ML Compute

RSS for tag

Accelerate training and validation of neural networks using the CPU and GPUs.

Posts under ML Compute tag

27 Posts

Post

Replies

Boosts

Views

Activity

Vision Framework VNTrackObjectRequest: Minimum Valid Bounding Box Size Causing Internal Error (Code=9)
I'm developing a tennis ball tracking feature using Vision Framework in Swift, specifically utilizing VNDetectedObjectObservation and VNTrackObjectRequest. Occasionally (but not always), I receive the following runtime error: Failed to perform SequenceRequest: Error Domain=com.apple.Vision Code=9 "Internal error: unexpected tracked object bounding box size" UserInfo={NSLocalizedDescription=Internal error: unexpected tracked object bounding box size} From my investigation, I suspect the issue arises when the bounding box from the initial observation (VNDetectedObjectObservation) is too small. However, Apple's documentation doesn't clearly define the minimum bounding box size that's considered valid by VNTrackObjectRequest. Could someone clarify: What is the minimum acceptable bounding box width and height (normalized) that Vision Framework's VNTrackObjectRequest expects? Is there any recommended practice or official guidance for bounding box size validation before creating a tracking request? This information would be extremely helpful to reliably avoid this internal error. Thank you!
1
0
78
Apr ’25
Core-ml-on-device-llama Converting fails
I followed below url for converting Llama-3.1-8B-Instruct model but always fails even i have 64GB of free space after downloading model from huggingface. https://machinelearning.apple.com/research/core-ml-on-device-llama Also tried with other models Llama-3.1-1B-Instruct & Llama-3.1-3B-Instruct models those are converted but while doing performance test in xcode fails for all compunits. Is there any source code to run llama models in ios app.
0
0
86
Apr ’25
Why doesn't tensorflow-metal use AMD GPU memory?
From tensorflow-metal example: Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: ) I know that Apple silicon uses UMA, and that memory copies are typical of CUDA, but wouldn't the GPU memory still be faster overall? I have an iMac Pro with a Radeon Pro Vega 64 16 GB GPU and an Intel iMac with a Radeon Pro 5700 8 GB GPU. But using tensorflow-metal is still WAY faster than using the CPUs. Thanks for that. I am surprised the 5700 is twice as fast as the Vega though.
1
0
181
Apr ’25
tensorflow-metal
Using Tensorflow for Silicon gives inaccurate results when compared to Google Colab GPU (9-15% differences). Here are my install versions for 4 anaconda env's. I understand the Floating point precision can be an issue, batch size, activation functions but how do you rectify this issue for the past 3 years? 1.) Version TF: 2.12.0, Python 3.10.13, tensorflow-deps: 2.9.0, tensorflow-metal: 1.2.0, h5py: 3.6.0, keras: 2.12.0 2.) Version TF: 2.19.0, Python 3.11.0, tensorflow-metal: 1.2.0, h5py: 3.13.0, keras: 3.9.2, jax: 0.6.0, jax-metal: 0.1.1,jaxlib: 0.6.0, ml_dtypes: 0.5.1 3.) python: 3.10.13,tensorflow: 2.19.0,tensorflow-metal: 1.2.0, h5py: 3.13.0, keras: 3.9.2, ml_dtypes: 0.5.1 4.) Version TF: 2.16.2, tensorflow-deps:2.9.0,Python: 3.10.16, tensorflow-macos 2.16.2, tensorflow-metal: 1.2.0, h5py:3.13.0, keras: 3.9.2, ml_dtypes: 0.3.2 Install of Each ENV with common example: Create ENV: conda create --name TF_Env_V2 --no-default-packages start env: source TF_Env_Name ENV_1.) conda install -c apple tensorflow-deps , conda install tensorflow,pip install tensorflow-metal,conda install ipykernel ENV_2.) conda install pip python==3.11, pip install tensorflow,pip install tensorflow-metal,conda install ipykernel ENV_3) conda install pip python 3.10.13,pip install tensorflow, pip install tensorflow-metal,conda install ipykernel ENV_4) conda install -c apple tensorflow-deps, pip install tensorflow-macos, pip install tensor-metal, conda install ipykernel Example used on all 4 env: import tensorflow as tf cifar = tf.keras.datasets.cifar100 (x_train, y_train), (x_test, y_test) = cifar.load_data() model = tf.keras.applications.ResNet50( include_top=True, weights=None, input_shape=(32, 32, 3), classes=100,) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"]) model.fit(x_train, y_train, epochs=5, batch_size=64)
4
1
860
2w
WWDC25 combining metal and ML
WWDC25: Combine Metal 4 machine learning and graphics Demonstrated a way to combine neural network in the graphics pipeline directly through the shaders, using an example of Texture Compression. However there is no mention of using which ML technique texture is compressed. Can anyone point me to some well known model/s for this particular use case shown in WWDC25.
2
0
366
Jul ’25
Does ExecuTorch support VisionOS?
Does anyone know if ExecuTorch is officially supported or has been successfully used on visionOS? If so, are there any specific build instructions, example projects, or potential issues (like sandboxing or memory limitations) to be aware of when integrating it into an Xcode project for the Vision Pro? While ExecuTorch has support for iOS, I can't find any official documentation or community examples specifically mentioning visionOS. Thanks.
0
0
214
Jul ’25