

Metal Shading Language
Specification
Version 3.2

! Developer

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 2 of 298

Contents

1 Introduction 10
1.1 Purpose of This Document ... 10
1.2 Organization of This Specification ... 10
1.3 New in Metal 3.2 .. 10
1.4 References ... 11
1.5 Metal and C++14 ... 11
1.5.1 Overloading ... 11
1.5.2 Templates .. 11
1.5.3 Preprocessing Directives ... 11
1.5.4 Restrictions .. 12
1.6 Compiler and Preprocessor .. 12
1.6.1 Preprocessor Compiler Options ... 12
1.6.2 Preprocessor Definitions .. 13
1.6.3 Math Intrinsics Compiler Options .. 13
1.6.4 Invariance Compiler Options .. 15
1.6.5 Optimization Compiler Options .. 16
1.6.6 Maximum Total Threadgroup Size Option .. 16
1.6.7 Texture Write Rounding Mode ... 16
1.6.8 Compiler Options to Enable Modules .. 17
1.6.9 Compiler Options to Enable Logging ... 18
1.6.10 Compiler Options Controlling the Language Version .. 18
1.6.11 Compiler Options to Request or Suppress Warnings .. 19
1.6.12 Target Conditionals ... 19
1.6.13 Dynamic Library Linker Options ... 20
1.6.14 Options for Compiling to GPU Binaries ... 20
1.6.15 Options for Generating Metal Library Symbol Files ... 21
1.7 Metal Coordinate Systems .. 21
2 Data Types 24
2.1 Scalar Data Types .. 24
2.2 Vector Data Types ... 26
2.2.1 Accessing Vector Components ... 28
2.2.2 Vector Constructors .. 31
2.2.3 Packed Vector Types .. 32
2.3 Matrix Data Types ... 34
2.3.1 Accessing Matrix Components ... 36
2.3.2 Matrix Constructors .. 36
2.4 SIMD-group Matrix Data Types .. 37
2.5 Alignment of Data Types .. 38
2.6 Atomic Data Types ... 38

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 3 of 298

2.7 Pixel Data Types ... 38
2.8 Buffers .. 40
2.9 Textures .. 41
2.9.1 Texture Buffers ... 43
2.10 Samplers .. 44
2.11 Imageblocks ... 47
2.12 Aggregate Types .. 49
2.12.1 Arrays of Textures, Texture Buffers, and Samplers .. 49
2.12.1.1 Array Element Access with its Operator ... 50
2.12.1.2 Array Capacity ... 50
2.12.1.3 Constructors for Templated Arrays .. 50
2.12.2 Structures of Buffers, Textures, and Samplers .. 51
2.13 Argument Buffers ... 52
2.13.1 Tier 2 Hardware Support for Argument Buffers ... 54
2.14 Uniform Type .. 55
2.14.1 The Need for a Uniform Type .. 56
2.14.2 Behavior of the Uniform Type .. 57
2.14.3 Uniform Control Flow .. 58
2.15 Visible Function Table ... 58
2.16 Function Groups Attribute ... 59
2.17 Ray-Tracing Types ... 60
2.17.1 Ray-Tracing Intersection Tags .. 60
2.17.2 Ray Type .. 63
2.17.3 Intersection Function Table ... 64
2.17.4 Intersection Result Type .. 65
2.17.5 Intersection Result Reference Type ... 66
2.17.6 Intersector Type .. 67
2.17.7 Acceleration Structure Type ... 68
2.17.8 Intersection Query Type ... 70
2.18 Interpolant Type ... 70
2.19 Mesh Shader Types ... 71
2.19.1 Mesh Grid Property Type .. 71
2.19.2 Mesh Type .. 71
2.20 Type Conversions and Reinterpreting Data .. 75
2.21 Implicit Type Conversions ... 76
3 Operators 78
3.1 Scalar and Vector Operators .. 78
3.2 Matrix Operators .. 81
4 Address Spaces 84
4.1 Device Address Space ... 84
4.2 Constant Address Space .. 85

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 4 of 298

4.3 Thread Address Space ... 86
4.4 Threadgroup Address Space ... 86
4.4.1 SIMD-Groups and Quad-Groups ... 87
4.5 Threadgroup Imageblock Address Space ... 87
4.6 Ray Data Address Space .. 88
4.7 Object Data Address Space ... 88
4.8 Memory Coherency .. 88
5 Function and Variable Declarations 90
5.1 Functions ... 90
5.1.1 Vertex Functions .. 91
5.1.1.1 Post-Tessellation Vertex Functions .. 91
5.1.1.2 Patch Type and Number of Control Points Per-Patch .. 91
5.1.2 Fragment Functions .. 92
5.1.3 Compute Functions (Kernels) ... 93
5.1.4 Visible Functions ... 93
5.1.5 Stitchable Functions ... 94
5.1.6 Intersection Functions .. 94
5.1.7 Object Functions ... 95
5.1.8 Mesh Functions ... 96
5.1.9 Tile Functions ... 97
5.1.10 Host Name Attribute ... 97
5.1.11 Templated Qualified Functions ... 98
5.2 Function Arguments and Variables ... 98
5.2.1 Locating Buffer, Texture, and Sampler Arguments .. 99
5.2.1.1 Vertex Function Example with Resources and Outputs to Device Memory 101
5.2.1.2 Raster Order Groups ... 102
5.2.2 Attributes to Locate Per-Vertex Inputs ... 102
5.2.3 Attributes for Built-in Variables .. 105
5.2.3.1 Vertex Function Input Attributes ... 105
5.2.3.2 Post-Tessellation Vertex Function Input Attributes .. 106
5.2.3.3 Vertex Function Output Attributes .. 107
5.2.3.4 Fragment Function Input Attributes .. 110
5.2.3.5 Fragment Function Output Attributes ... 115
5.2.3.6 Kernel Function Input Attributes ... 117
5.2.3.7 Intersection Function Input Attributes .. 122
5.2.3.8 Intersection Function Output Attributes ... 126
5.2.3.9 Object Function Input Attributes ... 128
5.2.3.10 Mesh Function Input Attributes ... 131
5.2.4 Input Assembly Attribute .. 134
5.2.4.1 Vertex Function Output Example ... 135
5.2.4.2 Fragment Function Input Example ... 135
5.2.4.3 Kernel Function Per-Thread Input Example ... 137

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 5 of 298

5.3 Storage Class Specifiers ... 137
5.4 Sampling and Interpolation Attributes ... 138
5.5 Per-Fragment Function Versus Per-Sample Function ... 139
5.6 Imageblock Attributes ... 140
5.6.1 Matching Data Members of Master and View Imageblocks 140
5.6.2 Imageblocks and Raster Order Groups ... 143
5.6.3 Imageblock Layouts for Fragment Functions ... 145
5.6.3.1 Implicit Imageblock Layout for Fragment Functions ... 145
5.6.3.2 Explicit Imageblock Layout for Fragment Functions ... 145
5.6.4 Imageblock Layouts in Kernel Functions .. 147
5.6.5 Aliasing Explicit and Implicit Imageblocks .. 148
5.6.6 Imageblocks and Function Constants ... 149
5.7 Graphics Function – Signature Matching .. 149
5.7.1 Vertex – Fragment Signature Matching .. 149
5.7.2 Mesh – Fragment Signature Matching .. 153
5.8 Program Scope Function Constants .. 153
5.8.1 Specifying Program Scope Function Constants .. 154
5.8.1.1 Function Constants to Control Code Paths to Compile .. 155
5.8.1.2 Function Constants when Declaring the Arguments of Functions 156
5.8.1.3 Function Constants for Elements of an Input Assembly Structure 158
5.8.1.4 Function Constants for Resource Bindings .. 159
5.8.1.5 Function Constants for Color Attachments and Raster Order Groups 159
5.8.1.6 Function Constants with Elements of a Structure ... 159
5.9 Program Scope Global Built-ins and Bindings .. 160
5.10 Per-Primitive Viewport and Scissor Rectangle Index Selection 161
5.11 Additional Restrictions .. 162
6 Metal Standard Library 163
6.1 Namespace and Header Files ... 163
6.2 Common Functions .. 163
6.3 Integer Functions ... 164
6.4 Relational Functions .. 166
6.5 Math Functions ... 167
6.6 Matrix Functions ... 173
6.7 SIMD-Group Matrix Functions .. 174
6.7.1 Creating, Loading, and Storing Matrix Elements .. 174
6.7.2 Matrix Operations .. 175
6.8 Geometric Functions ... 176
6.9 Synchronization and SIMD-Group Functions ... 177
6.9.1 Threadgroup and SIMD-Group Synchronization Functions 177
6.9.2 SIMD-Group Functions ... 178
6.9.2.1 Examples .. 184

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 6 of 298

6.9.3 Quad-Group Functions ... 187
6.10 Graphics Functions .. 195
6.10.1 Fragment Functions .. 195
6.10.1.1 Fragment Functions – Derivatives ... 195
6.10.1.2 Fragment Functions – Samples ... 196
6.10.1.3 Fragment Functions – Flow Control .. 196
6.11 Pull-Model Interpolation .. 197
6.12 Texture Functions .. 198
6.12.1 1D Texture ... 202
6.12.2 1D Texture Array ... 204
6.12.3 2D Texture ... 206
6.12.3.1 2D Texture Sampling Example .. 209
6.12.4 2D Texture Array .. 209
6.12.5 3D Texture .. 212
6.12.6 Cube Texture ... 215
6.12.7 Cube Texture Array ... 217
6.12.8 2D Multisampled Texture ... 219
6.12.9 2D Multisampled Texture Array .. 220
6.12.10 2D Depth Texture .. 221
6.12.11 2D Depth Texture Array ... 224
6.12.12 2D Multisampled Depth Texture .. 227
6.12.13 2D Multisampled Depth Texture Array ... 228
6.12.14 Cube Depth Texture ... 228
6.12.15 Cube Depth Texture Array .. 231
6.12.16 Texture Buffer Functions ... 234
6.12.17 Texture Synchronization Functions .. 236
6.12.18 Null Texture Functions ... 236
6.13 Imageblock Functions .. 237
6.13.1 Functions for Imageblocks with Implicit Layout .. 238
6.13.2 Functions for Imageblocks with Explicit Layout .. 239
6.13.3 Writing an Imageblock Slice to a Region in a Texture .. 240
6.14 Pack and Unpack Functions .. 243
6.14.1 Unpack and Convert Integers to a Floating-Point Vector .. 243
6.14.2 Convert Floating-Point Vector to Integers, then Pack the Integers 244
6.15 Atomic Functions .. 245
6.15.1 Memory Order ... 246
6.15.2 Thread Scope .. 246
6.15.3 Fence Functions ... 246
6.15.4 Atomic Functions .. 247
6.15.4.1 Atomic Store Functions ... 248
6.15.4.2 Atomic Load Functions .. 248
6.15.4.3 Atomic Exchange Functions ... 248

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 7 of 298

6.15.4.4 Atomic Compare and Exchange Functions ... 249
6.15.4.5 Atomic Fetch and Modify Functions .. 250
6.15.4.6 Atomic Modify Functions (64 Bits) ... 251
6.16 Encoding Commands for Indirect Command Buffers .. 251
6.16.1 Encoding Render Commands in Indirect Command Buffers 252
6.16.2 Encoding Compute Commands in Indirect Command Buffers 259
6.16.3 Copying Commands of an Indirect Command Buffer ... 260
6.17 Variable Rasterization Rate ... 261
6.18 Ray-Tracing Functions ... 262
6.18.1 Acceleration Structure Functions ... 262
6.18.2 Intersector Intersect Functions ... 264
6.18.3 Intersector Functions to Control Traversal Behavior .. 268
6.18.4 Intersection Query Functions ... 272
6.18.5 Indirect Instance Descriptors .. 279
6.18.6 Curve Utility Functions ... 280
6.19 Logging Functions ... 281
7 Numerical Compliance 284
7.1 INF, NaN, and Denormalized Numbers ... 284
7.2 Rounding Mode ... 284
7.3 Floating-Point Exceptions .. 284
7.4 ULPs and Relative Error .. 284
7.5 Edge Case Behavior in Flush to Zero Mode .. 291
7.6 Conversion Rules for Floating-Point and Integer Types ... 292
7.7 Texture Addressing and Conversion Rules .. 292
7.7.1 Conversion Rules for Normalized Integer Pixel Data Types 292
7.7.1.1 Converting Normalized Integer Pixel Data Types to Floating-Point Values 292
7.7.1.2 Converting Floating-Point Values to Normalized Integer Pixel Data Types 293
7.7.2 Conversion Rules for Half-Precision Floating-Point Pixel Data Type 294
7.7.3 Conversion Rules for Single-Precision Floating-Point Pixel Data Type 295
7.7.4 Conversion Rules for 10- and 11-bit Floating-Point Pixel Data Type 295
7.7.5 Conversion Rules for 9-bit Floating-Point Pixel Data Type with a 5-bit Exponent . 295
7.7.6 Conversion Rules for Signed and Unsigned Integer Pixel Data Types 296
7.7.7 Conversion Rules for sRGBA and sBGRA Textures .. 296

Tables and Figures

Table 1.1. Rounding mode .. 16
Figure 1. Normalized device coordinate system ... 22
Figure 2. Viewport coordinate system ... 22
Figure 3. Normalized 2D texture coordinate system ... 23
Table 2.1. Metal scalar data types ... 24
Table 2.2. Size and alignment of scalar data types ... 25

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 8 of 298

Table 2.3. Size and alignment of vector data types ... 27
Table 2.4. Size and alignment of packed vector data types ... 33
Table 2.5. Size and alignment of matrix data types ... 35
Table 2.6. Metal pixel data types ... 39
Table 2.7. Sampler state enumeration values .. 45
Table 2.8. Imageblock slices and compatible target texture formats ... 47
Table 2.9. Intersection tags ... 61
Table 2.10. Mesh template parameter ... 71
Table 2.11. Mesh vertex attributes .. 72
Table 2.12. Mesh primitive attributes ... 73
Table 2.13. Mesh static members .. 74
Table 5.1. Intersection function primitive types ... 94
Table 5.2. Attributes for vertex function input arguments ... 105
Table 5.3. Attributes for post-tessellation vertex function input arguments 107
Table 5.4. Attributes for vertex function return type .. 107
Table 5.5. Attributes for fragment function input arguments .. 110
Table 5.6. Attributes for fragment function tile input arguments .. 114
Table 5.7. Attributes for fragment function return types ... 115
Table 5.8. Attributes for kernel function input arguments ... 118
Table 5.9. Attributes for kernel function tile input arguments ... 122
Table 5.10. Attributes for intersection function input arguments ... 123
Table 5.11. Attributes for intersection return types .. 127
Table 5.12. Attributes for object function .. 128
Table 5.13. Attributes for mesh function ... 131
Table 6.1. Common functions in the Metal standard library .. 163
Table 6.2. Integer functions in the Metal standard library .. 164
Table 6.3. Relational functions in the Metal standard library .. 167
Table 6.4. Math functions in the Metal standard library .. 167
Table 6.5. Constants for single-precision floating-point math functions 171
Table 6.6. Constants for half-precision floating-point math functions .. 172
Table 6.7. Constants for brain floating-point math functions ... 173
Table 6.8. Matrix functions in the Metal standard library .. 173
Table 6.9.SIMD-group matrix load and stores .. 174
Table 6.10.SIMD-group operations .. 175
Table 6.11. Geometric functions in the Metal standard library .. 176
Table 6.12. Synchronization compute function in the Metal standard library 177
Table 6.13. Memory flag enumeration values for barrier functions .. 178
Table 6.14. SIMD-group permute functions in the Metal standard library 179
Table 6.15. SIMD-group reduction functions in the Metal standard library 182
Table 6.16. Quad-group permute functions in the Metal standard library 188
Table 6.17. Quad-group reduction functions in the Metal standard library 191
Table 6.18. Derivatives fragment functions in the Metal standard library 196
Table 6.19. Samples fragment functions in the Metal standard library 196
Table 6.20. Fragment flow control function in the Metal standard library 197
Table 6.21. Cube face number .. 216
Table 6.22. Unpack functions .. 244
Table 6.23. Pack functions ... 245
Table 6.24. Atomic operations ... 250
Table 6.25. Atomic modify operations ... 251

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 9 of 298

Table 6.26. Intersect function .. 264
Table 6.27. Intersect functions input parameters .. 264
Table 6.28. Intersect functions to control traversal ... 269
Table 6.29. Intersection query functions .. 273
Table 6.30. Intersection query functions with max_levels<Count> 273
Table 6.31. Intersection query ray value functions .. 274
Table 6.32. Intersection query candidate value functions .. 274
Table 6.33. Intersect query committed value functions ... 275
Table 6.34. Curve utility functions .. 280
Table 7.1. Accuracy of single-precision floating-point operations and functions 284
Table 7.2. Accuracy of single-precision operations and functions with fast math enabled 286
Table 7.3. Accuracy of half-precision floating-point operations and functions 289
Table 7.4. Accuracy of brain floating-point operations and functions ... 291
Table 7.5. Accuracy of brain floating-point operations and functions with fast math enabled . 291
Table 7.6. Conversion to a normalized float value ... 293
Table 7.7. Conversion from floating-point to a normalized integer value 294
Table 7.8. Conversion between integer pixel data types .. 296

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 10 of 298

1! Introduction
1.1! Purpose of This Document
Metal enables you to develop apps that take advantage of the graphics and compute
processing power of the GPU. This document describes the Metal Shading Language (MSL),
which you will use to write a !"#$%&'(&)*&#+ , which is graphics and data-parallel compute code
that runs on the GPU. Shader programs run on different programmable units of the GPU. MSL is
a single, unified language that allows tighter integration between the graphics and compute
programs. Since MSL is C++-based, you will find it familiar and easy to use.
MSL works with the Metal framework, which manages the execution and optionally the
compilation of the Metal programs. Metal uses clang and LLVM so you get a compiler that
delivers optimized performance on the GPU.

1.2! Organization of This Specification
This document is organized into the following chapters:
¥! This chapter, “Introduction,” is an introduction to this document that covers the similarities

and differences between Metal and C++14. It also details the options for the Metal compiler,
including preprocessor directives, options for math intrinsics, and options for controlling
optimization.

¥! “Data Types” lists the Metal data types, including types that represent vectors, matrices,
buffers, textures, and samplers. It also discusses type alignment and type conversion.

¥! “Operators” lists the Metal operators.
¥! “Address Spaces” describes disjoint address spaces for allocating memory objects with

access restrictions.
¥! “Function and Variable Declarations” details how to declare functions and variables, with

optional attributes that specify restrictions.
¥! “Metal Standard Library” defines a collection of built-in Metal functions.
¥! “Numerical Compliance” describes requirements for representing floating-point numbers,

including accuracy in mathematical operations.
iOS and macOS support for features (functions, enumerations, types, attributes, or operators)
described in this document is available since Metal 1, unless otherwise indicated.
For the rest of this document, the abbreviation X.Y stands for “Metal version X.Y”; for example,
2.1 indicates Metal 2.1. Please note that though a feature is supported in MSL shading
language, it may not be supported on all GPUs. Please refer to the Metal Feature Set Tables at
developer.apple.com.

1.3! New in Metal 3.2
Metal 3.2 introduces the following new features:
¥! Relaxed Math (section 1.6.3)
¥! Intersection Result Reference (section 2.17.5)

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 11 of 298

¥! Texture and Buffer Memory Coherency (section 2.9 and section 4.8)
¥! Global Bindings (section 5.9)
¥! Logging (section 6.19)

1.4! References
C++14
Stroustrup, Bjarne. ,"% '-.. ' /&)*&#++01* '2#1*3#*%'45)3&6"'7$060)18. Harlow: Addison-Wesley,
2013.
Metal
Here is a link to the Metal documentation on apple.com:
https://developer.apple.com/documentation/metal

1.5! Metal and C++14
The Metal programming language is a C++14-based Specification with extensions and
restrictions. Refer to the C++14 Specification (also known as the ISO/IEC JTC1/SC22/WG21
N4431 Language Specification) for a detailed description of the language grammar.
This section and its subsections describe the modifications and restrictions to the C++14
language supported in Metal.
For more about Metal preprocessing directives and compiler options, see section 1.6 of this
document.

!"#"! $ %&'()*+,-./ $

Metal supports overloading, as defined by section 13 of the C++14 Specification. Metal extends
the function overloading rules to include the address space attribute of an argument. You
cannot overload Metal graphics and kernel functions. (For a definition of graphics and kernel
functions, see section 5.1 of this document.)

!"#"0$ 1'23)+4'5 $

Metal supports templates, as defined by section 14 of the C++14 Specification.

!"#"6$ 7('3(*8'55-./ $9-('84-&'5 $

Metal supports the preprocessing directives, as defined by section 16 of the C++14
Specification.

https://developer.apple.com/documentation/metal
https://developer.apple.com/documentation/metal

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 12 of 298

!"#": $;'54(-84-*.5 $

The following C++14 features are not available in Metal (section numbers in this list refer to the
C++14 Specification):
¥! lambda expressions (section 5.1.2)
¥! dynamic_cast operator (section 5.2.7)
¥! type identification (section 5.2.8)
¥! new and delete operators (sections 5.3.4 and 5.3.5)
¥! noexcept operator (section 5.3.7)
¥! goto statement (section 6.6)
¥! register, thread_local storage attributes (section 7.1.1)
¥! virtual function attribute (section 7.1.2)
¥! derived classes (section 10, section 11)
¥! exception handling (section 15)
Do not use the C++ standard library in Metal code. Instead, Metal has its own standard library,
as discussed in section 5 of this document.
Metal restricts the use of pointers:
¥! You must declare arguments to Metal graphics and kernel functions that are pointers with

the Metal device , constant , threadgroup , or threadgroup_imageblock address
space attribute. (For more about Metal address space attributes, see section 4 of this
document.)

¥! Metal 2.3 and later support function pointers.

Metal supports recursive function calls (C++ section 5.2.2, item 9) in compute (kernel) context
starting with Metal 2.4.
You can’t call a Metal function main .

1.6! Compiler and Preprocessor
You can use the Metal compiler online (with the appropriate APIs to compile Metal sources) or
offline. You can load Metal sources that are compiled offline as binaries, using the appropriate
Metal APIs.
This section explains the compiler options supported by the Metal compiler and categorizes
them as preprocessor options, options for math intrinsics, options that control optimization,
miscellaneous compilation options, and linking.

!"<"! $ 7('3(*8'55*($=*23-)'($%34-*.5 $

The following options control the Metal preprocessor that runs on each program source before
actual compilation:
 - D name

Predefine 1#+% as a macro, with definition 1.
 - D name=definition

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 13 of 298

Metal tokenizes and processes the contents of definition as if they appear in a
#define directive. This option allows you to compile Metal code to enable or disable
features. You may use this option multiple times, and the preprocessor processes the
definitions in the order in which they appear.

 - I dir

Add the directory dir to the search path of directories for header files. This option is
only available for the offline compiler.

!"<"0$ 7('3(*8'55*($9'>-.-4-*.5 $

The Metal compiler sets a number of preprocessor definitions by default, including:
__METAL_VERSION__ // Set to the Metal l anguage revision

__METAL_MACOS__ // Set if compiled with the macOS Metal language

__METAL_IOS__ // Set if compil ed with the i OS Metal language

__METAL__ // Set if compiled with the unified Metal language
 // Set with - std=metal3.0 or above.

You can use definitions to conditionally apply shading language features that are only available
on later language version (see Compiler Options Controlling the Language Version).
The version number is MajorMinorPatch. For example, for Metal 1.2, patch 0,
__METAL_VERSION__ is 120; for Metal 2.1, patch 1, __METAL_VERSION__ is 211.
To conditionally include code that uses features introduced in Metal 2, you can use the
preprocessor definition in code, as follows:
#if __METAL_VERSION__ >= 200
// Code that requires features introduced in Metal 2.
#endif

!"<"6$?+4@$A.4(-.5-85$=*23-)'($%34-*.5 $

The following section describes options to control compiler behavior regarding floating-point
arithmetic, trading off between speed and correctness.
For more about math functions, see section 6.5. For more about the relative errors of ordinary
and fast math functions, see section 7.4.
The options enable or disable the optimizations for floating-point arithmetic that may violate the
IEEE 754 standard. They also enable or disable the high precision variant of math functions for
single precision floating-point scalar and vector types.
The fast math optimizations for floating-point arithmetic include:
¥! No NaNs : Allow optimizations to assume the arguments and result are not NaN (not a

number).
¥! No INFs: Allow optimizations to assume the arguments and result are not positive or

negative infinity.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 14 of 298

¥! No Signed Zeroes: Allow optimizations to treat the sign of a zero argument or result as
insignificant.

¥! Allow Reciprocal: Allow optimizations to use the reciprocal of an argument rather than
perform a division.

¥! Allow Reassociation: Allow algebraically equivalent transformations, such as reassociating
floating-point operations that may dramatically change the floating-point results.

¥! Allow Contract: Allow floating-point contraction across statements. For example, allow
fusing a multiple followed by an additional into a single fused-multiply-add.

Metal supports the following options beginning with Xcode 16 and Metal Developer Tools for
Window 5 (SDK supporting iOS 18 or macOS 15).

- f metal - math - fp32 - functions=<fast|precise>

This option sets the single-precision floating-point math functions described in section
6.5 to call either the fast or precise version. The default is fast . For Apple silicon,
starting with Apple GPU Family 4, the math functions honor INF and NaN.

- fmetal - math - mode=<fast, relaxed, safe>

This option sets how aggressive the compiler can be with floating-point optimizations.
The default is fast .

If you set the option to fast , it lets the compiler make aggressive, potentially lossy
assumptions about floating-point math. These include no NaNs, no INFs, no signed zeros,
allow reciprocal, allow reassociation, and FP contract to be fast.

If you set the option to relaxed , it lets the compiler make aggressive, potentially lossy
assumptions about floating-point math, but honors INFs and NaNs. These include no
signed zeros, allow reciprocal, allow reassociation, and FP contract to be fast. This
supports Apple silicon.

If you set the option to safe , it disables unsafe floating-point optimizations by preventing
the compiler from making any transformations that might affect the results. This sets the
FP contract to on.

Metal supports the following legacy options:
- ffast - math

Equivalent to -f metal - math - fp32 - functions=fast and -fmetal - math -
mode=fast .

- fno - fast - math

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 15 of 298

Equivalent to -f metal - math - fp32 - functions=precise and -fmetal - math -
mode=safe .

When utilizing fast math in your program, it is important to understand that the compiler can
assume certain properties and make optimizations accordingly. For example, the use of fast
math asserts that the shader will never generate INF or NaN. If the program has an expression
X/Y, the compiler can assume Y is never zero as this could potentially result in positive/negative
infinite or NaN, depending on the value of X. If Y can be zero, you would have an undefined
program if compiled with fast math.

The #pragma metal fp pragmas allow you to specify floating-point options for a source code
section.

The following pragma has the same semantics to allow you to specify precise floating-point
semantics and floating-point exception behavior for a source code section. It can only appear in
file or namespace scope, within a language linkage specification, or at the start of a compound
statement (excluding comments). When using it within a compound statement, the pragma is
active within the scope of the compound statement.

#pragma METAL fp math_mode([relaxed | safe | fast])

By default, the compiler allows floating-point contractions. For example, a*b+c may be
converted to a single fused-multiply-add. These contractions could lead to computation
differences if other expressions are not contracted. To disable allowing the compiler to
contractions, pass the following option:

- ffp - contract=off

The compiler also supports controlling contractions with the following pragma:
#pragma METAL fp contract([off | on | fast])

Using off disables contractions, on allows contractions with statement, and fast allows
contractions across statements. You can also use:

#pragma STDC FP_CONTRACT OFF

!"<": $ A.&+(-+.8' $=*23-)'($%34-*.5 $

If you are building with an SDK that supports iOS 14 or macOS 11, you need to pass the
following option to support vertex invariance.

- fpreserve - invariance

Preserve invariant for computations marked with [[invariant]] in vertex shaders. If
not set, [[invariant]] is ignored.

In previous versions of Metal, [[invariant]] was a best-effort analysis to mark which
operations need to be invariant and may fail in certain cases. This is replaced with a
conservative invariant model where the compiler marks operations that doesn’t go into an
invariant calculation. This will guarantee anything that is invariant calculation remains invariant.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 16 of 298

This option may reduce performance as it may prevent certain optimizations to preserve
invariance.

!"<"#$ %34-2-B+4-*.$=*23-)'($%34-*.5 $

These options control the optimization level of the compiler.
- O2
Optimize for performance (default).

- Os

 Like - O2 with extra optimizations to reduce code size.

!"<"<$?+C-2D2 $1*4+)$1@('+,/(*D3 $E-B' $%34-*. $

All OS: Metal 3 and later support maximum total threadgroup size option.

This option specifies the number of threads (value) in a threadgroup for every function in the
translation unit.

- fmax - total - threads - per - threadgroup=<value> !

The attribute [[max_total_threads_per_threadgroup]] function attribute described in
section 5.1.3, section 5.1.7, and section 5.1.8 takes precedence over the compile option.

This option is useful for setting the option to enable functions compiled for a dynamic library to
be compatible with a PSO.

!"<"F$ 1'C4D(' $G(-4' $;*D.,-./ $?*,' $

Configure the rounding mode for texture writes to floating-point pixel types by setting the -
f texture - write - rounding - mode compiler flag to one of the options in Table 1.1.

Table 1.1. Rounding mode

Rounding mode Description

native
(default)

Texture writes use the hardware’s native rounding strategy.

r te

Texture writes round to the nearest even number.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 17 of 298

Rounding mode Description

All OS: Metal 2.3 and
later.

r tz

All OS: Metal 2.3 and
later.

Texture writes round toward zero.

The - f texture - write - rounding - mode flag is available for these SDKs:
¥! macOS 11 and later
¥! iOS 14 and later
For more information about which GPU families support rounding modes other than native ,
see the Metal Feature Set Tables.

!"<"H$ =*23-)'($%34-*.5 $4*$I.+J)' $?*,D)'5 $

The compiler supports multiple options to control the use of modules. These options are only
available for the offline compiler:
 - fmodules

Enable the modules feature.
 - fimplicit - module - maps

Enable the implicit search for module map files named module.modulemap or a
similar name. By default, - fmodules enables this option. (The compiler
option - fno - implicit - module - maps disables this option.)

 - f no- implicit - module - maps

Disable the implicit search for module map files named module.modulemap .
module map files are only loaded if they are explicitly specified with - fmodule -
map- file or transitively used by another module map file.

 - fmodules - cache - path=<directory>

Specify the path to the modules cache. If not provided, the compiler selects a
system-appropriate default.

 - fmodule - map- file=<file>

Load the specified module map file, if a header from its directory or one of its
subdirectories is loaded.

If you are building with an SDK that supports iOS 16 or macOS 13, - fmodules has the
following additional options.

- fmodules =[mode]

Supported values for modes are:

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 18 of 298

stdlib : Enable the modules feature but restrict the search for module maps to
the Metal standard library. Enabled by default with an SDK that supports
iOS 16 or macOS 13.

all : Enable the modules feature (equivalent to - fmodules).
none: Disable the modules feature.

!"<"K$ =*23-)'($%34-*.5 $4*$I.+J)' $L*//-./ $

All OS: Metal 3.2 and later support logging for Apple silicon.

You need to provide the following compiler option to enable logging (see section 6.19) during
compilation.

- fmetal - enable - logging

!"<"!M$ =*23-)'($%34-*.5 $=*.4(*))-./ $4@'$L+./D+/' $N'(5-*. $

The following option controls the version of the unified graphics and computing language
accepted by the compiler:
 - std=

Determine the language revision to use. A value for this option must be provided, which must
be one of:

!! ios - metal1.0 : Supports the unified graphics and computing language revision 1
programs for iOS 8. [[deprecated and will be removed in future OS]]

!! ios - metal1.1 : Supports the unified graphics and computing language revision 1.1
programs for iOS 9.

!! ios - metal1.2 : Supports the unified graphics and computing language revision 1.2
programs for iOS 10.

!! ios - metal2.0 : Supports the unified graphics and computing language revision 2
programs for iOS 11.

!! ios - metal2.1 : Supports the unified graphics and computing language revision 2.1
programs for iOS 12.

!! ios - metal2.2 : Supports the unified graphics and computing language revision 2.2
programs for iOS 13.

!! ios - metal2.3 : Supports the unified graphics and computing language revision 2.3
programs for iOS 14.

!! ios - metal2.4 : Supports the unified graphics and computing language revision 2.4
programs for iOS 15.

!! macos - metal1,1 or osx - metal1.1 : Supports the unified graphics and computing
language revision 1.1 programs for macOS 10.11.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 19 of 298

!! macos - metal1.2 or osx - metal1.2 : Supports the unified graphics and computing
language revision 1.2 programs for macOS 10.12.

!! macos - metal2. 0 or osx - metal2.0 : Supports the unified graphics and computing
language revision 2 programs for macOS 10.13.

!! macos - metal2.1 : Supports the unified graphics and computing language revision 2.1
programs for macOS 10.14.

!! macos - metal2.2 : Supports the unified graphics and computing language revision 2.2
programs for macOS 10.15.

!! macos - metal2.3 : Supports the unified graphics and computing language revision 2.3
programs for macOS 11.

!! macos - metal2.4 : Supports the unified graphics and computing language revision 2.4
programs for macOS 12.

Note that macos-* is available in macOS 10.13 SDK and later.

As of macOS 13, iOS 16 and tvOS 16, Metal has unified the shading language between the
platforms.

!! metal 3. 0: Supports the unified graphics and computing language revision 3 programs
for macOS 13, iOS 16, and tvOS 16.

!! metal 3. 1: Supports the unified graphics and computing language revision 3.1
programs for macOS 14, iOS 17, tvOS 17, and visionOS 1.

!! metal 3. 2: Supports the unified graphics and computing language revision 3.2
programs for macOS 15, iOS 18, tvOS 18, and visionOS 2. Any feature that requires
metal 3. 2 is supported only for Apple silicon.

!"<"!! $ =*23-)'($%34-*.5 $4*$;'OD'54 $*($ED33('55 $G+(.-./5 $

The following options are available:
 - Werror

Make all warnings into errors.
 - w

Inhibit all warning messages.
!"<"!0 $ 1+(/'4 $=*.,-4-*.+)5 $

Metal defines several macros which one can use to determine what platform the shader is
running on. The following macros are defined in <TargetConditionals.h> :

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 20 of 298

TARGET_OS_MAC : Generated code runs under Mac OS X variant
TARGET_OS_OSX : Generated code run s under OS X devices
TARGET_OS_IPHONE : Generated code for firmware, devices or simulator
TARGET_OS_IOS : Generated code run s under iOS
TARGET_OS_TV : Generated code run s under tv OS
TARGET_OS_MACCATALYST : Generated code run s under macOS
TARGET_OS_SIMULATOR : Generated code run s under a simulator
TARGET_OS_VISION : Generated code run s under v ision OS
 (Available in SDKs in late 202 3)

Note that this header is not part of <metal_stdlib> .

!"<"!6 $ 9P.+2-8 $L-J(+(P$L-.Q'($%34-*.5 $

The Metal compiler driver can pass options to the linker. Here is a brief description of some of
these options. See the Metal linker for more information.
 -dynamiclib

Specify that the output is a dynamic library.

- install_name

Used with - dynamiclib to specify the location of where the dynamic library is
expected be installed and found by the loader. Use with @executable_path and
@loader_path .

!"<"!: $ %34-*.5 $>*($= *23-)-./ $4*$R7S $T-.+(-'5 $

The following options are available for compiling to a GPU binary if you are building with an SDK
that supports iOS 16 or macOS 13.

-arch [architecture]
Specify the architecture to build for.

-gpu - family [gpu family name]
Specify the architectures associated with the MTLGPUFamily to build for. See
MTLGPUFamily in Metal API for the list of available families.

-N [descriptor.mtlp - json]
Specify the pipeline descriptors in Metal script format. The descriptor files must end in
.mtlp - json .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 21 of 298

!"<"!# $ %34-*.5 $>*($R'.'(+4-./ $?'4+) $L-J(+(P$EP2J*) $U-)'5 $

If you are building with an SDK that supports iOS 15 or macOS 12, the following option is
available to generate a Metal library symbol file.

- frecord - sources

Enable the compiler to store source information into the AIR or Metal library file
(.metallib).

- frecord - sources=flat

Enable the compiler to store source information if generating an AIR file. Enable the
compiler to store the source information in a symbol companion file (.metallibsym)
if generating a Metal Library file.

See Generating and Loading a Metal Symbol File at developer.apple.com for more information.

1.7! Metal Coordinate Systems
Metal defines several standard coordinate systems to represent transformed graphics data at
different stages along the rendering pipeline.
A four-dimensional homogenous vector (x,y,z,w) specifies a three-dimensional point in 9:0(;
!(#9%'9))&$01#6%!. A vertex shader generates positions in clip-space coordinates. Metal divides
the x , y , and z values by w to convert clip-space coordinates into 1)&+#:0<%$'$%=09%'
9))&$01#6%!.
Normalized device coordinates use a :%>6;"#1$%$'9))&$01#6%'!?!6%+ (see Figure 1) and map to
positions in the viewport. These coordinates are independent of viewport size. The lower-left
corner of the viewport is at an (x,y) coordinate of (- 1.0, - 1.0) and the upper corner is at
(1.0,1.0) . Positive-z values point away from the camera ("into the screen"). The visible
portion of the z coordinate is between 0.0 and 1.0 . The Metal rendering pipeline clips
primitives to this box.

https://developer.apple.com/documentation/metal/shader_libraries/generating_and_loading_a_metal_library_symbol_file

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 22 of 298

Figure 1. Normalized device coordinate system !

The rasterizer stage transforms normalized-device coordinates (NDC) into =0%@()&6'9))&$01#6%!
(see Figure 2). The (x,y) coordinates in this space are measured in pixels, with the origin in
the top-left corner of the viewport and positive values going to the right and down. You specify
viewports in this coordinate space, and the Metal maps NDC coordinates to the extents of the
viewport.
If you are using variable rasterization rate (see Section 6.15), then the viewport coordinate
system is a logical coordinate system independent of the render target’s physical layout. A rate
map determines the relationship between coordinates in this logical coordinate system
(sometimes called screen space) and pixels in the render targets (physical coordinates).

Figure 2. Viewport coordinate system

,%A63&%'9))&$01#6%! use a similar coordinate system to viewport coordinates. Texture
coordinates can also be specified using 1)&+#:0<%$'6%A63&%'9))&$01#6%!. For 2D textures,
normalized texture coordinates are values from 0.0 to 1.0 in both x and y directions, as seen
in Figure 3. A value of (0.0 , 0.0) specifies the pixel at the first byte of the image data (the top-
left corner of the image). A value of (1.0 , 1.0) specifies the pixel at the last byte of the image
data (the bottom-right corner of the image).

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 23 of 298

Figure 3. Normalized 2D texture coordinate system

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 24 of 298

2! Data Types
This chapter details the Metal data types, including types that represent vectors and matrices.
The chapter also discusses atomic data types, buffers, textures, samplers, arrays, user-defined
structures, type alignment, and type conversion.

2.1! Scalar Data Types
Metal supports the scalar types listed in Table 2.1. Metal does "#$ support the double , long
long , unsigned long long , and long double data types.

Table 2.1. Metal scalar data type s

Type Description

bool A conditional data type that has the value of either true or false .
The value true expands to the integer constant 1, and the value
false expands to the integer constant 0.

char
int8_t

A signed two’s complement 8-bit integer.

unsigned char
uchar
uint8_t

An unsigned 8-bit integer.

short
int16_t

A signed two’s complement 16-bit integer.

unsigned short
ushort
uint16_t

An unsigned 16-bit integer.

int
int32_t

A signed two’s complement 32-bit integer.

unsigned int
uint
uint32_t

An unsigned 32-bit integer.

long
int64_t

All OS: Metal 2.2 and
later.

A signed two’s complement 64-bit integer.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 25 of 298

Type Description

unsigned long
uint64_t

All OS: Metal 2.2 and
later.

An unsigned 64-bit integer.

half A 16-bit floating-point. The half data type must conform to the
IEEE 754 binary16 storage format.

bfloat

All OS: Metal 3.1 and
later.

A 16-bit brain floating-point. The bfloat data type is a truncated
version of float for machine learning applications, using an 8-bit
(7 explicitly stored) rather than 24-bit mantissa).

float A 32-bit floating-point. The float data type must conform to the
IEEE 754 single precision storage format.

size_t An unsigned integer type of the result of the sizeof operator.
This is a 64-bit unsigned integer.

ptrdiff_t A signed integer type that is the result of subtracting two pointers.
This is a 64-bit signed integer.

void The void type comprises an empty set of values; it is an
incomplete type that cannot be completed.

Metal supports:
¥! the f or F suffix to specify a single precision floating-point literal value (such as 0.5f or

0.5F).
¥! the h or H suffix to specify a half precision floating-point literal value (such as 0.5h or

0.5H).
¥! the bf or suffix to specify a brain precision floating-point literal value (such as 0.5 bf or

0.5 BF).
¥! the u or U suffix for unsigned integer literals.
¥! the l or L suffix for signed long integer literals.

Table 2.2 lists the size and alignment of most of the scalar data types.

Table 2.2. Size and alignment of scalar data types

Type Size
(in bytes)

Alignment
(in bytes)

bool 1 1

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 26 of 298

Type Size
(in bytes)

Alignment
(in bytes)

char
int8_t
unsigned char
uchar
uint8_t

1 1

short
int16_t
unsigned short
ushort
uint16_t

2 2

int
int32_t
unsigned int
uint
uint32_t

4 4

long
int64_t
unsigned long
uint64_t

8 8

size_t 8 8

half 2 2
bfloat 2 2
float 4 4

2.2! Vector Data Types
Metal supports a subset of the vector data types implemented by the system vector math
library. Metal supported these vector type names, where n is 2, 3, or 4, representing a 2-, 3-, or
4- component vector type, respectively:
¥! booln
¥! charn
¥! shortn
¥! intn
¥! longn
¥! ucharn
¥! ushortn
¥! uintn

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 27 of 298

¥! ulongn
¥! halfn
¥! bfloatn (Metal 3.1 and later)
¥! floatn

Metal also supports vec<T,n> where T is a valid scalar type and n is 2, 3, or 4, representing a
2-, 3-, or 4- component vector type.
Table 2.3 lists the size and alignment of the vector data types.

Table 2.3. Size and alignment of vector data types

Type Size
(in bytes)

Alignment
(in bytes)

bool2 2 2
bool3 4 4
bool4 4 4
char2
uchar2

2 2

char3
uchar3

4 4

char4
uchar4

4 4

short2
ushort2

4 4

short3
ushort3

8 8

short4
ushort4

8 8

int2
uint2

8 8

int3
uint3

16 16

int4
uint4

16 16

long2
ulong2

16 16

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 28 of 298

Type Size
(in bytes)

Alignment
(in bytes)

long3
ulong3

32 32

long4
ulong4

32 32

half2 4 4
half3 8 8
half4 8 8
bfloat 2 4 4
bfloat3 8 8
bfloat 4 8 8
float2 8 8
float3 16 16
float4 16 16

0"0"!$ V88'55-./ $N'84*($=*23*.'.45 $

You can use an array index to access vector components. Array index 0 refers to the first
component of the vector, index 1 to the second component, and so on. The following examples
show various ways to access array components:
pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

float x = pos[0]; // x = 1.0

float z = pos[2]; // z = 3.0

float4 vA = float4(1.0f, 2.0f, 3.0f, 4.0f);

float4 vB;

for (int i=0; i<4; i++)

vB[i] = vA[i] * 2.0f // vB = (2.0, 4.0, 6.0, 8.0);

Metal supports using a period (.) as a selection operator to access vector components, using
letters that may indicate coordinate or color data:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 29 of 298

<vector_data_type>.xyzw

<vector_data_type>.rgba

The following code initializes a vector test and then uses the .xyzw or .rgba selection syntax
to access individual components:
int4 test = int4(0, 1, 2, 3);

int a = test.x; // a = 0

int b = test.y; // b = 1

int c = test.z; // c = 2

int d = test.w; // d = 3

int e = test.r; // e = 0

int f = test.g; // f = 1

int g = test.b; // g = 2

int h = test.a; // h = 3

The component selection syntax allows the selection of multiple components:
float4 c;

c.xyzw = float4(1.0f, 2.0f, 3.0f, 4.0f);

c.z = 1.0f;

c.xy = float2(3.0f, 4.0f);

c.xyz = float3(3.0f, 4.0f, 5.0f);

The component selection syntax also allows the permutation or replication of components:
float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

float4 swiz = pos.wzyx; // swiz = (4.0f, 3.0f, 2.0f, 1.0f)

float4 dup = pos.xxyy; // dup = (1.0f, 1.0f, 2.0f, 2.0f)

The component group notation can occur on the left-hand side (lvalue) of an expression. To
form the lvalue, you may apply swizzling. The resulting lvalue may be either the scalar or vector
type, depending on number of components specified. Each component must be a supported
scalar or vector type. The resulting lvalue of vector type must not contain duplicate
components.
float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

// pos = (5.0, 2.0, 3.0, 6.0)

pos.xw = float2(5.0f, 6.0f);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 30 of 298

// pos = (8.0, 2.0, 3.0, 7.0)

pos.wx = float2(7.0f, 8.0f);

// pos = (3.0, 5.0, 9.0, 7.0)

pos.xyz = float3(3.0f, 5.0f, 9.0f);

When assigning a swizzled value to a variable, the GPU may need to read the existing value,
modify it, and write the result back. The assignment to pos.xw in the example above, causes
the GPU to load the float4 value, shuffle values 5.0f and 6.0f into it, and the write back the
result back into pos. If two threads write to different components of the vector at the same time,
the result is undefined.
The following methods of vector component access are not permitted and result in a compile-
time error:
¥! Accessing components beyond those declared for the vector type is an error.

2-component vector data types can only access .xy or .rg elements. 3-component vector
data types can only access .xyz or .rgb elements.

float2 pos; // This is a 2- component vector.

pos.x = 1.0f; // x is legal and so is y .

pos.z = 1.0f; // z is illegal and so is w. z is the 3rd
component.

float3 pos; // This is a 3- component vector.

pos.z = 1.0f; // z is legal for a 3- component vector.

pos .w = 1.0f; // This is illegal . w is the 4th component.
¥! Accessing the same component twice on the left-hand side is ambiguous and is an error:

// This is illegal because 'x' is used twice .

pos.xx = float2(3.0f, 4.0f);

¥! Accessing a different number of components is an error:
// This is illegal due to a mismatch between float2 and float4 .

pos.xy = float4(1.0f, 2.0f, 3.0f, 4.0f);

¥! Intermixing the .rgba and .xyzw syntax in a single access is an error:
float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

pos.x = 1.0f; // OK

pos.g = 2.0f; // OK

// These are illegal due to mixing rgba and xyzw attributes.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 31 of 298

pos.xg = float2(3.0f, 4.0f);

float3 coord = pos.ryz;

¥! A pointer or reference to a vector with swizzles is an error:
float4 pos = float4(1.0f, 2.0f, 3.0f, 4.0f);

my_func(&pos.xy); // This is an illegal poin ter to a swizzle .

The sizeof operator on a vector type returns the size of the vector, which is given as the
number of components * size of each component. For example, sizeof(float4) returns 16
and sizeof(half4) returns 8.

0"0"0$ N'84*($=*.54(D84*(5 $

You can use constructors to create vectors from a set of scalars or vectors. The parameter
signature determines how to construct and initialize a vector. For instance, if the vector is
initialized with only a single scalar parameter, all components of the constructed vector are set
to that scalar value.
If you construct a vector from multiple scalars, one or more vectors, or a mixture of scalars and
vectors, Metal consumes the vector's components in order from the components of the
arguments. Metal consumes the arguments from left to right. Metal consumes all of an
argument’s components, in order, before any components from the following argument.
This is a list of constructors for float4 :
float4(float x);

float4(float x, float y, float z, float w);

float4(float2 a, float2 b);

float4(float2 a, float b, float c);

float4(float a, float b, float2 c);

float4(float a, float2 b, float c);

float4(float3 a, float b);

float4(float a, float3 b);

float4(float4 x);

This is a list of constructors for float3 :
float3(float x);

float3(float x, float y, float z);

float3(float a, float2 b);

float3(float2 a, float b);

float3(float3 x);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 32 of 298

This is a list of constructors for float2 :
float2(float x);

float2(float x, float y);

float2(float2 x);

The following examples illustrate uses of the aforementioned constructors:
float x = 1.0f, y = 2.0f, z = 3.0f, w = 4.0f;

float4 a = float4(0.0f);

float4 b = float4(x, y, z, w);

float2 c = float2(5.0f, 6.0f);

float2 a = float2(x, y);

float2 b = float2(z, w);

float4 x = float4(a.xy, b.xy);

Under-initializing a vector constructor results in a compile-time error.

0"0"6$ 7+8Q', $N'84*($1P3'5 $

You must align the vector data types described in section 2.2 to the size of the vector. You can
also require their vector data to be tightly packed; for example, a vertex structure that may
contain position, normal, tangent vectors and texture coordinates tightly packed and passed as
a buffer to a vertex function.
The supported packed vector type names are:
¥! packed_charn
¥! packed_shortn
¥! packed_intn
¥! packed_ucharn
¥! packed_ushortn
¥! packed_uintn
¥! packed_halfn
¥! packed bfloatn (Metal 3.1 and later)
¥! packed_floatn
¥! packed_longn (Metal 2.3 and later)
Where n is 2, 3, or 4 representing a 2-, 3-, or 4- component vector type, respectively. (The
packed_booln vector type names are reserved.)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 33 of 298

Metal also supports packed_v ec<T,n> where T is a valid scalar type and n is 2, 3, or 4,
representing a 2-, 3-, or 4- component packed vector type.

Table 2.4 lists the size and alignment of the packed vector data types.

Table 2.4 . Size and alignment of packed vector data types

Type Size (in bytes) Alignment (in bytes)

packed_char2,
packed_uchar2

2 1

packed_char3,
packed_uchar3

3 1

packed_char4,
packed_uchar4

4 1

packed_short2,
packed_ushort2

4 2

packed_short3,
packed_ushort3

6 2

packed_short4,
packed_ushort4

8 2

packed_int2,
packed_uint2

8 4

packed_int3,
packed_uint3

12 4

packed_int4,
packed_uint4

16 4

packed_half2 4 2
packed_half3 6 2
packed_half4 8 2
packed_bfloat2 4 2
packed_bfloat3 6 2
packed_bfloat4 8 2
packed_float2 8 4
packed_float3 12 4
packed_float4 16 4

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 34 of 298

Type Size (in bytes) Alignment (in bytes)

packed_long2 16 8
packed_long3 24 8
packed_long4 32 8

Packed vector data types are typically used as a data storage format. Metal supports the
assignment, arithmetic, logical, relational, and copy constructor operators for packed vector
data types. Metal also supports loads and stores from a packed vector data type to an aligned
vector data type and vice-versa.
Examples:
device float4 *buffer;

device packed_float4 *packed_buffer;

int i;

packed_float4 f (buffer[i]);

pack_buffer[i] = buffer[i];

// An operator used to convert from packed_float4 to float4 .

buffer[i] = float4(packed_buffer[i]);

You can use an array index to access components of a packed vector data type. Since Metal
2.1, you can use .xyzw or .rgba selection syntax to access components of a packed vector
data type. The semantics and restrictions when swizzling for packed vector data type are the
same as for vector types.
Example:
packed_float4 f;

f[0] = 1.0f; // OK

f.x = 1.0f; // OK Metal 2.1 and later .

2.3! Matrix Data Types
Metal supports a subset of the matrix data types implemented by the system math library.
The supported matrix type names are:

¥! halfnxm
¥! floatnxm

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 35 of 298

Where n and m are numbers of columns and rows. n and m must be 2, 3, or 4. A matrix of type
floatnxm consists of n floatm vectors. Similarly, a matrix of type halfnxm consists of n
halfm vectors.

Metal also supports matrix <T, c, r > where T is a valid floating-point type, c is 2, 3, or 4, and
r is 2, 3, or 4.

Table 2.5 lists the size and alignment of the matrix data types.

Table 2.5. Size and alignment of matrix data types

Type Size (in bytes) Alignment (in bytes)

half2x2 8 4
half2x3 16 8
half2x4 16 8
half3x2 12 4
half3x3 24 8
half3x4 24 8
half4x2 16 4
half4x3 32 8
half4x4 32 8
float2x2 16 8
float2x3 32 16
float2x4 32 16
float3x2 24 8
float3x3 48 16
float3x4 48 16
float4x2 32 8
float4x3 64 16
float4x4 64 16

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 36 of 298

0"6"!$ V88'55-./ $?+4(-C$=*23*.'.45 $

You can use the array subscripting syntax to access the components of a matrix. Applying a
single subscript to a matrix treats the matrix as an array of column vectors. Two subscripts
select a column and then a row. The top column is column 0. A second subscript then operates
on the resulting vector, as defined earlier for vectors.
float4x4 m;

// This sets the 2nd column to all 2.0 .

m[1] = float4(2.0f);

// This sets the 1st element of the 1st column to 1.0 .

m[0][0] = 1.0f;

// This sets the 4th element of the 3rd column to 3.0 .

m[2][3] = 3.0f;

You can access floatnxm and halfnxm matrices as an array of n floatm or n halfm
entries.
Accessing a component outside the bounds of a matrix with a nonconstant expression results in
undefined behavior. Accessing a matrix component that is outside the bounds of the matrix
with a constant expression generates a compile-time error.

0"6"0$?+4(-C$=*.54(D84*(5 $

You can use constructors to create matrices from a set of scalars, vectors, or matrices. The
parameter signature determines how to construct and initialize a matrix. For example, if you
initialize a matrix with only a single scalar parameter, the result is a matrix that contains that
scalar for all components of the matrix’s diagonal, with the remaining components initialized to
0.0. For example, a call to:
float4x4(fval);

Where fval is a scalar floating-point value constructs a matrix with these initial contents:
fval 0.0 0.0 0.0

0.0 fval 0.0 0.0

0.0 0.0 fval 0.0

0.0 0.0 0.0 fval

You can also construct a matrix from another matrix that has the same number of rows and
columns. For example:
float3x4(float3x4);

float3x4(half3x4);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 37 of 298

Metal constructs and consumes matrix components in column-major order. The matrix
constructor needs to have just enough specified values in its arguments to initialize every
component in the constructed matrix object. Providing more arguments than necessary results
in an error. Under-initializing a matrix constructor results in a compile-time error.
You can also construct a matrix of type T with n columns and m rows from n vectors of type T
with m components. The following examples are legal constructors:
float2x2(float2, float2);

float3x3(float3, float3, float3);

float3x2(float2, float2, float2);

Since Metal 2, a matrix of type T with n columns and m rows can also be constructed from n * m
scalars of type T. The following examples are legal constructors:
float2x2(float, float, float, float);

float3x2(float, float, float, float, float, float);

The following are examples of matrix constructors that Metal doesn’t support. You can’t
construct a matrix from combinations of vectors and scalars.
// Not supported .

float2x3(float2 a, float b, float2 c, float d);

2.4! SIMD-group Matrix Data Types
All OS: Metal 2.3 and later support SIMD-group matrix types.
Metal supports a matrix type simdgroup_matrix<T,Cols,Rows> defined in
<metal_simdgroup_matrix> . Operations on SIMD-group matrices are executed
cooperatively by threads in the SIMD-group. Therefore, all operations must be executed only
under uniform control-flow within the SIMD-group or the behavior is undefined.

Metal supports the following SIMD-group matrix type names, where T is half , bfloat (since
Metal 3.1) or float and Cols and Rows are 8:

¥! simdgroup_half8x8
¥! simdgroup_ bfloat 8x8 (Metal 3.1 and later)
¥! simdgroup_float8x8

The mapping of matrix elements to threads in the SIMD-group is unspecified. For a description
of which functions Metal supports on SIMD-group matrices, see section 6.7

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 38 of 298

2.5! Alignment of Data Types
You can use the alignas alignment specifier to specify the alignment requirement of a type or
an object. You may also apply the alignas specifier to the declaration of a variable or a data !
member of a structure or class. You may also apply it to the declaration of a structure, class, or
enumeration type.
The Metal compiler is responsible for aligning data items to the appropriate alignment as !
required by the data type. For arguments to a graphics or kernel function declared to be a
pointer to a data type, the Metal compiler assumes that the object referenced by the pointer is
always appropriately aligned as required by the data type.

2.6! Atomic Data Types
Objects of atomic types are free from data races. If one thread writes to an atomic object while
another thread reads from it, the behavior is well-defined.
Metal supports atomic<T> , where T can be int , uint , bool , or ulong for all OSes that
support Metal 2.4 and later, or T can be float for all OSes that support Metal 3 and later.

Metal provides these type aliases for atomic types:
atomic_int A type of alias of atomic<int> for OSes that support Metal 1 and later.
atomic_uint A type of alias of atomic< uint> for OSes that support Metal 1 and later.
atomic_bool A type of alias of atomic< bool > for OSes that support Metal 2.4 and later.
atomic _ulong A type of alias of atomic< ulong > for OSes that support Metal 2.4 and later.
atomic_float A type of alias of atomic< float > for OSes that support Metal 3 and later.

Metal atomic functions (as described in section 6.15) can only use Metal atomic data types.
These atomic functions are a subset of the C++14 atomic and synchronization functions.

