Processes & Concurrency

RSS for tag

Discover how the operating system manages multiple applications and processes simultaneously, ensuring smooth multitasking performance.

Concurrency Documentation

Posts under Processes & Concurrency subtopic

Post

Replies

Boosts

Views

Activity

Crashes because main actor isolated closures are called on a background thread with `DispatchGroup.notify`, but no compiler warnings
Hello! We are in the progress of migrating a large Swift 5.10 legacy code base over to use Swift 6.0 with Strict Concurrency checking. We have already stumbled across a few weird edge cases where the "guaranteed" @MainActor isolation is violated (such as with @objc #selector methods used with NotificationCenter). However, we recently found a new scenario where our app crashes accessing main actor isolated state on a background thread, and it was surprising that the compiler couldn't warn us. Minimal reproducible example: class ViewController: UIViewController { var isolatedStateString = "Some main actor isolated state" override func viewDidLoad() { exampleMethod() } /// Note: A `@MainActor` isolated method in a `@MainActor` isolated class. func exampleMethod() { testAsyncMethod() { [weak self] in // !!! Crash !!! MainActor.assertIsolated() // This callback inherits @MainActor from the class definition, but it is called on a background thread. // It is an error to mutate main actor isolated state off the main thread... self?.isolatedStateString = "Let me mutate my isolated state" } } func testAsyncMethod(completionHandler: (@escaping () -> Void)) { let group = DispatchGroup() let queue = DispatchQueue.global() // The compiler is totally fine with calling this on a background thread. group.notify(queue: queue) { completionHandler() } // The below code at least gives us a compiler warning to add `@Sendable` to our closure argument, which is helpful. // DispatchQueue.global().async { // completionHandler() // } } } The problem: In the above code, the completionHandler implementation inherits main actor isolation from the UIViewController class. However, when we call exampleMethod(), we crash because the completionHandler is called on a background thread via the DispatchGroup.notify(queue:). If were to instead use DispatchQueue.global().async (snippet at the bottom of the sample), the compiler helpfully warns us that completionHandler must be Sendable. Unfortunately, DispatchGroup's notify gives us no such compiler warnings. Thus, we crash at runtime. So my questions are: Why can't the compiler warn us about a potential problem with DispatchGroup().notify(queue:) like it can with DispatchQueue.global().async? How can we address this problem in a holistic way in our app, as it's a very simple mistake to make (with very bad consequences) while we migrate off GCD? I'm sure the broader answer here is "don't mix GCD and Concurrency", but unfortunately that's a little unavoidable as we migrate our large legacy code base! 🙂
3
3
486
Nov ’25
Can we create a bundled non-interactive macOS application which uses CFRunLoop only(instead of using NSApplicationMain to run NSRunLoop)?
I am developing a macOS non-interactive macOS application which does not show any ui. i want to block main thread and do all the work on worker thread . Once done with work in worker thread, want to unblock main thread by exiting event loop to terminate application. Because i dont want to show any UI or use any Foundation/Cocoa functionality, i am thinking of using CFRunLoop to block main thread from exiting until i finish my work in worker thread. When i tried this in a project, I am able to finish work in worker thread after block main thread using CFRunLoop. I also want this application to be a bundled application, which can be launched by double clicking on application bundle . But when i tried it in my xcode project by launching it using double clicking on application bundle, application keeps on toggling/bouncing in the dock menu with a status "Not responding". Although i am able to complete my work in worker thread. import Foundation let runLoop = CFRunLoopGetCurrent() func workerTask() { DispatchQueue.global().async { print("do its work") sleep(5) // do some work print("calling exit event loop") CFRunLoopStop(runLoop) print ("unblocking main thread") } } workerTask () // blocking main thread print ("blocked main thread") CFRunLoopRun() print ("exit") Why i am getting this application bouncing in doc menu behavior ? I tried by using NSApplicationMain instead of CFRunLoop in my project, in that case i didnt get this behavior . Does NSApplicationMain does some extra work before starting NSRunLoop which i am not doing while using CFRunLoop, which is showing this toggling/Bouncing application icon in Dock menu ? or Is this bouncing app icon issue is related to run loop i am using which is CFRunLoop ? Note : If i dont use a bundled application and use a commandline application then i am able to do all steps in worker thread and exit main thread as i wanted after finishing my work . But i need to do all this in application which can be launched using double clicking (bundled applcation). If not by using CFRunLoop, then how can i achive this ? - Create a application which shows no UI and do all work in worker thread while main thread is blocked. Once work is done unblock main thread and exit. And user should be able to launch application using double click the application icon.
