { 1.0f, 2.0f, 3.0f, 4.0f };

Pointers or references to the constant address space are allowed as arguments to functions.

Writing to variables declared in the constant address space is a compile-time error. Declaring
such a variable without initialization is also a compile-time error.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 58 184

NOTE: To decide which address space (device or constant) a read-only buffer passed
to a graphics or kernel function uses, look at how the buffer is accessed inside the
graphics or kernel function. The constant address space is optimized for multiple
instances executing a graphics or kernel function accessing the same location in the
buffer. Some examples of this access pattern are accessing light or material properties
for lighting / shading, matrix of a matrix array used for skinning, filter weight accessed
from a filter weight array for convolution. If multiple executing instances of a graphics
or kernel function are accessing the buffer using an index such as the vertex ID,
fragment coordinate, or the thread position in grid, the buffer must be allocated in the
device address space.

4.2.5 thread Address Space
The thread address space refers to the per-thread memory address space. Variables allocated
in this address space are not visible to other threads. Variables declared inside a graphics or
kernel function are allocated in the thread address space.

kernel void

my_kernel(…)

{

// A float allocated in the per-thread address space

float x;

// A pointer to variable x in per-thread address space

thread float p = &x;

…

}

4.3 Function Arguments and Variables
Most inputs and outputs to a graphics and kernel functions are passed as arguments.
(Exceptions are initialized variables in the constant address space and samplers declared in
program scope.) Arguments to graphics (vertex and fragment) and kernel functions can be one
of the following:

• device buffer – a pointer or reference to any data type in the device address space (see
section 2.6)

• constant buffer – a pointer or reference to any data type in the constant address space
(see section 2.6)

• texture object (see section 2.8) or an array of textures

• texture_buffer object (see section 2.8.1) or an array of texture buffers

• sampler object (see section 2.9) or an array of samplers

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 59 184

• a buffer shared between threads in a threadgroup – a pointer to a type in the
threadgroup address space that can only be used as arguments for kernel functions.

• imageblock (see section 2.10)

• argument buffer (see section 2.12)

• A struct with elements that are buffers, textures, or texture buffers.

Buffers (device and constant) specified as argument values to a graphics or kernel function
cannot alias; i.e., a buffer passed as an argument value cannot overlap another buffer passed to
a separate argument of the same graphics or kernel function.

Arguments to graphics and kernel functions cannot be declared to be of type size_t,
ptrdiff_t, or a struct and/or union that contains members declared to be one of these built-in
scalar types.

The arguments to these functions are often specified with attributes to provide further guidance
on their use. Attributes are used to specify:

• the resource location for the argument (see section 4.3.1),

• built-in variables that support communicating data between fixed-function and
programmable pipeline stages (see section 4.3.3),

• which data is sent down the pipeline from vertex function to fragment function (see
section 4.3.5).

4.3.1 Attributes to Locate Buffers, Textures and Samplers
For each argument, an attribute can be optionally specified to identify the location of a buffer,
texture or sampler to use for this argument type. The Metal framework API uses this attribute to
identify the location for these argument types.

• device and constant buffers – [[buffer(index)]]

• textures (including texture buffers) – [[texture(index)]]

• samplers – [[sampler(index)]]

• threadgroup buffers – [[threadgroup(index)]]

The index value is an unsigned integer that identifies the location of a buffer, texture or sampler
argument that is being assigned. (A texture buffer is treated as a specific type of texture.) The
proper syntax is for the attribute to follow the argument/variable name.

The example below is a simple kernel function, add_vectors, that adds an array of two buffers
in the device address space, inA and inB, and returns the result in the buffer out. The attributes
(buffer(index)) specify the buffer locations for the function arguments.

kernel void

add_vectors(const device float4 *inA [[buffer(0)]],

 const device float4 *inB [[buffer(1)]],

 device float4 *out [[buffer(2)]],

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 60 184

 uint id [[thread_position_in_grid]])

{

out[id] = inA[id] + inB[id];

}

The example below shows attributes used for function arguments of several different types (a
buffer, a texture, and a sampler):

kernel void

my_kernel(device float4 *p [[buffer(0)]],

texture2d<float> img [[texture(0)]],

sampler sam [[sampler(1)]])

{…}

If the location indices are not specified the Metal compiler assigns them using the first available
location index. In the following example, src is assigned texture index 0, dst texture index 1, s
sampler index 0 and u buffer index 0.:

kernel void

my_kernel(texture2d<half> src,

 texture2d<half, access::write> dst,

 sampler s,

 device myUserInfo *u)

{…}

In the following example, some kernel arguments have explicitly assigned location indices and
some do not. src is explicitly assigned texture index 0, and f is explicitly assigned buffer index
10. The other arguments are assigned the first available location index: dst texture index 1, s
sampler index 0, and u buffer index 0.

kernel void

my_kernel(texture2d<half> src [[texture(0)]],

 texture2d<half, access::write> dst,

sampler s,

device myUserInfo *u,

device float *f [[buffer(10)]])

{…}

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 61 184

For buffers (device, constant and threadgroup), textures (including texture buffers), or samplers
the index value that is used to specify the buffer, texture or sampler index must be unique.
Multiple buffer, texture or sampler arguments with the same index value generate a compilation
error unless they are declared with a function constant attribute (see section 4.10.1).

4.3.1.1 Vertex Function Example with Resources and Outputs to Device Memory

The following example is a vertex function, render_vertex, which outputs to device memory in
the array xform_output, which is a function argument specified with the device attribute
(introduced in section 4.2.1). All the render_vertex function arguments are specified with the
buffer(0), buffer(1), buffer(2), and buffer(3) attributes (introduced in section 4.3.1).
The position attribute shown in this example is discussed in section 4.3.3.

struct VertexOutput {

float4 position [[position]];

float4 color;

float2 texcoord;

};

struct VertexInput {

float4 position;

float3 normal;

float2 texcoord;

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTS];

float4 light_color[MAX_LIGHTS];

float4 light_attenuation_factors[MAX_LIGHTS];

};

vertex void

render_vertex(const device VertexInput* v_in [[buffer(0)]],

 constant float4x4& mvp_matrix [[buffer(1)]],

 constant LightDesc& light_desc [[buffer(2)]],

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 62 184

 device VertexOutput* xform_output [[buffer(3)]],

 uint v_id [[vertex_id]])

{

VertexOutput v_out;

v_out.position = v_in[v_id].position * mvp_matrix;

v_out.color = do_lighting(v_in[v_id].position, v_in[v_id].normal,
light_desc);

v_out.texcoord = v_in[v_id].texcoord;

// output position to a buffer

xform_output[v_id] = v_out;

}

4.3.1.2 Raster Order Groups

All OS: raster order group attribute supported since v2.0.

Loads and stores to buffers (in device memory) and textures in a fragment function are
unordered. The [[raster_order_group(index)]] attribute used for a buffer or texture
guarantees the order of accesses for any overlapping fragments from different primitives that
map to the same (x,y) pixel coordinate and sample, if per-sample shading is active.

The [[raster_order_group(index)]] attribute can be specified on a texture (which is
always in device memory) or a buffer that is declared in device memory, but not in either the
threadgroup or constant address space. The [[raster_order_group(index)]] attribute
cannot be used with a struct or class.

Fragment function invocations that mark overlapping accesses to a buffer or texture with the
[[raster_order_group(index)]] attribute are executed in the same order as the geometry
is submitted. For overlapping fragment function invocations, writes performed by a fragment
function invocation to a buffer or texture marked with the [[raster_order_group(index)]]
attribute must be available to be read by a subsequent invocation and must not affect reads by
a previous invocation. Similarly, reads performed by a fragment function invocation must reflect
writes by a previous invocation and must not reflect writes by a subsequent invocation.

The index in [[raster_order_group(index)]] is an integer value that specifies a rasterizer
order ID, which provides finer grained control over the ordering of loads and stores. For
example, if two buffers A and B are marked with different rasterizer order ID values, then loads
and stores to buffers A and B for overlapping fragments can be synchronized independently.

Example:

fragment void

my_fragment(texture2d<float, access::read_write> texA
[[raster_order_group(0), texture(0)]],

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 63 184

 …)

{

ushort2 coord;

float4 clr = texA.load(coord);

// do operations on clr

clr = …;

texA.write(clr, coord);

}  

For an argument buffer, the [[raster_order_group(index)]] attribute can be used on a
buffer or texture member in a struct.

4.3.2 Struct of Buffers and Textures
Arguments to a graphics, kernel or user function can be a struct or a nested struct whose
members are buffers, textures or samplers only. Such a struct must be passed by value. Each
member of such a struct passed as the argument type to a graphics or kernel function can have
an attribute to specify its location (as described in section 4.3.1).

Example of a struct passed as an argument:

struct Foo {

texture2d<float> a [[texture(0)]];

depth2d<float> b [[texture(1)]];

};

kernel void

my_kernel(Foo f)

{…}

Below are some examples of invalid use cases that should result in a compilation error.

kernel void

my_kernel(device Foo& f) // illegal use

{…}

struct MyResources {

texture2d<float> a [[texture(0)]];

depth2d<float> b [[texture(1)]];

int c;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 64 184

};

kernel void

my_kernel(MyResources r) // illegal use

{…}

Nested structs are also supported, as shown in the following example.

struct Foo {

texture2d<float> a [[texture(0)]];

depth2d<float> b [[texture(1)]];

};

struct Bar {

Foo f;

sampler s [[sampler(0)]];

};

kernel void

my_kernel(Bar b)

{…}

4.3.3 Attributes to Locate Per-Vertex Inputs
A vertex function can read per-vertex inputs by indexing into a buffer(s) passed as arguments to
the vertex function using the vertex and instance IDs. In addition, per-vertex inputs can also be
passed as an argument to a vertex function by declaring them with the [[stage_in]] attribute.
For per-vertex inputs passed as an argument declared with the [[stage_in]] attribute, each
element of the per-vertex input must specify the vertex attribute location as
[[attribute(index)]].

The index value is an unsigned integer that identifies the vertex input location that is being
assigned. The proper syntax is for the attribute to follow the argument/variable name. The Metal
API uses this attribute to identify the location of the vertex buffer and describe the vertex data
such as the buffer to fetch the per-vertex data from, its data format, and its stride.

The example below shows how vertex attributes can be assigned to elements of a vertex input
struct passed to a vertex function using the stage_in attribute.

struct VertexInput {

float4 position [[attribute(0)]];

float3 normal [[attribute(1)]];

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 65 184

half4 color [[attribute(2)]];

half2 texcoord [[attribute(3)]];

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTS];

float4 light_color[MAX_LIGHTS];

float4 light_attenuation_factors[MAX_LIGHTS];

};

constexpr sampler s = sampler(coord::normalized, address::clamp_to_zero,
filter::linear);

vertex VertexOutput

render_vertex(VertexInput v_in [[stage_in]],

 constant float4x4& mvp_matrix [[buffer(1)]],

 constant LightDesc& lights [[buffer(2)]],

 uint v_id [[vertex_id]])

{

VertexOutput v_out;

…

return v_out;

}

The example below shows how both buffers and the stage_in attribute can be used to fetch
per-vertex inputs in a vertex function.

struct VertexInput {

float4 position [[attribute(0)]];

float3 normal [[attribute(1)]];

};

struct VertexInput2 {

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 66 184

half4 color;

half2 texcoord[4];

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTS];

float4 light_color[MAX_LIGHTS];

float4 light_attenuation_factors[MAX_LIGHTS];

};

constexpr sampler s = sampler(coord::normalized, address::clamp_to_zero,
filter::linear);

vertex VertexOutput

render_vertex(VertexInput v_in [[stage_in]],

 VertexInput2 v_in2 [[buffer(0)]],

 constant float4x4& mvp_matrix [[buffer(1)]],

 constant LightDesc& lights [[buffer(2)]],

 uint v_id [[vertex_id]])

{

VertexOutput vOut;

…

return vOut;

}

A post-tessellation vertex function can read the per-patch and patch control-point data. The
patch control-point data is specified in the post-tessellation vertex function as the following
templated type:

patch_control_point<T>

where T is a user defined struct. Each element of T must specify an attribute location using
[[attribute(index)]].

All OS: patch control point templated type supported since v1.2.

Member functions are supported by the patch_control_point<T> type are:

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 67 184

constexpr size_t size() const;

Returns the number of control-points in the patch

constexpr const_reference operator[] (size_t pos) const;

Returns the data for a specific patch control point identified by pos.

Example:

struct ControlPoint {

int3 patchParam [[attribute(0)]];

float3 P [[attribute(1)]];

float3 P1 [[attribute(2)]];

float3 P2 [[attribute(3)]];

float2 vSegments [[attribute(4)]];

};

struct PerPatchData {

float4 patchConstant [[attribute(5)]];

float4 someOtherPatchConstant [[attribute(6)]];

};

struct PatchData {

patch_control_point<ControlPoint> cp; // control-point data

PerPatchData patchData; // per-patch data

};

[[patch(quad)]]

vertex VertexOutput

post_tess_vertex_func(PatchData input [[stage_in]}, …)

{…}

4.3.4 Attributes for Built-in Variables
Some graphics operations occur in the fixed-function pipeline stages and need to provide
values to or receive values from graphics functions. Built-in input and output variables are used
to communicate values between the graphics (vertex and fragment) functions and the fixed-
function graphics pipeline stages. Attributes are used with arguments and the return type of
graphics functions to identify these built-in variables.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 68 184

4.3.4.1 Vertex Function Input Attributes

Table 9 lists the built-in attributes that can be specified for arguments to a vertex function and
the corresponding data types with which they can be used.

Table 9 Attributes for Vertex Function Input Arguments

Notes on vertex function input attributes:

• If the type used to declare [[vertex_id]] is uint, the type used to declare
[[base_vertex]] must be uint or ushort.

• If the type used to declare [[vertex_id]] is ushort, the type used to declare
[[base_vertex]] must be ushort.

• If the type used to declare [[instance_id]] is uint, the type used to declare
[[base_instance]] must be uint or ushort.

• If the type used to declare [[instance_id]] is ushort, the type used to declare
[[base_instance]] must be ushort.

4.3.4.2 Post-Tessellation Vertex Function Input Attributes

Table 10 lists the built-in attributes that can be specified for arguments to a post-tessellation
vertex function and the corresponding data types with which they can be used.

Attribute Corresponding Data
Types

Description

[[vertex_id]] ushort or uint The per-vertex identifier, which
includes the base vertex value if one
is specified.

[[instance_id]] ushort or uint The per-instance identifier, which
includes the base instance value if
one is specified.

[[base_vertex]] ushort or uint The base vertex value added to each
vertex identifier before reading per-
vertex data.

[[base_instance]] ushort or uint The base instance value added to
each instance identifier before
reading per-instance data.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 69 184

Table 10 Attributes for Post-Tessellation Vertex Function Input Arguments

All OS: all attributes in Table 10 supported since v1.2.

Notes on vertex function input attributes:

• If the type used to declare [[instance_id]] is uint, the type used to declare
[[base_instance]] must be uint or ushort.

• If the type used to declare [[instance_id]] is ushort, the type used to declare
[[base_instance]] must be ushort.

4.3.4.3 Vertex Function Output Attributes

Table 11 lists the built-in attributes that can be specified for a return type of a vertex function or
the members of a struct that are returned by a vertex function (and the corresponding data
types with which they can be used).

Table 11 Attributes for Vertex Function Return Type

Attribute Corresponding Data
Types

Description

[[patch_id]] ushort or uint The patch identifier.

[[instance_id]] ushort or uint The per-instance identifier, which
includes the base instance value if
one is specified.

[[base_instance]] ushort or uint The base instance value added to
each instance identifier before
reading per-instance data.

[[position_in_patch]] float2 or float3 Defines the location on the patch
being evaluated. For quad patches,
must be float2. For triangle
patches, must be float3.

Attribute Corresponding
Data Types

Description

[[clip_distance]] float or
float[n]
n must be known
at compile time

Distance from vertex to clipping plane

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 70 184

All OS: Attributes in Table 11 supported since v1.0, unless otherwise indicated.

A cubemap is represented as a render target array with six layers, one for each face, and
[[render_target_array_index]] is the face index, which is a value from 0 to 5. For a
cubemap array, the [[render_target_array_index]] is computed as: array_slice_index * 6 +
face_index.

You must return the same value of [[render_target_array_index]] for every vertex in a
primitive. If values differ, the behavior and value passed to the fragment function are undefined.
The same behavior applies to primitives generated by tessellation.

[[viewport_array_index]] enables specifying one viewport or scissor rectangle from
multiple active viewports and scissor rectangles. For details about
[[viewport_array_index]], see section 4.11.

[[invariant]] indicates that the floating-point math used in multiple function passes must
generate a vertex position that matches exactly for every pass. [[invariant]] may only be
used for a position in a vertex function (i.e., fields with the [[position]] attribute) to indicate
the result of the calculation for the output is highly likely (although not guaranteed) to be
invariant. This position invariance is essential for techniques such as shadow volumes or a z-
prepass.

If the return type of a vertex function is not void, it must include the vertex position. If the
vertex return type is float4, then it always refers to the vertex position, and the 

[[invariant]]
All OS: since v2.1

n/a
must be used
with
[[position]]

Marks the output position such that if the
sequence of operations used to compute
the output position in multiple vertex
shaders is identical, there is a high
likelihood that the resulting output
position computed by these vertex
shaders are the same value.

[[point_size]] float Size of a point primitive

[[position]] float4 The transformed vertex position

[[render_target_array_ 
index]] 
macOS: since v1.1 
iOS: since v2.1

uchar, ushort
or uint  

The array index that refers to one of:  
1) an array slice of a texture array,  
2) data at a specified depth of a 3D
texture,  
3) the face of a cubemap, or  
4) a specified face of a specified array
slice of a cubemap array.

[[viewport_array_index]] 
All OS: since v2.0.

uchar, ushort
or uint

The viewport (and scissor rectangle)
index value of the primitive.

Attribute Corresponding
Data Types

Description

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 71 184

[[position]] attribute must not be specified. If the vertex return type is a struct, it must
include an element declared with the [[position]] attribute.

The example below describes a vertex function called process_vertex. The function returns a
user-defined struct called VertexOutput, which contains a built-in variable that represents the
vertex position, so it requires the [[position]] attribute.

struct VertexOutput {

float4 position [[position]];

float4 color;

float2 texcoord;

}

vertex VertexOutput

process_vertex(…)

{

VertexOutput v_out;

// compute per-vertex output

…

return v_out;

}

Post-tessellation vertex function outputs are the same as a regular vertex function.

4.3.4.4 Fragment Function Input Attributes

Table 12 lists the built-in attributes that can be specified for arguments of a fragment function
(and their corresponding data types).

NOTE: If the return type of a vertex function is not void, it must include the vertex
position. If the vertex return type is float4 this always refers to the vertex position (and
the [[position]] attribute need not be specified). If the vertex return type is a struct, it
must include an element declared with the [[position]] attribute.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 72 184

Table 12 Attributes for Fragment Function Input Arguments

Attribute Corresponding Data
Types

Description

[[color(m)]] floatn, halfn,
intn, uintn,
shortn or ushortn
m must be known at
compile time

The input value read from a color
attachment. The index m indicates
which color attachment to read
from.

[[front_facing]] bool This value is true if the fragment
belongs to a front-facing primitive.

[[point_coord]] float2 Two-dimensional coordinates, which
range from 0.0 to 1.0 across a point
primitive, specifying the location of
the current fragment within the point
primitive.

[[position]] float4 Describes the window-relative
coordinate (x, y, z, 1/w) values for the
fragment.

[[sample_id]] uint The sample number of the sample
currently being processed.

[[sample_mask]] uint The set of samples covered by the
primitive generating the fragment
during multisample rasterization.

[[sample_mask,
post_depth_coverage]] 
All OS: since v2.0.

uint The set of samples covered by the
primitive generating the fragment
after application of the early depth
and stencil tests during multisample
rasterization. The
[[early_fragment_tests]]
attribute must be used on the
fragment function; otherwise the
compilation fails.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 73 184

A variable declared with the [[position]] attribute as input to a fragment function can only be
declared with the center_no_perspective sampling and interpolation attribute. (See section
4.5.)

For [[color(m)]], m is used to specify the color attachment index when accessing (reading or
writing) multiple color attachments in a fragment function. The [[color(m)]] attribute is only
supported in iOS.

The [[sample_mask]] attribute can only be declared once for a fragment function input.

For more details about [[viewport_array_index]], see section 4.11.

Table 13 lists attributes that can be specified for tile arguments that are input to a fragment
function. The data types used to declare [[pixel_position_in_tile]] and
[[pixels_per_tile]] must match.

Table 13 Attributes for Fragment Function Tile Input Arguments

[[render_target_ 
array_index]] 
macOS: since V1.1. 
iOS: no support.

uchar, ushort or uint The render target array index, which
refers to the face of a cubemap, data
at a specified depth of a 3D texture,
an array slice of a texture array, or an
array slice, face of a cubemap array.
For a cubemap the render target
array index is the face index, which is
a value from 0 to 5. For a cubemap
array the render target array index is
computed as: array slice index * 6 +
face index.

[[viewport_array_
index]] 
All OS: since v2.0.

uint The viewport (and scissor rectangle)
index value of the primitive.

Attribute Corresponding Data
Types

Description

Attribute Corresponding Data
Types

Description

[[pixel_position_in_tile]] ushort2 or uint2 (x, y) position of the fragment in
the tile.

[[pixels_per_tile]] ushort2 or uint2 (width, height) of the tile in
pixels.

[[tile_index]] ushort or uint 1D tile index.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 74 184

macOS: no support for the attributes in Table 13.

iOS: attributes in Table 13 supported since v2.0.

[[tile_index]] is a value from [0, n), where n is the number of tiles in the render target.

4.3.4.5 Fragment Function Output Attributes

The return type of a fragment function describes the per-fragment output. A fragment function
can output one or more render-target color values, a depth value, and a coverage mask, which
must be identified by using the attributes listed in Table 14. If the depth value is not output by
the fragment function, the depth value generated by the rasterizer is output to the depth
attachment.

Table 14 Attributes for Fragment Function Return Types

All OS: combined color(m), index(i) attribute supported since v1.2. Other attributes in
Table 14 supported since v1.0.

The color attachment index m for fragment output is specified in the same way as it is for
[[color(m)]] for fragment input (see discussion for Table 12). Multiple elements in the
fragment function return type that use the same color attachment index for blending must be
declared with the same data type.

If there is only a single-color attachment in a fragment function, then [[color(m)]] is optional.
If [[color(m)]] is not specified, the attachment index is 0. If multiple color attachments are
specified, [[color(m)]] must be specified for all color values. See examples of specifying the
color attachment in sections 4.6 and 4.7.
If index(i) is not specified in the attribute, an index of 0 is assumed. If index(i) is specified,
the value of i must be known at compile time.

Attribute Corresponding
Data Types

Description

[[color(m)]]

[[color(m), index(i)]]

floatn, halfn,
intn, uintn,
shortn, or
ushortn  

Color value output for a color attachment.

m is the color attachment index and must
be known at compile time. The index i can
be used to specify one or more colors
output by a fragment function for a given
color attachment and is an input to the
blend equation.

[[depth(depth_argument
)]]

float Depth value output using the function
specified by depth_argument.