2.7! Pixel Data Types
iOS: Metal 2 and later support pixel data types.
macOS: Metal 2.3 and later support pixel data types.
The Metal pixel data type is a templated type that describes the pixel format type and its !
corresponding ALU type. The ALU type represents the type returned by a load operation !
and the input type specified for a store operation. Pixel data types are generally !
available in all address spaces. (For more about address spaces, see section 4.)
Table 2.6 lists supported pixel data types in MSL, as well as their size and alignment. !

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 39 of 298

Table 2.6 . Metal pixel data types

Pixel Data Type Supported values
of T

Size !
(in bytes)

Alignment !
(in bytes)

r8unorm<T> half or float 1 1
r8snorm<T> half or float 1 1
r16unorm<T> float 2 2
r16snorm<T> float 2 2
rg8unorm<T> half2 or float2 2 1
rg8snorm<T> half2 or float2 2 1
rg16unorm<T> float2 4 2
rg16snorm<T> float2 4 2
rgba8unorm<T> half4 or float4 4 1
srgba8unorm<T> half4 or float4 4 1
rgba8snorm<T> half4 or float4 4 1
rgba16unorm<T> float4 8 2
rgba16snorm<T> float4 8 2
rgb10a2<T> half4 or float4 4 4
rg11b10f<T> half3 or float3 4 4
rgb9e5<T> half3 or float3 4 4

Only assignments and equality/inequality comparisons between the pixel data types and their
corresponding ALU types are allowed. (The following examples show the buffer(n) attribute,
which is explained in section 5.2.1.)
Example:
kernel void
my_kernel(device rgba8unorm<half4> *p [[buffer(0)]],

 uint gid [[thread_position_in_grid]], É)
{

rgba8unorm<half4> x = p[index]; half4 val = p[gid];
É
p[gid] = val;
p[index] = x;

}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 40 of 298

Example:
struct Foo {

rgba8unorm<half4> a;
};

kernel void
my_kernel(device Foo *p [[buffer(0)]],

 uint gid [[thread_position_in_grid]], É)
{

half4 a = p[gid].a;
É
p[gid].a = a;

}

2.8! Buffers
MSL implements a buffer as a pointer to a built-in or user defined data type described in the
device , constant , or threadgroup address space. (For more about these address space
attributes, see sections 4.1, 4.2, and 4.4, respectively.)
Ordinary Metal buffers may contain:

"! Basic types such as float and int
"! Vector and matrix types
"! Arrays of buffer types
"! Structures of buffer types
"! Unions of buffer types

Note: As of Metal 2.3, Metal supports buffers that contain long or ulong data types.
The example below shows buffers as arguments to a function that performs the Phong
interpolation model. The first two arguments are buffers in the device address space. The
third argument is a buffer in the constant address space.
vertex ColorInOut
phong_vertex(const device packed_float3* vertices [[buffer(0)]],
 const device packed_float3* normals [[buffer(1)]],
 constant AAPL::uniforms_t& uniforms [[buffer(2)]],
 unsigned int vid [[vertex_id]])
{
 ...
}

For more about the buffer(n) attribute used in the example, see section 5.2.1.
For details about argument buffers, see section 2.13.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 41 of 298

2.9! Textures
All OS: Metal 3.2 and later support memory_coherence for Apple silicon.
The texture data type is a handle to one-, two-, or three-dimensional texture data that
corresponds to all or a portion of a single mipmap level of a texture.
enum class access { sample, read, write, read_write };

As of Metal 3.2, texture supports the optional memory coherence parameter (see section 4.8).
enum memory_coherence {
 memory_coherence_threadgroup,
 memory_coherence_device
} ;

The description below uses the Metal 3.2 template definition with the additional optional
coherence parameter. Metal 3.1 and earlier drop that parameter. For example,
// Prior to Metal 3.2
texture1d<T, access a = access::sample >

versus
// Metal 3.2 and later
texture1d<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

The following templates define specific texture data types:
texture1d<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

texture1d_array<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

texture2d<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

texture2d_array<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

texture3d<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

texturecube<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

texturecube_array<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

texture2d_ms<T, access a = access::read ,
 memory_coherence c = memory_coherence_threadgroup >

texture2d_ms_array<T, access a = access::read ,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 42 of 298

 memory_coherence c = memory_coherence_threadgroup >

To use sample_compare with a depth format, you need to declare one of the following texture
types:
depth2d<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

depth2d_array<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

depthcube<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

depthcube_array<T, access a = access::sample ,
 memory_coherence c = memory_coherence_threadgroup >

depth2d_ms<T, access a = access::read ,
 memory_coherence c = memory_coherence_threadgroup >

depth2d_ms_array<T, access a = access::read ,
 memory_coherence c = memory_coherence_threadgroup >

macOS supports texture2d_ms_array and depth2d_ms_array since Metal 2. All other types
supported since Metal 1.
iOS supports all types except texture2d_ms_array and depth2d_ms_array since Metal 1.
T specifies the color type of one of the components returned when reading from a texture or the
color type of one of the components specified when writing to the texture. For texture types
(except depth texture types), T can be half , float , short , ushort , int , or uint . For depth
texture types, T must be float .
If T is int or short , the data associated with the texture must use a signed integer format. If T
is uint or ushort , the data associated with the texture must use an unsigned integer format.
If T is half , the data associated with the texture must either be a normalized (signed or
unsigned integer) or half-precision format. If T is float , the data associated with the texture
must either be a normalized (signed or unsigned integer), half or single-precision format.

These access attributes describe support for accessing a texture:
¥! sample — A graphics or kernel function can sample the texture object. sample implies the

ability to read from a texture with and without a sampler.
¥! read — Without a sampler, a graphics or kernel function can only read the texture object.
¥! write — A graphics or kernel function can write to the texture object.
¥! read_write — A graphics or kernel function can read and write to the texture object.
All OS: Metal 1.2 and later support read_write access. Metal 1 and later support other access
qualifiers.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 43 of 298

Multisampled textures only support the read attribute. Depth textures only support the
sample and read attributes.

The following example uses access qualifiers with texture object arguments:
void foo (texture2d<float> imgA [[texture(0)]],

 texture2d<float, access::read> imgB [[texture(1)]],
texture2d<float, access::write> imgC [[texture(2)]])

{É}

(For a description of the texture attribute, see section 5.2.1.)

You can use a texture type as the variable type for any variables declared inside a function. The
access attribute for variables of texture type declared inside a function must be
access::read or access:sample . Declaring variables inside a function to be a texture type
without using access::read or access:sample qualifiers causes a compilation error.
Examples:
void foo (texture2d<float> imgA [[texture(0)]],

 texture2d<float, access::read> imgB [[texture(1)]],
texture2d<float, access::write> imgC [[texture(2)]])

{
 texture2d<float> x = imgA; // OK
 texture2d<float, access::read> y = imgB; // OK
 texture2d<float, access::write> z; // This is illegal .
 É
}

In Metal 3.2 and later, you can indicate whether texture operations are coherent across the
device, meaning that texture operations are visible to other threads across thread groups if you
synchronize them properly. For example,
constant texture2d<float, access::sample,
 memory_coherence_device> gtex [[texture(2)]];

constant texture2d<int, access::write,
 memory_coherence :: memory_coherence_device>
 gtex2 [[texture(8)]];

See section 4.8 for more information about coherence.

0"K"!$ 1'C4D(' $TD>>'(5$

All OS: Metal 2.1 and later support texture buffers.
A texture buffer is a texture type that can access a large 1D array of pixel data and perform
dynamic type conversion between pixel formats on that data with optimized performance.
Texture buffers handle type conversion more efficiently than other techniques, allowing access
to a larger element count, and handling out-of-bounds read access. Similar type conversion can
be achieved without texture buffers by either:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 44 of 298

"! Reading the pixel data (just like any other array) from a texture object and performing the
pixel transformation to the desired format.

"! Wrapping a texture object around the data of a buffer object, and then accessing the
shared buffer data via the texture. This wrapping technique provides the pixel
conversion, but requires an extra processing step, and the size of the texture is limited.

The following template defines the opaque type texture_buffer , which you can use like any
texture:
texture_buffer<T, access a = access::read>

access can be one of read , write , or read_write .
T specifies the type of a component returned when reading from a texture buffer or the type of
component specified when writing to a texture buffer. For a texture buffer, T can be one of
half , float , short , ushort , int , or uint .
For a format without an alpha channel (such as R, RG, or RGB), an out-of-bounds read returns
(0, 0, 0, 1). For a format with alpha (such as RGBA), an out-of-bounds read returns (0, 0, 0, 0).
For some devices, an out-of-bounds read might have a performance penalty.
Metal ignores an out-of-bounds write.
A texture buffer can support more texture data than a generic 1D texture, which has is a
maximum width of 16384. However, you cannot sample a texture buffer.
A texture buffer also converts data, delivering it in the requested texture format, regardless of
the source’s format. When creating a texture buffer, you can specify the format of the data in
the buffer (for example, RGBA8Unorm), and later the shader function can read it as a !
converted type (such as float4). As a result, a single pipeline state object can access data
stored in different pixel formats without recompilation.
A texture buffer, like a texture type, can be declared as the type of a local variable to a shader
function. For information about arrays of texture buffers, see section 2.12.1. For more about
texture buffer, see section 6.12.16.

2.10! Samplers
The sampler type identifies how to sample a texture. The Metal API allows you to create a
sampler object and pass it in an argument to a graphics or kernel function. You can describe a
sampler object in the program source instead of in the API. For these cases, you can only
specify a subset of the sampler state: the addressing mode, filter mode, normalized
coordinates, and comparison function.
Table 2.7 lists the supported sampler state enumerations and their associated values (and
defaults). You can specify these states when initializing a sampler in Metal program source.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 45 of 298

Table 2.7. Sampler state enumeration values

Enumeration Valid Values Description

coord normalized (default)
pixel

When sampling from a texture,
specifies whether the texture
coordinates are normalized values.

address repeat
mirrored_repeat
clamp_to_edge (default)
clamp_to_zero
clamp_to_border

Sets the addressing mode for all
texture coordinates.

s_address
t_address
r_address

repeat
mirrored_repeat
clamp_to_edge (default)
clamp_to_zero
clamp_to_border

Sets the addressing mode for
individual texture coordinates.

border_color
macOS: Metal 1.2.
iOS: Metal 2.3.

transparent_black
(default)!
opaque_black !
opaque_white

Specifies the border color to use with
the clamp_to_border addressing
mode.

filter nearest (default)
linear

Sets the magnification and
minification filtering modes for texture
sampling.

mag_filter nearest (default)
linear

Sets the magnification filtering mode
for texture sampling.

min_filter nearest (default)
linear

Sets the minification filtering mode for
texture sampling.

mip_filter none (default)
nearest
linear

Sets the mipmap filtering mode for
texture sampling. If none , the texture
is sampled as if it has a single mip
level. All samples are read from level
0.

compare_func never (default)
less
less_equal
greater
greater_equal
equal
not_equal
always

Sets the comparison test used by the
sample_compare and
gather_compare texture functions.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 46 of 298

macOS: Metal 1.2 and later support clamp_to_border address mode and border_color .
iOS: Metal 2.3 and later support clamp_to_border address mode or border_color .
With clamp_to_border , sampling outside a texture only uses the border color for the texture
coordinate (and does not use any colors at the edge of the texture). If the address mode is
clamp_to_border , then border_color is valid.
clamp_to_zero is equivalent to clamp_to_border with a border color of
transparent_black (0.0, 0.0, 0.0) with the alpha component value from the texture. If
clamp_to_zero is the address mode for one or more texture coordinates, the other texture
coordinates can use an address mode of clamp_to_border if the border color is
transparent_black . Otherwise, Metal doesn’t define the behavior.
If coord is set to pixel , the min_filter and mag_filter values must be the same, the
mip_filter value must be none , and the address modes must be either clamp_to_zero ,
clamp_to_border , or clamp_to_edge .

In addition to the enumeration types, you can also specify the maximum anisotropic filtering and
an LOD (level-of-detail) range for a sampler:
max_anisotropy(int value)

lod_clamp(float min, float max)

The following Metal program source illustrates several ways to declare samplers. (The
sampler(n) attribute that appears in the code below is explained in section 5.2.1.) Note that
samplers or constant buffers declared in program source do not need these attribute qualifiers.
You must use constexpr to declare samplers that you initialize in MSL source.
constexpr sampler s(coord::pixel,

 address::clamp_to_zero,
 filter::linear);

constexpr sampler a(coord::normalized);

constexpr sampler b(address::repeat);

constexpr sampler s(address::clamp_to_zero,

 filter::linear,
 compare_func::less);

constexpr sampler s(address::clamp_to_zero,

 filter::linear,
 compare_func::less,
 max_anisotropy(10),
 lod_clamp(0.0f, MAXFLOAT));

kernel void
my_kernel(device float4 *p [[buffer(0)]],
 texture2d<float> img [[texture(0)]],

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 47 of 298

 sampler smp [[sampler(3)]],
 É)
{
 É
}

2.11! Imageblocks
iOS: Metal 2 and later support imageblocks.
macOS: Metal 2.3 and later support imageblocks.
An imageblock is a 2D data structure (represented by width, height, and number of samples)
allocated in threadgroup memory that is an efficient mechanism for processing 2D image data.
Each element of the structure can be a scalar or vector integer or floating-point data type, pixel
data types (specified in Table 2.6 in section 2.7), an array of these types, or structures built
using these types. The data layout of the imageblock is opaque. You can use an (x, y)
coordinate and optionally the sample index to access the elements in the imageblock. The
elements in the imageblock associated with a specific (x, y) are the per-thread imageblock data
or just the imageblock data.
Section 5.6 details imageblock attributes, including the [[imageblock_data(type)]]
attribute. Section 6.13 lists the built-in functions for imageblocks.
Imageblocks are only used with fragment and kernel functions. Sections 5.6.3 and 5.6.4
describe how to access an imageblock in a fragment or kernel function, respectively.
For fragment functions, you can access only the fragment’s imageblock data (identified by the
fragment’s pixel position in the tile). Use the tile size to derive the imageblock dimensions.
For kernel functions, all threads in the threadgroup can access the imageblock. You typically
derive the imageblock dimensions from the threadgroup size, before you specify the
imageblock dimensions.
An imageblock !:09% refers to a region in the imageblock that describes the values of a given
element in the imageblock data structure for all pixel locations or threads in the imageblock.
The storage type of the imageblock slice must be compatible with the texture format of the
target texture, as listed in Table 2.8.

Table 2.8 . Imageblock slices and compatible target texture format s

Pixel Storage
Type

Compatible Texture Formats

float , half R32Float , R16Float , R8Unorm, R8Snorm , R16Unorm , R16Snorm

float2 , half2 RG32Float , RG16Float , RG8Unorm, RG8Snorm, RG16Unorm,
RG16Snorm

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 48 of 298

Pixel Storage
Type

Compatible Texture Formats

float4 , half4 RGBA32Float , RGBA16Float , RGBA8Unorm, RGBA8Snorm,
RGBA16Unorm, RGBA16Snorm, RGB10A2Unorm, RG11B10Float ,
RGB9E5Float

int , short R32Sint , R16Sint , R8Sint
int2 , short2 RG32Sint , RG16Sint , RG8Sint
int4 , short4 RGBA32Sint , RGBA16Sint , RGBA8Sint
uint , ushort R32Uint , R16Uint , R8Uint
uint2 , ushort2 RG32Uint , RG16Uint , RG8Uint
uint4 , ushort4 RGBA32Uint , RGBA16Uint , RGBA8Uint
r8unorm<T> A8Unorm , R8Unorm
r8snorm<T> R8Snorm
r16unorm<T> R16Unorm
r16snorm<T> R16Snorm
rg8unorm<T> RG8Unorm
rg8snorm<T> RG8Snorm
rg16unorm<T> RG16Unorm
rg16snorm<T> RG16Snorm
rgba8unorm<T> RGBA8Unorm, BGRA8Unorm
srgba8unorm<T> RGBA8Unorm_sRGB, BGRA8Unorm_sRGB
rgba8snorm<T> RGBA8Snorm, BGRA8Unorm
rgba16unorm<T> RGBA16Unorm
rgba16snorm<T> RGBA16Snorm
rgb10a2<T> RGB10A2Unorm
rg11b10f<T> RG11B10Float
rgb9e5<T> RGB9E5Float

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 49 of 298

2.12! Aggregate Types
Metal supports several aggregate types: arrays, structures, classes, and unions.
Do not specify a structure member with an address space attribute, unless the member is a
pointer type. All members of an aggregate type must belong to the same address space. (For
more about address spaces, see section 4.)

0"!0"! $ V((+P5$*>$1'C4D('5W$1'C4D(' $TD>>'(5W$+., $E+23)'(5 $

iOS: Metal 1.2 and later support arrays of textures. Metal 2 and later support arrays of samplers.
Metal 2.1 and later support arrays of texture buffers.!
macOS: Metal 2 and later support arrays of textures and arrays of samplers. Metal 2.1 and later
support arrays of texture buffers.
Declare an array of textures as either:
array<typename T, size_t N>
const array<typename T, size_t N>
typename is a texture type you declare with the access::read or access::sample
attribute. Metal 2 and later support an array of writeable textures (access::write) in macOS.
Metal 2.2 and later, with Apple GPU Family 5 and later, support it in iOS. (For more about
texture types, see section 2.9.)
Construct an array of texture buffers (see section 2.9.1) with the access::read qualifier
using:
array<texture_buffer<T>, size t N>

Declare an array of samplers as either:
array<sampler, size_t N>
const array<sampler, size_t N>
You can pass an array of textures or an array of samplers as an argument to a function
(graphics, kernel, or user function) or declare an array of textures or samples as a local variable
inside a function. You can also declare an array of samplers in program scope. Unless used in
an argument buffer (see section 2.13), you cannot declare an array<T, N> type (an array of
textures, texture buffers, or samplers) in a structure.
MSL also adds support for array_ref<T> . An array_ref<T> represents an immutable array
of size() elements of type T. T must be a sampler type or a supported texture type, including
texture buffers. The storage for the array is not owned by the array_ref<T> object. Implicit
conversions are provided from types with contiguous iterators like metal::array . A common
use for array_ref<T> is to pass an array of textures as an argument to functions so they can
accept a variety of array types.
The array_ref<T> type cannot be passed as an argument to graphics and kernel functions.
However, the array_ref<T> type can be passed as an argument to user functions. The
array_ref<T> type cannot be declared as local variables inside functions.
The member functions listed in sections 2.12.1.1 to 2.12.1.3 are available for the array of
textures, array of samplers, and the array_ref<T> types.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 50 of 298

2.12.1.1! Array Element Access with its Operator
Elements of an array of textures, texture buffers, or samplers can be accessed using the []
operator:
reference operator[] (size_t pos);

Elements of an array of textures, texture buffers, or samplers, or a templated type
array_ref<T> can be accessed using the following variant of the [] operator:
constexpr const_reference operator[] (size_t pos) const;

2.12.1.2! Array Capacity
size() returns the number of elements in an array of textures, texture buffers, or samplers.
constexpr size_t size();

constexpr size_t size() const;
Example:
kernel void
my_kernel(const array<texture2d<float>, 10> src [[texture(0)]],

 texture2d<float, access::write> dst [[texture(10)]],
É)

{
 for (int i=0; i<src.size(); i++)
 {
 if (is_null_texture(src[i]))
 break;
 process_image(src[i], dst);
 }
}

2.12.1.3!Constructors for Templated Arrays
constexpr array_ref();
constexpr array_ref(const array_ref &);
array_ref & operator=(const array_ref &);
constexpr array_ref(const T * array, size_t length);

template<size_t N>
constexpr array_ref(const T(&a)[N]);

template<typename T>
constexpr array_ref<T> make_array_ref(const T * array, size_t
length)

template<typename T, size_t N>
constexpr array_ref<T> make_array_ref(const T(&a)[N])

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 51 of 298

Examples of constructing arrays:
float4 foo(array_ref<texture2d<float>> src)
{
 float4 clr(0.0f);
 for (int i=0; i<src.size; i++)
 {
 clr += process_texture(src[i]);
 }
 return clr;
}

kernel void
my_kernel_A(const array<texture2d<float>, 10> src [[texture(0)]],

 texture2d<float, access::write> dst [[texture(10)]],
 É)

{
 float4 clr = foo(src);
 É
}

kernel void
my_kernel_B(const array<texture2d<float>, 20> src [[texture(0)]],

 texture2d<float, access::write> dst [[texture(10)]],
 É)

{
 float4 clr = foo(src);
 É
}

Below is an example of an array of samplers declared in program scope:
constexpr array<sampler, 2> = { sampler(address::clamp_to_zero),

 sampler(coord::pixel) };

0"!0"0$ E4(D84D('5 $*>$TD>>'(5W$1'C4D('5 W$+., $E+23)'(5 $$

Arguments to a graphics, kernel, visible, or user function can be a structure or a nested
structure with members that are buffers, textures, or samplers only. You must pass such a
structure by value. Each member of such a structure passed as the argument type to a graphics
or kernel function can have an attribute to specify its location (as described in section 5.2.1).
Example of a structure passed as an argument:
struct Foo {

texture2d<float> a [[texture(0)]];
depth2d<float> b [[texture(1)]];

};

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 52 of 298

[[kernel]] void
my_kernel(Foo f)
{É}

You can also nest structures, as shown in the following example:
struct Foo {

texture2d<float> a [[texture(0)]];
depth2d<float> b [[texture(1)]];

};

struct Bar {

Foo f;
sampler s [[sampler(0)]];

};

[[kernel]] void
my_kernel(Bar b)
{É}

Below are examples of invalid use-cases that shall result in a compilation error:
[[kernel]] void
my_kernel(device Foo& f) // This is an illegal use .
{É}

struct MyResources {

texture2d<float> a [[texture(0)]];
depth2d<float> b [[texture(1)]];
int c;

};

[[kernel]] void
my_kernel(MyResources r) // This is an illegal use .
{É}

2.13! Argument Buffers
All OS: Metal 2 and later support argument buffers.
Argument buffers extend the basic buffer types to include pointers (buffers), textures, texture
buffers, and samplers. However, argument buffers cannot contain unions. The following
example specifies an argument buffer structure called Foo for a function:
struct Foo {

texture2d<float, access::write> a;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 53 of 298

depth2d<float> b;
sampler c;
texture2d<float> d;
device float4* e;
texture2d<float> f;
texture_buffer<float> g;
int h;

};
kernel void
my_kernel(constant Foo & f [[buffer(0)]])
{É}

Arrays of textures and samplers can be declared using the existing array<T, N> templated
type. Arrays of all other legal buffer types can also be declared using C-style array syntax.
Members of argument buffers can be assigned a generic [[id(n)]] attribute, where n is a
32-bit unsigned integer that can be used to identify the buffer element from the Metal API.
Argument buffers can be distinguished from regular buffers if they contain buffers, textures,
samplers, or any element with the [[id]] attribute.
The same index may not be assigned to more than one member of an argument buffer.
Manually assigned indices do not need to be contiguous, but they must be monotonically
increasing. In the following example, index 0 is automatically assigned to foo1 . The
[[id(n)]] attribute specifies the index offsets for the t1 and t2 structure members. Since
foo2 has no specified index, it is automatically assigned the next index, 4, which is determined
by adding 1 to the maximum ID used by the previous structure member.
struct Foo {

texture2d<float> t1 [[id(1)]];
texture2d<float> t2 [[id(3)]];

};
struct Bar {

Foo foo1; // foo1 assigned idx 0, t1 and t2 assigned idx 1 and 3
Foo foo2; // foo2 assigned idx 4, t1 and t2 assigned idx 5 and 7

};

If you omit the [[id]] attribute, Metal automatically assigns an ID according to the following
rules:

1.! Metal assigns IDs to structure members in order, by adding 1 to the maximum ID of the
previous structure member. In the example below, the indices are not provided, so
indices 0 and 1 are automatically assigned.
struct MaterialTexture {

texture2d<float> tex; // Assigned index 0
float4 uvScaleOffset; // Assigned index 1

};

2.! Metal assigns IDs to array elements in order, by adding 1 to the maximum ID of the
previous array element. In the example below, indices 1-3 are automatically assigned to

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 54 of 298

the three array elements of texs1 . Indices 4-5 are automatically assigned to the fields
in materials[0] , indices 6-7 to materials[1] , and indices 8-9 to materials[2] .
The [[id(20)]] attribute starts by assigning index 20 to constants.
struct Material {

float4 diffuse; // Assigned index 0
array<texture2d<float>, 3> texs1; // Assigned indices
1- 3
MaterialTexture materials[3]; // Assigned indices
4- 9
int constants [[id(20)]] [4]; // Assigned indices
20- 23

};

3.! If a structure member or array element E is itself a structure or array, Metal assigns
indices to its structure members or array elements according to rules 1 and 2 recursively,
starting from the ID assigned to E. In the following example, index 4 is explicitly provided
for the nested structure called normal , so its elements (previously defined as tex and
uvScaleOffset) are assigned IDs 4 and 5, respectively. The elements of the nested
structure called specular are assigned IDs 6 and 7 by adding one to the maximum ID
(5) used by the previous member.
struct Material {

MaterialTexture diffuse; // Assigned indices 0, 1
MaterialTexture normal [[id(4)]];// Assigned indices 4, 5
MaterialTexture specular; // Assigned indices 6, 7

}

4.! Metal assigns IDs to top-level argument buffer arguments starting from 0, according to
the previous three rules.

0"!6"! $ 1-'(0X+(,Y+(' $ED33*(4$>*($V(/D2'.4 $TD>>'(5$

With Tier 2 hardware, argument buffers have the following additional capabilities that are not
available with Tier 1 hardware.
You can access argument buffers through pointer indexing. This syntax shown below refers to
an array of consecutive, independently encoded argument buffers:
kernel void
kern(constant Resources *resArray [[buffer(0)]])
{

constant Resources &resources = resArray[3];
}

struct TStruct {
 texture2d<float> tex ;
};
kernel void
kern(constant TStruct * t extures [[buffer(0)]]);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 55 of 298

To support GPU driven pipelines and indirect draw calls and dispatches, you can copy
resources between structures and arrays within a function, as shown below:
kernel void
copy(constant Foo & src [[buffer(0)]],

device Foo & dst [[buffer(1)]])
{

dst.a = src.d;
É

}

Samplers cannot be copied from the thread address space to the device address space. As a
result, samplers can only be copied into an argument buffer directly from another argument
buffer. The example below shows both legal and illegal copying:
struct Resources {

sampler sam;
};
kernel void
copy(device Resources *src,

device Resources *dst,
sampler sam1)

{
constexpr sampler sam2;
dst - >sam = src - >sam; // Legal: device - > device
dst - >sam = sam1; // Illegal: thread - > device
dst - >sam = sam2; // Illegal: thread - > device

}

Argument buffers can contain pointers to other argument buffers:
struct Textures {

texture2d<float> diffuse;
texture2d<float> specular;

};
struct Material {

device Textures *textures;
};
fragment float4
fragFunc(device Material & material);

2.14! Uniform Type
All OS: Metal 2 and later support uniform types.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 56 of 298

0"!:"! $ 1@'$Z'', $>*($+$S.->*(2 $1P3' $

In the following function example, the variable i is used to index into an array of textures given
by texInput . The variable i is nonuniform; that is, it can have a different value for threads
executing the graphics or kernel function for a draw or dispatch call, as shown in the example
below. Therefore, the texture sampling hardware has to handle a sample request that can refer
to different textures for threads executing the graphics or kernel function for a draw or dispatch
call.
kernel void
my_kernel(array<texture2d<float>, 10> texInput,

array<texture2d<float>, 10> texOutput,
sampler s,
É,
uint2 gid [[thread_position_in_grid]])

{
int i = É;
float4 color = texInput[i].sample(s, float2(gid));
É;
texOutput[i].write(color, float2(gid));

}

If the variable i has the same value for all threads (is uniform) executing the graphics or kernel
function of a draw or dispatch call and if this information was communicated to the hardware,
then the texture sampling hardware can apply appropriate optimizations. A similar argument
can be made for texture writes, where a variable computed at runtime is used as an index into
an array of textures or to index into one or more buffers.
To indicate that this variable is uniform for all threads executing the graphics or kernel function
of a draw or dispatch call, MSL adds a new template class called uniform (available in the
header metal_uniform) that can be for declaring variables inside a graphics or kernel
function. This template class can only be instantiated with arithmetic types (such as Boolean,
integer, and floating-point) and vector types.
The code below is a modified version of the previous example, where the variable i is declared
as a uniform type:
kernel void
my_kernel(array<texture2d<float>, 10> texInput,

array<texture2d<float>, 10> texOutput,
sampler s,
É,
uint2 gid [[thread_position_in_grid]])

{
uniform<int> i = É;
float4 color = texInput[i].sample(s, float2(gid));
É;
texOutput[i].write(color, float2(gid));

}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 57 of 298

0"!:"0 $ T'@+&-*($*>$4@'$S.->*(2 $1P3' $

If a variable is of the uniform type, and the variable does not have the same value for all
threads executing the kernel or graphics function, then the behavior is undefined.
Uniform variables implicitly type convert to nonuniform types. Assigning the result of an
expression computed using uniform variables to a uniform variable is legal, but assigning a
nonuniform variable to a uniform variable results in a compile-time error. In the following
example, the multiplication legally converts the uniform variable x into nonuniform product z .
However, assigning the nonuniform variable z to the uniform variable b results in a compile-
time error.
uniform<int> x = É;

int y = É;

int z = x*y; // x is converted to a nonuniform for a multiply

uniform<int> b = z; // illegal; compile - time error

To declare an array of uniform elements:
uniform<float> bar[10]; // elements stored in bar array are uniform

The uniform type is legal for both parameters and the return type of a function. For example:
uniform<int> foo(É); // foo returns a uniform integer value

int bar(uniform<int> a, É);

It is legal to declare a pointer to a uniform type, but not legal to declare a uniform pointer. For
example:
device uniform<int> *ptr; // values pointed to by ptr are uniform

uniform<device int *> ptr; // illegal; compile - time error

The results of expressions that combine uniform with nonuniform variables are nonuniform. If
the nonuniform result is assigned to a uniform variable, as in the example below, the behavior is
undefined. (The front-end might generate a compile-time error, but it is not guaranteed to do
so.)
uniform<int> i = É;
int j = É;
if (i < j) { // nonuniform result for expression (i < j)

É
i++; // compile - time error, undefined behavior

}

The following example is similar:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 58 of 298

bool p = É // nonuniform condition.

uniform<int> a = É, b = É;

uniform<int> c = p ? a : b; // compile - time error, undefined
behavior

0"!:"6 $ S.->*(2 $=*.4(*) $U)*Y $

When a control flow conditional test is based on a uniform quantity, all program instances follow
the same path at that conditional test in a function. Code for control flow based on uniform
quantities should be more efficient than code for control flow based on nonuniform quantities.

2.15! Visible Function Table
All OS: Metal 2.3 and later support visible function table.
Defined in the header <metal_visible_function_table >, you use the
visible_function_table type to represent a table of function pointers to visible functions
(see section 5.1.4) that the system stores in device memory. In Metal 2.3, you can use it in a
compute (kernel) function. As of Metal 2.4, you can use it in fragment, vertex, and tile
functions. It is an opaque type, and you can’t modify the content of the table from the GPU. You
can use a visible_function_table type in an argument buffer or directly pass it to a
qualified function using a buffer binding point.
To declare a visible_function_table type with a template parameter T where

T is the signature of the function stored in the table, use the following template function.
 visible_function_table<typename T>

The following example shows how to declare a table that is compatible with a function whose
definition is Ò[[visible]] int func (float f) Ó.
 visible_function_table<int(float)> functions;

To get a visible function pointer from the table, use the [] operator.
 using fnptr = T (*)(É) [[visible]]
 fnptr operator[](uint index) const;

size() returns the number of function pointer entries in the table.
 uint size() const

empty() returns true if the table is empty.
 bool empty() const

The following function can be used to determine if a table is a null visible_function_table .
A null visible_function_table is a table that is not pointing to anything.
 bool is_null_visible_function_table(visible_function_table<T>);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 59 of 298

The following example shows how the table can be passed in a buffer.

using TFuncSig = void(float, int) ;
kernel void F(uint tid [[thread_position_in_grid]],
 device float* buf [[buffer(0)]],
 visible_function_table<TFuncSig> table [[buffer(1)]])
{
 uint tsize = table.size();
 table[tid % tsize](buf[tid], tid);
}

2.16! Function Groups Attribute
All OS: Metal 2.3 and later support [[function_group s]] .
The optional [[function_group s]] attribute can be used to indicate the possible groups of
functions being called from an indirect call through a function pointer or
visible_function_table . This is a compiler hint to enable the compiler to optimize the call
site. The groups of functions are specified as string literal arguments of the attribute. This
attribute can be applied in three different contexts:

¥! variable declarations with an initializer expression -- It affects all indirect call
expressions in the initializer expressions.

¥! expression statements -- It affects all the indirect call expressions of the given
expression.

¥! return statements -- It affects all the indirect call expressions of the return value
expression.

The following examples show how [[function_group]] can be used.

float h(visible_function_table<float(float)> table,
 float (*fnptr[3])(float))
{
 // indirect call to table[0] is restricted to Ògroup1Ó
 [[function_groups("group1")]] float x = table[0](1.0f);

 // indirect call to `fnptr[0]` can call any function
 x += fnptr[0](2.0f);

 // indirect call to `fnptr[1]` is restricted to "group2"+"group3"
 [[function_groups("group2", "group3")]] return x + fnptr[1](3.0f);
}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 60 of 298

2.17! Ray-Tracing Types
All OS: Metal 2.3.and later support ray-tracing types.
These types are defined in the header <metal_raytracing> in the namespace
metal::raytracing . In Metal 2.3, these types are only supported in a compute function
(kernel functions) except where noted below. As of Metal 2.4, they are also supported in vertex,
fragment, and tile functions. In Metal 3.1, ray tracing supports curves and multilevel instancing.

0"!F"! $;+P [1(+8-./ $A.4'(5'84-*. $1+/5 $

All OS: Metal 2.3.and later support ray-tracing intersection tags.
The intersection _tag s are defined in the header <metal_raytracing> in the
namespace metal::raytracing . They are listed in Table 2.9 and are used in ray tracing
when defining

¥! intersection functions ([[intersection]] section 5.1.6)
¥! intersection function tables (intersection_function_table section 2.17.3)
¥! intersection results (intersection_result section 2.17.4)
¥! intersector types and associated functions (intersector section 6.18.2)
¥! acceleration structure types (acceleration_structure section 2.17.7 and 6.18.1)
¥! intersection queries (intersection_query section 6.18.4).

The tags are used to configure the ray tracing process and control the behavior and semantics
of the different types and tables. The tags identify the type of accelerator structure being
intersected, the built-in parameters available for intersection functions, the type of intersection
function in an intersection function table, the methods available on intersector type or
intersection query object, and the data returned in an intersection result type.

The intersection_tags must match in tag type and order between related uses of
intersection_function_table , intersection_result , intersector , and
intersection_query , or the compiler will generate an error. The acceleration structure type
being intersected has to match the ordering of instancing, primitive_motion, and
instance_motion tags if they are present on the other ray tracing types used to intersect the
acceleration structure. When calling intersection functions, in an intersection function
table, you need to ensure they use the same ordered set of tags, or else the result is undefined.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 61 of 298

Table 2.9 . Intersection tags

Intersection Tag Description

instancing This tag indicates intersection functions can read the built-in
instance_id and/or user_ instance_id as described in section
5.2.3.7, and the acceleration structure is an instance acceleration
structure.

The intersector <intersection_tags ... >::intersect()
function and intersect ion_query< intersection_tags ... >
assume that the acceleration structure needs to be an
instance_acceleration_structure and it returns the
instance_id value.

triangle_data This tag indicates triangle intersection functions can read input
parameters with barycentric_coord or front_facing attribute
as described in section 5.2.3.7. This tag cannot be used in defining an
acceleration structure.

The intersector <intersection_tags ... >::intersect()
function and intersect ion_query< intersection_tags ... >
returns the triangle_barycentric _coord and
triangle_front_facing values.

world_space_data

This tag indicates intersection functions declared with this tag can
query world_space_origin , world_space_direction ,
object_to_world_transform , and
world _to_ object _transform
 as described in section 5.2.3.7. This tag cannot be used in defining an
acceleration structure or intersection_query . It enables support
for world space data in intersecto r and
intersection_function_table .

primitive_motion
All OS: Metal 2.4 and
later.

This tag enables support for primitive level motion in intersector ,
intersection_query , intersection_function_table , and
acceleration structures.

instance_motion
All OS: Metal 2.4 and
later.

This tag enables support for instance level motion in intersector ,
intersection_query , intersection_function_table , and
acceleration structure.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 62 of 298

Intersection Tag Description

extended_limits
All OS: Metal 2.4 and
later.

This tag indicates acceleration structures passed to intersection
functions are built with extended limits for the number of primitives,
number of geometries, number of instances, and increases the
number of bits used for visibility masks. This tag cannot be used in
defining an acceleration structure.

curve_data
All OS: Metal 3.1and later. This tag makes the curve_parameter of the curve intersection

point available as a field of intersection_result object from
methods of the intersection_query objects, and as input
parameter to intersection functions as described in section 5.2.3.7.

max_levels<Count>
All OS: Metal 3.1 and
later.

This tag enables support for multilevel instancing in intersector ,
intersection_query and intersection_function_table . It
cannot be used in acceleration structures. Count is a template
parameter that determines the maximum number of acceleration
structure levels that can be traversed. It must be between [2, 16] for
intersection_query . It must be [2,32] for intersector . For
intersection_function_table , it needs to match it use with
intersection_query or intersector .

In Metal 2.3, the following are valid combinations of intersection tags:

¥! no tags
¥! triangle_data

¥! instancing

¥! instancing, triangle_data

¥! instancing, world_space_data

¥! instancing, triangle_data, world_space_data
Metal 2.4 adds the following are additional valid combinations:

¥! primitive_motion

¥! triangle_data, primitive_motion

¥! instancing, primitive_motion

¥! instancing, triangle_data, primitive_motion

¥! instancing, world_space_data, primitive_motion

¥! instancing, triangle_data, world_space_data, primitive_motion

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 63 of 298

¥! instance_motion

¥! instancing, instance_motion

¥! instancing, triangle_data, instance_motion

¥! instancing, world_space_data, instance_motion

¥! instancing, triangle_data, world_space_data, instance_motion
¥! instancing, primitive_motion, instance_motion

¥! instancing, triangle_data, primitive_motion, instance_motion

¥! instancing, world_space_data, primitive_motion, instance_motion

¥! instancing, triangle_data, world_space_data, primitive_motion,
instance_motion

The extended_limits tag may be added to all combinations listed above.
In Metal 3.1, curve_data may be added to all combinations listed above. The intersection tag
max_levels<Count> may be added to any combination above containing instancing .

0"!F"0$;+P $1P3' $

The ray structure is a container for the properties of the ray required for an intersection.
struct ray
{
 ray(float3 origin = 0.0f, float3 direction = 0.0f,
 float min_distance = 0.0f, float max_distance = INFINITY) ;
 float3 origin;
 float3 direction;
 float min_distance;
 float max_distance;
};

The ray’s origin and direction field are in world space. When a ray object is passed into a
custom intersection or triangle intersection function, the min_distance and max_distance
fields will be based on the current search interval: As candidate intersections are discovered,
max_distance will decrease to match the newly narrowed search interval. Within intersection
functions, the origin and direction are in object space.
A ray can be invalid. Examples of invalid rays include:
¥! INF's or NaN's in origin or direction
¥! min_distance == NaN or max_distance == NaN
¥! min_distance == INF (Note that max_distance may be positive INF).
¥! length(ray.direction) == 0.0
¥! min_distance > max_distance
¥! min_distance < 0.0 or max_distance < 0.0
The ray direction does not need to be normalized, although it does need to be nonzero.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 64 of 298

0"!F"6$ A.4'(5'84-*. $UD.84-*. $1+J)' $

The intersection_function_table<intersection_tags... > structure type
describes a table of custom intersection functions passed into the shader as defined from
section 5.1.6. The intersection tags are defined from Table 2.9. The intersection tags on
intersection_function_table type and the intersection functions must match. An
example of such a declaration is:
 intersection_function_table<triangle_data, instancing>
intersectionFuncs ;

Call the following function to check if the intersection_function_table is null .
bool
is_null_intersection_function_table(
 intersection_function_table< intersection_tags ...>)

Call the following member function to check if the intersection_function_table is
empty.
bool empty() const

Call the following member function to return the number of entries in
intersection_function_table .

uint size() const

Metal 3 supports the following function: get_buffer and
get_visible_function_table .

Call the following member function to return the buffer at index from the
intersection_function_table , where T is a pointer or reference in the device or
constant address space.
template<typename T>
 T get_buffer(uint index) const

Call the following member function to return the visible_function_table<T> at index
from the intersection_function_table . T is the signature of the function stored in the
table.
template <typename T> visible_function_table<T>
 get_visible_function_table(uint index) const;

Metal 3.1 supports the following functions: set_buffer and set_visible_function_table.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 65 of 298

Call the following member functions to set the device or constant buffer object at the
index position in the intersection_function_table entry.
void set_buffer(const device void *buf, uint index)
void set_buffer(constant void *buf, uint index)

Call the following member function to set the visible_function_table at the index
position in the intersection_function_table , where T is the signature of the function
stored in the table.
template<typename T>
 void set_visible_function_table(visible_function_table<T> vft,
 uint index)
0"!F": $ A.4'(5'84-*. $;'5D)4 $1P3' $

The results of an intersection return in an
intersection_result<intersection_tags...> structure where
intersection_tags are defined in Table " #$. The return structure is defined as:
class intersection_type {
 none,
 triangle,
 bounding_box ,
 curve // Available as of Metal 3.1
};

template <typename... intersection_tags >
struct intersection_result
{
 intersection_type type;
 float distance;
 uint primitive_id;
 uint geometry_id;

 const device void *primitive_data; // Available as of Metal 3

 // Available only if intersection_tags include instancing without
 // max_levels<Count>
 uint instance_id;
 uint user_instance_id; // Available as of Metal 2.4

 // As of Metal 3.1, replaces instance_id and user_instance_id with
 // an array if intersection_tags include instancing and
 // max_levels<Count> .
 uint instance_count; // The number of instances
 // intersected by the ray .
 uint instance_id[Count - 1]; // The instance IDs of instances
 // intersected by the ray.
 uint user_instance_id[Count - 1]; // The user instance IDs of
 // instances intersected by

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 66 of 298

 // the ray.

 // Available only if intersection_tags include triangle_data.
 f loat2 triangle_barycentric_coord;
 bool triangle_front_facing;

 // As of Metal 2.4, the following is available only if
 // intersection_tags include world_space_data and instancing
 float4x3 world_to_object_transform;
 float4x3 object_to_world _transform;

 // As of Metal 3.1, the following is available only if
 // intersection_tags include curve _data .
 float curve_parameter ;
};

If a ray is invalid, an intersection ::none is returned.
The distance returned is in world space.
For vertex attributes v0 , v1 , and v2 , the attribute value at the specified triangle barycentric
point is:
 v1 * triangle_barycentric_coord .x +
 v2 * triangle_barycentric_coord .y +
 v0 * (1.0f - (triangle_barycentric_coord .x +
 triangle_barycentric_coord .y))

0"!F"#$ A.4'(5'84-*. $;'5D)4 $;'>'('.8' $1P3' $

All OS: Metal 3.2 and later support intersection_result_ref<intersection_tags É>
for Apple silicon. The Metal Feature Set Table lists the supported hardware.
In some use cases, it’s possible to avoid a copy of intersection_result by using
intersection_result_ref<intersection_tags É> whose lifetime is the duration of
the lamba function that passes to the intersector intersect function (see section 6.18.2).
The intersection_result_ref<intersection_tags É> structure where
intersection_tags are defined in Table 2.9.

template <typename...intersection_tags>
struct intersection_result_ref {
public:
 intersection_type get_type() const;
 float get_distance() const;
 uint get_primitive_id() const;
 uint get_geometry_id() const;
 const device void *get_primitive_data() const;

 float3 get_ray_origin() const;
 float3 get_ray_direction() const;
 float get_ray_min_distance() const;

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 67 of 298

! // Available only if intersection_tags include instancing without .
! // max_levels<Count> .
 uint get_instance_id() const;
 uint get_user_instance_id() const;

!!!! // Available only if intersection_tags include instancing with
! // max_levels<Count> .
 uint get_instance_count() const;
 uint get_instance_id(uint depth) const;
 uint get_user_instance_id(uint depth) const;

!! // Available only if intersection_tags include triangle_data.
 float2 get_triangle_barycentric_coord() const;
 bool is_triangle_front_facing() const;

 // Available only if intersection_tags include curve_data.
 float get_curve_parameter() const;

 // Available only if intersection_tags include world_space_data
 // and instancing .
 float4x3 get_object_to_world_transform() const;
 float4x3 get_world_to_object_transform() const;

};

0"!F"<$ A.4'(5'84*($1P3' $$

The intersector<intersection_tags...> structure type defines an object that
controls the acceleration structure traversal and defines functions to intersect rays like
intersect() . Use the intersection_tags (described in Table 2.9) when creating the
intersector to specialize on which types of acceleration structure it operates on and which
functions are available (see section 6.18.2). Intersection tags on the intersector type must
match their associated intersection function (section 5.1.6), or the behavior is undefined.

// Create a default intersector .
intersector<> primitiveIntersector;

// Create an intersector that is specialized to support triangle and
// world space data.
in tersector<triangle_data, instancing, world_space_data>
i nstance Inter;

The intersector<intersection_tags...> struct type provides a convenience type for
the intersection result type defined in section 2.17.6:
 intersector<intersection_tags...> ::result

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 68 of 298

0"!F"F$ V88')'(+4-*. $E4(D84D('$1P3' $
$

All OS: Metal 2.3 and later support acceleration structure types.
All OS: Metal 2.4 and later support acceleration structure templatized types.

Metal 2.3 supports two types of acceleration structure:

¥! primitive_acceleration_structure
¥! instance_acceleration_structure .

These are opaque objects that can be bound directly using buffer binding points or via
argument buffers:
struct AccelerationStructs {
 primitive_acceleration_structure prim_accel ;
 instance_acceleration_structure inst_accel ;
 array<primitive_acceleration_structure, 2> prim_accel _array;
 array<instance_acceleration_structure, 2> inst_accel _array;
};

[[kernel]]
void
intersectInstancesKernel (
 primitive_acceleration_structure prim_accel [[buffer(0)]],
 instance_acceleration_structure inst_accel [[buffer(1)]],
 device AccelerationStructs *a ccels [[buffer(3)]]) {É}

It is possible to create default initialized variables of such types, and the default value is the
null value for the acceleration structures.
In Metal 2.4, the acceleration structure is replaced with a templatized type
acceleration_structure< intersection _tag sÉ>. The template parameter
intersection _tag s can be empty or a combination of instancing ,
primitive_motion , or instance_motion as defined in Table 2.9. Intersection tags. For
example, the following defines an instance acceleration structure that supports primitive
motion.
acceleration_structure<instancing , primitive_motion > accel _struct ;

 The following combinations of tags can be used to declare a primitive acceleration structure

¥! no tags
¥! primitive_motion

The following combinations of tags can be used to declare an instance acceleration structure
¥! instancing

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 69 of 298

¥! instancing, primitive_motion

¥! instancing, instance_motion

¥! instancing, primitive_motion, instance_motion

To maintain backward compatibility, primitive_acceleration_structure is aliased to
acceleration_structure<> and instance_acceleration_structure is aliased to
acceleration_structure<instancing> .

As before, these are opaque objects that can be bound directly using buffer binding points or
via argument buffers:

struct AccelerationMotionStructs {
 acceleration_structure <primitive_motion> prim_motion_accel ;
 acceleration_structure <instancing,
 instance_motion> inst_motion_accel ;
 array<acceleration_structure <>, 2> prim_accel _array;
 array<acceleration_structu re<instancing> , 2> inst_accel _array;
};

[[kernel]]
void
intersectMotionKernel (
 acceleration_structure <primitive_motion> prim [[buffer(15)]],
 acceleration_structure <instancing,
 primitive_motion, instance_motion>
 inst [[buffer(16)]],
 device AccelerationMotionStructs *a ccels [[buffer(17)]])
{É}

When binding these acceleration structures from the Metal API to the compute or graphic
functions, the acceleration structures’ type must match what is defined in the shader. For
instance acceleration structures, one can bind instance acceleration structures without support
for primitive_motion to a shader that expects instance acceleration structures with
primitive_motion . For example, a Metal buffer with an instance acceleration structure that
can be passed to a shader with acceleration_structure <instancing> can also be
given to a shader with acceleration_structure <instancing, primitive_motion> .
This capability allows you to write one shader function that can handle either an acceleration
structure with or without primitive_motion at the cost of the ray tracing runtime checking
for primitive motion. To avoid this cost, you can write two functions where one uses an
acceleration structure with primitive_motion and one without.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 70 of 298

See section 6.18.1 for the functions to call if the acceleration structure is null .

0"!F"H$ A.4'(5'84-*. $\D'(P $1P3' $

All OS: Metal 2.4 and later support intersection query types.
The intersection_query<intersection_tags...> type defines an object that enables
users to fully control the ray tracing process and when to call custom intersection code. The
intersection query object provides a set of functions to advance the query through an
acceleration structure and query traversal information. Use the intersection_tags (defined
in Table 2.9) when creating the intersection_query<intersection_tags...> type to
specialize the type of acceleration structure and what functions are available (see section
6.18.4). It supports the following combinations of intersection tags:

¥! no tags
¥! triangle_data

¥! instancing

¥! instancing, triangle_data

Metal 3.1 supports the following additional combinations:
¥! instancing , max_levels<Count>

¥! instancing, triangle_data , max_levels<Count>

In Metal 3.1, curve_data may be added to all combinations listed above.

The intersection_query<intersection_tags...> type has the following restrictions

¥! it cannot be used for members of a structure/union
¥! it cannot be returned from a function
¥! it cannot be assigned to

These restrictions prevent the intersection query object from being copied.

2.18! Interpolant Type
All OS: Metal 2.3 and later support interpolant types.
The interpolant type interpolant<T,P> defined in <metal_ interpolate > is a
templatized type that encapsulates a fragment shader input for pull-model interpolation
(section 6.11). Type parameters T and P represent the input's data type and perspective-
correctness, respectively. Supported values for T are the scalar and vector floating-point types.
Supported values of P are the types interpolation::perspective and
interpolation::no_perspective .
You can declare a variable with the interpolant<T,P> type only in the following contexts:

¥! As a fragment shader input argument with [[stage_in]] . Such a declaration must
match a corresponding vertex shader output argument of type T with the same name or

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 71 of 298

[[user(name)]] attribute. The declaration can’t have a sampling-and-interpolation
attribute (section 5.4).

¥! As a local or temporary variable, which needs to be initialized as a copy of the above.

An interpolant<T,P> variable is not automatically convertible to a value of type T. Instead,
retrieve a value by calling one of several interpolation methods (see section 6.11). The
interpolation shall be perspective-correct if the value of P is
interpolation::perspective .

2.19! Mesh Shader Types
All OS: Metal 3 and later support mesh shader types. Metal uses these types in the mesh
pipeline to render geometry and defines them in the header <metal_ mesh>.

0"!K"! $?'5@ $R(-, $7(*3'(4P $1P3' $

All OS: Metal 3 and later support mesh grid property types.
An object function (see section 5.1.7) can use the mesh_grid_properties type to specify
the size of the mesh grid to dispatch for a given threadgroup from the object stage.
Call the following member function to control the number of threadgroups of the mesh grid that
will be dispatched.
 void set_threadgroups_per_grid(uint3)

If the member function set_threadgroups_per_grid for a given threadgroup of the object
grid is never called, then no mesh grid will be dispatched for the given object grid threadgroup.
Calls to set_threadgroups_per_grid behave as a write to threadgroup memory
performed by each thread.

0"!K"0$?'5@ $1P3' $

All OS: Metal 3 and later support mesh types.
A mesh function (see section 5.1.8) can use an argument of type mesh<V, P, NV, NP, t >
struct type to represent the exported mesh data. Table 2.10 describes the mesh template
parameters.

Table 2.10. Mesh template parameter

Template
Parameter

Description

V V is the vertex type.
P P is the primitive type.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 72 of 298

Template
Parameter

Description

NV NV is the maximum number of vertices.
NP NP is the maximum number of primitives.

t t specifies the topology of the mesh. It is one of the following enumeration values:
 enum topology {
 point,
 l ine,
 t riangle
 }

A valid vertex type V follows the same rules as the vertex function return type defined in section
5.2.3.3 with the following restrictions. The vertex type can be either

¥! A float4 represents the vertex position
or a user defined structure:
¥! Includes a field with the [[position]] attribute.
¥! May include other fields of scalar or vector of integer or floating-point type.
¥! Supports the following attributes from Table 2.11. Each attribute can be used once

within the vertex type.

Table 2.11. Mesh vertex attributes

Attribute Corresponding
Data Types

Description

clip_distance float or
float[n]
n needs to be
known at compile
time

Distance from vertex to clipping plane

invariant Not applicable;
needs to be used
with
[[position]]

Marks the output position such that if the
sequence of operations used to compute
the output position in multiple vertex
shaders is identical, there is a high
likelihood that the resulting output
position computed by these vertex
shaders are the same value. Requires
users to pass -fpreserve - invariance .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 73 of 298

Attribute Corresponding
Data Types

Description

See the description below for more
information.

point_size float Size of a point primitive
position float4 The transformed vertex position
shared

Not applicable If present, then for every
amplification_id , the output shall
have the same value.

A valid primitive type follows the same rules as fragment input section 5.2.3.4. A valid primitive
type is either

¥! void indicating no per-primitive type
or a user-defined structure

¥! Includes fields of scalar or vector of integer or floating-point type
¥! Supports only the following attributes from Table 2.12. Each attribute can be used once

within the primitive type.

Table 2.12. Mesh primitive attributes

Attribute Corresponding
Data Types

Description

primitive_culled

bool If set to true, the primitive is not
rendered.

primitive_id

uint The per-primitive identifier used with
barycentric coordinates.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 74 of 298

Attribute Corresponding
Data Types

Description

r ender_target_array_ind
ex

uchar , ushort ,
or uint

The render target array index, which
refers to the face of a cubemap, data
at a specified depth of a 3D texture,
an array slice of a texture array, an
array slice, or face of a cubemap
array. For a cubemap, the render
target array index is the face index,
which is a value from 0 to 5. For a
cubemap array the render target
array index is computed as: array
slice index * 6 + face index.

v iewport_array_index

uchar , ushort , or
uint

The viewport (and scissor rectangle)
index value of the primitive.

If the mesh<V, P, NV, NP, t > does not specify a field with [[primitive_culled]] ,!
the behavior is the primitive is rendered. If the fragment shader reads the field, the value read is
false because that fragment invocation belongs to a nonculled primitive.
Interpolation and sampling qualifiers are accepted on the vertex and primitive type members.
The behavior is specified in section 5.2.3.4.
To minimize the possible user errors in mesh-fragment linking, the names of fields for user-
defined vertex and primitive type needs to be unique between the vertex and primitive type.
An example of mesh<V, P, NV, NP, t > is
 struct VertexOut {
 float4 position [[position]] ;

 };

 struct PrimitiveOut
 {
 float color [[flat]];
 };

 using custom_mesh_t = metal::mesh<Vertex Out , PrimitiveOut , 64, 64,
 metal::topology::triangle>;

The mesh types contain the following static data member below.

Table 2.13. Mesh static members

Member variable Description

uint max_vertices The maximum number of vertices in the mesh (NV).

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 75 of 298

Member variable Description

uint max_primitive

The maximum number of primitives in the mesh (NP).

uint
indices_per_primitive

The number of indices per primitive based on topology t .

uint max_indices The maximum number of indices (max_primitive *
indices_per_primitive).