3
0
425
Mar ’25
LaunchAgent can't connect to CloudKit daemon
For this code: let status = try await container.accountStatus() Seeing this error: 2025-05-08 15:32:00.945731-0500 localhost myAgent[2661]: (myDaemon.debug.dylib) [com.myDaemon.cli:networking] Error Domain=CKErrorDomain Code=6 "Error connecting to CloudKit daemon. This could happen for many reasons, for example a daemon exit, a device reboot, a race with the connection inactivity monitor, invalid entitlements, and more. Check the logs around this time to investigate the cause of this error." UserInfo={NSLocalizedDescription=Error connecting to CloudKit daemon. This could happen for many reasons, for example a daemon exit, a device reboot, a race with the connection inactivity monitor, invalid entitlements, and more. Check the logs around this time to investigate the cause of this error., CKRetryAfter=5, CKErrorDescription=Error connecting to CloudKit daemon. This could happen for many reasons, for example a daemon exit, a device reboot, a race with the connection inactivity monitor, invalid entitlements, and more. Check the logs around this time to investigate the cause of this error., NSUnderlyingError=0x600001bfc270 {Error Domain=NSCocoaErrorDomain Code=4099 UserInfo={NSDebugDescription= I initially started the this process as System Daemon to see what would happen (which obviously does not have CloudKit features). Then moved it back to /Library/LaunchAgents/ and can't get rid of that error. I see also following message from CloudKit daemon: Ignoring failed attempt to get container proxy for <private>: Error Domain=NSCocoaErrorDomain Code=4099 UserInfo={NSDebugDescription=<private>} Automatically retrying getting container proxy due to error for <private>: Error Domain=NSCocoaErrorDomain Code=4099 UserInfo={NSDebugDescription=<private>} XPC connection interrupted for <private> And this error for xpc service: [0x130e074b0] failed to do a bootstrap look-up: xpc_error=[3: No such process] If I start the same cli process directly from XCode, then it works just fine.
3
0
168
May ’25
Memory visibility issue regards to shared data with Dispatch Queue
I’m working with apple dispatch queue in C with the following design: multiple dispatch queues enqueue tasks into a shared context, and a dedicated dispatch queue (let’s call it dispatch queue A) processes these tasks. However, it seems this design has a memory visibility issue. Here’s a simplified version of my setup: I have a shared_context struct that holds: task_lis: a list that stores tasks to be prioritized and run — this list is only modified/processed by dispatch queue A (a serially dispatch queue), so I don't lock around it. cross_thread_tasks: a list that other queues push tasks into, protected by a lock. Other dispatch queues call a function schedule_task that locks and appends a new task to cross_thread_tasks call dispatch_after_f() to schedule a process_task() on dispatch queue A process_task() that processes the task_list and is repeatedly scheduled on dispatch queue A : Swaps cross_thread_tasks into a local list (with locking). Pushes the tasks into task_list. Runs tasks from task_list. Reschedules itself via dispatch_after_f(). Problem: Sometimes the tasks pushed from other threads don’t seem to show up in task_list when process_task() runs. The task_list appears to be missing them, as if the cross-thread tasks aren’t visible. However, if the process_task() is dispatched from the same thread the tasks originate, everything works fine. It seems to be a memory visibility or synchronization issue. Since I only lock around cross_thread_tasks, could it be that changes to task_list (even though modified on dispatch queue A only) are not being properly synchronized or visible across threads? My questions What’s the best practice to ensure shared context is consistently visible across threads when using dispatch queues? Is it mandatory to lock around all tasks? I would love to minimize/avoid lock if possible. Any guidance, debugging tips, or architectural suggestions would be appreciated! =============================== And here is pseudocode of my setup if it helps: struct shared_data { struct linked_list* task_list; } struct shared_context { struct shared_data *data; struct linked_list* cross_thread_tasks; struct