
Metal Shading Language for Core
Image Kernels

 Developer

Contents

Overview 3

CIKernel Function Requirements 4

Data Types 5
Destination Types . 5
Sampler Types . 5

Functions 6
Relational Functions . 6
Trigonometry Functions . 6
Color Functions . 6
Destination Functions . 6
Sampling Functions . 7

Compiling and Linking 9

Xcode Integration 10

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

2

Overview

The Metal Shading Language is a C++11-style programming language normally used for writing Metal performance
shaders to run on the GPU. This guide shows how you can use the language to write Core Image kernels to add custom
image processing routines to your Core Image pipeline. This document defines the Metal Shading Language features
supported for CIKernel.

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

3

CIKernel Function Requirements
Denote a CIKernel function by enclosing it with an extern C qualifier. The name of the function can then be used
to initialize a CIKernel with the [CIKernel kernelWithName:fromMetalLibraryData:] API.

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

4

Data Types

For a complete list of supported data types, see the Metal Shading Language Specification. The following additional
data types are supported for CIKernel objects and declared in coreimage namespace.

Destination Types

Type Description

destination A kernel parameter type that allows access to the position of the pixel
currently being computed. This parameter, which is required for
CIWarpKernel and optional for CIColorKernel and CIKernel,
must be the last parameter to a kernel function.

group::destination¹ Same as a destination type, but allows write access to the 2 x 2 group
of float4 pixels currently being computed.

group::destination_h¹ Same as a destination type, but allows write access to the 2 x 2 group
of half4 pixels currently being computed.

Sampler Types

Type Description

sample_t A sample value from a CIImage represented by a 4D 32-bit
floating-point vector. Use as a parameter type only for representing a
sample from an image. Otherwise behaves as a float4.

sample_h¹ A sample value from a CIImage represented by a 4D 16-bit
floating-point vector. Use as a parameter type only for representing a
sample from an image. Otherwise behaves as a half4.

sampler A sampler for a CIImage that returns 4D 32-bit floating-point
precision samples.

sampler_h¹ A sampler for a CIImage that returns 4D 16-bit floating-point
precision samples.

¹ Available in iOS 12 and later and macOS 10.14 and later.

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

5

https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf

Functions

In addition to all intrinsic functions available in the Metal standard library, the following built-in functions are also
available in coreimage namespace.

Relational Functions

Function Returns

vec<T,N> compare(vec<T,N> c,
vec<T,N> a, vec<T,N> b)

Elementwise (c < 0) ? a : b

Trigonometry Functions

Function Returns

float2 sincos(float) A vector containing the sine and cosine of an angle
float2 cossin(float) A vector containing the cosine and sine of an angle

Color Functions

Function Returns

float4 premultiply(float4)half4
premultiply(half4)

Multiplies red, green, and blue components of the parameter by
its alpha component.

float4 unpremultiply(float4)half4
unpremultiply(half4)

If the alpha component of the parameter is greater than 0,
divides the red, green, and blue components by alpha. If alpha
is 0, this function returns the parameter.

float3
srgb_to_linear(float3)half3
srgb_to_linear(half3)

(abs(s) < 0.04045) ? (s / 12.92) : sign(s) *
pow(abs(s)*0.947867298578199 +
0.052132701421801, 2.4)

float3 linear_to_srgb(floa3)half3
linear_to_srgb(half3)

(abs(s) < 0.0031308) ? (s * 12.92) : sign(s) *
pow(abs(s), 1.0/2.4) * 1.055 - 0.055)

float4
srgb_to_linear(float4)half4
srgb_to_linear(half4)

unpremultiply(s);srgb_to_linear(s.rgb);premultiply(s);

float4
linear_to_srgb(float4)half4
linear_to_srgb(half4)

unpremultiply(s);linear_to_srgb(s.rgb);premultiply(s);

Destination Functions
coord

float2 coord()

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

6

Returns the position, in working space coordinates, of the pixel currently being computed. The destination space
refers to the coordinate space of the image youʼre rendering.

write

void write(float4 v0, float4 v1, float4 v2, float4 v3)
void write(half4 v0, half4 v1, half4 v2, half4 v3)

Writes four-color values to the destination image for the current 2 x 2 group of pixels.

Sampling Functions
sample

float4 sample(float2 coord)
half4 sample(float2 coord)

Returns the pixel value produced from the sampler at the position coord, where coord is specified in the samplerʼs
coordinate system.

transform

float2 transform(float2 coord)

Returns the position in the coordinate space of the sampler thatʼs associated with the position defined in working
space coordinates coord. Working space coordinates reflect any transformations that youʼve applied to the working
space.

