Is the title possible ? I tried [[thread valueForKey:@"_private"] valueForKey:@"tid"] but the tid was not kvc compliant. private apis are alright because this is just for testing remote process thread creation. I already have a working method but it has hardcoded assembly so you can't do anything else.
this question is mainly for Quinn (figured he may know something about this)
Processes & Concurrency
RSS for tagDiscover how the operating system manages multiple applications and processes simultaneously, ensuring smooth multitasking performance.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I’ve been experimenting with Dispatch, and workloops in particular. I gather that they’re similar to serial queues, except that they reorder work items by QoS. I suspect there’s more to workloops than meets the eye, though; calling dispatch_set_target_queue on them has no effect, in spite of the <dispatch/workloop.h> saying that workloops “can be passed to all APIs accepting a dispatch queue, except for functions from the dispatch_sync() family”.
Workloops keep showing up in odd places like Metal and Network.framework backtraces, and <dispatch/workloop.h> includes functionality for tying workloops to os_workgroups (?!).
What exactly is a workloop beyond just a serial queue with priority ordering, and why can’t I set the target queue of one?
The same code built in a regular Mac app (with UI) does get paired.
The characteristic properties are [.read, .write, .notify, .notifyEncryptionRequired]
The characteristic permissions are [.readEncryptionRequired, .writeEncryptionRequired]
My service is primary.
In the iOS app (central) I try to read the characteristic, but an error is reported: Error code: 5, Description: Authentication is insufficient.
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Service Management
Core Bluetooth
I'm developing a medication scheduling app similar to Apple Health's Medications feature, and I'd like some input on my current approach to background tasks.
In my app, when a user creates a medication, I generate ScheduledDose objects (with corresponding local notifications) for the next 2 weeks and save them to SwiftData. To ensure this 2-week window stays current, I've implemented a BGAppRefreshTask that runs daily to generate new doses as needed.
My concern is whether BGAppRefreshTask is the appropriate mechanism for this purpose. Since I'm not making any network requests but rather generating and storing local data, I'm questioning if this is the right approach.
I'm also wondering how Apple Health's Medications feature handles this kind of scheduling. Their app seems to maintain future doses regardless of app usage patterns.
Has anyone implemented something similar or can suggest the best background execution API for this type of scenario?
Thanks for any guidance you can provide.
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
HealthKit
SwiftUI
Background Tasks
SwiftData
This is the functionality I am trying to achieve with libxpc:
There's one xpc server and two xpc clients. When the xpc server receives a particular dictionary item from clientB, the server needs to send a response to both clientA and clientB.
This is the approach I am currently using:
First, clientA creates a dictionary item that indicates that this item is from clientA. Now, clientA sends this dictionary to server. When server receives this item, it stores the connection instance with clientA in a global variable. Next, when clientB sends a particular dictionary item, server uses this global variable where it perviously stored clientA's connection instance to send a response back to clientA, alongside clientB.
Only one edge case I can see is that when clientA closes this connection instance, server will be trying to send a response to an invalidated connection.
Question:
Is this approach recommended? Any edge cases I should be aware of? Is there any better way to achieve this functionality?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Inter-process communication
XPC
Hello Apple Developer Community,
I am developing a medical app that is classified as Class B according to FDA regulations. The app connects to a medical device using Bluetooth Low Energy (BLE) to collect critical medical data such as ECG readings. To ensure accurate data collection and maintain the quality of the medical readings, the app needs to wake up every five minutes in the background and perform tasks for approximately 30 seconds.
I understand that iOS has strict limitations on background execution to preserve battery and system performance. However, due to the medical nature of the app and the need for periodic data collection, I am seeking guidance on the following:
If I can provide documentation that the app is associated with an FDA-approved Class B medical device, would Apple allow more lenient background task execution policies?
Are there specific APIs, such as BackgroundTasks, CoreBluetooth, or other recommended strategies, that could help me achieve this behavior reliably?
Is there a process to apply for an exception or special consideration for medical apps that require periodic background activity?
Any insights or recommendations would be greatly appreciated. Thank you!
When using the continuation API, we're required to call resume exactly once. While withCheckedContinuation helps catch runtime issues during debugging, I'm looking for ways to catch such errors at compile time or through tools like Instruments.
Is there any tool or technique that can help enforce or detect this requirement more strictly than runtime checks? Or would creating custom abstractions around Continuation be the only option to ensure safety? Any suggestions or best practices are appreciated.
Desired Behavior
I want the app to be able to handle multiple Push-to-Start notifications even when it is completely terminated. Each Live Activity should:
Be successfully displayed upon receiving a Push-to-Start notification.
Trigger background tasks to send its update token to the server, regardless of the time interval between notifications.
