Metal Shading Language for Core
Image Kernels

Developer

Contents

Overview
CIKernel Function Requirements

Data Types
Destination Types L e e e e e e e e e e e e
Sampler TYPES o e

Functions

Relational Functions L L e e e e e e e e e e e
Trigonometry FUNCLIONS e e e e e e e e e e e e e e e e e e
Color FUNCtions e e e e e e e e e e e
Destination Functions L L L e e e e e e e e
Sampling Functions L L L e e e e e e e e e e e e

Compiling and Linking

Xcode Integration

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

2

(6]

N OO oo oo

Overview

The Metal Shading Language is a C++11-style programming language normally used for writing Metal performance
shaders to run on the GPU. This guide shows how you can use the language to write Core Image kernels to add custom

image processing routines to your Core Image pipeline. This document defines the Metal Shading Language features
supported for CIKernel.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

3

CIKernel Function Requirements

Denote a CIKernel function by enclosing it with an extern C qualifier. The name of the function can then be used
to initialize a CIKernel with the [CIKernel kernelWithName:fromMetallLibraryData:] APL

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

4

Data Types

For a complete list of supported data types, see the Metal Shading Language Specification. The following additional
data types are supported for CIKernel objects and declared in coreimage namespace.

Destination Types

Type Description

destination A kernel parameter type that allows access to the position of the pixel
currently being computed. This parameter, which is required for
CIWarpKernel and optional for CIColorKernel and CIKernel,
must be the last parameter to a kernel function.

group: :destination’ Same as a destination type, but allows write access to the 2 x 2 group

of float4 pixels currently being computed.

Same as a destination type, but allows write access to the 2 x 2 group

1

group::destination_h
of half4 pixels currently being computed.

Sampler Types

Type Description

sample_t A sample value from a CIImage represented by a 4D 32-bit
floating-point vector. Use as a parameter type only for representing a
sample from an image. Otherwise behaves as a floaté.

sample_h' A sample value from a CIImage represented by a 4D 16-bit
floating-point vector. Use as a parameter type only for representing a
sample from an image. Otherwise behaves as a half4.

sampler A sampler for a CIImage that returns 4D 32-bit floating-point
precision samples.
sampler_h' A sampler for a CIImage that returns 4D 16-bit floating-point

precision samples.

' Available in iOS 12 and later and macOS 10.14 and later.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

5

https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf

Functions

In addition to all intrinsic functions available in the Metal standard library, the following built-in functions are also

available in coreimage namespace.

Relational Functions

Function

Returns

vec<T,N> compare(vec<T,N> c,
vec<T,N> a, vec<T,N> b)

Elementwise (c < 9) ? a : b

Trigonometry Functions

Function

Returns

float2 sincos(float)
float2 cossin(float)

A vector containing the sine and cosine of an angle
A vector containing the cosine and sine of an angle

Color Functions

Function

Returns

float4 premultiply(float4)halfs
premultiply(half4)

float4 unpremultiply(float4)halfs
unpremultiply(halfs4)

float3
srgb_to_linear(float3)half3
srgb_to_linear(half3)
float3 linear_to_srgb(floa3)half3
linear_to_srgb(half3)
floats
srgb_to_linear(float4)halfs
srgb_to_linear(half4)
floats
linear_to_srgb(float4)halfs
linear_to_srgb(half4)

Multiplies red, green, and blue components of the parameter by
its alpha component.

If the alpha component of the parameter is greater than O,
divides the red, green, and blue components by alpha. If alpha
is O, this function returns the parameter.

