Hi everyone,
I'm developing an iOS app using Foundation Models and I've hit a critical limitation that I believe affects many developers and millions of users.
The Issue
Foundation Models requires the device system language to be one of the supported languages. If a user has their device set to an unsupported language (Catalan, Dutch, Swedish, Polish, Danish, Norwegian, Finnish, Czech, Hungarian, Greek, Romanian, and many others), SystemLanguageModel.isSupported returns false and the framework is completely unavailable.
Why This Is Problematic
Scenario: A Catalan user has their iPhone in Catalan (native language). They want to use an AI chat app in Spanish or English (languages they speak fluently).
Current situation:
❌ Foundation Models: Completely unavailable
✅ OpenAI GPT-4: Works perfectly
✅ Anthropic Claude: Works perfectly
✅ Any cloud-based AI: Works perfectly
The user must choose between:
Keep device in Catalan → Cannot use Foundation Models at all
Change entire device to Spanish → Can use Foundation Models but terrible UX
Impact
This affects:
Millions of users in regions where unsupported languages are official
Multilingual users who prefer their device in their native language but can comfortably interact with AI in English/Spanish
Developers who cannot deploy Foundation Models-based apps in these markets
Privacy-conscious users who are ironically forced to use cloud AI instead of on-device AI
What We Need
One of these solutions would solve the problem:
Option 1: Per-app language override (preferred)
// Proposed API
let session = try await LanguageModelSession(preferredLanguage: "es-ES")
Option 2: Faster rollout of additional languages (particularly EU languages)
Option 3: Allow fallback to user-selected supported language when system language is unsupported
Technical Details
Current behavior:
// Device in Catalan
let isAvailable = SystemLanguageModel.isSupported
// Returns false
// No way to override or specify alternative language
Why This Matters
Apple Intelligence and Foundation Models are amazing for privacy and performance. But this language restriction makes the most privacy-focused AI solution less accessible than cloud alternatives. This seems contrary to Apple's values of accessibility and user choice.
Questions for the Community
Has anyone else encountered this limitation?
Are there any workarounds I'm missing?
Has anyone successfully filed feedback about this?(Please share FB number so we can reference it)
Are there any sessions or labs where this has been discussed?
Thanks for reading. I'd love to hear if others are facing this and how you're handling it.
Foundation Models
RSS for tagDiscuss the Foundation Models framework which provides access to Apple’s on-device large language model that powers Apple Intelligence to help you perform intelligent tasks specific to your app.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hello
It seems the model Content Tagging doesn't obey when I define the type of tag I wish in the instructions parameters, always the output are the main topics.
The unique form to get other type of tags like emotions is using Generable + Guided types. The documentation says it is recommended but not mandatory the use instructions.
Maybe I'm setting wrongly the instructions but take a look in the attached snapshot. I copied the definition of tagging emotions from the official documentation. The upper example is employing generable and it works but in the example at the botton I set like instruction the same description of emotion and it doesn't work. I tried with other statements with more or less verbose and never output emotions.
Could you provide a state using instruction where it works? Current version of model isn't working with instruction?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account?
I'm trying to provide a real-time question feature for chatGPT, a logged-in extension account, while leveraging Apple Intelligence's LLM. Is there an API that also affects the extension login account?
Is foundation models matured enough to take input from the Apple Vision framework to generate responses? Something similar to what google's gemini does although in a much smaller scale and for a very specific niche.
We are really excited to have introduced the Foundation Models framework in WWDC25. When using the framework, you might have feedback about how it can better fit your use cases.
Starting in macOS/iOS 26 Beta 4, the best way to provide feedback is to use #Playground in Xcode. To do so:
In Xcode, create a playground using #Playground. Fore more information, see Running code snippets using the playground macro.
Reproduce the issue by setting up a session and generating a response with your prompt.
In the canvas on the right, click the thumbs-up icon to the right of the response.
Follow the instructions on the pop-up window and submit your feedback by clicking Share with Apple.
Another way to provide your feedback is to file a feedback report with relevant details. Specific to the Foundation Models framework, it’s super important to add the following information in your report:
Language model feedback
This feedback contains the session transcript, including the instructions, the prompts, the responses, etc. Without that, we can’t reason the model’s behavior, and hence can hardly take any action.
Use logFeedbackAttachment(sentiment:issues:desiredOutput: ) to retrieve the feedback data of your current model session, as shown in the usage example, write the data into a file, and then attach the file to your feedback report.
If you believe what you’d report is related to the system configuration, please capture a sysdiagnose and attach it to your feedback report as well.
The framework is still new. Your actionable feedback helps us evolve the framework quickly, and we appreciate that.
Thanks,
The Foundation Models framework team
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I am writing a custom package wrapping Foundation Models which provides a chain-of-thought with intermittent self-evaluation among other things. At first I was designing this package with the command line in mind, but after seeing how well it augments the models and makes them more intelligent I wanted to try and build a SwiftUI wrapper around the package.
When I started I was using synchronous generation rather than streaming, but to give the best user experience (as I've seen in the WWDC sessions) it is necessary to provide constant feedback to the user that something is happening.
I have created a super simplified example of my setup so it's easier to understand.