Call the following member function to set the vertex at index I in the range [0,
max_vertices).
 void set_vertex(uint I , V v)

If P is not void, call the following member function to set the primitive at index I in the range [0,
max_primitive).

 void set_primitive(uint I , P p)

Call the following member to set the primitive count where c is in the range [0,
max_primitive].
 void set_primitive_count(uint c)

Call the following member to set the index where I is in the range [0, max_indices).
 void set_index(uint I , uchar v)

It is legal to call the following set_indices functions to set the indices if the position in the
index buffer is valid and if the position in the index buffer is a multiple of 2 (uchar2 overload)
or 2 (uchar 4 overload). The index I needs to be in the range [0, max_indices).
 void set_indices(uint I , uchar2 v)
 void set_indices(uint I , uchar4 v)

2.20!Type Conversions and Reinterpreting Data
The static_cast operator converts from a scalar or vector type to another scalar or vector
type using the default rounding mode with no saturation (when converting to floating-point,
round ties to even; when converting to an integer, round toward zero). If the source type is a
scalar or vector Boolean, the value false is converted to zero, and the value true is
converted to one.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 76 of 298

Metal adds an as_type<type - id> operator to allow any scalar or vector data type (that is not
a pointer) to be reinterpreted as another scalar or vector data type of the same size. The bits in
the operand are returned directly without modification as the new type. The usual type
promotion for function arguments is not performed.
For example, as_type<float>(0x3f800000) returns 1.0f , which is the value of the bit
pattern 0x3f800000 if viewed as an IEEE-754 single precision value.
Using the as_type<type - id> operator to reinterpret data to a type with a different number
of bytes results in an error.
Examples of legal and illegal type conversions:
float f = 1.0f;
// Legal. Contains: 0x3f800000
uint u = as_type<uint>(f);

// Legal. Contains:
// (int4)(0x3f800000, 0x40000000, 0x40400000, 0x40800000)
float4 f = float4(1.0f, 2.0f, 3.0f, 4.0f);
int4 i = as_type<int4>(f);

int i;
// Legal.
short2 j = as_type<short2>(i);

half4 f;
// Error. Result and operand have different sizes
float4 g = as_type<float4>(f);

float4 f;
// Legal. g.xyz has same values as f.xyz .
float3 g = as_type<float3>(f);

2.21! Implicit Type Conversions
Implicit conversions between scalar built-in types (except void) are supported. When an implicit
conversion is done, it is not just a re-interpretation of the expression's value but a conversion of
that value to an equivalent value in the new type. For example, the integer value 5 is converted
to the floating-point value 5.0 . Bfloat is an extended floating-point type that only allows
implicit conversion to a type of greater floating-point rank. While bfloat can be implicitly
converted to float, it cannot be implicitly converted to half, and neither float nor half can be
implicitly converted to bfloat.
All vector types are considered to have a higher conversion rank than scalar types. Implicit
conversions from a vector type to another vector or scalar type are not permitted and a
compilation error results. For example, the following attempt to convert from a 4-component
integer vector to a 4-component floating-point vector fails.
int4 i;

float4 f = i; // compile error.

http://f.xyz/

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 77 of 298

Implicit conversions from scalar-to-vector types are supported. The scalar value is replicated in
each element of the vector. The scalar may also be subject to the usual arithmetic conversion to
the element type used by the vector.
For example:
float4 f = 2.0f; // f = (2.0f, 2.0f, 2.0f, 2.0f)

Implicit conversions from scalar-to-matrix types and vector-to-matrix types are not supported
and a compilation error results. Implicit conversions from a matrix type to another matrix, vector
or scalar type are not permitted and a compilation error results.
Implicit conversions for pointer types follow the rules described in the C++14 Specification.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 78 of 298

3! Operators
All OS: Metal 1 and later support scalar, vector, and matrix operators.
For indirect command buffers, the assignment operator (=) does not copy the contents of a
command. For more about copying commands in indirect command buffers, see section 6.16.3.

3.1! Scalar and Vector Operators
This section lists both binary and unary operators and describes their actions on scalar and
vector operands.

1.! The arithmetic binary operators, add (+), subtract (Ð), multiply (*) and divide (/), act
upon scalar and vector, integer, and floating-point data type operands. Following the
usual arithmetic conversions, all arithmetic operators return a result of the same built-in
type (integer or floating-point) as the type of the operands. After conversion, the
following cases are valid:
¥! If the two operands of the arithmetic binary operator are scalars, the result of the

operation is a scalar.
¥! If one operand is a scalar, and the other operand is a vector,

¥! The scalar converts to the element type that the vector operand uses.
¥! The scalar type then widens to a vector that has the same number of

components as the vector operand.
¥! Metal performs the operation componentwise, which results in a same size

vector.
¥! If the two operands are vectors of the same size, Metal performs the operation

componentwise, which results in a same size vector.
Division on integer types that result in a value that lies outside of the range bounded by
the maximum and minimum representable values of the integer type, such as
TYPE_MIN/ - 1 for signed integer types or division by zero, does not cause an exception
but results in an unspecified value. Division by zero for floating-point types results in ±#
or NaN, as prescribed by IEEE-754. (For more about the numerical accuracy of floating-
point operations, see section 7.)
Because bfloat and half are not implicitly convertible to each other, the operators do
not support mixing bfloat and half .

2.! The modulus operator (%) acts upon scalar and vector integer data type operands. The
modulus operator returns a result of the same built-in type as the type of the operands,
after the usual arithmetic conversions. The following cases are valid:
¥! If the two operands of the modulus operator are scalars, the result of the operation is

a scalar.
¥! If one operand is a scalar, and the other is a vector:

¥! The scalar converts to the element type of the vector operand.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 79 of 298

¥! The scalar type then widens to a vector that has the same number of
components as the vector operand.

¥! Metal performs the operation componentwise, which results in a same-size
vector.

¥! If the two operands are vectors of the same size, Metal performs the operation
componentwise, which results in a same-size vector.

For any component computed with a second operand that is zero, the modulus operator
result is undefined. If one or both operands are negative, the results are undefined.
Results for other components with nonzero operands remain defined.
If both operands are nonnegative, the remainder is nonnegative.

3.! The arithmetic unary operators (+ and Ð) act upon scalar and vector, integer, and
floating-point type operands.

4.! The arithmetic post- and pre-increment and decrement operators (ÐÐ and ++) have
scalar and vector integer type operands. All unary operators work componentwise on
their operands. The result is the same type as the operand. For post- and pre-increment
and decrement, the expression needs to be assignable to an lvalue. Pre-increment and
pre-decrement add or subtract 1 to the contents of the expression on which they
operate, and the value of the pre-increment or pre-decrement expression is the
resulting value of that modification. Post-increment and post-decrement expressions
add or subtract 1 to the contents of the expression on which they operate, but the
resulting expression has the expression’s value before execution of the post-increment
or post-decrement.

5.! The relational operators [greater-than (>), less-than (<), greater-than or equal to (>=),
and less-than or equal to (<=)] act upon scalar and vector, integer, and floating-point
type operands. The result is a Boolean (bool type) scalar or vector. After converting the
operand type, the following cases are valid:
¥! If the two operands of the relational operator are scalars, the result of the operation

is a Boolean.
¥! If one operand is a scalar, and the other is a vector:

¥! The scalar converts to the element type of the vector operand.
¥! The scalar type then widens to a vector that has the same number of

components as the vector operand.
¥! Metal performs the operation componentwise, which results in a Boolean vector.

¥! If the two operands are vectors of the same size, Metal performs the operation
componentwise, which results in a same-size Boolean vector.

If either argument is a NaN, the relational operator returns false . To test a relational
operation on any or all elements of a vector, use the any and all built-in functions in
the context of an if(É) statement. (For more about any and all functions, see
section 6.4.)

6.! The equality operators, equal (==) and not equal (!=), act upon scalar and vector,
integer and floating-point type operands. All equality operators result in a Boolean scalar
or vector. After converting the operand type, the following cases are valid:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 80 of 298

¥! If the two operands of the equality operator are scalars, the result of the operation is
a Boolean.

¥! If one operand is a scalar, and the other is a vector:
¥! The scalar converts to the element type of the vector operand.
¥! The scalar type then widens to a vector that has the same number of

components as the vector operand.
¥! Metal performs the operation componentwise, which results in a Boolean vector.

¥! If the two operands are vectors of the same size, Metal performs the operation
componentwise, which results in a same-size Boolean vector.

All other cases of implicit conversions are illegal. If one or both arguments is NaN, the
equality operator equal (==) returns false . If one or both arguments is NaN, the
equality operator not equal (!=) returns true .

7.! The bitwise operators [and (&), or (|), exclusive or (^), not (~)] can act upon all scalar
and vector built-in type operands, except the built-in scalar and vector floating-point
types.
¥! For built-in vector types, Metal applies the bitwise operators componentwise.
¥! If one operand is a scalar and the other is a vector,

¥! The scalar converts to the element type used by the vector operand.
¥! The scalar type then widens to a vector that has the same number of

components as the vector operand.
¥! Metal performs the bitwise operation componentwise resulting in a same-size

vector.
8.! The logical operators [and (&&), or (||)] act upon two operands that are Boolean

expressions. The result is a scalar or vector Boolean.
9.! The logical unary operator not (!) acts upon one operand that is a Boolean expression.

The result is a scalar or vector Boolean.
10.!The ternary selection operator (?:) acts upon three operands that are expressions

(exp1?exp2:exp3). This operator evaluates the first expression exp1 , which must
result in a scalar Boolean. If the result is true , the second expression is evaluated; if
false , the third expression is evaluated. Metal evaluates only one of the second and
third expressions. The second and third expressions can be of any type if:
¥! the types of the second and third expressions match,
¥! or there is a type conversion for one of the expressions that can make their types

match (for more about type conversions, see section 2.12),
¥! or one expression is a vector and the other is a scalar, and the scalar can be widened

to the same type as the vector type. The resulting matching type is the type of the
entire expression.

11.! The ones’ complement operator (~) acts upon one operand that needs to be of a scalar
or vector integer type. The result is the ones’ complement of its operand.
The right-shift (>>) and left-shift (<<) operators act upon all scalar and vector integer
type operands. For built-in vector types, Metal applies the operators componentwise.
For the right-shift (>>) and left-shift (<<) operators, if the first operand is a scalar, the

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 81 of 298

rightmost operand needs to be a scalar. If the first operand is a vector, the rightmost
operand can be a vector or scalar.!
The result of E1 << E2 is E1 left-shifted by the log2(N) least significant bits in E2
viewed as an unsigned integer value:
¥! If E1 is a scalar, N is the number of bits used to represent the data type of E1. !
¥! Or if E1 is a vector, N is the number of bits used to represent the type of E1

elements. !
For the left-shift operator, the vacated bits are filled with zeros.
The result of E1 >> E2 is E1 right-shifted by the log2(N) least significant bits in E2
viewed as an unsigned integer value:
¥! If E1 is a scalar, N is the number of bits used to represent the data type of E1.
¥! Or if E1 is a vector, N is the number of bits used to represent the data type of E1

elements.
For the right-shift operator, if E1 has an unsigned type or if E1 has a signed type and a
nonnegative value, the vacated bits are filled with zeros. If E1 has a signed type and a
negative value, the vacated bits are filled with ones.

12.!The assignment operator behaves as described by the C++14 Specification. For the
lvalue = expression assignment operation, if expression is a scalar type and
lvalue is a vector type, the scalar converts to the element type used by the vector
operand. The scalar type then widens to a vector that has the same number of
components as the vector operand. Metal performs the operation componentwise,
which results in a same size vector.

Other C++14 operators that are not detailed above (such as sizeof(T) , unary (&) operator,
and comma (,) operator) behave as described in the C++14 Specification.
Unsigned integers shall obey the laws of arithmetic modulo 2n , where n is the number of bits in
the value representation of that particular size of integer. The result of signed integer overflow
is undefined.
For integral operands the divide (/) operator yields the algebraic quotient with any fractional
part discarded. (This is often called truncation towards zero.) If the quotient a/b is
representable in the type of the result, (a/b)*b + a%b is equal to a.

3.2! Matrix Operators
The arithmetic operators add (+), subtract (Ð) operate on matrices. Both matrices must have
the same numbers of rows and columns. Metal applies the operation componentwise resulting
in the same size matrix. The arithmetic operator multiply (*) acts upon:
¥! a scalar and a matrix
¥! a matrix and a scalar
¥! a vector and a matrix
¥! a matrix and a vector
¥! a matrix and a matrix

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 82 of 298

If one operand is a scalar, the scalar value is multiplied to each component of the matrix
resulting in the same-size matrix. A right vector operand is treated as a column vector and a left
vector operand as a row vector. For vector-to-matrix, matrix-to-vector, and matrix-to-matrix
multiplication, the number of columns of the left operand needs to be equal to the number of
rows of the right operand. The multiply operation does a linear algebraic multiply, yielding a
vector or a matrix that has the same number of rows as the left operand and the same number
of columns as the right operand.
The following examples presume these vector, matrix, and scalar variables are initialized. The
order of partial sums for the vector-to-matrix, matrix-to-vector, and matrix-to-matrix
multiplication operations described below is undefined.
float3 v;

float3x3 m, n;

float a = 3.0f;

The matrix-to-scalar multiplication:
float3x3 m1 = m * a;

is equivalent to:
m1[0][0] = m[0][0] * a;

m1[0][1] = m[0][1] * a;

m1[0][2] = m[0][2] * a;

m1[1][0] = m[1][0] * a;

m1[1][1] = m[1][1] * a;

m1[1][2] = m[1][2] * a;

m1[2][0] = m[2][0] * a;

m1[2][1] = m[2][1] * a;

m1[2][2] = m[2][2] * a;

The vector-to-matrix multiplication :
float3 u = v * m;

is equivalent to:
u.x = dot(v, m[0]);

u.y = dot(v, m[1]);

u.z = dot(v, m[2]);

The matrix-to-vector multiplication:
float3 u = m * v;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 83 of 298

is equivalent to:
u.x = m[0].x * v.x + m[1].x * v.y + m[2].x * v.z;

u.y = m[0].y * v.x + m[1].y * v.y + m[2].y * v.z;

u.z = m[0].z * v.x + m[1].z * v.y + m[2].z * v.z;

The matrix-to-matrix multiplication :
float3x3 r = m * n; // m, n are float3x3

is equivalent to:
r[0].x = m[0].x * n[0].x + m[1].x * n[0].y + m[2].x * n[0].z;

r[0].y = m[0].y * n[0].x + m[1].y * n[0].y + m[2].y * n[0].z;

r[0].z = m[0].z * n[0].x + m[1].z * n[0].y + m[2].z * n[0].z;

r[1].x = m[0].x * n[1].x + m[1].x * n[1].y + m[2].x * n[1].z;

r[1].y = m[0].y * n[1].x + m[1].y * n[1].y + m[2].y * n[1].z;

r[1].z = m[0].z * n[1].x + m[1].z * n[1].y + m[2].z * n[1].z;

r[2].x = m[0].x * n[2].x + m[1].x * n[2].y + m[2].x * n[2].z;

r[2].y = m[0].y * n[2].x + m[1].y * n[2].y + m[2].y * n[2].z;

r[2].x = m[0].z * n[2].x + m[1].z * n[2].y + m[2].z * n[2].z;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 84 of 298

4! Address Spaces
The Metal memory model describes the behavior and structure of memory objects in MSL
programs. An address space attribute specifies the region of memory from where buffer
memory objects are allocated. These attributes describe disjoint address spaces that can also
specify access restrictions:
¥! device (see section 4.1)
¥! constant (see section 4.2)
¥! thread (see section 4.3)
¥! threadgroup (see section 4.4)
¥! threadgroup_imageblock (see section 4.5)
¥! ray_data (see section 4.6)
¥! object_data (see section 4.7)
All OS: Metal 1 and later support the device , threadgroup , constant , and thread
attributes. Metal 2.3 and later support ray_data attributes. Metal 3 and later support
object_data attributes.
iOS: Metal2 and later support the threadgroup_imageblock attribute.
macOS: Metal 2.3 and later support the threadgroup_imageblock attribute.
All arguments to a graphics or kernel function that are a pointer or reference to a type needs to
be declared with an address space attribute. For graphics functions, an argument that is a
pointer or reference to a type needs to be declared in the device or constant address
space. For kernel functions, an argument that is a pointer or reference to a type needs to be
declared in the device , threadgroup , threadgroup_imageblock , or constant address
space. The following example introduces the use of several address space attributes. (The
threadgroup attribute is supported here for the pointer l_data only if foo is called by a
kernel function, as detailed in section 4.4.)
void foo(device int *g_data,

 threadgroup int *l_data,
 constant float *c_data)

{É}

The address space for a variable at program scope needs to be constant .
Any variable that is a pointer or reference needs to be declared with one of the address space
attributes discussed in this section. If an address space attribute is missing on a pointer or
reference type declaration, a compilation error occurs.

4.1! Device Address Space
The device address space name refers to buffer memory objects allocated from the device
memory pool that are both readable and writeable.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 85 of 298

A buffer memory object can be declared as a pointer or reference to a scalar, vector or user-
defined structure. In an app, Metal API calls allocate the memory for the buffer object, which
determines the actual size of the buffer memory.
Some examples are:
// An array of a float vector with four components .
device float4 *color;

struct Foo {

float a[3];
int b[2];

} ;

// An array of Foo elements .

device Foo *my_info;
Since you always allocate texture objects from the device address space, you do not need the
device address attribute for texture types. You cannot directly access the elements of a
texture object, so use the built-in functions to read from and write to a texture object (see
section 6.12).

4.2! Constant Address Space
The constant address space name refers to buffer memory objects allocated from the device
memory pool that are read-only. You must declare variables in program scope in the constant
address space and initialize them during the declaration statement. The initializer(s) expression
must be a core constant expression. (Refer to section 5.20 of the C++14 specification.) The
compiler may evaluate a core constant expression at compile time. Variables in program scope
have the same lifetime as the program, and their values persist between calls to any of the
compute or graphics functions in the program.
constant float samples[] = { 1.0f, 2.0f, 3.0f, 4.0f };

Pointers or references to the constant address space are allowed as arguments to functions.
Writing to variables declared in the constant address space is a compile-time error. Declaring
such a variable without initialization is also a compile-time error.

Buffers in the constant address space passed to kernel, vertex, and fragment functions have
minimum alignment requirements based on the GPU. See “Minimum constant buffer offset
alignment” in the Metal Feature Set Tables for more information.

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 86 of 298

4.3! Thread Address Space
The thread address space refers to the per-thread memory address space. Variables
allocated in this address space are not visible to other threads. Variables declared inside a
graphics or kernel function are allocated in the thread address space.

[[kernel]] void
my_kernel(É)
{

// A float allocated in the per - thread address space
float x;

// A pointer to variable x in per - thread address space
thread float * p = &x;
É

}

4.4 ! Threadgroup Address Space
A GPU compute unit can execute multiple threads concurrently in a 6"&%#$*&)3(, and a GPU can
execute a separate threadgroup for each of its compute units.
Threads in a threadgroup can work together by sharing data in threadgroup memory, which
is faster on most devices than sharing data in device memory. Use the threadgroup
address space to:
¥! Allocate a threadgroup variable in a kernel, mesh, or object function.
¥! Define a kernel, fragment, or object function parameter that’s a pointer to a threadgroup

address.
See the Metal Feature Set Tables to learn which GPUs support threadgroup space
arguments for fragment shaders.
Threadgroup variables in a kernel, mesh, or object function only exist for the lifetime of the
threadgroup that executes the kernel. Threadgroup variables in a mid-render kernel function
are persistent across mid-render and fragment kernel functions over a tile.
This example kernel demonstrates how to declare both variables and arguments in the
threadgroup address space. (The [[threadgroup]] attribute in the code below is
explained in section 5.2.1.)
kernel void
my_kernel(threadgroup float * sharedParameter [[threadgroup(0)]],

É)
{

// Allocate a float in the threadgroup address space .
t hreadgroup float sharedFloat ;

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 87 of 298

// Allocate an array of 10 floats in the threadgroup address
space .
t hreadgroup float sharedFloatArray [10];
...

}

For more information about the [[threadgroup(0)]] attribute, see section 5.2.1.
:":"! $ EA?9[R(*D35 $+., $\D+, [R(*D35 $$

macOS: Metal 2 and later support SIMD-group functions. Metal 2.1 and later support quad-
group functions.
iOS: Metal 2.2 and later support some SIMD-group functions. Metal 2 and later support quad-
group functions.
Within a threadgroup, you can divide threads into BCDE;*&)3(! , which are collections of
threads that execute concurrently. The mapping to SIMD-groups is invariant for the duration of
a kernel’s execution, across dispatches of a given kernel with the same launch parameters, and
from one threadgroup to another within the dispatch (excluding the trailing edge threadgroups
in the presence of nonuniform threadgroup sizes). In addition, all SIMD-groups within a
threadgroup needs to be the same size, apart from the SIMD-group with the maximum index,
which may be smaller, if the size of the threadgroup is not evenly divisible by the size of the
SIMD-groups.
A F3#$;*&)3(is a SIMD-group with the thread execution width of 4.
For more about kernel function attributes for SIMD-groups and quad-groups, see section
5.2.3.6. For more about threads and thread synchronization, see section 6.9 and its
subsections:
¥! For more about thread synchronization functions, including a SIMD-group barrier, see

section 6.9.1.
¥! For more about SIMD-group functions, see section 6.9.2.
¥! For more about quad-group functions, see section 6.9.3.

4.5! Threadgroup Imageblock Address Space
The threadgroup_imageblock address space refers to objects allocated in threadgroup
memory that are only accessible using an imageblock<T, L> object (see section 2.11). A
pointer to a user-defined type allocated in the threadgroup_ imageblock address space
can be an argument to a tile shading function (see section 5.1.9). There is exactly one
threadgroup per tile, and each threadgroup can access the threadgroup memory and the
imageblock associated with its tile.
¥! Variables allocated in the threadgroup_imageblock address space in a kernel function

are allocated for each threadgroup executing the kernel, are shared by all threads in a
threadgroup, and exist only for the lifetime of the threadgroup that executes the kernel.
Each thread in the threadgroup uses explicit 2D coordinates to access imageblocks. Do not
assume any particular spatial relationship between the threads and the imageblock. The
threadgroup dimensions may be smaller than the tile size.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 88 of 298

4.6 ! Ray Data Address Space
All OS: Metal 2.3 and later support ray_data address space.
The ray_data address space refers to objects allocated in a memory that is only accessible in
an intersection function (see section 5.1.6) for ray tracing. Intersection functions can read and
write to a custom payload using [[payload]] attribute (see Table 5.10) in the ray_data
address space. When a shader calls intersect () (see section 6.18.2) with a payload, the
system copies the payload to the ray_data address space, calls the intersection function, and
when the intersection function returns, it copies the payload back out.

4.7! Object Data Address Space
All OS: Metal 3 and later support object _data address space.
Object functions use the object _data address space to pass a payload to a mesh function
(see section 5.2.3.9). The object _data address space behaves like the threadgrou p
address space in that the programming model is explicitly cooperative within the threadgroup.
You should use the threads in the threadgroup to efficiently compute the payload and value
mesh_grid_properties::set_threadgroups_per_grid . The payload in the
object _data address space is not explicitly bound or initialized, and the implementation
manages its lifetime.

4.8! Memory Coherency
All OS: Metal 3.2 and later support coherent(device) qualifier and memory_coherence
on textures for Apple silicon.
Memory operations in Metal have a concept of a scope of coherency. For a store, the scope of
coherence describes the set of threads that may observe the result of the store if you properly
synchronize them, and for a load, it describes the set of threads with stores the load may
observe if you properly synchronize them. Metal has the following scope of coherence:

¥! Thread coherence — memory writes are only visible to the thread.
¥! Threadgroup coherence — memory writes are only visible to threads within their

threadgroup.
¥! Device coherence — memory writes are visible to all threads on the device, that is,

threads across threadgroups.

Memory in the thread address space has thread coherence, and memory in the
threadgroup address space has threadgroup coherence. By default, memory in the device
address space has threadgroup coherence.
Metal 3.2 and later support the coherent(device) qualifiers for buffers and
memory_coherence_device for textures to indicate that the object has device coherence,
that is, memory operations are visible across threads on the device if you properly synchronize
them.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 89 of 298

[[kernel]] void example (
 coherent device float *d ptr1 ,
 coherent(device) device float4 *d ptr 2,
 texture2d<float, access::read, memory_coherence_device> tex,
 texture2d<float, access::read,
 memory_coherence::memory_coherence_device> tex2)
{É}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 90 of 298

5! Function and Variable Declarations
This chapter describes how you declare functions, arguments, and variables. It also details how
you often use attributes to specify restrictions to functions, arguments, and variables.

5.1! Functions
Metal 1 and later support the kernel , vertex , and fragment attributes for every OS. Metal
2.3 and later support the C++ attributes:
¥! [[vertex]] or vertex (See section %#&#&)
¥! [[fragment]] or fragment (See section 5.1.2)
¥! [[kernel]] or kernel (See section 5.1.3)
¥! [[visible]] (See section 5.1.4)
¥! [[stitchable]] (See section 5.1.5)
¥! [[intersection (É)]] (See section 5.1.6)
¥! [[objec t]] (See section 5.1.7)
¥! [[mesh]] (See section 5.1.8)
Make a function accessible to the Metal API by adding one of these function attributes at the
start of a function, which makes it a F3#:0>0%$'function. Kernel, vertex, and fragment functions
can’t call one another without triggering a compilation error, but they may call other functions
that use the [[visible]] attribute. They can also call functions with the
[[intersection (É)]] attribute by calling intersect () (see section '#&(#").
Prior to Metal 2.2, the Metal compiler ignores namespace identifiers for kernel, vertex, and
fragment functions. In Metal 2.2 and later, if you declare a qualified function within a
namespace, you must include the namespace identifier with the function’s name each time you
refer it to a Metal Framework API. This example declares two kernel functions in different
namespaces.
namespace outer {
 [[kerne l]] void functionA () {É}
 namespace inner {
 [[kernel]] void f unction B() {É}
 }
}

Refer to a function in a namespace by prepending the function’s name with the namespace’s
identifier followed by two colons.
Outer :: functionA

Similarly, refer to a function in a nested namespace by prepending the function’s name with all
namespaces in order and separating each with two colons.
Outer :: inner : : f unction B

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 91 of 298

#"!"! $ N'(4'C $UD.84-*.5 $

You can declare the vertex or since Metal 2.3 [[vertex]] attribute only for a graphics
function. Metal executes a vertex function for each vertex in the vertex stream and generates
per-vertex output. The following example shows the syntax for declaring a vertex.

vertex void
my_vertex_func(É)
{É}

[[vertex]] void
vertex_func2(É)
{É}

For a vertex function, the return type identifies the output generated by the function. If the
vertex function does not generate output, it shall return void and can only be used in a render
pipeline with rasterization disabled.

5.1.1.1! Post-Tessellation Vertex Functions
All OS: Metal 1.2 and later support post-tessellation vertex functions (patch attribute).
The post-tessellation vertex function calculates the vertex data for each surface sample on the
patch produced by the fixed-function tessellator. The inputs to the post-tessellation vertex
function are:
¥! Per-patch data.
¥! Patch control point data.
¥! The tessellator stage output (the normalized vertex location on the patch).
The post-tessellation vertex function generates the final vertex data for the tessellated
triangles. For example, to add additional detail (such as displacement mapping values) to the
rendered geometry, the post-tessellation vertex function can sample a texture to modify the
vertex position by a displacement value.
After the post-tessellation vertex function executes, the tessellated primitives rasterize.
The post-tessellation vertex function is a vertex function identified using the ordinary vertex
function attribute.

5.1.1.2! Patch Type and Number of Control Points Per-Patch
The [[patch]] attribute is required for the post-tessellation vertex function.
For macOS, the [[patch(patch - type, N)]] attribute must specify both the patch type
(patch - type is either quad or triangle) and the number of control points in the patch (N
needs to be a value from 0 to 32). For iOS, specifying the patch - type is required, but the
number of control points is optional.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 92 of 298

If the number of control points are specified in the post-tessellation vertex function, this
number must match the number of control points provided to the drawPatches or
drawIndexedPatches API.

Example:
[[patch(quad)]]

[[vertex]] vertex_output

my_post_tessellation_vertex(É)

{É}

[[patch(quad, 16)]]

[[vertex]] vertex_output

my_bezier_vertex(É)

{É}

#"!"0$ U(+/2'.4 $UD.84-*.5 $

You can declare the fragment or since Metal 2.3 [[fragment]] attribute only for a
graphics function. Metal executes a fragment function for each fragment in the fragment
stream and their associated data and generates per-fragment output. The following example
shows the syntax for declaring a fragment function with the fragment attribute.
[[fragment]]
void my_fragment_func(É)
{É}

f ragment
void my_fragment_func 2(É)
{É}

For graphics functions, the return type identifies whether the output generated by the function
is either per-vertex or per-fragment. If the fragment function does not generate output, it shall
return void .
To request performing fragment tests before the fragment function executes, use the
[[early_fragment_tests]] function attribute with a fragment function, as shown in the
example below.

[[early_fragment_tests]]
fragment float4
my_fragment(É)
{É}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 93 of 298

It is an error if the return type of the fragment function declared with the
[[early_fragment_tests]] attribute includes a depth or stencil value; that is, if the return
type of this fragment function includes an element declared with the
[[depth(depth_attribute)]] or [[stencil]] attribute.
It is an error to use the [[early_fragment_tests]] attribute with any function that is not a
fragment function; that is, not declared with the fragment attribute.

#"!"6$ =*23D4' $UD.84-*.5 $]^'(.')5 _$

A compute function (also called a “kernel”) is a data-parallel function that is executed over a 1-,
2-, or 3D grid. The following example shows the syntax for declaring a compute function with
the kernel or since Metal 2.3 [[kernel]] attribute.
[[kernel]]
void my_kernel(É) {É}

kernel
void my_kernel2(É) {É}

Functions declared with the kernel or [[kernel]] attribute must return void .
You can use the [[max_total_threads_per_threadgroup]] function attribute with a
kernel function to specify the maximum threads per threadgroup.
Below is an example of a kernel function that uses this attribute:
[[max_total_threads_per_threadgroup(x)]]
kernel void
my_kernel(É)
{É}

If the [[max_total_threads_per_threadgroup]] value is greater than the
[MTLDevice maxThreadsPerThreadgroup] property, then compute pipeline state
creation shall fail.

#"!": $ N-5-J)' $UD.84-*.5 $

All OS: Metal 2.3 and later support [[v isible]] functions.
A function with a [[visible]] attribute is a function that’s visible from the Metal Framework
API, that is., you can get a MTLFunction object of this function. It is legal to take the address
of a visible function and get a visible function pointer. You can use the visible function pointers
with the visible_function_table type (section 2.15). It is legal for other functions to
directly call a visible function. Note that visible function, like other F3#:0>0%$'functions, is
split into their own translation unit. When a function directly calls a visible function, pass it in
the pipeline descriptor.
 The following example with the [[visible]] attribute.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 94 of 298

[[visible]] float my_visible (device int *data, int data_offset) {É}

#"!"#$ E4-48@+J)'$UD.84-*.5 $

All OS: Metal 2.4 and later support [[stitchable]] functions.
A function with a [[stitchable]] attribute is a function that can be used in the Metal
Framework Function Stitching API. The [[stitchable]] attribute implies [[visible]] ,
which means that stitchable functions can be used in all contexts where a visible function can
be used as described in Sec 5.1.4. The compiler will generate additional metadata for stitchable
functions to enable these functions to be used with the Metal Function Stitching API. You
should use this attribute only if they need this functionality as the metadata will increase the
code size of the function.
[[stitchable]] float my_func (device float *data, texture2d<float>
tex) {É}

#"!"<$ A.4'(5'84-*. $UD.84-*.5 $

All OS: Metal 2.3 and later support [[intersection (primitive _type,
intersection _tag sÉ]] functions.
You can declare a custom intersection function to use with ray tracing by using the
[[intersection(primitive _type, intersection _tag sÉ)]] attribute. Metal calls
Intersection functions when the shader calls i ntersect() (see section 6.18) to determine if a
potential ray intersection is valid or if traversal should continue. Note that intersection functions
can’t start new rays. Metal supports the following types of intersection functions:

Table 5.1. Inter section function primitive types

Primitive Type Description

t riangle Indicates that this is an intersection function that extends the default
triangle intersection test.

bounding _box Indicates that this is an intersection function which is run when a ray

intersects the bounding box.

curve
All OS: Metal 3.1 and later.

Indicates that this is an intersection function that extends the default
curve intersection test.

You may pass zero or more intersection tags as described in Table 2.9 from section 2.17. Some
examples are:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 95 of 298

[[intersection(triangle, triangle_data, instancing,
 world_space_data)]]

bool triangle IntersectionFunction(...) {É}

[[intersection(bounding_box , triangle_data, instancing,
 world_space_data)]]

User Result boundingBoxIntersectionFunction(...) {É}

The intersection function primitive_type and intersection _tag s control the allowable
input and output attributes (see Section 5.2.3.7).
Intersection functions support passing buffer arguments from device and constant address
space.
Intersection functions don’t support passing texture arguments to an intersection function.
However, you can pass a texture using an argument buffer.
Intersection functions don’t support threadgroup memory.
Intersection functions don’t support threadgroup_barrier or simdgroup_barrier. If they are used,
the result is undefined.
Intersection functions may or may not be run in the same SIMD-group as the thread which
launched the intersection operation: The implementation is permitted to regroup or repack
candidate intersections to improve efficiency before launching SIMD-groups to do intersection
testing.
If the acceleration structure traversal finds a procedural box primitive, and the intersection
function is a triangle tester (or vice versa), this is an application error and behavior is undefined.
.
#"!"F$ %J`'84$UD.84-*.5 $

All OS: Metal 3 and later support [[object]] functions.
A function with an [[object]] attribute is an object function in the mesh pipeline. An object
function is a data-parallel function executed over a 1-, 2-, or 3D compute grid that can launch
compute grids to a second mesh stage and with a data payload. Object functions must return
void .
Input built-in variables to object functions are described in section 5.2.3.9. The [[payload]]
attribute tags a buffer that the object function exports to the mesh shader as a read-only buffer.
It may be specified once per function.
You can use the [[max_total_threads_per_threadgroup]] function attribute with an
object function to specify the maximum threads per threadgroup.

You can use the [[max_total_threadgroups_per_mesh_grid (size)]] on an object
function to specify the maximum threadgroups per mesh grid. The following is an example
using the [[object]] attribute.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 96 of 298

#define kMeshThreadgroups 32
struct ObjectOutput {
 // User - defined payload; one entry for each mesh threadgroup. This
 // is an array because the data will be shared by the mesh grid.
 float value[kMeshThreadgroups];
};

[[object, max_total_threadgroups_per_mesh_grid(kMeshThreadgroups)]]
void objectShader(uint threadgroup_size [[threads_per_threadgroup]],
 uint lane [[thread_index_in_threadgroup]],
 object_data ObjectOutput& output [[payload]],
 mesh_grid_properties mgp) {É}

#"!"H$?'5@ $UD.84-*.5 $

All OS: Metal 3 and later support [[mesh]] functions.
A function with a [[mesh]] attribute is a mesh function in the mesh pipeline. A mesh function
is a data-parallel function that can optionally export a mesh object representing a chunk of
geometry to the rasterization pipeline. The mesh object is a parameter of the mesh function. If
no mesh object is exported, rasterization is disabled. Input built-in variables to mesh functions
are described in section 5.2.3.10. Mesh functions must return void .

You can use the [[max_total_threads_per_threadgroup]] function attribute with a
mesh function to specify the maximum threads per threadgroup. The following is an example
using the [[mesh]] attribute.

struct vertex_t {
 float4 clip_pos [[position]];
 float3 world_pos;
 float3 color;
 // other user - defined properties
};
struct primitive_t {
 float3 normal;
};

// A mesh declaration that can export one cube.
using cube_mesh_t = metal::mesh<vertex_t, primitive_t,
 8 /*corners*/,
 6*2 /*faces*/,
 metal::topology::triangle>;
struct view_info_t {
 float4x4 view_proj;
};

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 97 of 298

struct cube_info_t {
 float4x3 world;
 float3 color;
};

[[mesh, max_total_threads_per_threadgroup(12)]]
void cube_stage(cube_mesh_t output,
 const object_data cube_info_t &cube [[payload]],
 constant view_info_t &view [[buffer(0)]],
 uint gid [[threadgroup_position_in_grid]],
 uint lane [[thread_index_in_threadgroup]]) {É}

#"!"K$ 1-)' $UD.84-*.5 $

iOS: Metal 2 and later support tile functions.
macOS: Metal 2.3 and later support tile functions.
A 60:%'!"#$01* '>31960)1 is a special type of compute kernel or fragment function that can execute
inline with graphics operations and take advantage of the Tile-Based Deferred Rendering
(TBDR) architecture. With TBDR, commands are buffered until a large list of commands
accumulates. The hardware divides the framebuffer into tiles and then renders only the
primitives that are visible within each tile. Tile shading functions support performing compute
operations in the middle of rendering, which can access memory more efficiently by reducing
round trips to memory and utilizing high-bandwidth local memory.
A tile function launches a set of threads called a $0!(#69", which is organized into threadgroups
and grids. You may launch threads at any point in a render pass and as often as needed. Tile
functions barrier against previous and subsequent draws, so a tile function does not execute
until all earlier draws have completed. Likewise, later draws do not execute until the tile function
completes.
GPUs always process each tile and each dispatch to completion. Before processing the next
tile, all draws and dispatches for a tile launch in submission.
Tile functions have access to 32 KB of threadgroup memory that may be divided between
imageblock storage and threadgroup storage. (For more about the threadgroup memory size,
see section 4.4.) The imageblock size is dependent on the tile width, tile height, and the bit
depth of each sample. Either the render pass attachments (which use implicit imageblock
layout; see section 5.6.3.1) or function-declared structures (which use explicit imageblock
layout; see section 5.6.3.2) determines the bit depth of the sample. For more about how kernel
functions utilize the threadgroup_imageblock address space, see section 4.5.

#"!"!M$ X*54$Z+2' $V44(-JD4'$

Starting from Metal 2.2, you can override the default name that the Metal Framework API uses
to refer to a qualified function. Add the [[host _name(name)]] attribute to the function
declaration, where name is the string literal that the Metal Framework API will use to reference
the function name. The compiler raises a compile time error if you give different functions the
same name. For example,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 98 of 298

[[host_name(" abc ")]] [[kernel]] void func A() {} // Metal API name is abc

[[host_name(" xyz ")]] [[kernel]] void func X() {} // Metal API name is xyz

#"!"!! $ 1'23)+4', $\D+)->-', $UD.84-*.5 $

Starting from Metal 2.2, you can use templates for qualified functions (e.g. vertex, fragment,
visible, and kernel functions) declarations. You must explicitly instantiate the template to force
the compiler to emit code for a given specialization. For example,

template<typename T>
kernel void bar (device T *x) { É }
// Explicit specialization of ` bar <T>` with [T = int]
template kernel void bar (device int *);

The compiler gives all specializations the same name unless one uses the
[[host _name(name)]] attribute to provide a different name for each specialization.

// Explicit specialization of `bar<T>` with [T = int] and host_name
// "bar_int"
template [[host_name("bar_int")]] kernel void bar(device int *);

// Explicit specialization of `bar<T>` with [T = float] and host_name
// "bar_float"
template [[host_name("bar_float")]] kernel void bar(device float *);

5.2! Function Arguments and Variables
Most inputs and outputs to graphics (vertex or fragment) and kernel functions are passed as
arguments. (Initialized variables in the constant address space and samplers declared in
program scope are inputs and outputs that do not have to be passed as arguments.)
Metal 3.1 and later provide built-in input variables for kernel, mesh, and object shaders that you
declare in program scope, avoiding the need for passing them as arguments. This applies if you
don’t use them in a dynamic library or a separately compiled binary function. Metal 3.2 and later
provide built-in input variables that you can also use in a dynamic library or a separately
compiled binary functions for Apple silicon.
In Metal 3.2 and later, you can declare device , constant , and threadgroup buffers,
texture , and sampler in the program scope (see section 5.9). Unlike when passing as
arguments in a shader, you can’t assume different global variables are nonaliased. You need to
specify the binding indexes because Metal can’t set them automatically.
Arguments to graphics and kernel functions can be any of the following:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 99 of 298

¥! Device buffer — A pointer or reference to any data type in the device address space (see
section 2.8).

¥! Constant buffer — A pointer or reference to any data type in the constant address space
(see section 2.8).

¥! A texture object (see section 2.9) or an array of textures.
¥! A texture_buffer object (see section 2.9.1) or an array of texture buffers.
¥! A sampler object (see section 2.10) or an array of samplers.
¥! A buffer shared between threads in a threadgroup — a pointer to a type in the

threadgroup address space that can only be used as arguments for kernel functions.
¥! An imageblock (see section 2.11).
¥! An argument buffer (see section 2.13).
¥! A visible function table (see section 2.15) for kernel functions. As of Metal 2.4, visible

function table can also be used in graphic functions.
¥! An intersection function table (see section 2.17.3) for kernel functions.
¥! An acceleration structure (see section 6.18.1) for intersection functions.
¥! A structure with elements that are buffers, textures, or texture buffers.
Buffers (device) specified as argument values to a graphics or kernel function cannot alias; that
is, a buffer passed as an argument value cannot overlap another buffer passed to a separate
argument of the same graphics or kernel function.
You cannot declare arguments to graphics and kernel functions to be of type size_t ,
ptrdiff_t , or a structure and/or union that contains members declared to be one of these
built-in scalar types.
The arguments to these functions are often specified with attributes to provide further
guidance on their use. Attributes are used to specify:
¥! The resource location for the argument (see section 5.2.1).
¥! Built-in variables that support communicating data between fixed-function and

programmable pipeline stages (see section 5.2.3).
¥! Which data is sent down the pipeline from vertex function to fragment function (see section

5.2.4).

#"0"!$ L*8+4-./ $TD>>'(W$1'C4D(' W$+., $E+23)'($V(/D2'.45 $$

For each argument, an attribute can be optionally specified to identify the location of a buffer,
texture, or sampler to use for this argument type. The Metal framework API uses this attribute to
identify the location for these argument types.
¥! Device and constant buffers: [[buffer(index)]]
¥! Textures (including texture buffers): [[texture(index)]]
¥! Samplers: [[sampler(index)]]
¥! Threadgroup buffers: [[threadgroup(index)]]
The index value is an unsigned integer that identifies the location of an assigned buffer,
texture or sampler argument. (A texture buffer is a specific type of texture.) The proper syntax
is for the attribute to follow the argument or variable name.
The example below is a simple kernel function, add_vectors , that adds an array of two
buffers in the device address space, inA and inB , and returns the result in the buffer out. The
attributes (buffer(index)) specify the buffer locations for the function arguments.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 100 of 298

[[k ernel]] void
add_vectors(const device float4 *inA [[buffer(0)]],

 const device float4 *inB [[buffer(1)]],
 device float4 *out [[buffer(2)]],
 uint id [[thread_position_in_grid]])

{
out[id] = inA[id] + inB[id];

}

The example below shows attributes used for function arguments of several different types (a
buffer, a texture, and a sampler):
[[kernel]] void

my_kernel(device float4 *p [[buffer(0)]],
texture2d<float> img [[texture(0)]],
sampler sam [[sampler(1)]])

{É}

If the location indices are not specified, the Metal compiler assigns them using the first available
location index. In the following example, src is assigned texture index 0, dst texture index 1, s
sampler index 0, and u buffer index 0:
kernel void
my_kernel(texture2d<half> src,
 texture2d<half, access::write> dst,
 sampler s,
 device myUserInfo *u)
{É}

In the following example, some kernel arguments have explicitly assigned location indices and
some do not. src is explicitly assigned texture index 0, and f is explicitly assigned buffer index
10. If you assign location indices using function constants (section 5.8), the compiler does not
consider those entries when assigning indices. The other arguments are assigned the first
available location index: dst texture index 1, s sampler index 0, and u buffer index 0.
kernel void
my_kernel(texture2d<half> src [[texture(0)]],

 texture2d<half, access::write> dst,
sampler s,
device myUserInfo *u,
device float *f [[buffer(10)]])

{É}

Each attribute (buffer , threadgroup , texture , and sampler) represents a group of
resources. The index values specified on the arguments shall be unique within each resource
group. Multiple buffer, texture or sampler arguments with the same index value generate a
compilation error unless they are declared with a function constant attribute (see section 5.8.1).

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 101 of 298

5.2.1.1! Vertex Function Example with Resources and Outputs to Device Memory
The following example is a vertex function, render_vertex , which outputs to device memory
in the array xform_output , which is a function argument specified with the device attribute
(introduced in section 4.1). All the render_vertex function arguments are specified with the
buffer(0) , buffer(1) , buffer(2) , and buffer(3) attributes (introduced in section
5.2.1). For more about the position attribute shown in this example, see section 5.2.3.3.
struct VertexOutput {

float4 position [[position]];
float4 color;
float2 texcoord;

};

struct VertexInput {

float4 position;
float3 normal;
float2 texcoord;

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;
float4 light_position[MAX_LIGHTS];
float4 light_color[MAX_LIGHTS];
float4 light_attenuation_factors[MAX_LIGHTS];

};

vertex void
render_vertex(const device VertexInput* v_in [[buffer(0)]],

 constant float4x4& mvp_matrix [[buffer(1)]],
 constant LightDesc& light_desc [[buffer(2)]],
 device VertexOutput* xform_output [[buffer(3)]],
 uint v_id [[vertex_id]])

{
VertexOutput v_out;
v_out.position = v_in[v_id].position * mvp_matrix;
v_out.color = do_lighting(v_in[v_id].position,
v_in[v_id].normal, light_desc);

v_out.texcoord = v_in[v_id].texcoord;

// Output the position to a buffer .
xform_output[v_id] = v_out;

}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 102 of 298

5.2.1.2! Raster Order Groups
All OS: Metal 2 and later support raster order group attributes.
Loads and stores to buffers (in device memory) and textures in a fragment function are
unordered. The [[raster_order_group(index)]] attribute used for a buffer or texture
guarantees the order of accesses for any overlapping fragments from different primitives that
map to the same (x,y) pixel coordinate and sample, if per-sample shading is active.
The [[raster_order_group(index)]] attribute can be specified on a texture (which is
always in device memory) or a buffer that is declared in device memory, but not in either the
threadgroup or constant address space. The [[raster_order_group(index)]]
attribute cannot be used with a structure or class.
Fragment function invocations that mark overlapping accesses to a buffer or texture with the
[[raster_order_group(index)]] attribute are executed in the same order as the
geometry is submitted. For overlapping fragment function invocations, writes performed by a
fragment function invocation to a buffer or texture marked with the
[[raster_order_group(index)]] attribute needs to be available to be read by a
subsequent invocation and must not affect reads by a previous invocation. Similarly, reads
performed by a fragment function invocation must reflect writes by a previous invocation and
must not reflect writes by a subsequent invocation.
The index in [[raster_order_group(index)]] is an integer value that specifies a
rasterizer order ID, which provides finer grained control over the ordering of loads and stores.
For example, if two buffers A and B are marked with different rasterizer order ID values, then
loads and stores to buffers A and B for overlapping fragments can be synchronized
independently.
Example:
fragment void
my_fragment(texture2d<float, access::read_write> texA
 [[raster_order_group(0), texture(0)]],
É)
{

ushort2 coord;
float4 clr = texA. re ad(coord);
// do operations on clr
clr = É;
texA.write(clr, coord);

}

For an argument buffer, you can use the [[raster_order_group(index)]] attribute on a
buffer or texture member in a structure.

#"0"0$ V44(-JD4'5$4*$L*8+4' $7'([N'(4'C $A.3D45$$

A vertex function can read per-vertex inputs by indexing into a buffer(s) passed as arguments
to the vertex function using the vertex and instance IDs. In addition, you can also declare per-
vertex input with the [[stage_in]] attribute and pass that input as an argument. For per-
vertex input passed as an argument declared with the [[stage_in]] attribute, each element

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 103 of 298

of the per-vertex input must specify the vertex attribute location as
[[attribute(index)]] . For more about the [[stage_in]] attribute, see section 5.2.4.
The index value is an unsigned integer that identifies the assigned vertex input location. The
proper syntax is for the attribute to follow the argument or variable name. The Metal API uses
this attribute to identify the location of the vertex buffer and describe the vertex data such as
the buffer to fetch the per-vertex data from, its data format, and its stride.
The following example shows how to assign vertex attributes to elements of a vertex input
structure that is passed to a vertex function using the stage_in attribute:
struct VertexInput {

float4 position [[attribute(0)]];
float3 normal [[attribute(1)]];
half4 color [[attribute(2)]];
half2 texcoord [[attribute(3)]];

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;
float4 light_position[MAX_LIGHTS];
float4 light_color[MAX_LIGHTS];
float4 light_attenuation_factors[MAX_LIGHTS];

};

constexpr sampler s = sampler(coord::normalized,
address::clamp_to_zero,
 filter::linear);

vertex VertexOutput
render_vertex(VertexInput v_in [[stage_in]],

 constant float4x4& mvp_matrix [[buffer(1)]],
 constant LightDesc& lights [[buffer(2)]],
 uint v_id [[vertex_id]])

{
VertexOutput v_out;
É
return v_out;

}

The example below shows how both buffers and the stage_in attribute can be used to fetch
per-vertex inputs in a vertex function.
struct VertexInput {

float4 position [[attribute(0)]];
float3 normal [[attribute(1)]];

};

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 104 of 298

struct VertexInput2 {
half4 color;
half2 texcoord[4];

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;
float4 light_position[MAX_LIGHTS];
float4 light_color[MAX_LIGHTS];
float4 light_attenuation_factors[MAX_LIGHTS];

};

constexpr sampler s = sampler(coord::normalized,
address::clamp_to_zero,
 filter::linear);

vertex VertexOutput
render_vertex(VertexInput v_in [[stage_in]],

 VertexInput2 v_in2 [[buffer(0)]],
 constant float4x4& mvp_matrix [[buffer(1)]],
 constant LightDesc& lights [[buffer(2)]],
 uint v_id [[vertex_id]])

{
VertexOutput vOut;
É
return vOut;

}

A post-tessellation vertex function can read the per-patch and patch control-point data. The
post-tessellation vertex function specifies the patch control-point data as the following
templated type:
patch_control_point<T>

Where T is a user defined structure. Each element of T must specify an attribute location using
[[attribute(index)]] .
All OS: Metal 1.2 and later support patch control-point templated types.
The patch_control_point<T> type supports these member functions:
¥! constexpr size_ t size () const;

which returns the number of control-points in the patch.
¥! constexpr const_ reference operator [] (size_t pos) const;

which returns the data for a specific patch control point that pos identifies.
Example:
struct ControlPoint {

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 105 of 298

int3 patchParam [[attribute(0)]];
float3 P [[attribute(1)]];
float3 P1 [[attribute(2)]];
float3 P2 [[attribute(3)]];
float2 vSegments [[attribute(4)]];

};

struct PerPatchData {

float4 patchConstant [[attribute(5)]];
float4 someOtherPatchConstant [[attribute(6)]];

};

struct PatchData {

patch_control_point<ControlPoint> cp; // Control - point data
PerPatchData patchData; // Per - patch data

};

[[patch(quad)]]
vertex VertexOutput
post_tess_vertex_func(PatchData input [[stage_in]}, É)
{É}

#"0"6$ V44(-JD4'5$>*($TD-)4[-. $N+(-+J)'5 $

Some graphics operations occur in the fixed-function pipeline stages and need to provide
values to or receive values from graphics functions. G30:6;01 input and output variables are used
to communicate values between the graphics (vertex and fragment) functions and the fixed-
function graphics pipeline stages. Attributes are used with arguments and the return type of
graphics functions to identify these built-in variables.

5.2.3.1! Vertex Function Input Attributes
Table 5.2 lists the built-in attributes that can be specified for arguments to a vertex function
and the corresponding data types with which they can be used.

Table 5.2. Attributes for vertex function input arguments

Attribut e Corresponding Data
Types

Description

amplification_count
macOS: Metal 2.3 and
later.
iOS: Metal 2.2 and later.

ushort or uint The number of output vertices
produced for each vertex instance.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 106 of 298

Attribut e Corresponding Data
Types

Description

amplification_id
macOS: Metal 2.3 and
later.
iOS: Metal 2.2 and later.

ushort or uint The array index offset mappings for
viewport and render target array
indices, which enables routing an
amplified vertex to a different
viewport and render target.

base_instance ushort or uint The base instance value added to
each instance identifier before
reading per-instance data.

base_vertex ushort or uint The base vertex value added to each
vertex identifier before reading per-
vertex data.

instance_id ushort or uint The per-instance identifier, which
includes the base instance value if
one is specified.

vertex_id ushort or uint The per-vertex identifier, which
includes the base vertex value if one
is specified.

The default value for [[amplification_count]] is 1, which indicates that vertex
amplification is disabled.
The value for [[amplification_id]] shall be in the range [0,
amplification_count) .
Notes on vertex function input attribute types:
¥! If the type for declaring [[vertex_id]] is uint , the type for declaring

[[base_vertex]] needs to be uint or ushort .
¥! If the type for declaring [[vertex_id]] is ushort , the type for declaring

[[base_vertex]] needs to be ushort .
¥! If the type for declaring [[instance_id]] is uint , the type for declaring

[[base_instance]] needs to be uint or ushort .
¥! If the type for declaring [[instance_id]] is ushort , the type for declaring

[[base_instance]] needs to be ushort .

5.2.3.2! Post-Tessellation Vertex Function Input Attributes
Table 5.3 lists the built-in attributes that can be specified for arguments to a post-tessellation
vertex function and the corresponding data types with which they can be used.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 107 of 298

Table 5.3. Attributes for post - tessellation vertex function input arguments

Attribut e Corresponding Data
Types

Description

base_instance ushort or uint The base instance value added to
each instance identifier before
reading per-instance data.

instance_id ushort or uint The per-instance identifier, which
includes the base instance value if
one is specified.

patch_id ushort or uint The patch identifier.
position_in_patch float2 or float3 Defines the location on the patch

being evaluated. For quad patches,
must be float2 . For triangle
patches, must be float3 .

All OS: Metal 1.2 and later support all attributes in Table 5.3.
Notes on vertex function input attributes:
¥! If the type for declaring [[instance_id]] is uint , the type for declaring

[[base_instance]] needs to be uint or ushort .
¥! If the type for declaring [[instance_id]] is ushort , the type for declaring

[[base_instance]] needs to be ushort .

5.2.3.3! Vertex Function Output Attributes
Table 5.4 lists the built-in attributes that can be specified for a return type of a vertex function
or the members of a structure that a vertex function returns (and their corresponding data
types).

Table 5.4 . Attributes for vertex function return type

Attribute Corresponding
Data Types

Description

clip_distance float or
float[n]
n needs to be
known at compile
time

Distance from vertex to clipping plane

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 108 of 298

Attribute Corresponding
Data Types

Description

invariant
All OS: Metal 2.1 and later.

Not applicable;
needs to be used
with
[[position]]

Marks the output position such that if the
sequence of operations used to compute
the output position in multiple vertex
shaders is identical, there is a high
likelihood that the resulting output
position computed by these vertex
shaders are the same value. Requires
users to pass -fpreserve - invariance .
Please see description below for more
information.

point_size float Size of a point primitive
position float4 The transformed vertex position
render_target_array_ind
ex !
macOS: Metal 1.1 and later.!
iOS: Metal 2.1 and later.

uchar , ushort ,
or uint !

The array index that refers to one of: !
1) an array slice of a texture array, !
2) data at a specified depth of a 3D
texture, !
3) the face of a cubemap, or !
4) a specified face of a specified array
slice of a cubemap array.

shared
macOS: Metal 2.3 and later.
iOS: Metal 2.2 and later.

Not applicable If present, then for every
amplification_id , the output shall
have the same value.

viewport_array_index
macOS: Metal 2 and later.
iOS: Metal 2.1 and later.

uchar , ushort ,
or uint

The viewport (and scissor rectangle)
index value of the primitive.

All OS: Metal 1 and later support all attributes in Table 5.4 unless otherwise indicated.
A cubemap is represented as a render target array with six layers, one for each face, and
[[render_target_array_index]] is the face index, which is a value from 0 to 5. For a
cubemap array, the [[render_target_array_index]] is computed as: array_slice_index
* 6 + face_index.
You must return the same value of [[render_target_array_index]] for every vertex in a
primitive. If values differ, the behavior and value passed to the fragment function are undefined.
The same behavior applies to primitives generated by tessellation. If
[[render_target_array_index]] is out-of-bounds (that is, greater than or equal
to renderTargetArrayLength), the hardware interprets this value as 0. For more about
[[render_target_array_index]] as fragment function input, see section 5.2.3.4.
[[viewport_array_index]] enables specifying one viewport and scissor rectangle from
multiple active viewports and scissor rectangles. If the vertex function does not specify

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 109 of 298

[[viewport_array_index]] , the output viewport array index value is 0. For more about
[[viewport_array_index]] , see section 5.10.
[[invariant]] indicates that the floating-point math used in multiple function passes must
generate a vertex position that matches exactly for every pass. [[invariant]] may only be
used for a position in a vertex function (fields with the [[position]] attribute) to indicate the
result of the calculation for the output is invariant. Compilers prior to IOS 14.0 and macOS 11.0,
the calculation is likely (although not guaranteed) to be invariant. This calculation is now
guaranteed to be invariant when passing -fpreserve - invariance option or setting the
preserveInvariance on the MTLCompilerOptions from the Metal API for runtime
compilation. Note that [[invariant]] is ignored if the options are not passed. This position
invariance is essential for techniques such as shadow volumes or a z-prepass.
If the return type of a vertex function is not void , it must include the vertex position. If the
vertex return type is float4 , then it always refers to the vertex position, and the!
[[position]] attribute must not be specified. If the vertex return type is a structure, it must
include an element declared with the [[position]] attribute.
The following example describes a vertex function called process_vertex . The function
returns a user-defined structure called VertexOutput , which contains a built-in variable that
represents the vertex position, so it requires the [[position]] attribute.
struct VertexOutput {

float4 position [[position]];
float4 color;
float2 texcoord;

}

vertex VertexOutput

process_vertex(É)
{

VertexOutput v_out;
// compute per - vertex output
É
return v_out;

}

Post-tessellation vertex function outputs are the same as a regular vertex function.
If vertex amplification is enabled, and if a vertex output variable has the same value for every
[[amplification_id]] attribute, the vertex output is considered !"#&%$. A vertex output
that is shared may use a single varying output slot, which is a limited resource. Vertex outputs
that are not shared consume more than one varying output slot. (The Metal framework call
[MTLRenderPipelineDescriptor maxVertexAmplificationCount] returns the
number of varying slots that may be used to pass the amplified data to fragment function
invocations, which impacts the number of total available varying slots.)
By default, all built-in vertex outputs are shared, except for those with the [[position]]
attribute. By default, all other vertex outputs are not shared. To explicitly specify that the output
is shared, use the [[shared]] attribute with a vertex output variable.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 110 of 298

If the shader compiler can deduce that a vertex output variable has the same value for every
amplification_id , the compiler may mark that vertex output as shared. The compiler may
not mark vertex outputs as shared in any of these cases:
¥! The output value depends on the [[amplification_id]] .
¥! An atomic read-modify-write operation returns the output value.
¥! The shader loads the output value from volatile memory.