[[sample_mask]] uint Coverage mask.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 75 184

If a fragment function writes a depth value, the depth_argument must be specified with one of
the following values:

any

greater

less

The following example shows how color attachment indices can be specified. Color values
written in clr_f write to color attachment index 0, clr_i to color attachment index 1, and
clr_ui to color attachment index 2.

struct MyFragmentOutput {

// color attachment 0

float4 clr_f [[color(0)]];

// color attachment 1

int4 clr_i [[color(1)]];

// color attachment 2

uint4 clr_ui [[color(2)]];

}

fragment MyFragmentOutput

my_fragment(…)

{

MyFragmentOutput f;

 …

 f.clr_f = …;

 …

 return f;

}

If a color attachment index is used as both an input to and an output of a fragment function, the
data types associated with the input argument and output declared with this color attachment
index must match.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 76 184

4.3.4.6 Kernel Function Input Attributes

When a kernel function is submitted for execution, it executes over an N-dimensional grid of
threads, where N is one, two or three. A thread is an instance of the kernel function that
executes for each point in this grid, and thread_position_in_grid identifies its position in
the grid.

Within a compute unit, a threadgroup is partitioned into multiple smaller groups for execution.
The execution width of the compute unit, referred to as the thread_execution_width,
determines the recommended size of this smaller group. For best performance, make the total
number of threads in the threadgroup a multiple of the thread_execution_width .

Threadgroups are assigned a unique position within the grid (referred to as
threadgroup_position_in_grid). Threads are assigned a unique position within a
threadgroup (referred to as thread_position_in_threadgroup). The unique scalar index of a
thread within a threadgroup is given by thread_index_in_threadgroup.

Each thread’s position in the grid and position in the threadgroup are N-dimensional tuples.
Threadgroups are assigned a position using a similar approach to that used for threads. Threads
are assigned to a threadgroup and given a position in the threadgroup with components in the
range from zero to the size of the threadgroup size in that dimension minus one.

When a kernel function is submitted for execution, the number of threadgroups and the
threadgroup size are specified, or the number of threads in the grid and the threadgroup size
are specified, or the number of threads in the grid and the threadgroup size are specified. For
example, consider a kernel function submitted for execution that uses a 2-dimensional grid
where the number of threadgroups specified are (Wx, Wy) and the threadgroup size is (Sx,
Sy). Let (wx, wy) be the position of each threadgroup in the grid (i.e.,
threadgroup_position_in_grid) and (lx, ly) be the position of each thread in the
threadgroup (i.e., thread_position_in_threadgroup).

The thread position in the grid (i.e., thread_position_in_grid) is:

(gx, gy) = (wx * Sx + lx, wy * Sy + ly)

The grid size (i.e., threads_per_grid) is:

(Gx, Gy) = (Wx * Sx, Wy * Sy)

In cases other than a tile function, the thread index in the threadgroup (i.e.,
thread_index_in_threadgroup) is determined by: ly * Sx + lx

For a tile function, the thread index is not a linear mapping from the lx and ly values. Each
thread in a tile function is guaranteed to get a unique index in the range [0, Sx * Sy).

Within a threadgroup, threads are divided into SIMD-groups in an implementation-defined
fashion. Any given thread in a SIMD-group can query its SIMD lane ID and which SIMD-group it
is a member of.

Table 15 lists the built-in attributes that can be specified for arguments to a kernel function and
the corresponding data types with which they can be used.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 77 184

Table 15 Attributes for Kernel Function Input Arguments

Attribute Corresponding Data
Types

Description

[[thread_position_in_
grid]]

ushort, ushort2,
ushort3,
uint, uint2 or uint3

The thread’s position in an N-
dimensional grid of threads.

[[thread_position_in_
threadgroup]]

ushort, ushort2,
ushort3,
uint, uint2 or uint3

The thread’s unique position within a
threadgroup

[[thread_index_in_
threadgroup]]

ushort or uint The scalar index of a thread within a
threadgroup.

[[threadgroup_position_
in_grid]]

ushort, ushort2,
ushort3,
uint, uint2 or uint3

The threadgroup’s unique position
within a grid.

[[threads_per_grid]] ushort, ushort2,
ushort3,
uint, uint2 or uint3

The grid size.

[[threads_per_
threadgroup]]

ushort, ushort2,
ushort3,
uint, uint2 or uint3

The thread execution width of a
threadgroup.

[[dispatch_threads_per_
threadgroup]]

ushort, ushort2,
ushort3,
uint, uint2 or uint3

The thread execution width of a
threadgroup for threads specified at
dispatch.

[[threadgroups_per_grid
]]

ushort, ushort2,
ushort3,
uint, uint2 or uint3

The number of threadgroups in a
grid.

[[thread_execution_
width]]

ushort or uint The execution width of the compute
unit.

[[threads_per_simdgroup
]]

ushort or uint The thread execution width of a
SIMD-group.

[[thread_index_in_
simdgroup]]

ushort or uint The scalar index of a thread within a
SIMD-group.

[[thread_index_in_
quadgroup]]

ushort or uint The scalar index of a thread within a
quad-group.

[[simdgroup_index_in_
threadgroup]]

ushort or uint The scalar index of a SIMD-group
within a threadgroup.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 78 184

macOS: since v2.0, support for SIMD-group attributes: threads_per_simdgroup,
thread_index_in_simdgroup, simdgroup_index_in_threadgroup,
simdgroup_per_threadgroup, and dispatch_simdgroups_per_threadgroup. Since v2.1,
support for quad-group attributes: thread_index_in_quadgroup,
quadgroup_index_in_threadgroup, quadgroup_per_threadgroup, and
dispatch_quadgroups_per_threadgroup. Other attributes in supported since v1.0.

iOS: Since v2.0, support for quad-group attributes. No support for SIMD-group attributes. Other
attributes in supported since v1.0.

For standard Metal compute functions (other than tile functions), SIMD-groups are linear and
one-dimensional. (Threadgroups may be multi-dimensional.) The number of SIMD-groups in a
threadgroup ([[simdgroups_per_threadgroup]]) is the total number threads in the
threadgroup ([[threads_per_threadgroup]]) divided by the SIMD-group size
([[thread_execution_width]]):
simdgroups_per_threadgroup = ceil(threads_per_threadgroup/
thread_execution_width)

Similarly, the number of quad-groups in a threadgroup (quadgroups_per_threadgroup) is the
total number of threads in threadgroup divided by 4, which is the thread execution width of a
quad-group:
quadgroups_per_threadgroup = ceil(threads_per_threadgroup/4)

For tile functions, threads are arranged as 2x2 quads. For a 2-dimensional grid where the
number of threadgroups specified are (Wx, Wy), simdgroups_per_threadgroup is computed
by:
simdgroups_per_threadgroup = ceil(Wx/2) * 2 * ceil(Wy/2) * 2 /
thread_execution_width

simdgroups_per_threadgroup = ceil(Wx/2)*ceil(Wy/2)*4/thread_execution_width

For tile functions, quadgroups_per_threadgroup is computed by:

[[quadgroup_index_in_
threadgroup]]

ushort or uint The scalar index of a quad-group
within a threadgroup.

[[simdgroups_per_
threadgroup]]

ushort or uint The SIMD-group execution width of
a threadgroup.

[[quadgroups_per_
threadgroup]]

ushort or uint The quad-group execution width of a
threadgroup.

[[dispatch_simdgroups_
per_threadgroup]]

ushort or uint The SIMD-group execution width of
a threadgroup specified at dispatch.

[[dispatch_quadgroups_
per_threadgroup]]

ushort or uint The quad-group execution width of a
threadgroup specified at dispatch.

Attribute Corresponding Data
Types

Description

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 79 184

quadgroups_per_threadgroup = ceil(Wx/2) * 2 * ceil(Wy/2) * 2 / 4

quadgroups_per_threadgroup = ceil(Wx/2) * ceil(Wy/2)

[[dispatch_simdgroups_per_threadgroup]] and
[[dispatch_quadgroups_per_threadgroup]] are similarly computed for threads specified
at dispatch.

SIMD-groups execute concurrently within a given threadgroup and make independent forward
progress with respect to each other, in the absence of threadgroup barrier operations. Threads
within a SIMD-group do not need to perform any barrier operations for synchronization. The
thread index in a SIMD-group (given by [[thread_index_in_simdgroup]]) is a value
between 0 and SIMD-group size – 1, inclusive. Similarly, the thread index in a quad-group (given
by [[thread_index_in_quadgroup]]) is a value between 0 and 3, inclusive.  

In v2.0, the number of threads in the grid does not have to be a multiple of the number of
threads in a threadgroup. It is therefore possible that the actual threadgroup size of a specific
threadgroup may be smaller than the threadgroup size specified in the dispatch. The
[[threads_per_threadgroup]] attribute specifies the actual threadgroup size for a given
threadgroup executing the kernel. The [[dispatch_threads_per_threadgroup]] attribute is
the threadgroup size specified at dispatch.

Notes on kernel function attributes:

• The type used to declare [[thread_position_in_grid]], [[threads_per_grid]],
[[thread_position_in_threadgroup]], [[threads_per_threadgroup]],
[[threadgroup_position_in_grid]], [[dispatch_threads_per_threadgroup]],
and [[threadgroups_per_grid]] must be a scalar type or a vector type. If it is a
vector type, the number of components for the vector types used to declare these
arguments must match.

• The data types used to declare [[thread_position_in_grid]] and
[[threads_per_grid]] must match.

• The data types used to declare [[thread_position_in_threadgroup]] and
[[threads_per_threadgroup]], and [[dispatch_threads_per_threadgroup]]
must match.

• If [[thread_position_in_threadgroup]] is declared to be of type uint, uint2 or
uint3, then [[thread_index_in_threadgroup]] must be declared to be of type
uint.

• The types used to declare [[thread_index_in_simdgroup]],
[[threads_per_simdgroup]], [[simdgroup_index_in_threadgroup]],
[[simdgroups_per_threadgroup]],
[[dispatch_simdgroups_per_threadgroup]],
[[quadgroup_index_in_threadgroup]], [[quadgroups_per_threadgroup]], and
[[dispatch_quadgroups_per_threadgroup]]must be ushort or uint. The types
used to declare these built-in variables must match.

• [[thread_execution_width]] and [[threads_per_simdgroup]] are aliases of one
another that reference the same concept.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 80 184

4.3.5 stage_in Attribute
The per-fragment inputs to a fragment function are generated using the output from a vertex
function and the fragments generated by the rasterizer. The per-fragment inputs are identified
using the [[stage_in]] attribute.

A vertex function can read per-vertex inputs by indexing into a buffer(s) passed as arguments to
the vertex function using the vertex and instance IDs. In addition, per-vertex inputs can also be
passed as arguments to a vertex function by declaring them with the [[stage_in]] attribute.

A kernel function reads per-thread inputs by indexing into a buffer(s) or texture(s) passed as
arguments to the kernel function using the thread position in grid or thread position in
threadgroup IDs. In addition, per-thread inputs can also be passed as arguments to a kernel
function by declaring them with the [[stage_in]] attribute.

Only one argument of the vertex, fragment or kernel function can be declared with the
[[stage_in]] attribute. For a user-defined struct declared with the [[stage_in]] attribute,
the members of the struct can be:

• a scalar integer or floating-point value or

• a vector of integer or floating-point values.

Packed vectors, matrices, structs, references or pointers to a type, and arrays of scalars,
vectors, matrices and bitfields are not supported as members of the struct declared with the
stage_in attribute.

4.3.5.1 Vertex Function Example that Uses the stage_in Attribute

The following example shows how to pass per-vertex inputs using the stage_in attribute.

struct VertexOutput {

float4 position [[position]];

float4 color;

float2 texcoord[4];

};

struct VertexInput {

float4 position [[attribute(0)]];

float3 normal [[attribute(1)]];

half4 color [[attribute(2)]];

half2 texcoord [[attribute(3)]];

};

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 81 184

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTS];

float4 light_color[MAX_LIGHTS];

float4 light_attenuation_factors[MAX_LIGHTS];

};

constexpr sampler s = sampler(coord::normalized, address::clamp_to_zero,
filter::linear);

vertex VertexOutput

render_vertex(VertexInput v_in [[stage_in]],

 constant float4x4& mvp_matrix [[buffer(1)]],

 constant LightDesc& lights [[buffer(2)]],

 uint v_id [[vertex_id]])

{

VertexOutput v_out;

v_out.position = v_in.position * mvp_matrix;

v_out.color = do_lighting(v_in.position, v_in.normal, lights);

…

return v_out;

}

4.3.5.2 Fragment Function Example that Uses the stage_in Attribute

An example in section 4.3.3 previously introduces the process_vertex vertex function, which
returns a VertexOutput struct per vertex. In the following example, the output from
process_vertex is pipelined to become input for a fragment function called render_pixel, so
the first argument of the fragment function uses the [[stage_in]] attribute and uses the
incoming VertexOutput type. (In render_pixel, the imgA and imgB 2D textures call the built-
in function sample, which is introduced in section 5.10.3).

struct VertexOutput {

float4 position [[position]];

float4 color;

float2 texcoord;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 82 184

};

struct VertexInput {

float4 position;

float3 normal;

float2 texcoord;

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;

float4 light_position[MAX_LIGHTS];

float4 light_color[MAX_LIGHTS];

float4 light_attenuation_factors[MAX_LIGHTS];

};

constexpr sampler s = sampler(coord::normalized, address::clamp_to_edge,
filter::linear);

vertex VertexOutput

render_vertex(const device VertexInput *v_in [[buffer(0)]],

 constant float4x4& mvp_matrix [[buffer(1)]],

 constant LightDesc& lights [[buffer(2)]],

 uint v_id [[vertex_id]])

{

VertexOutput v_out;

v_out.position = v_in[v_id].position * mvp_matrix;

v_out.color = do_lighting(v_in[v_id].position, v_in[v_id].normal,
lights);

v_out.texcoord = v_in[v_id].texcoord;

return v_out;

}

fragment float4

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 83 184

render_pixel(VertexOutput input [[stage_in]],

 texture2d<float> imgA [[texture(0)]],

 texture2d<float> imgB [[texture(1)]])

{

float4 tex_clr0 = imgA.sample(s, input.texcoord);

float4 tex_clr1 = imgB.sample(s, input.texcoord);

// compute color

float4 clr = compute_color(tex_clr0, tex_clr1, …);

return clr;

}

4.3.5.3 Kernel Function Example that Uses the stage_in Attribute

The following example shows how to pass per-thread inputs using the stage_in attribute.
Using the stage_in attribute in a kernel function allows you to decouple the data type used to
declare the per-thread inputs in the function from the actual data type used to store the per-
thread inputs.

struct PerThreadInput {

float4 a [[attribute(0)]];

float3 b [[attribute(1)]];

half4 c [[attribute(2)]];

half2 d [[attribute(3)]];

};

kernel void

my_kernel(PerThreadInput thread_input [[stage_in]],

…

uint t_id [[thread_position_in_grid]])

{…}

4.4 Storage Class Specifiers
Metal supports the static and extern storage class specifiers. Metal does not support the
thread_local storage class specifiers.

The extern storage-class specifier can only be used for functions and variables declared in
program scope or variables declared inside a function. The static storage-class specifier is
only for device variables declared in program scope (see section 4.2.3) and is not for variables

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 84 184

declared inside a graphics or kernel function. In the following example, the static specifier is
incorrectly used for the variables b and c declared inside a kernel function.

extern constant float4 noise_table[256];

static constant float4 color_table[256] = { … }; // static is okay

extern void my_foo(texture2d<float> img);

extern void my_bar(device float *a);

kernel void

my_kernel(texture2d<float> img [[texture(0)]],

 device float *ptr [[buffer(0)]])

{

extern constant float4 a;

static constant float4 b; // static is an error.

static float c; // static is an error.

…

my_foo(img);

…

my_bar(ptr);

…

}

4.5 Sampling and Interpolation Attributes
Sampling and interpolation attributes are used with inputs to fragment functions declared with
the stage_in attribute. The attribute determines what sampling method the fragment function
uses and how the interpolation is performed, including whether to use perspective-correct
interpolation, linear interpolation, or no interpolation.

The sampling and interpolation attribute can be specified on any structure member declared
with the stage_in attribute. The sampling and interpolation attributes supported are:

center_perspective

center_no_perspective

centroid_perspective

centroid_no_perspective

sample_perspective

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 85 184

sample_no_perspective

flat

center_perspective is the default sampling and interpolation attribute, with the following
exceptions:

• For a variable with the [[position]] attribute, the only valid sampling and interpolation
attribute is center_no_perspective.

• For an integer variable, the only valid sampling and interpolation attribute is flat.

A perspective attribute (center_perspective, centroid_perspective, or
sample_perspective) indicates the interpolation of values across a primitive are performed in
a perspective-correct manner. A non-perspective attribute (center_no_perspective,
centroid_no_perspective, or sample_no_perspective) indicates the values across a
primitive are linearly interpolated in screen coordinates.

The center attribute variants (center_perspective and center_no_perspective) cause
sampling to be performed using the center of each pixel.

The sampling attribute variants (sample_perspective and sample_no_perspective) cause
interpolation at a sample location rather than at the pixel center. With one of these attributes,
the fragment function (or code blocks in the fragment function) that use these variables
execute per-sample rather than per-fragment.

If a centroid attribute variant is specified (centroid_perspective and
centroid_no_perspective), the interpolation point sampled must be within both the primitive
and the centroid of the pixel.

The following example is user-defined struct that specifies how data in certain members are
interpolated:

struct FragmentInput {

float4 pos [[center_no_perspective]];

float4 color [[center_perspective]];

float2 texcoord;

int index [[flat]];

float f [[sample_perspective]];

};

4.6 Per-Fragment Function vs. Per-Sample Function
The fragment function is typically executed per-fragment. The sampling attribute identifies if
any fragment input is to be interpolated at per-sample vs. per-fragment. Similarly, the
[[sample_id]] attribute is used to identify the current sample index and the [[color(m)]]
attribute is used to identify the destination fragment color or sample color (for a multisampled
color attachment) value. If any of these attributes are used with arguments to a fragment
function, the fragment function may execute per-sample instead of per-pixel. (The

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 86 184

implementation may decide to only execute the code that depends on the per-sample values to
execute per-sample and the rest of the fragment function may execute per-fragment.)

Only the inputs with sample specified (or declared with the [[sample_id]] or [[color(m)]]
attribute) differ between invocations per-fragment or per-sample, whereas other inputs still
interpolate at the pixel center.

The following example uses the [[color(m)]] attribute to specify that this fragment function
is executed on a per-sample basis.

fragment float4

my_fragment(float2 tex_coord [[stage_in]],

 texture2d<float> img [[texture(0)]],

 sampler s [[sampler(0)]],

 float4 framebuffer [[color(0)]])

{

return c = mix(img.sample(s, tex_coord), framebuffer, mix_factor);

}

4.7 Imageblock Attributes
macOS: no support for imageblocks.

iOS: imageblock support since v2.0.

This section describes several attributes that are used with imageblocks. The
[[imageblock_data(type)]] attribute that specifies input and output imageblock with an
explicit imageblock layout on a fragment function is described in section 2.10.

4.7.1 user Attribute for Matching Data Members of Master and View
Imageblocks
The [[user(name)]] attribute can be used to specify an attribute name for a data member of
the imageblock data type for a fragment function. If the imageblock struct specified in a
fragment function is a subset of the master explicit imageblock struct, the following rules are
used to match data members declared in the imageblock struct used with a fragment function
with corresponding data members declared in the master explicit imageblock struct:

• Every attribute name given by [[user(name)]] must be unique for each data member in
the imageblock.

• If the attribute name given by [[user(name)]] is specified for a data member, the
attribute name given by name must match with a data member declared in the master
explicit imageblock struct. In addition, the associated data types must also match.

• If the [[user(name)]] attribute is not specified, the data member name and type
declared in the imageblock data type for a fragment function and the master imageblock

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 87 184

struct must match. Additionally, the data member cannot be within a nested struct that is
either within the view imageblock struct or within the master imageblock struct.

The example below shows master and view imageblock structs with data members that are
declared with the [[user(name)]] attribute:

Example:

// The explicit layout imageblock data master struct.

struct IM {

rgba8unorm<half4> a [[user(my_a), raster_order_group(0)]];

rgb9e5<float4> b [[user(my_b), raster_order_group(0)]];

int c [[user(my_c), raster_order_group(0)]];

float d [[user(my_d), raster_order_group(0)]];

};

// The explicit layout imageblock data view struct for input.

struct IVIn {

rgb9e5<float4> x [[user(my_b)]]; // Maps to IM::b

float y [[user(my_d)]]; // Maps to IM::d

};

// The explicit layout imageblock data view struct for output.

struct IVOut {

int z [[user(my_c)]]; // Maps to IM::c

};

// The fragment return struct.

struct FragOut {

// IVOut is a view of the master IM.

IVOut i [[imageblock_data(IM)]];

};

// IVIn is a view of the master IM.

fragment FragOut

my_fragment(IVIn i [[imageblock_data(IM)]], …) {

FragOut fragOut;

… = i.x;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 88 184

im::d

… = i.y;

fragOut.i.z = …;

return fragOut;

}

The example below shows master and view imageblock structs with data members that are
declared without the [[user(name)]] attribute:

struct IM {

rgba8unorm<half4> a [[raster_order_group(0)]];

rgb9e5<float4> b [[raster_order_group(0)]];

int c [[raster_order_group(0)]];

float d [[raster_order_group(0)]];

};

struct IVIn {

rgb9e5<float4> b; // Maps to IM::b

float d; // Maps to IM::d

};

struct IVOut {

int c; // Maps to IM::c

};

struct FragOut {

IVOut i [[imageblock_data(IM)]];

};

fragment FragOut

my_fragment(IVIn i [[imageblock_data(IM)]], …) {

FragOut fragOut;

… = i.b;

… = i.d;

fragOut.i.c = …;

return fragOut;

}

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 89 184

im::b

Nested structs can be declared in the master imageblock and view imageblock structs. Below is
an example that shows how nested structs in an imageblock can be used with data members
declared with the [[user(name)]] attribute:

struct A {

rgba8unorm<half4> a [[user(A_a)]];

rgb9e5<float4> b [[user(A_b)]];

};

struct B {

int a [[user(B_a), raster_order_group(1)]];

float b [[user(B_b), raster_order_group(2)]];

};

struct IM {

A a [[user(A), raster_order_group(0)]];

B b [[user(B)]];

};

struct IVIn {

A x [[user(A)]]; // Maps to IM::a

};

struct IVOut {

B y [[user(B)]]; // Maps to IM::b

rgb9e5<float4> z [[user(A_b)]]; // Maps to IM::A::b

};

struct FragOut {

IVOut i [[imageblock_data(IM)]];

};

fragment FragOut

my_fragment(IVIn i [[imageblock_data(IM)]], …) {

FragOut fragOut;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 90 184

im::b

… = i.x;

fragOut.i.y.a = …;

fragOut.i.y.b = …;

fragOut.i.z = …;

return fragOut;

}

Each field of a view struct must correspond to exactly one master struct field. A master struct
field can refer to a top-level struct field as well as a field within a nested struct. It is illegal for
two or more view struct fields to alias the same master struct field.

Example of Illegal Use:

struct M {

struct A {

int a [[user(x)]];

}

b [[user(y), raster_order_group(0)]];

};

struct V {

int a [[user(x)]];

M::A b [[user(y)]]; // illegal: b aliases with a

};

fragment void

f(V i [[imageblock_data(M)]])

{…}

Explicit imageblock types cannot have data members declared with the [[color(n)]]
attribute.

4.7.2 Imageblocks and Raster Order Groups
In a kernel function, a [[raster_order_group(index)]] attribute specified on data members
of an imageblock is ignored.

In a fragment function, the [[raster_order_group(index)]] attribute must be specified
with data members of the master explicit imageblock data struct.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 91 184

If the master explicit imageblock struct contains data members that are structs, the 
[[raster_order_group(index)]] attribute can be specified for all data members in the
nested struct or just the nested struct. If the [[raster_order_group(index)]] attribute is
specified on the nested struct, then it applies to all data members of the nested struct, and no
data member in the nested struct can have the [[raster_order_group(index)]] attribute
declared.