thread_mutex* lock; // lock is used to protect cross_thread_tasks } static void s_process_task(void* shared_context){ struct linked_list* local_tasks; // lock and swap the cross_thread_tasks into a local linked list lock(shared_context->lock) swap(shared_context->cross_thread_tasks, local_tasks) unlock(shared_context->lock) // I didnt use lock to protect `shared_context->data` as they are only touched within dispatch queue A in this function. for (task : local_tasks) { linked_list_push(shared_context->data->task_list) } // If the `process_task()` block is dispatched from `schedule_task()` where the task is created, the `shared_context` will be able to access the task properly otherwise not. for (task : shared_context->data->task_list) { run_task_if_timestamp_is_now(task) } timestamp = get_next_timestamp(shared_context->data->task_list) dispatch_after_f(timestamp, dispatch_queueA, shared_context, process_task); } // On dispatch queue B static void schedule_task(struct task* task, void* shared_context) { lock(shared_context->lock) push(shared_context->cross_thread_tasks, task) unlock(shared_context->lock) timestamp = get_timestamp(task) // we only dispatch the task if the timestamp < 1 second. We did this to avoid the dispatch queue schedule the task too far ahead and prevent the shutdown process. Therefore, not all task will be dispatched from the thread it created. if(timestamp < 1 second) dispatch_after_f(timestamp, dispatch_queueA, shared_context, process_task); }
3
0
112
May ’25
TCC Permission Inheritance Failure: Swift Parent -> Python Child
TCC Permission Inheritance for Python Process Launched by Swift App in Enterprise Deployment We are developing an enterprise monitoring application that requires a hybrid Swift + Python architecture due to strict JAMF deployment restrictions. We must deploy a macOS application via ABM/App Store Connect, but our core monitoring logic is in a Python daemon. We need to understand the feasibility and best practices for TCC permission inheritance in this specific setup. Architecture Component Bundle ID Role Deployment Swift Launcher com.athena.AthenaSentry Requests TCC permissions, launches Python child process. Deployed via ABM/ASC. Python Daemon com.athena.AthenaSentry.Helper Core monitoring logic using sensitive APIs. Nested in Contents/Helpers/. Both bundles are signed with the same Developer ID and share the same Team ID. Required Permissions The Python daemon needs to access the following sensitive TCC-controlled services: Screen Recording (kTCCServiceScreenCapture) - for capturing screenshots. Input Monitoring (kTCCServiceListenEvent) - for keystroke/mouse monitoring. Accessibility (kTCCServiceAccessibility) - a prerequisite for Input Monitoring. Attempts & Workarounds We have attempted to resolve this using: Entitlement Inheritance: Added com.apple.security.inherit to the Helper's entitlements. Permission Proxy: Swift app maintains active event taps to try and "hold" the permissions for the child. Foreground Flow: Keeping the Swift app in the foreground during permission requests. Questions Is this architecture supported? Can a Swift parent app successfully request TCC permissions that a child process can then use? TCC Inheritance: What are the specific rules for TCC permission inheritance between parent/child processes in enterprise environment? What's the correct approach for this enterprise use case? Should we: Switch to a Single Swift App? (i.e., abandon the Python daemon and rewrite the core logic natively in Swift). Use XPC Services? (instead of launching the child process directly).
3
0
193
Nov ’25
XPC Service Installed Outside App Doesn't Set Responsible
On macOS 15.7.1 I'm trying to install an XPC service outside the app (Developer ID). It mostly seems to go ok, but when I set Launch Constraints on Responsible, AMFI complains of a violation, saying the service is responsible for itself, and fails to launch. Removing that constraint (or adding the service itself to the constraint) works fine. The service is an optional download, and installed to /Users/Shared with a LaunchAgent specifying the MachService. The service is correctly launched and seems to pass all codesigning, notarization, and other checks, but the Responsible isn't set to the "calling" app. Is this broken, or working as intended?