5.2.3.4! Fragment Function Input Attributes
Table 5.5 lists the built-in attributes that can be specified for arguments of a fragment function
(and their corresponding data types).
If the return type of a vertex function is not void , it must include the vertex position. If the
vertex return type is float4 , this always refers to the vertex position (and the [[position]]
attribute need not be specified). If the vertex return type is a structure, it must include an
element declared with the [[position]] attribute.

Table 5.5. Attributes for fragment function input arguments

Attribute Corresponding
Data Types

Description

amplification_count
macOS: Metal 2.3 and later.
iOS: Metal 2.2 and later.

ushort or uint The number of output vertices
produced for each vertex instance.

amplification_id
macOS: Since Metal 2.3 and
later.
iOS: Metal 2.2 and later.

ushort or uint The array index offset mappings for
viewport and render target array
indices, which enables routing an
amplified vertex to a different
viewport and render target.

barycentric_coord
macOS: Metal 2.2 and later.
iOS: Metal 2.3 and later.

float , float2 ,
or float3

The barycentric coordinates.

color(m)
macOS: Metal 2.3 and later.
iOS: Metal 1 and later.

floatn , halfn ,
intn , uintn ,
shortn , or
ushortn
m needs to be known
at compile time

The input value read from a color
attachment. The index m indicates
which color attachment to read from.

front_facing bool This value is true if the fragment
belongs to a front-facing primitive.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 111 of 298

Attribute Corresponding
Data Types

Description

point_coord float2 Two-dimensional coordinates, which
range from 0.0 to 1.0 across a point
primitive, specifying the location of
the current fragment within the point
primitive.

position float4 Describes the window-relative
coordinate (x, y, z, 1/w) values for the
fragment.

primitive_id
macOS: Metal 2.2 and later.
iOS: Metal 2.3 and later.

uint The per-primitive identifier used with
barycentric coordinates.

render_target_array_ind
ex
macOS: Metal 1.1 and later.!
iOS: Metal 2.1 and later.

uchar , ushort ,
or uint

The render target array index, which
refers to the face of a cubemap, data
at a specified depth of a 3D texture,
an array slice of a texture array, an
array slice, or face of a cubemap
array. For a cubemap, the render
target array index is the face index,
which is a value from 0 to 5. For a
cubemap array the render target
array index is computed as: array
slice index * 6 + face index.

sample_id uint The sample number of the sample
currently being processed.

sample_mask uint The set of samples covered by the
primitive generating the fragment
during multisample rasterization.

sample_mask,
post_depth_coverage
iOS: Metal 2 and later.
macOS: Metal 2.3 and later.

uint The set of samples covered by the
primitive generating the fragment
after application of the early depth
and stencil tests during multisample
rasterization. The
early_fragment_tests attribute
needs to be used on the fragment
function; otherwise the compilation
fails.

thread_index_in_quadgro
up
All OS: Metal 2.2 and later.

ushort or uint The scalar index of a thread within a
quad-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 112 of 298

Attribute Corresponding
Data Types

Description

thread_index_in_simdgro
up
All OS: Metal 2.2 and later.

ushort or uint The scalar index of a thread within a
SIMD-group.

threads_per_simdgroup
All OS: Metal 2.2 and later.

ushort or uint The thread execution width of a
SIMD-group.

viewport_array_index
macOS: Metal 2 and later.
iOS: Metal 2.1 and later.

uint The viewport (and scissor rectangle)
index value of the primitive.

A variable declared with the [[position]] attribute as input to a fragment function can only
be declared with the center_no_perspective sampling and interpolation attribute. (See
section 5.4.)
For [[color(m)]] , m is used to specify the color attachment index when accessing (reading
or writing) multiple color attachments in a fragment function.
The [[sample_mask]] attribute can only be declared once for a fragment function input.
The value of [[r end er_target_array_index]] in the fragment function is the same value
written from the vertex function, even if the specified value is out of range.
For more about [[viewport_array_index]] , see section 5.10.
The default value for [[amplification_count]] is 1, which indicates that vertex
amplification is disabled.
The value for [[amplification_id]] shall be in the range [0,
amplification_count) .
For a specified [[a mplification_id]] attribute value, the
[[viewport_array_index]] and [[render_target_array_index]] built-in
fragment input values are added to (offset by) the values that the corresponding
MTLVertexAmplificationViewMapping structure provides.
The following example describes the structure MyVertexOut that is both a vertex function
return type and a fragment function input type. MyVertexOut uses the
[[amplification_id]] attribute for the input argument amp_id to amplify the position
and ampData members. Use of the [[shared]] attribute explicitly ensures the texcoord
member as having the same value for all varyings under vertex amplification, as described in
section 5.2.3.3.
In the vertex function myVertex , the [[amplification_id]] and
[[amplification_ count]] attributes specify the vertex function input variables for vertex
amplification, as detailed in section 5.2.3.1. The shader compiler deduces that the normal
member has the same value for every [[amplification_id]] , so the compiler marks it as
shared in vertex output.
In the fragment function myFragment , the same [[amplification_id]] and
[[amplification_ count]] attributes specify fragment function input variables. If vertex

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 113 of 298

amplification is enabled, then amp_id determines the mapping
(MTLVertexAmplificationViewMapping structure) from which to select the viewport
array index (viewportArrayIndexOffset member).
struct MyVertexIn {
 float4 position [[attribute(0)]];
 float3 normal [[attribute(1)]];
 float3 tangent [[attribute(2)]];
 float2 texcoord [[attribute(3)]];
};

struct MyVertexOut {
 float4 position [[position]];
 float3 normal;
 float3 tangent;
 float3 bitangent;
 float2 texcoord [[shared]]; // explicitly shared.
 float ampData;
 ushort viewport [[viewport_array_index]]; // implicitly shared
};

constexpr ushort MAX_AMP = 2;

vertex MyVertexOut myVertex(MyVertexIn in [[stage_in]],
 constant float4x4 view_proj[MAX_AMP],
 constant float data[MAX_AMP],
 ushort amp_id [[amplification_id]],
 ushort amp_count [[amplification_count]], ...)
{
 MyVertexOut vert;
 vert.position = view_proj[amp_id] * in.position; // deduced amplified
 vert.normal = in.normal; // deduced shared
 vert.tangent = ...;
 vert.bitangent = ...;
 vert.texcoord = ...;
 vert.ampData = data[amp_id]; // not shared
 vert.viewport = 1;
 return vert;
}

fragment float4 myFragment(MyVertexOut in [[stage_in]],
 ushort amp_id [[amplification_id]],
 ushort amp_count [[amplification_count]],
 ...) {
 // For MTLVertexAmplificationViewMapping = {{1,3},{2,4}}
 // when amp_id == 0, in.viewport == 2
 // when amp_id == 1, in.viewport == 3
 ushort viewport = in.viewport;
 ...
}

A fragment function input declared with the [[barycentric_coord]] attribute can only be
declared with either the center_perspective (default) or center_no_perspective

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 114 of 298

sampling and interpolation attributes. The barycentric coordinates and per-pixel primitive ID
can be passed as fragment function input in structures organized as shown in these examples:
struct FragmentInput0 {
 uint primitive_id [[primitive_id]];
 // [[center_perspective]] is the default, so it can be omitted.
 float3 barycentric_coord [[barycentric_coord, center_perspective]];
};

struct FragmentInput1 {
 uint primitive_id [[primitive_id]];
 float2 linear_barycentric_coord [[barycentric_coord,
 center_no_perspective]];
};

By storing the barycentric coordinates and per-pixel primitive ID, your shader can manually read
and interpolate the vertices of a drawn primitive within the fragment phase or defer this
interpolation to a separate pass. In the deferred interpolation scenario, you can use a thin buffer
during the geometry pass to store a minimal set of surface data, including pre-clipped
barycentric coordinates. At a later stage, you must have enough data to reconstruct the original
vertex indices from the primitive ID data and to correlate the barycentric coordinates to those
vertex indices.
When applying the barycentric_coord attribute to an input argument (or to a field of an
argument) with +)&% components than the dimension of the primitive, the remaining elements
are initialized with 0.0f . For example, for
fragment float4
frag (float3 coord [[barycentric_coord]]) { ... }

¥! When drawing a point, coord.yz is float2(0.0f) .
¥! When drawing a line, coord.z is 0.0f .
When applying the barycentric_coord attribute to an input argument (or to a field of an
argument) with >%@%& components than the dimension of the primitive, the remaining elements
are ignored.

Table 5.6 lists attributes that can be specified for tile arguments that are input to a fragment
function. The data types for declaring [[pixel_position_in_tile]] and
[[pixels_per_tile]] must match.

Table 5.6 . Attributes for fragment function tile input arguments

Attribute Corresponding Data
Types

Description

pixel_position_in_tile ushort2 or uint2 (x, y) position of the fragment in
the tile.

pixels_per_tile ushort2 or uint2 (width, height) of the tile in
pixels.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 115 of 298

Attribute Corresponding Data
Types

Description

tile_index ushort or uint 1D tile index.
render_target_array_ind
ex

uchar , ushort ,
or uint

The render target array index,
which refers to the face of a
cubemap, data at a specified
depth of a 3D texture, an array
slice of a texture array, an array
slice, or face of a cubemap
array. For a cubemap, the render
target array index is the face
index, which is a value from 0 to
5. For a cubemap array the
render target array index is
computed as: array slice index *
6 + face index.

macOS: Metal 2.3 and later support all attributes in Table 5.6.
iOS: Metal 2 and later support all attributes in Table 5.6.
[[tile_index]] is a value from [0, n), where n is the number of tiles in the render target.

5.2.3.5! Fragment Function Output Attributes
The return type of a fragment function describes the per-fragment output. You must use the
attributes listed in Table 5.7 to specify that a fragment function can output one or more render-
target color values, a depth value, a sampling coverage mask, or a stencil reference value. If the
depth value is not output by the fragment function, the depth value generated by the rasterizer
is output to the depth attachment.

Table 5.7. Attributes for fragment function return types

Attribute Corresponding
Data Types

Description

color(m)
All OS: Metal 1 and later.

color(m), index(i)
All OS: Metal 1.2 and later.

floatn , halfn ,
intn , uintn ,
shortn , or
ushortn !

Color value output for a color attachment.

m is the color attachment index and needs to
be known at compile time. The index i can be
used to specify one or more colors output by a
fragment function for a given color attachment
and is an input to the blend equation.

depth(depth_argument)
All OS: Metal 1 and later.

float Depth value output using the function
specified by depth_argument .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 116 of 298

Attribute Corresponding
Data Types

Description

sample_mask
All OS: Metal 1 and later.

uint Coverage mask.

stencil
All OS: Metal 2.1 and later.

uint Stencil reference value to be used in a
stencil test.

The color attachment index m for fragment output is specified in the same way as it is for
[[color(m)]] for fragment input (see discussion for Table 5.5). Multiple elements in the
fragment function return type that use the same color attachment index for blending needs to
be declared with the same data type.
If there is only a single-color attachment in a fragment function, then [[color(m)]] is
optional. If [[color(m)]] is not specified, the attachment index is 0. If multiple color
attachments are specified, [[color(m)]] needs to be specified for all color values. See
examples of specifying the color attachment in sections 5.5 and 5.8.1.5.
If index(i) is not specified in the attribute, the default is an index of 0. If index(i) is
specified, the value of i needs to be known at compile time.
If a fragment function writes a depth value, the depth_argument needs to be specified with
one of the following values:
any

greater

less

You cannot use the [[stencil]] attribute in fragment-based tile shading functions. The
[[stencil]] attribute is not compatible with the [[early_fragment_tests]] function
attribute.
If the fragment function does not output the stencil value, the
setStencilReferenceValue: or
setStencilFrontReferenceValue:backReferenceValue: method of
MTLRenderCommandEncoder can set the stencil reference value.

The following example shows how color attachment indices can be specified. Color values
written in clr_f write to color attachment index 0, clr_i to color attachment index 1, and
clr_ui to color attachment index 2.

struct MyFragmentOutput {

// color attachment 0
float4 clr_f [[color(0)]];

// color attachment 1
int4 clr_i [[color(1)]];

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 117 of 298

// color attachment 2
uint4 clr_ui [[color(2)]];

}

fragment MyFragmentOutput
my_fragment(É)
{

MyFragmentOutput f;
 É
 f.clr_f = É;
 É
 return f;
}

If a color attachment index is used as both an input to and an output of a fragment function, the
data types associated with the input argument and output declared with this color attachment
index must match.

5.2.3.6! Kernel Function Input Attributes
When a kernel function is submitted for execution, it executes over an N-dimensional grid of
threads, where N is one, two or three. A thread is an instance of the kernel function that
executes for each point in this grid, and thread_position_in_grid identifies its position in
the grid.
Within a compute unit, a threadgroup is partitioned into multiple smaller groups for execution.
The execution width of the compute unit, referred to as the thread s_per_simdgroup ,
determines the recommended size of this smaller group. For best performance, make the total
number of threads in the threadgroup a multiple of the thread s_per_simdgroup .
Threadgroups are assigned a unique position within the grid (referred to as
threadgroup_position_in_grid). Threads are assigned a unique position within a
threadgroup (referred to as thread_position_in_threadgroup). The unique scalar index
of a thread within a threadgroup is given by thread_index_in_threadgroup .
Each thread’s position in the grid and position in the threadgroup are N-dimensional tuples.
Threadgroups are assigned a position using a similar approach to that used for threads.
Threads are assigned to a threadgroup and given a position in the threadgroup with
components in the range from zero to the size of the threadgroup size in that dimension minus
one.
When a kernel function is submitted for execution, the number of threadgroups and the
threadgroup size are specified, or the number of threads in the grid and the threadgroup size
are specified. For example, consider a kernel function submitted for execution that uses a 2D
grid where the number of threadgroups specified are (Wx, Wy) and the threadgroup size is
(Sx, Sy) . Let (wx, wy) be the position of each threadgroup in the grid
(threadgroup_position_in_grid) and (lx, ly) be the position of each thread in the
threadgroup (thread_position_in_threadgroup).
The thread position in the grid (thread_position_in_grid) is:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 118 of 298

(gx, gy) = (wx * Sx + lx, wy * Sy + ly)

The grid size (threads_per_grid) is:
(Gx, Gy) = (Wx * Sx, Wy * Sy)

In cases other than a tile function, the thread index in the threadgroup
(thread_index_in_threadgroup) is determined by: ly * Sx + lx
For a tile function, the thread index is not a linear mapping from the lx and ly values. Each
thread in a tile function is guaranteed to get a unique index in the range [0, Sx * Sy).
Within a threadgroup, threads are divided into SIMD-groups in an implementation-defined
fashion. Any given thread in a SIMD-group can query its SIMD lane ID and which SIMD-group it
is a member of.
Table 5.8 lists the built-in attributes that can be specified for arguments to a kernel function
and the corresponding data types with which they can be used. Metal 3.1 and later provide the
built-in attributes can be specified on global (program scope) variables to be used in a kernel
context.

Table 5.8 . Attributes for kernel function input arguments

Attribute
Corresponding
Data Types

Description

dispatch_quadgroups_per_th
readgroup
macOS: Metal 2.1 and later.
iOS: Metal 2 and later.

ushort or uint
The quad-group execution width
of a threadgroup specified at
dispatch.

dispatch_simdgroups_per_th
readgroup
macOS: Metal 2 and later.
iOS: Metal 2.2 and later.

ushort or uint
The SIMD-group execution width
of a threadgroup specified at
dispatch.

dispatch_threads_per_threa
dgroup
All OS: Metal 1 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread execution width of a
threadgroup for threads specified
at dispatch.

grid_origin
All OS: Metal 1.2 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The origin (offset) of the grid over
which compute threads that read
per-thread stage-in data are
launched.

grid_size
All OS: Metal 1.2 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The maximum size of the grid over
which compute threads that read
per-thread stage-in data are
launched.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 119 of 298

Attribute
Corresponding
Data Types

Description

quadgroup_index_in_threadg
roup
macOS: Metal 2.1 and later.
iOS: Metal 2 and later.

ushort or uint
The scalar index of a quad-group
within a threadgroup.

quadgroups_per_threadgroup
macOS: Metal 2.1 and later.
iOS: Metal 2 and later.

ushort or uint
The quad-group execution width
of a threadgroup.

simdgroup_index_in_threadg
roup
macOS: Metal 2 and later.
iOS: Metal 2.2 and later.

ushort or uint
The scalar index of a SIMD-group
within a threadgroup.

simdgroups_per_threadgroup
macOS: Metal 2 and later.
iOS: Metal 2.2 and later.

ushort or uint
The SIMD-group execution width
of a threadgroup.

thread_execution_width
All OS: Metal 1 and later.
[[Deprecated as of Metal 3 – use
threads_per_simdgroup]]

ushort or uint
The thread execution width of a
SIMD-group (compute unit).

thread_index_in_quadgroup
macOS: Metal 2.1 and later.
iOS: Metal 2 and later.

ushort or uint The scalar index of a thread within
a quad-group.

thread_index_in_simdgroup
macOS: Metal 2 and later.
iOS: Metal 2.2 and later.

ushort or uint The scalar index of a thread within
a SIMD-group.

thread_index_in_threadgrou
p
All OS: Metal 1 and later.

ushort or uint The scalar index of a thread within
a threadgroup.

thread_position_in_grid
All OS: Metal 1 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread’s position in an N-
dimensional grid of threads.

thread_position_in_threadg
roup
All OS: Metal 1 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread’s unique position within
a threadgroup

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 120 of 298

Attribute
Corresponding
Data Types

Description

threadgroup_position_in_gr
id
All OS: Metal 1 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The threadgroup’s unique position
within a grid.

threadgroups_per_grid
All OS: Metal 1 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The number of threadgroups in a
grid.

threads_per_grid
All OS: Metal 1 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The grid size.

threads_per_simdgroup
macOS: Metal 2 and later.
iOS: Metal 2.2 and later.

ushort or uint
The thread execution width of a
SIMD-group (compute unit).

threads_per_threadgroup
All OS: Metal 1 and later.

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread execution width of a
threadgroup.

All OS: Metal 1.2 and later support grid_origin and grid_size .
macOS: Metal 2 and later support SIMD-group attributes. Metal 2.1 and later support quad-
group attributes. Metal 1 and later support other attributes.
iOS: Metal 2 and later support SIMD-group and quad-group attributes. Metal 1 and later support
all other attributes.
All OS: Metal 3.1 and later support global (program scope) variables. You can specify these
attributes except when using them in a dynamic library or a separately compiled binary
function. In Metal 3.2 and later, you can also use global variables in a dynamic library or a
separately compiled binary function for Apple silicon.

For standard Metal compute functions (other than tile functions), SIMD-groups are linear and
one-dimensional. (Threadgroups may be multidimensional.) The number of SIMD-groups in a
threadgroup ([[simdgroups_per_threadgroup]]) is the total number threads in the
threadgroup ([[threads_per_threadgroup]]) divided by the SIMD-group size
([[thread s_per_simdgroup]]):

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 121 of 298

simdgroups_per_threadgroup = ceil(threads_per_threadgroup/
thread s_per_simdgroup)

Similarly, the number of quad-groups in a threadgroup (quadgroups_per_threadgroup) is
the total number of threads in threadgroup divided by 4, which is the thread execution width of
a quad-group:
quadgroups_per_threadgroup = ceil(threads_per_threadgroup/4)

For tile functions, threads are arranged as 2 x 2 quads. For a 2D grid where the number of
threadgroups specified are (Wx, Wy), simdgroups_per_threadgroup is computed by:
simdgroups_per_threadgroup = ceil(Wx/2) * 2 * ceil(Wy/2) * 2 /
thread s_per_simdgroup

simdgroups_per_threadgroup =
ceil(Wx/2)*ceil(Wy/2)*4/ thread s_per_simdgroup

For tile functions, quadgroups_per_threadgroup is computed by:
quadgroups_per_threadgroup = ceil(Wx/2) * 2 * ceil(Wy/2) * 2 / 4

quadgroups_per_threadgroup = ceil(Wx/2) * ceil(Wy/2)

[[dispatch_simdgroups_per_threadgroup]] and
[[dispatch_quadgroups_per_threadgroup]] are similarly computed for threads
specified at dispatch.
SIMD-groups execute concurrently within a given threadgroup and make independent forward
progress with respect to each other, in the absence of threadgroup barrier operations. The
thread index in a SIMD-group (given by [[thread_index_in_simdgroup]]) is a value
between 0 and SIMD-group size – 1, inclusive. Similarly, the thread index in a quad-group
(given by [[thread_index_in_quadgroup]]) is a value between 0 and 3, inclusive.
In Metal 2, the number of threads in the grid does not have to be a multiple of the number of
threads in a threadgroup. It is therefore possible that the actual threadgroup size of a specific
threadgroup may be smaller than the threadgroup size specified in the dispatch. The
[[threads_per_threadgroup]] attribute specifies the actual threadgroup size for a given
threadgroup executing the kernel. The [[dispatch_threads_per_threadgroup]]
attribute is the threadgroup size specified at dispatch.
Notes on kernel function attributes:
¥! The type for declaring [[thread_position_in_grid]] , [[threads_per_grid]] ,

[[thread_position_in_threadgroup]] , [[threads_per_threadgroup]] ,
[[threadgroup_position_in_grid]] ,
[[dispatch_threads_per_threadgroup]] , and [[threadgroups_per_grid]]
needs to be a scalar type or a vector type. If it is a vector type, the number of components
for the vector types for declaring these arguments need to match.

¥! The data types for declaring [[thread_position_in_grid]] and
[[threads_per_grid]] need to match.

¥! The data types for declaring [[thread_position_in_threadgroup]] ,
[[threads_per_threadgroup]] , and
[[dispatch_threads_per_threadgroup]] need to match.

¥! If [[thread_position_in_threadgroup]] is type uint , uint2 or uint3 ,
[[thread_index_in_threadgroup]] needs to be type uint .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 122 of 298

¥! The types for declaring [[thread_index_in_simdgroup]] ,
[[threads_per_simdgroup]] , [[simdgroup_index_in_threadgroup]] ,
[[simdgroups_per_threadgroup]] ,
[[dispatch_simdgroups_per_threadgroup]] ,
[[quadgroup_index_in_threadgroup]] , [[quadgroups_per_threadgroup]] ,
and [[dispatch_quadgroups_per_threadgroup]] need to be ushort or uint .
The types for declaring these built-in variables need to match.

¥! [[threads_per_simdgroup]] and [[thread_execution_width]] are aliases of
one another that reference the same concept.

Table 5.9 . Attributes for kernel function tile input arguments

Attribute Corresponding Data
Types

Description

render_target_array_index

uchar , ushort ,
or uint

The render target array index,
which refers to the face of a
cubemap, data at a specified
depth of a 3D texture, an array
slice of a texture array, an array
slice, or face of a cubemap
array. For a cubemap, the render
target array index is the face
index, which is a value from 0 to
5. For a cubemap array the
render target array index is
computed as: array slice index *
6 + face index.

macOS: Metal 2.3 and later support all attributes in Table 5.9.
iOS: Metal 2 and later support all attributes in Table 5.9.

5.2.3.7! Intersection Function Input Attributes
Table 5.10 lists the built-in attributes that can be specified for arguments to a custom
intersection function (see section 5.1.6). Some built-in attributes can be used when specific
values of primitive_type and intersection _tags are specified on the intersection
function.
For example, instance_id is available if intersection_tag s contains instancing .

[[intersection(triangle, triangle_data, instancing,
world_space_data)]]

bool triangleIntersectionFunction(... , uint id [[ins t ance_ id]], É)
{É}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 123 of 298

Any such restriction is listed in the description of the attribute.

Table 5.10. Attributes for intersection function input arguments

Attribute
Corresponding
Data Types

Description

origin float3 Ray origin in object space.

direction float3 Ray direction in object space.

min_distance float Ray min distance.

max_distance float

Passed by reference. Returns the
current closest intersection max
distance. The intersector initializes the
initial value with the ray’s maximum
distance and the value decreases as the
intersector finds intersections.

payload
User type.
Passed by reference.

User defined payload passed by the
calling thread. Needs to be specified to
allow matching payload table by
intersect() (section 6.18.2).

geometry_id ushort or uint The per-geometry id.

primitive_id ushort or uint
The per-primitive identifier. For curves,
this is a curve segment index.

i nstance_id
ushort , uint or
array_ref<uint>

The per-instance identifier. Available if
intersection_tags include
instancing . Since Metal 3.1, if
intersection_tags include
max_levels<Count >, the type must
be array_ref<uint> . Otherwise, it is
ushort or uint .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 124 of 298

Attribute
Corresponding
Data Types

Description

world_space_origin float3
Origin in world space. Available if
intersection_tags include
world_space_data .

world_space_direction float3
Direction in world space. Available if
intersection_tags include
world_space_data .

barycentric_coord float2

The barycentric coordinates. Available if
the primitive_type is triangle
and intersection tag include
triangle_data .

f ront_facing bool

This value is true if the triangle front
face is visible from the ray origin.
Available if intersection_tags
include triangle_data .

distance float
Distance along the ray at the triangle
intersection. Available if the
primitive_type is triangle .

opaque bool

If this primitive should be considered
opaque or not. Available if the
primitive_type is a
bounding_box .

i nstance_intersection_
function_table_offset

ushort or uint
Offset into the intersection function
table used to select the intersection
instance.

geometry_intersection_
function_table_offset

ushort or uint
Offset into the geometry object used to
select to select the intersection
instance.

t ime
All OS: Metal 2.4 and later. float

Ray intersection time. Available if
intersection_tags include
primitive_motion .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 125 of 298

Attribute
Corresponding
Data Types

Description

motion_start_time
All OS: Metal 2.4 and later. float

Motion start time for this geometry.
Available if intersection_tags
include primitive_motion .

motion_end_time
All OS: Metal 2.4 and later. float

Motion end time for this geometry.
Available if intersection_tags
include primitive_motion .

key_frame_count
All OS: Metal 2.4 and later. ushort or uint

Number of key frames. Available if
intersection_tags include
primitive_motion .

object_to_world_transf
orm
All OS: Metal 2.4 and later.

float4x3

Object space to world space
transformation matrix. Available if
intersection_tags include
instancing and
world_space_data . If
intersection_tags include
instance_motion , the matrix is
interpolated based on the time .

world_to_object_transf
orm
All OS: Metal 2.4 and later.

float4x3

World space to object space
transformation matrix. Available if
intersection_tags include
instancing and
world_space_data . If
intersection_tags include
instance_motion , the matrix is
interpolated based on the time .

user_instance_id
All OS: Metal 2.4 and later.

ushort , uint or
array_ref<uint>

User defined instance id. Available if
intersection_tags include
instancing . Since Metal 3.1, if
intersection_tags include
max_levels<Count >, the type must
be array_ref<uint> . Otherwise, it is
ushort or uint .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 126 of 298

Attribute
Corresponding
Data Types

Description

primitive_data
All OS: Metal 3 and later.

const device T*
 or
const device T&

Per-primitive data. The data is read-only
and passed in the device address
space.

curve_parameter
All OS: Metal 3.1 and later. float

The value which would need to be
passed to the curve basis functions to
reconstruct the position corresponding
to the intersection along the curve
segment. This will be exactly 0.0F or
1.0F if, and only if, the ray intersects a
curve end cap or elbow. Available if
intersection_tags include
curve_data . See section 6.18.6 for a
set of curve utility functions.

For vertex attributes v0 , v1 , and v2 , the attribute value at the specified barycentric point is:
 v1 * barycentric_coord .x +
 v2 * barycentric_coord .y +
 v0 * (1.0f - (barycentric_coord .x + barycentric_coord .y))

The type for a parameter with the [[payload]] attribute is of the form ray_data T &. It is
passed by reference to the intersection functions, and it is allocated in the ray_data address
space. The type T of the payload can be or contain the following types:

¥! device or constant pointers or references
¥! integer types
¥! enumeration types
¥! floating-point types
¥! vector types
¥! arrays of such types
¥! structure and union (except for atomic< TÕ> and i mageblock< TÕ>).

5.2.3.8! Intersection Function Output Attributes
Table %#&& lists the built-in attributes that can be specified for a return type of a
[[intersection(primitive_ type, intersection_tags É)]] function (and their
corresponding data types).

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 127 of 298

Table 5.11. Attributes for intersection return types

Attribute Corresponding
Data Types

Description

accept_intersection bool If true, this primitive becomes the next committed hit:
if it is the nearest, it will be returned from
intersect() .

continue_search bool If the hit is accepted
([[accept_intersection]] == true),
continue_search indicates if the search should
continue. If continue_search is true,
intersect() will continue to search for a closer hit.
If false , no further searching is done. The current
nearest hit is returned from intersect().
Defaults to true . Even if true is returned, a
committed hit will immediately halt searching if
accept_any_intersection () is true .

distance float This returns the distance along the ray of a hit found
within the bounding box. If the hit is rejected
([[accept_intersection]] == false), this
return value is ignored. Available if the
primitive_type is a bounding_box .

For triangle intersection functions, [[accept_intersection]] is the only required return
value. If the function returns a bool without an attribute, then it is assumed to be
[[accept_intersection]] .
The value of [[distance]] needs to be greater than or equal to the value of
[[min_distance]] and it needs to be less than or equal to the value of
[[max_distance]] and within the custom primitive's bounding box (inclusive), or the results
are undefined. If the value of [[distance]] is the same as the value of
[[max_distance]], then accepting this hit takes precedence over the previous hit at the
same distance.
Any changes made to the ray payload take effect regardless of how the intersection function
returns: Rejected primitives can have side effects to memory that are observed by future
intersection shader threads.
Writes to device memory also occur even for rejected primitives. Those writes are visible to
other threads via the usual memory consistency and coherency rules (at present, only atomics
will be coherent, and only relaxed consistency is supported). Intersection functions may be
invoked even if the ray does not intersect the primitive's bounding box. For example,
implementations may group multiple primitives into one acceleration structure leaf node.
Below is an example of an intersection function of a bounding box.
struct IntersectionResult {
 bool continueSearch [[continue_search]];

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 128 of 298

 bool accept [[accept_intersection]];
 float distance [[distance]];
};
[[intersection(bounding_box)]]
IntersectionResult sphereIntersectionFunction(
 float3 origin [[origin]],
 float3 direction [[direction]],
 uint primitiveIndex [[primitive_id]],
 ray_data float2 & resources [[payload]],
 float min_distance [[min_distance]],
 float max_distance [[max_distance]])
{ É}

5.2.3.9! Object Function Input Attributes
All OS: In Metal 3.1 and later, you can specify these attributes on global variables except when
using them in a dynamic library or a separately compiled binary function.
Object functions use the same execution model as a kernel function (see section %#"#)#'),
where it executes over an N-dimensional grid of threads. Object functions arguments can be
samplers , textures , arguments of type mesh_grid_properties , and buffers in the
device , constant , and threadgroup address space.
Object functions support a subset of the built-in attributes of a kernel function and
[[amplification_count]] and [[payload]] . The semantics of
[[amplification_count]] is the same as in section 5.2.3.1 Vertex Function Input
Attributes. Table 5.12 lists the built-in attributes that can be specified for arguments to an
object function and the corresponding data types with which they can be used. Metal 3.1 and
later provide the built-in attributes in Table 5.12, which you can specify on program scope
variables, except for amplification_count and payload .

Table 5.12. Attributes for object function

Attribute
Corresponding
Data Types

Description

amplification_count

ushort or uint The number of output vertices
produced for each vertex
instance.

dispatch_quadgroups_per_thr
eadgroup

ushort or uint
The quad-group execution width
of a threadgroup specified at
dispatch.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 129 of 298

Attribute
Corresponding
Data Types

Description

dispatch_simdgroups_per_thr
eadgroup

ushort or uint
The SIMD-group execution width
of a threadgroup specified at
dispatch.

dispatch_threads_per_thread
group

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread execution width of a
threadgroup for threads
specified at dispatch.

payload

Pointer or l-value
reference to User
Defined T in
object_data
address space

The payload is data passed to
the mesh shader from the object
shader. The payload pointer or
reference is the same for all
threads in the threadgroup. The
payload memory is assumed
uninitialized at the entry of the
object function.

quadgroup_index_in_threadgr
oup

ushort or uint
The scalar index of a quad-group
within a threadgroup.

quadgroups_per_threadgroup
ushort or uint

The quad-group execution width
of a threadgroup.

simdgroup_index_in_threadgr
oup

ushort or uint
The scalar index of a SIMD-
group within a threadgroup.

simdgroups_per_threadgroup
ushort or uint

The SIMD-group execution width
of a threadgroup.

thread_index_in_quadgroup
 ushort or uint The scalar index of a thread

within a quad-group.

thread_index_in_simdgroup
 ushort or uint The scalar index of a thread

within a SIMD-group.

thread_index_in_threadgroup
 ushort or uint The scalar index of a thread

within a threadgroup.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 130 of 298

Attribute
Corresponding
Data Types

Description

thread_position_in_grid

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread’s position in an N-
dimensional grid of threads.

thread_position_in_threadgr
oup

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread’s unique position
within a threadgroup

threadgroup_position_in_gri
d

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The threadgroup’s unique
position within a grid.

threadgroups_per_grid

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The number of threadgroups in a
grid.

threads_per_grid

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The grid size.

threads_per_simdgroup
 ushort or uint The thread execution width of a

SIMD-group.

threads_per_threadgroup

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread execution width of a
threadgroup.

Object function attributes have the same restrictions as kernel function attributes:
¥! The type for declaring [[thread_position_in_grid]] , [[threads_per_grid]] ,

[[thread_position_in_threadgroup]] , [[threads_per_threadgroup]] ,
[[threadgroup_position_in_grid]] ,
[[dispatch_threads_per_threadgroup]] , and [[threadgroups_per_grid]]
needs to be a scalar type or a vector type. If it’s a vector type, the number of components
for the vector types for declaring these arguments need to match.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 131 of 298

¥! The data types for declaring [[thread_position_in_grid]] and
[[threads_per_grid]] need to match.

¥! The data types for declaring [[thread_position_in_threadgroup]] ,
[[threads_per_threadgroup]] , and
[[dispatch_threads_per_threadgroup]] need to match.

¥! If [[thread_position_in_threadgroup]] is type uint , uint2 or uint3 ,
[[thread_index_in_threadgroup]] needs to be type uint .

¥! The types for declaring [[thread_index_in_simdgroup]] ,
[[threads_per_simdgroup]] , [[simdgroup_index_in_threadgroup]] ,
[[simdgroups_per_threadgroup]] ,
[[dispatch_simdgroups_per_threadgroup]] ,
[[quadgroup_index_in_threadgroup]] , [[quadgroups_per_threadgroup]] ,
and [[dispatch_quadgroups_per_threadgroup]] need to be ushort or uint . The
types for declaring these built-in variables need to match.

5.2.3.10!Mesh Function Input Attributes
All OS: In Metal 3.1 and later, you can specify these attributes on global variables except when
using them in a dynamic library or a separately compiled binary function.
Mesh functions use the same execution model as a kernel function (see section %#"#)#'), where
it executes over an N-dimensional grid of threads. Mesh functions arguments can be from
samplers , textures , arguments of type mesh<V, P, NV, NP, t >, and buffers of
device and constant . If the mesh function has a mesh<V, P, NV, NP,t > argument, it
points to an opaque handle for memory representing the mesh to export. The underlying
memory referenced by the mesh<V, P, NV, NP, t > argument is shared among threads of
a given threadgroup.
Mesh functions support a subset of the built-in attributes of a kernel function and also
[[amplification_count]] , [[amplification _id]] , and [[payload]] attributes.
The semantics of [[amplification_count]] and [[amplification _id]] is the same
as in section 5.2.3.1 Vertex Function Input Attributes. Table 5.13 lists the built-in attributes that
can be specified for arguments to a mesh function and the corresponding data types with
which they can be used. Metal 3.1 and later provide the built-in attributes in Table 5.13, which
you can specify on program scope variables, except for amplification_count ,
amplification_id , and payload .

Table 5.13. Attributes for mesh function

Attribute
Corresponding
Data Types

Description

amplification_count

ushort or uint The number of output vertices
produced for each primitive
instance.

amplification_id

ushort or uint The array index offset mappings
for viewport and render target

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 132 of 298

Attribute
Corresponding
Data Types

Description

array indices, which enables
routing an amplified vertex to a
different viewport and render
target.

dispatch_quadgroups_per_th
readgroup

ushort or uint
The quad-group execution width
of a threadgroup specified at
dispatch.

dispatch_simdgroups_per_th
readgroup

ushort or uint
The SIMD-group execution width
of a threadgroup specified at
dispatch.

dispatch_threads_per_threa
dgroup

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread execution width of a
threadgroup for threads specified
at dispatch.

payload

Pointer or l-value
reference to User
Defined T in
object_data
address space.
Needs to be const
qualified.

The payload is data passed to the
mesh shader from the object
shader. The payload pointer or
reference is the same for all
threads in the "#$%!&'()*. The
payload memory is read-only in
the mesh function.

quadgroup_index_in_threadg
roup

ushort or uint
The scalar index of a quad-group
within a threadgroup.

quadgroups_per_threadgroup
 ushort or uint

The quad-group execution width
of a threadgroup.

simdgroup_index_in_threadg
roup

ushort or uint
The scalar index of a SIMD-group
within a threadgroup.

simdgroups_per_threadgroup
 ushort or uint

The SIMD-group execution width
of a threadgroup.

thread_index_in_quadgroup
 ushort or uint The scalar index of a thread within

a quad-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 133 of 298

Attribute
Corresponding
Data Types

Description

thread_index_in_simdgroup
 ushort or uint The scalar index of a thread within

a SIMD-group.

thread_index_in_threadgrou
p

ushort or uint The scalar index of a thread within
a threadgroup.

thread_position_in_grid

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread’s position in an N-
dimensional grid of threads.

thread_position_in_threadg
roup

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread’s unique position within
a threadgroup

threadgroup_position_in_gr
id

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The threadgroup’s unique position
within a grid.

threadgroups_per_grid

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The number of threadgroups in a
grid.

threads_per_grid

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The grid size.

threads_per_simdgroup
 ushort or uint The thread execution width of a

SIMD-group.

threads_per_threadgroup

ushort ,
ushort2 ,
ushort3 ,
uint , uint2 , or
uint3

The thread execution width of a
threadgroup.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 134 of 298

Mesh function attributes have the same restrictions as kernel function attributes:
¥! The type for declaring [[thread_position_in_grid]] , [[threads_per_grid]] ,

[[thread_position_in_threadgroup]] , [[threads_per_threadgroup]] ,
[[threadgroup_position_in_grid]] ,
[[dispatch_threads_per_threadgroup]] , and [[threadgroups_per_grid]]
needs to be a scalar type or a vector type. If it’s a vector type, the number of components
for the vector types for declaring these arguments need to match.

¥! The data types for declaring [[thread_position_in_grid]] and
[[threads_per_grid]] need to match.

¥! The data types for declaring [[thread_position_in_threadgroup]] ,
[[threads_per_threadgroup]] , and
[[dispatch_threads_per_threadgroup]] need to match.

¥! If [[thread_position_in_threadgroup]] is type uint , uint2 or uint3 ,
[[thread_index_in_threadgroup]] needs to be type uint .

¥! The types for declaring [[thread_index_in_simdgroup]] ,
[[threads_per_simdgroup]] , [[simdgroup_index_in_threadgroup]] ,
[[simdgroups_per_threadgroup]] ,
[[dispatch_simdgroups_per_threadgroup]] ,
[[quadgroup_index_in_threadgroup]] , [[quadgroups_per_threadgroup]] ,
and [[dispatch_quadgroups_per_threadgroup]] need to be ushort or uint . The
types for declaring these built-in variables need to match.

#"0":$ A.3D4$V55'2J)P $V44(-JD4'$

Vertex function output and the rasterizer-generated fragments become the per-fragment
inputs to a fragment function. The [[stage_in]] attribute can assemble the per-fragment
inputs.
A vertex function can read per-vertex inputs by indexing into buffer(s) passed as arguments to
the vertex function using the vertex and instance IDs. To assemble per-vertex inputs and pass
them as arguments to a vertex function, declare the inputs with the [[stage_in]] attribute.
A kernel function reads per-thread inputs by indexing into buffer(s) or texture(s) passed as
arguments to the kernel function using the thread position in grid or thread position in
threadgroup IDs. In addition, to pass per-thread inputs as arguments to a kernel function,
declaring the inputs with the [[stage_in]] attribute.
You can declare only one argument of the vertex, fragment, or kernel function with the
[[stage_in]] attribute. For a user-defined structure declared with the [[stage_in]]
attribute, the members of the structure can be:
¥! A scalar integer or floating-point value.
¥! A vector of integer or floating-point values.
¥! An interpolant<T,P> value for fragment function input.
You cannot use the stage_in attribute to declare members of the structure that are packed
vectors, matrices, structures, bitfields, references or pointers to a type, or arrays of scalars,
vectors, or matrices.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 135 of 298

5.2.4.1! Vertex Function Output Example
The following example shows how to pass per-vertex inputs using the stage_in attribute:
struct VertexOutput {

float4 position [[position]];
float4 color;
float2 texcoord;

};

struct VertexInput {

float4 position [[attribute(0)]];
float3 normal [[attribute(1)]];
half4 color [[attribute(2)]];
half2 texcoord [[attribute(3)]];

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;
float4 light_position[MAX_LIGHTS];
float4 light_color[MAX_LIGHTS];
float4 light_attenuation_factors[MAX_LIGHTS];

};

constexpr sampler s = sampler(coord::normalized,
address::clamp_to_zero,
 filter::linear);

vertex VertexOutput
render_vertex(VertexInput v_in [[stage_in]],

 constant float4x4& mvp_matrix [[buffer(1)]],
 constant LightDesc& lights [[buffer(2)]],
 uint v_id [[vertex_id]])

{
VertexOutput v_out;
v_out.position = v_in.position * mvp_matrix;
v_out.color = do_lighting(v_in.position, v_in.normal, lights);
É
return v_out;

}

5.2.4.2! Fragment Function Input Example
An example in section 5.2.3.3 previously introduces the process_vertex vertex function,
which returns a VertexOutput structure per vertex. In the following example, the output from
process_vertex is pipelined to become input for a fragment function called
render_pixel , so the first argument of the fragment function uses the [[stage_in]]

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 136 of 298

attribute and uses the incoming VertexOutput type. (In render_pixel , the imgA and imgB
2D textures call the built-in function sample , which is introduced in section 6.12.3).
struct VertexOutput 2 {

float4 position [[position]];
float4 color;
float2 texcoord;

};

struct VertexInput Data {

float4 position;
float3 normal;
float2 texcoord;

};

constexpr constant uint MAX_LIGHTS = 4;

struct LightDesc {

uint num_lights;
float4 light_position[MAX_LIGHTS];
float4 light_color[MAX_LIGHTS];
float4 light_attenuation_factors[MAX_LIGHTS];

};

constexpr sampler s = sampler(coord::normalized,
address::clamp_to_edge,
 filter::linear);

vertex VertexOutput 2
render_vertex(const device VertexInput Data *v_in [[buffer(0)]],

 constant float4x4& mvp_matrix [[buffer(1)]],
 constant LightDesc& lights [[buffer(2)]],
 uint v_id [[vertex_id]])

{
VertexOutput v_out;
v_out.position = v_in[v_id].position * mvp_matrix;
v_out.color = do_lighting(v_in[v_id].position,
v_in[v_id].normal, lights);
v_out.texcoord = v_in[v_id].texcoord;
return v_out;

}

fragment float4
render_pixel(VertexOutput 2 input [[stage_in]],

 texture2d<float> imgA [[texture(0)]],
 texture2d<float> imgB [[texture(1)]])

{
float4 tex_clr0 = imgA.sample(s, input.texcoord);
float4 tex_clr1 = imgB.sample(s, input.texcoord);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 137 of 298

// Compute color .
float4 clr = compute_color(tex_clr0, tex_clr1, É);
return clr;

}

5.2.4.3! Kernel Function Per-Thread Input Example
The following example shows how to use the stage_in attribute to pass per-thread inputs.
The stage_in attribute in a kernel function allows you to decouple the data type for declaring
the per-thread inputs in the function from the actual data type used to store the per-thread
inputs.
struct PerThreadInput {

float4 a [[attribute(0)]];
float3 b [[attribute(1)]];
half4 c [[attribute(2)]];
half2 d [[attribute(3)]];

};

kernel void
my_kernel(PerThreadInput thread_input [[stage_in]],

É
uint t_id [[thread_position_in_grid]])

{É}

5.3! Storage Class Specifiers
Metal supports the static and extern storage class specifiers. Metal does not support the
thread_local storage class specifiers.
You can only use the extern storage-class specifier for functions and variables declared in
program scope or for variables declared inside a function. The static storage-class specifier
is only for device variables declared in program scope (see section 4.2) and is not for variables
declared inside a graphics or kernel function. The following example incorrectly uses the
static specifier for the variables b and c declared inside a kernel function.
extern constant float4 noise_table[256];
static constant float4 color_table[256] = {É};// Here, static is ok .

extern void my_foo(texture2d<float> img);
extern void my_bar(device float *a);

[[kernel]] void
my_kernel(texture2d<float> img [[texture(0)]],

 device float *ptr [[buffer(0)]])
{

extern constant float4 a;
static constant float4 b; // Here, static is an error.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 138 of 298

static float c; // Here, static is an error.

É
my_foo(img);
É
my_bar(ptr);
É

}

5.4! Sampling and Interpolation Attributes
Sampling and interpolation attributes are used with inputs to fragment functions declared with
the stage_in attribute except for members of type interpolant<T,P> . The attribute
determines what sampling method the fragment function uses and how the interpolation is
performed, including whether to use perspective-correct interpolation, linear interpolation, or
no interpolation.
The sampling and interpolation attribute can be specified on any stage_in structure member
whose type is scalar and vector. The sampling and interpolation attributes supported are:
¥! center_perspective
¥! center_no_perspective
¥! centroid_perspective
¥! centroid_no_perspective
¥! sample_perspective
¥! sample_no_perspective
¥! flat

center_perspective is the default sampling and interpolation attribute, with the following
exceptions:
¥! For a variable with the [[position]] attribute, the only valid sampling and interpolation

attribute is center_no_perspective .
¥! For an integer variable, the only valid sampling and interpolation attribute is flat .
A perspective attribute (center_perspective , centroid_perspective , or
sample_perspective) indicates the values across a primitive are interpolated in a
perspective-correct manner. A nonperspective attribute (center_no_perspective ,
centroid_no_perspective , or sample_no_perspective) indicates the values across a
primitive are linearly interpolated in screen coordinates.
The center attribute variants (center_perspective and center_no_perspective)
cause sampling to use the center of each pixel.
The sampling attribute variants (sample_perspective and sample_no_perspective)
cause interpolation at a sample location rather than at the pixel center. With one of these
attributes, the fragment function (or code blocks in the fragment function) that use these
variables execute per-sample rather than per-fragment.
If a centroid attribute variant is specified (centroid_perspective and
centroid_no_perspective), the interpolation point sampled needs to be within both the
primitive and the centroid of the pixel.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 139 of 298

The following example demonstrates how to specify the interpolatation of data for different
members of a user-defined structure:
struct FragmentInput {

float4 pos [[center_no_perspective]];
float4 color [[center_perspective]];
float2 texcoord;
int index [[flat]];
float f [[sample_perspective]];
interpolant<float4, interpolation::perspective> icolor;

};

In Metal 2.4 and later, the sample and interpolation attribute can also be specified on any
stage_in structure member whose type is structure. All the members in the structure inherit
the specified sampling and interpolation qualifiers. Field declarations in a structure where
sampling and interpolation qualifiers have been inherited are valid only if one of the following is
true:

¥! The type of field is compatible with the inherited qualifiers.
¥! The field declaration does not have a sampling, and interpolation qualifiers attribute.
¥! The field declaration has the same sampling, and interpolation qualifiers attribute as the

inherited one.
The following example demonstrates how to specify the interpolatation on structure types.

stru c t V Out {
 float4 pos [[position]];
}

stru c t P Out {
 float4 color0;
 float4 color1;
};

[[mesh]] void mesh_function(me sh<VOut , POut , 3, 1,
 topology::triangle> m)

struct FragmentInput {
 VOut vin;
 POut pin [[center _perspective]] ;
};

5.5! Per-Fragment Function Versus Per-Sample Function
You typically execute the fragment function per-fragment. The sampling attribute identifies if
fragment input interpolation is per-sample or per-fragment. Similarly, the [[sample_id]]
attribute identifies the current sample index, and the [[color(m)]] attribute identifies the

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 140 of 298

destination fragment color or sample color (for a multisampled color attachment) value. If you
use any of these attributes with arguments to a fragment function, the fragment function may
execute per-sample instead of per-pixel. (The implementation may decide to only execute the
code that depends on the per-sample values to execute per-sample and the rest of the
fragment function may execute per-fragment.)
Only the inputs with sample access specified (or declared with the [[sample_id]] or
[[color(m)]] attribute) differ between invocations per-fragment or per-sample, whereas
other inputs still interpolate at the pixel center.
The following example uses the [[color(m)]] attribute to specify that this fragment function
executes on a per-sample basis:
[[f ragment]] float4
my_fragment(float2 tex_coord [[stage_in]],

 texture2d<float> img [[texture(0)]],
 sampler s [[sampler(0)]],
 float4 framebuffer [[color(0)]])

{
return c = mix(img.sample(s, tex_coord), framebuffer,
mix_factor);

}

5.6! Imageblock Attributes
iOS: Metal 2 and later support imageblocks.
macOS: Metal 2.3 and later support imageblocks for Apple silicon.
This section and its subsections describe several attributes for imageblocks, including the
[[imageblock_data(type)]] attribute that specifies input and output imageblock with an
explicit imageblock layout for a fragment function.

#"<"!$ $?+48@-./ $9+4+$?'2J'(5 $*>$?+54'($+., $N-'Y $A2+/'J)*8Q5 $$

You can use the [[user(name)]] attribute to specify an attribute name for a data member of
the imageblock data type for a fragment function. If the imageblock structure specified in a
fragment function is a subset of the master explicit imageblock structure, the following rules
match data members declared in the imageblock structure used in a fragment function with
corresponding data members declared in the master explicit imageblock structure:

"! Every attribute name given by [[user(name)]] needs to be unique for each data
member in the imageblock.

"! The attribute name given by [[user(name)]] for a data member needs to match with
a data member declared in the master explicit imageblock structure, and their associated
data types needs to also match.

"! If the [[user(name)]] attribute is not specified, the data member name and type
declared in the imageblock data type for a fragment function and the master imageblock
structure needs to match. Additionally, the data member cannot be within a nested

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 141 of 298

structure that is either within the view imageblock structure or within the master
imageblock structure.

The following example shows the [[user(name)]] attribute in declarations of data members
in master and view imageblock structures:
// The explicit layout imageblock data master struct ure .
struct IM {

rgba8unorm<half4> a [[user(my_a), raster_order_group(0)]];
rgb9e5<float4> b [[user(my_b), raster_order_group(0)]];
int c [[user(my_c), raster_order_group(0)]];
float d [[user(my_d), raster_order_group(0)]];

};

// The explicit layout imageblock data view struct ure for input.
struct IVIn {

rgb9e5<float4> x [[user(my_b)]]; // Maps to IM::b
float y [[user(my_d)]]; // Maps to IM::d

};

// The explicit layout imageblock data view struct ure for output.
struct IVOut {

int z [[user(my_c)]]; // Maps to IM::c
};

// The fragment return struct ure .
struct FragOut {

// IVOut is a view of the master IM.
IVOut i [[imageblock_data(IM)]];

};

// IVIn is a view of the master IM.
[[f ragment]] FragOut
my_fragment(IVIn i [[imageblock_data(IM)]], É) {

FragOut fragOut;
É = i.x;
É = i.y;
fragOut.i.z = É;
return fragOut;

}

The following example shows the declaration of data members in master and view imageblock
structures without the [[user(name)]] attribute:
struct IM {

rgba8unorm<half4> a [[raster_order_group(0)]];
rgb9e5<float4> b [[raster_order_group(0)]];
int c [[raster_order_group(0)]];
float d [[raster_order_group(0)]];

};

im::d

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 142 of 298

struct IVIn {
rgb9e5<float4> b; // Maps to IM::b
float d; // Maps to IM::d

};

struct IVOut {

int c; // Maps to IM::c
};

struct FragOut {

IVOut i [[imageblock_data(IM)]];
};

fragment FragOut
my_fragment(IVIn i [[imageblock_data(IM)]], É) {

FragOut fragOut;
É = i.b;
É = i.d;
fragOut.i.c = É;
return fragOut;

}

You can declare nested structures in the master imageblock and view imageblock structures.
The following example shows how to use nested structures in an imageblock with data
members declared with the [[user(name)]] attribute:
struct A {

rgba8unorm<half4> a [[user(A_a)]];
rgb9e5<float4> b [[user(A_b)]];

};

struct B {

int a [[user(B_a), raster_order_group(1)]];
float b [[user(B_b), raster_order_group(2)]];

};

struct IM {

A a [[user(A), raster_order_group(0)]];
B b [[user(B)]];

};

struct IVIn {

A x [[user(A)]]; // Maps to IM::a
};

struct IVOut {

B y [[user(B)]]; // Maps to IM::b
rgb9e5<float4> z [[user(A_b)]]; // Maps to IM:: A::b

};

im::b
im::b

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 143 of 298

struct FragOut {

IVOut i [[imageblock_data(IM)]];
};

fragment FragOut
my_fragment(IVIn i [[imageblock_data(IM)]], É) {

FragOut fragOut;
É = i.x;
fragOut.i.y.a = É;
fragOut.i.y.b = É;
fragOut.i.z = É;
return fragOut;

}

Each field of a view structure must correspond to exactly one master structure field. A master
structure field can refer to a top-level structure field as well as a field within a nested structure.
It is illegal for two or more view structure fields to alias the same master structure field.
Example of Illegal Use:
struct M {

struct A {
int a [[user(x)]];

}
b [[user(y), raster_order_group(0)]];

};

struct V {

int a [[user(x)]];
M::A b [[user(y)]]; // Illegal : b aliases with a

};

fragment void
f(V i [[imageblock_data(M)]])
{É}

Explicit imageblock types cannot have data members declared with the [[color(n)]]
attribute.

#"<"0$ A2+/'J)*8Q5 $+., $;+54'($%(,'($R(*D35 $

In a kernel function, a [[raster_order_group(index)]] attribute specified on data
members of an imageblock is ignored.
In a fragment function, you must specify the [[raster_order_group(index)]] attribute
for data members of the master explicit imageblock data structure.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 144 of 298

If the master explicit imageblock structure contains data members that are structures, you can
specify the [[raster_order_group(index)]] attribute for all data members in the nested
structure or just the nested structure. If you specify the
[[raster_order_group(index)]] attribute for the nested structure, then it applies to all
data members of the nested structure, and no data member in the nested structure can have
the [[raster_order_group(index)]] attribute declared.
You optionally may specify the [[raster_order_group(index)]] attribute for data
members of an imageblock view structure, but the [[raster_order_group(index)]]
must match the same [[raster_order_group(index)]] specified on the data member of
the master explicit imageblock structure.
The following example shows how you can specify the [[raster_order_group(index)]]
attribute for data members of a master imageblock. Since the
[[raster_order_group(index)]] attribute specifies the S structure member of the
gBufferData structure, you cannot use this attribute on any members of the S structure.

struct S {

rgb9e5<half3> normal;
float factor;

};

struct gBufferData {

half3 color [[raster_order_group(0)]];
S s [[raster_order_group(1)]];
rgb11b10f<half3> lighting [[raster_order_group(2)]];

};

Data members declared as an array have a single raster order group associated with all
members of the array. The following example shows how you can specify the
[[raster_order_group(index)]] attribute for a data member of a master imageblock
that is an array of a structure type.
struct S {

rgb9e5<half3> normal;
float factor;

};

struct IM {

half3 color [[raster_order_group(0)]];
S s [[raster_order_group(1)]][2];
rgb11b10f<half3> lighting [[raster_order_group(2)]];

};

The following example shows an incorrect use of the [[raster_order_group(index)]]
attribute where data member s is an array of a structure of type S with members that specify
raster order groups that result in a compilation error.
struct S {

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 145 of 298

rgb9e5<half3> normal [[raster_order_group(0)]];
float factor [[raster_order_group(1)]];

};

struct IM {

half3 color [[raster_order_group(0)]];
S s[2]; // This causes a compilation error .
rgb11b10f<half3> lighting [[raster_order_group(2)]];

};

#"<"6$ A2+/'J)*8Q $L+P*D45$>*($U(+/2'.4 $UD.84-*.5 $$

In a fragment function, you can access the imageblock in two ways:
"! As a color attachment, where the storage layout of the imageblock is not known in the

fragment function. An 0+(:0906'0+#*%H:)9I' :#?)36 uses the existing color attachment
attribute. (For more about the implicit imageblock layout, see section 5.6.3.1.)

"! As a structure for declaring the imageblock data where the fragment function explicitly
specifies the storage layout of the imageblock. (For more about the %A(:0906'0+#*%H:)9I'
:#?)36, see section 5.6.3.2.)