The [[raster_order_group(index)]] may be optionally specified with data members of an
imageblock view struct, but the [[raster_order_group(index)]] must match the same
[[raster_order_group(index)]] specified on the data member of the master explicit
imageblock struct.

The following example shows how the [[raster_order_group(index)]] attribute can be
specified for data members of a master imageblock. Since the
[[raster_order_group(index)]] attribute is used on the S struct member of the
gBufferData struct, the attribute cannot be used on any members of the S struct.

struct S {

rgb9e5<half3> normal;

float factor;

};

struct gBufferData {

half3 color [[raster_order_group(0)]];

S s [[raster_order_group(1)]];

rgb11b10f<half3> lighting [[raster_order_group(2)]];

};

Data members declared as an array have a single raster order group associated with all
members of the array. The following example shows how the
[[raster_order_group(index)]] attribute can be specified for data members of a master
imageblock that are declared as an array of a struct type.

struct S {

rgb9e5<half3> normal;

float factor;

};

struct IM {

half3 color [[raster_order_group(0)]];

S s [[raster_order_group(1)]][2];

rgb11b10f<half3> lighting [[raster_order_group(2)]];

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 92 184

};

The following example shows an incorrect use of the [[raster_order_group(index)]]
attribute where data-member s is declared as an array of a struct of type S with members that
specify raster order groups that result in a compilation error.

struct S {

rgb9e5<half3> normal [[raster_order_group(0)]];

float factor [[raster_order_group(1)]];

};

struct IM {

half3 color [[raster_order_group(0)]];

S s[2]; // compilation error

rgb11b10f<half3> lighting [[raster_order_group(2)]];

};

4.7.3 Aliasing Explicit and Implicit Imageblocks
By default, explicit and implicit imageblocks do not alias. To alias the allocation of an explicit
imageblock with the implicit imageblock fully or partially, the following attribute can also be
specified with an explicit imageblock:

[[alias_implicit_imageblock]]

[[alias_implicit_imageblock_color(n)]]

The [[alias_implicit_imageblock]] attribute specifies that the explicit imageblock
allocation completely aliases the implicit imageblock.

The [[alias_implicit_imageblock_color(n)]] attribute specifies that the explicit
imageblock allocation aliases the implicit imageblock starting at a specific color attachment
given by color(n). If n is a value that is between the smallest and largest declared
attachments, inclusive, but n references an undeclared attachment, then a compile-time error
occurs. If n is a value that exceeds the number of declared attachments, then compilation
succeeds, but the attribute is ignored.

Accessing data members of an implicit imageblock that are aliased with an explicit imageblock
is undefined if the kernel or fragment function modifies the aliased imageblock data members
using the explicit imageblock and its associated member functions.

Example:

struct I {

rgba8unorm<half4> a;

rgb9e5<float4> b;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 93 184

int c;

float d;

};

struct FragOut {

float4 finalColor [[color(0)]];

I i [[imagelock_data, alias_implicit_imageblock_color(1)]];

};

fragment FragOut

my_fragment(I i [[imageblock_data]], …)

{

FragOut fragOut;

…

return fragOut;

}

4.7.4 Imageblocks and Function Constants
Use of [[function_constant(name)]] is unsupported with data members of an imageblock
struct that is either passed as inputs to or returned as output from a fragment or kernel function.

4.8 Programmable Blending
The fragment function can be used to perform per-fragment or per-sample programmable
blending. The color attachment index identified by the [[color(m)]] attribute can be specified
as an argument to a fragment function.

Below is an OpenGL ES programmable blending example that describes how to paint grayscale
onto what is below.

The GLSL version is:

#extension GL_APPLE_shader_framebuffer_fetch : require

void main()

{

// RGB to grayscale

mediump float lum = dot(gl_LastFragData[0].rgb, vec3(0.30,0.59,0.11));

gl_FragColor = vec4(lum, lum, lum, 1.0);

}

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 94 184

The Metal version equivalent is:

fragment half4

paint_grayscale(half4 dst_color [[color(0)]])

{

// RGB to grayscale

half lum = dot(dst_color.rgb, half3(0.30h, 0.59h, 0.11h));

return half4(lum, lum, lum, 1.0h);

}

4.9 Graphics Function – Signature Matching
A graphics function signature is a list of parameters that are either input to or output from a
graphics function.

4.9.1 Vertex – Fragment Signature Matching
There are two kinds of data that can be passed between a vertex and fragment function: user-
defined and built-in variables.

The per-instance input to a fragment function is declared with the [[stage_in]] attribute.
These are output by an associated vertex function.

Built-in variables are declared with one of the attribute attributes defined in section 4.3.3. These
are either generated by a vertex function (such as [[position]], [[point_size]],
[[clip_distance]]), are generated by the rasterizer (such as [[point_coord]],
[[front_facing]], [[sample_id]], [[sample_mask]]) or refer to a framebuffer color value
(such as [[color]]) passed as an input to the fragment function.

The built-in variable [[position]] must always be returned. The other built-in variables
([[point_size]], [[clip_distance]]) generated by a vertex function, if needed, must be
declared in the return type of the vertex function but cannot be accessed by the fragment
function.

Built-in variables generated by the rasterizer or refer to a framebuffer color value may also be
declared as arguments of the fragment function with the appropriate attribute attribute.

The attribute [[user(name)]] syntax can also be used to specify an attribute name for any
user-defined variables.

A vertex and fragment function are considered to have matching signatures if:

• There is no input argument with the [[stage_in]] attribute declared in the fragment
function.

• For a fragment function argument declared with [[stage_in]], each element in the
type associated with this argument can be one of the following: a built-in variable
generated by the rasterizer, a framebuffer color value passed as input to the fragment

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 95 184

function, or a user-generated output from a vertex function. For built-in variables
generated by the rasterizer or framebuffer color values, there is no requirement for a
matching type to be associated with elements of the vertex return type. For elements
that are user-generated outputs, the following rules apply:

• If the attribute name given by [[user(name)]] is specified for an element, then this
attribute name must match with an element in the return type of the vertex function, and
their corresponding data types must also match.

• If the [[user(name)]] attribute name is not specified, then the argument name and
types must match.

Below is an example of compatible signatures, my_vertex and my_fragment or my_vertex and
my_fragment2 can be used together to render a primitive:

struct VertexOutput {

 float4 position [[position]];

 float3 normal;

 float2 texcoord;

};

vertex VertexOutput

my_vertex(…)

{

 VertexOutput v;

 …

 return v;

}

fragment float4

my_fragment(VertexOutput f [[stage_in]], …)

{

 float4 clr;

 …

 return clr;

}

fragment float4

my_fragment2(VertexOutput f [[stage_in]],

 bool is_front_face [[front_facing]], …)

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 96 184

{

float4 clr;

…

return clr;

}

Below is another example of compatible signatures:

struct VertexOutput {

float4 position [[position]];

float3 vertex_normal [[user(normal)]];

float2 texcoord [[user(texturecoord)]];

};

struct FragInput {

float3 frag_normal [[user(normal)]];

float4 position [[position]];

float4 framebuffer_color [[color(0)]];

bool is_front_face [[front_facing]];

};

vertex VertexOutput

my_vertex(…)

{

VertexOutput v;

…

return v;

}

fragment float4

my_fragment(FragInput f [[stage_in]], …)

{

float4 clr;

…

return clr;

}

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 97 184

Below is another example of compatible signatures:

struct VertexOutput {

float4 position [[position]];

float3 normal;

float2 texcoord;

};

vertex VertexOutput

my_vertex(…)

{

VertexOutput v;

…

return v;

}

fragment float4

my_fragment(float4 p [[position]], …)

{

float4 clr;

…

return clr;

}

Below is an example of incompatible signatures. The data type of normal in VertexOutput
(float3) does not match the type of normal in FragInput (half3):

struct VertexOutput {

float4 position [[position]];

float3 normal;

float2 texcoord;

};

struct FragInput {

float4 position [[position]];

half3 normal;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 98 184

};

vertex VertexOutput

my_vertex(…)

{

VertexOutput v;

…

return v;

}

fragment float4

my_fragment(FragInput f [[stage_in]], …)

{

float4 clr;

…

return clr;

}

Below is another example of incompatible signatures. The attribute index of normal in
VertexOutput (normal) does not match the index of normal in FragInput (foo).

struct VertexOutput {

float4 position [[position]];

float3 normal [[user(normal)]];

float2 texcoord [[user(texturecoord)]];

};

struct FragInput {

float3 normal [[user(foo)]];

float4 position [[position]];

};

vertex VertexOutput

my_vertex_shader(…)

{

VertexOutput v;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 99 184

…

return v;

}

fragment float4

my_fragment_shader(FragInput f [[stage_in]], …)

{

float4 clr;

…

return clr;

}

4.10 Program Scope Function Constants
All OS: function constants supported since v1.2. Since v2.0., support for using a function
constant to specify the binding number for a resource (see section 4.10.1.4) to specify the index
for the color() or raster_order_group attributes (section 4.10.1.5), and to identify that a
struct element is optional (section 4.10.1.6).

Function constants enable the generation of multiple variants of a function. Without using
function constants, developers can compile one function many times with different pre-
processor macro defines to enable different features (a.k.a., an ubershader). Using pre-
processor macros for ubershaders with offline compiling can result in a large number of variants
and a significant increase in the size of the shading function library assets. Function constants
provide the same ease of use as pre-processor macros but moves the generation of the specific
variants to the creation of the pipeline state, so the variants do not have to be compiled offline.

4.10.1 Specifying Program Scope Function Constants
Program scope variables declared with (or initialized with variable declared with) the following
attribute are referred to as function constants:

[[function_constant(index)]]

Function constants are not initialized in the Metal function source. Instead, their values are
specified when the render or compute pipeline state is created. index is used to specify a
location index that can refer to the function constant variable (instead of by its name) in the
runtime.

Examples:

constant int a [[function_constant(0)]];

constant bool b [[function_constant(2)]];

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 100 184

Variables in program scope declared in the constant address space can also be initialized using
a function constant(s).

Examples:

constant int a [[function_constant(0)]];

constant bool b [[function_constant(2)]];

constant bool c = ((a == 1) && b);

constant int d = (a * 4);

The value of function constants a and b are specified when the render or compute pipeline state
is created.

The following built-in function can be used to determine if a function constant is available; i.e., it
has been defined when the render or compute pipeline state is created. name must refer to a
function constant variable.

bool is_function_constant_defined(name)

is_function_constant_defined(name) returns true if the function constant variable is
defined when the render or compute pipeline state is created and false otherwise.

If a function constant variable value is not defined when the render or compute pipeline state is
created and if the graphics or kernel function specified with the render or compute pipeline
state uses these function constants, the behavior is the same as when the value returned by
is_function_constant_defined(name) is false.

Function constants can be used in Metal:

• To control code paths that get compiled,

• To specify the optional arguments of a function (graphics, kernel or user functions), or

• To specify optional elements of a struct that is declared with the [[stage_in]]
attribute.

4.10.1.1 Function Constants to Control Code Paths to Compile

Consider the following function which uses pre-processor macros for function constants:

struct VertexOutput {

float4 position [[position]];

float4 color;

};

struct VertexInput {

float4 position [[attribute(0)]];

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 101 184

float4 offset [[attribute(1)]];

float4 color [[attribute(2)]];

};

vertex VertexOutput

myVertex(VertexInput vIn [[stage_in]])

{

VertexOutput vOut;

vOut.position = vIn.position;

#ifdef OFFSET_DEFINED

vOut.position += vIn.offset;

#endif

#ifdef COLOR_DEFINED

vOut.color = vIn.color;

#else

vOut.color = float4(0.0f);

#endif

return vOut;

}

The corresponding function written using function constant variables is:

constant bool offset_defined [[function_constant(0)]];

constant bool color_defined [[function_constant(1)]];

vertex VertexOutput

myVertex(VertexInput vIn [[stage_in]])

{

VertexOutput vOut;

vOut.position = vIn.position;

if (offset_defined)

vOut.position += vIn.offset;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 102 184

if (color_defined)

vOut.color = vIn.color;

else

vOut.color = float4(0.0f);

return vOut;

}

Functions constants can only be a scalar or vector type. Using a user-defined type or an array
of a scalar or vector type for a function constant results in a compilation error.

4.10.1.2 Function Constants when Declaring the Arguments of Functions

An argument to a graphics, kernel or user function can be declared with the
[[function_constant(name)]] attribute attribute to identify that the argument is optional.
name refers to a function constant variable. If the value of the function constant variable given
by name is non-zero or true (determined when the render or compute pipeline state is
created), the argument is considered to be declared in the function signature. If the value of the
function constant variable given by name is 0 or false, the argument is not considered to be
declared in the function signature. If name refers to a function constant variable that has not
been defined (determined when the render or compute pipeline state is created), the behavior is
the same as if is_function_constant_defined(name) is used and its value is false.

Consider the following fragment function that uses pre-processor macros in its function
declaration:

fragment half4

myFragment(constant GlobalUniformData *globalUniform [[buffer(0)]],

 constant RenderUniformData_ModelWithLightmap *renderUniform  
 [[buffer(1)]],

 constant MaterialUniformData *materialUniform [[buffer(2)]],

 texture2d<float> DiffuseTexture [[texture(0)]],

 texture2d<float> LightmapTexture [[texture(1)]],

 texture2d<float> FogTexture [[texture(3)]],

 #ifdef MED_QUALITY

 texture2d<float> LookupTexture [[texture(4)]],

 #endif

 #ifdef REALTIME_SHADOW

 texture2d<float> RealtimeShadowMapTexture [[texture(10)]],

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 103 184

 #endif

 sampler DiffuseTextureSampler [[sampler(0)]],

 sampler LightmapTextureSampler [[sampler(1)]],

 sampler FogTextureSampler [[sampler(3)]],

 #ifdef MED_QUALITY

 sampler LookupTextureSampler [[sampler(4)]],

 #endif

 #ifdef REALTIME_SHADOW

 sampler RealtimeShadowMapTextureSampler [[sampler(10)]],

 #endif

 VertexOutput fragIn [[stage_in]])

The corresponding fragment function now written using function constants instead of #ifdef
statements is:

constant bool realtime_shadow [[function_constant(0)]];

constant bool med_quality [[function_constant(1)]];

constant bool med_quality_defined =
is_function_constant_defined(med_quality);

constant bool realtime_shadow_defined =
is_function_constant_defined(realtime_shadow);

fragment half4

myFragment(constant GlobalUniformData *globalUniform [[buffer(0)]],

constant RenderUniformData_ModelWithLightmap *renderUniform  
 [[buffer(1)]],

constant MaterialUniformData *materialUniform [[buffer(2)]],

texture2d<float> DiffuseTexture [[texture(0)]],

texture2d<float> LightmapTexture [[texture(1)]],

texture2d<float> FogTexture [[texture(3)]],

texture2d<float> LookupTexture [[texture(4),
 function_constant(med_quality_defined)]],

texture2d<float> RealtimeShadowMapTexture [[texture(10),  
 function_constant(realtime_shadow_defined)]],

sampler DiffuseTextureSampler [[sampler(0)]],

sampler LightmapTextureSampler [[sampler(1)]],

sampler FogTextureSampler [[sampler(3)]],

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 104 184

sampler LookupTextureSampler [[sampler(4),  
 function_constant(med_quality_defined)]],

sampler RealtimeShadowMapTextureSampler [[sampler(10),  
 function_constant(realtime_shadow_defined)]],

VertexOutput fragIn [[stage_in]])

Below is another example that shows how to use function constants with arguments to a
function:

constant bool hasInputBuffer [[function_constant(0)]];

kernel void kernelOptionalBuffer(device int *input [[buffer(0),

 function_constant(hasInputBuffer)]],

device int *output [[buffer(1)]],

uint tid [[thread_position_in_grid]])

{

if (hasInputBuffer)

output[tid] = inputA[0] * tid;

else

output[tid] = tid;

}

4.10.1.3 Function Constants for Elements of a [[stage_in]] Struct

Elements of a struct declared with the [[stage_in]] attribute passed to a graphics function
(or post-tessellation vertex function) can also be declared with the
[[function_constant(name)]] attribute to identify that the element is optional. name refers
to a function constant variable. If the value of the function constant variable given by name is
non-zero or true (determined when the render or compute pipeline state is created), the
element in the struct is considered to be declared in the function signature. If the value of the
function constant variable given by name is 0 or false, the element is not considered to be
declared in the struct. If name refers to a function constant variable that has not been defined
(determined when the render or compute pipeline state is created), the behavior is the same as
if is_function_constant_defined(name) is used and its value is false.

Example:

constant bool offset_defined [[function_constant(0)]];

constant bool color_defined [[function_constant(1)]];

struct VertexOutput {

float4 position [[position]];

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 105 184

float4 color;

};

struct VertexInput {

float4 position [[attribute(0)]];

float4 offset [[attribute(1), function_constant(offset_defined)]];

float4 color [[attribute(2), function_constant(color_defined)]];

};

vertex VertexOutput

myVertex(VertexInput vIn [[stage_in]])

{

VertexOutput vOut;

vOut.position = vIn.position;

if (offset_defined)

vOut.position += vIn.offset;

if (color_defined)

vOut.color = vIn.color;

else

vOut.color = float4(0.0f);

return vOut;

}

4.10.1.4 Function Constants for Resource Bindings

All OS: using a function constant to specify resource bindings supported since v2.0.

An argument to a graphics or kernel functions that is a resource (buffer, texture, or sampler) can
use a function constant to specify its binding number. The function constant must be a scalar
integer type.

Example:

constant int indexA [[function_constant(0)]];

constant int indexB = indexA + 2;

constant int indexC [[function_constant(1)]];

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 106 184

constant int indexD [[function_constant(2)]];

kernel void

my_kernel(constant UserParams& params [[buffer(indexA)]],

device T * p [[buffer(indexB)]],

texture2d<float> texA [[texture(indexC)]],

sampler s [[sampler(indexD)]], …)

{…}

4.10.1.5 Function Constants for Color Attachments and Raster Order Groups

All OS: using a function constant to specify a color attachment or raster order group attribute
index supported since v2.0.

The [[color(n)]] or [[raster_order_group(index)]] index can also be a function
constant. The function constant used must be a scalar integer type.

Example:

constant int colorAttachment0 [[function_constant(0)]];

constant int colorAttachment1 [[function_constant(1)]];

constant int group0 [[function_constant(2)]];

struct FragmentOutput {

float4 color0 [[color(colorAttachment0)]];

float4 color1 [[color(colorAttachment1)]];

};

fragment FragmentOutput

my_fragment(texture2d<float> texA [[texture(0),
raster_order_group(group0)]], …)

{…}

4.10.1.6 Function Constants with Elements of a Struct

All OS: using a function constant to identify that a struct element is optional has been
supported since v2.0.

To identify that an element of a struct is optional, the [[function_constant(name)]]
attribute can be declared with elements of a struct that are declared as a return type of a
graphics or user function, or passed by value as an argument to a kernel, graphics, or user

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 107 184

function. The behavior is similar to function constants for elements with the [[stage_in]]
attribute, as described in section 4.10.1.3.

name refers to a function constant variable. If the value of the function constant variable given
by name is non-zero or true (which is determined when the render or compute pipeline state is
created), the element in the struct is considered to be declared in the function signature. If the
value of the function constant variable given by name is 0 or false, the element is not
considered to be declared in the struct. If name refers to a function constant variable that has
not been defined, the behavior is the same as if is_function_constant_defined(name) is
used and its value is false.

4.11 Per-Primitive Viewport and Scissor Rectangle Index
Selection
macOS: viewport_array_index attribute supported since v2.0. 
iOS: viewport_array_index attribute supported since v2.1.

The [[viewport_array_index]] attribute supports built-in variables as both vertex output
and fragment input. With this attribute, vertex function output is used to specify which viewport
or scissor rectangle is used for rasterization from an array specified by the
setViewports:count: or setScissorRects:count: framework calls.

The input value of [[viewport_array_index]] in the fragment function is the same as the
value written to [[viewport_array_index]] in the vertex function, even if the value is out of
range. If the vertex output does not specify [[viewport_array_index]], the default index
value is 0. Specifying a value for [[viewport_array_index]] that is larger than the number of
viewports passed in by setViewports:count: (or in the case of setViewport:, larger than 0)
is treated as if the [[viewport_array_index]] value is 0. Hardware that does not support this
feature acts as if the maximum permitted viewport and scissor rectangle count is 1, and the
maximum allowed [[viewport_array_index]] is 0. This effectively means that every
primitive is rendered to viewport/scissor rectangle 0, regardless of the passed value.

Specifying [[viewport_array_index]] in a post-tessellation vertex function is allowed.
[[viewport_array_index]] cannot be specified in the tessellation factor buffer.

Specifying [[viewport_array_index]] as fragment function input counts against the number
of varyings available and reduces the number of components that can be passed from vertex
function to fragment function.

You must return the same value of [[viewport_array_index]] for every vertex in a primitive.
If the values differ, the behavior and the value passed to the fragment function are undefined.
The same behavior applies to primitives generated by tessellation.

4.12 Additional Restrictions
• Writes to a buffer from a vertex function are not guaranteed to be visible to reads from

the associated fragment function of a given primitive.

• If a vertex function does writes to a buffer(s), its return type must be void.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 108 184

• The return type of a vertex or fragment function cannot include an element that is a
packed vector type, matrix type, a struct type, a reference or a pointer to a type.

• The number of inputs to a fragment function declared with the stage_in attribute is
limited. The input limits differ for different feature sets, and the specific limits are listed in
the Metal Feature Set Tables at https://developer.apple.com/metal/Metal-Feature-Set-
Tables.pdf. (An input vector counts as n input scalars, where n is the number of
components in the vector.)

• The argument type for arguments to a graphics or kernel function cannot be a derived
class. Also, the type of an argument to a graphics function that is declared with the
stage_in attribute cannot be a derived class.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 109 184

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

5 Metal Standard Library
This chapter describes the functions supported by the Metal standard library.

5.1 Namespace and Header Files
The Metal standard library functions and enums are declared in the metal namespace. In
addition to the header files described in the Metal standard library functions, the
<metal_stdlib> header is available and can access all the functions supported by the Metal
standard library.

5.2 Common Functions
The functions in Table 16 are in the Metal standard library and are defined in the header
<metal_common>. T is one of the scalar or vector floating-point types.

Table 16 Common Functions in the Metal Standard Library

Built-in common functions Description

T clamp(T x, T minval, T maxval) Returns fmin(fmax(x, minval), maxval).
 
Results are undefined if minval > maxval.

T mix(T x, T y, T a)

Returns the linear blend of x and y implemented
as:
x + (y – x) * a

a must be a value in the range 0.0 to 1.0. If a is
not in the range 0.0 to 1.0, the return values are
undefined.

T saturate(T x) Clamp the specified value within the range of
0.0 to 1.0.

T sign(T x) Returns 1.0 if x > 0, -0.0 if x = -0.0, +0.0 if x
= +0.0, or -1.0 if x < 0. Returns 0.0 if x is a
NaN.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 110 184

For single precision floating-point, Metal also supports a precise and fast variant of the
following common functions: clamp and saturate. The difference between the fast and
precise variants is how NaNs are handled. In the fast variant, the behavior of NaNs is undefined
whereas the precise variants follow the IEEE 754 rules for NaN handling. The ffast-math
compiler option (refer to section 6.3) is used to select the appropriate variant when compiling
the Metal source. In addition, the metal::precise and metal::fast nested namespaces are
also available and provide developers a way to explicitly select the fast or precise variant of
these common functions.