3
0
234
Nov ’25
How to Handle Asynchronous Operations in BGContinuedProcessingTask
I would like to know whether BGContinuedProcessingTaskRequest supports executing asynchronous tasks internally, or if it can only execute synchronous tasks within BGContinuedProcessingTaskRequest? Our project is very complex, and we now need to use BGContinuedProcessingTaskRequest to perform some long-running operations when the app enters the background (such as video encoding/decoding & export). However, our export interface is an asynchronous function, for example video.export(callback: FinishCallback). This export call returns immediately, and when the export completes internally, it calls back through the passed-in callback. So when I call BGTaskScheduler.shared.register to register a BGContinuedProcessingTask, what should be the correct approach? Should I directly call video.export(nil) without any waiting, or should I wait for the export function to complete in the callback? For example: BGTaskScheduler.shared.register(forTaskWithIdentifier: "com.xxx.xxx.xxx.xxx", using: nil) { task in guard let continuedTask = task as? BGContinuedProcessingTask else { task.setTaskCompleted(success: false) return } let scanner = SmartAssetsManager.shared let semaphore = DispatchSemaphore(value: 0) continuedTask.expirationHandler = { logError(items: "xwxdebug finished.") semaphore.signal() } logInfo(items: "xwxdebug start!") video.export { _ in semaphore.signal() } semaphore.wait() logError(items: "xwxdebug finished!") }
3
0
113
Nov ’25
NSXPCListener only working while Debugging `listener failed to activate: xpc_error=[1: Operation not permitted]`
I am building a Mac app that launch a GUI helper app and use XPC to communicate between them. Main app start a XPC Listener using NSXPCListener(machServiceName: "group.com.mycompany.myapp.xpc") Launch the helper app Helper app connect to the XPC service and listen command from main app. What I observe is the app seems can start XPC listener while I run it via Xcode. If I run the app using TestFlight build, or via the compiled debug binary (same one that I use on Xcode), it cannot start the XPC service. Here is what I see in the Console: [0x600000ef7570] activating connection: mach=true listener=true peer=false name=group.com.mycompany.myapp.xpc [0x600000ef7570] listener failed to activate: xpc_error=[1: Operation not permitted] Both main app and helper app are sandboxed and in the same App Group - if they were not, I cannot connect the helper app to main app. I can confirm the entitlement profiles did contain the app group. If I start the main app via xcode, and then launch the helper app manually via Finder, the helper app can connect to the XPC and everything work. It is not related to Release configuration, as the same binary work while I am debugging, but not when I open the binary manually. For context, the main app is a Catalyst app, and helper app is an AppKit app. To start a XPC listener on Catalyst, I had do it in a AppKit bridge via bundle. Given the app worked on Xcode, I believe this approach can work. I just cannot figure out why it only work while I am debugging. Any pointer to debug this issue is greatly appreciated. Thanks!
3
0
125
May ’25
Phone unlock/lock detection
Hi, I'll explain my question through how whatsapp does it. When the phone is locked then whatsapp routes call through apple's native callkit When unlocked, pressing accept essentially redirects to whatsapp and then whatsapp handles the call from there. However, this component of unlock detection is what I'm not able to find any info about. Essentially, how i do it is: let isPhoneLocked = !UIApplication.shared.isProtectedDataAvailable isProtectedDataAvailable == true → device is unlocked isProtectedDataAvailable == false → device is locked The problem is that if the phone has been recently unlocked, then protected data is still available on the phone even after the lock for the next 10-40 seconds. So theres a false positive. I want there to be a foolproof and robust way to do this. And I'm not entirely sure how
3
0
126
Nov ’25
Persistent font registration crashes when fonts are delivered via Apple-Hosted Background Assets
Hi everyone, I’m trying to register fonts system-wide using CTFontManagerRegisterFontURLs with the .persistent scope. The fonts are delivered through Apple-Hosted Background Assets (since On-Demand Resources are deprecated). Process-level registration works perfectly, but persistent registration triggers a system “Install Fonts” prompt, and tapping Install causes the app to crash immediately. I’m wondering if anyone has successfully used Apple-Hosted Background Assets to provide persistent, system-wide installable fonts, or if this is a current OS limitation/bug. What I Expect Fonts delivered through Apple-Hosted Background Assets should be eligible for system-wide installation Tap “Install” should install fonts into Settings → Fonts just like app-bundled or ODR fonts App should not crash Why This Matters According to: WWDC 2019: Font Management and Text Scaling Developers can build font provider apps that install fonts system-wide, using bundled or On-Demand Resources. WWDC 2025: Discover Apple-Hosted Background Assets On-Demand Resources are deprecated, and AHBAs are the modern replacement. Therefore, persistent font installation via Apple-Hosted Background Assets appears to be the intended path moving forward. Question Is this a known limitation or bug in iOS? Should .persistent font installation work with Apple-Hosted Background Assets? Do we need additional entitlement, manifest configuration, or packaging rules? Any guidance or confirmation from Apple engineers would be greatly appreciated. Additional Info I submitted a Feedback including a minimal reproducible sample project: FB21109320
3
0
243
Nov ’25
LaunchAgent (Mac) as peripheral doesn't show a pairing request.
