It appears that there is a size limit when training the Tabular Classification model in CreatML. When the training data is small, the training process completes smoothly after a specified period. However, as the data volume increases, the following issues occur: initially, the training process indicates that it is in progress, but after approximately 24 hours, it is automatically terminated after an hour. I am certain that this is not a manual termination by myself or others, but rather an automatic termination by the machine. This issue persists despite numerous attempts, and the only message displayed is “Training Canceled.” I would appreciate it if someone could explain the reason behind this behavior and provide a solution. Thank you for your assistance.
Create ML
RSS for tagCreate machine learning models for use in your app using Create ML.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hey everyone, I am a beginner with developing and using Artificial Intelligence models.
How do I integrate my createML image classification with swift.
I already have have an ML model and I want to integrate it into a swiftUI app.
If anyone could help, that would be great.
Thank you, O3DP
I have a smallish image classifier I've been working on using the Create ML app. For a while everything was going fine, but lately, as the dataset has gotten larger, Create ML seems to stop during the testing phase with no error or test results.
You can see here that there is no score in the result box, even though there are testing started and completed messages:
No error message is shown in the Create ML app, but I do see these messages in the log:
default 14:25:36.529887-0500 MLRecipeExecutionService [0x6000012bc000] activating connection: mach=false listener=false peer=false name=com.apple.coremedia.videodecoder
default 14:25:36.529978-0500 MLRecipeExecutionService [0x41c5d34c0] activating connection: mach=false listener=true peer=false name=(anonymous)
default 14:25:36.530004-0500 MLRecipeExecutionService [0x41c5d34c0] Channel could not return listener port.
default 14:25:36.530364-0500 MLRecipeExecutionService [0x429a88740] activating connection: mach=false listener=false peer=true name=com.apple.xpc.anonymous.0x41c5d34c0.peer[1167].0x429a88740
default 14:25:36.534523-0500 MLRecipeExecutionService [0x6000012bc000] invalidated because the current process cancelled the connection by calling xpc_connection_cancel()
default 14:25:36.534537-0500 MLRecipeExecutionService [0x41c5d34c0] invalidated because the current process cancelled the connection by calling xpc_connection_cancel()
default 14:25:36.534544-0500 MLRecipeExecutionService [0x429a88740] invalidated because the current process cancelled the connection by calling xpc_connection_cancel()
error 14:25:36.558788-0500 MLRecipeExecutionService CreateWithURL:342: *** ERROR: err=24 (Too many open files) - could not open '<CFURL 0x60000079b540 [0x1fdd32240]>{string = file:///Users/kevin/Library/Mobile%20Documents/com~apple~CloudDocs/Binary%20Formations/Under%20My%20Roof/Core%20ML%20Training%20Data/Household%20Items/Output/2025.01.23_12.55.16/Test/Stove/Test480.webp, encoding = 134217984, base = (null)}'
default 14:25:36.559030-0500 MLRecipeExecutionService Error: <private>
default 14:25:36.559077-0500 MLRecipeExecutionService Error: <private>
Of particular interest is the "Too many open files" message from MLRecipeExecutionService referencing one of the test images.
There are a total of 2,555 test images, which I wouldn't think would be a very large set. The system doesn't seem to be running out of memory or anything like that.
Near the end of the test run there MLRecipeExecution service had 2934 file descriptors open according to lsof.
Has anyone else run into this or know of a workaround? So far I've tried rebooting and recreating the Create ML project.
Currently using Create ML Version 6.1 (150.3) on macOS 15.2 (24C101) running on a Mac Studio.
Topic:
Machine Learning & AI
SubTopic:
Create ML
I see the solution is simple "just change the language in the build settings" but the build settings are not a thing in an App Playground project. It also says duplicated tasks.
While training a text classifier model with a few thousand samples completes in seconds, when using 100,000 or 1 million samples, CreateML's training time increases exponentially (to hours or days). During these hours/days, GPU usage is low and almost every CPU core is idle. When using the Swift APIs for model training, resource utilization does not increase. I'm using Xcode 16.2, macOS 15.2 on either an M2 Ultra 64 GB or an M3 Max 48 GB laptop (both using built-in SSD with ~500 GB free) running no other applications.
Is there a setting I've missed to allow training to take over more of my computing resources? Is this expected of CreateML (i.e., when looking to exploit a larger corpus, I should move to other tooling)? I'd love to speed up my iteration cycle time.
Topic:
Machine Learning & AI
SubTopic:
Create ML
I have reinstalled everything including command line tools but the CreateML frameworks fail to install, I need the framework so that I can train my auto-categorzation model which predicts category based on descriptions. I need that framework because I want to use reviision 4.
please suggest advice on how do I proceed
I have rewatched WWDC22 a few times , but still not getting full understanding how to get .mlmodel model file type from components .
Example with banana ripeness is cool , but what need to be added to actually have output of .mlmodel , is somewhere full sample code for this type of modular project ?