5.3 Integer Functions
The integer functions in Table 17 are in the Metal standard library and are defined in the header
<metal_integer>. T is one of the scalar or vector integer types. Tu is the corresponding
unsigned scalar or vector integer type. T32 is one of the scalar or vector 32-bit int or uint
types.

Table 17 Integer Functions in the Metal Standard Library

T smoothstep(T edge0, T edge1,  
 T x)

Returns 0.0 if x <= edge0 and 1.0 if x >=
edge1 and performs a smooth Hermite
interpolation between 0 and 1 when edge0 < x
< edge1. This is useful in cases where you want
a threshold function with a smooth transition.

This is equivalent to:
t = clamp((x – edge0)/(edge1 – edge0),
0, 1);
return t * t * (3 – 2 * t);

Results are undefined if edge0 >= edge1 or if
x, edge0, or edge1 is a NaN.

T step(T edge, T x) Returns 0.0 if x < edge, otherwise it return 1.0.

Built-in common functions Description

Built-in integer functions Description

T abs(T x) Returns |x|.

Tu absdiff(T x, T y) Returns |x–y| without modulo overflow.

T addsat(T x, T y) Returns x + y and saturates the result.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 111 184

T clamp(T x, T minval, T maxval) Returns min(max(x, minval), maxval).
 
Results are undefined if minval > maxval.

T clz(T x) Returns the number of leading 0-bits in x,
starting at the most significant bit position. If x
is 0, returns the size in bits of the type of x or
component type of x, if x is a vector

T ctz(T x) Returns the count of trailing 0-bits in x. If x is 0,
returns the size in bits of the type of x or if x is a
vector, the component type of x.

T extract_bits(T x, uint offset,  
 uint bits) 
All OS: since v1.2.

Extract bits [offset, offset+bits-1] from x,
returning them in the least significant bits of the
result.

For unsigned data types, the most significant
bits of the result are set to zero. For signed data
types, the most significant bits are set to the
value of bit offset+bits-1.

If bits is zero, the result is zero. If the sum of
offset and bits is greater than the number of
bits used to store the operand, the result is
undefined.

T hadd(T x, T y) Returns (x + y) >> 1. The intermediate sum
does not modulo overflow.

T insert_bits(T base, T insert,  
 uint offset, uint bits) 
All OS: since v1.2.

Returns the insertion of the bits least-
significant bits of insert into base.

The result has bits [offset, offset+bits-1]
taken from bits [0, bits-1] of insert, and all
other bits are taken directly from the
corresponding bits of base. If bits is zero, the
result is base. If the sum of offset and bits is
greater than the number of bits used to store
the operand, the result is undefined.

T32 mad24(T32 x, T32 y, T32 z) 
All OS: since v2.1.

Uses mul24 to multiply two 24-bit integer
values x and y, adds the 32-bit integer result to
the 32-bit integer z, and returns that sum.

T madhi(T a, T b, T c) Returns mulhi(a, b) + c.

T madsat(T a, T b, T c) Returns a * b + c and saturates the result.

Built-in integer functions Description

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 112 184

mul24 shall only be used if x and y are signed integers and x and y are in the range [-2^23,
2^23 -1], or if x and y are unsigned integers and x and y are in the range [0, 2^24 -1]. If x and y
are not in this range, the multiplication result is implementation-defined.

5.4 Relational Functions
The relational functions in Table 18 are in the Metal standard library and are defined in the
header <metal_relational>. T is one of the scalar or vector floating-point types. Ti is one of

T max(T x, T y) Returns y if x < y, otherwise it returns x.

T max3(T x, T y, T z) 
All OS: since v2.1.

Returns max(x, max(y, z)).

T median3(T x, T y, T z) 
All OS: since v2.1.

Return the middle value of x, y, and z.

T min(T x, T y) Returns y if y < x, otherwise it returns x.

T min3(T x, T y, T z) 
All OS: since v2.1.

Returns min(x, min(y, z)).

T32 mul24(T32 x, T32 y) 
All OS: since v2.1.

Multiplies two 24-bit integer values x and y and
returns the 32-bit integer result. x and y are 32-
bit integers but only the low 24 bits are used to
perform the multiplication. (See details after this
table.)

T mulhi(T x, T y) Computes x * y and returns the high half of
the product of x and y.

T popcount(T x) Returns the number of non-zero bits in x.

T reverse_bits(T x) 
All OS: since v2.1.

Returns the reversal of the bits of x. The bit
numbered n of the result is taken from bit (bits
– 1) – n of x, where bits is the total number of
bits used to represent x.

T rhadd(T x, T y)

Returns (x + y + 1) >> 1. The intermediate
sum does not modulo overflow.

T rotate(T v, T i) For each element in v, the bits are shifted left by
the number of bits given by the corresponding
element in i. Bits shifted off the left side of the
element are shifted back in from the right.

T subsat(T x, T y) Returns x – y and saturates the result.

Built-in integer functions Description

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 113 184

the scalar or vector integer or boolean types. Tb only refers to the scalar or vector Boolean
types.

Table 18 Relational Functions in the Metal Standard Library

5.5 Math Functions
The math functions in Table 19 are in the Metal standard library and are defined in the header
<metal_math>. T is one of the scalar or vector floating-point types. Ti refers only to the scalar
or vector integer types.

Built-in relational functions Description

bool all(Tb x) Returns true only if all components of x are true.

bool any(Tb x) Returns true only if any component of x are true.

Tb isfinite(T x) Test for finite value.

Tb isinf(T x) Test for infinity value (positive or negative).

Tb isnan(T x) Test for a NaN.

Tb isnormal(T x) Test for a normal value.

Tb isordered(T x, T y) Test if arguments are ordered. isordered() takes
arguments x and y and returns the result  
(x == x) && (y == y).

Tb isunordered(T x, T y) Test if arguments are unordered. isunordered()
takes arguments x and y and returns true if x or y is
NaN; otherwise returns false.

Tb not(Tb x) Returns the component-wise logical complement of x.

T select(T a, T b, Tb c)

Ti select(Ti a, Ti b, Tb c)

For each component of a vector type,
result[i] = c[i] ? b[i] : a[i]

For a scalar type,  
result = c ? b : a

Tb signbit(T x) Test for sign bit. Returns true if the sign bit is set for
the floating-point value in x; otherwise returns false.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 114 184

Table 19 Math Functions in the Metal Standard Library

Built-in math functions Description

T acos(T x) Compute arc cosine of x.

T acosh(T x) Compute inverse hyperbolic cosine of x.

T asin(T x) Compute arc sine function of x.

T asinh(T x) Compute inverse hyperbolic sine of x.

T atan(T y_over_x) Compute arc tangent of x.

T atan2(T y, T x) Compute arc tangent of y over x.

T atanh(T x) Compute hyperbolic arc tangent of x.

T ceil(T x) Round x to integral value using the round to
positive infinity rounding mode.

T copysign(T x, T y) Return x with its sign changed to match the sign
of y.

T cos(T x) Compute cosine of x.

T cosh(T x) Compute hyperbolic cosine of x.

T cospi(T x) Compute cos(πx).

T divide(T x, T y) Compute x / y.

T exp(T x) Exponential base e function.

T exp2(T x) Exponential base 2 function.

T exp10(T x) Exponential base 10 function.

T fabs(T x)
T abs(T x)

Compute absolute value of a floating-point
number.

T fdim(T x, T y) x – y if x > y; +0 if x <= y.

T floor(T x) Round x to integral value using the round to
negative infinity rounding mode.

T fma(T a, T b, T c) Returns the correctly rounded floating-point
representation of the sum of c with the infinitely
precise product of a and b. Rounding of
intermediate products shall not occur. Edge
case behavior is per the IEEE 754-2008
standard.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 115 184

T fmax(T x, T y)
T max(T x, T y)

Returns y if x < y, otherwise returns x. If one
argument is a NaN, fmax() returns the other
argument. If both arguments are NaNs, fmax()
returns a NaN.

T fmax3(T x, T y, T z) 
T max3(T x, T y, T z) 
All OS: since v2.1.

Returns fmax(x, fmax(y, z)).

T fmedian3(T x, T y, T z) 
All OS: since v1.0. 
T median3(T x, T y, T z) 
All OS: since v2.1.

Returns the middle value of x, y, and z. (If one
or more values are NaN, see discussion after
this table.)

T fmin(T x, T y)
T min(T x, T y)

Returns y if y < x, otherwise it returns x. If one
argument is a NaN, fmin() returns the other
argument. If both arguments are NaNs, fmin()
returns a NaN

T fmin3(T x, T y, T z) 
T min3(T x, T y, T z) 
All OS: since v2.1.

Returns fmin(x, fmin(y, z)).

T fmod(T x, T y) Returns x – y * trunc(x/y).

T fract(T x) Returns the fractional part of x that is greater
than or equal to 0 or less than 1.

T frexp(T x, Ti &exponent) Extract mantissa and exponent from x. For each
component the mantissa returned is a float with
magnitude in the interval [1/2, 1) or 0. Each
component of x equals mantissa returned *
2exp.

Ti ilogb(T x) Return the exponent as an integer value.

T ldexp(T x, Ti k) Multiply x by 2 to the power k.

T log(T x) Compute the natural logarithm of x.

T log2(T x) Compute the base 2 logarithm of x.

T log10(T x) Compute the base 10 logarithm of x.

T modf(T x, T &intval) Decompose a floating-point number. The modf
function breaks the argument x into integral and
fractional parts, each of which has the same
sign as the argument.
Returns the fractional value. The integral value
is returned in intval.

Built-in math functions Description

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 116 184

For fmedian3, if all values are NaN, return NaN. Otherwise, treat NaN as missing data and
remove it from the set. If two values are NaN, return the non-NaN value. If one of the values is
NaN, either non-NaN value can be returned.

For single precision floating-point, Metal supports two variants of the math functions listed in
Table 19: the precise and the fast variants. The ffast-math compiler option (refer to section
6.3) is used to select the appropriate variant when compiling the Metal source. In addition, the
metal::precise and metal::fast nested namespaces are also available and provide
developers a way to explicitly select the fast or precise variant of these math functions for single
precision floating-point.

Examples:

float x;

float a = sin(x); // use fast or precise version of sin based on

 // whether –ffast-math is specified as

T pow(T x, T y) Compute x to the power y.

T powr(T x, T y) Compute x to the power y, where x is >= 0.

T rint(T x) Round x to integral value using round to nearest
even rounding mode in floating-point format.

T round(T x) Return the integral value nearest to x, rounding
halfway cases away from zero.

T rsqrt(T x) Compute inverse square root of x.

T sin(T x) Compute sine of x.

T sincos(T x, T &cosval) Compute sine and cosine of x. The computed
sine is the return value and compute cosine is
returned in cosval.

T sinh(T x) Compute hyperbolic sine of x.

T sinpi(T x) Compute sin(πx).

T sqrt(T x) Compute square root of x.

T tan(T x) Compute tangent of x.

T tanh(T x) Compute hyperbolic tangent of x.

T tanpi(T x) Compute tan(πx).

T trunc(T x) Round x to integral value using the round to
zero rounding mode.

Built-in math functions Description

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 117 184

 // compile option.

float b = fast::sin(x); // use fast version of sin()

float c = precise::cos(x); // use precise version of cos()

All OS: constants listed in Table 20 and Table 21, supported since v1.2.

Table 20 lists available symbolic constants with values of type float that are accurate

within the precision of a single-precision floating-point number.

Table 20 Constants for Single-Precision Floating-Point Math Functions

Table 21 lists available symbolic constants with values of type half that are accurate within the
precision of a half-precision floating-point number.

Constant name Description

MAXFLOAT Value of maximum non-infinite single precision floating-point number.

HUGE_VALF A positive float constant expression. HUGE_VALF evaluates to +infinity.

INFINITY A constant expression of type float representing positive or unsigned
infinity.

NAN A constant expression of type float representing a quiet NaN.

M_E_F Value of e

M_LOG2E_F Value of log2e

M_LOG10E_F Value of log10e

M_LN2_F Value of loge2

M_LN10_F Value of loge10

M_PI_F Value of π

M_PI_2_F Value of π / 2

M_PI_4_F Value of π / 4

M_1_PI_F Value of 1 / π

M_2_PI_F Value of 2 / π

M_2_SQRTPI_F Value of 2 / √π

M_SQRT2_F Value of √2

M_SQRT1_2_F Value of 1 / √2

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 118 184

Table 21 Constants for Half-Precision Floating-Point Math Functions

5.6 Matrix Functions
The functions in Table 22 are in the Metal standard library and are defined in the header
<metal_matrix>. T is float or half.

Table 22 Matrix Functions in the Metal Standard Library

Example:

Constant name Description

MAXHALF Value of maximum non-infinite half precision floating-point number.

HUGE_VALH A positive half constant expression. HUGE_VALH evaluates to +infinity.

M_E_H Value of e

M_LOG2E_H Value of log2e

M_LOG10E_H Value of log10e

M_LN2_H Value of loge2

M_LN10_H Value of loge10

M_PI_H Value of π

M_PI_2_H Value of π / 2

M_PI_4_H Value of π / 4

M_1_PI_H Value of 1 / π

M_2_PI_H Value of 2 / π

M_2_SQRTPI_H Value of 2 / √π

M_SQRT2_H Value of √2

M_SQRT1_2_H Value of 1 / √2

Built-in matrix functions Description

float determinant(floatnxn)
half determinant(halfnxn)

Compute the determinant of the matrix. The
matrix must be a square matrix.

floatmxn transpose(floatnxm)
halfmxn transpose(halfnxm)

Transpose a matrix.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 119 184

float4x4 mA;

float det = determinant(mA);

5.7 Geometric Functions
The functions in Table 23 are in the Metal standard library and are defined in the header
<metal_geometric>. T is a vector floating-point type (floatn or halfn). Ts refers to the
corresponding scalar type (i.e., float if T is floatn and half if T is halfn).

Table 23 Geometric Functions in the Metal Standard Library

Built-in geometric functions Description

T cross(T x, T y) Return the cross product of x and y.  
T must be a 3-component vector type.

Ts distance(T x, T y) Return the distance between x and y, i.e.,
length(x-y)

Ts distance_squared(T x, T y) Return the square of the distance between x
and y.

Ts dot(T x, T y) Return the dot product of x and y, i.e., x[0] *
y[0] + x[1] * y[1] + …

T faceforward(T N, T I, T Nref) If dot(Nref, I) < 0.0 return N, otherwise
return –N.

Ts length(T x) Return the length of vector x, i.e., sqrt(x[0]2
+ x[1]2 + …)

Ts length_squared(T x) Return the square of the length of vector x, i.e.,
(x[0]2 + x[1]2 + …)

T normalize(T x) Returns a vector in the same direction as x but
with a length of 1.

T reflect(T I, T N) For the incident vector I and surface orientation
N, returns the reflection direction: I – 2 *
dot(N, I) * N
In order to achieve the desired result, N must be
normalized.

T refract(T I, T N, Ts eta) For the incident vector I and surface normal N,
and the ratio of indices of refraction eta, return
the refraction vector.
The input parameters for the incident vector I
and the surface normal N must already be
normalized to get the desired results.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 120 184

For single precision floating-point, Metal also supports a precise and fast variant of the
following geometric functions: distance, length and normalize. The ffast-math compiler
option (refer to section 6.3) is used to select the appropriate variant when compiling the Metal
source. In addition, the metal::precise and metal::fast nested namespaces are also
available and provide developers a way to explicitly select the fast or precise variant of these
geometric functions.

5.8 Compute Functions
The functions in section 5.8 and its subsections can only be called from a kernel function and
are defined in the header <metal_compute>.

5.8.1 Threadgroup and SIMD-group Synchronization Functions
Table 24 lists supported threadgroup and SIMD-group synchronization functions.

Table 24 Synchronization Compute Function in the Metal Standard Library

A barrier function (threadgroup_barrier or simdgroup_barrier) acts as an execution and
memory barrier. The threadgroup_barrier (or simdgroup_barrier) function must be
encountered by all threads in a threadgroup (or SIMD-group) executing the kernel.

If threadgroup_barrier (or simdgroup_barrier) is inside a conditional statement and if any
thread enters the conditional statement and executes the barrier function, then all threads in the
threadgroup (or SIMD-group) must enter the conditional and execute the barrier function.

If threadgroup_barrier (or simdgroup_barrier) is inside a loop, for each iteration of the
loop, all threads in the threadgroup (or SIMD-group) must execute the barrier function before
any threads are allowed to continue execution beyond the barrier function.

The threadgroup_barrier (or simdgroup_barrier) function can also queue a memory fence
(reads and writes) to ensure the correct ordering of memory operations to threadgroup or
device memory.

Built-in threadgroup function Description

void threadgroup_barrier(mem_flags
flags)

All threads in a threadgroup executing the kernel
must execute this function before any thread is
allowed to continue execution beyond the
threadgroup_barrier.

void simdgroup_barrier(mem_flags
flags) 
macOS: since v2.0. 
iOS: since v1.2.

All threads in a SIMD-group executing the kernel
must execute this function before any thread is
allowed to continue execution beyond the
simdgroup_barrier.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 121 184

The mem_flags argument to threadgroup_barrier and simdgroup_barrier is a bitfield that
has one or more of the following values, as described in Table 25.

Table 25 mem_flags Enum Values for Barrier Functions

5.9 Graphics Functions
This section and its subsections list the set of graphics functions that can be called by a
fragment and vertex functions. These are defined in the header <metal_graphics>.

5.9.1 Fragment Functions
The functions in this section (listed in Table 26, Table 27, and Table 28) can only be called inside
a fragment function (a function declared with the fragment function attribute) or inside a
function called from a fragment function. Otherwise the behavior is undefined and may result in
a compile-time error.

Fragment function helper threads may be created to help evaluate derivatives (explicit or
implicit) for use with a fragment thread(s). Fragment function helper threads execute the same
code as the non-helper fragment threads, but do not have side effects that modify the render
target(s) or any other memory that can be accessed by the fragment function. In particular:

• Fragments corresponding to helper threads are discarded when the fragment function
execution is complete without any updates to the render target(s).

• Stores and atomic operations to buffers and textures performed by helper threads have
no effect on the underlying memory associated with the buffer or texture.

5.9.1.1 Fragment Functions – Derivatives

Metal includes the functions in Table 26 to compute derivatives. T is one of float, float2,
float3, float4, half, half2, half3, or half4.

NOTE: Derivatives are undefined within non-uniform control flow.

mem_flags Description

mem_none No memory fence is applied, and threadgroup_barrier
acts only as an execution barrier.

mem_device Ensure correct ordering of memory operations to device
memory.

mem_threadgroup Ensure correct ordering of memory operations to
threadgroup memory for threads in a threadgroup.

mem_texture 
macOS: since v1.2. 
iOS: since v2.0.

Ensure correct ordering of memory operations to texture
memory for threads in a threadgroup.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 122 184

Table 26 Derivatives Fragment Functions in the Metal Standard Library

5.9.1.2 Fragment Functions – Samples

Metal includes the following per-sample functions in Table 27. get_num_samples and
get_sample_position return the number of samples for the color attachment and the sample
offsets for a given sample index. For example, for transparency super-sampling, these functions
can be used to shade per-fragment but do the alpha test per-sample.

Table 27 Samples Fragment Functions in the Metal Standard Library

If the sample positions have been customized (i.e., programmed),
get_sample_position(index) returns the position programmed for the specified index.

5.9.1.3 Fragment Functions – Flow Control

The Metal function in Table 28 is used to terminate a fragment.

Built-in fragment functions Description

T dfdx(T p) Returns a high precision partial derivative of the specified
value with respect to the screen space x coordinate.

T dfdy(T p) Returns a high precision partial derivative of the specified
value with respect to the screen space y coordinate.

T fwidth(T p) Returns the sum of the absolute derivatives in x and y using
local differencing for p; i.e., fabs(dfdx(p)) +
fabs(dfdy(p))

Built-in fragment functions Description

uint get_num_samples() Returns the number of samples for the
multisampled color attachment.

float2 get_sample_position(uint
index)

Returns the normalized sample offset (x, y) for a
given sample index index. Values of x and y are
in [0.0 … 1.0).

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 123 184

Table 28 Fragment Flow Control Function in the Metal Standard Library

NOTE:

• Writes to a buffer or texture from a fragment thread before discard_fragment is
called are not discarded.

• Multiple fragment threads or helper threads associated with a fragment thread
execute together to compute derivatives. If any (but not all) of these threads
executes the discard_fragment function, the behavior of any following derivative
computations (explicit or implicit) is undefined.

5.10 Texture Functions
The texture member functions are categorized into: sample from a texture, sample compare
from a texture, read (sampler-less read) from a texture, gather from a texture, gather compare
from a texture, write to a texture, texture query and texture fence functions.

These are defined in the header <metal_texture>.

The texture sample, sample_compare, gather and gather_compare functions take an offset
argument for a 2D texture, 2D texture array and 3D texture. The offset is an integer value that
is applied to the texture coordinate before looking up each pixel. This integer value can be in the
range -8 to +7. The default value is 0.

Overloaded variants of texture sample and sample_compare functions for a 2D texture, 2D
texture array, 3D texture, and cube are available and allow the texture to be sampled using a
bias that is applied to a mip-level before sampling or with user-provided gradients in the x and y
direction.

NOTE:

• The texture sample, sample_compare, gather, and gather_compare functions
require that the texture is declared with the sample access attribute.

• The texture sample_compare and gather_compare functions are only available for
depth texture types.

• The texture read functions require that the texture is declared with the sample,
read, or read_write access attribute.

• The texture write functions require that the texture is declared with the write or
read_write access attribute.

• On macOS, for texture write functions, lod must be 0.

Built-in fragment functions Description

void discard_fragment(void) Marks the current fragment as being
terminated, and the output of the fragment
function for this fragment is discarded.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 124 184

• On macOS, for sample_compare functions, level is the only supported
lod_options value (bias and gradient* are not supported), and lod must be a
zero constant.

• The sample and sample_compare functions that do not take an explicit LOD or
gradients and the gather and gather_compare functions when called from kernel
or vertex functions assume an implicit LOD of 0.

• For the gather and gather_compare functions, the four samples that contribute to
filtering are placed into xyzw in counter clockwise order starting with the sample
to the lower left of the queried location. This is the same as nearest sampling with
un-normalized texture coordinate deltas at the following locations: (-,+), (+,+),
(+,-),(-,-), where the magnitude of the deltas are always half a texel.

5.10.1 1D Texture
The following member functions can be used to sample from a 1D texture.

Tv sample(sampler s, float coord) const

Tv is a 4-component vector type based on the templated type <T> used to declare the texture
type. If T is float, Tv is float4. If T is half, Tv is half4. If T is int, Tv is int4. If T is uint, Tv is uint4. If T
is short, Tv is short4 and if T is ushort, Tv is ushort4.

The following member functions can be used to perform sampler-less reads from a 1D texture.
Mipmaps are not supported for 1D textures, so lod must be 0.

Tv read(uint coord, uint lod = 0) const

Tv read(ushort coord, ushort lod = 0) const All OS: since v1.2.

The following member functions can be used to write to a 1D texture. Since mipmaps are not
supported for 1D textures, lod must be 0.

void write(Tv color, uint coord, uint lod = 0)

void write(Tv color, ushort coord, ushort lod = 0) All OS: since v1.2.

The following 1D texture query member functions are provided. Since mipmaps are not
supported for 1D textures, get_num_mip_levels() must return 0, and lod must be 0 for
get_width().

uint get_width(uint lod = 0) const

uint get_num_mip_levels() const

5.10.2 1D Texture Array
The following member functions can be used to sample from a 1D texture array.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 125 184

Tv sample(sampler s, float coord, uint array) const

The following member functions can be used to perform sampler-less reads from a 1D texture
array. Mipmaps are not supported for 1D textures, so lod must be 0.

