Create ML

RSS for tag

Create machine learning models for use in your app using Create ML.

Create ML Documentation

Post

Replies

Boosts

Views

Activity

How to Fine-Tune the SNSoundClassifier for Custom Sound Classification in iOS?
Hi Apple Developer Community, I’m exploring ways to fine-tune the SNSoundClassifier to allow users of my iOS app to personalize the model by adding custom sounds or adjusting predictions. While Apple’s WWDC session on sound classification explains how to train from scratch, I’m specifically interested in using SNSoundClassifier as the base model and building/fine-tuning on top of it. Here are a few questions I have: 1. Fine-Tuning on SNSoundClassifier: Is there a way to fine-tune this model programmatically through APIs? The manual approach using macOS, as shown in this documentation is clear, but how can it be done dynamically - within the app for users or in a cloud backend (AWS/iCloud)? Are there APIs or classes that support such on-device/cloud-based fine-tuning or incremental learning? If not directly, can the classifier’s embeddings be used to train a lightweight custom layer? Training is likely computationally intensive and drains too much on battery, doing it on cloud can be right way but need the right apis to get this done. A sample code will do good. 2. Recommended Approach for In-App Model Customization: If SNSoundClassifier doesn’t support fine-tuning, would transfer learning on models like MobileNetV2, YAMNet, OpenL3, or FastViT be more suitable? Given these models (SNSoundClassifier, MobileNetV2, YAMNet, OpenL3, FastViT), which one would be best for accuracy and performance/efficiency on iOS? I aim to maintain real-time performance without sacrificing battery life. Also it is important to see architecture retention and accuracy after conversion to CoreML model. 3. Cost-Effective Backend Setup for Training: Mac EC2 instances on AWS have a 24-hour minimum billing, which can become expensive for limited user requests. Are there better alternatives for deploying and training models on user request when s/he uploads files (training data)? 4. TensorFlow vs PyTorch: Between TensorFlow and PyTorch, which framework would you recommend for iOS Core ML integration? TensorFlow Lite offers mobile-optimized models, but I’m also curious about PyTorch’s performance when converted to Core ML. 5. Metrics: Metrics I have in mind while picking the model are these: Publisher, Accuracy, Fine-Tuning capability, Real-Time/Live use, Suitability of iPhone 16, Architectural retention after coreML conversion, Reasons for unsuitability, Recommended use case. Any insights or recommended approaches would be greatly appreciated. Thanks in advance!
2
0
280
3w
CreateML
I'm trying to use the Spatial model to perform Object Tracking on a .usdz file that I create. After loading the file, which I can view correctly in the console, I start the training. Initially, I notice that the disk usage on my PC increases. After several GB, the usage stops, but the training progress remains for hours at 0.00% with the message "About 8hr." How can I understand what the issue is? Has anyone else experienced the same problem? Thanks Diego
0
1
170
Oct ’24
Create ML not recognizing Acceleration and Rotation Features
Hi, I'm training a model that should detect a forehand and a backend stroke. The data looks like this: activity,timestamp,Acceleration_X,Acceleration_Y,Acceleration_Z,Rotation_X,Rotation_Y,Rotation_Z forehand,0.0,0.08,-0.08,0.03,0.18,0.26,0.32 I can load it in Create ML but it's showing the acceleration and rotation x,y,z as seperate Doubles and not as one feature. What do I have to change to make this work? Thank you
0
0
173
Oct ’24
CreateML Object Detection Unable to load model from file for reading
Hi, I'm working on training a createML object detector model; I've run into an issue that has me stumped - when I reach somewhere between 100,000 and 150,000 iterations my model will stop training and error out. More Details: CreateML gives me the error prompt that says it is unable to train the model please delete the model source and start from the beginning or duplicate the model and start from the beginning (slightly paraphrased) I see the following error in the createML console (my user name and UUIDs have been redacted) Unable to load model from file:///Users/<my user name>/Library/Caches/com.apple.dt.createml/projects/<UUID HERE>/sessions/checkpoint.sessions/<UUID Here>//training-000132500.checkpoint: Cannot open file:///Users/<my user name>/Library/Caches/com.apple.dt.createml/projects/<UUID Here>/sessions/checkpoint.sessions/<uuid here> //training-000132500.checkpoint/dir_archive.ini for read. Cannot open /Users/<my username>/Library/Caches/com.apple.dt.createml/projects/<UUID>/sessions/checkpoint.sessions/<UUID>//training-000132500.checkpoint/dir_archive.ini for reading I've gone into my Caches in my Library directory and I see each piece of the file path in finder UNTIL the //training-00132500 piece of the path, so I can at least confirm that createML appears to be unable to create or open the file it needs for this training session. Technology Used: Xcode 16 Apple M1 Pro MacOS 14.6.1 (23G93) I've also verified that Xcode and terminal have full disk permissions in my system preferences - I didn't see an option to add CreateML to this list. I've also ensured that my createML project and its data sources are not in iCloud and are indeed local on my desktop. Lastly, I made more space on my machine, so I should have a little over 1 TB of space. Has anybody experienced this before? Any advice? I am majorly blocked on this issue, so I hope somebody else can help shed some light on this issue! Thanks!