For example, if youʼre producing a pixel in the working space, and you need to retrieve the pixels that surround this
pixel in the original image, youʼdmake calls similar to the following, where d is the location of the pixel youʼre producing
in the working space, and image is the image source for the pixels.

src.transform(d + float2(-1.0,-1.0));
src.transform(d + float2(+1.0,-1.0));
src.transform(d + float2(-1.0,+1.0));
src.transform(d + float2(+1.0,+1.0));

coord

float2 coord()

Returns the position, in sampler space, of the sampler thatʼs associated with the current output pixel after applying
any transformation matrix associated with the sampler. The sample space refers to the coordinate space youʼre
texturing from. If your source data is tiled, the sample coordinate will have an offset (dx/dy). You can convert
a destination location to the sampler location using the samplerʼs transform function, which is equivalent to
src.transform(dest.coord()).

extent

float4 extent()

Returns the extent (x, y, width, height) of the sampler in world coordinates as a four-element vector. If the
extent is infinite, the vector (-INF,-INF,INF,INF) is returned.

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

7

origin

float2 origin()

Returns the origin of the sampler extent; equivalent to src.extent().xy.

size

float2 size()

Returns the size of the sampler extent; equivalent to src.extent().zw.

gatherX

float4 gatherX(float2 coord)
half4 gatherX(float2 coord)

Returns four samples of the X-component to be used for bilinear interpolation when sampling at the position coord,
where coord is specified in the samplerʼs coordinate system. The samples are positioned counterclockwise, starting
with the sample to the lower left.

gatherY

float4 gatherY(float2 coord)
half4 gatherY(float2 coord)

Returns four samples of the Y-component to be used for bilinear interpolation when sampling at the position coord,
where coord is specified in the samplerʼs coordinate system. The samples are positioned counterclockwise, starting
with the sample to the lower left.

gatherZ

float4 gatherZ(float2 coord)
half4 gatherZ(float2 coord)

Returns four samples of the Z-component to be used for bilinear interpolation when sampling at the position coord,
where coord is specified in the samplerʼs coordinate system. The samples are positioned counterclockwise, starting
with the sample to the lower left.

gatherW

float4 gatherW(float2 coord)
half4 gatherW(float2 coord)

Returns four samples of the W-component to be used for bilinear interpolation when sampling at the position coord,
where coord is specified in the samplerʼs coordinate system. The samples are positioned counterclockwise, starting
with the sample to the lower left.

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

8

Compiling and Linking

To compile a Metal shader with CIKernel objects, specify the -fcikernel option.

xcrun metal -fcikernel MyKernels.metal -o MyKernels.air

To link a Metal shader with CIKernel code, specify the -cikernel option.

xcrun metallib -cikernel MyKernels.air -o MyKernels.metallib

You can either integrate these steps into your project build configuration manually or specify them in your projectʼs
build settings within Xcode.

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

9

Xcode Integration

To specify the compiler option, add -fcikernel to Other Metal Compiler Flags within the Metal Compiler -
Build Options group in Build Settings.

To specify the linker option, add a new user-defined setting named MTLLINKER_FLAGS in Build Settings and specify
-cikernel for it.

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

10

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

11

Copyright and Notices

Apple Inc.
Copyright© 2018 Apple Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electronic, photocopying,
recording, or otherwise, without prior written permission of Apple Inc., with the following exceptions: Any person is hereby authorized to store documentation
on a single computer or device for personal use only and to print copies of documentation for personal use provided that the documentation contains Appleʼs
copyright notice.

No licenses, express or implied, are granted with respect to any of the technology described in this document. Apple retains all intellectual property rights
associated with the technology described in this document. This document is intended to assist application developers to develop applications only for Apple-
branded products.

Apple Inc.
One Apple Park Way
Cupertino, CA 95014
USA
408-996-1010

Apple is a trademark of Apple Inc., registered in the U.S. and other countries.

APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED ”AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT,
ERROR OR INACCURACY IN THIS DOCUMENT, even if advised of the possibility of such damages.

Some jurisdictions do not allow the exclusion of implied warranties or liability, so the above exclusion may not apply to you.

2018-05-30 | Copyright© 2018 Apple Inc. All Rights Reserved.

12

	Metal Shading Language for Core Image Kernels
	Overview
	CIKernel Function Requirements
	Data Types
	Destination Types
	Sampler Types

	Functions
	Relational Functions
	Trigonometry Functions
	Color Functions
	Destination Functions
	Sampling Functions

	Compiling and Linking
	Xcode Integration