Tv read(uint coord, uint array, uint lod = 0) const

Tv read(ushort coord, ushort array, ushort lod = 0) const All OS: since v1.2.

The following member functions can be used to write to a 1D texture array. Since mipmaps are
not supported for 1D textures, lod must be 0.

void write(Tv color, uint coord, uint array, uint lod = 0)

void write(Tv color, ushort coord, ushort array, ushort lod = 0) All OS: since
v1.2.

The following 1D texture array query member functions are provided. Since mipmaps are not
supported for 1D textures, get_num_mip_levels() must return 0, and lod must be 0 for
get_width().

uint get_width(uint lod = 0) const

uint get_array_size() const

uint get_num_mip_levels() const

5.10.3 2D Texture
The following data types and corresponding constructor functions are available to specify
various sampling options:

bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

The following member functions can be used to sample from a 2D texture.

Tv sample(sampler s, float2 coord, int2 offset = int2(0)) const

Tv sample(sampler s, float2 coord, lod_options options, int2 offset =
int2(0)) const

lod_options must be one of the following types: bias, level, or gradient2d. On macOS,
offset must be known at compile time.

The following member functions can be used to perform sampler-less reads from a 2D texture:

Tv read(uint2 coord, uint lod = 0) const

Tv read(ushort2 coord, ushort lod = 0) const All OS: since v1.2.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 126 184

The following member functions can be used to write to a 2D texture. (On macOS, lod must be
0.)

void write(Tv color, uint2 coord, uint lod = 0)

void write(Tv color, ushort2 coord, ushort lod = 0) All OS: since v1.2.

The following member functions can be used to do a gather of four samples that are used for
bilinear interpolation when sampling a 2D texture.

enum class component {x, y, z, w};

Tv gather(sampler s, float2 coord, int2 offset = int2(0), component c =
component::x) const

The following 2D texture query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_num_mip_levels()const

5.10.3.1 2D Texture Sampling Example

The following code shows several uses of the 2D texture sample function, depending upon its
arguments.

texture2d<float> tex;

sampler s;

float2 coord;

int2 offset;

float lod;

// no optional arguments

float4 clr = tex.sample(s, coord);

// sample using a mip-level

clr = tex.sample(s, coord, level(lod));

// sample with an offset

clr = tex.sample(s, coord, offset);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 127 184

// sample using a mip-level and an offset

clr = tex.sample(s, coord, level(lod), offset);

5.10.4 2D Texture Array
The following member functions can be used to sample from a 2D texture array.

Tv sample(sampler s, float2 coord, uint array, int2 offset = int2(0)) const

Tv sample(sampler s, float2 coord, uint array, lod_options options, int2
offset = int2(0)) const

lod_options must be one of the following types: bias, level, or gradient2d. On macOS,
offset must be known at compile time.

The following member functions can be used to perform sampler-less reads from a 2D texture
array:

Tv read(uint2 coord, uint array, uint lod = 0) const

Tv read(ushort2 coord, ushort array, ushort lod = 0) const All OS: since v1.2.

The following member functions can be used to write to a 2D texture array. (On macOS, lod
must be 0.)

void write(Tv color, uint2 coord, uint array, uint lod = 0)

void write(Tv color, ushort2 coord, ushort array, ushort lod = 0) All OS: since
v1.2.

The following member functions can be used to do a gather of four samples that are used for
bilinear interpolation when sampling a 2D texture array.

Tv gather(sampler s, float2 coord, uint array, int2 offset = int2(0),
component c = component::x) const

The following 2D texture array query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_array_size() const

uint get_num_mip_levels() const

5.10.5 3D Texture
The following data types and corresponding constructor functions are available to specify
various sampling options:

bias(float value)

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 128 184

level(float lod)

gradient3d(float3 dPdx, float3 dPdy)

The following member functions can be used to sample from a 3D texture.

Tv sample(sampler s, float3 coord, int3 offset = int3(0)) const

Tv sample(sampler s, float3 coord, lod_options options, int3 offset =
int3(0)) const

lod_options must be one of the following types: bias, level, or gradient3d. On macOS,
offset must be known at compile time.

The following member functions can be used to perform sampler-less reads from a 3D texture:

Tv read(uint3 coord, uint lod = 0) const

Tv read(ushort3 coord, ushort lod = 0) const All OS: since v1.2.

The following member functions can be used to write to a 3D texture. (On macOS, lod must be
0.)

void write(Tv color, uint3 coord, uint lod = 0)

void write(Tv color, ushort3 coord, ushort lod = 0) All OS: since v1.2.

The following 3D texture query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_depth(uint lod = 0) const

uint get_num_mip_levels() const

5.10.6 Cube Texture
The following data types and corresponding constructor functions are available to specify
various sampling options:

bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)

The following member functions can be used to sample from a cube texture.

Tv sample(sampler s, float3 coord) const

Tv sample(sampler s, float3 coord, lod_options options) const

lod_options must be one of the following types: bias, level, or gradientcube.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 129 184

Table 29 describes the cube face and the number used to identify the face.

Table 29 Cube Face Number

The following member functions can be used to do a gather of four samples that are used for
bilinear interpolation when sampling a cube texture.

Tv gather(sampler s, float3 coord, component c = component::x) const

The following member functions can be used to perform sampler-less reads from a cube
texture:

Tv read(uint2 coord, uint face, uint lod = 0) const

Tv read(ushort2 coord, ushort face, ushort lod = 0) const All OS: since v1.2.

The following member functions can be used to write to a cube texture. (On macOS, lod must
be 0.)

void write(Tv color, uint2 coord, uint face, uint lod = 0)

void write(Tv color, ushort2 coord, ushort face, ushort lod = 0) All OS: since
v1.2.

The following cube texture query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_num_mip_levels() const

Face number Cube face

0 Positive X

1 Negative X

2 Positive Y

3 Negative Y

4 Positive Z

5 Negative Z

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 130 184

5.10.7 Cube Array Texture
The following data types and corresponding constructor functions are available to specify
various sampling options:

bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)

The following member functions can be used to sample from a cube array texture.

Tv sample(sampler s, float3 coord, uint array) const

Tv sample(sampler s, float3 coord, uint array, lod_options options) const

lod_options must be one of the following types: bias, level, or gradientcube.

The following member functions can be used to do a gather of four samples that are used for
bilinear interpolation when sampling a cube array texture.

Tv gather(sampler s, float3 coord, uint array, component c = component::x)
const

The following member functions can be used to perform sampler-less reads from a cube array
texture:

Tv read(uint2 coord, uint face, uint array, uint lod = 0) const

Tv read(ushort2 coord, ushort face, ushort array, ushort lod = 0) const All
OS: since v1.2.

The following member functions can be used to write to a cube array texture. (On macOS, lod
must be 0.)

void write(Tv color, uint2 coord, uint face, uint array, uint lod = 0)

void write(Tv color, ushort2 coord, ushort face, ushort array, ushort lod =
0) All OS: since v1.2.

The following cube array texture query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_array_size() const

uint get_num_mip_levels() const

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 131 184

5.10.8 2D Multisampled Texture
The following member functions can be used to perform sampler-less reads from a 2D
multisampled texture:

Tv read(uint2 coord, uint sample) const

T read(ushort2 coord, ushort sample) const All OS: since v1.2.

If the sample positions have been customized (i.e., programmed), then read(coord, sample)
returns the data for the sample at the programmed sample position.

The following 2D multisampled texture query member functions are provided.

uint get_width() const

uint get_height() const

uint get_num_samples() const

5.10.9 2D Depth Texture
The following data types and corresponding constructor functions are available to specify
various sampling options:

bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

The following member functions can be used to sample from a 2D depth texture.

T sample(sampler s, float2 coord, int2 offset = int2(0)) const

T sample(sampler s, float2 coord, lod_options options, int2 offset =
int2(0)) const

lod_options must be one of the following types: bias, level, or gradient2d. On macOS,
offset must be known at compile time.

The following member functions can be used to sample from a 2D depth texture and compare a
single component against the specified comparison value

T sample_compare(sampler s, float2 coord, float compare_value, int2 offset
= int2(0)) const

T sample_compare(sampler s, float2 coord, float compare_value, lod_options
options, int2 offset = int2(0)) const

lod_options must be one of the following types: bias, level, or gradient2d. T must be a
float type.

sample_compare performs a comparison of the compare_value value against the pixel value
(1.0 if the comparison passes and 0.0 if it fails). These comparison result values per-pixel are

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 132 184

then blended together as in normal texture filtering and the resulting value between 0.0 and 1.0
is returned. On macOS, the only supported lod_options value is level, lod must be a zero
constant, and offset must be known at compile time.

The following member functions can be used to perform sampler-less reads from a 2D depth
texture:

T read(uint2 coord, uint lod = 0) const

T read(ushort2 coord, ushort lod = 0) const All OS: since v1.2.

The following built-in functions can be used to do a gather of four samples that are used for
bilinear interpolation when sampling a 2D depth texture.

Tv gather(sampler s, float2 coord, int2 offset = int2(0)) const

The following member functions can be used do a gather of four samples that are used for
bilinear interpolation when sampling a 2D depth texture and comparing these samples with a
specified comparison value (1.0 if the comparison passes and 0.0 if it fails).

Tv gather_compare(sampler s, float2 coord, float compare_value, int2 offset
= int2(0)) const

T must be a float type.

The following 2D depth texture query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_num_mip_levels() const

5.10.10 2D Depth Texture Array
The following member functions can be used to sample from a 2D depth texture array.

T sample(sampler s, float2 coord, uint array, int2 offset = int2(0)) const

T sample(sampler s, float2 coord, uint array, lod_options options, int2
offset = int2(0)) const

lod_options must be one of the following types: bias, level, or gradient2d. On macOS,
offset must be known at compile time.

The following member functions can be used to sample from a 2D depth texture array and
compare a single component against the specified comparison value

T sample_compare(sampler s, float2 coord, uint array, float compare_value,
int2 offset = int2(0)) const

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 133 184

T sample_compare(sampler s, float2 coord, uint array, float compare_value,
lod_options options, int2 offset = int2(0)) const

lod_options must be one of the following types: bias, level, or gradient2d. T must be a
float type. On macOS, the only supported lod_options value is level, lod must be a zero
constant, and offset must be known at compile time.

The following member functions can be used to perform sampler-less reads from a 2D depth
texture array:

T read(uint2 coord, uint array, uint lod = 0) const

T read(ushort2 coord, ushort array, ushort lod = 0) const All OS: since v1.2.

The following member functions can be used to do a gather of four samples to be used for
bilinear interpolation when sampling a 2D depth texture array.

Tv gather(sampler s, float2 coord, uint array, int2 offset = int2(0)) const

The following member functions can be used do a gather of four samples to be used for bilinear
interpolation when sampling a 2D depth texture array and comparing these samples with a
specified comparison value.

Tv gather_compare(sampler s, float2 coord, uint array, float compare_value,
int2 offset = int2(0)) const

T must be a float type.

The following 2D depth texture array query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_array_size() const

uint get_num_mip_levels() const

5.10.11 Cube Depth Texture
The following data types and corresponding constructor functions are available to specify
various sampling options:

bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)

The following member functions can be used to sample from a cube depth texture.

T sample(sampler s, float3 coord) const

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 134 184

T sample(sampler s, float3 coord, lod_options options) const

lod_options must be one of the following types: bias, level, or gradientcube.

The following member functions can be used to sample from a cube depth texture and compare
a single component against the specified comparison value

T sample_compare(sampler s, float3 coord, float compare_value) const

T sample_compare(sampler s, float3 coord, float compare_value, lod_options
options) const

lod_options must be one of the following types: bias, level, or gradientcube. T must be a
float type. On macOS, the only supported lod_options value is level, and lod must be a
zero constant.

The following member functions can be used to perform sampler-less reads from a cube depth
texture:

T read(uint2 coord, uint face, uint lod = 0) const

T read(ushort2 coord, ushort face, ushort lod = 0) const All OS: since v1.2.

The following member functions can be used to do a gather of four samples to be used for
bilinear interpolation when sampling a cube depth texture.

Tv gather(sampler s, float3 coord) const

The following member functions can be used do a gather of four samples to be used for bilinear
interpolation when sampling a cube texture and comparing these samples with a specified
comparison value.

Tv gather_compare(sampler s, float3 coord, float compare_value) const

T must be a float type.

The following cube depth texture query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_num_mip_levels() const

5.10.12 Cube Array Depth Texture
The following data types and corresponding constructor functions are available to specify
various sampling options:

bias(float value)

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 135 184

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)

The following member functions can be used to sample from a cube array depth texture.

T sample(sampler s, float3 coord, uint array) const

T sample(sampler s, float3 coord, uint array, lod_options options) const

lod_options must be one of the following types: bias, level, or gradientcube.

The following member functions can be used to sample from a cube depth texture and compare
a single component against the specified comparison value

T sample_compare(sampler s, float3 coord, uint array, float compare_value)
const

T sample_compare(sampler s, float3 coord, uint array, float compare_value,
lod_options options) const

lod_options must be one of the following types: bias, level, or gradientcube. T must be a
float type. On macOS, the only supported lod_options value is level, and lod must be a
zero constant.

The following member functions can be used to perform sampler-less reads from a cube depth
texture array:

T read(uint2 coord, uint face, uint array, uint lod = 0) const

T read(ushort2 coord, ushort face, ushort array, ushort lod = 0) const All
OS: since v1.2.

The following member functions can be used to do a gather of four samples to be used for
bilinear interpolation when sampling a cube depth texture.

Tv gather(sampler s, float3 coord, uint array) const

The following member functions can be used do a gather of four samples to be used for bilinear
interpolation when sampling a cube texture and comparing these samples with a specified
comparison value.

Tv gather_compare(sampler s, float3 coord, uint array, float compare_value)
const

T must be a float type.

The following cube depth texture query member functions are provided.

uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 136 184

uint get_array_size() const

uint get_num_mip_levels() const

5.10.13 2D Multisampled Depth Texture
The following member functions can be used to perform sampler-less reads from a 2D
multisampled depth texture:

T read(uint2 coord, uint sample) const

T read(ushort2 coord, ushort sample) const All OS: since v1.2.

The following 2D multisampled depth texture query member functions are provided.

uint get_width() const

uint get_height() const

uint get_num_samples() const

5.10.14 Texture Buffer Functions
All OS: texture buffers and these functions supported since v2.1.

The following member functions can be used to read from and write to an element in a texture
buffer (also see section 2.8.1):

Tv read(uint coord) const;

void write(Tv color, uint coord);

The following example uses the read method to access a texture buffer:

kernel void

myKernel(texture_buffer<float, access::read> myBuffer)

{

 uint index = …;

 float4 value = myBuffer.read(index);

}

The following method can be used to query the number of elements in a texture buffer:

uint get_width() const;  

5.10.15 Texture Synchronization Functions
All OS: texture synchronization functions supported since v1.2.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 137 184

The fence() member function is supported by texture types (including texture buffers) that can
be declared with the access::read_write attribute:

void fence()

The texture fence function ensures that writes to the texture by a thread become visible to
subsequent reads from that texture by the same thread (i.e. the thread performing the write).

The following example show how the texture fence function can be used to make sure that
writes to a texture by a thread are visible to later reads to the same location by the same thread.

kernel void

my_kernel(texture2d<float, access::read_write> texA,

…,

ushort2 gid [[thread_position_in_grid]])

{

float4 clr = …;

texA.write(gid, clr);

…

// fence to ensure that writes by thread become

// visible to later reads by thread

texA.fence();

clr_new = texA.read(gid);

…

}

5.10.16 Null Texture Functions
All OS: null texture functions supported since v1.2.

The following functions can be used to determine if a texture is a null texture. If the texture is a
null texture, is_null_texture returns true; otherwise it returns false.

bool is_null_texture(texture1d<T, access>);

bool is_null_texture(texture1d_array<T, access>);

bool is_null_texture(texture2d<T, access>);

bool is_null_texture(texture2d_array<T, access>);

bool is_null_texture(texture3d<T, access>);

bool is_null_texture(texturecube<T, access>);

bool is_null_texture(texturecube_array<T, access>);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 138 184

bool is_null_texture(texture2d_ms<T, access>);

bool is_null_texture(depth2d<T, access>);

bool is_null_texture(depth2d_array<T, access>);

bool is_null_texture(depthcube<T, access>);

bool is_null_texture(depthcube_array<T, access>);

bool is_null_texture(depth2d_ms<T, access>);

The behavior of calling any texture member function with a null texture is undefined.

5.11 Imageblock Functions
macOS: no support for imageblocks and imageblock functions.

iOS: imageblocks and imageblock functions supported since v2.0.

This section lists the Metal member functions for imageblocks. (For more on the imageblock
data type, see section 2.10.)

The following member functions query information about the imageblock:

ushort get_width() const;

ushort get_height() const;

ushort get_num_samples() const;

 
The following member function is used to query the number of unique color entries for a
specific location given by an (x, y) coordinate inside the imageblock.

ushort get_num_colors(ushort2 coord) const;

The following member function return the color coverage mask (i.e., whether a given color
covers one or more samples in the imageblock). Each sample is identified by its bit-position in
the return value. If a bit is set, then this indicates that this sample uses the color index.

ushort get_color_coverage_mask(ushort2 coord, ushort color_index) const;

color_index is a value from 0 to get_num_colors() - 1.

5.11.1 Functions for Imageblocks with Implicit Layout
The following functions can be used to read/write an imageblock at pixel rate for a given (x, y)
coordinate inside the imageblock.

T read(ushort2 coord) const;

void write(T data, ushort2 coord);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 139 184

The following member function can be used to read/write an imageblock at sample or color rate.
coord specifies the (x, y) coordinate inside the imageblock, and index is the sample or color
index.

enum class imageblock_data_rate { color, sample };

T read(ushort2 coord, ushort index, imageblock_data_rate data_rate) const;

void write(T data, ushort2 coord, ushort index, imageblock_data_rate
data_rate);

Example:

struct Foo {

float4 a [[color(0)]];

int4 b [[color(1)]];

};

kernel void

my_kernel(imageblock<Foo, imageblock_layout_implicit> img_blk,

 ushort2 lid [[thread_index_in_threadgroup]] …)

{

…

Foo f = img_blk.read(lid); float4 r = f.a;

…

f.a = r;

…

img_blk.write(f, lid);

}

The following member function can be used to write an imageblock with a color coverage mask.
This member function must be used when writing to an imageblock at color rate.

void write(T data, ushort2 coord, ushort color_coverage_mask);

The following member functions are used to get a region of a slice for a given data member in
the imageblock. This is used to write data associated with a specific data member described in
the imageblock for all threads in the threadgroup to a specified region in a texture.
color_index refers to the data member declared in the struct type specified in
imageblock<T> with the [[color(n)]] attribute where n is color_index. origin is the (x, y)
coordinate in the slice. size is the actual size of the slice to be copied.

const imageblock_slice<E, imageblock_layout_implicit> slice(ushort
color_index) const;

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 140 184

const imageblock_slice<E, imageblock_layout_implicit> slice(ushort
color_index, ushort2 origin, ushort2 size) const;

The slice(…) member function that does not take origin and size as arguments specifies the
region to copy with an origin of (0,0) and the width and height of the imageblock.

5.11.2 Functions for Imageblocks with Explicit Layout
The following member functions are used to get a reference to the imageblock data for a
specific location given by an (x, y) coordinate inside the imageblock. These member functions
shall be used when reading or writing data members in an imageblock at pixel rate.

threadgroup_imageblock T* data(ushort2 coord);

const threadgroup_imageblock T* data(ushort2 coord) const;

The following member functions are used to get a reference to the imageblock data for a
specific location given by an (x, y) coordinate inside the imageblock and a sample or color
index. These member functions shall be used when reading or writing data members in an
imageblock at sample or color rate. T is the type specific in the imageblock<T> templated
declaration. coord is the coordinate in the imageblock, and index is the sample or color index
for a multi-sampled imageblock. data_rate specifies whether the index is a color or sample
index. If coord refers to a location outside the imageblock dimensions or if index is an invalid
index, the behavior of data() is undefined.

enum class imageblock_data_rate { color, sample };

threadgroup_imageblock T* data(ushort2 coord, ushort index,
imageblock_data_rate data_rate);

const threadgroup_imageblock T* data(ushort2 coord, ushort index,
imageblock_data_rate data_rate) const;

Calling the data(coord) member function for an imageblock that stores pixels at sample or

color rate is equivalent to calling data(coord, 0, imageblock_data_rate::sample).

Example:

struct Foo {

rgba8unorm<half4> a;

int b;

};

kernel void

my_kernel(imageblock<Foo> img_blk,

 ushort2 lid [[thread_position_in_threadgroup]] …)

{

…

threadgroup_imageblock Foo* f = img_blk.data(lid);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 141 184

half4 r = f->a;

f->a = r;

…

}

The following write member function can be used to write an imageblock with a color coverage
mask. This member function must be used when writing to an imageblock at color rate.

void write(T data, ushort2 coord, ushort color_coverage_mask);

The following slice member functions are used to get a region of a slice for a given data
member in the imageblock struct. This is used to write data associated with a specific data
member described in the imageblock struct for all threads in the threadgroup to a specified
region in a texture.

data_member is a data member declared in the struct type specified in imageblock<T>.
origin is the (x, y) coordinate in the slice. size is the actual size of the slice to be copied.

const imageblock_slice<E, imageblock_layout_explicit>

slice(const threadgroup_imageblock E& data_member) const;

const imageblock_slice<E, imageblock_layout_explicit>

slice(const threadgroup_imageblock E& data_member, ushort2 origin, ushort2
size) const;

The slice(…) member function that does not take origin and size as arguments specifies
the region to copy with an origin of (0,0) and the width and height of the imageblock.

5.11.3 Writing an Imageblock Slice to a Region in a Texture
The following write(…) member function in these texture types are used to write pixels
associated with a slice in the imageblock to a texture starting at location given by coord.

For 1D texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice, uint
coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice, ushort
coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, uint
coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, ushort
coord, ushort lod = 0);

For 1D texture array:

void write(imageblock_slice<E, imageblock_layout_explicit> slice, uint
coord, uint array, uint lod = 0);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 142 184

void write(imageblock_slice<E, imageblock_layout_explicit> slice, ushort
coord, ushort array, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, uint
coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, ushort
coord, ushort array, ushort lod = 0);

For 2D texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice, uint2
coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice, ushort2
coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, uint2
coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, ushort2
coord, ushort lod = 0);

For 2D MSAA texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice, uint2
coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice, ushort2
coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, uint2
coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, ushort2
coord, ushort lod = 0);

For 2D texture array:

void write(imageblock_slice<E, imageblock_layout_explicit> slice, uint2
coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice, ushort2
coord, ushort array, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, uint2
coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, ushort2
coord, ushort array, ushort lod = 0);

For cube texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice, uint2
coord, uint face, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice, ushort2
coord, ushort face, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, uint2
coord, uint face, uint lod = 0);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 143 184

void write(imageblock_slice<E, imageblock_layout_implicit> slice, ushort2
coord, ushort face, ushort lod = 0);

For cube array texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice, uint2
coord, uint face, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice, ushort2
coord, ushort face, ushort array, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, uint2
coord, uint face, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, ushort2
coord, ushort face, ushort array, ushort lod = 0);

For 3D texture:

void write(imageblock_slice<E, imageblock_layout_explicit> slice, uint3
coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice, ushort3
coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, uint3
coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice, ushort3
coord, ushort lod = 0);

Example

struct Foo {

half4 a;

int b;

float c;

};

kernel void

my_kernel(texture2d<half> src [[texture(0)]],

 texture2d<half, access::write> dst [[texture(1)]],

imageblock<Foo> img_blk,

ushort2 lid [[thread_position_in_threadgroup]],

ushort2 gid [[thread_position_in_grid]])

{

// read pixel from the input image using the thread ID

half4 clr = src.read(gid);

// get the image slice

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 144 184

threadgroup_imageblock Foo* f = img_blk.data(lid);

// write the pixel in the imageblock using the thread ID in
threadgroup 
f->a = clr;

 // a barrier to make sure all threads have finished writing to the
imageblock

 // in this case each thread writes to its location in the imageblock
so a barrier is not necessary

threadgroup_barrier(mem_flags::mem_threadgroup_imageblock);

 
// process pixels in imageblock - update the elements in slice

process_pixels_in_imageblock(img_blk, gid, lid);

 
// a barrier to make sure all threads have finished writing to the
elements in the imageblock

threadgroup_barrier(mem_flags::mem_threadgroup_imageblock);

 
// write a specific element in imageblock to output image

// only 1 thread in the threadgroup performs the imageblock write

if (lid.x == 0 && lid.y == 0)

dst.write(img_blk.slice(f->a), gid);

}

5.12 Pack and Unpack Functions
This section lists the Metal functions for converting a vector floating-point data to and from a
packed integer value. The functions are defined in the header <metal_pack>. Refer to section
7.7 for details on how to convert from an 8-bit, 10-bit or 16-bit signed or unsigned integer value
to a normalized single- or half-precision floating-point value and vice-versa.