0
0
227
Oct ’24
CreateML json format
I'm trying to generate a json for my training data, tried manually first and then tried using roboflow and I still get the same error: _annotations.createml.json file contains field "Index 0" that is not of type String. the json format provided by roboflow was [{"image":"menu1_jpg.rf.44dfacc93487d5049ed82952b44c81f7.jpg","annotations":[{"label":"100","coordinates":{"x":497,"y":431.5,"width":32,"height":10}}]}] any help would be greatly appreciated
2
0
581
Oct ’24
Training data "isn't in the correct format"
Hi folks, I'm trying to import data to train a model and getting the above error. I'm using the latest Xcode, have double checked the formatting in the annotations file, and used jpgrepair to remove any corruption from the data files. Next step is to try a different dataset, but is this a particular known error? (Or am I doing something obviously wrong?) 2019 Intel Mac, Xcode 15.4, macOS Sonoma 14.1.1 Thanks
1
0
214
Oct ’24
Error in TensorFlow in MacBook Air M1 (macOS Monterey)
getting this error again and again even if I tried reinstalling. Traceback (most recent call last): File "", line 1, in File "/Users/aman/LLM/env/lib/python3.8/site-packages/tensorflow/init.py", line 439, in _ll.load_library(_plugin_dir) File "/Users/aman/LLM/env/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/aman/LLM/env/lib/python3.8/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: OBJC_CLASS$_MPSGraphRandomOpDescriptor Referenced from: /Users/aman/LLM/env/lib/python3.8/site-packages/tensorflow-plugins/libmetal_plugin.dylib Expected in: /System/Library/Frameworks/MetalPerformanceShadersGraph.framework/Versions/A/MetalPerformanceShadersGraph
1
0
560
Aug ’24
CreateML - problems with asyncronous training
I can successfully train an ActionClassifier using CreateML. However, I get crashes when I attempt to do the same asynchronously. The model parameters and training data sources are the same in both cases: let modelParameters = MLActionClassifier.ModelParameters(validation: validationDataSet,batchSize: 5, maximumIterations: 10, predictionWindowSize: 120, targetFrameRate: 30) let trainingDataSource = MLActionClassifier.DataSource.directoryWithVideosAndAnnotation(at: myStudyParticipantURLFinal, annotationFile: documentURLFinal, videoColumn: "file", labelColumn: "category", startTimeColumn: "startTime", endTimeColumn: "endTime") the only thing I add to attempt asyncrounous training is sessionParameters: let sessionDirectory = URL(fileURLWithPath: "(NSHomeDirectory())/test") // Session parameters can be provided to `train` method. let sessionParameters = MLTrainingSessionParameters( sessionDirectory: sessionDirectory, reportInterval: 10, checkpointInterval: 100, iterations: 10 ) To the final method: let trainJob = try MLActionClassifier.train(trainingData: trainingDataSource, parameters: modelParameters, sessionParameters: sessionParameters) The job crashes saying it cannot find plist files. I notice that only one plist file is written: meta.plist It seems there should also be a parameters.plist written, but it is not there.
1
0
401
Aug ’24
CreateMl Hand Pose Classifier Preview not showing the Prediction result
I have created and trained a Hand Pose classifier model and am trying to test it. I have noticed in the WWDC2021 "Classify hand poses and actions with Create ML" the preview windows has a prediction result that gives you the prediction based on the live preview or the images. Mine does not have that. When i try to import pictures or do the live test there is no result. Its just the wireframe view and under it there is nothing. How do I fix this please? Thanks.
1
0
410
Jul ’24
CreateML Spatial Unexpected Error
I try to use Create ML Spatial template. but unexpected error is occured in 1-3 minitues. I try some times and same results. Spatial template is not available on an M1 mac ? My development environment is Apple M1 Pro macOS: 15.0 Xcode: 16.0 beta CreateML: 6.0 beta
0
0
420
Jul ’24
CreateML framework for Object Tracking
We can use the CreateML App to build object tracking model in Xcode 16, but is it possible to use CreateML framework as well? No documentation of Create ML object tracking is found yet. The latest documentation I can found is Xcode 15. https://developer.apple.com/documentation/CreateML?changes=latest_minor Really apricated the new feature of object tracking, thank you Apple Team.
2
0
640
Jul ’24
Using MLHandActionClassifierwith visionOS