The same code built in a regular Mac app (with UI) does get paired. The characteristic properties are [.read, .write, .notify, .notifyEncryptionRequired] The characteristic permissions are [.readEncryptionRequired, .writeEncryptionRequired] My service is primary. In the iOS app (central) I try to read the characteristic, but an error is reported: Error code: 5, Description: Authentication is insufficient.
3
0
98
Dec ’25
BGContinuedProcessingTask does not respect fractionCompleted to keep alive
I posted here https://developer.apple.com/forums/thread/805554?page=1#867766022 but posting again for visibility (and let me know how I can file a bug) There was a response in that thread that said you could use the childProgress system to help updating progresses to keep the backgroundTask alive. What I've found is that using childProgresses results in more terminations than if you just updated the progress directly. Here is my setups to test this A BGContinuedProcessingTask that uses URLSessions to upload, and registers the task.progress with the Urlsession Progress Same, but the task.progress gets updated via a UrlSession Callback The second is MUCH more stable out in the field in cellular settings, the first fails extremely frequently. My suspicion is that in the documentation here https://developer.apple.com/documentation/foundation/progress#Reporting-Progress-for-Multiple-Operations it explicitly states The completedUnitCount property for a containing progress object only updates when the suboperation is 100% complete. The fractionCompleted property for a containing progress object updates continuously as work progresses for all suboperations. I wonder if BGContinuedProcessingTask is only looking at completedUnitCount for progress, and not fractionCompleted? In either case, I would love to use the childProgresses because there are bugs with retries by updating the progress manually, so would love some help resolving this, Thanks!
3
0
160
4w
application(_:didFinishLaunchingWithOptions:) not called on MDM iPads after overnight idle — app resumes without cold start
We are seeing a strange lifecycle issue on multiple MDM-managed iPads where application(_:didFinishLaunchingWithOptions:) is not called after the device is idle overnight. Even if we terminate the app manually via the app switcher, the next morning the system does not perform a cold launch. Instead, the app resumes directly in: applicationDidBecomeActive(_:) This causes all initialization logic that depends on didFinishLaunching to be completely skipped. This behavior is consistent across four different supervised MDM devices. Environment Devices: iPads enrolled in MDM (supervised) iOS version: 18.3 Xcode: 16.4 macOS: Sequoia 15.7.2 App type: Standard UIKit iOS app App: Salux Audiometer (App Store app) Expected Behavior If the app was terminated manually using the app switcher, the next launch should: Start a new process Trigger application(_:didFinishLaunchingWithOptions:) Follow the normal cold-start lifecycle Actual Behavior After leaving the iPad idle overnight (8–12 hours): The next launch skips didFinishLaunching The app resumes directly in applicationDidBecomeActive No new process is started App behaves as if it had been suspended, even though it was manually terminated Logs (Relevant Extracts) Day 1 — Normal cold launch [12:06:44.152 PM] PROCESS_STARTED [12:06:44.214 PM] DID_FINISH_LAUNCHING_START launchOptions=[] [12:06:44.448 PM] DID_FINISH_LAUNCHING_END We then used the app and terminated it via app switcher. Day 2 — Unexpected resume without cold start [12:57:49.328 PM] APP_DID_BECOME_ACTIVE No PROCESS_STARTED No didFinishLaunching No cold-start logs This means the OS resumed the app from a previous state that should not exist. Reproducible Steps Use an MDM-enrolled iPad. Launch the app normally. Terminate it manually via the multitasking app switcher. Leave the device idle overnight (8–12 hours). Launch the app the next morning. Observe that: didFinishLaunching does not fire applicationDidBecomeActive fires directly Questions for Apple Engineers / Community Is this expected behavior on MDM-supervised devices in iOS 18? Are there any known OS-level changes where terminated apps may be revived from disk/memory? Could MDM restrictions or background restoration policies override app termination? How can we ensure that our app always performs a clean initialization when launched after a long idle period? Additional Information We have full logs from four separate MDM iPads showing identical behavior. Happy to share a minimal reproducible sample if required.
