Explore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.

Posts under General subtopic

Post

Replies

Boosts

Views

Created

Vision framework OCR missing Swedish support?
WWDC 2024 mentioned that the OCR feature from the Vision framework has support for "Korean, Swedish, and Chinese", but the Swedish support does not seem to be available... Running either print(try? VNRecognizeTextRequest().supportedRecognitionLanguages()) or var ocrRequest = RecognizeTextRequest(.revision3) print(ocrRequest.supportedRecognitionLanguages) did not print out Swedish as one of the supported languages, but Korean and Chinese are. Tested on early versions of iOS 18 developer beta, and the latest version of iOS 18.1 (22B5054e).
1
0
656
Oct ’24
Kernel dying issue after installing tensorflow
I was working on my project and when I tried to train a model the kernel crashed, so I restarted the kernel and tried the same and still I got the same crashing issue. Then I read one of the thread having the same issue where the apple support was saying to install tensorflow-macos and tensorflow-metal and read the guide from this site: https://developer.apple.com/metal/tensorflow-plugin/ and I did so, I tried every single thing and when I tried the test code provided in the site, I got the same error, here's the code and the output. Code: import tensorflow as tf cifar = tf.keras.datasets.cifar100 (x_train, y_train), (x_test, y_test) = cifar.load_data() model = tf.keras.applications.ResNet50( include_top=True, weights=None, input_shape=(32, 32, 3), classes=100,) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"]) model.fit(x_train, y_train, epochs=5, batch_size=64) and here's the output: Epoch 1/5 The Kernel crashed while executing code in the current cell or a previous cell. Please review the code in the cell(s) to identify a possible cause of the failure. Click here for more info. View Jupyter log for further details. And here's the half of log file as it was not fully coming: metal_plugin/src/device/metal_device.cc:1154] Metal device set to: Apple M1 2024-10-06 23:30:49.894405: I metal_plugin/src/device/metal_device.cc:296] systemMemory: 8.00 GB 2024-10-06 23:30:49.894420: I metal_plugin/src/device/metal_device.cc:313] maxCacheSize: 2.67 GB 2024-10-06 23:30:49.894444: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support. 2024-10-06 23:30:49.894460: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: ) 2024-10-06 23:30:56.701461: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:117] Plugin optimizer for device_type GPU is enabled. [libprotobuf FATAL google/protobuf/message_lite.cc:353] CHECK failed: target + size == res: libc++abi: terminating due to uncaught exception of type google::protobuf::FatalException: CHECK failed: target + size == res: Please respond to this post as soon as possible as I am working on my project now and getting this error again n again. Device: Apple MacBook Air M1.
0
1
770
Oct ’24
iOS 18 App Intents while supporting iOS 17
iOS 18 App Intents while supporting iOS 17 Hello, I have an existing app that supports iOS 17. I already have three App Intents but would like to add some of the new iOS 18 app intents like ShowInAppSearchResultsIntent. However, I am having a hard time using #available or @available to limit this ShowInAppSearchResultsIntent to iOS 18 only while still supporting iOS 17. Obviously, the ShowInAppSearchResultsIntent needs to use @AssistantIntent which is iOS 18 only, so I mark that struct as @available(iOS 18, *). That works as expected. It is when I need to add this "SearchSnippetIntent" intent to the AppShortcutsProvider, that I begin to have trouble doing. See code below: struct SnippetsShortcutsAppShortcutsProvider: AppShortcutsProvider { @AppShortcutsBuilder static var appShortcuts: [AppShortcut] { //iOS 17+ AppShortcut(intent: SnippetsNewSnippetShortcutsAppIntent(), phrases: [ "Create a New Snippet in \(.applicationName) Studio", ], shortTitle: "New Snippet", systemImageName: "rectangle.fill.on.rectangle.angled.fill") AppShortcut(intent: SnippetsNewLanguageShortcutsAppIntent(), phrases: [ "Create a New Language in \(.applicationName) Studio", ], shortTitle: "New Language", systemImageName: "curlybraces") AppShortcut(intent: SnippetsNewTagShortcutsAppIntent(), phrases: [ "Create a New Tag in \(.applicationName) Studio", ], shortTitle: "New Tag", systemImageName: "tag.fill") //iOS 18 Only AppShortcut(intent: SearchSnippetIntent(), phrases: [ "Search \(.applicationName) Studio", "Search \(.applicationName)" ], shortTitle: "Search", systemImageName: "magnifyingglass") } let shortcutTileColor: ShortcutTileColor = .blue } The iOS 18 Only AppShortcut shows the following error but none of the options seem to work. Maybe I am going about it the wrong way. 'SearchSnippetIntent' is only available in iOS 18 or newer Add 'if #available' version check Add @available attribute to enclosing static property Add @available attribute to enclosing struct Thanks in advance for your help.
4
3
2k
Jun ’24
Vision and iOS18 - Failed to create espresso context.
