glsmap/smap_makemesh.c

 
/* Copyright (c) Mark J. Kilgard, 1998.  */
 
/* This program is freely distributable without licensing fees
   and is provided without guarantee or warrantee expressed or
   implied. This program is -not- in the public domain. */
 
#include <assert.h>
#include <stdlib.h>
#include <math.h>
#include <glsmap.h>
 
#include "glsmapint.h"
 
static struct {
    int xl;
    int yl;
    int zl;
    int swap;  /* swap final (s,t) */
    int flip;  /* flip final s or t, ie. [0..1] --> [1..0] */
    float dir;
} faceInfo[5] = {
    { 0, 1, 2, 0,  1.0,  1.0 },  /* front */
    { 0, 2, 1, 0, -1.0,  1.0 },  /* top */
    { 0, 2, 1, 0,  1.0, -1.0 },  /* bottom */
    { 1, 2, 0, 1, -1.0,  1.0 },  /* left */
    { 1, 2, 0, 1,  1.0, -1.0 },  /* right */
};
 
static struct {
    int xl;
    int yl;
    float dir;
} edgeInfo[4] = {
    { 0, 1, -1.0 },
    { 0, 1,  1.0 },
    { 1, 0, -1.0 },
    { 1, 0,  1.0 }
};
 
void
__smapValidateSphereMapMesh(SphereMapMesh *mesh)
{
    /* setup some local variables for variable array size indexing */
    INITFACE(mesh);
    INITBACK(mesh);
 
    float st[2];     /* (s,t) coordinate  */
                     /* range=[0..1,0..1] */
    float v[3];      /* (x,y,z) location on cube map */
                     /* range=[-1..1,-1..1,-1..1] */
    float rv[3];     /* reflection vector, ie. cube map location */
                     /* normalized onto unit sphere */
    float len;       /* distance from v[3] to origin */
                     /* for converting to rv[3] */
    int side;        /* which of 5 faces (all but back face) */
    int i, j;
    int xl, yl, zl;  /* renamed X, Y, Z index */
    int swap;
    int flip;
    int edge;        /* which edge of back face */
    float sc, tc;    /* singularity (s,t) on back face circle */
 
    if (mesh->face) {
        assert(mesh->back == &(mesh->face[5*sqsteps]));
        return;
    }
    assert(mesh->back == NULL);
 
    mesh->face = (STXY*)
        malloc((5*sqsteps+4*ringedspokes) * sizeof(STXY));
    mesh->back = &(mesh->face[5*sqsteps]);
 
    /* for the front and four side faces */
    for (side=0; side<5; side++) {
        /* use faceInfo to parameterize face construction */
        xl  = faceInfo[side].xl;
        yl  = faceInfo[side].yl;
        zl  = faceInfo[side].zl;
        swap = faceInfo[side].swap;
        flip = faceInfo[side].flip;
        /* cube map "Z" coordinate */
        v[zl] = faceInfo[side].dir;
 
        for (i=0; i<mesh->steps; i++) {
            /* cube map "Y" coordinate */
            v[yl] = 2.0/(mesh->steps-1) * i - 1.0;
            for (j=0; j<mesh->steps; j++) {
                /* cube map "X" coordinate */
                v[xl] = 2.0/(mesh->steps-1) * j - 1.0;
 
                /* normalize cube map location to construct */
                /* reflection vector */
                len = sqrt(1.0 + v[xl]*v[xl] + v[yl]*v[yl]);
                rv[0] = v[0]/len;
                rv[1] = v[1]/len;
                rv[2] = v[2]/len;
 
                /* map reflection vector to sphere map (s,t) */
                /* NOTE: face[side][i][j] (x,y) gets updated */
                smapRvecToSt(rv, FACExy(side,i,j));
 
                /* update texture coordinate, */
                /* normalize [-1..1,-1..1] to [0..1,0..1] */
                if (!swap) {
                    FACE(side,i,j).s = (-v[xl] + 1.0)/2.0;
                    FACE(side,i,j).t = (flip*v[yl] + 1.0)/2.0;
                } else {
                    FACE(side,i,j).s = (flip*-v[yl] + 1.0)/2.0;
                    FACE(side,i,j).t = (v[xl] + 1.0)/2.0;
                }
            }
        }
    }
 
 
    /* The back face must be specially handled.  The center
       point in the back face of a cube map becomes a
       a singularity around the circular edge of a sphere map. */
 
    /* Carefully work from each edge of the back face to center
       of back face mapped to the outside of the sphere map. */
 
    /* cube map "Z" coordinate, always -1 since backface */
    v[2] = -1;
 
