Hi,
I am using a Mac with M1 Pro. I want to use RandomCrop from tensorflow.keras.layers but while training I get the error below. If I understood correctly, it seems that RngReadAndSkip is not implemented for the GPU.
InvalidArgumentError: Cannot assign a device for operation model/data_augmentation/random_crop/cond/model_data_augmentation_random_crop_cond_input_1/_6: Could not satisfy explicit device specification '' because the node {{colocation_node model/data_augmentation/random_crop/cond/model_data_augmentation_random_crop_cond_input_1/_6}} was colocated with a group of nodes that required incompatible device '/job:localhost/replica:0/task:0/device:GPU:0'. All available devices [/job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:GPU:0].
Colocation Debug Info:
Colocation group had the following types and supported devices:
Root Member(assigned_device_name_index_=2 requested_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' assigned_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' resource_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' supported_device_types_=[CPU] possible_devices_=[]
RngReadAndSkip: CPU
Identity: GPU CPU
Switch: GPU CPU
_Arg: GPU CPU
Colocation members, user-requested devices, and framework assigned devices, if any:
model_data_augmentation_random_crop_cond_input_1 (_Arg) framework assigned device=/job:localhost/replica:0/task:0/device:GPU:0
model/data_augmentation/random_crop/cond/model_data_augmentation_random_crop_cond_input_1/_6 (Switch)
Func/model/data_augmentation/random_crop/cond/then/_0/input/_47 (Identity)
model/data_augmentation/random_crop/cond/then/_0/model/data_augmentation/random_crop/cond/stateful_uniform/RngReadAndSkip (RngReadAndSkip)
Func/model/data_augmentation/random_crop/cond/else/_1/input/_52 (Identity)
Python version:
$ python --version --version
Python 3.8.13 (default, Mar 28 2022, 06:13:39)
[Clang 12.0.0 ]
Libraries used:
$ conda list | grep tensorflow
tensorflow-addons 0.17.0 pypi_0 pypi
tensorflow-deps 2.9.0 0 apple
tensorflow-estimator 2.9.0 pypi_0 pypi
tensorflow-macos 2.9.2 pypi_0 pypi
tensorflow-metal 0.5.0 pypi_0 pypi
Is there any workaround? Or anything I can do to help fixing this?
Thanks