5.12.1 Unpack Integer(s); Convert to a Floating-Point Vector
Table 30 lists functions that unpack multiple values from a single unsigned integer and then
converts them into floating-point values that are stored in a vector.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 145 184

Table 30 Unpack Functions

When converting from a 16-bit unsigned normalized or signed normalized value to a half-
precision floating point, the unpack_unorm2x16_to_half and unpack_snorm2x16_to_half
functions may lose precision.

5.12.2 Convert Floating-Point Vector to Integers, then Pack the Integers
Table 31 lists functions that start with a floating-point vector, converts the components into
integer values, and then packs the multiple values into a single unsigned integer.

Built-in unpack functions Description

float4 unpack_unorm4x8_to_float(uint x)
float4 unpack_snorm4x8_to_float(uint x)
half4 unpack_unorm4x8_to_half(uint x)
half4 unpack_snorm4x8_to_half(uint x)

Unpack a 32-bit unsigned integer
into four 8-bit signed or unsigned
integers and then convert each 8-bit
signed or unsigned integer value to a
normalized single- or half-precision
floating-point value to generate a 4-
component vector.

float4 unpack_unorm4x8_srgb_to_float(uint
x)
half4 unpack_unorm4x8_srgb_to_half(uint x)

Unpack a 32-bit unsigned integer
into four 8-bit signed or unsigned
integers and then convert each 8-bit
signed or unsigned integer value to a
normalized single- or half-precision
floating-point value to generate a 4-
component vector. The r, g, and b
color values are converted from
sRGB to linear RGB.

float2 unpack_unorm2x16_to_float(uint x)
float2 unpack_snorm2x16_to_float(uint x)
half2 unpack_unorm2x16_to_half(uint x)
half2 unpack_snorm2x16_to_half(uint x)

Unpack a 32-bit unsigned integer
into two 16-bit signed or unsigned
integers and then convert each 16-
bit signed or unsigned integer value
to a normalized single- or half-
precision floating-point value to
generate a 2-component vector.

float4 unpack_unorm10a2_to_float(uint x)
float3 unpack_unorm565_to_float(ushort x)
half4 unpack_unorm10a2_to_half(uint x)
half3 unpack_unorm565_to_half(ushort x)

Convert a 1010102 (10a2), or 565
color value to the corresponding
normalized single- or half-precision
floating-point vector.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 146 184

Table 31 Pack Functions

5.13 Atomic Functions
The Metal programming language implements a subset of the C++14 atomics and
synchronization operations. Metal atomic functions must operate on Metal atomic data, as
described in section 2.5.

Atomic operations play a special role in making assignments in one thread visible to another
thread. A synchronization operation on one or more memory locations is either an acquire
operation, a release operation, or both an acquire and release operation. A synchronization
operation without an associated memory location is a fence and can be either an acquire fence,
a release fence, or both an acquire and release fence. In addition, there are relaxed atomic
operations that are not synchronization operations.

Built-in pack functions Description

uint pack_float_to_unorm4x8(float4 x)
uint pack_float_to_snorm4x8(float4 x)
uint pack_half_to_unorm4x8(half4 x)
uint pack_half_to_snorm4x8(half4 x)

Convert a 4-component vector
normalized single- or half-precision
floating-point value to four 8-bit
integer values and pack these 8-bit
integer values into a 32-bit unsigned
integer.

uint pack_float_to_srgb_unorm4x8(float4 x)
uint pack_half_to_srgb_unorm4x8(half4 x)

Convert a 4-component vector
normalized single- or half-precision
floating-point value to four 8-bit
integer values and pack these 8-bit
integer values into a 32-bit unsigned
integer. The color values are
converted from linear RGB to sRGB.

uint pack_float_to_unorm2x16(float2 x)
uint pack_float_to_snorm2x16(float2 x)
uint pack_half_to_unorm2x16(half2 x)
uint pack_half_to_snorm2x16(half2 x)

Convert a 2-component vector of
normalized single- or half-precision
floating-point values to two 16-bit
integer values and pack these 16-bit
integer values into a 32-bit unsigned
integer.

uint pack_float_to_unorm10a2(float4)
ushort pack_float_to_unorm565(float3)
uint pack_half_to_unorm10a2(half4)
ushort pack_half_to_unorm565(half3)

Convert a 4- or 3-component vector
of normalized single- or half-
precision floating-point values to a
packed, 1010102 or 565 color
integer value.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 147 184

There are only a few kinds of operations on atomic types, although there are many instances of
those kinds. This section specifies each general kind.

Atomic functions are defined in the header <metal_atomic>.

5.13.1 Memory Order
The enumerated type memory_order specifies the detailed regular (non-atomic) memory
synchronization operations as defined in section 29.3 of the C++14 specification and may
provide for operation ordering. For atomic operations, memory_order_relaxed is the only value
supported for this enumerated type. With memory_order_relaxed, there are no
synchronization or ordering constraints, only atomicity is required of the operation. These
operations do not order memory, but they guarantee atomicity and modification order
consistency. A typical use for relaxed memory ordering is updating counters, such as reference
counters since this only requires atomicity, but neither ordering nor synchronization.

5.13.2 Atomic Functions
In addition, accesses to atomic objects may establish inter-thread synchronization and order
non-atomic memory accesses as specified by memory_order.

In the atomic functions described in the subsections of this section:

• A refers to one of the atomic types.

• C refers to its corresponding non-atomic type.

• M refers to the type of the other argument for arithmetic operations. For atomic integer  
types, M is C.

All OS: functions listed with names that end with _explicit (e.g., atomic_store_explicit,
atomic_load_explicit) supported since v1.0. unless otherwise indicated.

iOS: atomic_store, atomic_load, atomic_exchange, atomic_compare_exchange_weak,
atomic_fetch_key functions are supported since v2.0.

5.13.2.1 Atomic Store Functions

These functions atomically replace the value pointed to by object with desired.

All OS: atomic_store_explicit function with memory_order_relaxed supported as
indicated.

void atomic_store_explicit(threadgroup A* object,

 C desired,

 memory_order order) All OS: since v2.0.

void atomic_store_explicit(volatile threadgroup A* object,

 C desired,

 memory_order order) All OS: since v1.0.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 148 184

void atomic_store_explicit(device A* object,

 C desired,

 memory_order order) All OS: since v2.0.

void atomic_store_explicit(volatile device A* object,

 C desired,

 memory_order order) All OS: since v1.0.

5.13.2.2 Atomic Load Functions

These functions atomically obtain the value pointed to by object.

All OS: atomic_load_explicit function with memory_order_relaxed supported as
indicated.

C atomic_load_explicit(const threadgroup A* object,

 memory_order order) All OS: since v2.0.

C atomic_load_explicit(const volatile threadgroup A* object,

 memory_order order) All OS: since v1.0.

C atomic_load_explicit(const device A* object,

 memory_order order) All OS: since v2.0.

C atomic_load_explicit(const volatile device A* object,

 memory_order order) All OS: since v1.0.

5.13.2.3 Atomic Exchange Functions

These functions atomically replace the value pointed to by object with desired and return the
value object previously held.

All OS: atomic_exchange_explicit function with memory_order_relaxed supported as
indicated.

C atomic_exchange_explicit(threadgroup A* object,

 C desired,

 memory_order order) All OS: since v2.0.

C atomic_exchange_explicit(volatile threadgroup A* object,

 C desired,

 memory_order order) All OS: since v1.0.

C atomic_exchange_explicit(device A* object,

 C desired,

 memory_order order) All OS: since v2.0.

C atomic_exchange_explicit(volatile device A* object,

 C desired,

 memory_order order) All OS: since v1.0.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 149 184

5.13.2.4 Atomic Compare and Exchange Functions

These compare-and-exchange functions atomically compare the value in *object with the
value in *expected. If those values are equal, the compare-and-exchange function performs a
read-modify-write operation to replace *object with desired. Otherwise if those values are
not equal, the compare-and-exchange function loads the actual value from *object into
*expected. If the underlying atomic value in *object was successfully changed, the compare-
and-exchange function returns true; otherwise it returns false.

Copying is performed in a manner similar to std::memcpy. The effect of a compare-and-
exchange function is:

if(memcmp(object, expected, sizeof(*object) == 0)

memcpy(object, &desired, sizeof(*object));

else

memcpy(expected, object, sizeof(*object));

All OS: atomic_compare_exchange_weak_explicit function supported as indicated,
memory_order_relaxed is supported for success and failure. If the comparison is true,
memory access is affected according to the value of success, and if the comparison is false,
memory access is affected according to the value of failure.

bool atomic_compare_exchange_weak_explicit(threadgroup A* object,

 C *expected,

 C desired,

 memory_order success,

 memory_order failure) All OS: since v2.0.

bool atomic_compare_exchange_weak_explicit(volatile threadgroup A* object,

 C *expected,

 C desired,

 memory_order success,

memory_order failure) All OS: since v1.0.

bool atomic_compare_exchange_weak_explicit(device A* object,

 C *expected,

 C desired,

 memory_order success,

 memory_order failure) All OS: since v2.0.

bool atomic_compare_exchange_weak_explicit(volatile device A* object,

 C *expected,

 C desired,

 memory_order success,

 memory_order failure) All OS: since v1.0.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 150 184

5.13.2.5 Atomic Fetch and Modify Functions

The following operations perform arithmetic and bitwise computations. All of these operations
are applicable to an object of any atomic type. The key, operator, and computation
correspondences are given in Table 33.

Table 33 Atomic Operations

Atomically replaces the value pointed to by object with the result of the computation of the
value specified by key and operator. These operations are atomic read-modify-write
operations. For signed integer types, arithmetic is defined to use two’s complement
representation with silent wrap-around on overflow. There are no undefined results. Returns the
value that object held previously.

All OS: The following atomic fetch/modify functions are supported as indicated, and
memory_order_relaxed is supported for order.
C atomic_fetch_key_explicit(threadgroup A* object,

 M operand,

 memory_order order) All OS: since v2.0.
C atomic_fetch_key_explicit(volatile threadgroup A* object,

 M operand,

 memory_order order) All OS: since v1.0.
C atomic_fetch_key_explicit(device A* object,

 M operand,

 memory_order order) All OS: since v2.0.
C atomic_fetch_key_explicit(volatile device A* object,

 M operand,

key operator computation

add + addition

and & bitwise and

max max compute max

min min compute min

or | bitwise inclusive or

sub - subtraction

xor ^ bitwise exclusive or

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 151 184

 memory_order order) All OS: since v1.0.

5.14 SIMD-group Functions
macOS: SIMD-group functions supported since v2.0.

iOS: no support for SIMD-groups.

SIMD-group functions allow threads in a SIMD-group (see section 4.2.2.1) to share data without
the use of threadgroup memory or require any synchronization operations such as a barrier.

An active thread is a thread for which execution is performed. An inactive thread is a thread for
which execution is not performed, for example, due to the flow of control or insufficient work to
fill the group. The active and inactive thread terminology also applies to helper threads.

A killed helper thread is inactive. The presence of quad-group or SIMD-group operations does
not impose any requirement for helper threads to be active or not. simd_is_helper_thread()
(see Table 34) can be used to control helper threads participating in operations.

Threads may only read data from another thread in the SIMD-group that is actively
participating. If the target thread is inactive, the retrieved value is undefined.

The SIMD-group functions in Table 34 are defined in the header <metal_simdgroup> and are
supported by kernel and fragment functions. In Table 34, T is one of the common scalar or
vector, integer or floating-point types (excluding bool, size_t, ptrdiff_t, and void), except
for bitwise operations, where T is restricted to an integer type or a vector of integers.

Table 34 SIMD-group Functions in the Metal Standard Library

Built-in SIMD-group functions Description

simd_vote simd_active_threads_mask()

macOS: since v2.1. 
iOS: no support.

Returns a mask of active threads (via a
simd_vote). Functionally equivalent to
simd_ballot(true). Bits corresponding to
active threads shall be set to 1. Bits
corresponding to inactive threads shall be set
to 0.

bool simd_all(bool expr)

macOS: since v2.1. 
iOS: no support.

Returns true if all active threads evaluate
expr to true.

T simd_and(T data)

macOS: since v2.1. 
iOS: no support

Returns the bitwise AND of data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

bool simd_any(bool expr)

macOS: since v2.1. 
iOS: no support.

Returns true if at least one active thread
evaluates expr to true.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 152 184

simd_vote simd_ballot (bool expr)

macOS: since v2.1. 
iOS: no support.

Returns a wrapper type (see simd_vote
details after this table) around a bitmask of
the evaluation of the boolean expression for
all active threads in SIMD-group for which
expr is true. Bits corresponding to inactive
threads shall be set to 0.

T simd_broadcast(T data, 
ushort broadcast_lane_id)

macOS: since v2.0. 
iOS: no support.

Broadcast the value of data specified by
thread whose SIMD lane ID is
broadcast_lane_id. broadcast_lane_id
must be a valid SIMD lane ID and must be the
same for all threads in a SIMD-group;
otherwise the behavior is undefined.

T simd_broadcast_first(T data)

macOS: since v2.1.  
iOS: no support.

Broadcasts the value of data of the first
active thread (i.e., the active thread with the
smallest index) in the SIMD-group to all
active threads.

bool simd_is_first()

macOS: since v2.1.  
iOS: no support.

Returns true if the current thread is the first
active thread (i.e., the active thread with the
smallest index) in the current SIMD-group;
otherwise returns false.

bool simd_is_helper_thread()

macOS: since v2.1. 
iOS: no support.

Returns true if the current thread is a helper
thread; otherwise returns false. Must be
called inside a fragment function or a function
called from a fragment function; otherwise,
the behavior is undefined and may cause a
compile-time error.

T simd_max(T data)

macOS: since v2.1. 
iOS: no support.

Returns the maximum value in data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

T simd_min(T data)

macOS: since v2.1. 
iOS: no support.

Returns the minimum value in data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

T simd_or(T data)
macOS: since v2.1. 
iOS: no support.

Returns the bitwise OR of data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

T simd_prefix_exclusive_product (T
data)

macOS: since v2.1. 
iOS: no support.

For a given thread, returns the product of the
input values in data for all active threads with
a lower index in the SIMD-group. For the first
thread in the group, return T(1).

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 153 184

T simd_prefix_exclusive_sum (T data)

macOS: since v2.1. 
iOS: no support.

For a given thread, returns the sum of the
input values in data for all active threads with
a lower index in the SIMD-group. For the first
thread in the group, return T(0).

T simd_prefix_inclusive_product (T
data)

macOS: since v2.1. 
iOS: no support.

For a given thread, returns the product of the
input values in data for all active threads with
a lower or the same index in the SIMD-group.

T simd_prefix_inclusive_sum (T data)

macOS: since v2.1. 
iOS: no support.

For a given thread, returns the sum of the
input values in data for all active threads with
a lower or the same index in the SIMD-group.

T simd_product(T data)
macOS: since v2.1. 
iOS: no support.

Returns the product of the input values in
data across all active threads in the SIMD-
group and broadcasts the result to all active
threads in the SIMD-group.

T simd_shuffle(T data, 
ushort simd_lane_id)

macOS: since v2.0. 
iOS: no support.

Returns the value of data specified by thread
whose SIMD lane ID is simd_lane_id. The
value of simd_lane_id does not have to be
the same for all threads in the SIMD-group.
The simd_lane_id must be a valid SIMD
lane ID; otherwise the behavior is undefined.

T simd_shuffle_down(T data, 
ushort delta)

macOS: since v2.0. 
iOS: no support.

Returns the value of data specified by thread
whose SIMD lane ID is computed by adding
delta to the caller’s SIMD lane ID. The value of
data specified by the resulting SIMD lane ID
is returned. The computed SIMD lane ID does
not wrap around the value of the SIMD-group
size so the upper delta lanes remain
unchanged. The value of delta must be the
same for all threads in a SIMD-group;
otherwise the behavior is undefined.

T simd_shuffle_rotate_down(T data, 
ushort delta)

macOS: since v2.1. 
iOS: no support.

Returns the value of data specified by the
thread whose SIMD lane ID is computed by
adding delta from the caller’s SIMD lane ID.
The computed SIMD lane ID wraps around
the value of the SIMD-group size. The value
of delta must be the same for all threads in a
SIMD-group; otherwise the behavior is
undefined.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 154 184

Let's take a look at examples that start with the following threadgroup:

T simd_shuffle_rotate_up(T data, 
ushort delta)

macOS: since v2.1. 
iOS: no support.

Returns the value of data specified by the
thread whose SIMD lane ID is computed by
subtracting delta from the caller’s SIMD lane
ID. The computed SIMD lane ID wraps around
the value of the SIMD-group size. The value
of delta must be the same for all threads in a
SIMD-group; otherwise the behavior is
undefined.

T simd_shuffle_up(T data, 
ushort delta)

macOS: since v2.0. 
iOS: no support.

Returns the value of data specified by thread
whose SIMD lane ID is computed by
subtracting delta from the caller’s SIMD lane
ID. The value of data specified by the
resulting SIMD lane ID is returned. The
computed SIMD lane ID does not wrap
around the value of the SIMD-group size so
the lower delta lanes remain unchanged.
The value of delta must be the same for all
threads in a SIMD-group; otherwise the
behavior is undefined.

T simd_shuffle_xor(T value, 
ushort mask)

macOS: since v2.0. 
iOS: no support.

Returns the value of data specified by thread
whose SIMD lane ID is computed by
performing a bitwise XOR of the caller’s SIMD
lane ID and mask. The value of data specified
by the resulting SIMD lane ID is returned. The
value of mask must be the same for all
threads in a SIMD- group; otherwise the
behavior is undefined.

T simd_sum(T data)

macOS: since v2.1. 
iOS: no support.

Returns the sum of the input values in data
across all active threads in the SIMD-group
and broadcasts the result to all active threads
in the SIMD-group.

T simd_xor(T data)

macOS: since v2.1. 
iOS: no support.

Returns the bitwise XOR of data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

SIMD Lane
ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data a b c d e f g h i j k l m n o p

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 155 184

simd_shuffle_up() shifts up each threadgroup by the delta number of threads. If delta is 2,
the resulting computed SIMD lane IDs are shifted down by 2, as seen below. Negative values for
computed SIMD lane IDs indicate invalid IDs. The computed SIMD lane IDs do not wrap around,
so the data for the lower invalid SIMD lane IDs remain unchanged.

Similarly, simd_shuffle_down() shifts down each threadgroup by the delta number of
threads. Starting from the original threadgroup, if delta is 2, the resulting computed SIMD lane
IDs are shifted up by 2, as seen below. Computed SIMD lane IDs greater than the SIMD- group
size indicate invalid IDs. The computed SIMD lane IDs do not wrap around, so the data for the
upper invalid SIMD lane IDs remain unchanged.

Below is an example of how these SIMD functions can be used to perform a reduction
operation.
kernel void

reduce(const device int *input [[buffer(0)]],

 device int *output [[buffer(1)]],

 threadgroup int *ldata [[threadgroup(0)]],

 uint gid [[thread_position_in_grid]],

 uint lid [[thread_position_in_threadgroup]],

 uint lsize [[threads_per_threadgroup]],

 uint simd_size [[threads_per_simdgroup]],

 uint simd_lane_id [[thread_index_in_simdgroup]],

 uint simd_group_id [[simdgroup_index_in_threadgroup]])

{

// perform first level of reduction

// read from device memory, write to threadgroup memory

int val = input[gid] + input[gid + lsize];

for (uint s=lsize/simd_size; s>simd_size; s/=simd_size)

Computed
SIMD Lane
ID

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

valid 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

data a b a b c d e f g h i j k l m n

Computed
SIMD Lane
ID

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

valid 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

data c d e f g h i j k l m n o p o p

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 156 184

{

// perform per-SIMD partial reduction

for (uint offset=simd_size/2; offset>0; offset/=2)

val += simd_shuffle_down(val, offset);

// write per-SIMD partial reduction value to

// threadgroup memory

if (simd_lane_id == 0)

ldata[simd_group_id] = val;

// wait for all partial reductions to complete

threadgroup_barrier(mem_flags::mem_threadgroup);

val = (lid < s) ? ldata[lid] : 0;

}

// perform final per-SIMD partial reduction to

// calculate the threadgroup partial reduction result

for (uint offset=s/2; offset>0; offset/=2)

val += simd_shuffle_down(val, offset);

// atomically update the reduction result

if (lid == 0)

atomic_fetch_add_explicit(output, val);

}

For simd_ballot, the wrapper type simd_vote is used (see below). simd_vote can be
explicitly cast to its underlying type. (in the example below, note use of vote_t to represent an
underlying type XXX).

class simd_vote {

public:

 typedef XXX vote_t;

 explicit constexpr simd_vote(vote_t v = 0);

 explicit constexpr operator vote_t() const;

 // Returns true iff all bits corresponding to threads in the

 // SIMD-group are set.

 // If this object was the return value of simd_ballot(expr), this

 // function will return true iff all threads were active and

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 157 184

 // evaluated expr to true.

 bool all() const;

 // Returns true if any bit corresponding to a valid thread in the

 // SIMD-group is set.

 // If this object was the return value of simd_ballot(expr), this

 // function will return true if at least one active thread

 // evaluated expr to true.

 bool any() const;

 private:

 // The 'vote' for the thread at index i in the SIMD-group is

 // represented by bit i in v.

 uint64_t v;

};

Note that simd_all(expr) is different from simd_ballot(expr).all().

• simd_all(expr) returns true if all active threads evaluate expr to true.

• simd_ballot(expr).all() returns true if all threads were active and evaluated the
expr to true. (simd_vote::all() does not look at what threads are active or not.)

The same logic applies to bool simd_any(bool), bool simd_vote::any(), and to the
equivalent quad functions listed in section 5.15.

On hardware with fewer than 64 threads in a SIMD-group, the value of the top bits in
simd_vote::v is undefined. In particular, since it can be initialized by the user, one should not
assume that the top bits are set to 0.

5.15 Quad-group Functions
macOS: quad-group functions supported since v2.1.

iOS: some quad-group functions supported since v2.0 (quad_broadcast, quad_shuffle,
quad_shuffle_up, quad_shuffle_down, and quad_shuffle_xor).

A quad-group function (see section 4.2.2.1) is a SIMD-group function with an execution width
of 4. The active and inactive thread terminology is the same used in section 5.14 for SIMD-
group.