Problem
I am facing an issue with iOS Live Activities when using Push-to-Start notifications to trigger Live Activities in an app that has been completely terminated. Here’s the detailed scenario:
When the app is completely terminated and I send the first Push-to-Start notification:
The Live Activity is successfully displayed.
didFinishLaunchingWithOptions` is triggered, and background tasks execute correctly, including sending the update token to the server.
When I send consecutive Push-to-Start notifications in quick succession (e.g., within a few seconds or minutes):
Both notifications successfully display their respective Live Activities.
Background tasks are executed correctly for both notifications.
However, when there is a longer interval (e.g., 10 minutes) between two Push-to-Start notifications:
The first notification works perfectly—it displays the Live Activity, triggers didFinishLaunchingWithOptions, and executes background tasks.
The second notification successfully displays the Live Activity but fails to execute any background tasks, such as sending the update token to the server.
My HypothesisI
suspect that iOS might impose a restriction where background runtime for Push-to-Start notifications can only be granted once within a certain time frame after the app has been terminated.
Any insights into why this issue might be occurring or how to ensure consistent background task execution for multiple Push-to-Start notifications would be greatly appreciated!
I am trying to create an app bundle with an xpc service. The main app creates a keychain item, and attempts to share (keychain access groups) with the xpc service it includes in its bundle. However, the xpc service always encounters a 'user interaction not allowed' error regardless of how I create the keychain item. kSecAttrAccessiblei is set to kSecAttrAccessibleWhenUnlockedThisDeviceOnly, the keychain access group is set for both the main app and the xpc service and in the provisioning profile. I've tried signing and notarizing.
Is it ever possible for an xpc service to access the keychain? This all on macos 15.5.
Hi, I'm working on an application on MacOS. It contains a port-forward feature on TCP protocol.
This application has no UI, but a local HTTP server where user can access to configure this application.
I found that my application always exit for unknown purpose after running in backgruond for minutes. I think this is about MacOS's background process controlling.
Source codes and PKG installers are here: https://github.com/burningtnt/Terracotta/actions/runs/16494390417
We've seen a recent increase in background terminations:
blue - System Pressure
orange - Task Timeout
I'm trying to understand the increase in system-pressure terminations, since there's no corresponding increase in memory at suspension. Are there other system resources for which iOS will terminate an app?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Organizer Window
Background Tasks
I have an app that uses background audio recording. From what others say, I have enabled the audio background mode to keep the audio session active, and this worked. But when submitting the app to the app store, the app was rejected because the audio background mode is only supposed to be used for audio playback.
How do I create this background mode while following Apple's guidelines?
I'm a developer using Lazarus Pascal, so converting ObjC and Swift comes with its challenges.
I'm trying to figure how to properly use SMAppService to add my application as a login item for the App Store.
I have learned that the old method (< macOS 13) uses a helper tool, included in the app bundle, which calls the now deprecated SMLoginItemSetEnabled. Now this is already quite a pain to deal with if you're not using XCode, not to mention converting the headers being rather complicated when you're not experienced with doing this.
The "new" method (as of macOS 13) is using SMAppService.
Can anyone explain how to use this? The documentation (for me anyway) is a not very clear about that and neither are examples that can be found all over the Internet.
My main question is:
Can I now use the SMAppService functions to add/remove a login item straight in my application, or is a helper tool still required?
I have several processes maintaining NSXPConnection to an XPC service. The connections are bi-directional. Each side service and clients) of the connection exports an object, and an XPCInterface. The @protocols are different - to the service, and from the service to clients.
So long as all the "clients" fully implement their "call-back" @protocol, there's no problem. All works fine.
However - If a client does NOT implement a method in the "call back protocol", or completely neglects to export an object, or interface - and the service attempts to call back using the nonexistent method -- the XPC connection invalidates immediately.
So far - expected behaviour.
However, if I want the service to behave to the client a little like a "delegate" style -- and check first whether the client "respondsToSelector" or even - supports an interface BEFORE calling it, then this doesn't work.
When my XPC service tries the following on a client connection:
if (xpcConnection.remoteObjectInterface == nil)
os_log_error(myXPCLog, "client has no remote interface);
the condition is never met - i.e. the "remoteObjectInterface is never nil even when the client does NOT configure its NSXPCConnection with any incoming NSXPCInterface, and does not set an "exportedObject"
Furthermore, the next check:
if ([proxy respondsToSelector:@selector(downloadFiltersForCustomer:withReply:)]) {
}
will not only fail - but will drop the connection. The client side gets the invalidation with the following error:
<NSXPCConnection: 0x600000b20000> connection to service with pid 2477 named com.proofpoint.ecd: received an undecodable message for proxy 1 (no exported object to receive message). Dropping message.
