Keras to CoreML conversion fails: 'InputLayer' object is not iterable

My Keras to CoreML conversion fails at this point. I'm using standalone Keras and everything works fine but the conversion

Code Block
for dense_layer in dense_layers:
for layer_size in layer_sizes:
for conv_layer in conv_layers:
NAME = "{}-conv-{}-nodes-{}-dense-{}".format(conv_layer, layer_size, dense_layer, int(time.time()))
print(NAME)
i = i + 1
print(i)
model = Sequential()
model.add(Conv2D(8, (5, 5), padding='same', activation='relu', input_shape=X.shape[1:]))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2), padding='same'))
model.add(Dropout(0.2))
model.add(Conv2D(layer_size, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2), padding='same'))
model.add(Dropout(0.2))
for l in range(conv_layer-1):
model.add(Conv2D(layer_size, (3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2), padding='same'))
model.add(Dropout(0.2))
model.add(Flatten())
for _ in range(dense_layer):
model.add(Dense(layer_size))
model.add(Activation('relu'))
model.add(Dense(CLASSNAME_SIZE))
model.add(Activation('softmax'))
tensorboard = TensorBoard(log_dir="logs/{}".format(NAME))
model.compile(loss='sparse_categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.fit(X, Y, batch_size=32, epochs=1, validation_data=(X_val,Y_val), shuffle=True, callbacks=[tensorboard])
model.save('traffic_signsv8.model')
model.save('traffic_signsv8.h5')
model = load_model('traffic_signsv8.h5')
coremlModel = coremltools.converters.keras.convert(model, input_names = 'image', image_input_names = 'image', input_name_shape_dict={'input_1:0': [3, 48, 48, 1]}, image_scale=1.0/255.0)
coremlModel.save('traffic_signsv8.mlmodel')
spec = coremltools.utils.load_spec("traffic_signsv8.mlmodel")
input = spec.description.input[0]
input.type.imageType.colorSpace = ft.ImageFeatureType.RGB
input.type.imageType.height = 48
input.type.imageType.width = 48
coremltools.utils.save_spec(spec, "try.mlmodel")


Were you able to solve it now?
Keras to CoreML conversion fails: 'InputLayer' object is not iterable
 
 
Q