I'm playing with the new Vision API for iOS18, specifically with the new CalculateImageAestheticsScoresRequest API. When I try to perform the image observation request I get this error: internalError("Error Domain=NSOSStatusErrorDomain Code=-1 \"Failed to create espresso context.\" UserInfo={NSLocalizedDescription=Failed to create espresso context.}") The code is pretty straightforward: if let image = image { let request = CalculateImageAestheticsScoresRequest() Task { do { let cgImg = image.cgImage! let observations = try await request.perform(on: cgImg) let description = observations.description let score = observations.overallScore print(description) print(score) } catch { print(error) } } } I'm running it on a M2 using the simulator. Is it a bug? What's wrong?
3
1
1.4k
Jun ’24
NLModel won't initialize in MessageFilterExtension
i'm trying to create an NLModel within a MessageFilterExtension handler. The code works fine in the main app, but when I try to use it in the extension it fails to initialize. Just this doesn't even work and gets the error below. Single line that fails. SMS_Classifier is the class xcode generated for my model. This line works fine in the main app. let mlModel = try SMS_Classifier(configuration: MLModelConfiguration()).model Error Unable to locate Asset for contextual word embedding model for local en. MLModelAsset: load failed with error Error Domain=com.apple.CoreML Code=0 "initialization of text classifier model with model data failed" UserInfo={NSLocalizedDescription=initialization of text classifier model with model data failed} Any ideas?
3
1
972
Apr ’24
Core ML Model performance far lower on iOS 17 vs iOS 16 (iOS 17 not using Neural Engine)
Hello, I posted an issue on the coremltools GitHub about my Core ML models not performing as well on iOS 17 vs iOS 16 but I'm posting it here just in case. TL;DR The same model on the same device/chip performs far slower (doesn't use the Neural Engine) on iOS 17 compared to iOS 16. Longer description The following screenshots show the performance of the same model (a PyTorch computer vision model) on an iPhone SE 3rd gen and iPhone 13 Pro (both use the A15 Bionic). iOS 16 - iPhone SE 3rd Gen (A15 Bioinc) iOS 16 uses the ANE and results in fast prediction, load and compilation times. iOS 17 - iPhone 13 Pro (A15 Bionic) iOS 17 doesn't seem to use the ANE, thus the prediction, load and compilation times are all slower. Code To Reproduce The following is my code I'm using to export my PyTorch vision model (using coremltools). I've used the same code for the past few months with sensational results on iOS 16. # Convert to Core ML using the Unified Conversion API coreml_model = ct.convert( model=traced_model, inputs=[image_input], outputs=[ct.TensorType(name="output")], classifier_config=ct.ClassifierConfig(class_names), convert_to="neuralnetwork", # compute_precision=ct.precision.FLOAT16, compute_units=ct.ComputeUnit.ALL ) System environment: Xcode version: 15.0 coremltools version: 7.0.0 OS (e.g. MacOS version or Linux type): Linux Ubuntu 20.04 (for exporting), macOS 13.6 (for testing on Xcode) Any other relevant version information (e.g. PyTorch or TensorFlow version): PyTorch 2.0 Additional context This happens across "neuralnetwork" and "mlprogram" type models, neither use the ANE on iOS 17 but both use the ANE on iOS 16 If anyone has a similar experience, I'd love to hear more. Otherwise, if I'm doing something wrong for the exporting of models for iOS 17+, please let me know. Thank you!
1
1
1.8k
Oct ’23
Getting ValueError: Categorical Cross Entropy loss layer input (Identity) must be a softmax layer output.
I am working on the neural network classifier provided on the coremltools.readme.io in the updatable->neural network section(https://coremltools.readme.io/docs/updatable-neural-network-classifier-on-mnist-dataset). I am using the same code but I get an error saying that the coremltools.converters.keras.convert does not exist. But this I know can be coreml version issue. Right know I am using coremltools version 6.2. I converted this model to mlmodel with .convert only. It got converted successfully. But I face an error in the make_updatable function saying the loss layer must be softmax output. Even the coremlt package API reference there I found its because the layer name is softmaxND but it should be softmax. Now the problem is when I convert the model from Keras sequential model to coreml model. the layer name and type change. And the softmax changes to softmaxND. Does anyone faced this issue? if I execute this builder.inspect_layers(last=4) I get this output [Id: 32], Name: sequential/dense_1/Softmax (Type: softmaxND) Updatable: False Input blobs: ['sequential/dense_1/MatMul'] Output blobs: ['Identity'] [Id: 31], Name: sequential/dense_1/MatMul (Type: batchedMatmul) Updatable: False Input blobs: ['sequential/dense/Relu'] Output blobs: ['sequential/dense_1/MatMul'] [Id: 30], Name: sequential/dense/Relu (Type: activation) Updatable: False Input blobs: ['sequential/dense/MatMul'] Output blobs: ['sequential/dense/Relu'] In the make_updatable function when I execute builder.set_categorical_cross_entropy_loss(name='lossLayer', input='Identity') I get this error ValueError: Categorical Cross Entropy loss layer input (Identity) must be a softmax layer output.
2
0
1.4k
Apr ’23
Access to sound classification for app running in background
Can access to SoundAnalysis (sound classifier built into next version of MacOS, iOS, WatchOS) be provided to my app running in the background on iPhone or Apple Watch? I want to monitor local sounds from Apple Watch and iPhones and take remote action for out of band data (ie. send alert to caregiver if coughing rate is too high, or if someone is knocking on the door for more than a minute, etc.)
2
0
870
Sep ’21