Foundation Models

RSS for tag

Discuss the Foundation Models framework which provides access to Apple’s on-device large language model that powers Apple Intelligence to help you perform intelligent tasks specific to your app.

Foundation Models Documentation

Posts under Foundation Models subtopic

Post

Replies

Boosts

Views

Activity

GenerationError -1 / 1026
Hi, I was using Foundation Models in my app, and suddenly it just stopped working from one moment to the next. To double-check, I created a small test in Playgrounds, but I’m getting the exact same error there too. #Playground { let session = LanguageModelSession() let prompt = "please answer a word" do { let response = try await session.respond(to: prompt) } catch { print("error is \(error)") } } error is Error Domain=FoundationModels.LanguageModelSession.GenerationError Code=-1 "(null)" UserInfo={NSMultipleUnderlyingErrorsKey=( "Error Domain=ModelManagerServices.ModelManagerError Code=1026 \"(null)\" UserInfo={NSMultipleUnderlyingErrorsKey=(\n)}" )} I’m no longer able to get any response from the framework anywhere, even in a fresh project. It's been 5 days. Has anyone else experienced this issue or knows what could be causing it? Thanks in advance! Tahoe 26.2 beta 1, Xcode 26.1.1, iPhone Air simulator 26.1
6
1
479
1w
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account?
Is there an API that allows iOS app developers to leverage Apple Foundation Models to authorize a user's Apple Intelligence extension, chatGPT login account? I'm trying to provide a real-time question feature for chatGPT, a logged-in extension account, while leveraging Apple Intelligence's LLM. Is there an API that also affects the extension login account?
1
0
136
1w
FoundationModels and Core Data
Hi, I have an app that uses Core Data to store user information and display it in various views. I want to know if it's possible to easily integrate this setup with FoundationModels to make it easier for the user to query and manipulate the information, and if so, how would I go about it? Can the model be pointed to the database schema file and the SQLite file sitting in the user's app group container to parse out the information needed? And/or should the NSManagedObjects be made @Generable for better output? Any guidance about this would be useful.
1
0
187
Jun ’25
Does Generable support recursive schemas?
I've run into an issue with a small Foundation Models test with Generable. I'm getting a strange error message with this Generable. I was able to get simpler ones to work. Is this because the Generable is recursive with a property of [HTMLDiv]? The error message is: FoundationModels/SchemaAugmentor.swift:209: Fatal error: 'try!' expression unexpectedly raised an error: FoundationModels.GenerationSchema.SchemaError.undefinedReferences(schema: Optional("SafeResponse<HTMLDiv>"), references: ["HTMLDiv"], context: FoundationModels.GenerationSchema.SchemaError.Context(debugDescription: "Undefined types: [HTMLDiv]", underlyingErrors: [])) The code is: import FoundationModels import Playgrounds @Generable struct HTMLDiv { @Guide(description: "Optional named ID, useful for nicknames") var id: String? = nil @Guide(description: "Optional visible HTML text") var textContent: String? = nil @Guide(description: "Any child elements", .count(0...10)) var children: [HTMLDiv] = [] static var sample: HTMLDiv { HTMLDiv( id: "profileToolbar", children: [ HTMLDiv(textContent: "Log in"), HTMLDiv(textContent: "Sign up"), ] ) } } #Playground { do { let session = LanguageModelSession { "Your job is to generate simple HTML markup" "Here is an example response to the prompt: 'Make a profile toolbar':" HTMLDiv.sample } let response = try await session.respond( to: "Make a sign up form", generating: HTMLDiv.self ) print(response.content) } catch { print(error) } }
4
0
155
Jul ’25
What is the Foundation Models support for basic math?
I am experimenting with Foundation Models in my time tracking app to analyze users tracked events, but I am finding that the model struggles with even basic computation of time. Specifically converting from seconds to hours and minutes. To give just one example, when I prompt: "Convert 3672 seconds to hours, minutes, and seconds. Don't include the calculations in the resulting output" I get this: "3672 seconds is equal to 1 hour, 0 minutes, and 36 seconds". Which is clearly wrong - it should be 1 hour, 1 minute, and 12 seconds. Another issue that I saw a lot is that seconds were considered to be minutes, or that the hours were just completely off. What can I do to make the support for math better? Or is that just something that the model is not meant to be used for?