5.6.3.1! Implicit Imageblock Layout for Fragment Functions
You can access the imageblock data (all the data members in the imageblock associated with a
pixel) in a fragment function. Metal creates an implicit imageblock that matches the behavior of
color attachments (for input to and output from a fragment function). In this mode, the types
associated with the color attachments, as described in the fragment function, are the ALU
types (that is, the types used to perform computations in the fragment function). The Metal
runtime defines the actual pixel storage format.
When accessing the imageblock data as color attachments, you cannot declare the pixel
storage types described in section 2.7 in the imageblock slice structure.
For an imageblock data implicit layout of type T, T is a structure where each member satisfies
one of the following:

"! Have a color attachment (see the [[color(m)]] attribute in Table 5.5 of section
5.2.3.4). The color index m needs to be unique for each member (and sub-member) of T.

"! Be a structure type with members that satisfy the constraint on the list.

5.6.3.2! Explicit Imageblock Layout for Fragment Functions
The imageblock data with %A(:0906 layout has its layout declared in the shading function, not via
the runtime as is done for color attachments. You declare the imageblock data for an explicit
layout as a structure. Each data member of the per-fragment imageblock data can be:
¥! a scalar or vector, integer or floating-point data type,
¥! one of the pixel data types described in section 2.7,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 146 of 298

¥! an array of these types,
¥! or a structure built with these types.
The data members of the imageblock structure use the appropriate alignment rules for each
data member type declared in the structure to determine the actual structure layout and size.
A fragment function can read one or more data members in the per-fragment imageblock data
and write to one or more data members in the per-fragment imageblock data. You can declare
the input and output imageblock data to a fragment function as a structure. The input and
output imageblock structures can be the fully explicit imageblock structure (referred to as the
master explicit imageblock structure), or be a subset of the master explicit imageblock
structure (referred to as the imageblock view structure). For the latter, use the
[[imageblock_data(type)]] attribute with the input and output imageblock data
structure specified on a fragment function, where type specifies the fully explicit imageblock
data structure.
If you specify the [[imageblock_data]] attribute on the input argument or output
structure element without type, by default the fragment function uses the master explicit
imageblock data structure on the input or output.
Example:
struct I {

float a [[raster_order_group(0)]];
};

struct FragOut {

float c [[color(0)]];
I i [[imageblock_data]];

};

fragment FragOut
my_fragment(I i [[imageblock_data]])
{

FragOut fragOut;
É
return fragOut;

}

Fragment functions can access both an implicit imageblock and an explicit imageblock as
separate input arguments, or as fields in a return structure.
Example:
struct I {

float a [[raster_order_group(0)]];
};

struct FragOut {

float c [[color(0)]];
I i [[imageblock_data]];

};

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 147 of 298

[[fragment]] FragOut
my_fragment(I i [[imageblock_data]],

 float c [[color(0)]])
{

FragOut fragOut;
É
return fragOut;

}

By default, the explicit imageblock storage is separate from the storage of the implicit
imageblock. To share storage between the explicit imageblock and implicit imageblock, see
section 5.6.5.

#"<":$ A2+/'J)*8Q $L+P*D45$-. $̂ '(.') $UD.84-*.5 $$

The imageblock<T> type (defined in the header <metal_imageblocks>) can only be used
for arguments declared in a kernel function or in a user function that is called by a kernel
function. Only a kernel function can have an argument declared as an imageblock<T> type.
The data in an imageblock is visible only to threads in a threadgroup.
This imageblock argument to a kernel function is declared as the following templated type:
class imageblock_layout_explicit;

class imageblock_layout_implicit;

template<typename T, typename L>

struct imageblock;

With the following restrictions:
!! L is either imageblock_layout_explicit or imageblock_layout_implicit .
!! T is a structure; members of T can be any of the following:

"! scalars
"! vectors and packed vectors
"! pixel data types
"! an array with elements that are one of the types on this list
"! a structure with members that are one of the types on this list

For an imageblock with implicit layout (imageblock_layout_implicit), each member of
the structure may have a color attachment (see the [[color(m)]] attribute in Table 5.5 of
section 5.2.3.4). The color index m needs to be unique for each member (and sub-member) of
T.
If you do not specify an imageblock layout, the compiler deduces the layout based on T. If T is
not compatible with an implicit or explicit imageblock, a compiler error occurs.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 148 of 298

Both explicit and implicit imageblocks can be arguments to a kernel function. This also makes it
easy to share explicit and implicit imageblock structures between fragment and kernel
functions. By default, the explicit imageblock storage is separate from the storage of the
implicit imageblock. To share storage between the explicit imageblock and implicit imageblock,
see section 5.6.5.

#"<"#$ V)-+5-./ $IC3)-8-4$+., $A23)-8-4$A2+/'J)*8Q5 $

By default, explicit and implicit imageblocks do not alias. To alias the allocation of an explicit
imageblock with the implicit imageblock fully or partially, you can use the following attributes to
specify an explicit imageblock:
[[alias_implicit_imageblock]]

[[alias_implicit_imageblock_color(n)]]

The [[alias_implicit_imageblock]] attribute specifies that the explicit imageblock
allocation completely aliases the implicit imageblock.
The [[alias_implicit_imageblock_color(n)]] attribute specifies that the explicit
imageblock allocation aliases the implicit imageblock starting at a specific color attachment
given by color(n) . If n is a value that is between the smallest and largest declared
attachments, inclusive, but n references an undeclared attachment, then a compile-time error
occurs. If n is a value that exceeds the number of declared attachments, then compilation
succeeds, but the attribute is ignored.
The behavior of accessing data members of an aliased implicit imageblock with an explicit
imageblock is undefined if the kernel or fragment function modifies the aliased imageblock data
members using the explicit imageblock and its associated member functions.
Example:
struct I {

rgba8unorm<half4> a;
rgb9e5<float4> b;
int c;
float d;

};

struct FragOut {

float4 finalColor [[color(0)]];
I i [[imagelock_data, alias_implicit_imageblock_color(1)]];

};

[[fragment]] FragOut
my_fragment(I i [[imageblock_data]], É)
{

FragOut fragOut;
É
return fragOut;

}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 149 of 298

#"<"<$ A2+/'J)*8Q5 $+., $UD.84-*. $=*.54+.45 $

Do not use [[function_constant(name)]] with data members of an imageblock
structure either as input to or as returned output from a fragment or kernel function.

5.7! Graphics Function Ð Signature Matching
A graphics function signature is a list of parameters that are either input to or output from a
graphics function.

#"F"!$ N'(4'C aU(+/2'.4 $E-/.+4D(' $?+48@-./ $$

You can pass two kinds of data between a vertex and fragment function: user-defined and
built-in variables.
You can declare the per-instance input to a fragment function with the [[stage_in]]
attribute. These are output by an associated vertex function.
You can declare built-in variables with one of the attributes defined in section 5.2.3. Examples
of variables that use these attributes are:
¥! the vertex function output (with the [[position]] , [[point_size]] , or

[[clip_distance]] attribute),
¥! the rasterizer output (with the [[point_coord]] , [[front_facing]] ,

[[sample_id]] , or [[sample_mask]] attribute),
¥! or fragment function input that refers to a framebuffer color value (with [[color]]).
Always return a built-in variable that specifies the [[position]] attribute. For built-in
variables with either the [[point_size]] or [[clip_distance]] attribute, that attribute
must also specify the corresponding vertex function output. If they are used and read in a
fragment function, the shader has undefined behavior.
You may also declare built-in variables that are rasterizer output or refer to a framebuffer color
value as the fragment function input with the appropriate attribute.
You can also use the attribute [[user(name)]] syntax to specify an attribute name for any
user-defined variable.
A vertex function and a fragment function have matching signatures if:
¥! There is no input argument with the [[stage_in]] attribute declared in the fragment

function.
¥! For a fragment function argument declared with [[stage_in]] , each element in the type

associated with this argument can be one of the following: a built-in variable generated by
the rasterizer, a framebuffer color value passed as input to the fragment function, or a user-
generated output from a vertex function. For built-in variables generated by the rasterizer or
framebuffer color values, there is no requirement to associate a matching type with
elements of the vertex return type. For elements that are user-generated outputs, the
following rules apply:

If you specify an attribute name for an element using [[user(name)]] , the attribute name
must match with an element in the return type of the vertex function. If you do not specify the

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 150 of 298

[[user(name)]] attribute name, then the argument name and types must match. In either
case, their corresponding data types must also match or the fragment function argument type
needs to be interpolant<T,P> , where T is the element’s type in the vertex return type.
Below is an example of using compatible signatures together (my_vertex and my_fragment ,
or my_vertex and my_fragment2) to render a primitive:
struct VertexOutput {
 float4 position [[position]];
 float3 normal;
 float2 texcoord;
};

vertex VertexOutput
my_vertex(É)
{
 VertexOutput v;
 É
 return v;
}

fragment float4
my_fragment(VertexOutput f [[stage_in]], É)
{
 float4 clr;
 É
 return clr;
}

fragment float4
my_fragment2(VertexOutput f [[stage_in]],

 bool i s_front_face [[front_facing]], É)
{

float4 clr;
É
return clr;

}

The following is an example of compatible signatures:
struct VertexOutput {

float4 position [[position]];
float3 vertex_normal [[user(normal)]];
float2 texcoord [[user(texturecoord)]];

};

struct FragInput {

float3 frag_normal [[user(normal)]];
float4 position [[position]];
float4 framebuffer_color [[color(0)]];

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 151 of 298

bool is_front_face [[front_facing]];
};

vertex VertexOutput
my_vertex(É)
{

VertexOutput v;
É
return v;

}

fragment float4
my_fragment(FragInput f [[stage_in]], É)
{

float4 clr;
É
return clr;

}

The following is an example of compatible signatures:
struct VertexOutput {

float4 position [[position]];

float3 normal;
float2 texcoord;

};

vertex VertexOutput
my_vertex(É)
{

VertexOutput v;
É
return v;

}

fragment float4
my_fragment(float4 p [[position]], É)
{

float4 clr;
É
return clr;

}

Below is an example of incompatible signatures. The data type of normal in VertexOutput
(float3) does not match the type of normal in FragInput (half3):
struct VertexOutput {

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 152 of 298

float4 position [[position]];

float3 normal;
float2 texcoord;

};

struct FragInput {

float4 position [[position]];
half3 normal;

};

vertex VertexOutput
my_vertex(É)
{

VertexOutput v;
É
return v;

}

fragment float4
my_fragment(FragInput f [[stage_in]], É)
{

float4 clr;
É
return clr;

}

Below is another example of incompatible signatures. The attribute index of normal in
VertexOutput (normal) does not match the index of normal in FragInput (foo):
struct VertexOutput {

float4 position [[position]];
float3 normal [[user(normal)]];
float2 texcoord [[user(texturecoord)]];

};

struct FragInput {

float3 normal [[user(foo)]];
float4 position [[position]];

};

vertex VertexOutput
my_vertex_shader(É)
{

VertexOutput v;
É
return v;

}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 153 of 298

fragment float4
my_fragment_shader(FragInput f [[stage_in]], É)
{

float4 clr;
É
return clr;

}

#"F"0$?'5@ aU(+/2'.4 $E-/.+4D(' $?+48@-./ $$

You can pass the two kinds of data from vertex (V) and primitive (P) of mesh<V, P, NV, NP,
t > from the mesh function to the fragment function: user-defined and built-in variables. The
per-vertex mesh outputs defined in vertex (V) are always interpolated, whereas the per-
primitive mesh outputs defined in primitive (P) are never interpolated. Due to this difference,
the rules for signature matching of user-generated output have been adjusted from those
described in section 5.7.1 Vertex - Fragment signature matching.
A given fragment input +#69"%! a user-generated mesh output from vertex (V) and primitive (P)
if the following is true: If you specify an attribute name for an element using
[[user(name)]] , the attribute name must match with an element in the return type of the
mesh output. If you do not specify the [[user(name)]] attribute name, then the argument
name and types must match. In either case, their corresponding data types must also match, or
the fragment function argument type needs to be interpolant<T, P>, where T is the
element’s type in the vertex return type.

A mesh function and a fragment function have matching signatures for user-generated inputs
with user-generated mesh outputs if:

¥! For a given user-generated fragment input with a flat interpolation:
o! There is a matching per-primitive mesh output, and the output is propagated to

the fragment input without interpolation.
o! There is a matching per-vertex mesh output, and the output for the provoking

vertex is propagated to the fragment input without interpolation.

¥! For a given user-generated fragment input with a non flat interpolation:
o! There is a matching per-primitive mesh output, and the output is propagated to

the fragment input without interpolation.
o! There is a matching per-vertex mesh output, and the output is interpolated

across the primitive in the same method as nonflat vertex outputs are
interpolated.

5.8! Program Scope Function Constants
All OS: Metal 1.2 and later support function constants. In Metal 2 and later, you can use a
function constant to specify the binding number for a resource (see section 5.8.1.4), to specify

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 154 of 298

the index for the color() or raster_order_group attributes (section 5.8.1.5), and to
identify that a structure element is optional (section 5.8.1.6).
Function constants enable the generation of multiple variants of a function. Without using
function constants, you can compile one function many times with different preprocessor
macro defines to enable different features (an 3H%&!"#$%&). Using preprocessor macros for
ubershaders with offline compiling can result in a large number of variants and a significant
increase in the size of the shading function library assets. Function constants provide the same
ease of use as preprocessor macros but moves the generation of the specific variants to the
creation of the pipeline state, so you don't have to compile the variants offline.
#"H"!$ E3'8->P-./ $7(*/(+2 $E8*3' $UD.84-*. $=*.54+.45 $

Program scope variables declared with (or initialized with) the following attribute are >31960)1'
9)1!6#16!:
[[function_constant(index)]]

The value index needs to be between 0 and 65535.
In Metal, function constants can:
¥! Control code paths that get compiled.
¥! Specify the optional arguments of a function (graphics, kernel, or user functions).
¥! Specify optional elements of a structure with the [[stage_in]] attribute.
You don’t initialize function constants in the Metal function source. Instead, you specify their
values when creating a specialized function (MTLFunction) using an MTLFunctionDescriptor
in the Metal API. The index value specifies a location index that can refer to the function
constant variable (instead of by its name) in the runtime.
Examples:
constant int a [[function_constant(0)]];

constant bool b [[function_constant(2)]];

Function constants can only be a scalar or vector type. Using a user-defined type or an array of
a scalar or vector type for a function constant results in a compilation error.
The value of function constants a and b are specified during the creation of the render or
compute pipeline state.
You can also use function constants to initialize variables in program scope declared in the
constant address space.
Examples:
constant int a [[function_constant(0)]];

constant bool b [[function_constant(2)]];

constant bool c = ((a == 1) && b);

constant int d = (a * 4);

You can use the following built-in function to determine if a function constant has been defined
and is available. name refers to the function constant variable.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 155 of 298

bool is_function_constant_defined(name)

Returns true if the function constant variable is defined and false otherwise.
If a function constant variable value is not defined during the creation of the pipeline state and if
the graphics or kernel function specified with the render or compute pipeline state uses these
function constants, the behavior is the same as when the value of
is_function_constant_defined(name) is false .

5.8.1.1! Function Constants to Control Code Paths to Compile
Consider the following function which uses preprocessor macros for function constants:
struct VertexO utput {

float4 position [[position]];
float4 color;

};

struct VertexInput {

float4 position [[attribute(0)]];
float4 offset [[attribute(1)]];
float4 color [[attribute(2)]];

};

vertex VertexOutput
myVertex(VertexInput vIn [[stage_in]])
{

VertexOutput vOut;

vOut.position = vIn.position;
#ifdef OFFSET_DEFINED

vOut.position += vIn.offset;
#endif

#ifdef COLOR_DEFINED

vOut.color = vIn.color;
#else

vOut.color = float4(0.0f);
#endif

return vOut;

}

The corresponding function written using function constant variables is:
constant bool offset_defined [[function_constant(0)]];
constant bool color_defined [[function_constant(1)]];

vertex VertexOutput
myVertex(VertexInput vIn [[stage_in]])

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 156 of 298

{
VertexOutput vOut;

vOut.position = vIn.position;
if (offset_defined)

vOut.position += vIn.offset;

if (color_defined)
vOut.color = vIn.color;

else
vOut.color = float4(0.0f);

return vOut;

}

5.8.1.2! Function Constants when Declaring the Arguments of Functions
You can declare an argument to a graphics, kernel, or other user function with the
[[function_constant(name)]] attribute to identify that the argument is optional. The
name attribute refers to a function constant variable. If the value of the function constant
variable given by name is nonzero or true (determined during creation of the pipeline state),
the declaration of the argument is in the function signature. If the value of the function constant
variable given by name is 0 or false , the argument is 1)6 declared in the function signature. If
name refers to a function constant variable that has not been defined (determined during the
creation of the pipeline state), the behavior is the same as if the value of
is_function_constant_defined(name) is false .
Consider the following fragment function that uses preprocessor macros in its function
declaration:
fragment half4
myFragment(
 constant GlobalUniformData *globalUniform [[buffer(0)]],
 constant RenderUniformData_ModelWithLightmap
 *renderUniform [[buffer(1)]],
 constant MaterialUniformData
 *materialUniform [[buffer(2)]],
 texture2d<float> DiffuseTexture [[texture(0)]],
 texture2d<float> LightmapTexture [[texture(1)]],
 texture2d<float> FogTexture [[texture(3)]],
#ifdef MED_QUALITY
 texture2d<float> LookupTexture [[texture(4)]],
#endif
#ifdef REALTIME_SHADOW
 texture2d<float> RealtimeShadowMapTexture [[texture(10)]],
#endif
 sampler DiffuseTextureSampler [[sampler(0)]],
 sampler LightmapTextureSampler [[sampler(1)]],
 sampler FogTextureSampler [[sampler(3)]],
#ifdef MED_QUALITY

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 157 of 298

 sampler LookupTextureSampler [[sampler(4)]],
#endif
#ifdef REALTIME_SHADOW
 sampler RealtimeShadowMapTextureSampler [[sam pler(10)]],
#endif
 VertexOutput fragIn [[stage_in]])

Here is the corresponding fragment function, after using function constants instead of #ifdef
statements to rewrite the previous code:
constant bool realtime_shadow [[function_constant(0)]];
constant bool med_quality [[function_constant(1)]];
constant bool med_quality_defined =
is_function_constant_defined(med_quality);
constant bool realtime_shadow_defined =
is_function_constant_defined(realtime_shadow);

fragment half4
myFragment(
 constant GlobalUniformData *globalUniform [[buffer(0)]],
 constant RenderUniformData_ModelWithLightmap

 *renderUniform [[buffer(1)]],
 constant MaterialUniformData

 *materialUniform [[buffer(2)]],
 texture2d<float> DiffuseTexture [[texture(0)]],
 texture2d<float> LightmapTexture [[texture(1)]],
 texture2d<float> FogTexture [[texture(3)]],
 texture2d<float> LookupTexture [[texture(4),
 function_constant(med_quality_defined)]],
 texture2d<float> RealtimeShadowMapTexture [[texture(10),
 function_constant(realtime_shadow_defined)]],
 sampler DiffuseTextureSampler [[sampler(0)]],
 sampler LightmapTextureSampler [[sampler(1)]],
 sampler FogTextureSampler [[sampler(3)]],
 sampler LookupTextureSampler [[sampler(4),
 function_constant(med_quality_defined)]],
 sampler RealtimeShadowMapTextureSampler [[sampler(10),
 function_constant(realtime_shadow_defined)]],
 VertexOutput fragIn [[stage_in]])

Below is another example that shows how to use function constants with arguments to a
function:
constant bool hasInputBuffer [[function_constant(0)]];

kernel void kernelOptionalBuffer(
 device int *input [[buffer(0),function_constant(hasInputBuffer)]],
 device int *output [[buffer(1)]],

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 158 of 298

 uint tid [[thread_position_in_grid]])
{
 if (hasInputBuffer)
 output[tid] = inputA[0] * tid;
 else
 output[tid] = tid;
}

5.8.1.3! Function Constants for Elements of an Input Assembly Structure
You can use the [[function_constant(name)]] attribute to specify elements of an input
assembly structure (declared with the [[stage_in]] attribute) as optional. If the value of the
function constant variable given by name is nonzero or true (determined during the creation
of the render or compute pipeline state), the element in the structure is declared in the function
signature. If the value of the function constant variable given by name is 0 or false , the
element is not declared in the structure.
Example:
constant bool offset_defined [[function_constant(0)]];
constant bool color_defined [[function_constant(1)]];

struct VertexOutput {

float4 position [[position]];
float4 color;

};
struct VertexInput {

float4 position [[attribute(0)]];
float4 offset [[attribute(1),
function_constant(offset_defined)]];
float4 color [[attribute(2),
function_constant(color_defined)]];

};

vertex VertexOutput
myVertex(VertexInput vIn [[stage_in]])
{

VertexOutput vOut;

vOut.position = vIn.position;
if (offset_defined)

vOut.position += vIn.offset;

if (color_defined)
vOut.color = vIn.color;

else
vOut.color = float4(0.0f);

return vOut;

}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 159 of 298

5.8.1.4! Function Constants for Resource Bindings
All OS: Metal 2 and later support using a function constant to specify resource bindings.
An argument to a graphics or kernel functions that is a resource (buffer, texture, or sampler)
can use a function constant to specify its binding number. The function constant needs to be a
scalar integer type.
Example:
constant int indexA [[function_constant(0)]];
constant int indexB = indexA + 2;
constant int indexC [[function_constant(1)]];
constant int indexD [[function_constant(2)]];

[[kernel]] void
my_kernel(constant UserParams& params [[buffer(indexA)]],

device T * p [[buffer(indexB)]],
texture2d<float> texA [[texture(indexC)]],
sampler s [[sampler(indexD)]], É)

{É}

5.8.1.5! Function Constants for Color Attachments and Raster Order Groups
All OS: Metal 2 and later support using a function constant to specify a color attachment or a
raster order group attribute index.
The [[color(n)]] or [[raster_order_group(index)]] index can also be a function
constant. The function constant used needs to be a scalar integer type.
Example:
constant int colorAttachment0 [[function_constant(0)]];
constant int colorAttachment1 [[function_constant(1)]];
constant int group0 [[function_constant(2)]];

struct FragmentOutput {

float4 color0 [[color(colorAttachment0)]];
float4 color1 [[color(colorAttachment1)]];

};

[[fragment]] FragmentOutput
my_fragment(texture2d<float> texA [[texture(0),
raster_order_group(group0)]], É)
{É}

5.8.1.6! Function Constants with Elements of a Structure
All OS: Metal 2 and later support using a function constant to identify that a structure element is
optional.
To identify that an element of a structure is optional, you can specify the
[[function_constant(name)]] attribute with elements of a structure that is the return

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 160 of 298

type of a graphics or user function or is passed by value as an argument to a kernel, graphics, or
user function. The behavior is similar to function constants for elements with the
[[stage_in]] attribute, as described in section 5.8.1.3.
If the value of the function constant variable given by name is nonzero or true (determined
during the render or compute pipeline state creation), the element in the structure is declared in
the function signature. If the value of the function constant variable given by name is 0 or
false , the element is not considered to be declared in the structure. If name refers to a
function constant variable that is undefined, the behavior is the same as if
is_function_constant_defined(name) returns false .

5.9! Program Scope Global Built- ins and Bindings

In Metal 3.1 and later, you can define global variables using attributes defined in Table 5.8 and
use them in a kernel (including tile), mesh, or object context. The global variables cannot be
used in a dynamic library or a separately compiled binary function. In Metal 3.2 and later, you
can use global variables in a dynamic library or a separately compiled binary function for Apple
silicon.

Example:
uint2 gid [[thread_position_in_grid]] ;

float4 get_color(texture2d<float> texInput, !sampler s) {
! return !texInput.sample(s, float2(gid)) ;
}

[[kernel]] void my_kernel(texture2d<float> texInput, !sampler s, ...) !{
!!auto color = get_color(texInput , s);
! ...
}

In Metal 3.2 and later, you can declare device , constant , and threadgroup buffers,
textures, and samplers in the program scope (see section 5.2). Unlike when passing as
arguments in a shader, you can’t assume different global variables are nonaliased. You need to
specify the binding indexes because the system can’t set them automatically.

Example:
device void * constant b_d [[buffer(0)]];
constant void * constant b_c [[buffer(1)]];
threadgroup void * constant b_t [[threadgroup(2)]];
texture2d<float> constant t [[texture(0)]];
sampler constant s [[sampler(0)]];
constant array<sampler, 4> ss [[sampler(1)]];

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 161 of 298

It’s possible to declare global bindings with external linkage, but you need to annotate them
with the resource binding and have a complete type. Note that the declaration and the
definition binding and type must match.
// Declaration
extern constant texture2d<float> t [[texture(0)]];

// Definition
constant texture2d<float> t [[texture(0)]];

You can bind a resource to multiple global variables if they share the same type and binding
index.
Example:
constant texture2d<float, access::write> t_w_1 [[texture(1)]];
// legal
constant texture2d<float, access::write> t_w_2 [[texture(1)]];
// illegal!
constant texture2d<float, access::read_write> t_w_3 [[texture(1)]];

5.10! Per-Primitive Viewport and Scissor Rectangle Index
Selection

macOS: Metal 2 and later support the viewport_array_index attribute.!
iOS: Metal 2.1 and later support the viewport_array_index attribute.
The [[viewport_array_index]] attribute supports built-in variables as both vertex output
and fragment input. With [[viewport_array_index]] , the vertex function output specifies
the rasterization viewport and scissor rectangle from the arrays specified by the
setViewports:count: and setScissorRects:count: framework calls, respectively.
The unclamped value of the vertex function output for [[viewport_array_index]] is
provided as input to the fragment function, even if the value is out of range.
The behavior of the fragment function with an unclamped [[viewport_array_index]]
value depends upon the implementation. Either Metal can render every primitive to
viewport/scissor rectangle 0, regardless of the passed value, or Metal can render to the nth
viewport/scissor rectangle, where n is the clamped value. (Hardware that does not support this
feature acts as only one viewport and one scissor rectangle are permitted, so the value for
[[viewport_array_index]] is 0.)
You can specify [[viewport_array_index]] in a post-tessellation vertex function. You
cannot specify [[viewport_array_index]] in the tessellation factor buffer.
Specifying [[viewport_array_index]] as fragment function input counts against the
number of input assembly components available. (Input assembly components are the
fragment function inputs declared with the stage_in qualifier.)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 162 of 298

You must return the same value of [[viewport_array_index]] for every vertex in a
primitive. If the values differ, the behavior and the value passed to the fragment function are
undefined. The same behavior applies to primitives generated by tessellation.

5.11! Additional Restrictions
MSL functions and arguments have these additional restrictions:
¥! Writes to a buffer from a vertex function are not guaranteed to be visible to reads from the

associated fragment function of a given primitive.
¥! If a vertex function does writes to one or more buffers or textures, its return type needs to

be void .
¥! The return type of a vertex or fragment function cannot include an element that is a packed

vector type, matrix type, a structure type, a reference, or a pointer to a type.
¥! The number of inputs to a fragment function declared with the stage_in attribute is

limited. The input limits differ for different feature sets. The Metal Feature Set Tables lists
the specific limits below “Implementation Limits by GPU Family”. (An input vector counts as
n input scalars, where n is the number of components in the vector.)

¥! The argument type for arguments to a graphics or kernel function cannot be a derived class.
Also the type of an argument to a graphics function that is declared with the stage_in
attribute cannot be a derived class.

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 163 of 298

6! Metal Standard Library
This chapter describes functions in the Metal Standard Library (MSLib).

6.1! Namespace and Header Files
The MSLib functions and enumerations are declared in the metal namespace. In addition to
the header files described in the MSLib functions, the <metal_stdlib> header is available
and can access all the functions supported by the MSLib.

6.2! Common Functions
The functions in Table 6.1 are defined in the header <metal_common> . T is one of the scalar
or vector half or float floating-point types.

Table 6 .1. Common functions in the Metal standard library

Built - in Common Functions Description

T clamp(T x, T minval,
 T maxval)

Returns fmin(fmax(x, minval), maxval) .
!
Results are undefined if minval > maxval .

T mix(T x, T y, T a)

Returns the linear blend of x and y implemented
as:
x + (y Ð x) * a

a needs to be a value in the range 0.0 to 1.0. If a
is not in the range 0.0 to 1.0, the return values are
undefined.

T saturate(T x) Clamp the specified value within the range of 0.0
to 1.0.

T sign(T x) Returns 1.0 if x > 0, -0.0 if x = - 0.0 , +0.0 if x
= +0.0 , or -1.0 if x < 0. Returns 0.0 if x is a
NaN.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 164 of 298

Built - in Common Functions Description

T smoothstep(T edge0, T edge1,
 T x)

Returns 0.0 if x <= edge0 and 1.0 if x >=
edge1 and performs a smooth Hermite
interpolation between 0 and 1 when edge0 < x
< edge1 . This is useful in cases where you want
a threshold function with a smooth transition.

This is equivalent to:
t = clamp((x Ð edge0)/(edge1 Ð
edge0), 0, 1);
return t * t * (3 Ð 2 * t);

Results are undefined if edge0 >= edge1 or if
x , edge0 , or edge1 is a NaN.

T step(T edge, T x) Returns 0.0 if x < edge , otherwise it returns 1.0.

For single precision floating-point, Metal also supports a precise and fast variant of the
following common functions: clamp and saturate . The difference between the Fast and
precise function variants handle NaNs differently. In the fast variant, the behavior of NaNs is
undefined, whereas the precise variants follow the IEEE 754 rules for NaN handling. The
ffast - math compiler option (refer to section 1.6.3) selects the appropriate variant when
compiling the Metal source. In addition, the metal::precise and metal::fast nested
namespaces provide an explicit way to select the fast or precise variant of these common
functions.

6.3! Integer Functions
The integer functions in Table 6.2 are defined in the header <metal_integer> . T is one of
the scalar or vector integer types. Tu is the corresponding unsigned scalar or vector integer
type. T32 is one of the scalar or vector 32-bit int or uint types.

Table 6 .2. Integer functions in the Metal standard library

Built - in Integer Functions Description

T abs(T x) Returns |x| .
Tu absdiff(T x, T y) Returns |x Ðy| without modulo overflow.
T addsat(T x, T y) Returns x + y and saturates the result.
T clamp(T x, T minval,
 T maxval)

Returns min(max(x, minval), maxval) .
!
Results are undefined if minval > maxval .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 165 of 298

Built - in Integer Functions Description

T clz(T x) Returns the number of leading 0-bits in x ,
starting at the most significant bit position. If x is
0, returns the size in bits of the type of x or
component type of x , if x is a vector

T ctz(T x) Returns the count of trailing 0-bits in x . If x is 0,
returns the size in bits of the type of x or if x is a
vector, the component type of x .

T extract_bits(T x,
 uint offset,
 uint bits)
All OS: Metal 1.2 and later.

Extract bits [offset , offset+bits - 1] from x ,
returning them in the least significant bits of the
result.

For unsigned data types, the most significant
bits of the result are set to zero. For signed data
types, the most significant bits are set to the
value of bit offset+bits - 1.

If bits is zero, the result is zero. If the sum of
offset and bits is greater than the number of
bits used to store the operand, the result is
undefined.

T hadd(T x, T y) Returns (x + y) >> 1. The intermediate sum
does not modulo overflow.

T insert_bits(T base,
 T insert,
 uint offset,
 uint bits)
All OS: Metal 1.2 and later.

Returns the insertion of the bits least-
significant bits of insert into base .

The result has bits [offset , offset+bits - 1]
taken from bits [0, bits - 1] of insert , and all
other bits are taken directly from the
corresponding bits of base . If bits is zero, the
result is base . If the sum of offset and bits
is greater than the number of bits used to store
the operand, the result is undefined.

T32 mad24(T32 x, T32 y, T32 z) !
All OS: Metal 2.1 and later.

Uses mul24 to multiply two 24-bit integer
values x and y , adds the 32-bit integer result to
the 32-bit integer z , and returns that sum.

T madhi(T a, T b, T c) Returns mulhi(a, b) + c .
T madsat(T a, T b, T c) Returns a * b + c and saturates the result.
T max(T x, T y) Returns y if x < y , otherwise it returns x .
T max3(T x, T y, T z) !
All OS: Metal 2.1 and later.

Returns max(x, max(y, z)) .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 166 of 298

Built - in Integer Functions Description

T median3(T x, T y, T z) !
All OS: Metal 2.1 and later.

Return the middle value of x , y , and z .

T min(T x, T y) Returns y if y < x , otherwise, it returns x .
T min3(T x, T y, T z) !
All OS: Metal 2.1 and later.

Returns min(x, min(y, z)) .

T32 mul24(T32 x, T32 y) !
All OS: Metal 2.1 and later.

Multiplies two 24-bit integer values x and y and
returns the 32-bit integer result. x and y are 32-
bit integers but only the low 24 bits perform the
multiplication. (See details following this table.)

T mulhi(T x, T y) Computes x * y and returns the high half of
the product of x and y .

T popcount(T x) Returns the number of nonzero bits in x .
T reverse_bits(T x)
All OS: Metal 2.1 and later.

Returns the reversal of the bits of x . The bit
numbered n of the result is taken from bit (bits
– 1) – n of x , where bits is the total number of
bits used to represent x .

T rhadd(T x, T y) Returns (x + y + 1) >> 1. The intermediate
sum does not modulo overflow.

T rotate(T v, T i) For each element in v , the bits are shifted left by
the number of bits given by the corresponding
element in i . Bits shifted off the left side of the
element are shifted back in from the right.

T subsat(T x, T y) Returns x Ð y and saturates the result.

The mul24 function only operates as described if x and y are signed integers and x and y are
in the range [- 2^23, 2^23 - 1] , or if x and y are unsigned integers and x and y are in the
range [0, 2^24 - 1] . If x and y are not in this range, the multiplication result is
implementation-defined.

6.4 ! Relational Functions
The relational functions in Table 6.3 are defined in the header <metal_relational> . T is
one of the scalar or vector floating-point types including bfloat types. Ti is one of the scalar
or vector integer or boolean types. Tb only refers to the scalar or vector Boolean types.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 167 of 298

Table 6 .3. Relational functions in the Metal standard library

Built - in Relational Functions Description

bool all(Tb x) Returns true only if all components of x are true.
bool any(Tb x) Returns true only if any component of x are true.
Tb isfinite(T x) Test for finite value.
Tb isinf(T x) Test for infinity value (positive or negative).
Tb isnan(T x) Test for a NaN.
Tb isnormal(T x) Test for a normal value.
Tb isordered(T x, T y) Test if arguments are ordered. isordered() takes

arguments x and y and returns the result !
(x == x) && (y == y) .

Tb isunordered(T x, T y) Test if arguments are unordered. isunordered()
takes arguments x and y and returns true if x or y is
NaN; otherwise returns false .

Tb not(Tb x) Returns the componentwise logical complement of x.
T select(T a, T b, Tb c)

Ti select(Ti a,
 Ti b,
 Tb c)

For each component of a vector type,
result[i] = c[i] ? b[i] : a[i]

For a scalar type, !
result = c ? b : a

Tb signbit(T x) Test for sign bit. Returns true if the sign bit is set for the
floating-point value in x ; otherwise returns false .

6.5! Math Functions
The math functions in Table 6.4 are defined in the header <metal_math> . T is one of the
scalar or vector half or float floating-point types. Ti refers only to the scalar or vector
integer types.

Table 6 .4 . Math functions in the Metal standard library

Built - in Math Functions Description

T acos(T x) Compute arc cosine of x .
T acosh(T x) Compute inverse hyperbolic cosine of x .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 168 of 298

Built - in Math Functions Description

T asin(T x) Compute arc sine function of x .
T asinh(T x) Compute inverse hyperbolic sine of x .
T atan(T y_over_x) Compute arc tangent of x .
T atan2(T y, T x) Compute arc tangent of y over x .
T atanh(T x) Compute hyperbolic arc tangent of x .
T ceil(T x) Round x to integral value using the round to

positive infinity rounding mode.
T copysign(T x, T y) Return x with its sign changed to match the sign

of y .
T cos(T x) Compute cosine of x .
T cosh(T x) Compute hyperbolic cosine of x .
T cospi(T x) Compute cos(! x) .
T divide(T x, T y) Compute x / y .
T exp(T x) Exponential base e function.
T exp2(T x) Exponential base 2 function.
T exp10(T x) Exponential base 10 function.
T fabs(T x)
T abs(T x)

Compute absolute value of a floating-point
number.

T fdim(T x, T y) x Ð y if x > y ; +0 if x <= y .
T floor(T x) Round x to integral value using the round to

negative infinity rounding mode.
T fma(T a, T b, T c) Returns the correctly rounded floating-point

representation of the sum of c with the infinitely
precise product of a and b. Rounding of
intermediate products shall not occur. Edge
case behavior is per the IEEE 754-2008
standard.

T fmax(T x, T y)
T max(T x, T y)

Returns y if x < y , otherwise returns x . If one
argument is a NaN, fmax() returns the other
argument. If both arguments are NaNs, fmax()
returns a NaN. If x and y are denormals and the
GPU doesn’t support denormals, either value
may be returned.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 169 of 298

Built - in Math Functions Description

T fmax3(T x, T y, T z)
T max3(T x, T y, T z) !
All OS: Metal 2.1 and later.

Returns fmax(x, fmax(y, z)) .

T fmedian3(T x, T y, T z)
All OS: Metal 1 and later.
T median3(T x, T y, T z) !
All OS: Metal 2.1 and later.

Returns the middle value of x , y , and z . (If one
or more values are NaN, see discussion after
this table.)

T fmin(T x, T y)
T min(T x, T y)

Returns y if y < x , otherwise it returns x . If one
argument is a NaN, fmin() returns the other
argument. If both arguments are NaNs, fmin()
returns a NaN. If x and y are denormals and the
GPU doesn’t support denormals, either value
may be returned.

T fmin3(T x, T y, T z)
T min3(T x, T y, T z) !
All OS: Metal 2.1 and later.

Returns fmin(x, fmin(y, z)) .

T fmod(T x, T y) Returns x Ð y * trunc(x/y) .
T fract(T x) Returns the fractional part of x that is greater

than or equal to 0 or less than 1.
T frexp(T x, Ti
&exponent)

Extract mantissa and exponent from x . For each
component the mantissa returned is a float with
magnitude in the interval [1/2, 1) or 0. Each
component of x equals mantissa returned *
2exp.

Ti ilogb(T x) Return the exponent as an integer value.
T ldexp(T x, Ti k) Multiply x by 2 to the power k .
T log(T x) Compute the natural logarithm of x .
T log2(T x) Compute the base 2 logarithm of x .
T log10(T x) Compute the base 10 logarithm of x .
T modf(T x, T &intval) Decompose a floating-point number. The modf

function breaks the argument x into integral and
fractional parts, each of which has the same
sign as the argument. Returns the fractional
value. The integral value is returned in intval .

T nextafter (T x, T y)
All OS: Metal 3.1 and later.

Return next representable floating-point value
after x in the direction of y . If x equals y , return

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 170 of 298

Built - in Math Functions Description

y . Note that if both x and y represent the
floating-point zero values, the result has sign of
y . If either x or y is NaN, return NaN.

T pow(T x, T y) Compute x to the power y .
T powr(T x, T y) Compute x to the power y , where x is >= 0.
T rint(T x) Round x to integral value using round ties to

even rounding mode in floating-point format.
T round(T x) Return the integral value nearest to x , rounding

halfway cases away from zero.
T rsqrt(T x) Compute inverse square root of x .
T sin(T x) Compute sine of x .
T sincos(T x, T &cosval) Compute sine and cosine of x . Return the

computed sine in the function return value, and
return the computed cosine in cosval .

T sinh(T x) Compute hyperbolic sine of x .
T sinpi(T x) Compute sin(! x) .
T sqrt(T x) Compute square root of x .
T tan(T x) Compute tangent of x .
T tanh(T x) Compute hyperbolic tangent of x .
T tanpi(T x) Compute tan(! x) .
T trunc(T x) Round x to integral value using the round

toward zero rounding mode.

For fmedian3 , if all values are NaN, return NaN. Otherwise, treat NaN as missing data and
remove it from the set. If two values are NaN, return the non-NaN value. If one of the values is
NaN, the function can return either non-NaN value.
For single precision floating-point, Metal supports two variants for most of the math functions
listed in Table 6.4: the precise and the fast variants. See Table 7.2 for the list of fast math
functions and their precision. The ffast - math compiler option (refer to section 1.6.3) selects
the appropriate variant when compiling the Metal source. In addition, the metal::precise
and metal::fast nested namespaces provide an explicit way to select the fast or precise
variant of these math functions for single precision floating-point.
Examples:
float x;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 171 of 298

float a = sin(x); // Use fast or precise version of sin based on
 // whether you specify Ðffast - math as
 // compile option.

float b = fast::sin(x); // Use fast version of sin() .

float c = precise::cos(x); // Use precise version of cos() .

All OS: Metal 1.2 and later support the constants in Table 6.5 and Table 6.6.
Table 6.5 lists available symbolic constants with values of type float that are accurate within
the precision of a single-precision floating-point number.

Table 6 .5. Constants for single -precision floating -point math functions

Constant
Name

Description

MAXFLOAT Value of maximum noninfinite single precision floating-point number.
HUGE_VALF A positive float constant expression. HUGE_VALF evaluates to +infinity.

INFINITY A constant expression of type float representing positive or unsigned
infinity.

NAN A constant expression of type float representing a quiet NaN.
M_E_F Value of e

M_LOG2E_F Value of log2e

M_LOG10E_F Value of log10e

M_LN2_F Value of loge2

M_LN10_F Value of loge10

M_PI_F Value of !

M_PI_2_F Value of ! / 2

M_PI_4_F Value of ! / 4

M_1_PI_F Value of 1 / !

M_2_PI_F Value of 2 / !

M_2_SQRTPI_
F

Value of 2 / "#

M_SQRT2_F Value of " 2

M_SQRT1_2_F Value of 1 / " 2

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 172 of 298

Table 6.6 lists available symbolic constants with values of type half that are accurate within
the precision of a half-precision floating-point number.

Table 6 .6 . Constants for half - precision floating -point math functions

Constant
Name

Description

MAXHALF Value of maximum noninfinite half precision floating-point number.
HUGE_VALH A positive half constant expression. HUGE_VALH evaluates to +infinity.
M_E_H Value of e

M_LOG2E_H Value of log2e

M_LOG10E_H Value of log10e

M_LN2_H Value of loge2

M_LN10_H Value of loge10

M_PI_H Value of !

M_PI_2_H Value of ! / 2

M_PI_4_H Value of ! / 4

M_1_PI_H Value of 1 / !

M_2_PI_H Value of 2 / !

M_2_SQRTPI_H Value of 2 / "#

M_SQRT2_H Value of " 2

M_SQRT1_2_H Value of 1 / " 2

Table 6.7 lists available symbolic constants with values of type bfloat that are accurate within
the precision of a brain floating-point number.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 173 of 298

Table 6 .7. Constants for brain floating -point math functions

Constant Name Description

MAXBFLOAT Value of maximum noninfinite bfloat floating-point number.
HUGE_VALBF A positive half constant expression. HUGE_VALBF evaluates to +infinity.
M_E_BF Value of e

M_LOG2E_BF Value of log2e

M_LOG10E_BF Value of log10e

M_LN2_BF Value of loge2

M_LN10_BF Value of loge10

M_PI_ BF Value of !

M_PI_2_ BF Value of ! / 2

M_PI_4_ BF Value of ! / 4

M_1_PI_ BF Value of 1 / !

M_2_PI_ BF Value of 2 / !

M_2_SQRTPI_BF Value of 2 / "#

M_SQRT2_BF Value of " 2

M_SQRT1_2_BF Value of 1 / " 2

6.6 ! Matrix Functions
The functions in Table 6.8 are defined in the header <metal_matrix> . T is float or half .

Table 6 .8 . Matrix functions in the Metal standard library

Built - in Matrix Functions Description

float determinant(floatnxn)
half determinant(halfnxn)

Compute the determinant of the matrix. The
matrix needs to be a square matrix.

floatmxn transpose(floatnxm)
halfmxn transpose(halfnxm)

Transpose a matrix.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 174 of 298

Example:
float4x4 mA;

float det = determinant(mA);

6.7! SIMD-Group Matrix Functions
The SIMD-group Matrix functions are defined in the header <metal_simdgroup_matrix> .

<"F"!$ =('+4-./W $L*+,-./ W$+., $E4*(-./ $?+4(-C$I)'2'.45 $

Metal Shading Library supports the following functions to initialize a SIMD-group matrix with a
value, load data from threadgroup or device memory, and store data to threadgroup or device
memory.

Table 6 .9 . SIMD-group matrix load and stores

Functions Description

simdgroup_matrix<T,Cols,Rows> (T dval)

Creates a diagonal matrix with the
given value.

simdgroup_matrix<T,Cols,Rows>
make_filled_simdgroup_matrix(T value)

Initializes a SIMD-group matrix
filled with the given value.

void simdgroup_load(
 thread simdgroup_matrix<T,Cols,Rows>& d,
 const threadgroup T *src,
 ulong elements_per_row = Cols,
 ulong2 matrix_origin = 0,
 bool transpose_matrix = false)

Loads data from threadgroup
memory into a SIMD-group matrix.
The elements_per_row
parameter indicates the number of
elements in the source memory
layout.

void simdgroup_load(
 thread simdgroup_matrix<T,Cols,Rows>& d,
 const device T *src,
 ulong elements_per_row = Cols,
 ulong2 matrix_origin = 0,
 bool transpose_matrix = false)

Loads data from device memory
into a SIMD-group matrix. The
elements_per_row parameter
indicates the number of elements
in the source memory layout.

void simdgroup_store(
 thread simdgroup_matrix<T,Cols,Rows> a,
 const threadgroup T *dst,

Stores data from a SIMD-group
matrix into threadgroup memory.
The elements_per_row

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 175 of 298

Functions Description

 ulong elements_per_row = Cols,
 ulong2 matrix_origin = 0,
 bool transpose_matrix = false)

parameter indicates the number of
elements in the destination
memory layout.

void simdgroup_store(
 thread simdgroup_matrix<T,Cols,Rows> a,
 const device T *dst,
 ulong elements_per_row = Cols,
 ulong2 matrix_origin = 0,
 bool transpose_matrix = false)

Stores data from a SIMD-group
matrix into device memory. The
elements_per_row parameter
indicates the number of elements
in the destination memory layout.

<"F"0$?+4(-C$%3'(+4-*.5 $

SIMD-group matrices support multiply-accumulate and multiple operations.

Table 6 .10. SIMD-group operations

Operations Description

void simdgroup_multiply_accumulate(
 thread simdgroup_matrix<T,Cols,Rows>& d,
 thread simdgroup_matrix<T,K,Rows>& a,
 thread simdgroup_matrix<T,Cols,K>& b,
 thread simdgroup_matrix<T,Cols,Rows>& c)

Returns d = a * b + c

void simdgroup_multiply(
 thread simdgroup_matrix<T,Cols,Rows>& d,
 thread simdgroup_matrix<T,K,Rows>& a,
 thread simdgroup_matrix<T,Cols,K>& b)

Returns d = a * b

 * Returns a * b

Here is an example of how to use SIMD-group matrices.
kernel void float_matmad(device float *pMatA, device float *pMatB
 device float *pMatC, device float *pMatR)
{
 simdgroup_float8x8 sgMatA;
 simdgroup_float8x8 sgMatB;
 simdgroup_float8x8 sgMatC;
 simdgroup_float8x8 sgMatR;

 simdgroup_load(sgMatA, pMatA);
 simdgroup_load(sgMatB, pMatB);
 simdgroup_load(sgMatC, pMatC);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 176 of 298

 simdgroup_multiply_accumulate(sgMatR, sgMatA, sgMatB, sgMatC);

 simdgroup_store(sgMatR, pMatR);
}

6.8 ! Geometric Functions
The functions in Table 6.11 are defined in the header <metal_geometric> . T is a vector
floating-point type (floatn or halfn). Ts refers to the corresponding scalar type. (If T is
floatn , the scalar type Ts is float . If T is halfn , Ts is half .)

Table 6 .11. Geometric functions in the Metal standard library

Built - in Geometric Functions Description

T cross(T x, T y) Return the cross product of x and y . !
T needs to be a 3-component vector type.

Ts distance(T x, T y) Return the distance between x and y ,
which is length(x - y)

Ts distance_squared(T x, T y) Return the square of the distance between x and y .
Ts dot(T x, T y) Return the dot product of x and y ,

which is x[0] * y[0] + x[1] * y[1] + É
T faceforward(T N, T I,
 T Nref)

If dot(Nref, I) < 0.0 return N, otherwise
return ÐN.

Ts length(T x) Return the length of vector x ,
which is sqrt(x[0]2 + x[1]2 + É)

Ts length_squared(T x) Return the square of the length of vector x,
which is (x[0]2 + x[1]2 + É)

T normalize(T x) Return a vector in the same direction as x but with
a length of 1.

T reflect(T I, T N) For the incident vector I and surface orientation N,
compute normalized N (NN), and return the
reflection direction: I Ð 2 * dot(NN, I) *
NN.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 177 of 298

Built - in Geometric Functions Description

T refract(T I, T N, Ts eta) For the incident vector I and surface normal N, and
the ratio of indices of refraction eta , return the
refraction vector.
The input parameters for the incident vector I and
the surface normal N needs to already be
normalized to get the desired results.

For single precision floating-point, Metal also supports a precise and fast variant of the
following geometric functions: distance , length , and normalize . To select the appropriate
variant when compiling the Metal source, use the ffast - math compiler option (refer to
section 1.6.3). In addition, the metal::precise and metal::fast nested namespaces are
also available and provide an explicit way to select the fast or precise variant of these geometric
functions.

6.9 ! Synchronization and SIMD-Group Functions
You can use synchronization and SIMD-group functions in:
¥! [[kernel]] functions
¥! [[fragment]] functions
¥! [[visible]] functions that kernel or fragment functions call
<"K"!$ 1@('+,/(*D3 $+., $EA?9[R(*D3 $EP.8@(*.-B+4-*. $UD.84-*.5 $

The <metal_compute> header defines the synchronization functions in Table 6.12, which
lists threadgroup and SIMD-group synchronization functions it supports.

Table 6 .12. Synchronization compute function in the Metal standard library

Built - in Threadgroup Function Description

void
threadgroup_barrier(mem_flags
flags)

All threads in a threadgroup executing the
kernel, fragment, mesh, or object need to
execute this function before any thread can
continue execution beyond the
threadgroup_barrier .

void
simdgroup_barrier(mem_flags
flags)
macOS: Metal 2 and later.!
iOS: Metal 1.2 and later.

All threads in a SIMD-group executing the
kernel, fragment, mesh, or object need to
execute this function before any thread can
continue execution beyond the
simdgroup_barrier .

A H#&&0%&'>31960)1 (threadgroup_barrier or simdgroup_barrier) acts as an execution
and memory barrier. All threads in a threadgroup (or SIMD-group) executing the kernel need to
encounter the threadgroup_barrier (or simdgroup_barrier) function.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 178 of 298

If threadgroup_barrier (or simdgroup_barrier) is inside a conditional statement and if
any thread enters the conditional statement and executes the barrier function, then all threads
in the threadgroup (or SIMD-group) need to enter the conditional and execute the barrier
function.
If threadgroup_barrier (or simdgroup_barrier) is inside a loop, for each iteration of
the loop, all threads in the threadgroup (or SIMD-group) need to execute the barrier function
before any threads continue execution beyond the barrier function.
The threadgroup_barrier (or simdgroup_barrier) function can also queue a memory
fence (for reads and writes) to ensure the correct ordering of memory operations to
threadgroup or device memory.
Table 6.13 describes the bit field values for the mem_flags argument to
threadgroup_barrier and simdgroup_barrier . The mem_flags argument ensures the
correct memory is in the correct order between threads in the threadgroup or simdgroup (for
threadgroup_barrier or simdgroup_barrier) respectively.

Table 6 .13. Memory flag enumeration values for barrier functions

mem_flags Description

mem_none The flag sets threadgroup_barrier or
simdgroup_barrier to only act as an execution barrier
and doesn’t apply a Memory fence.

mem_device The flag ensures the GPU correctly orders the memory
operations to device memory for threads in the threadgroup
or simdgroup.

mem_threadgroup The flag ensures the GPU correctly orders the memory
operations to threadgroup memory for threads in a
threadgroup or simdgroup.

mem_texture
macOS: Metal 1.2 and later.!
iOS: Metal 2 and later.

The flag ensures the GPU correctly orders the memory
operations to texture memory for threads in a threadgroup or
simdgroup for a texture with the read_write access
qualifier.

mem_threadgroup_image
block

The flag ensures the GPU correctly orders the memory
operations to threadgroup imageblock memory for threads in
a threadgroup or simdgroup.

mem_object_data

The flag ensures the GPU correctly orders the memory
operations to object_ data memory for threads in the
threadgroup or simdgroup.

<"K"0$ EA?9[R(*D3 $UD.84-*.5 $

The <metal_simdgroup> header defines the SIMD-group functions for kernel and fragment
functions. macOS supports SIMD-group functions in Metal 2 and later, and iOS supports most

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 179 of 298

SIMD-group functions in Metal 2.2 and later. Table 6.14 and Table 6.15 list the SIMD-group
functions and their availabilities in iOS and macOS. See the Metal Feature Set Tables to
determine which GPUs support each table.

SIMD-group functions allow threads in a SIMD-group (see section 4.4.1) to share data without
using threadgroup memory or requiring any synchronization operations, such as a barrier.
An #960=% thread is a thread that is executing. An 01#960=% thread is a thread that is 1)6 executing.
For example, a thread may not be active due to flow control or when a task has insufficient work
to fill the group. A thread needs to only read data from another active thread in the SIMD-group.
Helper threads may also be #960=% and 01#960=% . For example, if a helper thread finishes
executing, it becomes an inactive helper thread. Helper threads for SIMD-group functions can
be active or inactive. Use simd_is_helper_thread() (see Table 6.14) to inspect whether a
thread is a helper thread.
Table 6.14 uses the placeholder T to represent a scalar or vector of any integer or floating-point
type, except:
¥! bool
¥! long
¥! ulong
¥! void
¥! size_t
¥! ptrdiff_t

For bitwise operations, Ti needs to be an integer scalar or vector.
See 6.9.2.1 after the table for examples that use SIMD-group functions.

Table 6 .14. SIMD-group permute functions in the Metal standard library

Built - in SIMD-group Functions Description

simd_vote
simd_active_threads_mask()

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Returns a simd_vote mask that represents
the active threads.
This function is equivalent to simd_ballot
(true) and sets the bits that represent active
threads to 1, and inactive Threads to 0.

bool simd_all(bool expr)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Returns true if all active threads evaluate
expr to true .

bool simd_any(bool expr)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Returns true if at least one active thread
evaluates Expr to true .

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 180 of 298

Built - in SIMD-group Functions Description

simd_vote simd_ballot (bool expr)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Returns a wrapper type — see the simd_vote
example — around a bitmask of the evaluation
of the Boolean expression for all active
threads in the SIMD-group for which expr is
true . The function sets the bits that
correspond to inactive threads to 0.

T simd_broadcast(T data,
ushort broadcast_lane_id)

macOS: Metal 2 and later.!
iOS: Metal 2.2 and later.

Broadcasts data from the thread whose
SIMD lane ID is equal to
broadcast_lane_id .
The specification doesn’t define the behavior
when broadcast_lane_id isn’t a valid
SIMD lane ID or isn’t the same for all threads
in a SIMD-group.

T simd_broadcast_first(T data)

macOS: Metal 2.1 and later. !
iOS: Metal 2.2 and later.

Broadcasts data from the first active thread
— the active thread with the smallest index —
in the SIMD-group to all active threads.

bool simd_is_first()

macOS: Metal 2.1 and later. !
iOS: Metal 2.2 and later.

Returns true if the current thread is the first
active thread — the active thread with the
smallest index — in the current SIMD-group;
otherwise false .

T simd_shuffle(T data,
ushort simd_lane_id)

macOS: Metal 2 and later.!
iOS: Metal 2.2 and later.

Returns data from the thread whose SIMD
lane ID is simd_lane_id . The
simd_lane_id needs to be a valid SIMD
lane ID but doesn’t have to be the same for all
threads in the SIMD-group.

T simd_shuffle_and_fill_down(T data,
T filling_data, ushort delta)

All OS: Metal 2.4 and later.

Returns data or filling_data from the
thread whose SIMD lane ID is the sum of the
caller’s SIMD lane ID and delta .
If the sum is greater than the SIMD-group
size, the function copies values from the
lower delta lanes of filling_data into
the upper delta lanes of data .
The value for delta needs to be the same for
all threads in a SIMD-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 181 of 298

Built - in SIMD-group Functions Description

T simd_shuffle_and_fill_down(T data,
T filling_data, ushort delta,
ushort modulo)

All OS: Metal 2.4 and later.

Returns data or filling_data for each
vector from the thread whose SIMD lane ID is
the sum of the caller’s SIMD lane ID and
delta .
If the sum is greater than modulo , the
function copies values from the lower delta
lanes of filling_data into the upper
delta lanes of data .
The value of delta needs to be the same for
all threads in a SIMD-group.
The modulo parameter defines the vector
width that splits the SIMD-group into
separate vectors and must be 2, 4, 8, 16, or
32.

T simd_shuffle_and_fill_up(T data,
T filling_data, ushort delta)

All OS: Metal 2.4 and later.

