
FairPlay Streaming Overview

 
 Developer 

Contents

FairPlay Streaming 4 ...
Key Delivery Process 4 ...
Content Ingestion and Formatting 5 ...
Key Request 5 ..
Device Identification 7 ...
Content Key Expiration 7 ..

Video Rental 7 ..
Secure Lease 7 ..

Key Management Cryptography 7 ...
Content Playback 8 ..
Context Persistence 8 ...
Application Authentication 8 ..
Versioning Management 8 ...
FPS Over AirPlay 9 ..

Document Revision History 11...

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 2

Figures

Figure 1-1 FPS exchanges 4 ...
Figure 1-2 FPS communication sequence 6 ...
Figure 1-3 AirPlay content key request protocol 9..

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 3

FairPlay Streaming
This overview provides a high-level description of Apple’s FairPlay Streaming (FPS) specification. FPS
securely delivers keys to Apple mobile devices, Apple TV and Safari on OS X, which enables playback of
encrypted video content. This content is delivered over the Web using HTTP Live Streaming (HLS). FPS
allows mobile devices and Apple TV to stop playback based on expiration information sent with the
content key. Additionally, a constant FPS device identifier is sent to the server in a server playback
context (SPC) message, allowing the server to anonymously and privately identify the device. FPS is
integrated into the device operating systems, with native support on iOS and Apple TV. Safari on OS X
enables FPS using EME interface support.

Key Delivery Process
FPS allows a content provider to securely deliver an AES 128-bit content key from the provider’s key
server. The content provider encrypts the H.264 video content with the content key. Then, FPS decrypts
the encrypted video content with the content key. Figure 1-1 shows the key and content exchange.

Figure 1-1 FPS exchanges

• The FPS framework initializes the key delivery process to create a session with the content
provider key server.

• The content provider key server wraps the 128-bit AES content key with the session key and an
anti-replay mechanism.

• The key delivery process implements a triple-protection solution (AES, RSA, and derivation
functions).

• The content provider encrypts the H.264 video content on a per frame basis using AES-CBC
mode with the content key and the initialization vector.

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 4

• The content provider fully encrypts the audio content on a per sample basis using AES-CBC
mode with the content key and the initialization vector.

• FPS supports the H.264 video codec and AAC-LC, HE-AACV1-2, AC-3, and EC-3 audio codecs.
Audio codecs may vary for Safari’s FPS.

• The key handling and the content decryption occur on the kernel of the iOS device. In other
words, the content as well as the content key are kept on the device kernel for the decryption.

• FPS always enforces HDCP for each protected content block.

• FPS supports persistence of the security material for offline playback.

• The content provider manages the content key, initialization vector database associating keys,
and the encryption mode with the content.

• FPS supports AirPlay streaming to Apple TV.

• FPS provides anonymous identification of the device requesting the content key.

• The secure lease mechanism that allows the content providers to manage simultaneously
streams per account.

• FPS supports content key expiration for movie rental on iOS devices and Apple TV.  

Content Ingestion and Formatting
Video content ingestion is not part of the FPS solution. However, some specific requirements have to be
fulfilled to match the key delivery and the protection of the video content.

The content needs to be authored for delivery using HLS. More information on HLS, including a detailed
specification, tools, and best practices, can be found on the Apple developer page at http://
developer.apple.com/streaming.

The content provider encrypts the H.264 video against the content key on a per frame basis during the
ingest process. The initialization vector (IV) has a unique value per encryption, and it is transported along
with the content key. The content provider handles the content ID that uniquely identifies the content,
the content key, and the initialization vector.

Key Request
At the time of playback, the content provider’s application initiates the content key request in FPS. This
first phase creates a server playback context (SPC). It prepares a graphic crypto-context on the client —
to later unwrap the content key and the initialization vector — that includes the session key, an anti-
replay seed, integrity verification, and server authentication elements. FPS protects the SPC with the
content provider’s RSA public key. A number of verifications are performed by FPS to check the content
provider’s certificate before exchanging encrypted media.

The content provider’s application sends both the content ID and the SPC to the content provider’s
server. The server uses the content ID to fetch the appropriate content key and initialization vector. The
content provider opens the SPC to extract the session key, the anti-replay seed, the integrity information,
and the authentication materials. Additionally, the SPC includes a secured version of the content ID as
provided by the application for best practice server verification.

The next step wraps the content key and the initialization vector according to the FPS specification. The
integrity verification is optional, but it is part of the best practice requirements. Next, the server creates a

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 5

http://developer.apple.com/streaming

content key context (CKC) in response to the application that contains the content key and the
initialization vector. The client application then provides CKC to FPS to request a play context.

The transaction with the SPC is valid for a single request. In other words, the anti-replay information
prevents an attacker from invoking FPS more than once with the same server response. The FPS
transaction process is shown in FairPlay Streaming.

Figure 1-2 FPS communication sequence

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 6

Device Identification
Identifying the device that requests the content key is a major privacy challenge. The FPS server
playback context (SPC) provides an anonymous device identification value. The playback device
preserves user privacy by deriving a unique device identifier and adding the content provider’s
application certificate in the SPC. The content provider uses the SPC to distinguish the playback device
from other devices, and no user information is exchanged.

Content Key Expiration
Starting with iOS 9, FPS allows the server to send an expiring content key to Apple mobile devices and
Apple TV. Creating the time-limited key begins with the playback device sending its time reference to
the server in the SPC message. The server manages the key’s expiration according to the playback
device's context, independently of the server time location. The server’s content key context (CKC)
response contains the expiration time along with the content key.