1
0
173
Jun ’25
Failing to run SystemLanguageModel inference with custom adapter
Hi, I have trained a basic adapter using the adapter training toolkit. I am trying a very basic example of loading it and running inference with it, but am getting the following error: Passing along InferenceError::inferenceFailed::loadFailed::Error Domain=com.apple.TokenGenerationInference.E5Runner Code=0 "Failed to load model: ANE adapted model load failure: createProgramInstanceWithWeights:modelToken:qos:baseModelIdentifier:owningPid:numWeightFiles:error:: Program load new instance failure (0x170006)." UserInfo={NSLocalizedDescription=Failed to load model: ANE adapted model load failure: createProgramInstanceWithWeights:modelToken:qos:baseModelIdentifier:owningPid:numWeightFiles:error:: Program load new instance failure (0x170006).} in response to ExecuteRequest Any ideas / direction? For testing I am including the .fmadapter file inside the app bundle. This is where I load it: @State private var session: LanguageModelSession? // = LanguageModelSession() func loadAdapter() async throws { if let assetURL = Bundle.main.url(forResource: "qasc---afm---4-epochs-adapter", withExtension: "fmadapter") { print("Asset URL: \(assetURL)") let adapter = try SystemLanguageModel.Adapter(fileURL: assetURL) let adaptedModel = SystemLanguageModel(adapter: adapter) session = LanguageModelSession(model: adaptedModel) print("Loaded adapter and updated session") } else { print("Asset not found in the main bundle.") } } This seems to work fine as I get to the log Loaded adapter and updated session. However when the below inference code runs I get the aforementioned error: func sendMessage(_ msg: String) { self.loading = true if let session = session { Task { do { let modelResponse = try await session.respond(to: msg) DispatchQueue.main.async { self.response = modelResponse.content self.loading = false } } catch { print("Error: \(error)") DispatchQueue.main.async { self.loading = false } } } } }
3
0
205
Jun ’25
FoundationModels Content Sanitizer Blocking Legitimate Text Processing
I'm developing a macOS application using the FoundationModels framework (LanguageModelSession) and encountering issues with the content sanitizer blocking legitimate text input. ** Issue Description:** The content sanitizer is flagging text strings that contain certain substrings, even when they represent legitimate technical content. For example: F_SEEL_SEX1S.wav (sE Electronics SEX1S microphone model) Technical product identifiers Serial numbers and version codes ** Broader Concern:** The content sanitizer appears to be applying restrictions that seem inappropriate for user-owned content. Even if a filename were something like "human sex.wav", users should have the right to process their own legitimate files on their own devices without content filtering interference. ** Error Messages:** SensitiveContentSettings: Sanitizer model found unsafe content in value FoundationModels.LanguageModelSession.GenerationError error 2 ** Questions:** Is there a way to disable content sanitization for processing user-owned content? 2. What's the recommended approach for applications that need to handle arbitrary user text? 3. Are there APIs to process personal content without filtering restrictions? ** Environment:** macOS 26.0 FoundationModels framework LanguageModelSession Any guidance would be appreciated.
1
0
292
Jun ’25
InferenceError referencing context length in FoundationModels framework
I'm experimenting with downloading an audio file of spoken content, using the Speech framework to transcribe it, then using FoundationModels to clean up the formatting to add paragraph breaks and such. I have this code to do that cleanup: private func cleanupText(_ text: String) async throws -> String? { print("Cleaning up text of length \(text.count)...") let session = LanguageModelSession(instructions: "The content you read is a transcription of a speech. Separate it into paragraphs by adding newlines. Do not modify the content - only add newlines.") let response = try await session.respond(to: .init(text), generating: String.self) return response.content } The content length is about 29,000 characters. And I get this error: InferenceError::inferenceFailed::Failed to run inference: Context length of 4096 was exceeded during singleExtend.. Is 4096 a reference to a max input length? Or is this a bug? This is running on an M1 iPad Air, with iPadOS 26 Seed 1.