First, there is the Reasoning conversation item, which can be converted to an XML representation which is then fed back into the model (I've found XML works best for structured input)
public typealias ConversationContext = XMLDocument
extension ConversationContext {
public func toPlainText() -> String {
return xmlString(options: [.nodePrettyPrint])
}
}
/// Represents a reasoning item in a conversation, which includes a title and reasoning content.
/// Reasoning items are used to provide detailed explanations or justifications for certain decisions or responses within a conversation.
@Generable(description: "A reasoning item in a conversation, containing content and a title.")
struct ConversationReasoningItem: ConversationItem {
@Guide(description: "The content of the reasoning item, which is your thinking process or explanation")
public var reasoningContent: String
@Guide(description: "A short summary of the reasoning content, digestible in an interface.")
public var title: String
@Guide(description: "Indicates whether reasoning is complete")
public var done: Bool
}
extension ConversationReasoningItem: ConversationContextProvider {
public func toContext() -> ConversationContext {
// <ReasoningItem title="${title}">
// ${reasoningContent}
// </ReasoningItem>
let root = XMLElement(name: "ReasoningItem")
root.addAttribute(XMLNode.attribute(withName: "title", stringValue: title) as! XMLNode)
root.stringValue = reasoningContent
return ConversationContext(rootElement: root)
}
}
Then there is the generator, which creates a reasoning item from a user query and previously generated items:
struct ReasoningItemGenerator {
var instructions: String {
"""
<omitted for brevity>
"""
}
func generate(from input: (String, [ConversationReasoningItem])) async throws -> sending LanguageModelSession.ResponseStream<ConversationReasoningItem> {
let session = LanguageModelSession(instructions: instructions)
// build the context for the reasoning item out of the user's query and the previous reasoning items
let userQuery = "User's query: \(input.0)"
let reasoningItemsText = input.1.map { $0.toContext().toPlainText() }.joined(separator: "\n")
let context = userQuery + "\n" + reasoningItemsText
let reasoningItemResponse = try await session.streamResponse(
to: context, generating: ConversationReasoningItem.self)
return reasoningItemResponse
}
}
I'm not sure if returning LanguageModelSession.ResponseStream<ConversationReasoningItem> is the right move, I am just trying to imitate what session.streamResponse returns.
Then there is the orchestrator, which I can't figure out. It receives the streamed ConversationReasoningItems from the Generator and is responsible for streaming those to SwiftUI later and also for evaluating each reasoning item after it is complete to see if it needs to be regenerated (to keep the model on-track). I want the users of the orchestrator to receive partially generated reasoning items as they are being generated by the generator. Later, when they finish, if the evaluation passes, the item is kept, but if it fails, the reasoning item should be removed from the stream before a new one is generated. So in-flight reasoning items should be outputted aggresively.
I really am having trouble figuring this out so if someone with more knowledge about asynchronous stuff in Swift, or- even better- someone who has worked on the Foundation Models framework could point me in the right direction, that would be awesome!
Hi everyone,
I’m currently exploring the use of Foundation models on Apple platforms to build a chatbot-style assistant within an app. While the integration part is straightforward using the new FoundationModel APIs, I’m trying to figure out how to control the assistant’s responses more tightly — particularly:
Ensuring the assistant adheres to a specific tone, context, or domain (e.g. hospitality, healthcare, etc.)
Preventing hallucinations or unrelated outputs
Constraining responses based on app-specific rules, structured data, or recent interactions
I’ve experimented with prompt, systemMessage, and few-shot examples to steer outputs, but even with carefully generated prompts, the model occasionally produces incorrect or out-of-scope responses.
Additionally, when using multiple tools, I'm unsure how best to structure the setup so the model can select the correct pathway/tool and respond appropriately. Is there a recommended approach to guiding the model's decision-making when several tools or structured contexts are involved?
Looking forward to hearing your thoughts or being pointed toward related WWDC sessions, Apple docs, or sample projects.
I'm running MacOs 26 Beta 5. I noticed that I can no longer achieve 100% usage on the ANE as I could before with Apple Foundations on-device model. Has Apple activated some kind of throttling or power limiting of the ANE? I cannot get above 3w or 40% usage now since upgrading. I'm on the high power energy mode. I there an API rate limit being applied?
I kave a M4 Pro mini with 64 GB of memory.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
In this online session, you can code along with us as we build generative AI features into a sample app live in Xcode. We'll guide you through implementing core features like basic text generation, as well as advanced topics like guided generation for structured data output, streaming responses for dynamic UI updates, and tool calling to retrieve data or take an action.
Check out these resources to get started:
Download the project files: https://developer.apple.com/events/re...
Explore the code along guide: https://developer.apple.com/events/re...
Join the live Q&A: https://developer.apple.com/videos/pl...
Agenda – All times PDT
10 a.m.: Welcome and Xcode setup
10:15 a.m.: Framework basics, guided generation, and building prompts
11 a.m.: Break
11:10 a.m.: UI streaming, tool calling, and performance optimization
11:50 a.m.: Wrap up
All are welcome to attend the session. To actively code along, you'll need a Mac with Apple silicon that supports Apple Intelligence running the latest release of macOS Tahoe 26 and Xcode 26.
If you have questions after the code along concludes please share a post here in the forums and engage with the community.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models