3
0
114
3w
About GCD (Grand Central Dispatch) in an extension.
We are currently developing a VoIP application that supports Local Push extention. I would like to ask for your advice on how the extension works when the iPhone goes into sleep mode. Our App are using GCD (Grand Central Dispatch) to perform periodic processing within the extension, creating a cycle by it. [sample of an our source] class LocalPushProvider: NEAppPushProvider { let activeQueue: DispatchQueue = DispatchQueue(label: "com.myapp.LocalPushProvider.ActiveQueue", autoreleaseFrequency: .workItem) var activeSchecule: Cancellable? override func start(completionHandler: @escaping (Error?) -&gt; Void) { : self.activeSchecule = self.activeQueue.schedule( after: .init(.now() + .seconds(10)), // start schedule after 10sec interval: .seconds(10) // interval 10sec ) { self.activeTimerProc() } completionHandler(nil) } } However In this App that we are confirming that when the iPhone goes into sleep mode, self.activeTimerProc() is not called at 10-second intervals, but is significantly delayed (approximately 30 to 180 seconds). What factors could be causing the timer processing using GCD not to be executed at the specified interval when the iPhone is in sleep mode? Also, please let us know if there are any implementation errors or points to note. I apologize for bothering you during your busy schedule, but I would appreciate your response.
3
0
121
Jun ’25
DispatchSerialQueue minimum OS support
Hi Team, We intend to create a custom serial dispatch queue targetting a global queue. let serialQueue = DispatchQueue(label: "corecomm.tallyworld.serial", target: DispatchQueue.global(qos: .default)) The documentation for DispatchQueue init does not show any minimum OS versions. BUT DispatchSerialQueue init does show iOS 17.0+ iPadOS 17.0+ Mac Catalyst macOS 14.0+ tvOS 17.0+ visionOS watchOS 10.0+. Does that mean - I will not be able to create a custom serial dispatch queue below iOS 17?
3
0
162
Jul ’25
ExtensionKit and iOS 26
It looks like ExtensionKit (and ExtensionFoundation) is fully available on iOS 26 but there is no mention about this in WWDC. From my testing, it seems as of beta 1, ExtensionKit allows the app from one dev team to launch extension provided by another dev team. Before we start building on this, can someone from Apple help confirm this is the intentional behavior and not just beta 1 thing?
3
4
295
Dec ’25
iOS Team Provisioning Profile” Missing UIBackgroundModes Entitlement
I’m trying to enable Background Modes (specifically for audio, background fetch, remote notifications) in my iOS SwiftUI app, but I’m getting this error: Provisioning profile “iOS Team Provisioning Profile: [my app]” doesn’t include the UIBackgroundModes entitlement. On the developer website when I make the provision profile It doesnt give me the option to allow background modes. I added it to the sign in capabilities seccion in X code and matched the bundle ID to the provision profile and certificate etc but it still runs this error because the provision profile doesnt have the entitlements..