Returns data or filling_data from the
thread whose SIMD lane ID is the difference
from the caller’s SIMD lane ID minus delta .
If the difference is negative, the operation
copies values from the upper delta lanes of
filling_data to the lower delta lanes of
data .
The value of delta needs to be the same for
all threads in a SIMD-group.

T simd_shuffle_and_fill_up(T data,
T filling_data, ushort delta,
ushort modulo)

All OS: Metal 2.4 and later.

Returns data or filling_data for each
vector from the thread whose SIMD lane ID is
the difference from the caller’s SIMD lane ID
minus delta .
If the difference is negative, the operation
copies values from the upper delta lanes of
filling_data to the lower delta lanes of
data .
The value of delta needs to be the same for
all threads in a SIMD-group.
The modulo parameter defines the vector
width that splits the SIMD-group into
separate vectors and must be 2, 4, 8, 16, or
32.

T simd_shuffle_down(T data,
ushort delta)

macOS: Metal 2 and later.!
iOS: Metal 2.2 and later.

Returns data from the thread whose SIMD
lane ID is the sum of caller’s SIMD lane ID and
delta .
The value for delta needs to be the same for
all threads in the SIMD-group.
This function doesn’t modify the upper delta
lanes of data because it doesn’t wrap values
around the SIMD-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 182 of 298

Built - in SIMD-group Functions Description

T simd_shuffle_rotate_down(T
data,
ushort delta)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Returns data from the thread whose SIMD
lane ID is the sum of caller’s SIMD lane ID and
delta .
The value for delta needs to be the same for
all threads in the SIMD-group.
This function wraps values around the SIMD-
group.

T simd_shuffle_rotate_up(T data,
ushort delta)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Returns data from the thread whose SIMD
lane ID is the difference from the caller’s
SIMD lane ID minus delta .
The value of delta needs to be the same for
all threads in a SIMD-group.
This function wraps values around the SIMD-
group.

T simd_shuffle_up(T data,
ushort delta)

macOS: Metal 2 and later.!
iOS: Metal 2.2 and later.

Returns data from the thread whose SIMD
lane ID is the difference from the caller’s
SIMD lane ID minus delta .
The value of delta needs to be the same for
all threads in a SIMD-group.
This function doesn’t modify the lower delta
lanes of data because it doesn’t wrap values
around the SIMD-group.

Ti simd_shuffle_xor(T i value,
ushort mask)

macOS: Metal 2 and later.!
iOS: Metal 2.2 and later.

Returns data from the thread whose SIMD
lane ID is equal to the bitwise XOR (^) of the
caller’s SIMD lane ID and mask . The value of
mask needs to be the same for all threads in a
SIMD-group.

Table 6 .15. SIMD-group reduction functions in the Metal standard library

Built - in SIMD-group Functions Description

Ti simd_and(T i data)

macOS: Metal 2.1 and later.
iOS: Metal 2.3 and later.

Returns the bitwise AND (&) of data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 183 of 298

Built - in SIMD-group Functions Description

bool simd_is_helper_thread()

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns true if the current thread is a helper
thread; otherwise, false .
You needs to call this function from a
fragment function or another function that
your fragment function calls; otherwise, it may
trigger a compile-time error.

T simd_max(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns data with the highest value from
across all active threads in the SIMD-group
and broadcasts that value to all active threads
in the SIMD-group.

T simd_min(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns data with the lowest value from
across all active threads in the SIMD-group
and broadcasts that value to all active threads
in the SIMD-group.

Ti simd_or(T i data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the bitwise OR (|) of data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

T simd_prefix_exclusive_product
(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

For a given thread, returns the product of the
input values in data for all active threads with
a lower index in the SIMD-group. The first
thread in the group, returns T(1) .

T simd_prefix_exclusive_sum (T
data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

For a given thread, returns the sum of the
input values in data for all active threads with
a lower index in the SIMD-group. The first
thread in the group, returns T(0) .

T simd_prefix_inclusive_product
(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

For a given thread, returns the product of the
input values in data for all active threads with
a lower or the same index in the SIMD-group.

T simd_prefix_inclusive_sum (T
data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

For a given thread, returns the sum of the
input values in data for all active threads with
a lower or the same index in the SIMD-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 184 of 298

Built - in SIMD-group Functions Description

T simd_product(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the product of the input values in
data across all active threads in the SIMD-
group and broadcasts the result to all active
threads in the SIMD-group.

T simd_sum(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the sum of the input values in data
across all active threads in the SIMD-group
and broadcasts the result to all active threads
in the SIMD-group.

Ti simd_xor(T i data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the bitwise XOR (^) of data across all
active threads in the SIMD-group and
broadcasts the result to all active threads in
the SIMD-group.

6.9.2.1! Examples
To demonstrate the shuffle functions, start with this SIMD-group’s initial state:

SIMD Lane ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data a b c d e f g h i j K l m n o p

The simd_shuffle_up() function shifts each SIMD-group upward by delta threads. For
example, with a delta value of 2, the function:
¥! Shifts the SIMD lane IDs down by two
¥! Marks the lower two lanes as invalid

Computed
SIMD Lane ID -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

valid 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

data a b a b c d e f g h i j k l m n

The simd_shuffle_up() function is a no wrapping operation that doesn’t affect the lower
delta lanes.
Similarly simd_shuffle_down() function shifts each SIMD-group downward by the delta
threads. Starting with the same initial SIMD-group state, with a delta value of 2, the function:
¥! Shifts the SIMD lane IDs up by two
¥! Marks the upper two lanes as invalid

Computed
SIMD Lane ID 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

valid 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

data c d e f g h i j k l m n o p o p

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 185 of 298

The simd_shuffle_down() function is a no wrapping operation that doesn’t affect the
upper delta lanes.
To demonstrate the shuffle-and-fill functions, start this SIMD-group’s initial state:

SIMD Lane ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data a b c d e f g h s t u v w x y z

filling fa fb fc fd fe ff fg fh fs ft fu fv fw fx fy fz

The simd_shuffle_and_fill_up() function shifts each SIMD-group upward by delta
threads — similar to simd_shuffle_up() — and assigns the values from the upper filling
lanes to the lower data lanes by wrapping the SIMD lane IDs. For example, with a delta value
of 2, the function:
¥! Shifts the SIMD lane IDs down by two
¥! Assigns the upper two lanes of filling to the lower two lanes of data

Computed
SIMD Lane ID -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

data fy fz a b c d e f g h s t u v w x

The simd_shuffle_and_fill_up() function with the modulo parameter splits the SIMD-
group into vectors, each with size modulo , and shifts each vector by the delta threads. For
example, with a modulo value of 8 and a delta value of 2, the function:
¥! Shifts the SIMD lane IDs down by two
¥! Assigns the upper two lanes of each vector in filling to the lower two lanes of each

vector in data
Computed

SIMD Lane ID -2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5

data fg fh a b c d e f fy fz s t u v w x

The simd_shuffle_and_fill_down() function shifts each SIMD-group downward by
delta threads — similar to simd_shuffle_ down() — and assigns the values from the lower
filling lanes to the upper data lanes by wrapping the SIMD lane IDs. For example, with a
delta value of 2, the function:
¥! Shifts the SIMD lane IDs up by two
¥! Assigns the lower two lanes of filling to the upper two lanes of data

Computed
SIMD Lane ID 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

data c d e f g h s t u v w x y z fa fb

The simd_shuffle_and_fill_down() function with the modulo parameter splits the
SIMD-group into vectors, each with size modulo and shifts each vector by the delta threads.
For example, with a modulo value of 8 and a delta value of 2, the function:
¥! Shifts the SIMD lane IDs up by two

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 186 of 298

¥! Assigns the lower two lanes of each vector in filling to the upper two lanes of each
vector in data

Computed
SIMD Lane ID 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

data c d e f g h fa fb u v w x y z fs ft

Below is an example of how to use these SIMD functions to perform a reduction operation:
kernel void
reduce(const device int *input [[buffer(0)]],
 device atomic_int *output [[buffer(1)]],
 threadgroup int *ldata [[threadgroup(0)]],
 uint gid [[thread_position_in_grid]],
 uint lid [[thread_position_in_threadgroup]],
 uint lsize [[threads_per_threadgroup]],
 uint simd_size [[threads_per_simdgroup]],
 uint simd_lane_id [[thread_index_in_simdgroup]],
 uint simd_group_id [[simdgroup_index_in_threadgroup]])
{

// Perform the first level of reduction .
// Read from device memory, write to threadgroup memory.
int val = input[gid] + input[gid + lsize];
for (uint s=lsize/simd_size; s>simd_size; s/=simd_size)
{

// Perform per - SIMD partial reduction .
for (uint offset=simd_size/2; offset>0; offset/=2)

val += simd_shuffle_down(val, offset);
// Write per - SIMD partial reduction value to threadgroup
memory.
if (simd_lane_id == 0)

ldata[simd_group_id] = val;
// Wait for all partial reductions to complete .
threadgroup_barrier(mem_flags::mem_threadgroup);

val = (lid < s) ? ldata[lid] : 0;

}
// Perform final per - SIMD partial reduction to calculate
// the threadgroup partial reduction result .
for (uint offset=s imd_size /2; offset>0; offset/=2)

val += simd_shuffle_down(val, offset);
// Atomically update the reduction result .
if (lid == 0)

atomic_fetch_add_explicit(output, val ,
 memory_order_relaxed);

}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 187 of 298

The simd_active_threads_mask and simd_ballot function uses the simd_vote
wrapper type (see below), which can be explicitly cast to its underlying type represented by
vote_t .

class simd_vote {
public:
 explicit constexpr simd_vote(vote_t v = 0);
 explicit constexpr operator vote_t() const;

 // Returns true if all bits corresponding to threads in the
 // SIMD- group are set.
 // You can use all() with the return value of simd_ballot(expr)
 // to determine if all threads Are active.
 bool all() const;

 // Returns true if any bit corresponding to a valid thread in
 // the SIMD- group is set.
 // You can use any() with the return value of simd_ballot(expr)
 // to determine if at least one thread is active .
 bool any() const;

 !private:
 // bit i in v represents t he 'vote' for the thread in the
 // SIMD- group at index i
 uint64_t v;
};

Note that simd_all(expr) is different from simd_ballot(expr).all() :
!! simd_all(expr) returns true if all #960=% threads evaluate expr to true .
!! simd_ballot(expr).all() returns true if all threads @%&% active and evaluated

the expr to true . (simd_vote::all() does not look at which threads are active.)
The same logic applies to simd_an y , simd_vote::any() , and to the equivalent quad
functions listed in section 6.9.3.
On hardware with fewer than 64 threads in a SIMD-group, the value of the top bits in
simd_vote is undefined. In particular, since you can initialize these bits, do not assume that
the top bits are set to 0.

<"K"6$ \D+, [R(*D3 $UD.84-*.5 $

macOS: Metal 2.1 and later support quad-group functions.
iOS: Metal 2 and later support some quad-group functions, including quad_broadcast,
quad_shuffle, quad_shuffle_up, quad_shuffle_down, and
quad_shuffle_xor .
A quad-group function is a SIMD-group function (see section 6.9.2) with an execution width of
4. The #960=% and 01#960=% thread terminology is the same as in section 6.9.2.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 188 of 298

Helper threads only execute to compute gradients for quad-groups in a fragment shader and
then become inactive.
Kernels and fragment functions can call the quad-group functions listed in Table 6.16 and Table
6.17. Threads may only read data from another active thread in a quad-group. See the Metal
Feature Set Tables to determine which GPUs support each table.

The placeholder T for Table 6.16 and Table 6.17 represents a scalar or vector of any integer or
floating-point type, except:
¥! bool
¥! void
¥! size_t
¥! ptrdiff_t

For bitwise operations, T needs to be an integer scalar or vector.
Table 6 .16. Quad -group permute functions in the Metal standard library

Built - in Quad -group Functions Description

quad_vote quad_ballot (bool expr)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Returns a wrapper type — see the quad_vote
example — around a bitmask of the evaluation
of the Boolean expression for all active
threads in the quad-group for which expr is
true .
The function sets the bits that correspond to
inactive threads to 0.

T quad_broadcast(T data, $
ushort broadcast_lane_id)

macOS: Metal 2 and later.!
iOS: Metal 2 and later.

Broadcasts data from the thread whose quad
lane ID is broadcast_lane_id . The value
for broadcast_lane_id needs to be a
valid quad lane ID that’s the same for all
threads in a quad-group.

T quad_broadcast_first(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Broadcasts data from the first active thread
— the active thread with the smallest index —
in the quad-group to all active threads.

T quad_shuffle(T data, $
ushort quad_lane_id)

macOS: Metal 2 and later.!
iOS: Metal 2 and later.

Returns data from the thread whose quad
lane ID is the sum of the caller’s quad lane ID
and delta .
The value for quad_lane_id needs to be a
valid land ID and may differ from other
threads in the quad-group.

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 189 of 298

Built - in Quad -group Functions Description

T quad_shuffle_and_fill_down(T data,
T filling_data, ushort delta)

All OS: Metal 2.4 and later.

Returns data or filling_data from the
thread whose quad lane ID is the sum of the
caller’s quad lane ID and delta .
If the sum is greater than the quad-group
size, the function copies values from the
lower delta lanes of filling_data into
the upper delta lanes of data .
The value for delta needs to be the same for
all threads in a quad-group.

T quad_shuffle_and_fill_down(T data,
T filling_data, ushort delta,
ushort modulo)

All OS: Metal 2.4 and later.

Returns data or filling_data for each
vector, from the thread whose quad lane ID is
the sum of caller’s quad lane ID and delta .
If the sum is greater than the quad-group
size, the function copies values from the
lower delta lanes of filling_data into
the upper delta lanes of data .
The value of delta needs to be the same for
all threads in a quad-group.
The modulo parameter defines the vector
width that splits the quad-group into separate
vectors and must be 2 or 4.

T quad_shuffle_and_fill_up(T data,
T filling_data, ushort delta)

All OS: Metal 2.4 and later.

Returns data or filling_data from the
thread whose quad lane ID is the difference
from the caller’s quad lane ID minus delta .
If the difference is negative, the operation
copies values from the upper delta lanes of
filling_data to the lower delta lanes of
data .
If the difference is negative, the function
shuffles data from filling_data into the
lower delta lanes. The value of delta
needs to be the same for all threads in a
quad-group.

T quad_shuffle_and_fill_up(T data,
T filling_data, ushort delta,
ushort modulo)

All OS: Metal 2.4 and later.

Returns data or filling_data for each
vector from the thread whose quad lane ID is
the difference from the caller’s quad lane ID
minus delta .
If the difference is negative, the operation
copies values from the upper delta lanes of
filling_data to the lower delta lanes of
data .
The value of delta needs to be the same for
all threads in a quad-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 190 of 298

Built - in Quad -group Functions Description

The modulo parameter defines the width that
splits the quad-group into separate vectors
and must be 2 or 4.

T quad_shuffle_down(T data, $
ushort delta)

macOS: Metal 2 and later.!
iOS: Metal 2 and later.

Returns data from the thread whose quad
lane ID is the sum of the caller’s quad lane ID
and delta .
The value for delta needs to be the same for
all threads in a quad-group.
The function doesn’t modify the upper delta
lanes of data because it doesn’t wrap values
around the quad-group.

T quad_shuffle _rotate_down(T data, $
ushort delta)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.!

Returns data from the thread whose quad
lane ID is the sum of the caller’s quad lane ID
and delta .
The value for delta needs to be the same for
all threads in a quad-group.
This function wraps values around the quad-
group.

T quad_shuffle _rotate_up(T data, $
ushort delta)

macOS: Metal 2.1 and later.!
iOS: Metal 2.2 and later.

Returns data from the thread whose quad
lane ID is the difference from the caller’s quad
lane ID minus delta .
The value for delta needs to be the same for
all threads in a quad-group.
This function wraps values around the quad-
group.

T quad_shuffle_up(T data, $
ushort delta)

macOS: Metal 2 and later.!
iOS: Metal 2 and later.

Returns data from thread whose quad lane
ID is the difference from the caller’s quad lane
ID minus delta .
The value for delta needs to be the same for
all threads in a quad-group.
This function doesn’t modify the lower delta
lanes of data because it doesn’t wrap values
around the quad-group.

T quad_shuffle_xor(T value, $
ushort mask)

macOS: Metal 2 and later.!
iOS: Metal 2 and later.

Returns data from the thread whose quad
lane ID is a bitwise XOR (^) of the caller’s
quad lane ID and mask . The value of mask
needs to be the same for all threads in a
quad-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 191 of 298

Table 6 .17. Quad -group reduction functions in the Metal standard library

Built - in Quad -group Functions Description

quad_vote quad_ active_threads_mask()

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns a quad_vote mask that represents
the active threads.
The function is equivalent to
quad_ballot(true) and sets the bits that
represent active threads to 1 and inactive
threads to 0.

bool quad_all(bool expr)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns true if all active threads evaluate
expr to true .

T quad_and(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the bitwise AND (&) of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

bool quad_a ny(bool expr)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns true if at least one active thread
evaluates expr to true .

bool quad_is_first()

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns true if the current thread is the first
active thread — the active thread with the
smallest index — in the current quad-group;
otherwise false .

bool quad_is_helper_thread()

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns true if the current thread is a helper
thread; otherwise, false .
You needs to call this function from a
fragment function or another function that
your fragment function calls; otherwise, it may
trigger a compile-time error.

T quad_max(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns data with the highest value from
across all active threads in the quad-group
and broadcasts that value to all active threads
in the quad-group.

T quad_min(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns data with the lowest value from
across all active threads in the quad-group
and broadcasts that value to all active threads
in the quad-group.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 192 of 298

Built - in Quad -group Functions Description

T quad_or(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the bitwise OR (|) of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

T quad_prefix_exclusive_product (T
data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

For a given thread, returns the product of the
input values in data for all active threads with
a lower index in the quad-group. For the first
thread in the group, return T(1) .

T quad_prefix_exclusive_sum (T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

For a given thread, returns the sum of the
input values in data for all active threads with
a lower index in the quad-group. For the first
thread in the group, return T(0) .

T quad_prefix_inclusive_product (T
data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

For a given thread, returns the product of the
input values in data for all active threads with
a lower or the same index in the quad-group.

T quad_prefix_inclusive_sum (T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

For a given thread, returns the sum of the
input values in data for all active threads with
a lower or the same index in the quad-group.

T quad_product(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the product of the input values in
data across all active threads in the quad-
group and broadcasts the result to all active
threads in the quad-group.

T quad_sum(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the sum of the input values in data
across all active threads in the quad-group
and broadcasts the result to all active threads
in the quad-group.

T quad_xor(T data)

macOS: Metal 2.1 and later.!
iOS: Metal 2.3 and later.

Returns the bitwise XOR (^) of data across all
active threads in the quad-group and
broadcasts the result to all active threads in
the quad-group.

In a kernel function, quads divide across the SIMD-group. In a fragment function, the lane ID
represents the fragment location in a 2 x 2 quad:
¥! Lane ID 0 is the upper-left pixel
¥! Lane ID 1 is the upper-right pixel

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 193 of 298

¥! Lane ID 2 is the lower-left pixel
¥! Lane ID 3 is the lower-right pixel
To demonstrate the shuffle functions, start with this quad-group’s initial state:

Quad Lane ID 0 1 2 3

data a b c d

The quad_shuffle_up() function shifts each quad-group upward by delta threads. For
example, with a delta value of 2, the function:
¥! Shifts the quad lane IDs down by two
¥! Marks the lower two lanes as invalid

Computed
Quad Lane ID -2 -1 0 1

valid 0 0 1 1

data a b a b

The quad_shuffle_up() function is a no wrapping operation that doesn’t affect the lower
delta lanes.
Similarly, quad_shuffle_down() function shifts each quad-group downward by delta
threads. Starting with the same initial quad-group state, with a delta of 2, the function:
¥! Shifts the quad lane IDs up by two
¥! Marks the upper two lanes as invalid

Computed
Quad Lane ID 2 3 4 5

valid 1 1 0 0

data c d c d

The quad_shuffle_down() function is a no wrapping operation that doesn’t affect the
upper delta lanes.
To demonstrate the shuffle-and-fill functions, start this quad-group’s initial state:

Quad Lane ID 0 1 2 3

data a b c d

filling fa fb fc fd

The quad_shuffle_and_fill_up() function shifts each quad-group upward by the
delta threads — similar to quad_shuffle_up() — and assigns the values from the upper
filling lanes to the lower data lanes by wrapping the quad lane IDs. For example, with a
delta value of 2, the function:
¥! Shifts the quad lane IDs down by two

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 194 of 298

¥! Assigns the upper two lanes of filling to the lower two lanes of data
Computed
Quad Lane ID -2 -1 0 1

data fc fd a b

The quad _shuffle_and_fill_up() function with the modulo parameter splits the quad-
group into vectors, each with size modulo and shifts each vector by the delta threads. For
example, with a modulo value of 2 and a delta value of 1, the function:
¥! Shifts the quad lane IDs down by one
¥! Assigns the upper lane of each vector in filling to the lower lane of each vector in data

Computed
Quad Lane ID -1 0 -1 0

data fb a fd c

The quad_shuffle_and_fill_down() function shifts each quad-group downward by
delta threads — similar to quad_shuffle_down() — and assigns the values from the lower
filling lanes to the upper data lanes by wrapping the quad lane IDs. For example, with a
delta value of 2, the function:
¥! Shifts the quad lane IDs up by two
¥! Assigns the lower two lanes of filling to the upper two lanes of data

Computed
Quad Lane ID 2 3 4 5

data c d fa fb

The quad_shuffle_and_fill_down() function with the modulo parameter splits the
quad-group into vectors, each with size modulo and shifts each vector by the delta threads.
For example, with a modulo value of 2 and a delta value of 1, the function:
¥! Shifts the quad lane IDs up by one
¥! Assigns the lower lane of each vector in filling to the upper lane of each vector in data

Computed
Quad Lane ID 1 2 1 2

data b fa d fc

The quad_ballot function uses the quad_vote wrapper type, which can be explicitly cast to
its underlying type. (In the following example, note use of vote_t to represent an underlying
type, XXX.)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 195 of 298

class quad_vote {
public:
 typedef XXX vote_t;
 explicit constexpr quad_vote(vote_t v = 0);
 explicit constexpr operator vote_t() const;

 // Returns true if all bits corresponding to threads in the
 // quad - group (the four bottom bits) are set.
 bool all() const;

 // Returns true if any bit corresponding to a thread in the
 // quad - Group is set.
 bool any() const;
};

The quad_vote constructor masks out the top bits (that is, other than the four bottom bits).
Therefore, Metal clears the upper bits, and the bottom four bits don’t change when you cast to
vote_t .

6.10! Graphics Functions
The graphics functions in this section and its subsections are defined in the header
<metal_graphics> . You can only call these graphics functions from a vertex function or a
fragment function.

<"!M"!$ U(+/2'.4 $UD.84-*.5 $

You can only call the functions in this section (listed in Table 6.18, Table 6.19, and Table 6.20)
inside a fragment function (see section 5.1.2) or inside a function called from a fragment
function. Otherwise the behavior is undefined and may result in a compile-time error.
Fragment function helper threads may be created to help evaluate derivatives (explicit or
implicit) for use with a fragment thread(s). Fragment function helper threads execute the same
code as the other fragment threads, but do not have side effects that modify the render targets
or any other memory that can be accessed by the fragment function. In particular:
¥! Fragments corresponding to helper threads are discarded when the fragment function

execution is complete without any updates to the render targets.
¥! Stores and atomic operations to buffers and textures performed by helper threads have no

effect on the underlying memory associated with the buffer or texture.

6.10.1.1! Fragment Functions – Derivatives
Metal includes the functions in Table 6.18 to compute derivatives. T is one of float , float2 ,
float3 , float4 , half , half2 , half3 , or half4 .
Derivatives are undefined within nonuniform control flow.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 196 of 298

Note: In Metal 2.2 and earlier, discard_fragment could make the control flow nonuniform. In
Metal 2.3 and later, discard_fragment does not affect whether the control flow is
considered nonuniform or not. See Section 6.10.1.3 for more information.

Table 6 .18. Derivatives fragment functions in the Metal stan dard library

Built - in fragment functions Description

T dfdx(T p) Returns a high precision partial derivative of the specified
value with respect to the screen space x coordinate.

T dfdy(T p) Returns a high precision partial derivative of the specified
value with respect to the screen space y coordinate.

T fwidth(T p) Returns the sum of the absolute derivatives in x and y using
local differencing for p; that is, fabs(dfdx(p)) +
fabs(dfdy(p))

6.10.1.2!Fragment Functions – Samples
Metal includes the per-sample functions listed in Table 6.19. get_num_samples and
get_sample_position return the number of samples for the color attachment and the
sample offsets for a given sample index. For example, for transparency super-sampling, these
functions can be used to shade per-fragment but do the alpha test per-sample.

Table 6 .19. Samples fragment functions in the Metal standard library

Built - in fragment functions Description

uint get_num_samples() Returns the number of samples for the
multisampled color attachment.

float2 get_sample_position(uint
index)

Returns the normalized sample offset (x , y) for a
given sample index index . Values of x and y are
in [0.0 É 1.0] .

If you have customized sample positions (set with the setSamplePositions:count:
method of MTLRenderPassDescriptor), get_sample_position(index) returns the
position programmed for the specified index.

6.10.1.3!Fragment Functions – Flow Control
The Metal function in Table 6.20 terminates a fragment.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 197 of 298

Table 6 .20 . Fragment flow control function in the Metal standard library

Built - in fragment functions Description

void discard_fragment(void) Marks the current fragment as terminated and
discards this fragment's output of the fragment
function.

Writes to a buffer or texture from a fragment thread made H%>)&% calling discard_fragment
are not discarded.
Multiple fragment threads or helper threads associated with a fragment thread execute
together to compute derivatives. In Metal 2.2 and earlier, if any (but not all) of these threads
executes the discard_fragment function, the thread is terminated and the behavior of any
derivative computations (explicit or implicit) is undefined. In Metal 2.3 and later,
discard_fragment marks the fragment as terminated while continuing to execute in parallel
and has no effect on whether derivatives are defined. Even though execution continues, the
write behavior remains the same as before. The fragment will discard the fragment output and
discard all writes to buffer or texture after discard_fragment .

6.11! Pull-Model Interpolation
All OS: Metal 2.3 and later support pull-model interpolation.
The interpolant type interpolant<T,P> (section 2.18) and associated methods are defined
in <metal_ interpolate >. In a fragment function, you explicitly interpolate the values of a
interpolant<T,P> type by invoking its methods, as shown below. The interpolant may be
sampled and interpolated multiple times, in different modes, and may be passed to other
functions to be sampled and interpolated there. Perspective correctness is fixed across all
interpolations of the argument by the value of P in its type.

Interpolant method Description

T interpolate_at_center() Sample shader input at the center of a pixel,
returning the same value as if the input had type
T with [[center_perspective]] or
[[center_no_perspective]] .

T interpolate_at_centroid () Sample shader input within the covered area of
the pixel, returning the same value as if the input
had type T with
[[centroid_perspective]] or
[[centroid_no_perspective]] .

T interpolate_at_offset(float2
offset)

Sample shader input at a specified window-
coordinate offset from a pixel's top-left corner.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 198 of 298

Allowable offset components are in the range
[0.0, 1.0) along a 1/16 pixel grid.

T interpolate_ at_sample (uint
sample)

Sample shader input at the location of the
specified sample index, returning the same
value as if the input had type T with
[[sample_perspective]] or
[[sample_no_perspective]] and was in
the specified per-sample evaluation of the
shader. If a sample of the given index does not
exist, the position of interpolation is undefined.

6.12! Texture Functions

The texture member functions, defined in the header <metal_texture> , listed in this section
and its subsections for different texture types include:
¥! sample - sample from a texture,
¥! sample_compare - sample compare from a texture,
¥! gather - gather from a texture,
¥! gather_compare - gather compare from a texture,
¥! read - sampler-less read from a texture,
¥! write - write to a texture,
¥! texture query (such as get_width, get_height, get_num_mip_levels,

get_array_size), and
¥! texture fence.
Metal 3.1 introduces new atomic texture member functions supported on 1D texture, 1D texture
array, 2D texture, 2D texture array, 3D texture, and texture buffer for int , uint , ulong color
types:
¥! atomic_load - atomic load from a texture,
¥! atomic_store – atomic store to a texture,
¥! atomic_exchange - atomic exchange a value for a texture,
¥! atomic_compare_exchange_weak - atomic compare and exchange in a texture,
¥! atomic_ fetch_ op_explicit – atomic fetch and modify where)(can be add , and ,

max, min , or , sub , or xor for int and uint color type.
¥! atomic_max - atomic max in a texture for ulong color type.
¥! atomic_min - atomic min in a texture for ulong color type.

Metal 3.2 introduces coherence (see section 2.9).
The texture sample , sample_compare , gather , and gather_compare functions take an
offset argument for a 2D texture, 2D texture array, and 3D texture. The offset is an integer

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 199 of 298

value applied to the texture coordinate before looking up each pixel. This integer value can be in
the range -8 to +7. The default value is 0.
The texture sample , sample_compare , gather , and gather_compare functions require
that you declare the texture with the sample access attribute. The texture read functions
require that you declare the texture with the sample , read , or read_write access attribute.
The texture write functions require that you declare the texture with the write or
read_write access attribute. (For more about access attributes, see section 2.9.)
The texture sample_compare and gather_compare functions are only available for depth
texture types.
compare_func sets the comparison test for the sample_compare and gather_compare
functions. For more about compare_func , see section 2.10.
Overloaded variants of the texture sample and sample_compare functions with an
lod_options argument are available for a 2D texture, 2D texture array, 2D depth texture, 2D
depth texture array, 3D texture, cube texture, cube texture array, cube depth texture, and cube
depth texture array. (LOD/lod is short for level-of-detail.) The values for lod_options are:
¥! level (float lod) - sample from the specified mipmap level
¥! bias (float value) - apply the specified bias to a mipmap level before sampling
¥! gradient* (T dPdx, T dPdy) - apply the specified gradients with respect to the x and

y directions. The texture type changes the name and the arguments; for example, for 3D
textures, the name is gradient3d and the arguments are float3 type.

¥! min_lod_clamp(float lod) - specify lowest mipmap level for sampler access, which
restricts sampler access to a range of mipmap levels. (All OS: Support since Metal 2.2.)

In macOS, Metal 2.2 and earlier don’t support sample_compare , bias and gradient*
functions, and lod needs to be a zero constant. Metal 2.3 and later lift this restriction for Apple
silicon.
In Metal 2.2 and later, you can specify a LOD range for a sampler. You can either specify a
minimum and maximum mipmap level or use min_lod_clamp to specify just the minimum
mipmap level of an open range. When the sampler determines which mipmaps to sample, the
selection is clamped to the specified range.
Clamping the LOD is useful where some of the texture data is not available all the time (for
example, texture streaming). You can create a texture with all the necessary mipmaps and then
can stream image data starting from the smallest mipmaps. When the GPU samples the texture,
it clamps to the mipmaps that already have valid data. When you copy larger mipmaps into the
texture, you reduce the minimum LOD level. As new data becomes ready, you can change the
LOD clamp, which changes the sampling resolution.
The texture sample and sample_compare functions that do not take an explicit LOD or
gradients have a default LOD of 0. The gather and gather_compare functions called from
kernel or vertex functions also have a default LOD of 0.
For the gather and gather_compare functions, place the four samples that contribute to
filtering into xyzw components in counter-clockwise order, starting with the sample to the
lower-left of the queried location. This is the same as nearest sampling with unnormalized
texture coordinate deltas at the following locations: (-,+), (+,+),(+,-),(-,-), where the magnitude
of the deltas are always half a pixel.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 200 of 298

A read from or write to a texture is out-of-bounds if and only if any of these conditions is
met:
¥! the coordinates accessed are out-of-bounds,
¥! the level of detail argument is out-of-bounds,
¥! the texture is a texture array (texture ?d_array type), and the array slice argument is

out-of-bounds,
¥! the texture is a texturecube or texturecube_array type, and the face argument is

out-of-bounds, or
¥! the texture is a multisampled texture, and the sample argument is out-of-bounds.
For all texture types, an out-of-bounds write to a texture is ignored.
For all texture types:
¥! for components specified in a pixel format, an out-of-bounds r ead returns a color with

components with the value zero.
¥! for components unspecified in a pixel format, an out-of-bounds r ead returns the default

value.
For unspecified color components in a pixel format, the default values are:
¥! zero, for components other than alpha.
¥! one, for the alpha component.
In a pixel format with integer components, the alpha default value is represented as the integral
value 0x1. For a pixel format with floating-point or normalized components, the alpha default
value is represented as the floating-point value 1.0.
For example, for a texture with the MTLPixelFormatR8Uint pixel format, the default values
for unspecified integer components are G = 0, B = 0, and A = 1. For a texture with the
MTLPixelFormatR8Unorm pixel format, the default values for unspecified normalized
components are G = 0.0, B = 0.0, and A = 1.0. For a texture with depth or stencil pixel format
(such as MTLPixelFormatDepth24Unorm_Stencil8 or MTLPixelFormatStencil8),
the default value for an unspecified component is undefined.
In macOS, for Metal 2.2 and earlier, lod needs to be 0 for texture write functions. Metal 2.3
and later lift this restriction for Apple silicon.

The following texture member functions are available to support sparse textures:
 macOS: Metal 2.3 and later support sparse texture functions.
 iOS: Metal 2.2 and later support sparse texture functions.

¥! sparse_s ample - sample from a sparse texture,
¥! sparse_s ample _compare - sample compare from a sparse texture,
¥! sparse_ gather - gather from a sparse texture, and
¥! sparse_ gather_compare - gather compare from a sparse texture.
These sparse texture member functions return a sparse_color structure that contains one or
more color values and a residency flag. If any of the accessed pixels is not mapped, resident
is set to false .

https://developer.apple.com/documentation/metal/mtlpixelformat/mtlpixelformatstencil8?language=objc

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 201 of 298

template <typename T>
struct sparse_color {
public:
 constexpr sparse_color(T value, bool resident) thread;

 // Indicates whether all memory addressed to retrieve the value was
mapped.
 constexpr bool resident() const thread;

 // Retrieve the color value.
 constexpr T const value() const thread;
};

For a sparse texture, to specify the minimum LOD level that the sampler can access, use
min_lod_clamp .
Note:
For sections 6.12.1 through 6.12.16, the following abbreviations are used for the data types of
function arguments and return values:
Tv denotes a 4-component vector type based on the templated type <T> for declaring the
texture type:
¥! If T is float , Tv is float4 .
¥! If T is half , Tv is half4 .
¥! If T is int , Tv is int4 .
¥! If T is uint , Tv is uint4 .
¥! If T is short , Tv is short4 .
¥! If T is ushort , Tv is ushort4 .
¥! If T is ulong , Tv is ulong 4 (since Metal 3.1)

Metal does not support sampling of textures when T is ulong . Note that not all operations are
supported on all types.

In Metal 3.1 and later, texture support atomic functions for element T where T is int , uint , or
ulong :
¥! When the element T is int or uint , the texture on the Metal needs to be either

MTLPixelFormatR32Uint , or MTLPixelFormatR32Sint ,
¥! When the element T is ulong , the texture on the Metal needs to be

MTLPixelFormatRG32Uint .

The semantics of the atomic texture functions are the same as the atomic functions defined in
Sec 6.15.

sparse_color - Tv denotes a sparse_color structure that contains a 4-component vector
of color values, based on the templated type <T>, and a residency flag. These represent the
return values of many sparse texture member functions.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 202 of 298

sparse_color - T denotes a sparse_color structure that contains a single value, based on
the templated type <T>, and a residency flag. T typically represents a depth value that a sparse
texture member function returns.

The following functions can be used to return the LOD (mip level) computation result for a
simulated texture fetch:
 macOS: Metal 2.2 and later support sparse texture functions.
 iOS: Metal 2.3 and later support sparse texture functions.

calculate_unclamped_lod - calculates the level of detail that would be sampled for the
given coordinates, ignoring any sampler parameter. The fractional part of this value contains
the mip level blending weights, even if the sampler indicates a nearest mip selection.

calculate_clamped_lod - similar to the calculate_unclamped_lod , but additionally
clamps the LOD to stay:
¥! within the texture mip count limits,
¥! within the sampler's lod_clamp min and max values
¥! less than or equal to the sampler's max_anisotropy value

Only call the calculate_unclamped_lod and calculate_clamped_lod functions from
a fragment function or a function you call with a fragment function; otherwise, the behavior is
undefined.

<"!0"! $!9 $1'C4D(' $

This member function samples from a 1D texture.
Tv sample(sampler s, float coord) const

These member functions perform sampler-less reads from a 1D texture. Since mipmaps are not
supported for 1D textures, lod needs to be 0.
Tv read (uint coord, uint lod = 0) const

Tv read(ushort coord,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

These member functions can write to a 1D texture. Since mipmaps are not supported for 1D
textures, lod needs to be 0.
void write(Tv color, uint coord, uint lod = 0)

void write(Tv color, ushort coord,
 ushort lod = 0) // All OS: Metal 1.2 and later .

These member functions query a 1D texture. Since mipmaps are not supported for 1D textures,
get_num_mip_levels() always return 0, and lod needs to be 0 for get_width () :
uint get_width(uint lod = 0) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 203 of 298

uint get_num_mip_levels() const

This member function samples from a sparse 1D texture starting with Metal 2.2 in iOS and Metal
2.3 in macOS.
sparse_color - Tv sparse_sample(sampler s, float coord) const

These member functions perform a sampler-less read from a sparse 1D texture starting with
Metal 2.2 in iOS and Metal 2.3 in macOS. Since mipmaps are not supported for 1D textures, lod
needs to be 0.
sparse_color - Tv sparse_read(ushort coord, ushort lod = 0) const

sparse_color - Tv sparse_read(uint coord, uint lod = 0) const

These member functions execute an atomic load from a 1D texture starting with Metal 3.1:
Tv atomic_load (uint coord) const

Tv atomic_load (ushort coord) const

These member functions execute an atomic store to a 1D texture starting with Metal 3.1:
void atomic_ store (Tv color, uint coord) const

void atomic _store (Tv color, ushort coord) const

These member functions execute an atomic compare and exchange to a 1D texture starting
with Metal 3.1:
bool atomic_compare_exchange_weak (uint coord , thread Tv *expected ,
 Tv desired) const

bool atomic_compare_exchange_weak (u short coord , thread Tv *expected,
 Tv desired) const

These member functions execute an atomic exchange to a 1D texture starting with Metal 3.1:
Tv atomic_exchange (uint coord , Tv desired) const

Tv atomic_exchange (u short coord , Tv desired) const

These member functions execute an atomic fetch and modify to a 1D texture starting with Metal
3.1 where)(is add, and, max, min, or, sub, or xor for int and uint color type:
Tv atomic_ fetch_ op(uint coord , Tv operand)

Tv atomic_ fetch_ op(u short coord , Tv operand) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 204 of 298

These member functions execute an atomic min or max to a 1D texture starting with Metal 3.1:
void atomic _min (uint coord , ulong4 operand)

void atomic _min (ushort coord , ulong4 operand)

void atomic _max(uint coord , ulong4 operand)

void atomic _max(ushort coord , ulong4 operand)

<"!0"0$!9 $1'C4D(' $V((+P$

This member function samples from a 1D texture array:
Tv sample(sampler s, float coord, uint array) const

These member functions perform sampler-less reads from a 1D texture array. Since mipmaps
are not supported for 1D textures, lod must be a zero constant.
Tv read(uint coord, uint array, uint lod = 0) const

Tv read(ushort coord, ushort array,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

These member functions write to a 1D texture array. Since mipmaps are not supported for 1D
textures, l od must be a zero constant.
void write(Tv color, uint coord, uint array, uint lod = 0)

void write(Tv color, ushort coord, ushort array,
 ushort lod = 0) // All OS: Metal 1.2 and later .

These member functions query a 1D texture array. Since mipmaps are not supported for 1D
textures, get_num_mip_levels() always return 0, and lod must be a zero constant for
get_width() .
uint get_width(uint lod = 0) const

uint get_array_size() const

uint get_num_mip_levels() const

This function samples from a sparse 1D texture array starting with Metal 2.2 in iOS and Metal
2.3 in macOS.
sparse_color - Tv sparse_sample(sampler s, float coord , uint array)
const

These functions perform a sampler-less read from a sparse 1D texture array starting with Metal
2.2 in iOS and Metal 2.3 in macOS. Since mipmaps are not supported for 1D texture arrays, l od
must be a zero constant.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 205 of 298

sparse_color - Tv sparse_read(ushort coord, ushort array,
 ushort lod = 0) const

sparse_color - Tv sparse_read(uint coord, uint array,
 uint lod = 0) const

These member functions execute an atomic load from a 1D texture array starting with Metal 3.1:
Tv atomic_load (uint coord , uint array) const

Tv atomic_load(ushort coord , ushort array) const

These member functions execute an atomic store to a 1D texture array starting with Metal 3.1:
void atomic_store (Tv color, uint coord , uint array) const

void atomic_store (Tv color, ushort coord , ushort array) const

These member functions execute an atomic compare and exchange to a 1D texture array
starting with Metal 3.1:
bool atomic_compare_exchange_weak (uint coord , uint array,
 thread Tv *expected,
 Tv desired) const

bool atomic_compare_exchange_weak (u short coord , ushort array ,
 thread Tv *expected,
 Tv desired) const

These member functions execute an atomic exchange to a 1D texture array starting with Metal
3.1:
Tv atomic_exchange (uint coord , uint array, Tv desired) const

Tv atomic_exchange (u short coord , ushort array, Tv desired) const

These member functions execute an atomic fetch and modify to a 1D texture array starting with
Metal 3.1 where)(is add, and, max, min, or, sub, or xor :
Tv atomic_ fetch_ op(uint coord , uint array, Tv operand)

Tv atomic_ fetch_ op(u short coord , ushort array, Tv operand) const

These member functions execute an atomic min or max to a 1D texture array starting with Metal
3.1:
void atomic _min (uint coord , uint array, ulong4 operand)

void atomic _min (ushort coord , ushort array, ulong4 operand)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 206 of 298

void atomic _max(uint coord , uint array, ulong4 operand)

void atomic _max(usho rt coord , ushort array, ulong4 operand)

<"!0"6$ 09 $1'C4D(' $

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (lod_options):
bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

min_lod_clamp(float lod) // All OS: Metal 2.2 and later.

These member functions sample from a 2D texture:
Tv sample(sampler s, float2 coord, int2 offset = int2(0)) const

Tv sample(sampler s, float2 coord, lod_options options,
 int2 offset = int2(0)) const

Tv sample(sampler s, float2 coord, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options,
 int2 offset = int2(0)) const

Tv sample(sampler s, float2 coord, gradient2d grad _options,
 min_lod_clamp min_lod_clamp_ options,
 int2 offset = int2(0)) const

These member functions perform sampler-less reads from a 2D texture:
Tv read(uint2 coord, uint lod = 0) const

Tv read(ushort2 coord,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

These member functions write to a 2D texture. In macOS, for Metal 2.2 and earlier, lod must be
a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.
void write(Tv color, uint2 coord, uint lod = 0)

void write(Tv color, ushort2 coord,
 ushort lod = 0) // All OS: Metal 1.2 and later .

This member functions gathers four samples for bilinear interpolation when sampling a 2D
texture:
enum class component {x, y, z, w};

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 207 of 298

Tv gather(sampler s, float2 coord, int2 offset = int2(0),
 component c = component::x) const

These member functions query a 2D texture query:
uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_num_mip_levels() const

These member functions sample from a sparse 2D texture starting with Metal 2.2 in iOS and
Metal 2.3 in macOS.
sparse_color - Tv sparse_sample(sampler s, float 2 coord ,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord , bias options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord ,
 level options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord ,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord ,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord ,
 gradient2d grad_options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord ,
 gradient2d grad_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

These member functions perform a sampler-less read from a sparse 2D texture starting with
Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_read(ushort 2 coord, ushort lod = 0) const

sparse_color - Tv sparse_read(uint 2 coord, uint lod = 0) const

This member function gathers four samples for bilinear interpolation from a sparse 2D texture
starting with Metal 2.2 in iOS and Metal 2.3 in macOS.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 208 of 298

sparse_color - Tv sparse_ gather (sampler s, float 2 coord ,
 int2 offset = int2(0) ,
 component c = component::x) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
f loat calculate_clamped_lod(sampler s, float2 coord);

float calculate_unclamped_lod(sampler s, float2 coord);

These member functions execute an atomic load from a 2D texture starting with Metal 3.1:
Tv atomic_load (uint 2 coord) const

Tv atomic_load(ushort 2 coord) const

These member functions execute an atomic store to a 2D texture starting with Metal 3.1:
void atomic_store (Tv color, uint 2 coord) const

void atomic_store (Tv color, ushort 2 coord) const

These member functions execute an atomic compare and exchange to a 2D texture starting
with Metal 3.1:
bool atomic_compare_exchange_weak (uint 2 coord , thread Tv *expected,
 Tv desired) const

bool atomic_compare_exchange_weak (u short2 coord ,thread Tv *expected,
 Tv desired) const

These member functions execute an atomic exchange to a 2D texture starting with Metal 3.1:
Tv atomic_exchange (uint 2 coord , Tv desired) const

Tv atomic_exchange (u short2 coord , Tv desired) const

These member functions execute an atomic fetch and modify to a 2D texture starting with
Metal 3.1 where)(is add, and, max, min, or, sub, or xor for int and uint color type:
Tv atomic_ fetch_ op(uint 2 coord , Tv operand)

Tv atomic_ fetch_ op(u short2 coord , Tv operand) const

These member functions execute an atomic min or max to a 2D texture starting with Metal 3.1:
void atomic _min (uint 2 coord , ulong4 operand)

void atomic _min (ushort2 coord , ulong4 operand)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 209 of 298

void atomic _max(uint 2 coord , ulong4 operand)

void atomic _max(ushort 2 coord , ulong4 operand)

6.12.3.1!2D Texture Sampling Example
The following code shows several uses of the 2D texture sample function, depending upon its
arguments:
texture2d<float> tex;
sampler s;
float2 coord;
int2 offset;
float lod;

// No optional arguments .
float4 clr = tex.sample(s, coord);

// Sample using A mipmap level .
clr = tex.sample(s, coord, level(lod));

// Sample With an offset .
clr = tex.sample(s, coord, offset);

// Sample using a mipmap level and an offset .
clr = tex.sample(s, coord, level(lod), offset);

<"!0": $ 09 $1'C4D(' $V((+P$

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (lod_options):
bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

min_lod_clamp(float lod) // All OS: Metal 2.2 and later .

These member functions sample from a 2D texture array:
Tv sample(sampler s, float2 coord, uint array,
 int2 offset = int2(0)) const

Tv sample(sampler s, float2 coord, uint array, lod_options options,
 int2 offset = int2(0)) const

Tv sample(sampler s, float2 coord, uint array, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options,
 int2 offset = int2(0)) const

Tv sample(sampler s, float2 coord, uint array,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 210 of 298

 gradient2d grad _options,
 min_lod_clamp min_lod_clamp_ options,
 int2 offset = int2(0)) const

These member functions perform sampler-less reads from a 2D texture array:
Tv read(uint2 coord, uint array, uint lod = 0) const

Tv read(ushort2 coord, ushort array,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

These member functions write to a 2D texture array. In macOS, for Metal 2.2 and earlier, lod
must be a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.

void write(Tv color, uint2 coord, uint array, uint lod = 0)

void write(Tv color, ushort2 coord, ushort array,
 ushort lod = 0) // All OS: Metal 1.2 and later .

This member functions gathers four samples for bilinear interpolation when sampling a 2D
texture array:
Tv gather(sampler s, float2 coord, uint array,
 int2 offset = int2(0),
 component c = component::x) const

These member functions query a 2D texture array:
uint get _width(uint lod = 0) const

uint get _height(uint lod = 0) const

uint get _array_size() const

uint get _num_mip_levels() const

These member functions sample from a sparse 2D texture array starting with Metal 2.2 in iOS
and Metal 2.3 in macOS.
sparse_color - Tv sparse_sample(sampler s, float 2 coord , uint array,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord , uint array,
 bias options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord , uint array,
 level options,
 int2 offset = int2(0)) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 211 of 298

sparse_color - Tv sparse_sample(sampler s, float 2 coord , uint array,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord , uint array,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord , uint array,
 gradient2d options,
 int2 offset = int2(0)) const

sparse_color - Tv sparse_sample(sampler s, float 2 coord , uint array,
 gradient2d grad_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

These functions perform a sampler-less read from a sparse 2D texture array starting with Metal
2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_read(ushort 2 coord, ushort array,
 ushort lod = 0) const

sparse_color - Tv sparse_read(uint 2 coord, uint array,
 uint lod = 0) const

This function gathers four samples for bilinear interpolation from a sparse 2D texture array
starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_ gather (sampler s, float 2 coord , uint array,
 int2 offset = int2(0) ,
 component c = component::x) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
float calculate_clamped_lod(sampler s, float2 coord);

float calculate_unclamped_lod(sampler s, float2 coord);

These member functions execute an atomic load from a 2D texture array starting with Metal 3.1:
Tv atomic_load (uint 2 coord , uint array) const

Tv atomic_load(ushort 2 coord , ushort array) const

These member functions execute an atomic store to a 2D texture array starting with Metal 3.1:
void atomic_store (Tv color, uint 2 coord , uint array) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 212 of 298

void atomic_store (Tv color, ushort 2 coord , ushort array) const

These member functions execute an atomic compare and exchange to a 2D texture array
starting with Metal 3.1:
bool atomic_compare_exchange_weak (uint 2 coord , uint array,
 thread Tv *expected,
 Tv desired) const

bool atomic_compare_exchange_weak (u short 2 coord , ushort array ,
 thread Tv *expected,
 Tv desired) const

These member functions execute an atomic exchange to a 2D texture array starting with Metal
3.1:
Tv atomic_exchange (uint 2 coord , uint array, Tv desired) const

Tv atomic_exchange (u short 2 coord , ushort array, Tv desired) const

These member functions execute an atomic fetch and modify to a 2D texture array starting with
Metal 3.1 where)(is add, and, max, min, or, sub, or xor for int and uint color type:
Tv atomic_ fetch_ op(uint 2 coord , uint array, Tv operand)

Tv atomic_ fetch_ op(u short 2 coord , ushort array, Tv operand) const

These member functions execute an atomic min or max to a 2D texture array starting with Metal
3.1:
void atomic _min (uint 2 coord , uint array, ulong4 operand)

void atomic _min (ushort 2 coord , ushort array, ulong4 operand)

void atomic _max(uint 2 coord , uint array, ulong4 operand)

void atomic _max(ushort 2 coord , ushort array, ulong4 operand)

<"!0"#$ 69 $1'C4D(' $ $ $ $ $ $ $

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (lod_options):
bias(float value)

level(float lod)

gradient3d(float3 dPdx, float3 dPdy)

min_lod_clamp(float lod) // All OS: Metal 2.2 and later.

These member functions sample from a 3D texture:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 213 of 298

Tv sample(sampler s, float3 coord, int3 offset = int3(0)) const

Tv sample(sampler s, float3 coord, lod_options options,
 int3 offset = int3(0)) const

Tv sample(sampler s, float 3 coord, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options,
 int 3 offset = int 3(0)) const

Tv sample(sampler s, float 3 coord, gradient 3d grad _options,
 min_lod_clamp min_lod_clamp_ options,
 int 3 offset = int 3(0)) const

These member functions perform sampler-less reads from a 3D texture:
Tv read(uint3 coord, uint lod = 0) const

Tv read(ushort3 coord,
 ushort lod = 0) const // All OS: Metal 1.2 and later

These member functions write to a 3D texture. In macOS, for Metal 2.2 and earlier, lod must be
a zero constant. Metal 2.3 and later lift this restriction for Apple silicon .
void write(Tv color, uint3 coord, uint lod = 0)

void write(Tv color, ushort3 coord,
 ushort lod = 0) // All OS: Metal 1.2 and later .

These member functions query a 3D texture:
uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_depth(uint lod = 0) const

uint get_num_mip_levels() const

These functions sample from a sparse 3D texture starting with Metal 2.2 in iOS and Metal 2.3 in
macOS.
sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 int3 offset = int3 (0)) const

sparse_color - Tv sparse_sample(sampler s, float3 coord , bias options,
 int3 offset = int3 (0)) const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 level options,
 int3 offset = int3 (0)) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 214 of 298

sparse_color - Tv sparse_sample(sampler s, float3 coord ,

min_lod_clamp min_lod_clamp_options, int3 offset = int3 (0)) const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options,
 int3 offset = int3 (0)) const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 gradient3d grad_options,
 int3 offset = int3 (0)) const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 gradient3d grad_options,
 min_lod_clamp min_lod_clamp_options,
 int3 offset = int3 (0)) const

These member functions perform a sampler-less read from a sparse 3D texture starting with
Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_read(u int3 coord, uint lod = 0) const
sparse_color - Tv sparse_read(ushort 3 coord, ushort lod = 0) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
float calculate_clamped_lod(sampler s, float 3 coord)

float calculate_unclamped_lod(sampler s, float 3 coord)

These member functions execute an atomic load from a 3D texture starting with Metal 3.1:
Tv atomic_load (uint 3 coord) const

Tv atomic_load(ushort 3 coord) const

These member functions execute an atomic store to a 3D texture starting with Metal 3.1:
void atomic_store (Tv color, uint 3 coord) const

void atomic_store (Tv color, ushort 3 coord) const

These member functions execute an atomic compare and exchange to a 3D texture starting
with Metal 3.1:
bool atomic_compare_exchange_weak (uint 3 coord , thread Tv *expected,
 Tv desired) const

bool atomic_compare_exchange_weak (u short 3 coord ,thread Tv *expected,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 215 of 298

 Tv desired) const

These member functions execute an atomic exchange to a 3D texture starting with Metal 3.1:
Tv atomic_exchange (uint 3 coord , Tv desired) const

Tv atomic_exchange (u short 3 coord , Tv desired) const

These member functions execute an atomic fetch and modify to a 3D texture starting with
Metal 3.1 where)(is add, and, max, min, or, sub, or xor for int and uint color type:
Tv atomic_ fetch_ op(uint 3 coord , Tv operand)

Tv atomic_ fetch_ op(u short 3 coord , Tv operand) const

These member functions execute an atomic min or max to a 3D texture starting with Metal 3.1:
void atomic _min (uint 3 coord , ulong4 operand)

void atomic _min (ushort 3 coord , ulong4 operand)

void atomic _max(uint 3 coord , ulong4 operand)

void atomic _max(ushort 3 coord , ulong4 operand)

<"!0"<$ =DJ' $1'C4D(' $

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (lod_options):
bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)

min_lod_clamp(float lod) // All OS: Metal 2.2 and later .

These member functions sample from a cube texture:
Tv sample(sampler s, float3 coord) const

Tv sample(sampler s, float3 coord, lod_options options) const

Tv sample(sampler s, float 3 coord, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options) const

Tv sample(sampler s, float 3 coord, gradient cube grad _options,
 min_lod_clamp min_lod_clamp_ options) const

Table 6.21 describes the cube face and the number used to identify the face.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 216 of 298

Table 6 .21. Cube face number

Face Number Cube face

0 Positive X
1 Negative X
2 Positive Y
3 Negative Y
4 Positive Z
5 Negative Z

This member function gathers four samples for bilinear interpolation when sampling a cube
texture:
Tv gather(sampler s, float3 coord, component c = component::x) const

These member functions perform sampler-less reads from a cube texture:
Tv read(uint2 coord, uint face, uint lod = 0) const

Tv read(ushort2 coord, ushort face,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

These member functions write to a cube texture. In macOS, for Metal 2.2 and earlier, lod must
be a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.

void write(Tv color, uint2 coord, uint face, uint lod = 0)

void write(Tv color, ushort2 coord, ushort face,
 ushort lod = 0) // All OS: Metal 1.2 and later .

These member functions query a cube texture:
uint get _width(uint lod = 0) const

uint get _height(uint lod = 0) const

uint get _num_mip_levels() const

These member functions sample from a sparse cube texture starting with Metal 2.2 in iOS and
Metal 2.3 in macOS.
sparse_color - Tv sparse_sample(sampler s, float3 coord) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 217 of 298

sparse_color - Tv sparse_sample(sampler s, float3 coord , bias options)
const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 level options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,

min_lod_clamp min_lod_clamp_options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,

 bias bias_options,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 gradientcube grad_options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 gradientcube grad_options,
 min_lod_clamp min_lod_clamp_options) const

These member functions perform a sampler-less read from a sparse cube texture starting with
Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_read(ushor t2 coord, ushort face, ushort lod =
0) const

sparse_color - Tv sparse_read(u int 2 coord, uint face, uint lod = 0)
const

This member function gathers four samples for bilinear interpolation from a sparse cube texture
starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_ gather (sampler s, float3 coord ,
 component c = component::x) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
float calculate_clamped_lod(sampler s, float 3 coord);

float calculate_unclamped_lod(sampler s, float 3 coord);

<"!0"F$ =DJ' $1'C4D(' $V((+P$

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (lod_options):
bias(fl oat value)

level(float lod)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 218 of 298

gradientcube(float3 dPdx, float3 dPdy)

min_lod_clamp(float lod) // All OS: Metal 2.2 and later .