5
0
341
Jul ’25
Foundation Model Always modelNotReady
I'm testing Foundation Model on my iPad Pro (5th gen) iOS 26. Up until late this morning, I can no longer load the SystemLanguageModel.default. I'm not doing anything interesting, something as basic as this is only going to unavailable, specifically I get unavailable reason: modelNotReady. let model = SystemLanguageModel.default ... switch model.availability { case .available: print("LM available") case .unavailable(let reason): print("unavailable reason: ", String(describing: reason)) } I also ran the FoundationModelsTripPlanner app, same thing. It was working yesterday, I have not modified that project either. Why is the Model not ready? How do I fix this? Yes, I tried restarting both my laptop and iPad, no luck.
3
0
261
Jul ’25
Foundation model sandbox restriction error
I'm seeing this error a lot in my console log of my iPhone 15 Pro (Apple Intelligence enabled): com.apple.modelcatalog.catalog sync: connection error during call: Error Domain=NSCocoaErrorDomain Code=4099 "The connection to service named com.apple.modelcatalog.catalog was invalidated: failed at lookup with error 159 - Sandbox restriction." UserInfo={NSDebugDescription=The connection to service named com.apple.modelcatalog.catalog was invalidated: failed at lookup with error 159 - Sandbox restriction.} reached max num connection attempts: 1 Are there entitlements / permissions I need to enable in Xcode that I forgot to do? Code example Here's how I'm initializing the language model session: private func setupLanguageModelSession() { if #available(iOS 26.0, *) { let instructions = """ my instructions """ do { languageModelSession = try LanguageModelSession(instructions: instructions) print("Foundation Models language model session initialized") } catch { print("Error creating language model session: \(error)") languageModelSession = nil } } else { print("Device does not support Foundation Models (requires iOS 26.0+)") languageModelSession = nil } }
2
0
174
Jun ’25
visionOS 26 beta 2: Symbol Not Found on Foundation Models
When I try to run visionOS 26 beta 2 on my device the app crashes on Launch: dyld[904]: Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC Referenced from: <A71932DD-53EB-39E2-9733-32E9D961D186> /private/var/containers/Bundle/Application/53866099-99B1-4BBD-8C94-CD022646EB5D/VisionPets.app/VisionPets.debug.dylib Expected in: <F68A7984-6B48-3958-A48D-E9F541868C62> /System/Library/Frameworks/FoundationModels.framework/FoundationModels Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC Referenced from: <A71932DD-53EB-39E2-9733-32E9D961D186> /private/var/containers/Bundle/Application/53866099-99B1-4BBD-8C94-CD022646EB5D/VisionPets.app/VisionPets.debug.dylib Expected in: <F68A7984-6B48-3958-A48D-E9F541868C62> /System/Library/Frameworks/FoundationModels.framework/FoundationModels dyld config: DYLD_LIBRARY_PATH=/usr/lib/system/introspection DYLD_INSERT_LIBRARIES=/usr/lib/libLogRedirect.dylib:/usr/lib/libBacktraceRecording.dylib:/usr/lib/libMainThreadChecker.dylib:/usr/lib/libViewDebuggerSupport.dylib:/System/Library/PrivateFrameworks/GPUToolsCapture.framework/GPUToolsCapture Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC Referenced from: <A71932DD-53EB-39E2-9733-32E9D961D186> /private/var/containers/Bundle/Application/53866099-99B1-4BBD-8C94-CD022646EB5D/VisionPets.app/VisionPets.debug.dylib Expected in: <F68A7984-6B48-3958-A48D-E9F541868C62> /System/Library/Frameworks/FoundationModels.framework/FoundationModels dyld config: DYLD_LIBRARY_PATH=/usr/lib/system/introspection DYLD_INSERT_LIBRARIES=/usr/lib/libLogRedirect.dylib:/usr/lib/libBacktraceRecording.dylib:/usr/lib/libMainThreadChecker.dylib:/usr/lib/libViewDebuggerSupport.dylib:/System/Library/PrivateFrameworks/GPUToolsCapture.framework/GPUToolsCapture Message from debugger: Terminated due to signal 6
5
0
180
Jun ’25