FPS’s content key expiration creates two modes of time sensitive exchange: video rental and secure
lease. These modes can be used separately or together.

Video Rental
The content key is a rental type. FPS does not start the decryption if the content key has expired.
However, FPS continues the user experience if the content key expires during the playback. Only at the
start of the next playback request does the client decline the playback.

Secure Lease
The content key is a lease type. It is typical that a content provider policy would restrict the number of
simultaneous playbacks (slots) for a user account. The server associates a slot to a device, and the server
delivers the content key with expiration that represents the lease. The client may request that the key be
renewed by the server before the lease expires. The server provides a new expiration time for the
content key, and playback continues uninterrupted. If the content key is not renewed, the client stops
the playback when the lease expires. The server recognizes playback has stopped and the server frees
the device slot.

This design ensures that a device is not orphaned (in a stale state) based on time rather than messaging
and garbage collection. The expiration triggers a server event to securely release the device slot. The
server knows playback stopped and frees the device slot as soon as the content key expires and the play
content is discarded. Using the secure lease and the device identification, the server can implement a
robust solution for the management of simultaneous streams, maintaining a seamless user experience.

Key Management Cryptography
The protection uses AES-128. It protects the key during delivery from the server to the device. The
encryption implements a transient and random session key (SK). In other words, the value changes for
every request, even for the same content. SK is a nonce value that FPS selects at the key request start
and FPS shares SK with the server at the runtime.

FPS protocol protects the SK exchange with an advanced cryptographic solution that implements a first
layer of protection using an asymmetrical algorithm, the second using a key derivation and finally
symmetrical encryption that contains the integrity verification.

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 7

The content key protection relies on AES-128 with a double protection that implements the anti-replay
protection.

Content Playback
Once the content key and the initialization vector have been unwrapped and the play context created,
then the application can process the decryption of the content on the per frame basis for video or audio
samples. When the frame or the audio sample is decrypted, the decryption process directly passes the
frame or the sample to the relevant decoder.

Context Persistence
For iOS, the FPS framework may persist the play context for offline playback. The server indicates the
nature of the Content Key type (i.e., transient or persistent) in the CKC response. When the Content Key
type needs persistence, FPS creates a persistent play context that the application manages. The play
context is cryptographically resistant and FPS links the play context with the iOS device.

The application may save the play context within the iOS file system. If the Content Key has an
expiration time, the play context includes the expiration. However, the play context never expires for a
Content Key without an expiration time. The application has the full flexibility to manage a play context
that does not expire.

Application Authentication
The FPS framework does not provide any authentication solution for the application to be authenticated
by its key server. The content provider’s application and the server can implement any authentication
method to prevent unauthorized access to their service.

However, FPS verifies during the key delivery that the server that wraps the content key is server
provisioned with FPS credentials. The framework authenticates the server using RSA combined with
symmetrical algorithm and several challenge values.

Versioning Management
FPS uses the latest compatible and most advanced version of security available on the platform. The
selection is based on the supported version(s) of the content provider’s servers as advertised in the
application during the content key request. This feature ensures that the most secure solution is used to
transport the content key. FPS protocol implements a protection mechanism that avoids an attack to
declassify the server request in order to get an older version of the security scheme.

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 8

FPS Over AirPlay
Apps on an iOS device (the streamer) can send FPS content securely over AirPlay to Apple TV (the
player). The streamer facilitates transmission over AirPlay and sends the FPS encrypted content and key
to Apple TV for decryption. Figure 1-3 shows this process.

Figure 1-3 AirPlay content key request protocol

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 9

• The key request starts from the device that produces the streamer context. The streamer
context restricts the process to the device.

• The Apple TV produces a specific SPC that includes the streamer context.

• After a round trip to the key server, the streaming device proxies the wrapped CKC to the Apple
TV to access the content key and the initialization value.

FPS over AirPlay implements the same level of security for the key delivery than FPS. The player handles
the key, decrypts and plays the content independently of the communication paradigms. For more
information, read FairPlay Streaming Programming Guide.

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 10

Document Revision History 

This table describes the changes to FairPlay Streaming Overview.

Date Notes

2016-06-24 Revised for Offline HLS support with FairPlay Streaming.

2015-06-10 Added information about Context Persistence.

2015-06-06 New document that summarizes FairPlay Streaming encryption for HTTP
Live Streaming.

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 11

Apple Inc. 
Copyright © 2016 Apple Inc. 
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of Apple
Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer or
device for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.

No licenses, express or implied, are
granted with respect to any of the
technology described in this document.
Apple retains all intellectual property
rights associated with the technology
described in this document. This
document is intended to assist
application developers to develop
applications only for Apple-branded
products.

Apple Inc. 
1 Infinite Loop  
Cupertino, CA 95014  
408-996-1010

Apple, the Apple logo, AirPlay, Apple TV,
FairPlay, OS X, and Safari are
trademarks of Apple Inc., registered in
the U.S. and other countries.

iOS is a trademark or registered
trademark of Cisco in the U.S. and other
countries and is used under license.

APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS DOCUMENT IS PROVIDED “AS IS,”
AND YOU, THE READER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT, ERROR
OR INACCURACY IN THIS DOCUMENT,
even if advised of the possibility of such
damages.

Some jurisdictions do not allow the
exclusion of implied warranties or liability,
so the above exclusion may not apply to
you.

2016-09-14 | Copyright © 2016 Apple Inc. All Rights Reserved.

 12