(abs(s) < 0.04045) ? (s / 12.92) : sign(s) x*
pow(abs(s)*0.947867298578199 +
0.052132701421801, 2.4)

(abs(s) < 0.0031308) ? (s * 12.92) : sign(s) *
pow(abs(s), 1.0/2.4) % 1.855 — 0.055)
unpremultiply(s);srgb_to_linear(s.rgb);premultiply(s);

unpremultiply(s);linear_to_srgb(s.rgb);premultiply(s);

Destination Functions

coord

float2 coord()

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

6

Returns the position, in working space coordinates, of the pixel currently being computed. The destination space
refers to the coordinate space of the image you're rendering.

write

void write(float4 vO, float4 vi, float4 v2, float4 v3)
void write(half4 v@, half4 vi, half4 v2, halfs4 v3)

Writes four-color values to the destination image for the current 2 x 2 group of pixels.
Sampling Functions

sample

float4 sample(float2 coord)
half4 sample(float2 coord)

Returns the pixel value produced from the sampler at the position coord, where coord is specified in the sampler’s
coordinate system.

transform

float2 transform(float2 coord)

Returns the position in the coordinate space of the sampler that's associated with the position defined in working
space coordinates coord. Working space coordinates reflect any transformations that you've applied to the working
space.

For example, if you're producing a pixel in the working space, and you need to retrieve the pixels that surround this
pixel in the original image, you'd make calls similar to the following, where d is the location of the pixel you're producing
in the working space, and image is the image source for the pixels.

src.transform(d + float2(-1.0,-1.0));
src.transform(d + float2(+1.0,-1.0));
src.transform(d + float2(-1.0,+1.0));
src.transform(d + float2(+1.0,+1.0));

coord

float2 coord()

Returns the position, in sampler space, of the sampler that's associated with the current output pixel after applying
any transformation matrix associated with the sampler. The sample space refers to the coordinate space you're
texturing from. If your source data is tiled, the sample coordinate will have an offset (dx/dy). You can convert
a destination location to the sampler location using the sampler’'s transform function, which is equivalent to
src.transform(dest.coord()).

extent

float4 extent()

Returns the extent (x, y, width, height) of the sampler in world coordinates as a four-element vector. If the
extent is infinite, the vector (-INF,—-INF, INF, INF) is returned.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

7

origin
float2 origin()

Returns the origin of the sampler extent; equivalent to src.extent () .xy.
size

float2 size()

Returns the size of the sampler extent; equivalent to src.extent () .zw.
gatherX

float4 gatherX(float2 coord)
half4 gatherX(float2 coord)

Returns four samples of the X-component to be used for bilinear interpolation when sampling at the position coord,
where coord is specified in the sampler’s coordinate system. The samples are positioned counterclockwise, starting
with the sample to the lower left.

gatherY

float4 gatherY(float2 coord)
half4 gatherY(float2 coord)

Returns four samples of the Y-component to be used for bilinear interpolation when sampling at the position coord,
where coord is specified in the sampler’s coordinate system. The samples are positioned counterclockwise, starting
with the sample to the lower left.

gatherz

float4 gatherZ(float2 coord)
half4 gatherzZ(float2 coord)

Returns four samples of the Z-component to be used for bilinear interpolation when sampling at the position coord,
where coord is specified in the sampler’s coordinate system. The samples are positioned counterclockwise, starting
with the sample to the lower left.

gatherwW

float4 gatherW(float2 coord)
half4 gatherW(float2 coord)

Returns four samples of the W-component to be used for bilinear interpolation when sampling at the position coord,
where coord is specified in the sampler’s coordinate system. The samples are positioned counterclockwise, starting
with the sample to the lower left.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

8

Compiling and Linking

ClKernel Intermediate Metal Library
Source File Representation File Data File

.metal .air metallib .metallib

Options: —fcikernel —cikernel

To compile a Metal shader with CIKernel objects, specify the —fcikernel option.
xcrun metal —-fcikernel MyKernels.metal -o MyKernels.air

To link a Metal shader with CIKernel code, specify the —cikernel option.

xcrun metallib —cikernel MyKernels.air -o MyKernels.metallib

You can either integrate these steps into your project build configuration manually or specify them in your project’s
build settings within Xcode.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

9

Xcode Integration

To specify the compiler option, add —fcikernel to Other Metal Compiler Flags within the Metal Compiler -
Build Options group in Build Settings.