These member functions sample from a cube texture array:
Tv sample(sampler s, float3 coord, uint array) const

Tv sample(sampler s, float3 coord, uint array,
 lod_options options) const

Tv sample(sampler s, float 3 coord, uint array, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options) const

Tv sample(sampler s, float 3 coord, uint array,
 gradient cube grad _options,
 min_lod_clamp min_lod_clamp_ options) const

This member function gathers four samples for bilinear interpolation when sampling a cube
texture array:
Tv gather(sampler s, float3 coord, uint array,
 component c = component::x) const

These member functions perform sampler-less reads from a cube texture array:
Tv read(uint2 coord, uint face, uint array, uint lod = 0) const

Tv read(ushort2 coord, ushort face, ushort array,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

These member functions write to a cube texture array. In macOS, for Metal 2.2 and earlier, lod
must be a zero constant. Metal 2.3 and later lift this restriction for Apple silicon.
void write(Tv color, uint2 coord, uint face, uint array,
 uint lod = 0)

void write(Tv color, ushort2 coord, ushort face, ushort array,
 ushort lod = 0) // All OS: Metal 1.2 and later .

These member functions query a cube texture array:
uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_array_size() const

uint get_num_mip_levels() const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 219 of 298

These member functions sample from a sparse cube texture array starting with Metal 2.2 in iOS
and Metal 2.3 in macOS.
sparse_color - Tv sparse_sample(sampler s, float3 coord ,
 uint array) const

sparse_color - Tv sparse_sample(sampler s, float3 coord , uint array,
 bias options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord , uint array,
 level options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord , uint array,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord , uint array,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord , uint array,
 gradientcube options) const

sparse_color - Tv sparse_sample(sampler s, float3 coord , uint array,
 gradientcube grad_options,
 min_lod_clamp min_lod_clamp_options) const

These member functions perform a sampler-less read from a sparse 2D texture starting with
Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_read(ushort 2 coord, ushort face ,
 ushort array, ushort lod = 0) const

sparse_color - Tv sparse_read(uint 2 coord, uint face ,
 uint array , uint lod = 0) const

This member function gathers four samples for bilinear interpolation from a sparse cube texture
array starting with Metal 2.2 in iOS and Metal 2.3 in macOS.

sparse_color - Tv sparse_ gather (sampler s, float3 coord , uint array,
 component c = component::x) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
float calculate_clamped_lod(sampler s, float 3 coord);

float calculate_unclamped_lod(sampler s, float 3 coord);

<"!0"H$ 09 $?D)4-5+23)', $1'C4D(' $

These member functions perform sampler-less reads from a 2D multisampled texture:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 220 of 298

Tv read(uint2 coord, uint sample) const

Tv read(ushort2 coord,
 ushort sample) const // All OS: Metal 1.2 and later .

If you have customized sample positions (set with the setSamplePositions:count:
method of MTLRenderPassDescriptor), then read(coord, sample) returns the data
for the sample at the programmed sample position.

These member functions query a 2D multisampled texture:
uint get _width() const

uint get _height() const

uint get _num_samples() const

These member functions perform a sampler-less read from a sparse 2D multisampled texture
starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_read(ushort 2 coord, ushort sample) const

sparse_color - Tv sparse_read(uint 2 coord, uint sample) const

<"!0"K$ 09 $?D)4-5+23)', $1'C4D(' $V((+P$

macOS: Metal 2 and later support 2D multisampled texture array.
iOS: Metal 2.3 and later support 2D multisampled texture array.
The following member functions can perform sampler-less reads from a 2D multisampled
texture array:
Tv read(uint2 coord, uint array, uint sample) const

Tv read(ushort2 coord, ushort array, ushort sample) const

These member functions query a 2D multisampled texture array:
uint get _width() const

uint get _height() const

uint get_num_samples() const
uint get _array_size() const

These functions perform a sampler-less read from a sparse 2D multisampled texture array
starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_read(ushort 2 coord, ushort array,
 ushort sample) const

sparse_color - Tv sparse_read(uint 2 coord, uin t array,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 221 of 298

 uint sample) const

<"!0"!M$ 09 $9'34@$1'C4D(' $

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (lod_options):
bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

min_lod_clamp(float lod) // All OS: Metal 2.2 and later .

These member functions sample from a 2D depth texture:
T sample(sampler s, float2 coord, int2 offset = int2(0)) const

T sample(sampler s, float2 coord, lod_options options,
 int2 offset = int2(0)) const

T sample(sampler s, float2 coord, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options,
 int2 offset = int2(0)) const

T sample(sampler s, float2 coord, gradient2d grad _options,
 min_lod_clamp min_lod_clamp_ options,
 int2 offset = int2(0)) const

These member functions sample from a 2D depth texture and compare a single component
against the comparison value:
T sample_compare(sampler s, float2 coord, float compare_value,
 int2 offset = int2(0)) const

T sample_compare(sampler s, float2 coord, float compare_value,
 lod_options options, int2 offset = int2(0)) const

T must be a float type.
sample_compare performs a comparison of the compare_value value against the pixel
value (1.0 if the comparison passes and 0.0 if it fails). These comparison result values per-
pixel are then blended together as in normal texture filtering and the resulting value between
0.0 and 1.0 is returned. In macOS, Metal 2.2 and earlier don’t support lod_options values
level and min_lod_clamp (the latter, since Metal 2.2); lod must be a zero constant. Metal
2.3 and later lift this restriction for lod_options for Apple silicon.
These member functions perform sampler-less reads from a 2D depth texture:
T read(uint2 coord, uint lod = 0) const

T read(ushort2 coord,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 222 of 298

This built-in function gathers four samples for bilinear interpolation when sampling a 2D depth
texture:
Tv gather(sampler s, float2 coord, int2 offset = int2(0)) const

This member function gathers four samples for bilinear interpolation when sampling a 2D depth
texture and comparing these samples with a specified comparison value (1.0 if the comparison
passes and 0.0 if it fails).
Tv gather_compare(sampler s, float2 coord, float compare_value,
 int2 offset = int2(0)) const

T must be a float type.

The following member functions query a 2D depth texture:
uint get _width(uint lod = 0) const

uint get _height(uint lod = 0) const

uint get _num_mip_levels() const

These member functions sample from a sparse 2D depth texture starting with Metal 2.2 in iOS
and Metal 2.3 in macOS.
sparse_color - T sparse_sample(sampler s, float 2 coord ,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float 2 coord , bias options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float 2 coord , level options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float 2 coord ,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float 2 coord ,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float 2 coord
 gradient2d grad_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float 2 coord ,
 gradient2d grad_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 223 of 298

These member functions sample from a sparse 2D depth texture and compare a single
component against a comparison value starting with Metal 2.2 in iOS and Metal 2.3 in macOS.

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 float compare_value,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 float compare_value,
 bias options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 float compare_value,
 level options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 float compare_value,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord
 float compare_value, bias bias_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 float compare_value, gradient2d grad_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 float compare_value, gradient2d grad_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

These member functions perform a sampler-less read from a sparse 2D depth texture starting
with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_read(ushort 2 coord, ushort lod = 0) const

sparse_color - T sparse_read(uint 2 coord, uint lod = 0) const

This member function gathers four samples for bilinear interpolation from a sparse 2D depth
texture starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_ gather (sampler s, float 2 coord ,
 int2 offset = int2(0) ,
 component c = component::x) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 224 of 298

This member function gathers those samples and compare them against a comparison value
from a sparse 2D depth texture starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_ gather_compare (sampler s, float 2 coord ,
 float compare_value,
 int2 offset = int2(0)) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
float calculate_clamped_lod(sampler s, float2 coord);

float calculate_unclamped_lod(sampler s, float2 coord);

<"!0"!! $ 09 $9'34@$1'C4D(' $V((+P$

The member functions in this section use the following data types and constructor functions to
set the sampling option fields of their lod_options parameter.
bias(float value)

level(float lod)

gradient2d(float2 dPdx, float2 dPdy)

min_lod_clamp(float lod) // All OS: Metal 2.2 and later.

These member functions sample from a 2D depth texture array.
T sample(sampler s, float2 coord, uint array,
 int2 offset = int2(0)) const

T sample(sampler s, float2 coord, uint array, lod_options options,
 int2 offset = int2(0)) const

T sample(sampler s, float2 coord, uint array, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options,
 int2 offset = int2(0)) const

T sample(sampler s, float2 coord, uint array,
 gradient2d grad _options,
 min_lod_clamp min_lod_clamp_ options,
 int2 offset = int2(0)) const

These member functions sample from a 2D depth texture array and compare a single
component to a value where T is a float type.
T sample_compare(sampler s, float2 coord, uint array,
 float compare_value,int2 offset = int2(0)) const

T sample_compare(sampler s, float2 coord, uint array,
 float compare_value, lod_options options,
 int2 offset = int2(0)) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 225 of 298

The lod_options fields support are:
¥! level
¥! bias for all iOS Metal versions and macOS Metal 2.3 and later for Apple silicon
¥! gradient for iOS Metal versions and macOS Metal 2.3 and later for Apple silicon
¥! min_lod_clamp for Metal 2.2 and later

¥! Must be 0 for Metal 2.2
¥! Can be any value for all iOS Metal versions and macOS Metal 2.3 and later for Apple

silicon

These member functions read from a 2D depth texture array without using a sampler.
T read(uint2 coord, uint array, uint lod = 0) const

T read(ushort2 coord, ushort array,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

This member function gathers four samples for bilinear interpolation when sampling a 2D depth
texture array.
Tv gather(sampler s, float2 coord, uint array,
 int2 offset = int2(0)) const

This member function gathers four samples for bilinear interpolation when sampling a 2D depth
texture array and compares them to a value where Tv is a float vector type.
Tv gather_compare(sampler s, float2 coord, uint array,
 float compare_value, int2 offset = int2(0)) const

The following member functions query a 2D depth texture array.
uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

uint get_array_size() const

uint get_num_mip_levels() const

These member functions sample from a sparse 2D depth texture array, starting with Metal 2.2
in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_sample(sampler s, float2 coord, uint array,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float2 coord, uint array,
 bias options ,
 int2 offset = int2(0)) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 226 of 298

sparse_color - T sparse_sample(sampler s, float2 coord, uint array,
 level options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float2 coord, uint array,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float2 coord, uint array,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float2 coord, uint array,
 gradient2d grad_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample(sampler s, float2 coord, uint array,
 gradient2d grad_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

These functions sample from a sparse 2D depth texture array and compare a single component
to a comparison value, starting with Metal 2.2 in iOS and Metal 2.3 in macOS.

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 uint array, float compare_value,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 uint array, float compare_value,
 bias options, int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 uint array , float compare_value,
 level options, int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 uint array, float compare_value,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 uint array, float compare_value,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 uint array,
 float compare_value, gradient2d grad_options,
 int2 offset = int2(0)) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 227 of 298

sparse_color - T sparse_sample_compare (sampler s, float 2 coord ,
 uint array, float compare_value,
 gradient2d grad_options,
 min_lod_clamp min_lod_clamp_options,
 int2 offset = int2(0)) const

These functions read from a sparse 2D depth texture array without a sampler, starting with
Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_read(ushort2 coord, uint array,
 ushort lod = 0) const

sparse_color - T sparse_read(uint2 coord, uint array,
 uint lod = 0) const

This function gathers four samples for bilinear interpolation from a sparse 2D depth texture
array, starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_ gather (sampler s, float 2 coord , uint array,
 int2 offset = int2(0) ,
 component c = component::x) const

This function gathers those samples and compares them against a value from a sparse 2D
depth texture array, starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_ gather_compare (sampler s, float 2 coord , uint
array,

float compare_value, int2 offset = int2(0)) const
These functions simulate a texture fetch and return a LOD (mip level) computation result,
starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
float calculate_clamped_lod(sampler s, float2 coord);

float calculate_unclamped_lod(sampler s, float2 coord);

<"!0"!0 $ 09 $?D)4-5+23)', $9'34@$1'C4D(' $

The following member functions can perform sampler-less reads from a 2D multisampled depth
texture:
T read(uint2 coord, uint sample) const

T read(ushort2 coord,
 ushort sample) const // All OS: Metal 1.2 and later .

The following member functions query a 2D multisampled depth texture:
uint get_width() const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 228 of 298

uint get_height() const

uint get_num_samples() const

These member functions perform a sampler-less read from a sparse 2D multisampled depth
texture starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_read(ushort 2 coord, ushort sample) const

sparse_color - T sparse_read(uint 2 coord, uint sample) const

<"!0"!6 $ 09 $?D)4-5+23)', $9'34@$1'C4D(' $V((+P$

macOS: Metal 2 and later support 2D multisampled depth texture array.
iOS: Metal 2.3 and later support 2D multisampled depth texture array.
The following member functions perform sampler-less reads from a 2D multisampled depth
texture array:
Tv read(uint2 coord, uint array, uint lod = 0) const

Tv read(ushort2 coord, ushort array, ushort lod = 0) const

The following member functions query a 2D multisampled depth texture array:
uint get _width(uint lod = 0) const

uint get _height(uint lod = 0) const

uint get _array_size() const

uint get _num_mip_levels() const

These member functions perform a sampler-less read from a sparse 2D multisampled depth
texture aray starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_read(ushort 2 coord, ushort array,
 ushort sample)
const

sparse_color - T sparse_read(uint 2 coord, uin t array, uint sample)
const

<"!0"!: $ =DJ' $9'34@$1'C4D(' $

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (lod_options):
bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 229 of 298

min_lod_clamp(float lod) // All OS: Metal 2.2 and later.

The following member functions sample from a cube depth texture:
T sample(sampler s, float3 coord) const

T sample(sampler s, float3 coord, lod_options options) const

T sample(sampler s, float 3 coord, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options) const

T sample(sampler s, float 3 coord, gradient cube grad _options,
 min_lod_clamp min_lod_clamp_ options) const

The following member functions sample from a cube depth texture and compare a single
component against the specified comparison value:
T sample_compare(sampler s, float3 coord, float compare_value) const

T sample_compare(sampler s, float3 coord, float compare_value,
 lod_options options) const

T must be a float type. In macOS, Metal 2.2 and earlier support lod_options values
level and min_lod_clamp (the latter, since Metal 2.2), and lod must be a zero constant.
Metal 2.3 and later lift this restriction for lod_options for Apple silicon.

The following member functions perform sampler-less reads from a cube depth texture:
T read(uint2 coord, uint face, uint lod = 0) const

T read(ushort2 coord, ushort face,
 ushort lod = 0) const // All OS: Metal 1.2 and later .

This member function gathers four samples for bilinear interpolation when sampling a cube
depth texture:
Tv gather(sampler s, float3 coord) const

This member function gathers four samples for bilinear interpolation when sampling a cube
texture and comparing these samples with a specified comparison value:
Tv gather_compare(sampler s, float3 coord, float compare_value)
const

T must be a float type.

The following member functions query a cube depth texture:
uint get_width(uint lod = 0) const

uint get_height(uint lod = 0) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 230 of 298

uint get_num_mip_levels() const

These member functions sample from a sparse cube depth texture starting with Metal 2.2 in
iOS and Metal 2.3 in macOS.
sparse_color - T sparse_sample(sampler s, float 3 coord) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 bias options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 level options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 gradientcube grad_options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 gradientcube grad_options,
 min_lod_clamp min_lod_clamp_options) const

These member functions sample from a sparse cube depth texture and compare a single
component against a comparison value starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 float compare_value) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 float compare_value, bias options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 float compare_value, level options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 float compare_value,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 float compare_value, bias bias_options,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 float compare_value,
 gradient2d grad_options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 float compare_value, gradient2d grad_options,
 min_lod_clamp min_lod_clamp_options) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 231 of 298

These member functions perform a sampler-less read from a sparse cube depth texture
starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_read(ushort 2 coord, ushort face
 ushort lod = 0) const

sparse_color - T sparse_read(uint 2 coord, uint face,
 uint lod = 0) const

This member function gathers four samples for bilinear interpolation from a sparse cube depth
texture starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_ gather (sampler s, float 3 coord) const

This member function gathers those samples and compare them against a comparison value
from a sparse cube depth texture starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse _color - Tv sparse_ gather_compare (sampler s, float 3 coord ,
 float compare_value) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
float calculate_clamped_lod(sampler s, float 3 coord);

float calculate_unclamped_lod(sampler s, float 3 coord);

<"!0"!# $ =DJ' $9'34@$1'C4D(' $V((+P$

For the functions in this section, the following data types and corresponding constructor
functions can specify sampling options (lod_options):
bias(float value)

level(float lod)

gradientcube(float3 dPdx, float3 dPdy)

min_lod_clamp(float lod) // All OS: Metal 2.2 and later.

These member functions sample from a cube depth texture array:
T sample(sampler s, float3 coord, uint array) const

T sample(sampler s, float3 coord, uint array,
 lod_options options) const

T sample(sampler s, float 3 coord, uint array, bias bias _options ,
 min_lod_clamp min_lod_clamp_ options) const

T sample(sampler s, float 3 coord, uint array,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 232 of 298

 gradient cube grad _options,
 min_lod_clamp min_lod_clamp_ options) const

These member functions sample from a cube depth texture and compare a single component
against the specified comparison value:
T sample_compare(sampler s, float3 coord, uint array,
 float compare_value) const

T sample_compare(sampler s, float3 coord, uint array,
 float compare_value, lod_options options) const

T must be a float type. In macOS, Metal 2.2 and earlier support lod_options values level
and min_lod_clamp (the latter, since Metal 2.2), and lod must be a zero constant. Metal 2.3
and later lift this restriction for lod_options for Apple silicon.
These member functions perform sampler-less reads from a cube depth texture array:
T read(uint2 coord, uint face, uint array, uint lod = 0) const

T read(ushort2 coord, ushort face, ushort array,
 ushort lod = 0) const // All OS: Metal 1.2 and later.

This member function gathers four samples for bilinear interpolation when sampling a cube
depth texture:
Tv gather(sampler s, float3 coord, uint array) const

This member function gathers four samples for bilinear interpolation when sampling a cube
depth texture and comparing these samples with a specified comparison value:
Tv gather_compare(sampler s, float3 coord, uint array,
 float compare_value) const

T must be a float type.
These member functions query a cube depth texture:
uint get _width(uint lod = 0) const

uint get _height(uint lod = 0) const

uint get _array_size() const

uint get _num_mip_levels() const

These member functions sample from a sparse cube depth texture array starting with Metal 2.2
in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_sample(sampler s, float 3 coord ,
 uint array) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 uint array, bias options) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 233 of 298

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 uint array, level options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 uint array ,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 uint array, bias bias_options,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 uint array,
 gradientcube grad_options) const

sparse_color - T sparse_sample(sampler s, float 3 coord ,
 uint array ,
 gradientcube grad_options,
 min_lod_clamp min_lod_clamp_options) const

These member functions sample from a sparse cube depth texture array and compare a single
component against a comparison value starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 uint array, float compare_value) const

sparse_color - T sparse_sample_compare (sampler s,float 3 coord ,
 uint array, float compare_value,
 bias options) const

sparse_color - T sparse_sample_compare (sampler s,float 3 coord ,
 uint array, float compare_value,
 level options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 uint array, float compare_value,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 uint array, float compare_value,
 bias bias_options,
 min_lod_clamp min_lod_clamp_options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 uint array, float compare_value,
 gradient2d grad_options) const

sparse_color - T sparse_sample_compare (sampler s, float 3 coord ,
 uint array, float compare_value,
 gradient2d grad_options,
 min_lod_clamp min_lod_clamp_options) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 234 of 298

These member functions perform a sampler-less read from a sparse cube depth texture array
starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse _color - T sparse_read(ushort 2 coord, ushort face, ushor t array,
 ushort lod = 0) const

sparse_color - T sparse_read(uint 2 coord, uint face, uint array,
 uint lod = 0) const

This member function gathers four samples for bilinear interpolation from a sparse cube depth
texture array starting with Metal 2.2 in iOS and Metal 2.3 in macOS.
sparse_color - Tv sparse_ gather (sampler s, float 3 coord ,
 uint array) const

This member function gathers those samples and compare them against a comparison value
from a sparse 2D depth texture starting with Metal 2.2 in iOS and Metal 2.3 in macOS.

sparse_color - Tv sparse_ gather_compare (sampler s, float 3 coord ,
 uint array ,
 float compare_value) const

These member functions simulate a texture fetch and return the LOD (mip level) computation
result starting with Metal 2.3 in iOS and Metal 2.2 in macOS.
float calculate_clamped_lod(sampler s, float 3 coord);

float calculate_unclamped_lod(sampler s, float 3 coord);

<"!0"!< $ 1'C4D(' $TD>>'($UD.84-*.5 $$

All OS: Metal 2.1 and later support texture buffers and these functions.
The following member functions can read from and write to an element in a texture buffer (also
see section 2.9.1):
Tv read(uint coord) const;

void write(Tv color, uint coord);

These member functions execute an atomic load from a texture buffer starting with Metal 3.1:
Tv atomic_load (uint coord) const

Tv atomic_load(ushort coord) const

These member functions execute an atomic store to a texture buffer starting with Metal 3.1:
void atomic_store (Tv color, uint coord) const

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 235 of 298

void atomic_store (Tv color, ushort coord) const

These member functions execute an atomic compare and exchange to a texture buffer starting
with Metal 3.1:
bool atomic_compare_exchange_weak (uint coord , thread Tv *expected,
 Tv desired) const

bool atomic_compare_exchange_weak (u short coord , thread Tv *expected,
 Tv desired) const

These member functions execute an atomic exchange to a texture buffer starting with Metal
3.1:
Tv atomic_exchange (uint coord , Tv desired) const

Tv atomic_exchange (u short coord , Tv desired) const

These member functions execute an atomic fetch and modify to a texture buffer starting with
Metal 3.1 where)(is add, and, max, min, or, sub, or xor for int and uint color type:
Tv atomic_ fetch_ op(uint coord , Tv operand)

Tv atomic_ fetch_ op(u short coord , Tv operand) const

These member functions execute an atomic min or max to a texture buffer starting with Metal
3.1:
void atomic _min (uint coord , ulong4 operand)

void atomic _min (ushort coord , ulong4 operand)

void atomic _max(uint coord , ulong4 operand)

void atomic _max(ushort coord , ulong4 operand)

The following example uses the read method to access a texture buffer:
kernel void
myKernel(texture_buffer<float, access::read> myBuffer)
{
 uint index = É;
 float4 value = myBuffer.read(index);

}

Use the following method to query the number of elements in a texture buffer:
uint get_width() const;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 236 of 298

<"!0"!F $ 1'C4D(' $EP.8@(*.-B+4-*. $UD.84-*.5 $

All OS: Metal 1.2 and later support texture synchronization functions.
The texture fence() member function ensures that writes to the texture by a thread become
visible to subsequent reads from that texture by the same thread (the thread that is performing
the write). Texture types (including texture buffers) that you can declare with the
access::read_write attribute support the Fence function.
void fence()

The following example shows how to use a texture fence function to make sure that writes to a
texture by a thread are visible to later reads to the same location by the same thread:
kernel void
my_kernel(texture2d<float, access::read_write> texA,

É,
ushort2 gid [[thread_position_in_grid]])

{
float4 clr = É;
texA.write(clr , gid);
É
// Use fence to ensure that writes by thread become
// visible to later reads by the thread .
texA.fence();

clr_new = texA.read(gid);
É

}

<"!0"!H $ ZD))$1'C4D(' $UD.84-*.5 $

All OS: Metal 1.2 and later support null texture functions.
macOS: Metal 2 and later support null texture functions for texture2d_ms_array and
depth2d_ms_array .
Use the following functions to determine if a texture is a null texture. If the texture is a null
texture, is_null_texture returns true ; otherwise it returns false .
bool is_null_texture(texture1d<T, access>);

bool is_null_texture(texture1d_array<T, access>);

bool is_null_texture(texture2d<T, access>);

bool is_null_texture(texture2d_array<T, access>);

bool is_null_texture(texture3d<T, access>);

bool is_null_texture(texturecube<T, access>);

bool is_null_texture(texturecube_array<T, access>);

bool is_null_texture(texture2d_ms<T, access>);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 237 of 298

// Metal 2 and later support texture2d_ms_array i n macOS and
// Metal 2.3 and later in iOS .

bool is_null_texture(texture2d_ms_array<T, access>);

bool is_null_texture(depth2d<T, access>);

bool is_null_texture(depth2d_array<T, access>);

bool is_null_texture(depthcube<T, access>);

bool is_null_texture(depthcube_array<T, access>);

bool is_null_texture(depth2d_ms<T, access>);

// depth2d_ms_array is macOS only, since Metal 2

bool is_null_texture(depth2d_ms_array<T, access>);

The behavior of calling any texture member function with a null texture is undefined.

6.13! Imageblock Functions
macOS: Metal 2.3 and later support imageblocks for Apple silicon.
iOS: Metal 2 and later support imageblocks.
This section lists the Metal member functions for imageblocks. (For more about the imageblock
data type, see sections 2.11 and 5.6.)
The following member functions query information about the imageblock:
ushort get_width() const;

ushort get_height() const;

ushort get_num_samples() const;

!
Use the following member function to query the number of unique color entries for a specific
location given by an (x, y) coordinate inside the imageblock:
ushort get_num_colors(ushort2 coord) const;

The following member function returns the color coverage mask (that is, whether a given color
covers one or more samples in the imageblock). Each sample is identified by its bit position in
the return value. If a bit is set, then this indicates that this sample uses the color index.
ushort get_color_coverage_mask(ushort2 coord, ushort color_index)
const;

color_index is a value from 0 to get_num_colors() - 1.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 238 of 298

<"!6"! $ UD.84-*.5 $>*($A2+/'J)*8Q5 $Y-4@$A23)-8-4$L+P*D4$

Use the following functions to read or write an imageblock at pixel rate for a given (x, y)
coordinate inside the imageblock:
T read(ushort2 coord) const;

void write(T data, ushort2 coord);

Use the following member function to read or write an imageblock at sample or color rate.
coord specifies the (x, y) coordinate inside the imageblock, and index is the sample or color
index.
enum class imageblock_data_rate { color, sample };

T read(ushort2 coord, ushort index,
 imageblock_data_rate data_rate) const;

void write(T data, ushort2 coord, ushort index,
 imageblock_data_rate data_rate);

Example:
struct Foo {

float4 a [[color(0)]];
int4 b [[color(1)]];

};

kernel void
my_kernel(imageblock<Foo, imageblock_layout_implicit> img_blk,

 ushort2 lid [[thread_ position _in_threadgroup]] É)
{

É
Foo f = img_blk.read(lid); float4 r = f.a;
É
f.a = r;
É
img_blk.write(f, lid);

}

Use the following member function to write an imageblock with a color coverage mask. You
must use this member function when writing to an imageblock at color rate:
void write(T data, ushort2 coord, ushort color_coverage_mask);

Use the following member functions to get a region of a slice for a given data member in the
imageblock. You use these functions to write data associated with a specific data member
described in the imageblock for all threads in the threadgroup to a specified region in a texture.
color_index refers to the data member declared in the structure type specified in
imageblock<T> with the [[color(n)]] attribute where n Is color_index . size is the
actual size of the copied slice.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 239 of 298

const imageblock_slice<E, imageblock_layout_implicit> slice(ushort
color_index) const;

const imageblock_slice<E, imageblock_layout_implicit> slice(ushort
color_index, ushort2 size) const;

The region to copy has an origin of (0,0). The slice(É) member function that does not have
the argument size copies the entire width and height of the imageblock.

<"!6"0$ UD.84-*.5 $>*($A2+/'J)*8Q5 $Y-4@$IC3)-8-4$L+P*D4$$

Use the following member functions to get a reference to the imageblock data for a specific
location given by an (x, y) coordinate inside the imageblock. Use these member functions when
reading or writing data members in an imageblock At pixel rate.
threadgroup_imageblock T* data(ushort2 coord);

const threadgroup_imageblock T* data(ushort2 coord) const;

Use the following member functions to get a reference to the imageblock data for a specific
location given by an (x, y) coordinate inside the imageblock and a sample or color index. Use
these member functions when reading or writing data members in an imageblock at sample or
color rate. T is the type specific in the imageblock<T> templated declaration. coord is the
coordinate in the imageblock, and index is the sample or color index for a multisampled
imageblock. data_rate specifies whether the index is a color or sample index. If coord refers
to a location outside the imageblock dimensions or if index is an invalid index, the behavior of
data() is undefined.
enum class imageblock_data_rate { color, sample };

threadgroup_imageblock T* data(ushort2 coord, ushort index,
imageblock_data_rate data_rate);

const threadgroup_imageblock T* data(ushort2 coord, ushort index,
imageblock_data_rate data_rate) const;

Calling the data(coord) member function for an imageblock that stores pixels at sample or
color rate is equivalent to calling data(coord, 0, imageblock_data_rate::sample) .
Example:
struct Foo {

rgba8unorm<half4> a;
int b;

};

kernel void
my_kernel(imageblock<Foo> img_blk,

 ushort2 lid [[thread_position_in_threadgroup]] É)
{

É
threadgroup_imageblock Foo* f = img_blk.data(lid);
half4 r = f - >a;
f - >a = r;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 240 of 298

É
}

Use the following write member function to write an imageblock with a color coverage mask.
You must use this member function when writing to an imageblock At color rate.
void write(T data, ushort2 coord, ushort color_coverage_mask);

Use the following slice member functions to get a region of a slice for a given data member in
the imageblock structure. You use this function to write data associated with a specific data
member described in the imageblock structure for all threads in the threadgroup to a specified
region in a texture.
data_member is a data member declared in the structure type specified in imageblock<T> .
size is the actual size of the copied slice.
const imageblock_slice<E, imageblock_layout_explicit>

slice(const threadgroup_imageblock E& data_member) const;

const imageblock_slice<E, imageblock_layout_explicit>

slice(const threadgroup_imageblock E& data_member, ushort2 size)
const;

The region to copy has an origin of (0,0). The slice(É) member function that doesn’t have
the argument size copies the entire width and height of the imageblock.

<"!6"6$ G(-4-./ $+. $A2+/'J)*8Q $E)-8' $4*$+$;'/-*. $-. $+$1'C4D(' $$

Use the following write(É) member function in these texture types to write pixels associated
with a slice in the imageblock to a texture starting at a location that coord provides.
A write to a texture from an imageblock is out-of-bounds if, and only if, it meets any of these
conditions:
¥! The accessed coordinates are out-of-bounds.
¥! The level of detail argument is out-of-bounds.
¥! Any part of the imageblock_slice accesses outside the texture.
An out-of-bounds write to a texture is undefined. Note that the write from
imageblock_slice to a texture must have matching MSAA modes or the result is undefined.
For a 1D texture:
void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 uint coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 ushort coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 uint coord, uint lod = 0);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 241 of 298

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 ushort coord, ushort lod = 0);

For a 1D texture array:
void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 uint coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 ushort coord, ushort array, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 uint coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 ushort coord, ushort array, ushort lod = 0);

For a 2D texture:
void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 uint2 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 ushort2 coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 uint2 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 ushort2 coord, ushort lod = 0);

For a 2D MSAA texture:
void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 uint2 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 ushort2 coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 uint2 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 ushort2 coord, ushort lod = 0);

For a 2D texture array:
void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 uint2 coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 ushort2 coord, ushort array, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 uint2 coord, uint array, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 ushort2 coord, ushort array, ushort lod = 0);

For a cube texture:

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 242 of 298

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 uint2 coord, uint face, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 ushort2 coord, ushort face, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 uint2 coord, uint face, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 ushort2 coord, ushort face, ushort lod = 0);

For a cube texture array:
void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 uint2 coord, uint face, uint array, uint lod =
0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 ushort2 coord, ushort face, ushort array, ushort
lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 uint2 coord, uint face, uint array, uint lod =
0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 ushort2 coord, ushort face, ushort array, ushort
lod = 0);

For a 3D texture:
void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 uint3 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_explicit> slice,
 ushort3 coord, ushort lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 uint3 coord, uint lod = 0);

void write(imageblock_slice<E, imageblock_layout_implicit> slice,
 ushort3 coord, ushort lod = 0);

Example:
struct Foo {
 half4 a;
 int b;
 float c;
};

kernel void
my_kernel(texture2d<half> src [[texture(0)]],
 texture2d<half, access::write> dst [[texture(1)]],
 imageblock<Foo> img_blk,
 ushort2 lid [[thread_position_in_threadgroup]],

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 243 of 298

 ushort2 gid [[thread_position_in_grid]])
{
 // Read the pixel from the input image using the thread ID .
 half4 clr = src.read(gid);

 // Get the image slice .
 threadgroup_imageblock Foo* f = img_blk.data(lid);
 // Write the pixel in the imageblock using the thread ID in
 // threadgroup .
 f - >a = clr;

 // A barrier to make sure all threads finish writing to the
 // imageblock .
 // In this case , each thread writes to its location in the
 // imageblock so a barrier is not necessary .
 threadgroup_barrier(mem_flags::mem_threadgroup_imageblock);

 // Process the pixels in imageblock , and update the elements in
 // slice .
 process_pixels_in_imageblock(img_blk, gid, lid);

 // A barrier to make sure all threads finish writing to the
 // elements in th e imageblock .
 threadgroup_barrier(mem_flags::mem_threadgroup_imageblock);

 // Write a specific element in an imageblock to the output
 // image . Only one thread in the threadgroup performs the
 // imageblock write .
 if (lid.x == 0 && lid.y == 0)
 dst.write(img_blk.slice(f - >a), gid);
}

6.14! Pack and Unpack Functions
This section lists the Metal functions, defined in the header <metal_pack> , for converting a
vector floating-point data to and from a packed integer value. Refer to subsections of section
7.7 for details on how to convert from an 8-, 10-, or 16-bit signed or unsigned integer value to a
normalized single- or half-precision floating-point value and vice-versa.

<"!:"! $ S.3+8Q $+., $=*.&'(4 $A.4'/'(5 $4*$+$U)*+4-./ [7*-.4 $N'84*($

Table 6.22 lists functions that unpack multiple values from a single unsigned integer and then
converts them into floating-point values that are stored in a vector.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 244 of 298

Table 6 .22 . Unpack functions

Built - in Unpack Functions Description

float4 unpack_unorm4x8_to_float(uint x)
float4 unpack_snorm4x8_to_float(uint x)
half4 unpack_unorm4x8_to_half(uint x)
half4 unpack_snorm4x8_to_half(uint x)

Unpack a 32-bit unsigned integer
into four 8-bit signed or unsigned
integers and then convert each 8-bit
signed or unsigned integer value to a
normalized single- or half-precision
floating-point value to generate a 4-
component vector.

float4
unpack_unorm4x8_srgb_to_float(uint x)
half4 unpack_unorm4x8_srgb_to_half(uint
x)

Unpack a 32-bit unsigned integer
into four 8-bit signed or unsigned
integers and then convert each 8-bit
signed or unsigned integer value to a
normalized single- or half-precision
floating-point value to generate a 4-
component vector. The r, g, and b
color values are converted from
sRGB to linear RGB.

float2 unpack_unorm2x16_to_float(uint
x)
float2 unpack_snorm2x16_to_float(uint
x)
half2 unpack_unorm2x16_to_half(uint x)
half2 unpack_snorm2x16_to_half(uint x)

Unpack a 32-bit unsigned integer
into two 16-bit signed or unsigned
integers and then convert each 16-
bit signed or unsigned integer value
to a normalized single- or half-
precision floating-point value to
generate a 2-component vector.

float4 unpack_unorm10a2_to_float(uint
x)
float3 unpack_unorm565_to_float(ushort
x)
half4 unpack_unorm10a2_to_half(uint x)
half3 unpack_unorm565_to_half(ushort x)

Convert a 10a2 (1010102) or 565
color value to the corresponding
normalized single- or half-precision
floating-point vector.

When converting from a 16-bit unsigned normalized or signed normalized value to a half-
precision floating-point, the unpack_unorm2x16_to_half and
unpack_snorm2x16_to_half functions may lose precision.

<"!:"0 $ =*.&'(4 $U)*+4-./ [7*-.4 $N'84*($4*$A.4'/'(5W $4@'.$7+8Q$4@'$A.4'/'(5 $

Table 6.23 lists functions that start with a floating-point vector, converts the components into
integer values, and then packs the multiple values into a single unsigned integer.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 245 of 298

Table 6 .23 . Pack functions

Built - in Pack Functions Description

uint pack_float_to_unorm4x8(float4 x)
uint pack_float_to_snorm4x8(float4 x)
uint pack_half_to_unorm4x8(half4 x)
uint pack_half_to_snorm4x8(half4 x)

Convert a four-component vector
normalized single- or half-precision
floating-point value to four 8-bit
integer values and pack these 8-bit
integer values into a 32-bit unsigned
integer.

uint pack_float_to_srgb_unorm4x8(float4
x)
uint pack_half_to_srgb_unorm4x8(half4
x)

Convert a four-component vector
normalized single- or half-precision
floating-point value to four 8-bit
integer values and pack these 8-bit
integer values into a 32-bit unsigned
integer. The color values are
converted from linear RGB to sRGB.

uint pack_float_to_unorm2x16(float2 x)
uint pack_float_to_snorm2x16(float2 x)
uint pack_half_to_unorm2x16(half2 x)
uint pack_half_to_snorm2x16(half2 x)

Convert a two-component vector of
normalized single- or half-precision
floating-point values to two 16-bit
integer values and pack these 16-bit
integer values into a 32-bit unsigned
integer.

uint pack_float_to_unorm10a2(float4)
ushort pack_float_to_unorm565(float3)
uint pack_half_to_unorm10a2(half4)
ushort pack_half_to_unorm565(half3)

Convert a three- or four-component
vector of normalized single- or half-
precision floating-point values to a
packed, 10a2 (1010102) or 565
color integer value.

6.15! Atomic Functions
The Metal programming language implements a subset of the C++14 atomics and
synchronization operations. Metal atomic functions must operate on Metal atomic data, as
described in section 2.6.
Atomic operations play a special role in making assignments in one thread visible to another
thread. A synchronization operation on one or more memory locations is either an acquire
operation, a release operation, or both. A synchronization operation without an associated
memory location is a fence and can be either an acquire fence, a release fence, or both. In
addition, there are relaxed atomic operations that are not synchronization operations.
There are only a few kinds of operations on atomic types, although there are many instances of
those kinds. This section specifies each general kind.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 246 of 298

Atomic functions are defined in the header <metal_atomic> .

<"!#"! $?'2*(P $%(,'($

The enumeration memory_order specifies the detailed regular (nonatomic) memory
synchronization operations (see section 29.3 of the C++14 specification) and may provide for
operation ordering.
enum memory_order {

memory_order_relaxed,
memory_order_seq_cst

};

For atomic operations other than atomic_thread_fence , memory_order_relaxed is the
only enumeration value. With memory_order_relaxed , there are no synchronization or
ordering constraints; the operation only requires atomicity. These operations do not order
memory, but they guarantee atomicity and modification order consistency. A typical use for
relaxed memory ordering is updating counters, such as reference counters because this only
requires atomicity, but neither ordering nor synchronization.
In Metal 3.2 and later, you can use memory_order_seq_cst on atomic_thread_fence to
indicate that everything that happens before a store operation in one thread becomes a visible
side effect in the thread that performs the load, and also establishes a single total modification
order of all tagged atomic operations.

<"!#"0$ 1@('+, $E8*3' $

All OS: Metal 3.2 and later support thread_scope for Apple silicon.
The enumeration thread_scope denotes a set of threads for the memory order constraint
that the memory_order provides.
enum thread_scope {
 thread_scope_thread,
 thread_scope_simdgroup,
 thread_scope_threadgroup,
 thread_scope_device
}

Informally, the thread scope on a synchronization operation defines 6"%'!%6')>'6"&%#$!'@06"'
@"09"'6"0!')(%<)1'+#? '!?19"&)10<%J')&'@"09"'+#? '!?19"&)10<%'@06"'6"%')(%<)1. You use it
with atomic_thread_fence .

<"!#"6$ U'.8' $UD.84-*.5 $

All OS: Metal 3.2 and later support atomic_thread_fence for Apple silicon.
The atomic_thread_fence establishes memory synchronization ordering of nonatomic and
relaxed atomic accesses, according to the memory order and thread scope, without an
associated atomic function.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 247 of 298

void atomic_thread_fence(mem_flags flags, memory_order order,
 thread_scope scope = thread_scope_device)

A fence operates on the following address space scopes:

•! threadgroup , if mem_flags include mem_threadgroup
•! threadgroup_imageblock , if mem_flags include

mem_threadgroup_imageblock
•! object_data , if mem_flags include mem_object_data
•! device , if mem_flags include mem_device
•! texture , if mem_flags include mem_texture

A fence accepts a scope parameter (see section 6.15.2) that denotes the set of threads for the
fence that the order affects. Depending on the value of order (see section 6.15.1), this
operation:
! has no effects, if order == memory_order_relaxed
! is a sequentially consistent acquire and release fence, if order ==
memory_order_seq_cst
An atomic_thread_fence imposes different synchronization constraints than an atomic
store operation with the same memory_order . An atomic store-release operation prevents all
preceding writes from moving past the store-release, and an atomic_thread_fence with
memory_order_seq_cst ordering prevents all preceding writes from moving past all
subsequent stores within that scope.

<"!#": $ V4*2-8 $UD.84-*.5 $

In addition, accesses to atomic objects may establish interthread synchronization and order
nonatomic memory accesses as specified by memory_order .
In the atomic functions described in the subsections of this section:

!! A refers to one of the atomic types.
!! C refers to its corresponding nonatomic type.
!! M refers to the type of the other argument for arithmetic operations. For atomic integer !

types, M is C.
Note that each atomic function may support only some types. The following sections indicate
which type A Metal supports.
All OS: Metal 1 and later support functions with names that end with _explicit (such as
atomic_store_explicit or atomic_load_explicit) unless otherwise indicated. Metal
3 supports the atomic_ float for device memory only.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 248 of 298

iOS: Metal 2 and later support the atomic_store , atomic_load , atomic_exchange ,
atomic_compare_exchange_weak , and atomic_fetch_key functions.

6.15.4.1!Atomic Store Functions
These functions atomically replace the value pointed to by object with desired . These
functions support atomic types A of atomic_int , atomic_ uint , atomic_ bool , and
atomic_ float .
All OS: Support for the atomic_store_explicit function with memory_order_relaxed
supported, as indicated.
void atomic_store_explicit(threadgroup A* object, C desired,
 memory_order order) // All OS: Since Metal 2.

void atomic_store_explicit(volatile threadgroup A* object,
 C desired,
 memory_order order) // All OS: Since Metal 1.

void atomic_store_explicit(device A* object , C desired,
 memory_order order) // All OS: Since Metal 2.

void atomic_store_explicit(v olatile device A* object , C desired,
 memory_order order) // All OS: Since Metal 1.

6.15.4.2!Atomic Load Functions
These functions atomically obtain the value pointed to by object . These functions support
atomic types A of atomic_int , atomic_ uint , atomic_ bool , and atomic_ float .
All OS: Support for the atomic_load_explicit function with memory_order_relaxed
supported, as indicated.
C atomic_load_explicit(const threadgroup A* object,
 memory_order order) // All OS: Since Metal 2.

C atomic_load_explicit(const volatile threadgroup A* object,
 memory_order order) // All OS: Since Metal 1.

C atomic_load_explicit(const device A* object,
 memory_order order) // All OS: Since Metal 2.

C atomic_load_explicit(const volatile device A* object,
 memory_order order) // All OS: Since Metal 1.

6.15.4.3!Atomic Exchange Functions
These functions atomically replace the value pointed to by object with desired and return
the value object previously held. These functions support atomic types A of atomic_int ,
atomic_ uint , atomic_ bool , and atomic_ float .
All OS: Support for the atomic_exchange_explicit function with
memory_order_relaxed supported, as indicated.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 249 of 298

C atomic_exchange_explicit(threadgroup A* object,
 C desired,
 memory_order order) // All OS: Since Metal 2.

C atomic_exchange_explicit(volatile threadgroup A* object,
 C desired,
 memory_order order) // All OS: Since Metal 1.

C atomic_exchange_explicit(device A* object,
 C desired,
 memory_order order) // All OS: Since Metal 2.

C atomic_exchange_explicit(volatile device A* object,
 C desired,
 memory_order order) // All OS: Since Metal 1.

6.15.4.4!Atomic Compare and Exchange Functions
These compare-and-exchange functions atomically compare the value in *object with the
value in *expected . If those values are equal, the compare-and-exchange function performs a
read-modify-write operation to replace *object with desired . Otherwise if those values are
not equal, the compare-and-exchange function loads the actual value from *object into
*expected . If the underlying atomic value in *object was successfully changed, the
compare-and-exchange function returns true ; otherwise it returns false . These functions
support atomic types A of atomic_int , atomic_ uint , atomic_ bool , and
atomic_ float .
Copying is performed in a manner similar to std::memcpy. The effect of a compare-and-
exchange function is:
i f (memcmp(object, expected, sizeof(*object)) == 0) {

 memcpy(object, &desired, sizeof(*object));

} else {

 memcpy(expected, object, sizeof(*object));

}

All OS: Support for the atomic_compare_exchange_weak_explicit function supported
as indicated; support for memory_order_relaxed for indicating success and failure. If the
comparison is true , the value of success affects memory access, and if the comparison is
false , the value of failure affects memory access.
bool atomic_compare_exchange_weak_explicit(threadgroup A* object,
 C *expected, C desired, memory_order success,
 memory_order failure) // All OS: Since Metal 2.

bool atomic_c ompare_exchange_weak_explicit(volatile threadgroup A*
object,
 C *expected, C desired, memory_order success,
 memory_order failure) // All OS: Since Metal 1.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 250 of 298

bool atomic_compare_exchange_weak_explicit(device A* obj ect,
 C *expected, C desired, memory_order success,
 memory_order failure) // All OS: Since Metal 2.

bool atomic_compare_exchange_weak_explicit(volatile device A*
object,
 C *expected, C desire d, memory_order success,
 memory_order failure) // All OS: Since Metal 1.

6.15.4.5!Atomic Fetch and Modify Functions
All OS: The following atomic fetch and modify functions are supported, as indicated.
The only supported value for order is memory_order_relaxed .
C atomic_fetch_ key _explicit(threadgroup A* object,
 M operand,
 memory_order order) // All OS: Since Metal 2.

C atomic_fetch_ key _explicit(volatile threadgroup A* object,
 M operand,
 memory_order order) // All OS: Since Metal 1.

C atomic_fetch_ key _explicit(device A* object,
 M operand,
 memory_order order) // All OS: Since Metal 2.

C atomic_fetch_ key _explicit(volatile device A* object,
 M operand,
 memory_order order) // All OS: Since Metal 1.

The key in the function name is a placeholder for an operation name listed in the first column of
Table 6.24, such as atomic_fetch_add_explicit . The operations detailed in Table 6.24
are arithmetic and bitwise computations. The function atomically replaces the value pointed to
by object with the result of the specified computation (third column of Table 6.24). The
function returns the value that object held previously. There are no undefined results.
These functions are applicable to any atomic object of type atomic_int , and atomic_ uint .
Add and sub are supported for atomic_ float .

Table 6 .24 . Atomic operation s

Key Operator Computation

add + Addition
and & Bitwise and
max max Compute max
min min Compute min
or | Bitwise inclusive or

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 251 of 298

Key Operator Computation

sub - Subtraction
xor ^ Bitwise exclusive or

These operations are atomic read-modify-write operations. For signed integer types, the
arithmetic operation uses two’s complement representation with silent wrap-around on
overflow.
6.15.4.6!Atomic Modify Functions (64 Bits)
All OS: Metal 2.4 and later support the following atomic modify functions for Apple silicon. See
the Metal Feature Set Tables to determine which GPUs support this feature.
These functions are applicable to any atomic object of type atomic_ ulong . The only
supported value for order is memory_order_relaxed .

void atomic_ key _explicit(device A* object,
 M operand,
 memory_order order)

void atomic_ key _explicit(volatile device A* object,
 M operand,
 memory_order order)

The key in the function name is a placeholder for an operation name listed in the first column of
Table 6.25, such as atomic_ max_explicit . The operations detailed in Table 6.25 are
arithmetic. The function atomically replaces the value pointed to by object with the result of
the specified computation (third column of Table 6.25). The function returns void. There are no
undefined results.

Table 6 .25 . Atomic modify operation s

Key Operator Computation

max max Compute max
min min Compute min

These operations are atomic read-modify-write operations.

6.16! Encoding Commands for Indirect Command Buffers
Indirect Command Buffers (ICBs) support the encoding of Metal commands into a Metal buffer
for repeated use. Later, you can submit these encoded commands to the CPU or GPU for
execution. ICBs for both render and compute commands use the command_buffer type to
encode commands into an ICB object (represented in the Metal framework by
MTLIndirectCommandBuffer):
struct command_buffer {

https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 252 of 298

 size_t size() const;

};

An ICB can contain either render or compute commands but not both. Execution of compute
commands from a render encoder is illegal. So is execution of render commands from a
compute encoder.

<"!<"! $ I.8*,-./ $;'.,'($=*22+.,5 $-. $A.,-('84 $=*22+., $TD>>'(5$

All OS: Metal 2.1 and later support indirect command buffers for render commands.
ICBs allow the encoding of draw commands into a Metal buffer for subsequent execution on the
GPU.
In a shading language function, use the command_buffer type to encode commands for ICBs
into a Metal buffer object that provides indexed access to a render_command structure.
struct arguments {

 command_buffer cmd_buffer;

};

kernel void producer(device arguments &args,

 ushort cmd_idx [[thread_ position _in_grid]])

{

 render_command cmd(args.cmd_buffer, cmd_idx);

 ...

}

render_command can encode any draw command type. The following public interface for
render_command is defined in the header <metal_command_buffer> . To pass
render _pipeline_state objects to your shader, use argument buffers. Within an argument
buffer, the pipeline state can be passed as scalars or in an array.
set_render_pipeline_state(É) and render pipeline states are available on macOS since
Metal 2.1 and on iOS since Metal 2.2.
enum class primitive_type { point, line, line_strip, triangle,
 triangle_strip };

struct render_command {
public:
 explicit render_command(command_buffer icb, unsigned cmd_index);
 void set_render_pipeline_state(
 render_pipeline_state pipeline_state);

 template <typename T É>
 void set_vertex_buffer(device T *buffer, uint index);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 253 of 298

 template <typename T É>
 void set_vertex_buffer(constant T *buffer, uint index);

 // Metal 3.1: Supported passing vertex strid es
 template <typename T É>
 void set_vertex_buffer(device T *buffer, size_t stride,
 uint index) ;
 template <typename T É>
 void set_vertex_buffer(constant T *buffer, size_t stride,
 uint index) ;

 template <typename T É>
 void set_fragment_buffer(device T *buffer, uint index);
 template <typename T É>
 void set_fragment_buffer(constant T *buffer, uint index);

 void draw_primitives(primitive_type type, uint vertex_start,
 uint vertex_count, uint instance_count,
 uint base_instance) ;

 // Overloaded draw_indexed_primitives based on index_buffer
 void draw_indexed_primitives(primitive_type type,
 uint index_count,
 device ushort *index_buffer,
 uint instance_count,
 uint base_vertex,
 uint base_instance);

 void draw_indexed_primitives(primitive_type type ,
 uint index_count,
 device uint *index_buffer,
 uint instance_count,
 uint base_vertex,
 uint base_instance);

 void draw_indexed_primitives(primitive_type type,
 uint index_count,
 constant ushort *index_buffer,
 uint instance_count,
 uint base_vertex,
 uint base_instance);

 void draw_indexed_primitives(primitive_type type,
 uint index_count,
 constant uint *index_buffer,
 uint instance_count,
 uint base_vertex,
 uint base_instance);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 254 of 298

 // Overloaded draw_ patches based on patch_index_buffer and
 // tessellation_factor_buffer
 void draw_patches(uint number_of_patch_control_points,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer ,
 uint instance_count, uint base_instance,
 const device MTLQuadTessellationFactorsHal f
 *tessellation_factor_buffer ,
 uint instance_stride = 0);

 void draw_patches(uint number_of_patch_control_points,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer ,
 uint instance_count, uint base_instance,
 const device
 MTLTriangleTessellationFactorsHalf
 *tessellation_factor_buffer ,
 uint instance_stride = 0);

 void draw_patches(uint number_of_patch_control_points,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer ,
 uint instance_count, uint base_instance,
 const ant MTLQuadTessellationFactorsHal f
 *tessellation_factor_buffer ,
 uint instance_stride = 0);

 void draw_patches(uint number_of_patch_control_points,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer ,
 uint instance_count, uint base_instance,
 const ant MTLTriangleTessellationFactorsHalf
 *tessellation_factor_buffer ,
 uint instance_stride = 0);

 void draw_patches(uint number_of_patch_control_points,
 uint patch_start, uint patch_count,
 const ant uint *patch_index_buffer ,
 uint instance_count, uint base_instance,
 const device MTLQuadTessellationFactorsHal f
 *tessellation_factor_buffer ,
 uint instance_stride = 0);

 void draw_patches(uint number_of_patch_control_points,
 uint patch_start, uint patch_count,
 const ant uint *patch_index_buffer ,
 uint instance_count, uint base_instance,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 255 of 298

 const device
 MTLTriangleTessellationFactorsHalf
 *tessellation_factor_buffer ,
 uint instance_stride = 0);

 void draw_patches(uint number_of_patch_control_points,
 uint patch_start, uint patch_count,
 const ant uint *patch_index_buffer ,
 uint instance_count, uint base_instance,
 const ant MTLQuadTessellationFactorsHal f
 *tessellation_factor_buffer ,
 uint instance_stride = 0);

 void draw_patches(uint number_of_patch_control_points,
 uint patch_start, uint patch_count,
 const ant uint *patch_index_buffer ,
 uint instance_count, uint base_instance,
 const ant MTLTriangleTessellationFactorsHalf
 *tessellation_factor_buffer ,
 uint instance_stride = 0);

 // Overloaded draw_indexed_patches based on patch_index_buffer,
 // control_point_index_buffer and tessellation_factor_buffer

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer,
 const device void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 const device MTLQuadTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer,
 const device void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 const device MTLTriangleTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer,
 const device void *control_point_index_buffer,
 uint instance_count, uint base_instance,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 256 of 298

 constant MTLQuadTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer,
 const device void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 constant MTLTriangleTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer,
 const ant void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 const device MTLQuadTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer,
 const ant void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 const device MTLTriangleTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer,
 constant void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 constant MTLQuadTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const device uint *patch_index_buffer,
 const ant void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 constant MTLTriangleTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 257 of 298

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 constant uint *patch_index_buffer,
 const device void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 const device MTLQuadTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 constant uint *patch_index_buffer,
 const device void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 const device MTLTriangleTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 constant uint *patch_index_buffer,
 const device void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 constant MTLQuadTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 constant uint *patch_index_buffer,
 const device void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 constant MTLTriangleTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 constant uint *patch_index_buffer,
 const ant void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 const device MTLQuadTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 258 of 298

 constant uint *patch_index_buffer,
 const ant void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 const device MTLTriangleTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 const ant uint *patch_index_buffer,
 constant void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 constant MTLQuadTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 void draw_indexed_patches(uint number_of_patch_control_points ,
 uint patch_start, uint patch_count,
 constant uint *patch_index_buffer,
 const ant void *control_point_index_buffer,
 uint instance_count, uint base_instance,
 constant MTLTriangleTessellationFactorsHalf
 * t essellation_factor_buffer,
 uint instance_stride = 0);

 // Reset the entire command. After reset () , without further
 // modifications , execution of this command shall not perform
 // any action.
 void reset();

 // Copy the content of the `source` command into this command.
 void copy_command(render_command source);
};

When accessing command_buffer , Metal does not check whether the access is within
bounds . If an access is beyond the capacity of the buffer, the behavior is undefined.
The exposed methods in render_command mirror the interface of
MTLIndirectRenderCommand and are similar to MTLRenderCommandEncoder . Notable
differences with MTLRenderCommandEncoder are:

"! Calls to draw* methods in render_command encode the actions taken by the
command. If multiple calls are made, only the last one takes effect.

"! The tessellation arguments are passed directly in render_command::draw_patches
and render_command::draw_indexed_patches . Other calls do not set up the
tessellation arguments.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 259 of 298

<"!<"0$ I.8*,-./ $=*23D4' $=*22+.,5 $-. $A.,-('84 $=*22+., $TD>>'(5$

iOS: Metal 2.2 and later support indirect command buffers for compute commands.
macOS: Metal 2.3 and later support indirect command buffers for compute commands.
ICBs allow the encoding of dispatch commands into a Metal buffer for subsequent execution on
the GPU.
In a shading language function, use the command_buffer type to encode commands for ICBs
into a Metal buffer object that provides indexed access to a compute _command structure.
struct arguments {
 command_buffer cmd_buffer;
};
[[kernel]] void producer(device arguments &args,
 ushort cmd_idx [[thread_ position _in_grid]])
{
 compute_command cmd(args.cmd_buffer, cmd_idx);
 ...
}

compute_command can encode any dispatch command type. The following public interface
for compute_command is defined in the header <metal_command_buffer> . The
compute_pipeline_state type represents compute pipeline states, which can only be
passed to shaders through argument buffers. Within an argument buffer, the pipeline state can
be passed as scalars or in an array.
struct compute_command {
public:
 explicit compute_command(command_buffer icb,
 unsigned cmd_index);

 void set_compute_pipeline_state(
 compute_pipeline_state pipeline);

 template <typename T É>
 void set_kernel_buffer(device T *buffer, uint index);
 template <typename T É>
 void set_kernel_buffer(constant T *buffer, uint index);

 // Metal 3.1: Support s passing kernel strid es
 template <typename T É>
 void set_kernel_buffer(device T *buffer, size_t stride,
 uint index);
 template <typename T É>
 void set_kernel_buffer(constant T *buffer, size_t stride,
 uint index);

 void set_barrier();

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 260 of 298

 void clear_barrier();

 void concurrent_dispatch_threadgroups(
 uint3 threadgroups_per_grid,
 uint3 threads_per_threadgroup);
 void concurrent_dispatch_threads(uint3 threads_per_grid,
 uint3 threads_per_threadgroup);

 void set_threadgroup_memory_length(uint length, uint index);
 void set_stage_in_region(uint3 origin, uint3 size);

 // Reset the entire command. After reset () , without further
 // modifications , execution of this command shall not perform
 // any action.
 void reset();

 // Copy the content of the ` source` command into this command.
 void copy_command(compute_command source);
};
When accessing command_buffer , Metal does not check whether the access is within
bounds. If an access is beyond the capacity of the buffer, the behavior is undefined.
The exposed methods in compute_command mirror the interface of
MTLIndirectComputeCommand and are similar to MTLComputeCommandEncoder .
In an ICB, dispatches are always concurrent. Calls to the concurrent_dispatch * methods
in compute_command encode the actions taken by the command. If multiple calls are made,
only the last one takes effect.
The application is responsible for putting barriers where they are needed. Barriers encoded in
an ICB do not affect the parent encoder.
The CPU may have initialized individual commands within a command_buffer before the
command_buffer is passed as an argument to a shader. If the CPU has not already initialized
a command, you must reset that command before using it.