    /* for each edge */
    /*   [x=-1, y=-1..1, z=-1] */
    /*   [x= 1, y=-1..1, z=-1] */
    /*   [x=-1..1, y=-1, z=-1] */
    /*   [x=-1..1, y= 1, z=-1] */
    for (edge=0; edge<4; edge++) {
        /* cube map "X" coordinate */
        v[edgeInfo[edge].xl] = edgeInfo[edge].dir;
        for (j=0; j<mesh->steps; j++) {         
            /* cube map "Y" coordinate */
            v[edgeInfo[edge].yl] = 2.0/(mesh->steps-1) * j - 1.0;
 
            /* normalize cube map location to construct */
            /* reflection vector */
            len = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
            rv[0] = v[0]/len;
            rv[1] = v[1]/len;
            rv[2] = v[2]/len;
 
            /* Map reflection vector to sphere map (s,t). */
            smapRvecToSt(rv, st);
 
            /* Determine distinance from the center of sphere */
            /* map (0.5,0.5) to (s,t) */
            len = sqrt((st[0]-0.5)*(st[0]-0.5) + (st[1]-0.5)*(st[1]-0.5));
 
            /* Calculate (s,t) location extended to the singularity */
            /* at the center of the back face (ie, extend to */
            /* circle edge of the sphere map). */
            sc = (st[0]-0.5)/len * 0.5 + 0.5;
            tc = (st[1]-0.5)/len * 0.5 + 0.5;
 
            /* (s,t) at back face edge. */
            BACK(edge,0,j).s = (-v[0] + 1.0)/2.0;
            BACK(edge,0,j).t = (-v[1] + 1.0)/2.0;
            BACK(edge,0,j).x = st[0];
            BACK(edge,0,j).y = st[1];
 
            /* If just two rings, we just generate a back face edge
               vertex and a center vertex (2 rings), but if there
               are more rings, we carefully interpolate between the
               edge and center vertices.  Notice how smapStToRvec is used
               to map the interpolated (s,t) into a reflection vector
               that must then be extended to the back cube face (it is
               not correct to just interpolate the texture
               coordinates!). */
            if (mesh->rings > 2) {
                float ist[2];  /* interpolated (s,t) */
                float ds, dt;  /* delta s and delta t */
 
                /* Start interpolating from the edge. */
                ist[0] = st[0];
                ist[1] = st[1];
 
                /* Calculate delta s and delta t for interpolation. */
                ds = (sc - ist[0]) / (mesh->rings-1);
                dt = (tc - ist[1]) / (mesh->rings-1);
 
                for (i=1; i<mesh->rings-1; i++) {
                    /* Incremental interpolation of (s,t). */
                    ist[0] = ist[0] + ds;
                    ist[1] = ist[1] + dt;
 
                    /* Calculate reflection vector from interpolated (s,t). */
                    smapStToRvec(ist, rv);
                    /* Assert that z must be on the back cube face. */
                    assert(rv[2] <= -sqrt(1.0/3.0));
                    /* Extend reflection vector out of back cube face. */
                    /* Note: z is negative value so negate z to avoid */
                    /* inverting x and y! */
                    rv[0] = rv[0] / -rv[2];
                    rv[1] = rv[1] / -rv[2];
 
                    BACK(edge,i,j).s = (-rv[0] + 1.0)/2.0;
                    BACK(edge,i,j).t = (-rv[1] + 1.0)/2.0;
                    BACK(edge,i,j).x = ist[0];
                    BACK(edge,i,j).y = ist[1];
                }
            }
 
            /* (s,t) at circle edge of the sphere map is ALWAYS */
            /* at center of back cube map face */
            BACK(edge,mesh->rings-1,j).s = 0.5;
            BACK(edge,mesh->rings-1,j).t = 0.5;
            /* Location of singularity at the edge of the sphere map. */
            BACK(edge,mesh->rings-1,j).x = sc;
            BACK(edge,mesh->rings-1,j).y = tc;
 
            if (mesh->edgeExtend) {
                /* Add an extra ring to avoid seeing the */
                /* tessellation boundary of the sphere map's sphere. */
                BACK(edge,mesh->rings,j).s = 0.5;
                BACK(edge,mesh->rings,j).t = 0.5;
                /* 0.33 below is a fudge factor. */
                BACK(edge,mesh->rings,j).x = sc + 0.33*(sc - st[0]);
                BACK(edge,mesh->rings,j).y = tc + 0.33*(tc - st[1]);
            }
        }
    }
    for (edge=0; edge<4; edge++) {
        for (j=0; j<mesh->steps; j++) {         
            for (i=1; i<mesh->rings-1; i++) {
            }
        }
    }
}
 
void
smapConfigureSphereMapMesh(SphereMap *smap,
    int steps, int rings, int edgeExtend)
{
    SphereMapMesh *mesh = smap->mesh;
 
    if (steps == mesh->steps &&
        rings == mesh->rings &&
        edgeExtend == mesh->edgeExtend) {
        return;
    }
 
    mesh->steps = steps;
    mesh->rings = rings;
    mesh->edgeExtend = edgeExtend;
 
    mesh->face = NULL;
    mesh->back = NULL;
}