How do I use either of these data sources with MLHandActionClassifierwith on visionOS? MLHandActionClassifier.DataSource.labeledKeypointsDataFrame MLHandActionClassifier.DataSource.labeledKeypointsData visionOS ARKit HandTracking provides us with 27 joints and 3D co-ordinates which differs from the 21 joint, 2D co-ordinates that these two data sources mention in their documentation.
1
0
489
Jul ’24
Use iPad M1 processor as GPU
Hello, I’m currently working on Tiny ML or ML on Edge using the Google Colab platform. Due to the exhaust of my compute unit’s free usage, I’m being prompted to pay. I’ve been considering leveraging the GPU capabilities of my iPad M1 and Intel-based Mac. Both devices utilize Thunderbolt ports capable of sharing connections up to 30GB/s. Since I’m primarily using a classification model, extensive GPU usage isn’t necessary. I’m looking for assistance or guidance on utilizing the iPad’s processor as an eGPU on my Mac, possibly through an API or Apple technology. Any help would be greatly appreciated!
2
0
716
Jul ’24
MultivariateLinearRegressor problem training
Hi everyone, I attempted to use the MultivariateLinearRegressor from the Create ML Components framework to fit some multi-dimensional data linearly (4 dimensions in my example). I aim to obtain multi-dimensional output points (2 points in my example). However, when I fit the model with my training data and test it, it appears that only the first element of my training data is used for training, regardless of whether I use CreateMLComponents.AnnotatedBatch or [CreateMLComponents.AnnotatedFeature, CoreML.MLShapedArray>] as input. let sourceMatrix: [[Double]] = [ [0,0.1,0.2,0.3], [0.5,0.2,0.6,0.2] ] let referenceMatrix: [[Double]] = [ [0.2,0.7], [0.9,0.1] ] Here is a test code to test the function (ios 18.0 beta, Xcode 16.0 beta) In this example I train the model to learn 2 multidimensional points (4 dimensions) and here are the results of the predictions: ▿ 2 elements ▿ 0 : AnnotatedPrediction<MLShapedArray<Double>, MLShapedArray<Double>> ▿ prediction : 0.20000000298023224 0.699999988079071 ▿ _storage : <StandardStorage<Double>: 0x600002ad8270> ▿ annotation : 0.2 0.7 ▿ _storage : <StandardStorage<Double>: 0x600002b30600> ▿ 1 : AnnotatedPrediction<MLShapedArray<Double>, MLShapedArray<Double>> ▿ prediction : 0.23158159852027893 0.9509953260421753 ▿ _storage : <StandardStorage<Double>: 0x600002ad8c90> ▿ annotation : 0.9 0.1 ▿ _storage : <StandardStorage<Double>: 0x600002b55f20> 0.23158159852027893 0.9509953260421753 is totally random and should be far more closer to [0.9,0.1]. Here is the test code : ( i run it on "My mac, Designed for Ipad") ContentView.swift import CoreImage import CoreImage.CIFilterBuiltins import UIKit import CoreGraphics import Accelerate import Foundation import CoreML import CreateML import CreateMLComponents func createMLShapedArray(from array: [Double], shape: [Int]) -> MLShapedArray<Double> { return MLShapedArray<Double>(scalars: array, shape: shape) } func calculateTransformationMatrixWithNonlinearity(sourceRGB: [[Double]], referenceRGB: [[Double]], degree: Int = 3) async throws -> MultivariateLinearRegressor<Double>.Model { let annotatedFeatures2 = zip(sourceRGB, referenceRGB).map { (featureArray, targetArray) -> AnnotatedFeature<MLShapedArray<Double>, MLShapedArray<Double>> in let featureMLShapedArray = createMLShapedArray(from: featureArray, shape: [featureArray.count]) let targetMLShapedArray = createMLShapedArray(from: targetArray, shape: [targetArray.count]) return AnnotatedFeature(feature: featureMLShapedArray, annotation: targetMLShapedArray) } // Flatten the sourceRGBPoly into a single-dimensional array var flattenedArray = sourceRGB.flatMap { $0 } let featuresMLShapedArray = createMLShapedArray(from: flattenedArray, shape: [2, 4]) flattenedArray = referenceRGB.flatMap { $0 } let targetMLShapedArray = createMLShapedArray(from: flattenedArray, shape: [2, 2]) // Create AnnotatedFeature instances /* let annotatedFeatures2: [AnnotatedFeature<MLShapedArray<Double>, MLShapedArray<Double>>] = [ AnnotatedFeature(feature: featuresMLShapedArray, annotation: targetMLShapedArray) ]*/ let annotatedBatch = AnnotatedBatch(features: featuresMLShapedArray, annotations: targetMLShapedArray) var regressor = MultivariateLinearRegressor<Double>() regressor.configuration.learningRate = 0.1 regressor.configuration.maximumIterationCount=5000 regressor.configuration.batchSize=2 let model = try await regressor.fitted(to: annotatedBatch,validateOn: nil) //var model = try await regressor.fitted(to: annotatedFeatures2) // Proceed to prediction once the model is fitted let predictions = try await model.prediction(from: annotatedFeatures2) // Process or use the predictions print(predictions) print("Predictions:", predictions) return model } struct ContentView: View { var body: some View { VStack {} .onAppear { Task { do { let sourceMatrix: [[Double]] = [ [0,0.1,0.2,0.3], [0.5,0.2,0.6,0.2] ] let referenceMatrix: [[Double]] = [ [0.2,0.7], [0.9,0.1] ] let model = try await calculateTransformationMatrixWithNonlinearity(sourceRGB: sourceMatrix, referenceRGB: referenceMatrix, degree: 2 ) print("Model fitted successfully:", model) } catch { print("Error:", error) } } } } }
3
0
593
Jul ’24