3
0
301
Jul ’25
Crash iOS 26 Beta
We are experiencing a crash in our application that only occurs on devices running iOS beta 26. It looks like a Beta problem. The crash appears to be caused by an excessive number of open File Descriptors. We identified this after noticing a series of crashes in different parts of the code each time the app was launched. Sometimes it would crash right at the beginning, when trying to load the Firebase plist file. That’s when we noticed a log message saying “too many open files,” and upon further investigation, we found that an excessive number of File Descriptors were open in our app, right after the didFinishLaunching method of the AppDelegate. We used the native Darwin library to log information about the FDs and collected the following: func logFDs() { var rlim = rlimit() if getrlimit(RLIMIT_NOFILE, &rlim) == 0 { print("FD LIMIT: soft: \(rlim.rlim_cur), hard: \(rlim.rlim_max)") } // Count open FDs before Firebase let openFDsBefore = countOpenFileDescriptors() print("Open file descriptors BEFORE Firebase.configure(): \(openFDsBefore)") } private func countOpenFileDescriptors() -> Int { var count = 0 let maxFD = getdtablesize() for fd in 0..<maxFD { if fcntl(fd, F_GETFD) != -1 { count += 1 } } return count } With this code, we obtained the following data: On a device with iOS 26 Beta 1, 2, or 3: FD LIMIT: soft: 256, hard: 9223372036854775807 Open file descriptors BEFORE Firebase.configure(): 256 On a device with iOS 18: FD LIMIT: soft: 256, hard: 9223372036854775807 Open file descriptors BEFORE Firebase.configure(): 57 In the case of the device running iOS 26 beta, the app crashes when executing Firebase.configure() because it cannot open the plist file, even though it can be found at the correct path — meaning the OS locates it. To confirm this was indeed the issue, we used the following code to close FDs before proceeding with Firebase configuration. By placing a breakpoint just before Firebase.configure() and running the following LLDB command: expr -l c -- for (int fd = 180; fd < 256; fd++) { (int)close(fd); } This released the FDs, allowing Firebase to proceed with its configuration as expected. However, the app would later crash again after hitting the soft limit of file descriptors once more. Digging deeper, we used this code to try to identify which FDs were being opened and causing the soft limit to be exceeded: func checkFDPath() { var r = rlimit() if getrlimit(RLIMIT_NOFILE, &r) == 0 { print("FD LIMIT: soft: \(r.rlim_cur), hard: \(r.rlim_max)") for fd in 0..<Int32(r.rlim_cur) { var path = [CChar](repeating: 0, count: Int(PATH_MAX)) if fcntl(fd, F_GETPATH, &path) != -1 { print(String(cString: path)) } } } } We ran this command at the very beginning of the didFinishLaunching method in the AppDelegate. On iOS 26, the log repeatedly showed Cryptexes creating a massive number of FDs, such as: /dev/null /dev/ttys000 /dev/ttys000 /private/var/mobile/Containers/Data/Application/AEE414F2-7D6F-44DF-A6D9-92EDD1D2B014/Library/Application Support/DTX_8.191.1.1003.sqlite /private/var/mobile/Containers/Data/Application/AEE414F2-7D6F-44DF-A6D9-92EDD1D2B014/Library/Caches/KSCrash/MyAppScheme/Data/ConsoleLog.txt /private/var/mobile/Containers/Data/Application/AEE414F2-7D6F-44DF-A6D9-92EDD1D2B014/Library/HTTPStorages/mybundleId/httpstorages.sqlite /private/var/mobile/Containers/Data/Application/AEE414F2-7D6F-44DF-A6D9-92EDD1D2B014/Library/HTTPStorages/mybundleId/httpstorages.sqlite-wal /private/var/mobile/Containers/Data/Application/AEE414F2-7D6F-44DF-A6D9-92EDD1D2B014/Library/HTTPStorages/mybundleId/httpstorages.sqlite-shm /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.01 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.11 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.12 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.13 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.14 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.15 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.16 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.17 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.18 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.19 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.20 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.21 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.22 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.23 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.24 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.25 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.26 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.29 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.30 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.31 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.32 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.36 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.37 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.38 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.39 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.40 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e … This repeats itself a lot of times. … /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.36 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.37 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.38 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.39 /private/preboot/Cryptexes/OS/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64e.40
3
8
348
Jul ’25