I guess the "undecidable message" is the respondsToSelector - because the code doesn't get to attempt anything else afterwards, the connection drops.
Is there a way to do this check "quietly", or suffering only "interruption", but without losing the connection,
To establish a privileged helper daemon from a command line app to handle actions requiring root privileges I still use the old way of SMJobBless. But this is deprecated since OSX 10.13 and I want to finally update it to the new way using SMAppService.
As I'm concerned with securing it against malicious exploits, do you have a recommended up-to-date implementation in Objective-C establishing a privileged helper and verifying it is only used by my signed app?
I've seen the suggestion in the documentation to use SMAppService, but couldn't find a good implementation covering security aspects. My old implementation in brief is as follows:
bool runJobBless () {
// check if already installed
NSFileManager* filemgr = [NSFileManager defaultManager];
if ([filemgr fileExistsAtPath:@"/Library/PrivilegedHelperTools/com.company.Helper"] &&
[filemgr fileExistsAtPath:@"/Library/LaunchDaemons/com.company.Helper.plist"])
{
// check helper version to match the client
// ...
return true;
}
// create authorization reference
AuthorizationRef authRef;
OSStatus status = AuthorizationCreate (NULL, kAuthorizationEmptyEnvironment, kAuthorizationFlagDefaults, &authRef);
if (status != errAuthorizationSuccess) return false;
// obtain rights to install privileged helper
AuthorizationItem authItem = { kSMRightBlessPrivilegedHelper, 0, NULL, 0 };
AuthorizationRights authRights = { 1, &authItem };
AuthorizationFlags flags = kAuthorizationFlagDefaults | kAuthorizationFlagInteractionAllowed | kAuthorizationFlagPreAuthorize | kAuthorizationFlagExtendRights;
status = AuthorizationCopyRights (authRef, &authRights, kAuthorizationEmptyEnvironment, flags, NULL);
if (status != errAuthorizationSuccess) return false;
// SMJobBless does it all: verify helper against app and vice-versa, place and load embedded launchd.plist in /Library/LaunchDaemons, place executable in /Library/PrivilegedHelperTools
CFErrorRef cfError;
if (!SMJobBless (kSMDomainSystemLaunchd, (CFStringRef)@"com.company.Helper", authRef, &cfError)) {
// check helper version to match the client
// ...
return true;
} else {
CFBridgingRelease (cfError);
return false;
}
}
void connectToHelper () {
// connect to helper via XPC
NSXPCConnection* c = [[NSXPCConnection alloc] initWithMachServiceName:@"com.company.Helper.mach" options:NSXPCConnectionPrivileged];
c.remoteObjectInterface = [NSXPCInterface interfaceWithProtocol:@protocol (SilentInstallHelperProtocol)];
[c resume];
// call function on helper and wait for completion
dispatch_semaphore_t semaphore = dispatch_semaphore_create (0);
[[c remoteObjectProxy] callFunction:^() {
dispatch_semaphore_signal (semaphore);
}];
dispatch_semaphore_wait (semaphore, dispatch_time (DISPATCH_TIME_NOW, 10 * NSEC_PER_SEC));
dispatch_release (semaphore);
[c invalidate];
[c release];
}
Hello,
I have a question about a edge case scenario.
Before that some info on my project-
I have a launchdaemon that carries out some business logic, it also has XPC listener (built using C APIs).
Question-
Can there be a situation when the daemon is up and running but the XPC listener is down(due to some error or crash)? If yes then do I need to handle it in my code or launchd will handle it?
when the daemon is stopped or shut down, how do I stop the XPC listener? After getting listener object from xpc_connection_create_mach_service should I just call xpc_connection_cancel followed by a call to xpc_release?
Thanks!
K
On macOS 15.7.1 I'm trying to install an XPC service outside the app (Developer ID). It mostly seems to go ok, but when I set Launch Constraints on Responsible, AMFI complains of a violation, saying the service is responsible for itself, and fails to launch. Removing that constraint (or adding the service itself to the constraint) works fine.
The service is an optional download, and installed to /Users/Shared with a LaunchAgent specifying the MachService. The service is correctly launched and seems to pass all codesigning, notarization, and other checks, but the Responsible isn't set to the "calling" app.
Is this broken, or working as intended?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
XPC
Code Signing
Developer ID
Service Management
When my app enter to background, I start a background task, and when Expiration happens, I end my background task. The code likes below:
backgroundTask = [[UIApplication sharedApplication] beginBackgroundTaskWithExpirationHandler:^{
dispatch_async(dispatch_get_main_queue(), ^{
if (backgroundTask != UIBackgroundTaskInvalid) {
[[UIApplication sharedApplication] endBackgroundTask:backgroundTask];
backgroundTask = UIBackgroundTaskInvalid;
[self cancel];
}
});
}];
When the breakpoint is triggered at the endBackgroundTask line, I also get the following log:
[BackgroundTask] Background task still not ended after expiration handlers were called: <UIBackgroundTaskInfo: 0x282d7ab40>: taskID = 36, taskName = Called by MyApp, from MyMethod, creationTime = 892832 (elapsed = 26). This app will likely be terminated by the system. Call UIApplication.endBackgroundTask(:) to avoid this.