macOS 26 Beta 2 - Foundation Models - Symbol not found
It seems like there was an undocumented change that made Transcript.init(entries: [Transcript.Entry] initializer private, which broke my application, which relies on (manual) reconstruction of Transcript entries. Worked fine on beta 1, on beta 2 there's this error dyld[72381]: Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC Referenced from: <44342398-591C-3850-9889-87C9458E1440> /Users/mika/experiments/apple-on-device-ai/fm Expected in: <66A793F6-CB22-3D1D-A560-D1BD5B109B0D> /System/Library/Frameworks/FoundationModels.framework/Versions/A/FoundationModels Is this a part of an API transition, if so - Apple, please update your documentation
3
0
328
Jun ’25
How to pass data to FoundationModels with a stable identifier
For example: I have a list of to-dos, each with a unique id (a GUID). I want to feed them to the LLM model and have the model rewrite the items so they start with an action verb. I'd like to get them back and identify which rewritten item corresponds to which original item. I obviously can't compare the text, as it has changed. I've tried passing the original GUIDs in with each to-do, but the extra GUID characters pollutes the input and confuses the model. I've tried numbering them in order and adding an originalSortOrder field to my generable type, but it doesn't work reliably. Any suggestions? I could do them one at a time, but I also have a use case where I'm asking for them to be organized in sections, and while I've instructed the model not to rename anything, it still happens. It's just all very nondeterministic.
2
0
233
Jun ’25
Stream response
With respond() methods, the foundation model works well enough. With streamResponse() methods, the responses are very repetitive, verbose, and messy. My app with foundation model uses more than 500 MB memory on an iPad Pro when running from Xcode. Devices supporting Apple Intelligence have at least 8GB memory. Should Apple use a bigger model (using 3 ~ 4 GB memory) for better stream responses?
2
0
259
Jul ’25
Initializing session with transcript ignores tools
When I initialize a session with an existing transcript using this initializer: public convenience init(model: SystemLanguageModel = .default, guardrails: LanguageModelSession.Guardrails = .default, tools: [any Tool] = [], transcript: Transcript) The tools get ignored. I noticed that when doing that, the model never use the tools. When inspecting the transcript, I can see that the instruction entry does not have any tools available to it. I tried this for both transcripts that already include an instruction entry and ones that don't - both yielding the same result.. Is this the intended behavior / am I missing something here?
1
0
203
Jul ’25
Apple's Illusion of Thinking paper and Path to Real AI Reasoning
Hey everyone I'm Manish Mehta, field CTO at Centific. I recently read Apple's white paper, The Illusion of Thinking and it got me thinking about the current state of AI reasoning. Who here has read it? The paper highlights how LLMs often rely on pattern recognition rather than genuine understanding. When faced with complex tasks, their performance can degrade significantly. I was just thinking that to move beyond this problem, we need to explore approaches that combines Deeper Reasoning Architectures for true cognitive capability with Deep Human Partnership to guide AI toward better judgment and understanding. The first part means fundamentally rewiring AI to reason. This involves advancing deeper architectures like World Models, which can build internal simulations to understand real-world scenarios , and Neurosymbolic systems, which combines neural networks with symbolic reasoning for deeper self-verification. Additionally, we need to look at deep human partnership and scalable oversight. An AI cannot learn certain things from data alone, it lacks the real-world judgment an AI will never have. Among other things, deep domain expert human partners are needed to instill this wisdom , validate the AI's entire reasoning process , build its ethical guardrails , and act as skilled adversaries to find hidden flaws before they can cause harm. What do you all think? Is this focus on a deeper partnership between advanced AI reasoning and deep human judgment the right path forward? Agree? Disagree? Thanks
2
0
280
Jul ’25