Our app uses Metal for image processing. We have found that if our app (and its possible intensive image processing) is started quickly after user is logged in, then calls to Metal may be hanging/stuck for a good while.
Example: it can take 1-2 minutes for something that usually takes 3-5 seconds! Metal threads are just hanging in a memmove...
In Activity Monitor we see a lot of things are happening right after log-in. But why Metal calls are blocking for so long is unknown to us...
The workaround is to wait a minute before we start our app and start intensive image processing using Metal. But hard to explain this workaround to end-users...
It doesn't happen on all computers but fairly easy to reproduce on some computers.
We are using macOS 15.3.1. M1/M3 Max.
Any good ideas for how to proceed with this problem and possible reach out to Apple engineers?
Thanks! :)
Metal
RSS for tagRender advanced 3D graphics and perform data-parallel computations using graphics processors using Metal.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
The title is self-exploratory. I wasn't able to find the CAMetalDisplayLink on the most recent metal-cpp release (metal-cpp_macOS15_iOS18-beta). Are there any plans to include it in the next release?
Now the examples of metal-cpp are target on desktop and using AppKit which is not supported on iOS. Is there any tips for developing with metal-cpp on mobile device?
When inspecting the geometry in Xcode's metal debugger, I noticed that the shown "frustrum box" didn't make sense. Since Metal uses depth range 0,1 in NDC space, I would expect a vertex that is projected to z:0 to be on the front clipping plane of the frustrum shown in the geometry inspector. This is however not the case. A vertex with ndc z:0 is shown halfway inside the frustrum. Vertices with ndc z less than 0 are correctly culled during rendering, while the geometry inspector's frustrum shows that the vertex is stil inside the frustrum.
The image shows vertices that are visually in the middle of the frustrum on z axis, but at the same time the out position shows that they are projected to z:0. How is this possible, unless there's a bug in the geometry inspector?
Hello!
I need to "draw" a set of particles into the texture. It would be trivial in render encoder of course. However, I would like to implement the task in compute kernel. Every particle draw operation is expected to set 5 texels - "center" one and left/right/upper/lower. Particles can and will overlap, so concurrent draws are to be expected.
I tried using texture atomics - atomic_store() to be more precise. This worked, albeit pretty slowly - too slow for my purpose.
Just to test what would happen, I tried using normal texture write(). I was expecting to see some kind of visual artefacts, but to my surprise, it worked very well (and much faster).
My question: is it safe? I understand that calling write() doesn't guarantee any ordering of the operations, so if multiple threads write to the same texel, the final value may come from any of those threads. But suppose all the threads were to write the very same color? Can I assume that the texel in question will have said color after the compute kernel finishes?
I am using M2 Pro MacBook, but ideally I would love to get the answer for the all Apple Silicon devices. My texture format is R32Int (so as to be able to use atomics), but I could do with any single-channel format, the purpose of the texture is to be binary mask of sorts.
Thanks!
I have a bare-bones Metal app setup where I attach a CAMetalLayer to a window that inherits from a NSWindow with a custom delegate. Everything else is vanilla. I'm also using metal-cpp and metal shader converter.
I'm running into a issue where the application runs fine in the beginning, but once I resize the window, it starts hitching. It turns out that [CAMetalLayer nextDrawable:] frequently (but not always) takes around a full second (plus or minus a few milliseconds) to return once drawableSize has been updated.
I've tried setting allowsNextDrawableTimeout to false which doesn't work; it returns a valid drawable after a second instead of nil. Setting displaySyncEnabled to false reduces the likelihood of this happening to around 50% from 90%+ but does not eliminate it. Setting maximumDrawableCount to 2 or 3 does not seem to make a difference.
By dumping the resource IDs of the returned textures I've noticed something interesting: Before resizing, the layer seems to shuffle between 2 textures or at least 2 resource IDs, but after resizing it starts to create new textures for each returned drawable. Occasionally it seems to reuse a previous resource ID, but it does not seem to have anything to do with whether the method returns quickly or not.
Why does this happen, and how can I fix it? Should I create a new CAMetalLayer when resizing the window instead of updating drawableSize?
I am interested in learning the Metal framework for rendering development. However, most of Apple’s official documentation uses Objective-C code. Therefore, I am seeking guidance on whether it is more advantageous for me to focus solely on learning Swift to gain proficiency in Metal.
I am making a framework in C++ using metal-cpp, basically a small game engine. I am also consequently using metal-cpp-extensions provided in LearnMetalCPP to make applications work.
For one of my classes, I needed to add AppKit.hpp inside a public header file, so I moved it and its associate headers(NSApplication.hpp, NSMenu.hpp, etc.) from Project headers to Public in Build Phases' Headers, however, it started giving me the error "cast of C pointer type 'void *' to Objective-C pointer type 'Class' requires a bridged cast" at several points in the AppKit headers. They don't appear when AppKit and its associates are in the Project headers, or when they are in the Private headers and no headers import it.
I imagined that disabling Objective-C ARC and Using __bridge casts outside of ARC in Build Settings would solve it, but it didn't budge.
I imagined it wouldn't involve actively changing the headers would be the answer, but even if I try to put __bridge before the problematic casts, it didn't recognize __bridge.
How do I solve this? And why is it only happening in Public and not Project headers?