The log don't appear every time, so why is that? Is there something wrong with my code?
Hello! We are in the progress of migrating a large Swift 5.10 legacy code base over to use Swift 6.0 with Strict Concurrency checking.
We have already stumbled across a few weird edge cases where the "guaranteed" @MainActor isolation is violated (such as with @objc #selector methods used with NotificationCenter).
However, we recently found a new scenario where our app crashes accessing main actor isolated state on a background thread, and it was surprising that the compiler couldn't warn us.
Minimal reproducible example:
class ViewController: UIViewController {
var isolatedStateString = "Some main actor isolated state"
override func viewDidLoad() {
exampleMethod()
}
/// Note: A `@MainActor` isolated method in a `@MainActor` isolated class.
func exampleMethod() {
testAsyncMethod() { [weak self] in
// !!! Crash !!!
MainActor.assertIsolated()
// This callback inherits @MainActor from the class definition, but it is called on a background thread.
// It is an error to mutate main actor isolated state off the main thread...
self?.isolatedStateString = "Let me mutate my isolated state"
}
}
func testAsyncMethod(completionHandler: (@escaping () -> Void)) {
let group = DispatchGroup()
let queue = DispatchQueue.global()
// The compiler is totally fine with calling this on a background thread.
group.notify(queue: queue) {
completionHandler()
}
// The below code at least gives us a compiler warning to add `@Sendable` to our closure argument, which is helpful.
// DispatchQueue.global().async {
// completionHandler()
// }
}
}
The problem:
In the above code, the completionHandler implementation inherits main actor isolation from the UIViewController class.
However, when we call exampleMethod(), we crash because the completionHandler is called on a background thread via the DispatchGroup.notify(queue:).
If were to instead use DispatchQueue.global().async (snippet at the bottom of the sample), the compiler helpfully warns us that completionHandler must be Sendable.
Unfortunately, DispatchGroup's notify gives us no such compiler warnings. Thus, we crash at runtime.
So my questions are:
Why can't the compiler warn us about a potential problem with DispatchGroup().notify(queue:) like it can with DispatchQueue.global().async?
How can we address this problem in a holistic way in our app, as it's a very simple mistake to make (with very bad consequences) while we migrate off GCD?
I'm sure the broader answer here is "don't mix GCD and Concurrency", but unfortunately that's a little unavoidable as we migrate our large legacy code base! 🙂
I am trying to migrate a WatchConnectivity App to Swift6 and I found an Issue with my replyHandler callback for sendMessageData.
I am wrapping sendMessageData in withCheckedThrowingContinuation, so that I can await the response of the reply. I then update a Main Actor ObservableObject that keeps track of the count of connections that have not replied yet, before returning the data using continuation.resume.
...
@preconcurrency import WatchConnectivity
actor ConnectivityManager: NSObject, WCSessionDelegate {
private var session: WCSession = .default
private let connectivityMetaInfoManager: ConnectivityMetaInfoManager
...
private func sendMessageData(_ data: Data) async throws -> Data? {
Logger.shared.debug("called on Thread \(Thread.current)")
await connectivityMetaInfoManager.increaseOpenSendConnectionsCount()
return try await withCheckedThrowingContinuation({
continuation in
self.session.sendMessageData(
data,
replyHandler: { data in
Task {
await self.connectivityMetaInfoManager
.decreaseOpenSendConnectionsCount()
}
continuation.resume(returning: data)
},
errorHandler: { (error) in
Task {
await self.connectivityMetaInfoManager
.decreaseOpenSendConnectionsCount()
}
continuation.resume(throwing: error)
}
)
})
}
Calling sendMessageData somehow causing the app to crash and display the debug message: Incorrect actor executor assumption.
The code runs on swift 5 with SWIFT_STRICT_CONCURRENCY = complete.
However when I switch to swift 6 the code crashes.
I rebuilt a simple version of the App. Adding bit by bit until I was able to cause the crash.
See Broken App
Awaiting sendMessageData and wrapping it in a task and adding the @Sendable attribute to continuation, solve the crash.
See Fixed App
But I do not understand why yet.
Is this intended behaviour?
Should the compiler warn you about this?
Is it a WatchConnectivity issue?
I initially posted on forums.swift.org, but was told to repost here.
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Watch Connectivity
Swift
Concurrency