Sorry for the hideous formatting here, I must svk at this inter web thing...
Hello there @Frameworks Engineer, I have a similar issue 'TensorFlow and Numpy issue M1' though a different manifestation. First, here is a subset of my package environment with possible antagonists...
keras-nightly 2.5.0.dev2021032900 pypi_0 pypi
keras-preprocessing 1.1.2 pyhd8ed1ab_0 conda-forge
libgfortran 5.0.0.dev0 11_0_1_hf114ba7_23 conda-forge
libgfortran5 11.0.1.dev0 hf114ba7_23 conda-forge
matplotlib 3.4.3 pypi_0 pypi
matplotlib-inline 0.1.2 pypi_0 pypi
numpy 1.19.5 py39h1f3b974_2 conda-forge
pandas 1.3.1 pypi_0 pypi
python 3.9.6 h54d631c_1_cpython conda-forge
tensorflow-deps 2.5.0 1 apple
tensorflow-estimator 2.5.0 pypi_0 pypi
tensorflow-macos 2.5.0 pypi_0 pypi
tensorflow-metal 0.1.2 pypi_0 pypi
tfa-nightly 0.15.0.dev20210922190150 pypi_0 pypi
Late 2020 M1 with newly installed Version 12.0 Beta (21A5522h)
I can launch my Python/TF/Keras code in Jupyter, define a functional model, define a custom loss function, compile the model, and load training data, but when attempting to run model.fit() I get:
----> 2 history = model.fit(x_train,
3 y_train,
4 batch_size = TRAINING_BATCH_SIZE,
5 epochs=10,
~/miniforge3/envs/tf_macos/lib/python3.9/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1131 training_utils.RespectCompiledTrainableState(self):
1132 # Creates a tf.data.Dataset and handles batch and epoch iteration.
-> 1133 data_handler = data_adapter.get_data_handler(
1134 x=x,
1135 y=y,
.
.
.
~/miniforge3/envs/tf_macos/lib/python3.9/site-packages/pandas/_libs/init.py in
11
12
---> 13 from pandas._libs.interval import Interval
14 from pandas._libs.tslibs import (
15 NaT,
~/miniforge3/envs/tf_macos/lib/python3.9/site-packages/pandas/_libs/interval.pyx in init pandas._libs.interval()
ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 88 from C header, got 80 from PyObject
Welcome your thoughts and suggestions.