<"!<"6$ =*3P-./ $=*22+.,5 $*>$+. $A.,-('84 $=*22+., $TD>>'($

Copying a command structure (either render_command or compute_command) via
operator= does not copy the content of the command, but only makes the destination
command point to the same buffer and index as the source command. To copy the content of
the command, call the copy_command functions listed in sections 6.16.1 and 6.16.2.
Copying is only supported between commands pointing to compatible command buffers. Two
command buffers are compatible only if they have matching ICB descriptors
(MTLIndirectCommandBufferDescriptor objects). The commands themselves must also
refer to valid indexes within the buffers. The following example illustrates using
copy_command to copy the content of a render command from cmd0 to cmd1:
struct arguments {
 command_buffer cmd_buffer;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 261 of 298

 render_pipeline_state pipeline_state_0;
 render_pipeline_state pipeline_state_1;
};

[[kernel]] void producer(device arguments &args) {
 render_command cmd0(args.cmd_buffer, 0);
 render_command cmd1(args.cmd_buffer, 1);
 cmd0.set_render_pipeline_state(args.pipeline_state_0);

 // Make the command at index 1 point to command at index 0.
 cmd1 = cmd0;

 // Change the pipeline state for the command at index 0 in the
 // buffer .
 cmd1.set_render_pipeline_state(args.pipeline_state_0);

 // The command at index 1 in the buffer is not yet modified .
 cmd1 = render_command(args.cmd_buffer, 1);

 // Copy the content of the command at index 0 to command at
 // index 1.
 cmd1.copy_command(cmd0);
}

6.17! Variable Rasterization Rate
iOS: Metal 2.2 and later support variable rasterization rate and the rasterization rate map.
macOS: Metal 2.3 and later support variable rasterization rate and the rasterization rate map.
Variable rasterization rate (VRR) can reduce the shading cost of high-resolution rendering by
reducing the fragment shader invocation rate based on screen position. VRR is especially useful
to avoid oversampling peripheral information in AR/VR applications.
To support VRR in a shading language function, use the
rasterization_rate_map_decoder structure to describe the mapping of per-layer
rasterization rate data. Each layer contains minimum quality values in screen space and can
have a different physical fragment space dimension. For AR/VR, these quality values are based
on the lens transform and/or eye-tracking information.
struct rasterization_rate_map_data;

struct rasterization_rate_map_decoder {
 explicit rasterization_rate_map_decoder(
 constant rasterization_rate_map_data &data) thread;

 float2 map_screen_to_physical_coordinates(float2 screen_coordinates,
 uint layer_index = 0) const thread;
 uint2 map_screen_to_physical_coordinates(uint2 screen_coordinates,
 uint layer_index = 0) const thread;
 float2 map_physical_to_screen_coordinates(float2 physical_coordinates,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 262 of 298

 uint layer_index = 0) const thread;
 uint2 map_physical_to_screen_coordinates(uint2 physical_coordinates,
 uint layer_index = 0) const thread;
};

The VRR map describes the mapping between screen space and physical fragment space and
enables conversion of the rendering results back to the desired screen resolution. To convert
between screen space and physical fragment space in the shader, the app must call the
copyParameterDataToBuffer:offset: method of MTLRasterizationRateMap to fill
the buffer with map data before using any of the conversion functions in the
rasterization_rate_map_decoder structure. Passing anything other than a pointer to
the data exported by the copyParameterDataToBuffer:offset : method has an
undefined behavior.
The following example shows how the app must pass the rasterization_rate_map_data
at the shader bind point to the constructor of the rasterization_rate_map_decoder
structure :
[[fragment]] float4 fragment_shader(/* other arguments */
 constant rasterization_rate_map_data &data [[buffer(0)]]) {
 float2 screen_coords = ...;
 rasterization_rate_map_decoder map(data);
 float2 physical_coords =
 map.map_screen_to_physical_coordinates(screen_coords);
 ...
}

Alternately, the app can compute the offset where the compiled data is stored and use an
explicit cast or pointer arithmetic to form the data for a valid
rasterization_rate_map_data . Since rasterization_rate_map_data is an
incomplete type, some operations on it are inherently forbidden (such as pointer arithmetic on
the pointer type or sizeof).

6.18! Ray-Tracing Functions
All OS: Metal 2.3 and later support ray-tracing functions.
Metal defines the ray-tracing functions and types in <metal_raytracing> in the namespace
metal::raytracing . Metal 2.3 supports them only in a compute function (kernel function),
except where noted below. Metal 2.4 and later offer additional support for them in vertex,
fragment, and tile functions.

<"!H"! $ V88')'(+4-*. $E4(D84D('$UD.84-*.5 $

In Metal 2.3 and later, you can call one of the following functions to check if an acceleration
structure (see section 2.17.7) is null :
bool
is_null_primitive_acceleration_structure(primitive_acceleration_stru
cture)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 263 of 298

bool
is_null_instance_acceleration_structure(instance_acceleration_struct
ure)

In Metal 2.4 and later, you can call the following function to check if an acceleration structure is
null .
bool
is_null_acceleration_ structure(acceleration_structure<intersection_t
agsÉ>)

In Metal 3.1 and later, you can iterate over the acceleration structure referenced by an instance
acceleration structure using the following functions:
Call the following function to query the number of instances in an instance acceleration
structure.
uint get_instance_count() const

Call the following function to retrieve the acceleration structure referenced by an instance
contained in an instance acceleration structure. The return type is the templatized type defined
in section 2.17.7.
template <typename... intersection_tags>
 acceleration_structure< intersection_tags ...>
get_acceleration_structure (uint instance_id)

If the declared return type does not match the acceleration structure type reference by the
instance contained in an instance acceleration structure, then the results are undefined.
Instance acceleration structures that do not use instance and/or primitive motion tags can be
returned as an acceleration structure type that does contain those tags. For example, an
instance acceleration structure without any motion (instance or primitive) can be returned as:

¥! acceleration_structure<instancing>

¥! acceleration_structure<instancing, instance_motion>

¥! acceleration_structure<instancing, primitive_motion>

¥! acceleration_structure<instancing, primitive_motion,
instance_motion >

This capability allows you to avoid providing a dedicated intersector for each set of tags when
working with multiple acceleration structure types at the potential performance cost due to
traversing an acceleration structure that does not require those tags.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 264 of 298

<"!H"0$ A.4'(5'84*($A.4'(5'84 $UD.84-*. 5$

After creating the intersector <intersection_tags ... > object (see section 2.17.6),
you can call one of the following i ntersect functions based on the value of the
intersection_tags.

Table 6 .26 . Intersect function

Function

result_type intersect(ÉparametersÉ) .

Table 6.27 shows the possible parameters for intersect function. All intersect functions
must have ray and accel_struct parameter. The other parameters are optional.

Table 6 .27. Intersect functions input parameters

Parameter Description

r ay Ray properties

accel _struct Acceleration structure of type acceleration_structure<
intersection_tags...> .

mask Intersection mask to be AND'd with instance mask defined in the
Metal API MTLAccelerationStructureInstanceDescriptor. Instances
with nonoverlapping masks will be skipped.

t ime

All OS: Metal 2.4 and later.
The time associated with the ray. The parameter exists if the
intersection_tags have primitive_motion or
instance_motion .

func_ table Intersection function table of type
intersection_function_table< intersection_tags ...> .
See section 2.17.3.

payload User payload object, which is passed by reference. When the user
calls intersect() , the payload parameter is copied to the
ray_data address space and passed to the intersection function.
The result is copied on the exit of the intersection function (section
%#&#') and the payload object is updated.

The result_type is
 using result_type = intersection_result< intersection_tags ... >;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 265 of 298

The following set of intersect functions are available only if intersection_tags does not
have instancing :
 result_type
 intersect(
 ray ray,
 primitive_acceleration_structure accel _struct) const;

 result_type
 intersect(
 ray ray,
 primitive_acceleration_structur e accel_struct,
 intersection_function_table< intersection_tags ...> f unc_ table)
 const;

 template <typename T>
 result_type
 intersect(
 ray ray,
 primitive_acceleration_structure accel_struct ,
 intersection_function_table< intersection_tags ...> func_table ,
 thread T &payload) const;

The following set of intersect functions are available only if intersection_tags have
instancing .

 result_type
 intersect(
 ray ray,
 instance_acceleration_structure accel_struct ,
 uint mask = ~0U) const;

 result_type
 intersect(
 ray ray,
 instance_acceleration_structure accel_struct ,
 intersection_function_table< intersection_tags ...> func_table)
 const;

 template <typename T>
 result_type

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 266 of 298

 intersect(
 ray ray,
 instance_acceleration_structure accel_struct ,
 intersection_function_table< intersection_tags ...> func_table ,
 thread T &payload) const;

 result_type
 intersect(
 ray ray,
 instance_acceleration_structure accel_struct ,
 uint mask,
 intersection_function_table< intersection_tags ...> func_table)
 const;

 template <typename T>
 result_type
 intersect(
 ray ray,
 instance_acceleration_structure accel_struct ,
 uint mask,
 intersection_function_table< intersection_tags ...> func_table ,
 thread T &payload) const;

As of Metal 2.4, the following set of intersect functions are available if intersection_tags
have primitive_motion or instance_motion .
template <typename T, intersection_tags ...>
 result_type
 intersect(
 ray ray,
 acceleration_structure < intersection_tags ... > accel_struct,
 float time) const;

template <typename T, intersection_tags ...>
 result_type
 intersect(
 ray ray,
 acceleration_structure < intersection_tags ... > accel_struct,
 float time,
 intersection_function_table< intersection_tags ...> func_table)
 const;

template <typename T, intersection_tags ...>
 result_type
 intersect(

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 267 of 298

 ray ray,
 acceleration_structure < intersection_tags ... > accel_struct,
 float time,
 intersection_function_table< intersection_tags ...> func_table,
 thread T &payload) const;

As of Metal 2.4, the following set of intersect functions are available only if
intersection_tags have instancing and either primitive_motion or
instance_motion .
template <typename T, intersection_tags ...>
 result_type
 intersect(
 ray ray,
 acceleration_structure < intersection_tags ... > accel_struct,
 uint mask = ~0U,
 float time = 0.0f) const;

template <typename T, intersection_tags ...>
 result_type
 intersect(
 ray ray,
 acceleration_structure < intersection_tags ... > accel_struct,
 uint mask,
 float time,
 intersection_function_table< intersection_tags ...> func_table)
 const;

template <typename T, intersection_tags ...>
 result_type
 intersect(
 ray ray,
 acceleration_structure < intersection_tags ... > accel_struct,
 uint mask,
 float time,
 intersection_function_table< intersection_tags ...> func_table,
 thread T &payload) const;

Starting with Metal 3.2, it’s possible to avoid a copy and directly access the memory of the
intersection by using intersection_result_ref<intersection_tags...> (see
section 2.17.5) and the ray_data payload pointer in a callback.

template <typename Callable>
void intersect(..., Callable callback)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 268 of 298

template <typename Payload, typename Callable>
void intersect(..., const thread Payload &payload_in,
 Callable callback)

The lifetime is the intersection_result_ref and the ray_data payload pointer is the
duration of the callback. If you store the intersection_result_ref or payload pointer and
use it after the intersect () call completes, the behavior is undefined because the system
may free the memory. You can’t perform recursive ray tracing within the callback body. After
the callback exits, the shader is free to intersect rays again.
The following is an example of the use of a lamba with the intersection_result_ref :

[[kernel]] void trace_rays_with_payload(...) {
 intersector<instancing, max_levels<2>, triangle_data> i;
 i.intersect(ray, acceleration_structure, MyPayload{},
 [&](intersection_result_ref<instancing, max_levels<2>,
triangle_data> result,
 const ray_data MyPayload &final_payload)
 {
 result.get_primitive_id();
 // ...
 });
}

<"!H"6$ A.4'(5'84*($UD.84-*.5 $4*$=*.4(*) $1(+&'(5+) $T'@+&-*($

All OS: Metal 3.1 adds support for curves.
To override the default behavior of the traversal, you can use the following member functions of
intersector< intersection_tags ...> object.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 269 of 298

Table 6 .28 . Intersect functions to control t raversal

Functions to control traversal behavior

void set_triangle_front_facing_winding(winding)

void set_geometry_cull_mode(geometry_cull_mode)

void set_opacity_cull_mode(opacity_cull_mode)

void force_opacity(forced_opacity)

void assume_geometry_type(geometry_type)

void assume_identity_transforms(bool)

void accept_any_intersection(bool)

Triangles have two sides or "faces". The front facing winding determines which triangle face is
considered the "front" face when viewed from the ray origin. If the vertices appear in clockwise
order when viewed from the ray origin and the front facing winding is clockwise, then the visible
face is the front face. The other face is the back face. If the front facing winding is
counterclockwise, then the opposite is true. Use the following function to change the default
winding (clockwise) :
enum class winding {
 clockwise,
 counterclockwise
};
void set_triangle_front_facing_winding(winding w);

To change the default triangle cull mode (none) , use the following function.
enum class triangle_cull_mode {
 none,
 front,
 back
};
void set_triangle_cull_mode(triangle_cull_mode t cm);

If the cull mode is set to front , then triangles whose front face is visible from the ray origin
are not considered for intersection. Otherwise, if the cull mode is set to back , then triangles
whose back face is visible from the ray origin are not considered for intersection.

The following function may be used to set the intersector to cull all bounding box or triangle
primitives from the set of candidate geometries. The default geometry cull mode is none .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 270 of 298

enum class geometry_cull_mode {
 none,
 triangle,
 bounding_box ,
 curve // Metal 3.1 and later .
};

void set_geometry_cull_mode(geometry_cull_mode gcm);

The default opacity cull mode is none . Use the following function to change the opacity. See
below on how opacity will affect triangle and bounding box primitives.
enum class opacity_cull_mode {
 none,
 opaque,
 non_opaqu e
};
void set_opacity_cull_mode(opacity_cull_mode ocm);

Call the following function to override per-instance and per-geometry setting of forced
capacity. The default is none .
enum class forced_opacity {
 none,
 opaque,
 non_opaque
};
void force_opacity(forced_opacity f o);

Triangle primitives may also be culled based on their opacity: An opaque triangle will not run
any intersection function. A non_opaque triangle will run its intersection function to accept or
reject the hit.
The PrimitiveAccelerationStructure encodes if the triangle is opaque or
non_opaque by declaring MTLAccelerationStructureGeometryFlagOpaque . The
opaqueness can be overridden by calling intersector.force_opacity() . If used, this
takes precedence over the per-instance opaqueness flags
(MTLAccelerationStructureInstanceFlagOpaque and
MTLAccelerationStructureInstanceFlagNonOpaque), which in turn takes
precedence over the per-geometry opaqueness.
For custom bounding box primitives, the opaqueness will be evaluated in the same way as
described for triangles (first intersector.set_opacity_cull_mode() , then
InstanceFlags, then GeometryFlags). The opaque parameter informs the bounding box
intersection program the resolved opaqueness state. The intersection function may then use
this to influence its evaluation of if a hit is encountered or not.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 271 of 298

intersector.set_opacity_cull_mode() will skip over primitive types based on their
opaqueness.
If intersector.force_opacity() is set to opaque or non_opaque then
intersector.set_opacity_cull_mode () must be non e. The reverse is also true:
Opacity Override and Opacity culling cannot be mixed. The results of illegal combinations are
undefined.

Use the following functions to declare if the acceleration structure contains a triangle,
bounding box, and/or curve geometry. The default geometry is geometry _type:: triangle
| geometry _type:: bounding _box . By default, Metal assumes acceleration structure will
not contain curve geometry to improve performance. Call assume_geometry_type with a
value that includes geometry _type::curve to enable curves to be intersected in an
intersect call or intersection query step.
enum class geometry_type {
 none,
 triangle,
 bounding_box,
 curve, // Metal 3.1 and later.
 all
};
void assume_geometry_type(geometry_type gt)

To set the intersector object to assume identify transforms, call the following function with the
value true . The default is false .
void assume_identity_transforms(bool value);

To set the intersector object to immediately return the first intersection it finds, call the
following function with the value true . The default is false . One use of this function is when
you only need to know if one point is visible from another, such as when rendering shadows or
ambient occlusion.
void accept_any_intersection(bool value) ;

Starting from Metal 3.1, use the following functions to add hints to the intersector and
intersection_query to specify the curve basis, the number of control points, and the curve
type to optimize traversal for specific curve types.
Note that curve_basis is a enumerated type and not a bitmask.

enum class curve_basis {
 bspline ,
 catmull_rom,
 linear,
 bezier,

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 272 of 298

 all ,
} ;

enum class curve_type {
 round ,
 flat,
 all,
};

Use the following function to set the curve basis function to assume. Defaults to
curve_basis ::all , meaning that all curve basis functions will be enabled.
void assume_curve_basis(curve_basis cb)

Use the following function to set the curve type to assume. Defaults to curve_type::all ,
meaning that both curve types will be enabled.
void assume_curve_type(curve_type ct)

Use the following function to set the number of curve control points to assume. Defaults to 0,
meaning that any number of control points, as appropriate for the assumed curve basis (if any),
will be enabled. Other valid options are 2, 3, or 4, depending on the curve basis.
void assume_curve_control_point_count(uint n)

<"!H": $ A.4'(5'84-*. $\D'(P $UD.84-*.5 $

All OS: Metal 2.4 and later support intersection query functions.
All OS: Metal 3.1 and later support intersection query functions for curves.
To start traversals and query traversal specific information, create an intersection query object
(see section 2.17.8) with a nondefault constructor or first call reset(É) . If not called in this
sequence, the behavior is undefined.
Table 6.29, Table 6.31, and Table 6.32 show the list of functions that can be called depending
on the geometry type encountered during the traversal, assuming next() has returned true .
Note that some functions come in pairs: a candidate and a committed primitive. When next()
is called for the first time, the primitive reported after the traversal is always a candidate until
the user commits the primitive by calling commit_triangle_intersection() ,
commit_bounding_box_intersection() , or commit_ curve _intersection() on the
query object. Note that opaque triangles, tested without user intersection, commit automatically
when intersected.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 273 of 298

Table 6 .29 . Intersect ion query function s

Functions Triangle Bounding Curve

void reset(É) * * *

bool next() * * *

void abort() * * *
intersection_type
get_candidate_intersection_type ()

* * *

intersection_type
get_committed_intersection_type()

* * *

void commit_triangle_intersection () *

void
commit_bounding_box_intersection(float distance)

 *

void commit_curve_intersection()
All OS: Metal 3.1 and later.!

 *

Starting with Metal 3.1, intersection query supports the following functions when specified with
the max_level s<Count> intersection tags.

Table 6 .30 . Intersection query functions with max_levels<Count>

Functions Triangle Bounding Curve

uint get_candidate_instance_count()
All OS: Metal 3.1 and later.!

* * *

uint get_candidate_instance_id(uint depth)
All OS: Metal 3.1 and later.

* * *

uint get_candidate_user_instance_id(uint depth)
All OS: Metal 3.1 and later.

* * *

uint get_committed_instance_count()
All OS: Metal 3.1 and later.

* * *

uint get_committed_instance_id(uint depth)
All OS: Metal 3.1 and later.

* * *

uint get_committed_user_instance_id(uint depth)
All OS: Metal 3.1 and later.

* * *

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 274 of 298

Table 6 .31. Inte rsect ion query ray value function s

Ray Values Functions Triangle Bounding Curve

float3 get_world_space_ray_origin () * * *

float3 get_world_space_ray_direction () * * *

float get_ray_min_distance() * * *

intersection_params get_intersection_params () * * *

Table 6 .32 . Intersect ion query candidate value functions

Candidate Intersections Value Functions Triangle Bounding Curve

float get_candidate_triangle_distance () *

uint get_candidate_instance_id () * * *

uint get_candidate_user_instance_id () * * *

uint get_candidate_geometry_id () * * *

uint get_candidate_primitive_id () * * *

float2
get_candidate_triangle_barycentric_coord ()

*

bool is_candidate_non_opaque_bounding_box () *

bool is_candidate_triangle_front_facing() *

float4x3
get_candidate_object_to_world_transform()

* * *

float4x3
get_candidate_world_to_object_transform()

* * *

float3 get_candidate_ray_origin() * * *

float3 get_candidate_ray_direction() * * *

const device void *
get_candidate_primitive_data()

All OS: Metal 3 and later.

* * *

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 275 of 298

Table 6 .33 . Intersect query committed value functions

Committed Intersections Value Functions Triangle Bounding Curve

float get_committed_distance() * * *

uint get_committed_instance_id() * * *

uint get_committed_user_instance_id() * * *

uint get_committed_geometry_id() * * *

uint get_committed_primitive_id() * * *

float2
get_committed_triangle_barycentric_coord()

*

bool is_committed_triangle_front_facing() *

float4x3
get_committed_object_to_world_transform()

* * *

float4x3
get_committed_world_to_object_transform()

* * *

float3 get_committed_ray_origin() * * *

float3 get_committed_ray_direction() * * *

const device void *
get_committed_primitive_data()

All OS: Metal 3 and later.

* * *

float get_candidate_curve_parameter()
All OS: Metal 3.1 and later.

 *

float get_committed_curve_parameter()
All OS: Metal 3.1 and later.!

 *

Call the following function to query the distance of a candidate triangle hit that needs
consideration.
 float get_candidate_triangle_distance()

Call the following function to query the distance of the currently committed hit.
 float get_committed_distance()

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 276 of 298

Call the following function to query the top level structure instance ID for the current candidate
hit.
 uint get_candidate_instance_id()

Call the following function to query user instance ID provided by user on the bottom level
acceleration structure for the current candidate hit.
 uint get_candidate_user_instance_id()

Call the following function to query the bottom level structure geometry ID for the current
candidate hit.
 uint get_candidate_geometry_id()

Call the following function to query the bottom level structure primitive ID within the geometry
for the current candidate hit.
 uint get_candidate_primitive_id()

Call the following function to query the top level structure instance ID for the current committed
hit.
 uint get_committed_instance_id()

Call the following function to query user instance ID provided by user on the bottom level
acceleration structure for the current committed hit.
 uint get_committed_user_instance_id()

Call the following function to query the bottom level structure geometry ID for the current
committed hit.
 uint get_committed_geometry_id()

Call the following function to query the bottom level structure primitive ID within the geometry
for the current committed hit.
 uint get_committed_primitive_id()

Call the following function to query the ray origin in object space for the current hit candidate.
 float3 get_candidate_ray_origin()

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 277 of 298

Call the following function to query the ray direction in object space for the current hit
candidate.
 float3 get_candidate_ray_direction()

Call the following function to query the ray origin in object space for the current committed hit.
 float3 get_committed_ray_origin()

Call the following function to query the ray direction in object space for the current committed
hit.
 float3 get_committed_ray_direction()

Call the following function to query the matrix for transforming ray origin/direction of current hit
candidate from object-space to world-space.
 float4x3 get_candidate_object_to_world_transform()

Call the following function to query the matrix for transforming ray origin/direction of current
candidate hit from world-space to object-space.
 float4x3 get_candidate_world_to_object_transform()

Call the following function to query the matrix for transforming ray origin/direction of current
committed hit from object-space to world-space.
 float4x3 get_committed_object_to_world_transform()

Call the following function to query the matrix for transforming ray origin/direction of current
committed hit from world-space to object-space.
 float4x3 get_committed_world_to_object_transform()

Call the following function to query the candidate hit location barycentric coordinates. Valid
when get_candidate_intersection_type() returns triangle .
 float2 get_candidate_triangle_barycentric_coord()
For vertex attributes v0 , v1 , and v2 , the value at the specified barycentric point is:
 v1 * barycentric_coord .x +
 v2 * barycentric_coord .y +
 v0 * (1.0f - (barycentric_coord .x + barycentric_coord .y))

Call the following function to query the committed hit location barycentric coordinates. Valid
when get_committed_intersection_type() returns triangle .
 float2 get_committed_triangle_barycentric_coord()

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 278 of 298

Call the following function to query if the hit triangle candidate is front or back facing. Returns
true if it is front face and false if it is back face. Valid when
get_candidate_intersection_type() returns triangle .
 bool is_candidate_triangle_front_facing()

Call the following function to query if the committed hit is front or back facing. Returns true if
it is front face and false if it is back face. Valid when
get_committed_intersection_type() returns triangle .
 bool is_committed_triangle_front_facing()

Call the following function to query the per-primitive data for the current candidate primitive.
 const device void *get_candidate_primitive_data()

Call the following function to query the per-primitive data for the current committed hit.
 const device void *get_committed_primitive_data()

Starting with Metal 3.1, the following two functions can be called when
get_candidate_intersection_type() returns curve and the intersection tag has
curve_data :
Call the following to query the curve parameter for the current candidate curve.
 float get_candidate_curve_parameter() !

Call the following to query the curve parameter for the current committed intersection. Valid
when get_candidate_intersection_type() returns curve .
 float get _commi t ted _curve_parameter()

Starting with Metal 3.1, the rest of the functions in this section can be called when the
intersection tag has max_levels<Count> :
Call the following function to query the number of instances in the candidate intersection.
 uint get_candidate_instance_count()

Call the following function to query the instance ID at level depth in the candidate
intersection.
 uint get_candidate_instance_id(uint depth)

Call the following function to query the user instance ID at level depth in the candidate
intersection.
 uint get_candidate_user_instance_id(uint depth)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 279 of 298

Call the following function to query the number of instances in the committed intersection.
 uint get_committed_instance_count()

Call the following function to query the instance ID at level depth in the committed
intersection.
 uint get_committed_instance_id(uint depth)

Call the following function to query the user instance ID at level depth in the committed
intersection.
 uint get_committed_user_instance_id(uint depth);

<"!H"#$ A.,-('84 $A.54+.8' $9'58(-34*(5 $

In Metal 3.1 and later, you can fill out indirect instance descriptors from the GPU. Metal
provides the following type definitions:

enum MTLAccelerationStructureInstanceOptions : uint
{
 MTLAccelerationStructureInstanceOptionNone = 0,
 MTLAccelerationStructureInstanceOptionDisableTriangleCulling = (1
<< 0),

MTLAccelerationStructureInstanceOptionTriangleFrontFacingWindingCoun
terClockwise = (1 << 1),
 MTLAccelerationStructureInstanceOptionOpaque = (1 << 2),
 MTLAccelerationStructureInstanceOptionNonOpaque = (1 << 3),
};

typedef packed_float3 MTLPackedFloat3;
typedef packed_float3 MTLPackedFloat4x3[4];

struct MTLAccelerationStructureInstanceDescriptor
{
 MTLPackedFloat4x3 transformationMatrix;
 MTLAccelerationStructureInstanceOptions options;
 uint mask;
 uint intersectionFunctionTableOffset;
 uint accelerationStructureIndex;
};

struct MTLAccelerationStructureUserIDInstanceDescriptor
{
 MTLPackedFloat4x3 transformationMatrix;

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 280 of 298

 MTLAccelerationStructureInstanceOptions options;
 uint mask;
 uint intersectionFunctionTableOffset;
 uint accelerationStructureIndex;
 uint userID;
};

To facilitate filing out the descriptor, Metal provides an implicit conversion from
acceleration_structure< intersection _tag sÉ> to MTLResourceID .
 acceleration_structure<primitive_motion> primitiveAStruct = É;
 MTLResourceID resource_id = primitiveAStruct;

<"!H"<$ =D(&' $S4-)-4P$UD.84-*.5 $

Metal 3.1 and later provide a set of curve utility functions that Metal defines in the header
<metal_curves> . It uses the following abbreviations:
 Ps is float or half .
 P is a scalar or a vector of Ps. If Ps is float , P is float4 .
The functions return the position or the first or second derivative on a curve given a curve
parameter t , and control points p0 , p1 , etc. As shown in Table 6.34, the functions support
quadratic Bézier, cubic Bézier, quadratic B-Spline, cubic B-Spline, cubic Hermite, and Catmull-
Rom curves.

Table 6 .34 . Curve utility functions

Function Description

P bezier(
 Ps_t, P p0, P p1, P p2)

Returns the position on a quadratic Bézier curve

P bezier_derivative(
 Ps_t, P p0, P p1, P p2)

Returns the first derivative on a quadratic Bézier curve

P bezier_second_derivative(
 Ps_t, P p0, P p1, P p2)

Returns the second derivative on a quadratic Bézier
curve

P bezier(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the position on a cubic Bézier curve

P bezier_derivative(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the first derivative on a cubic Bézier curve

P bezier_second_derivative(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the second derivative on a cubic Bézier curve

P bspline(
 Ps_t, P p0, P p1, P p2)

Returns the position on a quadratic B-spline curve

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 281 of 298

Function Description

P bspline_derivative(
 Ps_t, P p0, P p1, P p2)

Returns the first derivative on a quadratic B-spline curve

P bspline_second_derivative(
 Ps_t, P p0, P p1, P p2)

Returns the second derivative on a quadratic B-spline
curve

P bspline(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the position on a cubic B-spline curve

P bspline_derivative(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the first derivative on a cubic B-spline curve

P bspline_second_derivative(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the second derivative on a cubic B-spline curve

P hermite(
 Ps_t, P p0, P p1, P m0, P m1)

Returns the position on a cubic Hermite curve

P hermite_derivative(
 Ps_t, P p0, P p1, P m0, P m1)

Returns the first derivative on a cubic Hermite curve

P hermite_second_derivative(
 Ps_t, P p0, P p1, P m0, P m1)

Returns the second derivative on a cubic Hermite curve

P catmull_rom(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the position on a Catmull-Rom curve

P catmull_rom_derivative(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the first derivative on a Catmull-Rom curve

P catmull_rom_second_derivative(
 Ps_t, P p0, P p1, P p2, P p3)

Returns the second derivative on a Catmull-Rom curve

6.19! Logging Functions
All OS: Metal 3.2 and later support logging for Apple silicon.
Metal defines the logging functions and types in <metal_logging> . To enable logging, you
need to set - fmetal - enable - logging (see section 1.6.9).

enum log_type
{
 log_type_debug, // Captures verbose information useful only for
 // debugging your code .
 log_type_info, // Captures information that is helpful to
 // troubleshoot problems.
 log_type_default,// Captures information that is essential for
 // troubleshooting problems.
 log_type_error, // Captures errors that occur during the
 // execution of your code.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 282 of 298

 log_type_fault // Captures information about faults and bugs
 // in your code.
};

struct os_log
{
 os_log(constant char *subsystem, constant char *category) constant;
 void log_with_type(log_type type, constant char *format, ...) constant;
 void log_debug(constant char *format, ...) constant;
 void log_info(constant char *format, ...) constant;
 void log(constant char *format, ...) constant;
 void log_error(constant char *format, ...) constant;
 void log_fault(constant char *format, ...) constant;
};

The os_log logging methods support most of the format specifiers that std::printf
supports in C++, with the following exceptions:

•! They don’t support the %n and %s conversion specifiers.
•! They don’t support the %@ and %.*P and custom format specifiers that the CPU

os_log supports.
•! Metal supports the hl length modifier for 4-byte types like int and float , which you

need to use when printing vectors.
•! Vectors may print with

%v[num_elements][length_modifier][conversion_specifier] . For
example, a float4 can print with %v4hlf while a uchar2 can print as %v2hhu .

•! Default argument promotion applies to arguments of half type which promote to the
double type. Default argument promotion doesn’t apply to vectors.

•! The format string must be a string literal.

Shaders can perform logging by defining an os_log object and using any of the log member
functions:
constant metal::os_log custom_log("com.custom_log.subsystem",
 "custom category");
void test_log(float x) {
 if (x < M_PI_F)
 custom_log.log("custom message %f", x);
}

A default os_log object os_log_default is available to use instead of a custom os_log
object:
void test_log(float x) {
 if (x < M_PI_F)
 os_log_default.log("custom message %f", x);
}

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 283 of 298

Metal places messages from the shader into a log buffer with a size that MTLLogState
determines. All the draw/dispatches in a command buffer share the log buffer. The system only
removes the messages from the log buffer when the command buffer completes. Because
multiple command buffers can share a log buffer, the system may block the removal of the
messages until other command buffers complete. When the log buffer becomes full, the system
drops all subsequent messages. Logging resumes after the CPU has an opportunity to empty
the log buffer.

By default, messages that the CPU reads from the log buffer go into the unified logging system
with the corresponding subsystem, category, and level. Messages that os_log_default logs
go into the CPU unified logging system with the corresponding level and subsystem/category
being nil. For custom handling of shader logging messages, see the Metal API’s
addLogHandler .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 284 of 298

7! Numerical Compliance
This chapter covers how Metal represents floating-point numbers with regard to accuracy in
mathematical operations. Metal is compliant to a subset of the IEEE 754 standard.

7.1! INF, NaN, and Denormalized Numbers
INF must be supported for single-precision, half-precision, and brain floating-point numbers.
NaNs must be supported for single-precision, half-precision, and brain floating-point numbers
(with fast math disabled). If fast math is enabled the behavior of handling NaN or INF (as inputs
or outputs) is undefined. Signaling NaNs are not supported.
Denormalized single-precision, half-precision, or brain floating-point numbers passed as input
to or produced as the output of single-precision, half-precision, or brain floating-point
arithmetic operations may be flushed to zero.

7.2! Rounding Mode
Either round ties to even or round toward zero rounding mode may be supported for single-
precision, half-precision, and brain floating-point operations.

7.3! Floating-Point Exceptions
Floating-point exceptions are disabled in Metal.

7.4! ULPs and Relative Error
Table 7.1 describes the minimum accuracy of single-precision floating-point basic arithmetic
operations and math functions given as ULP values. The reference value used to compute the
ULP value of an arithmetic operation is the infinitely precise result.

Table 7.1. Accuracy of single -precision floating -point operations and functions

Math Function Min imum Accuracy (ULP Values)

x + y Correctly rounded
x - y Correctly rounded
x * y Correctly rounded
1.0 / x Correctly rounded
x / y Correctly rounded

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 285 of 298

Math Function Min imum Accuracy (ULP Values)

acos <= 4 ulp
acosh <= 4 ulp
asin <= 4 ulp
asinh <= 4 ulp
atan <= 5 ulp
atan2 <= 6 ulp
atanh <= 5 ulp
ceil Correctly rounded
copysign 0 ulp
cos <= 4 ulp
cosh <= 4 ulp
cospi <= 4 ulp
exp <= 4 ulp
exp2 <= 4 ulp
exp10 <= 4 ulp
fabs 0 ulp
fdim Correctly rounded
floor Correctly rounded
fma Correctly rounded
fmax 0 ulp
fmin 0 ulp
fmod 0 ulp
fract Correctly rounded
frexp 0 ulp
ilogb 0 ulp
ldexp Correctly rounded
log <= 4 ulp
log2 <= 4 ulp

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 286 of 298

Math Function Min imum Accuracy (ULP Values)

log10 <= 4 ulp
modf 0 ulp
nextafter 0 ulp
pow <= 16 ulp
powr <= 16 ulp
rint Correctly rounded
round Correctly rounded
rsqrt Correctly rounded
sin <= 4 ulp
sincos <= 4 ulp
sinh <= 4 ulp
sinpi <= 4 ulp
sqrt Correctly rounded
tan <= 6 ulp
tanpi <= 6 ulp
tanh <= 5 ulp
trunc Correctly rounded

Table 7.2 describes the minimum accuracy of single-precision floating-point arithmetic
operations given as ULP values with fast math enabled (which is the default unless you specify
-fno - fast - math as a compiler option).

Table 7.2. Accuracy of single -precision operations and functions with fast math

enabled

Math Function Min imum Accuracy (ULP Values)

x + y Correctly rounded
x - y Correctly rounded
x * y Correctly rounded
1.0 / x <= 1 ulp for x in the domain of 2-126 to 2126

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 287 of 298

Math Function Min imum Accuracy (ULP Values)

x / y <= 2.5 ulp for y in the domain of 2-126 to 2126
acos(x) <= 5 ulp for x in the domain [-1, 1]
acosh(x) Implemented as log(x + sqrt(x * x Ð 1.0))
asin(x) <= 5 ulp for x in the domain [-1, 1] and |x | >= 2-125
asinh(x) Implemented as log(x + sqrt(x * x + 1.0))
atan(x) <= 5 ulp
atanh(x) Implemented as 0.5 * (log((1.0 + x) / (1.0 Ð x))
atan2(y, x) Implemented as

if x > 0, atan(y / x) ,
if x < 0 and y > 0, atan(y / x) + M_PI_F
if x < 0 and y < 0, atan(y / x) Ð M_PI_F
and if x = 0 or y = 0, the result is undefined.

ceil Correctly rounded

copysign 0 ulp

cos(x) For x in the domain [-pi, pi], the maximum absolute error is <= 2-13 and
larger otherwise.

cosh(x) Implemented as 0.5 * (exp(x) + exp(- x))
cospi(x) For x in the domain [-1, 1], the maximum absolute error is <= 2-13 and

larger otherwise.
exp(x) <= 3 + floor(fabs(2 * x)) ulp
exp2(x) <= 3 + floor(fabs(2 * x)) ulp
exp10(x) Implemented as exp2(x * log2(10))
fabs 0 ulp
fdim Correctly rounded
floor Correctly rounded
fma Correctly rounded
fmax 0 ulp
fmin 0 ulp
fmod Undefined

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 288 of 298

Math Function Min imum Accuracy (ULP Values)

fract Correctly rounded
frexp 0 ulp
ilogb 0 ulp
ldexp Correctly rounded
log(x) For x in the domain [0.5, 2], the maximum absolute error is <= 2-21;

otherwise if x > 0 the maximum error is <= 3 ulp; otherwise the
results are undefined.

log2(x) For x in the domain [0.5, 2], the maximum absolute error is <= 2-22;
otherwise if x > 0 the maximum error is <= 2 ulp; otherwise the results
are undefined.

log10(x) Implemented as log2(x) * log10(2)
modf 0 ulp
pow(x, y) Implemented as exp2(y * log2(x)) .

Undefined for x = 0 and y = 0.
powr(x, y) Implemented as exp2(y * log2(x)) .

Undefined for x = 0 and y = 0.
rint Correctly rounded
round(x) Correctly rounded
rsqrt <= 2 ulp
sin(x) For x in the domain [-pi, pi], the maximum absolute error is <= 2-13 and

larger otherwise.
sinh(x) Implemented as 0.5 * (exp(x) Ð exp(- x))
sincos(x) ULP values as defined for sin(x) and cos(x)
sinpi(x) For x in the domain [-1, 1], the maximum absolute error is <= 2-13 and

larger otherwise.
sqrt(x) Implemented as x * rsqrt(x) with special cases handled correctly.
tan(x) Implemented as sin(x) * (1.0 / cos(x))
tanh(x) Implemented as (t Ð 1.0)/(t + 1.0) , where t = exp(2.0 *

x)

tanpi(x) Implemented as tan(x * pi)
trunc Correctly rounded

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 289 of 298

Table 7.3 describes the minimum accuracy of half-precision floating-point basic arithmetic
operations and math functions given as ULP values. Table 7.3 applies to iOS and macOS,
starting with Apple GPU Family 4 hardware.

Table 7.3. Accuracy of half - precision floating -point operations and functions

Math Function Min imum Accuracy (ULP Values)

x + y Correctly rounded
x - y Correctly rounded
x * y Correctly rounded
1.0 / x Correctly rounded
x / y Correctly rounded
acos(x) <= 1 ulp
acosh(x) <= 1 ulp
asin(x) <= 1 ulp
asinh(x) <= 1 ulp
atan(x) <= 1 ulp
atanh(x) <= 1 ulp
atan2(y, x) <= 1 ulp
ceil Correctly rounded
copysign 0 ulp
cos(x) <= 1 ulp
cosh(x) <= 1 ulp
cospi(x) <= 1 ulp
exp(x) <= 1 ulp
exp2(x) <= 1 ulp
exp10(x) <= 1 ulp
fabs 0 ulp
fdim Correctly rounded
floor Correctly rounded

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 290 of 298

Math Function Min imum Accuracy (ULP Values)

fma Correctly rounded
fmax 0 ulp
fmin 0 ulp
fmod 0 ulp
fract Correctly rounded
frexp 0 ulp
ilogb 0 ulp
ldexp Correctly rounded
log(x) <= 1 ulp
log2(x) <= 1 ulp
log10(x) <= 1 ulp
modf 0 ulp
nextafter 0 ulp
rint Correctly rounded
round(x) Correctly rounded
rsqrt Correctly rounded
sin(x) <= 1 ulp
sinh(x) <= 1 ulp
sincos(x) ULP values as defined for sin(x) and cos(x)
sinpi(x) <= 1 ulp
sqrt(x) Correctly rounded
tan(x) <= 1 ulp
tanh(x) <= 1 ulp
tanpi(x) <= 1 ulp
trunc Correctly rounded

Table 7.4 describes the minimum accuracy of brain floating-point basic arithmetic operations
and math functions given as ULP values. Table 7.4 applies to all OS, starting with Apple GPU
Family 6 or Metal GPU Family 3.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 291 of 298

Table 7.4 . Accuracy of brain floating -point operations and functions

Math Function Minimum Accuracy (ULP Values)

x + y Correctly rounded
x - y Correctly rounded
x * y Correctly rounded
1.0 / x Correctly rounded
x / y Correctly rounded

Table 7.5. Accuracy of brain floating -point operations and functions with fast

math enabled

Math Function Minimum Accuracy (ULP Values)

x + y Correctly rounded
x - y Correctly rounded
x * y Correctly rounded
1.0 / x <= 0.6 ulp for x in the domain of 2-126 to 2126
x / y <= 0.6 ulp for y in the domain of 2-126 to 2126

Even though the precision of individual math operations and functions are specified in Table 7.1,
Table 7.2, Table 7.3, Table 7.4, and Table 7.5, the Metal compiler, in fast math mode (see
section 1.6.5), may do various optimization like reassociate floating-point operations that may
dramatically change results in floating-point. Reassociation may change or ignore the sign of
zero, allow optimizations to assume the arguments and result are not NaN or +/-INF , inhibit or
create underflow or overflow and thus cannot be in code that relies on rounding behavior such
as (x + 252) - 252, or ordered floating-point comparisons.
The ULP is defined as follows:
If x is a real number that lies between two " nite consecutive floating-point numbers a and b,
without being equal to one of them, then ulp(x) = |b " a| , otherwise ulp(x) is the
distance between the two nonequal " nite floating-point numbers nearest x . Moreover,
ulp(NaN) is NaN.

7.5! Edge Case Behavior in Flush to Zero Mode
If denormalized values are flushed to zero, then a function may return one of four results:

1.! Any conforming result when not in flush to zero mode.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 292 of 298

2.! If the result given by step 1 is a subnormal before rounding, it may be flushed to zero.
3.! Any nonflushed conforming result for the function if one or more of its subnormal

operands are flushed to zero.
4.! If the result of step 3 is a subnormal before rounding, the result may be flushed to zero.

In each of the above cases, if an operand or result is flushed to zero, the sign of the zero is
undefined.

7.6! Conversion Rules for Floating-Point and Integer
Types

When converting from a floating-point type to an integer, the conversion uses round toward
zero rounding mode. Use the “round ties to even” or “round toward zero” rounding mode for
conversions from a floating-point or integer type to a floating-point type.
The conversions from half and bfloat to float are lossless. Conversions from float to
half or to bfloat round the mantissa using the round ties to even rounding mode. When
converting a float to a half , denormalized numbers generated for the half data type may
not be flushed to zero.
When converting a floating-point type to an integer type, if the floating-point value is NaN, the
resulting integer is 0.
Note that fast math does not change the accuracy of conversion operations.

7.7! Texture Addressing and Conversion Rules
The texture coordinates specified to the sample , sample_compare , gather ,
gather_compare , read, and write functions cannot be INF or NaN. An out-of-bound
texture read returns a zero value for all components, and Metal ignores an out-of-bound
texture write .
The following sections discuss the application of conversion rules when reading and writing
textures in a graphics or kernel function. When performing a multisample resolve operation,
these conversion rules do not apply.

F"F"!$ =*.&'(5-*. $;D)'5 $>*($Z*(2+)-B', $A.4'/'($7-C') $9+4+$1P3'5 $

This section discusses converting normalized integer pixel data types to floating-point values
and vice-versa.

7.7.1.1! Converting Normalized Integer Pixel Data Types to Floating-Point Values
For textures that have 8-, 10-, or 16-bit normalized unsigned integer pixel values, the texture
sample and read functions convert the pixel values from an 8- or 16-bit unsigned integer to a
normalized single- or half-precision floating-point value in the range [0.0 É 1.0] .

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 293 of 298

For textures that have 8- or 16-bit normalized signed integer pixel values, the texture sample
and read functions convert the pixel values from an 8- or 16-bit signed integer to a normalized
single- or half-precision floating-point value in the range [- 1.0 É 1.0] .
These conversions are performed as listed in the second column of Table 7.6. The precision of
the conversion rules is guaranteed to be <= 1.5 ulp, except for the cases described in the
“Corner Cases” column.

Table 7.6 . Conversion to a normalized float value

Convert from Conversion Rule to Normalized
Float

Corner Cases

1-bit normalized
unsigned integer

float(c) 0 must convert to 0.0
1 must convert to 1.0

2-bit normalized
unsigned integer

float(c) / 3.0 0 must convert to 0.0
3 must convert to 1.0

4-bit normalized
unsigned integer

float(c) / 15.0 0 must convert to 0.0
15 must convert to 1.0

5-bit normalized
unsigned integer

float(c) / 31.0 0 must convert to 0.0
31 must convert to 1.0

6-bit normalized
unsigned integer

float(c) / 63.0 0 must convert to 0.0
63 must convert to 1.0

8-bit normalized
unsigned integer

float(c) / 255.0 0 must convert to 0.0
255 must convert to 1.0

10-bit normalized
unsigned integer

float(c) / 1023.0 0 must convert to 0.0
1023 must convert to 1.0

16-bit normalized
unsigned integer

float(c) / 65535.0 0 must convert to 0.0
65535 must convert to 1.0

8-bit normalized
signed integer

max(- 1.0,
float(c)/127.0)

-128 and -127 must convert to -1.0
0 must convert to 0.0
127 must convert to 1.0

16-bit normalized
signed integer

max(- 1.0,
float(c)/32767.0)

-32768 and -32767 must convert to
-1.0
0 must convert to 0.0
32767 must convert to 1.0

7.7.1.2! Converting Floating-Point Values to Normalized Integer Pixel Data Types
For textures that have 8-, 10-, or 16-bit normalized unsigned integer pixel values, the texture
write functions convert the single- or half-precision floating-point pixel value to an 8- or 16-bit
unsigned integer.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 294 of 298

For textures that have 8- or 16-bit normalized signed integer pixel values, the texture write
functions convert the single- or half-precision floating-point pixel value to an 8- or 16-bit
signed integer.
NaN values are converted to zero.
Conversions from floating-point values to normalized integer values are performed as listed in
Table 7.7.

Table 7.7. Conversion from floating -point to a normalized integer value

Convert to Conversion Rule to Normalized Integer

1-bit normalized
unsigned integer

x = min(max(f, 0.0), 1.0)
i0:0 = intRTNE(x)

2-bit normalized
unsigned integer

x = min(max(f * 3.0, 0.0), 3.0)
i1:0 = intRTNE(x)

4-bit normalized
unsigned integer

x = min(max(f * 15.0, 0.0), 15.0)
i3:0 = intRTNE(x)

5-bit normalized
unsigned integer

x = min(max(f * 31.0, 0.0), 31.0)
i4:0 = intRTNE(x)

6-bit normalized
unsigned integer

x = min(max(f * 63.0, 0.0), 63.0)
i5:0 = intRTNE(x)

8-bit normalized
unsigned integer

x = min(max(f * 255.0, 0.0), 255.0)
i7:0 = intRTNE(x)

10-bit normalized
unsigned integer

x = min(max(f * 1023.0, 0.0), 1023.0)
i9:0 = intRTNE(x)

16-bit normalized
unsigned integer

result = min(max(f * 65535.0, 0.0), 65535.0)
i15:0 = intRTNE(x)

8-bit normalized
signed integer

result = min(max(f * 127.0, - 127.0), 127.0)
i7:0 = intRTNE(x)

16-bit normalized
signed integer

result = min(max(f * 32767.0, - 32767.0),32767.0)
i15:0 = intRTNE(x)

In Metal 2, all conversions to and from unorm data types round correctly.

F"F"0$ =*.&'(5-*. $;D)'5 $>*($X+)>[7('8-5-*. $U)*+4-./ [7*-.4 $7-C') $9+4+$1P3' $$

For textures that have half-precision floating-point pixel color values, the conversions from
half to float are lossless. Conversions from float to half round the mantissa using the
round ties to even rounding mode. Denormalized numbers for the half data type which may be
generated when converting a float to a half may not be flushed to zero. A float NaN may

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 295 of 298

be converted to an appropriate NaN or be flushed to zero in the half type. A float INF must
be converted to an appropriate INF in the half type.

F"F"6$ =*.&'(5-*. $;D)'5 $>*($E-./)' [7('8-5-*. $U)*+4-./ [7*-.4 $7-C') $9+4+$1P3' $

The following rules apply for reading and writing textures that have single-precision floating-
point pixel color values:
¥! NaNs may be converted to a NaN value(s) or be flushed to zero.
¥! INFs must be preserved.
¥! Denormalized numbers may be flushed to zero.
¥! All other values must be preserved.
F"F":$ =*.&'(5-*. $;D)'5 $>*($!M[$+., $!! [J-4$U)*+4-./ [7*-.4 $7-C') $9+4+$1P3' $

The floating-point formats use 5 bits for the exponent, with 5 bits of mantissa for 10-bit
floating-point types, or 6-bits of mantissa for 11-bit floating-point types with an additional
hidden bit for both types. There is no sign bit. The 10- and 11-bit floating-point types preserve
denormals.
These floating-point formats use the following rules:
¥! If the exponent and mantissa are 0, the floating-point value is 0.0.
¥! If the exponent is 31 and the mantissa is #= 0, the resulting floating-point value is a NaN.
¥! If the exponent is 31 and the mantissa is 0, the resulting floating-point value is positive

infinity.
¥! If 0 <= exponent <= 31, the floating-point value is 2 ^ (exponent - 15) * (1 + mantissa/N).
¥! If the exponent is 0 and the mantissa is #= 0, the floating-point value is a denormalized

number given as 2 ^ (exponent – 14) * (mantissa / N). If mantissa is 5 bits, N is 32; if
mantissa is 6 bits, N is 64.

Conversion of a 10- or 11-bit floating-point pixel data type to a half- or single-precision
floating-point value is lossless. Conversion of a half or single precision floating-point value to a
10- or 11-bit floating-point value must be <= 0.5 ULP. Any operation that results in a value less
than zero for these floating-point types is clamped to zero.
F"F"#$ =*.&'(5-*. $;D)'5 $>*($K[J-4$U)*+4-./ [7*-.4 $7-C') $9+4+$1P3' $Y-4@$+$#[J-4$

IC3*.'.4 $

The RGB9E5_SharedExponent shared exponent floating-point format uses 5 bits for the
exponent and 9 bits for the mantissa. There is no sign bit.
Conversion from this format to a half- or single-precision floating-point value is lossless and
computed as 2 ^ (shared exponent – 15) * (mantissa/512) for each color channel.
Conversion from a half or single precision floating-point RGB color value to this format is
performed as follows, where N is the number of mantissa bits per component (9), B is the
exponent bias (15) and Emax is the maximum allowed biased exponent value (31).
¥! Clamp the r , g, and b components (in the process, mapping NaN to zero) as follows:
rc = max(0, min(sharedexpmax, r)
gc = max(0, min(sharedexpmax, g)
bc = max(0, min(sharedexpmax, b)

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 296 of 298

Where sharedexpmax = ((2N Ð 1)/2N) * 2(Emax Ð B) .
¥! Determine the largest clamped component maxc :!
maxc = max(rc, gc, bc)

¥! Compute a preliminary shared exponent expp !

expp = max(- B Ð 1, floor(log2(maxc)) + 1 + B
¥! Compute a refined shared exponent exps
maxs = floor((maxc / 2expp - B- N) + 0.5f)
exps = expp, if 0 <= maxs < 2N, and exps = expp + 1, if maxs = 2N.

¥! Finally, compute three integer values in the range 0 to 2N Ð 1:
rs = floor(rc / 2expp - B- N) + 0.5f)
gs = floor(gc / 2expp - B- N) + 0.5f)
bs = floor(bc / 2expp - B- N) + 0.5f)
Conversion of a half- or single-precision floating-point color values to the
MTLPixelFormatRGB9E5Float shared exponent floating-point value is <= 0.5 ULP.

F"F"<$ =*.&'(5-*. $;D)'5 $>*($E-/.', $+., $S.5-/.', $A.4'/'($7-C') $9 +4+$1P3'5 $

For textures that have an 8- or 16-bit signed or unsigned integer pixel values, the texture
sample and read functions return a signed or unsigned 32-bit integer pixel value. The
conversions described in this section must be correctly saturated.
Writes to these integer textures perform one of the conversions listed in Table 7.8.

Table 7.8 . Conversion between integer pixel data types

Convert From To Conversion Rule

32-bit signed integer 8-bit signed integer result =
convert_char_saturate(val)

32-bit signed integer 16-bit signed integer result =
convert_short_saturate(val)

32-bit unsigned
integer

8-bit unsigned
integer

result =
convert_uchar_saturate(val)

32-bit unsigned
integer

16-bit unsigned
integer

result =
convert_ushort_saturate(val)

F"F"F$ =*.&'(5-*. $;D)'5 $>*($5;RTV $+., $5TR;V $1'C4D('5 $$

Conversion from sRGB space to linear space is automatically done when sampling from an
sRGB texture. The conversion from sRGB to linear RGB is performed before the filter specified
in the sampler specified when sampling the texture is applied. If the texture has an alpha
channel, the alpha data is stored in linear color space.

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 297 of 298

Conversion from linear to sRGB space is automatically done when writing to an sRGB texture. If
the texture has an alpha channel, the alpha data is stored in linear color space.
The following is the conversion rule for converting a normalized 8-bit unsigned integer from an
sRGB color value to a floating-point linear RGB color value (call it c):
if (c <= 0.04045)

 result = c / 12.92;

else

 result = powr((c + 0.055) / 1.055, 2.4);

The precision of the above conversion must ensure that the delta between the resulting
infinitely precise floating-point value when converting result back to an unnormalized sRGB
value but without rounding to an 8-bit unsigned integer value (call it r) and the original sRGB 8-
bit unsigned integer color value (call it rorig) is <= 0.5; for example:
fabs(r Ð rorig) <= 0.5

Use the following rules for converting a linear RGB floating-point color value (call it c) to a
normalized 8-bit unsigned integer sRGB value:
if (isnan(c)) c = 0.0;
if (c > 1.0)
 c = 1.0;
else if (c < 0.0)
 c = 0.0;
else if (c < 0.0031308)
 c = 12.92 * c;
else
 c = 1.055 * powr(c, 1.0/2.4) - 0.055;

// Convert to integer scale : c = c * 255.0
// Convert to integer: c = c + 0.5
// Drop the decimal fraction . The remaining floating -
point(integral) value
// is converted directly to an integer.

The precision of the above conversion shall be:
fabs(reference result Ð integer result) < 1.0. $

2024-06-06 | Copyright © 2024 Apple Inc. | All Rights Reserved.
Page 298 of 298

!
Apple Inc.!
Copyright © 2018-2024 Apple Inc.!
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Inc., with the following
exceptions: Any person is hereby
authorized to store documentation on a
single computer or device for personal
use only and to print copies of
documentation for personal use
provided that the documentation
contains AppleÕs copyright notice.

No licenses, express or implied, are
granted with respect to any of the
technology described in this document.
Apple retains all intellectual property
rights associated with the technology
described in this document. This
document is intended to assist
application developers to develop
applications only for Apple-branded
products.

Apple Inc.!
One Apple Park Way!
Cupertino, CA 95014 !
408 -996 -1010

Apple is a trademark of Apple Inc.,
registered in the U.S. and other
countries.

APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILIT Y, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED ÒAS IS,Ó
AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT, ERROR OR INACCURACY IN
THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the
exclusion of implied warranties or
liability, so the above exclusion may
not apply to you.