Helper threads are executed only to support gradients in quad-groups in a fragment shader.
Helper threads may be killed after gradients are computed.

The quad-group functions listed in Table 35 are supported by kernel and fragment functions.
Threads may only read data from another thread in a quad-group that is actively participating. If
the target thread is inactive, the retrieved value is undefined.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 158 184

In Table 35, T is one of the scalar or vector integer or floating-point types (excluding bool,
size_t, ptrdiff_t, and void), except for bitwise operations, where T is restricted to an
integer type or a vector of integers.

Table 35 Quad-group Functions in the Metal Standard Library

Built-in Quad-group functions Description

quad_vote quad_active_threads_mask()

macOS: since v2.1. 
iOS: no support.

Returns a mask of active threads (via a
quad_vote). Functionally equivalent to
quad_ballot(true). Bits corresponding to
active threads shall be set to 1. Bits
corresponding to inactive threads shall be set
to 0.

bool quad_all(bool expr)

macOS: since v2.1. 
iOS: no support.

Returns true if all active threads evaluate
expr to true.

T quad_and(T data)

macOS: since v2.1. 
iOS: no support

Returns the bitwise AND of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

bool quad_any(bool expr)

macOS: since v2.1. 
iOS: no support.

Returns true if at least one active thread
evaluates expr to true.

quad_vote quad_ballot (bool expr)

macOS: since v2.1. 
iOS: no support.

Returns a wrapper type (see quad_vote
details after this table) around a bitmask of
the evaluation of the boolean expression for
all active threads in quad-group for which
expr is true. Bits corresponding to inactive
threads shall be set to 0.

T quad_broadcast(T data, 
ushort broadcast_lane_id)

macOS: since v2.0. 
iOS: since v2.0.

Broadcast the value of data specified by
thread whose quad lane ID is
broadcast_lane_id. broadcast_lane_id
must be a valid quad lane ID and must be the
same for all threads in a quad-group;
otherwise the behavior is undefined.

T quad_broadcast_first(T data)

macOS: since v2.1.  
iOS: no support.

Broadcasts the value of data of the first
active thread (i.e., the active thread with the
smallest index) in the quad-group to all active
threads.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 159 184

bool quad_is_first()

macOS: since v2.1.  
iOS: no support.

Returns true if the current thread is the first
active thread (i.e., the active thread with the
smallest index) in the current quad-group;
otherwise returns false.

bool quad_is_helper_thread()

macOS: since v2.1. 
iOS: no support.

Returns true if the current thread is a helper
thread; otherwise returns false. Must be
called inside a fragment function or a function
called from a fragment function; otherwise,
the behavior is undefined and may cause a
compile-time error.

T quad_max(T data)

macOS: since v2.1. 
iOS: no support.

Returns the maximum value in data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

T quad_min(T data)

macOS: since v2.1. 
iOS: no support.

Returns the minimum value in data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

T quad_or(T data)

macOS: since v2.1. 
iOS: no support.

Returns the bitwise OR of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

T quad_prefix_exclusive_product (T
data)

macOS: since v2.1. 
iOS: no support.

For a given thread, returns the product of the
input values in data for all active threads with
a lower index in the quad-group. For the first
thread in the group, return T(1).

T quad_prefix_exclusive_sum (T data)

macOS: since v2.1. 
iOS: no support.

For a given thread, returns the sum of the
input values in data for all active threads with
a lower index in the quad-group. For the first
thread in the group, return T(0).

T quad_prefix_inclusive_product (T
data)

macOS: since v2.1. 
iOS: no support.

For a given thread, returns the product of the
input values in data for all active threads with
a lower or the same index in the quad-group.

T quad_prefix_inclusive_sum (T data)

macOS: since v2.1. 
iOS: no support.

For a given thread, returns the sum of the
input values in data for all active threads with
a lower or the same index in the quad-group.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 160 184

T quad_product(T data)

macOS: since v2.1. 
iOS: no support.

Returns the product of the input values in
data across all active threads in the quad-
group and broadcasts the result to all active
threads in the quad-group.

T quad_shuffle(T data, 
ushort quad_lane_id)

macOS: since v2.0. 
iOS: since v2.0.

Returns the value of data specified by thread
whose quad lane ID is quad_lane_id. The
value of quad_lane_id does not have to be
the same for all threads in the quad-group.
The quad_lane_id must be a valid quad lane
ID; otherwise the behavior is undefined.

T quad_shuffle_down(T data, 
ushort delta)

macOS: since v2.0. 
iOS: since v2.0.

Returns the value of data specified by thread
whose quad lane ID is computed by adding
delta to the caller’s quad lane ID. The value of
data specified by the resulting quad lane ID
is returned. The computed quad lane ID does
not wrap around the value of the quad-group
size so the upper delta lanes remain
unchanged. The value of delta must be the
same for all threads in a quad-group;
otherwise the behavior is undefined.

T quad_shuffle_rotate_down(T data, 
ushort delta)

macOS: since v2.1. 
iOS: no support.

Returns the value of data specified by the
thread whose quad lane ID is computed by
adding delta from the caller’s quad lane ID.
The computed quad lane ID wraps around the
value of the quad-group size. The value of
delta must be the same for all threads in a
quad-group; otherwise the behavior is
undefined.

T quad_shuffle_rotate_up(T data, 
ushort delta)

macOS: since v2.1. 
iOS: no support.

Returns the value of data specified by the
thread whose quad lane ID is computed by
subtracting delta from the caller’s quad lane
ID. The computed quad lane ID wraps around
the value of the quad-group size. The value
of delta must be the same for all threads in a
quad-group; otherwise the behavior is
undefined.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 161 184

In a kernel function, quads divide across the SIMD-group. In a fragment function, the lane id

represents the fragment location in a 2 x 2 quad as follows:

• lane id 0: upper-left pixel

• lane id 1: upper-right pixel

• lane id 2: lower-left pixel

• lane id 3: lower-right pixel

Let's take a look at examples that start with the following threadgroup:

quad_shuffle_up() shifts up each threadgroup by the delta number of threads. If delta is 2,
the resulting computed quad lane IDs are shifted down by 2, as seen below. Negative values for

T quad_shuffle_up(T data, 
ushort delta)

macOS: since v2.0. 
iOS: since v2.0.

Returns the value of data specified by thread
whose quad lane ID is computed by
subtracting delta from the caller’s quad lane
ID. The value of data specified by the
resulting quad lane ID is returned. The
computed quad lane ID does not wrap around
the value of the quad-group size so the lower
delta lanes remain unchanged. The value of
delta must be the same for all threads in a
quad-group; otherwise the behavior is
undefined.

T quad_shuffle_xor(T value, 
ushort mask)

macOS: since v2.0. 
iOS: since v2.0.

Returns the value of data specified by thread
whose quad lane ID is computed by
performing a bitwise XOR of the caller’s quad
lane ID and mask. The value of data specified
by the resulting quad lane ID is returned. The
value of mask must be the same for all
threads in a quad- group; otherwise the
behavior is undefined.

T quad_sum(T data)

macOS: since v2.1. 
iOS: no support.

Returns the sum of the input values in data
across all active threads in the quad-group
and broadcasts the result to all active threads
in the quad-group.

T quad_xor(T data)

macOS: since v2.1. 
iOS: no support.

Returns the bitwise XOR of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

Quad Lane ID 0 1 2 3

data a b c d

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 162 184

computed quad lane IDs indicate invalid IDs. The computed quad lane IDs do not wrap around,
so the data for the lower invalid quad lane IDs remain unchanged.

Similarly, quad_shuffle_down() shifts down each threadgroup by the delta number of
threads. Starting from the original threadgroup, if delta is 2, the resulting computed quad lane
IDs are shifted up by 2, as seen below. Computed quad lane IDs greater than the quad- group
size indicate invalid IDs. The computed quad lane IDs do not wrap around, so the data for the
upper invalid SIMD lane IDs remain unchanged.

For quad_ballot, the wrapper type quad_vote is used. quad_vote can be explicitly cast to its
underlying type (in the example below, note use of vote_t to represent an underlying type XXX).
class quad_vote {

public:

 typedef XXX vote_t;

 explicit constexpr quad_vote(vote_t v = 0);

 explicit constexpr operator vote_t() const;

 // Returns true if all bits corresponding to threads in the

 // quad-group (the four bottom bits) are set.

 bool all() const;

 // Returns true if any bit corresponding to a thread in the

 // quad-group is set.

 bool any() const;

};

Computed Quad
Lane ID

-2 -1 0 1

valid 0 0 1 1

data a b a b

Computed Quad
Lane ID

2 3 4 5

valid 1 1 0 0

data c d c d

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 163 184

The quad_vote constructor masks out the top bits (i.e., other than the four bottom bits).
Hence, the non-bottom-four bits are guaranteed to be unset when cast to vote_t.  

5.16 Encoding Commands for Indirect Command Buffers
All OS: Indirect Command Buffers for render commands supported since v2.1.

Indirect Command Buffers (ICBs) allow the encoding of draws and dispatches (i.e.,
“commands”) into a Metal buffer that abstracts the device’s command buffer. The commands
are encoded for subsequent execution on the GPU.

In a shading language function, commands for ICBs are encoded into a Metal buffer object
using the command_buffer type, which provides indexed access to a render_command struct.

struct arguments {

 command_buffer cmd_buffer;

};

kernel void producer(device arguments &args,

 ushort cmd_idx [[thread_index_in_grid]])

{

 render_command cmd(args.cmd_buffer, cmd_idx);

 …

}

render_command can encode any draw command type. The following public interface for
render_command is defined in the header <metal_command_buffer>:
(Note: set_render_pipeline_state(…) and render pipeline states are only available on macOS.)

enum class primitive_type { point, line, line_strip, triangle,
triangle_strip };

struct render_command {

public:

explicit render_command(command_buffer icb, unsigned cmd_index);

void set_render_pipeline_state(render_pipeline_state, pipeline_state);

void set_vertex_buffer(device void *buffer, uint index);

void set_vertex_buffer(constant void *buffer, uint index);

void set_fragment_buffer(device void *buffer, uint index);

void set_fragment_buffer(constant void *buffer, uint index);

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 164 184

void draw_primitives(primitive_type type, uint vertex_start, uint
vertex_count, uint instance_count, uint base_instance);

void draw_indexed_primitives(primitive_type type, uint index_count,
device/constant ushort/uint *index_buffer, uint instance_count, uint
base_vertex, uint base_instance);

void draw_patches(uint number_of_patch_control_points,  
 uint patch_start,  
 uint patch_count,  
 const device/constant uint *patch_index_buffer,  
 uint instance_count,  
 uint base_instance,  
 const device/constant MTLQuadTessellationFactorsHalf/
MTLTriangleTessellationFactorsHalf *tessellation_factor_buffer,  
 uint instance_stride = 0);

void draw_indexed_patches(uint number_of_patch_control_points,  
 uint patch_start,  
 uint patch_count,  
 const device/constant uint *patch_index_buffer,  
 const device/constant void *control_point_index_buffer,  
 uint instance_count,  
 uint base_instance,  
 const device/constant MTLQuadTessellationFactorsHalf/
MTLTriangleTessellationFactorsHalf *buffer,  
 uint instance_stride = 0);

// Reset the entire command. Without further modifications, 
// the command will not perform any action when executed. 
void reset();

// Copy the content of the `source` command into this command. 
void copy_command(render_command source);

};

No bounds checking is performed. If an access is beyond the capacity of the buffer, the
behavior is undefined.

The methods exposed mirror the interface of MTLIndirectRenderCommand and are similar to
MTLRenderCommandEncoder. A couple of notable differences with
MTLRenderCommandEncoder are:

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 165 184

• Calls to draw* methods in render_command encode what action the command will take.
If multiple calls are made, the last one takes effect.

• The tessellation arguments are passed directly in render_command::draw_patches
and render_command::draw_indexed_patches. Other calls do not set up the
tessellation arguments.  

5.16.1 Copying Commands of an Indirect Command Buffer
Copying a command struct (e.g., render_command) via operator= does not copy the content of
the command, but only makes the destination command point to the same buffer and index as
the source command. To copy the content of the command, use the copy_command function
listed in section 5.16.

Copying is only supported between commands pointing to compatible command buffers. Two
command buffers are compatible if and only if they have matching ICB descriptors (i.e.,
MTLIndirectCommandBufferDescriptor objects). The command themselves must also refer
to valid indexes within the buffers. The following example illustrates using copy_command to
copy the content of command from cmd0 to cmd1.

struct arguments {

 command_buffer cmd_buffer;

 render_pipeline_state pipeline_state_0;

 render_pipeline_state pipeline_state_1;

};

kernel void producer(device arguments &args) {

 render_command cmd0(args.cmd_buffer, 0);

 render_command cmd1(args.cmd_buffer, 1);

 cmd0.set_render_pipeline_state(args.pipeline_state_0);

 // make command at index 1 point to command at index 0

 cmd1 = cmd0;

 // change the pipeline state for the command at index 0 in the buffer

 cmd1.set_render_pipeline_state(args.pipeline_state_0);

 // the command at index 1 in the buffer is not yet modified

 cmd1 = render_command(args.cmd_buffer, 1);

 // copy the content of the command at index 0 to command at index 1

 cmd1.copy_command(cmd0);

}

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 166 184

6 Compiler and Preprocessor
The Metal compiler can be used online (i.e. using the appropriate APIs to compile Metal
sources) or offline. Metal sources compiled offline can be loaded as binaries, using the
appropriate Metal APIs.

This chapter explains the compiler options supported by the Metal compiler, which are
categorized as preprocessor options, options for math intrinsics, options that control
optimization and miscellaneous options. The online and offline Metal compiler support these
options.

6.1 Preprocessor Compiler Options
These options control the Metal preprocessor that is run on each program source before actual
compilation.

 -D name

Predefine name as a macro, with definition 1.

 -D name=definition

The contents of definition are tokenized and processed as if they appeared in a #define
directive. This option may receive multiple options, which are processed in the order in which
they appear. This option allows developers to compile Metal code to change which features are
enabled or disabled.

 -I dir

Add the directory dir to the list of directories to be searched for header files. This option is only
available for the offline compiler.

6.2 Preprocessor Definitions
The Metal compiler sets a number of preprocessor definitions by default, including:

__METAL_VERSION__ // value of SDK version

__METAL_MACOS__ // set if built against macOS SDK or on macOS device

__METAL_IOS__ // set if built against iOS SDK or on iOS device

You can use definitions to conditionally utilize some shading language features that are only
available on later SDKs (by comparing the version number) or for specific platforms (e.g.,
macOS or iOS).

The version number is implemented as a MajorMinorPatch version number. For example, for
v1.2, patch 0, __METAL_VERSION__ is 120; for v2.1, patch 1, __METAL_VERSION__ is 211.

If you want to conditionally include code that uses features introduced in v2.0, you can use the
preprocessor definition in code, as follows:

#if __METAL_VERSION__ >= 200

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 167 184

// code that requires features introduced in v2.0 6

#endif

6.3 Math Intrinsics Compiler Options
These options control compiler behavior regarding floating-point arithmetic, trading off
between speed and correctness.

-ffast-math (default) 
-fno-fast-math

These options enable (default) or disable the optimizations for floating-point arithmetic that
may violate the IEEE 754 standard. They also enable or disable the high precision variant of
math functions for single precision floating-point scalar and vector types.

The optimizations for floating-point arithmetic include:

• No NaNs – Allow optimizations to assume the arguments and result are not NaN.

• No Infs – Allow optimizations to assume the arguments and result are not positive or
negative infinity.

• No Signed Zeroes – Allow optimizations to treat the sign of zero argument or result as
insignificant.

• Allow Reciprocal – Allow optimizations to use the reciprocal of an argument rather than
perform division

• Fast – Allow algebraically equivalent transformations i.e. re-associate floating-point
operations that may dramatically change results in floating-point.

6.4 Compiler Options Controlling the Language Version
The following option controls the version of unified graphics/compute language that the
compiler accepts.

 -std=

Determine the language revision to use. A value for this option must be provided, which must be
one of:

• ios-metal1.0 – support the unified graphics / compute language revision 1.0 programs
for iOS 8.

• ios-metal1.1 – support the unified graphics / compute language revision 1.1 programs
for iOS 9.

• ios-metal1.2 – support the unified graphics / compute language revision 1.2 programs
for iOS 10.

• ios-metal2.0 – support the unified graphics / compute language revision 2.0 programs
for iOS 11.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 168 184

• ios-metal2.1 – support the unified graphics / compute language revision 2.1 programs
for iOS 12.

• osx-metal1.1 – support the unified graphics / compute language revision 1.1 programs
for macOS 10.11.

• osx-metal1.2 – support the unified graphics / compute language revision 1.2 programs
for macOS 10.12.

• osx-metal2.0 – support the unified graphics / compute language revision 2.0 programs
for macOS 10.13.

• osx-metal2.1 – support the unified graphics / compute language revision 2.0 programs
for macOS 10.14.

6.5 Compiler Options to Request or Suppress Warnings
The following options are available.

 -Werror

Make all warnings into errors.

 -W

Inhibit all warning messages.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 169 184

7 Numerical Compliance
This chapter covers how Metal represents floating-point numbers with regard to accuracy in
mathematical operations. Metal is compliant to a subset of the IEEE 754 standard.

7.1 INF, NaN, and Denormalized Numbers
INF must be supported for single-precision and half-precision floating-point numbers.

NaNs must be supported for single-precision and half-precision floating-point numbers (with
fast math disabled). If fast math is enabled the behavior of handling NaN or INF (as inputs or
outputs) is undefined. Signaling NaNs are not supported.

Denormalized single-precision or half-precision floating-point numbers passed as input to or
produced as the output of single-precision or half-precision floating-point arithmetic operations
may be flushed to zero.

7.2 Rounding Mode
Either round to nearest even or round to zero rounding mode may be supported for single
precision and half precision floating-point operations.

7.3 Floating-Point Exceptions
Floating-point exceptions are disabled in Metal.

7.4 Relative Error as ULPs
Table 36 describes the minimum accuracy of single-precision floating-point basic arithmetic
operations and math functions given as ULP values. The reference value used to compute the
ULP value of an arithmetic operation is the infinitely precise result.

Table 36 Minimum Accuracy of Single-Precision Floating-Point Operations and
Functions

Math Function Min Accuracy - ULP values

x + y Correctly rounded

x - y Correctly rounded

x * y Correctly rounded

1.0 / x Correctly rounded

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 170 184

x / y Correctly rounded

acos <= 4 ulp

acosh <= 4 ulp

asin <= 4 ulp

asinh <= 4 ulp

atan <= 5 ulp

atan2 <= 6 ulp

atanh <= 5 ulp

ceil Correctly rounded

copysign 0 ulp

cos <= 4 ulp

cosh <= 4 ulp

cospi <= 4 ulp

exp <= 4 ulp

exp2 <= 4 ulp

exp10 <= 4 ulp

fabs 0 ulp

fdim Correctly rounded

floor Correctly rounded

fma Correctly rounded

fmax 0 ulp

fmin 0 ulp

fmod 0 ulp

fract Correctly rounded

frexp 0 ulp

ilogb 0 ulp

ldexp Correctly rounded

log <= 4 ulp

Math Function Min Accuracy - ULP values

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 171 184

Table 37 describes the minimum accuracy of single-precision floating-point arithmetic
operations given as ULP values with fast math enabled (which is the default unless -ffast-
math-disable is specified as a compiler option).

Table 37 Minimum Accuracy of Single-Precision Operations and Functions with
Fast Math Enabled

log2 <= 4 ulp

log10 <= 4 ulp

modf 0 ulp

pow <= 16 ulp

powr <= 16 ulp

rint Correctly rounded

round Correctly rounded

rsqrt Correctly rounded

sin <= 4 ulp

sincos <= 4 ulp

sinh <= 4 ulp

sinpi <= 4 ulp

sqrt Correctly rounded

tan <= 6 ulp

tanpi <= 6 ulp

tanh <= 5 ulp

trunc Correctly rounded

Math Function Min Accuracy - ULP values

Math Function Min Accuracy - ULP values

x + y Correctly rounded

x - y Correctly rounded

x * y Correctly rounded

1.0 / x <= 1 ulp for x in the domain of 2-126 to 2126

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 172 184

x / y <= 2.5 ulp for y in the domain of 2-126 to 2126

acos(x) <= 5 ulp for x in the domain [-1, 1]

acosh(x) Implemented as log(x + sqrt(x * x – 1.0))

asin(x) <= 5 ulp for for x in the domain [-1, 1] and |x| >= 2-125

asinh(x) Implemented as log(x + sqrt(x * x + 1.0))

atan(x) <= 5 ulp

atanh(x) Implemented as 0.5 * (log(1.0 + x) / log(1.0 – x))

atan2(y, x) Implemented as atan(y / x) for x > 0, atan(y / x) + M_PI_F for x < 0 and y
> 0, atan(y / x) – M_PI_F for x < 0 and y < 0 and is undefined if y = 0
and x = 0.

cos(x) For x in the domain [-pi, pi], the maximum absolute error is <= 2-13 and
larger otherwise.

cosh(x) Implemented as 0.5 * (exp(x) + exp(-x))

cospi(x) For x in the domain [-1, 1], the maximum absolute error is <= 2-13 and
larger otherwise.

exp(x) <= 3 + floor(fabs(2 * x)) ulp

exp2(x) <= 3 + floor(fabs(2 * x)) ulp

exp10(x) Implemented as exp2(x * log2(10))

fabs 0 ulp

fdim Correctly rounded

floor Correctly rounded

fma Correctly rounded

fmax 0 ulp

fmin 0 ulp

fmod 0 ulp

fract Correctly rounded

frexp 0 ulp

ilogb 0 ulp

ldexp Correctly rounded

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 173 184

Table 38 describes the minimum accuracy of half-precision floating-point basic arithmetic
operations and math functions given as ULP values. Table 38 applies to iOS, starting with A11
hardware.

log(x) For x in the domain [0.5, 2], the maximum absolute error is <= 2-21;
otherwise the maximum error is <= 3 ulp if x > 0; otherwise the results
are undefined.

log2(x) For x in the domain [0.5, 2], the maximum absolute error is <= 2-22;
otherwise the maximum error is <= 2 ulp if x > 0; otherwise the results
are undefined.

log10(x) Implemented as log2(x) * log10(2)

modf 0 ulp

pow(x, y) Implemented as exp2(y * log2(x)). Undefined for x = 0 and y = 0.

powr(x, y) Implemented as exp2(y * log2(x)). Undefined for x = 0 and y = 0.

rint Correctly rounded

round(x) Correctly rounded

rsqrt <= 2 ulp

sin(x) For x in the domain [-pi, pi], the maximum absolute error is <= 2-13 and
larger otherwise.

sinh(x) Implemented as 0.5 * (exp(x) – exp(-x))

sincos(x) ULP values as defined for sin(x) and cos(x)

sinpi(x) For x in the domain [-1, 1], the maximum absolute error is <= 2-13 and
larger otherwise.

sqrt(x) Implemented as x * rsqrt(x) with special cases handled correctly.

tan(x) Implemented as sin(x) * (1.0 / cos(x))

tanh(x) Implemented as (t – 1.0)/(t + 1.0) where t = exp(2.0 * x)

tanpi(x) Implemented as tan(x * pi)

trunc Correctly rounded

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 174 184

Table 38 Minimum Accuracy of Half Precision Floating-Point Operations and
Functions

Math Function Min Accuracy - ULP values

x + y Correctly rounded

x - y Correctly rounded

x * y Correctly rounded

1.0 / x Correctly rounded

x / y Correctly rounded

acos(x) <= 1 ulp

acosh(x) <= 1 ulp

asin(x) <= 1 ulp

asinh(x) <= 1 ulp

atan(x) <= 1 ulp

atanh(x) <= 1 ulp

atan2(y, x) <= 1 ulp

cos(x) <= 1 ulp

cosh(x) <= 1 ulp

cospi(x) <= 1 ulp

exp(x) <= 1 ulp

exp2(x) <= 1 ulp

exp10(x) <= 1 ulp

fabs 0 ulp

fdim Correctly rounded

floor Correctly rounded

fma Correctly rounded

fmax 0 ulp

fmin 0 ulp

fmod 0 ulp

fract Correctly rounded

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 175 184

Even though the precision of individual math operations and functions are specified in Tables
36, 37, and 38, the Metal compiler, in fast math mode, may re-associate floating-point
operations that may dramatically change results in floating-point. Re-association may change
or ignore the sign of zero, allow optimizations to assume the arguments and result are not NaN
or +/-INF, inhibit or create underflow or overflow and thus cannot be used by code that relies on
rounding behavior such as (x + 252) - 252 or ordered floating-point comparisons.