D General Capabilities Resource Tags Info Build Settings Build Phases Build Rules
PROJECT Basic Customized Levels + Q~ Metal [x]

g ClKernelDemo

TARGETS 'V Metal Compiler - Build Options
/A CIKernelDemo Setting | A ClKernelDemo
Enable fast math No &
Header Search Paths
Ignore Warnings No ¢
Metal language revision o]
Optimization Level <
» Preprocessor Definitions
¥ Produce debugging information <Multiple values> ¢
Debug Yes
Release No ¢
Treat Warnings as Errors No ¢
+ -

To specify the linker option, add a new user-defined setting named MTLLINKER_FLAGS in Build Settings and specify
—cikernel forit.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

10

PROJECT
5 ciKernelDemo
TARGETS

/M ClKernelDemo

General Capabilities

Basic Customized Levels

'V Static Analyzer - Generic Issues
Setting
Dead Stores
Improper Memory Management
Misuse of 'nonnull’

v Static Analyzer - Issues - Apple APIs
Setting
Improper Handling of CFError and NSError
Missing Localizability
Missing Localization Context Comment
Misuse of Collections API
Misuse of Grand Central Dispatch

Performance Anti-Patterns with Grand Central Dispatch
Suspicious Conversions of NSNumber and CFNumberRef

'V Static Analyzer - Issues - Objective-C
Setting
@synchronized with nil mutex
Improper Instance Cleanup in '-dealloc'
Method Signatures Mismatch
Misuse of Objective-C generics
Unused Ivars
Violation of 'self = [super init]' Rule
Violation of Reference Counting Rules

v Static Analyzer - Issues - Security
Setting

Floating Point Value Used as Loop Counter
Misuse of Keychain Services AP|
Unchecked Return Values
Use of 'getpw!, 'gets' (Buffer Overflow)
Use of 'mktemp' or Predictable 'mktemps'
Use of 'rand' Functions
Use of 'strcpy’ and 'strcat’
Use of 'vfork'

¥ User-Defined

Setting

» MTLLINKER_FLAGS ernel

Resource Tags Info

Build Settings Build Phases

+

| A ClKernelDemo
Yes &
Yes - $(CLANG_ANALYZER_MALLOC) ¢
Yes (Aggressive) &

| % ClKernelDemo
Yes &
No ¢
No ¢
Yes
Yes
No &

Yes (Aggressive) &

| A ClkernelDemo
Yes &
Yes &
Yes &
Yes
Yes
Yes
Yes

| A CiKernelDemo
No ¢
Yes &
Yes ¢
Yes ¢
Yes ¢
No &
No ¢

Yes

| A ClKernelDemo

Qv

Build Rules

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

i

Copyright and Notices

[

Apple Inc.

Copyright © 2018 Apple Inc.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electronic, photocopying,
recording, or otherwise, without prior written permission of Apple Inc., with the following exceptions: Any person is hereby authorized to store documentation
on a single computer or device for personal use only and to print copies of documentation for personal use provided that the documentation contains Apple’s
copyright notice.

No licenses, express or implied, are granted with respect to any of the technology described in this document. Apple retains all intellectual property rights
associated with the technology described in this document. This document is intended to assist application developers to develop applications only for Apple-
branded products.

Apple Inc.

One Apple Park Way
Cupertino, CA 95014
USA

408-996-1010

Apple is a trademark of Apple Inc., registered in the U.S. and other countries.

APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED "AS IS,"” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT,
ERROR OR INACCURACY IN THIS DOCUMENT, even if advised of the possibility of such damages.

Some jurisdictions do not allow the exclusion of implied warranties or liability, so the above exclusion may not apply to you.

2018-05-30 | Copyright © 2018 Apple Inc. All Rights Reserved.

12

	Metal Shading Language for Core Image Kernels
	Overview
	CIKernel Function Requirements
	Data Types
	Destination Types
	Sampler Types

	Functions
	Relational Functions
	Trigonometry Functions
	Color Functions
	Destination Functions
	Sampling Functions

	Compiling and Linking
	Xcode Integration