The ULP is defined as follows:

frexp 0 ulp

ilogb 0 ulp

ldexp Correctly rounded

log(x) <= 1 ulp

log2(x) <= 1 ulp

log10(x) <= 1 ulp

modf 0 ulp

pow(x, y) <= 2 ulp

powr(x, y) <= 2 ulp

rint Correctly rounded

round(x) Correctly rounded

rsqrt Correctly rounded

sin(x) <= 1 ulp

sinh(x) <= 1 ulp

sincos(x) ULP values as defined for sin(x) and cos(x)

sinpi(x) <= 1 ulp

sqrt(x) Correctly rounded

tan(x) <= 1 ulp

tanh(x) <= 1 ulp

tanpi(x) <= 1 ulp

trunc Correctly rounded

Math Function Min Accuracy - ULP values

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 176 184

If x is a real number that lies between two finite consecutive floating-point numbers a and b,
without being equal to one of them, then ulp(x) = |b − a|, otherwise ulp(x) is the distance
between the two non-equal finite floating-point numbers nearest x. Moreover, ulp(NaN) is NaN.

7.5 Edge Case Behavior in Flush to Zero Mode
If denormals are flushed to zero, then a function may return one of four results:

1. Any conforming result for non-flush-to-zero mode.

2. If the result given by (1) is a subnormal before rounding, it may be flushed to zero.

3. Any non-flushed conforming result for the function if one or more of its subnormal
operands are flushed to zero.

4. If the result of (3) is a subnormal before rounding, the result may be flushed to zero.

In each of the above cases, if an operand or result is flushed to zero, the sign of the zero is
undefined.

7.6 Conversion Rules for Floating-Point and Integer
Types.
The round to zero rounding mode is used for conversions from a floating-point type to an
integer type. The round to nearest even or round to zero rounding mode is used for conversions
from a floating-point or integer type to a floating-point type.

The conversions from half to float are lossless. Conversions from float to half round the
mantissa using the round to nearest even rounding mode. Denormalized numbers for the half
data type which may be generated when converting a float to a half may not be flushed to
zero.

When converting a floating-point type to an integer type, if the floating-point value is NaN, the
integer result is 0.

7.7 Texture Addressing and Conversion Rules
The texture coordinates specified to the sample, sample_compare, gather, gather_compare,
read, and write functions cannot be INF or NaN. In addition, the texture coordinates must refer
to a region inside the texture for the texture read and write functions. If the texture
coordinates are outside the bounds of the texture, the read and write function behavior is
undefined.

In the sections that follow, we discuss conversion rules that are applied when reading and
writing textures in a graphics or kernel function. When a multisample resolve operation is
performed, the conversion rules described in this section do not apply.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 177 184

7.7.1 Conversion Rules for Normalized Integer Pixel Data Types
In this section we discuss converting normalized integer pixel data types to floating-point
values and vice-versa.

7.7.1.1 Converting Normalized Integer Pixel Data Types to Floating-Point Values

For textures that have 8-bit, 10-bit or 16-bit normalized unsigned integer pixel values, the
texture sample and read functions convert the pixel values from an 8-bit or 16-bit unsigned
integer to a normalized single or half-precision floating-point value in the range [0.0 … 1.0].

For textures that have 8-bit or 16-bit normalized signed integer pixel values, the texture sample
and read functions convert the pixel values from an 8-bit or 16-bit signed integer to a
normalized single or half-precision floating-point value in the range [-1.0 … 1.0].

These conversions are performed as listed in the second column of Table 39. The precision of
the conversion rules is guaranteed to be <= 1.5 ulp, except for the cases described in the third
column.

Table 39 Rules for Conversion to a Normalized Float Value

Convert from Conversion Rule to Normalized
Float

Corner Cases

1-bit normalized
unsigned integer

float(c) 0 must convert to 0.0
1 must convert to 1.0

2-bit normalized
unsigned integer

float(c) / 3.0 0 must convert to 0.0
3 must convert to 1.0

4-bit normalized
unsigned integer

float(c) / 15.0 0 must convert to 0.0
15 must convert to 1.0

5-bit normalized
unsigned integer

float(c) / 31.0 0 must convert to 0.0
31 must convert to 1.0

6-bit normalized
unsigned integer

float(c) / 63.0 0 must convert to 0.0
63 must convert to 1.0

8-bit normalized
unsigned integer

float(c) / 255.0 0 must convert to 0.0
255 must convert to 1.0

10-bit normalized
unsigned integer

float(c) / 1023.0 0 must convert to 0.0
1023 must convert to 1.0

16-bit normalized
unsigned integer

float(c) / 65535.0 0 must convert to 0.0
65535 must convert to 1.0

8-bit normalized
signed integer

max(-1.0, float(c)/127.0) -128 and -127 must convert to -1.0
0 must convert to 0.0
127 must convert to 1.0

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 178 184

7.7.1.2 Converting Floating-Point Values to Normalized Integer Pixel Data Types

For textures that have 8-bit, 10-bit or 16-bit normalized unsigned integer pixel values, the
texture write functions convert the single or half-precision floating-point pixel value to an 8-bit
or 16-bit unsigned integer.

For textures that have 8-bit or 16-bit normalized signed integer pixel values, the texture write
functions convert the single or half-precision floating-point pixel value to an 8-bit or 16-bit
signed integer.

NaN values are converted to zero.

Conversions from floating-point values to normalized integer values are performed as listed in
Table 40.

Table 40 Rules for Conversion from Floating-Point to a Normalized Integer Value

16-bit normalized
signed integer

max(-1.0, float(c)/
32767.0)

-32768 and -32767 must convert to
-1.0
0 must convert to 0.0
32767 must convert to 1.0

Convert from Conversion Rule to Normalized
Float

Corner Cases

Convert to Conversion Rule to Normalized Integer

1-bit normalized
unsigned integer

x = min(max(f, 0.0), 1.0)
i0:0 = intRTNE(x)

2-bit normalized
unsigned integer

x = min(max(f * 3.0, 0.0), 3.0)
i1:0 = intRTNE(x)

4-bit normalized
unsigned integer

x = min(max(f * 15.0, 0.0), 15.0)
i3:0 = intRTNE(x)

5-bit normalized
unsigned integer

x = min(max(f * 31.0, 0.0), 31.0)
i4:0 = intRTNE(x)

6-bit normalized
unsigned integer

x = min(max(f * 63.0, 0.0), 63.0)
i5:0 = intRTNE(x)

8-bit normalized
unsigned integer

x = min(max(f * 255.0, 0.0), 255.0)
i7:0 = intRTNE(x)

10-bit normalized
unsigned integer

x = min(max(f * 1023.0, 0.0), 1023.0)
i9:0 = intRTNE(x)

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 179 184

In v2.0, all conversions to and from unorm data types shall be correctly rounded.

7.7.2 Conversion Rules for Half-Precision Floating-Point Pixel Data Type
For textures that have half-precision floating-point pixel color values, the conversions from
half to float are lossless. Conversions from float to half round the mantissa using the
round to nearest even rounding mode. Denormalized numbers for the half data type which may
be generated when converting a float to a half may not be flushed to zero. A float NaN may
be converted to an appropriate NaN or be flushed to zero in the half type. A float INF must be
converted to an appropriate INF in the half type.

7.7.3 Conversion Rules for Single-Precision Floating-Point Pixel Data Type
The following rules apply for reading and writing textures that have single-precision floating-
point pixel color values.

• NaNs may be converted to a NaN value(s) or be flushed to zero.

• INFs must be preserved.

• Denorms may be flushed to zero.

• All other values must be preserved.

7.7.4 Conversion Rules for 11-bit and 10-bit Floating-Point Pixel Data Type
The floating-point formats use 5 bits for the exponent, 5 bits of mantissa for the 10-bit floating-
point types and 6-bits of mantissa for the 11-bit floating-point types with an additional hidden
bit for both types. There is no sign bit. The 10-bit and 11-bit floating-point types preserve
denormals.

These floating-point formats use the following rules:

• If exponent = 0 and mantissa = 0, the floating-point value is 0.0.

• If exponent = 31 and mantissa != 0, the resulting floating-point value is a NaN.

• If exponent = 31 and mantissa = 0, the resulting floating-point value is positive infinity.

• If 0 <= exponent <= 31, the floating-point value is 2 ^ (exponent - 15) * (1 + mantissa/N).

16-bit normalized
unsigned integer

result = min(max(f * 65535.0, 0.0), 65535.0)
i15:0 = intRTNE(x)

8-bit normalized
signed integer

result = min(max(f * 127.0, -127.0), 127.0)
i7:0 = intRTNE(x)

16-bit normalized
signed integer

result = min(max(f * 32767.0, -32767.0),32767.0) 
i15:0 = intRTNE(x)

Convert to Conversion Rule to Normalized Integer

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 180 184

• If exponent = 0 and mantissa != 0, the floating-point value is a denormal value given as 2
^ (exponent – 14) * (mantissa / N)

N is 32 if mantissa is 5-bits and is 64 if mantissa is 6-bits.

Conversion of a 11-bit or 10-bit floating-point pixel data type to a half or single precision
floating-point value is lossless. Conversion of a half or single precision floating-point value to a
11-bit or 10-bit floating-point value must be <= 0.5 ULP. Any operation that results in a value
less than zero for these floating-point types is clamped to zero

7.7.5 Conversion Rules for 9-bit Floating-Point Pixel Data Type with a 5-bit
Exponent
The RGB9E5_SharedExponent shared exponent floating-point format use 5 bits for the
exponent and 9 bits for the mantissa. There is no sign bit.

Conversion from this format to a half or single precision floating-point value is lossless and is
computed as 2 ^ (shared exponent – 15) * (mantissa/512) for each color channel.

Conversion from a half or single precision floating-point RGB color value to this format is
performed as follows, where N is the number of mantissa bits per component (9), B is the
exponent bias (15) and Emax is the maximum allowed biased exponent value (31).

• Components r, g and b are first clamped (in the process, mapping NaN to zero) as
follows: 
rc = max(0, min(sharedexpmax, r)  
gc = max(0, min(sharedexpmax, g)  
bc = max(0, min(sharedexpmax, b)  
where sharedexpmax = ((2N – 1)/2N) * 2(Emax– B)

• The largest clamped component maxc, is determined: 
maxc = max(rc, gc, bc)  

• A preliminary shared exponent expp is computed: 
expp = max(-B – 1, floor(log2(maxc)) + 1 + B

• A refined shared exponent exps is computed: 
maxs = floor((maxc / 2expp-B-N) + 0.5f) 
exps = expp, if 0 <= maxs < 2N, and exps = expp + 1, if maxs = 2N.

• Finally, three integer values in the range 0 to 2N – 1 are computed: 
rs = floor(rc / 2expp-B-N) + 0.5f) 
gs = floor(gc / 2expp-B-N) + 0.5f) 
bs = floor(bc / 2expp-B-N) + 0.5f)

Conversion of a half or single precision floating-point color values to the RGB9E5 shared
exponent floating-point value is <= 0.5 ULP.

7.7.6 Conversion Rules for Signed and Unsigned Integer Pixel Data Types
For textures that have 8-bit or 16-bit signed or unsigned integer pixel values, the texture sample
and read functions return a signed or unsigned 32-bit integer pixel value. The conversions
described in this section must be correctly saturated.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 181 184

Writes to these integer textures perform one of the conversions listed in Table 41.

Table 41 Rules for Conversion Between Integer Pixel Data Types

7.7.7 Conversion Rules for sRGBA and sBGRA Textures
Conversion from sRGB space to linear space is automatically done when sampling from an
sRGB texture. The conversion from sRGB to linear RGB is performed before the filter specified in
the sampler specified when sampling the texture is applied. If the texture has an alpha channel,
the alpha data is stored in linear color space.

Conversion from linear to sRGB space is automatically done when writing to an sRGB texture. If
the texture has an alpha channel, the alpha data is stored in linear color space.

The following is the conversion rule for converting a normalized 8-bit unsigned integer sRGB
color value to a floating-point linear RGB color value (call it c).

if (c <= 0.04045)

 result = c / 12.92;

else

 result = powr((c + 0.055) / 1.055, 2.4);

The precision of the above conversion must ensure that the delta between the resulting
infinitely precise floating point value when result is converted back to an un-normalized sRGB
value but without rounding to a 8-bit unsigned integer value (call it r) and the original sRGB 8-
bit unsigned integer color value (call it rorig) is <= 0.5 i.e.

fabs(r – rorig) <= 0.5 

The following are the conversion rules for converting a linear RGB floating-point color value (call
it c) to a normalized 8-bit unsigned integer sRGB value.

if (isnan(c)) c = 0.0;

if (c > 1.0)

 c = 1.0;

Convert from Convert to Conversion Rule

32-bit signed integer 8-bit signed integer result = convert_char_saturate(val)

32-bit signed integer 16-bit signed integer result = convert_short_saturate(val)

32-bit unsigned
integer

8-bit unsigned
integer

result = convert_uchar_saturate(val)

32-bit unsigned
integer

16-bit unsigned
integer

result =
convert_ushort_saturate(val)

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 182 184

else if (c < 0.0)

 c = 0.0;

else if (c < 0.0031308)

 c = 12.92 * c;

else

 c = 1.055 * powr(c, 1.0/2.4) - 0.055;

convert to integer scale i.e. c = c * 255.0

convert to integer:

c = c + 0.5

drop the decimal fraction, and the remaining

floating-point(integral) value is converted

directly to an integer.

The precision of the above conversion shall be:

fabs(reference result – integer result) < 1.0.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 183 184

Apple Inc. 
Copyright © 2018 Apple Inc. 
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Inc., with the following
exceptions: Any person is hereby
authorized to store documentation on a
single computer or device for personal
use only and to print copies of
documentation for personal use
provided that the documentation
contains Apple’s copyright notice.

No licenses, express or implied, are
granted with respect to any of the
technology described in this document.
Apple retains all intellectual property
rights associated with the technology
described in this document. This
document is intended to assist
application developers to develop
applications only for Apple-branded
products.

Apple Inc. 
1 Infinite Loop 
Cupertino, CA 95014  
408-996-1010

Apple is a trademark of Apple Inc.,
registered in the U.S. and other
countries.

APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,”
AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT, ERROR OR INACCURACY IN
THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the
exclusion of implied warranties or
liability, so the above exclusion may
not apply to you.

2018-11-09 | Copyright © 2018 Apple Inc. All Rights Reserved.

Page of 184 184

	1 Introduction
	1.1 Audience
	1.2 Organization of this Specification
	1.3 References
	1.4 Metal and C++14
	1.4.1 Overloading
	1.4.2 Templates
	1.4.3 Preprocessing Directives
	1.4.4 Restrictions
	1.5 Metal Pixel Coordinate System
	2 Data Types
	2.1 Scalar Data Types
	2.2 Vector Data Types
	2.2.1 Accessing Vector Components
	2.2.2 Vector Constructors
	2.2.3 Packed Vector Types
	2.3 Matrix Data Types
	2.3.1 Accessing Matrix Components
	2.3.2 Matrix Constructors
	2.4 Alignment of Data Types
	2.5 Atomic Data Types
	2.6 Pixel Data Types
	2.7 Buffers
	2.8 Textures
	2.8.1 Texture Buffers
	2.9 Samplers
	2.10 Imageblocks
	2.10.1 Imageblocks in Fragment Functions
	2.10.1.1 Implicit Imageblock Layout for Fragment Functions
	2.10.1.2 Explicit Imageblock Layout for Fragment Functions
	2.10.2 Imageblocks in Kernel Functions
	2.11 Aggregate Types
	2.11.1 Arrays of Textures, Texture Buffers, and Samplers
	2.11.1.1 Array Element Access with the [] Operator
	2.11.1.2 Array Capacity
	2.11.1.3 Constructors for Templated Arrays
	2.12 Argument Buffers
	2.12.1 Tier 2 Hardware Support for Argument Buffers
	2.13 Uniform Type
	2.13.1 The Need for a Uniform Type
	2.13.2 Behavior of the Uniform Type
	2.13.3 Uniform Control Flow
	2.14 Type Conversions and Re-interpreting Data
	2.15 Implicit Type Conversions
	3 Operators
	3.1 Scalar and Vector Operators
	3.2 Matrix Operators
	4 Function and Variable Declarations
	4.1 Functions
	4.1.1 Vertex Functions
	4.1.1.1 Post-Tessellation Vertex Functions
	4.1.1.2 Patch Type and Number of Control Points Per-Patch
	4.1.2 Fragment Functions
	4.1.3 Compute Functions (Kernels)
	4.1.4 Tile Functions
	4.2 Address Space Attributes for Variables and Arguments
	4.2.1 device Address Space
	4.2.2 threadgroup Address Space
	4.2.2.1 SIMD-groups and Quad-groups
	4.2.3 threadgroup_imageblock Address Space
	4.2.4 constant Address Space
	4.2.5 thread Address Space
	4.3 Function Arguments and Variables
	4.3.1 Attributes to Locate Buffers, Textures and Samplers
	4.3.1.1 Vertex Function Example with Resources and Outputs to Device Memory
	4.3.1.2 Raster Order Groups
	4.3.2 Struct of Buffers and Textures
	4.3.3 Attributes to Locate Per-Vertex Inputs
	4.3.4 Attributes for Built-in Variables
	4.3.4.1 Vertex Function Input Attributes
	4.3.4.2 Post-Tessellation Vertex Function Input Attributes
	4.3.4.3 Vertex Function Output Attributes
	4.3.4.4 Fragment Function Input Attributes
	4.3.4.5 Fragment Function Output Attributes
	4.3.4.6 Kernel Function Input Attributes
	4.3.5 stage_in Attribute
	4.3.5.1 Vertex Function Example that Uses the stage_in Attribute
	4.3.5.2 Fragment Function Example that Uses the stage_in Attribute
	4.3.5.3 Kernel Function Example that Uses the stage_in Attribute
	4.4 Storage Class Specifiers
	4.5 Sampling and Interpolation Attributes
	4.6 Per-Fragment Function vs. Per-Sample Function
	4.7 Imageblock Attributes
	4.7.1 user Attribute for Matching Data Members of Master and View Imageblocks
	4.7.2 Imageblocks and Raster Order Groups
	4.7.3 Aliasing Explicit and Implicit Imageblocks
	4.7.4 Imageblocks and Function Constants
	4.8 Programmable Blending
	4.9 Graphics Function – Signature Matching
	4.9.1 Vertex – Fragment Signature Matching
	4.10 Program Scope Function Constants
	4.10.1 Specifying Program Scope Function Constants
	4.10.1.1 Function Constants to Control Code Paths to Compile
	4.10.1.2 Function Constants when Declaring the Arguments of Functions
	4.10.1.3 Function Constants for Elements of a [[stage_in]] Struct
	4.10.1.4 Function Constants for Resource Bindings
	4.10.1.5 Function Constants for Color Attachments and Raster Order Groups
	4.10.1.6 Function Constants with Elements of a Struct
	4.11 Per-Primitive Viewport and Scissor Rectangle Index Selection
	4.12 Additional Restrictions
	5 Metal Standard Library
	5.1 Namespace and Header Files
	5.2 Common Functions
	5.3 Integer Functions
	5.4 Relational Functions
	5.5 Math Functions
	5.6 Matrix Functions
	5.7 Geometric Functions
	5.8 Compute Functions
	5.8.1 Threadgroup and SIMD-group Synchronization Functions
	5.9 Graphics Functions
	5.9.1 Fragment Functions
	5.9.1.1 Fragment Functions – Derivatives
	5.9.1.2 Fragment Functions – Samples
	5.9.1.3 Fragment Functions – Flow Control
	5.10 Texture Functions
	5.10.1 1D Texture
	5.10.2 1D Texture Array
	5.10.3 2D Texture
	5.10.3.1 2D Texture Sampling Example
	5.10.4 2D Texture Array
	5.10.5 3D Texture
	5.10.6 Cube Texture
	5.10.7 Cube Array Texture
	5.10.8 2D Multisampled Texture
	5.10.9 2D Depth Texture
	5.10.10 2D Depth Texture Array
	5.10.11 Cube Depth Texture
	5.10.12 Cube Array Depth Texture
	5.10.13 2D Multisampled Depth Texture
	5.10.14 Texture Buffer Functions
	5.10.15 Texture Synchronization Functions
	5.10.16 Null Texture Functions
	5.11 Imageblock Functions
	5.11.1 Functions for Imageblocks with Implicit Layout
	5.11.2 Functions for Imageblocks with Explicit Layout
	5.11.3 Writing an Imageblock Slice to a Region in a Texture
	5.12 Pack and Unpack Functions
	5.12.1 Unpack Integer(s); Convert to a Floating-Point Vector
	5.12.2 Convert Floating-Point Vector to Integers, then Pack the Integers
	5.13 Atomic Functions
	5.13.1 Memory Order
	5.13.2 Atomic Functions
	5.13.2.1 Atomic Store Functions
	5.13.2.2 Atomic Load Functions
	5.13.2.3 Atomic Exchange Functions
	5.13.2.4 Atomic Compare and Exchange Functions
	5.13.2.5 Atomic Fetch and Modify Functions
	5.14 SIMD-group Functions
	5.15 Quad-group Functions
	5.16 Encoding Commands for Indirect Command Buffers
	5.16.1 Copying Commands of an Indirect Command Buffer
	6 Compiler and Preprocessor
	6.1 Preprocessor Compiler Options
	6.2 Preprocessor Definitions
	6.3 Math Intrinsics Compiler Options
	6.4 Compiler Options Controlling the Language Version
	6.5 Compiler Options to Request or Suppress Warnings
	7 Numerical Compliance
	7.1 INF, NaN, and Denormalized Numbers
	7.2 Rounding Mode
	7.3 Floating-Point Exceptions
	7.4 Relative Error as ULPs
	7.5 Edge Case Behavior in Flush to Zero Mode
	7.6 Conversion Rules for Floating-Point and Integer Types.
	7.7 Texture Addressing and Conversion Rules
	7.7.1 Conversion Rules for Normalized Integer Pixel Data Types
	7.7.1.1 Converting Normalized Integer Pixel Data Types to Floating-Point Values
	7.7.1.2 Converting Floating-Point Values to Normalized Integer Pixel Data Types
	7.7.2 Conversion Rules for Half-Precision Floating-Point Pixel Data Type
	7.7.3 Conversion Rules for Single-Precision Floating-Point Pixel Data Type
	7.7.4 Conversion Rules for 11-bit and 10-bit Floating-Point Pixel Data Type
	7.7.5 Conversion Rules for 9-bit Floating-Point Pixel Data Type with a 5-bit Exponent
	7.7.6 Conversion Rules for Signed and Unsigned Integer Pixel Data Types
	7.7.7 Conversion Rules for sRGBA and sBGRA Textures