Code is from [https://developer.apple.com/videos/play/wwdc2022/10019)
import CoreImage
import CreateMLComponents
struct ImageRegressor {
static let trainingDataURL = URL(fileURLWithPath: "~/Desktop/bananas")
static let parametersURL = URL(fileURLWithPath: "~/Desktop/parameters")
static func train() async throws -> some Transformer<CIImage, Float> {
let estimator = ImageFeaturePrint()
.appending(LinearRegressor())
// File name example: banana-5.jpg
let data = try AnnotatedFiles(labeledByNamesAt: trainingDataURL, separator: "-", index: 1, type: .image)
.mapFeatures(ImageReader.read)
.mapAnnotations({ Float($0)! })
let (training, validation) = data.randomSplit(by: 0.8)
let transformer = try await estimator.fitted(to: training, validateOn: validation)
try estimator.write(transformer, to: parametersURL)
return transformer
}
}
I have tried to run it in Mac OS command line type app, Swift-UI but most what I had as output was .pkg with
"pipeline.json,
parameters,
optimizer.json,
optimizer"
Keep getting error :
I have tried Picker for File, Photo Library , both same results .
Debugging the resize for 360x360 but still facing this error.
The model I'm trying to implement is created with CreateMLComponents
The process is from example of WWDC 2022 Banana Ripeness , I have used index for each .jpg .
Prediction Failed: The VNCoreMLTransform request failed
Is there some possible way to solve it or is error somewhere in training of model ?
Can't import data in create ML word tagging project
training data is 100% correct I guarantee it:
I mean look this one has one entry in it.
[
{
"tokens": [
"a", "august", "gruters"
],
"labels": [
"BUILDER", "BUILDER", "BUILDER"
]
}
]
Topic:
Machine Learning & AI
SubTopic:
Create ML
Access to VisionPro cameras is required for a research project. The project is on mixed reality software development for healthcare applications in dentistry.
Note: I posted this to the feedback assistant but haven't gotten a response for 3months =( FB13482199
I am trying to train a large image classifier. I have a training run for ~300000 images. Each image has a folder and the file names within the folders are somewhat random. 381 classes. I am on an M2 Pro, Sonoma 14.0 running CreateML Version 5.0 (121.1). I would prefer not to pursue the pytorch/HF -> coremltools route.
CreateML seems to consistently crash ~25000-30000 images in during the feature extraction phase with "Unexpected Error". It does not seem to be due to an out of memory issue. I am looking for some guidance since it seems impossible to debug why this is consistently crashing.
My initial assumption was that it could be due to blank/corrupt files. I do not think that is the case. I also checked if there were any special characters in the data/folders. I wasn't able to go through all, but did try some programatic regex. Don't think this is the case either.
I attached the sysdiagnose results in feedback assistant after the crash happened. I did notice when going into /var/logs there was some write issue saying that Mac had written too much to disk. Note: I also tried Xcode 15.2-beta this time and the associated CoreML version.
My questions:
How can I fix this?
How should I go about debugging CreateML errors in the future?
'Unexpected Error' - where can I go about getting the exact createml logs on my device? This is far too broad of an error statement
Please let me know. As a note, I did successfully train a past model on ~100000 images. I am planning to 10-15x that if this run is successful. Please help, spent a lot of time gathering the extra data and to date have been an occasional power user of createml. Haven't heard back from Apple since December =/. I assume I'm not the only one with this problem, so looking for any instructions to hands on debug and help others. Thx!
Hi,
I'm working on training a createML object detector model; I've run into an issue that has me stumped - when I reach somewhere between 100,000 and 150,000 iterations my model will stop training and error out.
More Details:
CreateML gives me the error prompt that says it is unable to train the model please delete the model source and start from the beginning or duplicate the model and start from the beginning (slightly paraphrased)
I see the following error in the createML console (my user name and UUIDs have been redacted)
Unable to load model from file:///Users/<my user name>/Library/Caches/com.apple.dt.createml/projects/<UUID HERE>/sessions/checkpoint.sessions/<UUID Here>//training-000132500.checkpoint: Cannot open file:///Users/<my user name>/Library/Caches/com.apple.dt.createml/projects/<UUID Here>/sessions/checkpoint.sessions/<uuid here> //training-000132500.checkpoint/dir_archive.ini for read. Cannot open /Users/<my username>/Library/Caches/com.apple.dt.createml/projects/<UUID>/sessions/checkpoint.sessions/<UUID>//training-000132500.checkpoint/dir_archive.ini for reading
I've gone into my Caches in my Library directory and I see each piece of the file path in finder UNTIL the //training-00132500 piece of the path, so I can at least confirm that createML appears to be unable to create or open the file it needs for this training session.
Technology Used:
Xcode 16
Apple M1 Pro
MacOS 14.6.1 (23G93)
I've also verified that Xcode and terminal have full disk permissions in my system preferences - I didn't see an option to add CreateML to this list.
I've also ensured that my createML project and its data sources are not in iCloud and are indeed local on my desktop.
Lastly, I made more space on my machine, so I should have a little over 1 TB of space.
Has anybody experienced this before? Any advice? I am majorly blocked on this issue, so I hope somebody else can help shed some light on this issue!
Thanks!
Topic:
Machine Learning & AI
SubTopic:
Create ML
Hi,
I'm training a model that should detect a forehand and a backend stroke.
The data looks like this:
activity,timestamp,Acceleration_X,Acceleration_Y,Acceleration_Z,Rotation_X,Rotation_Y,Rotation_Z
forehand,0.0,0.08,-0.08,0.03,0.18,0.26,0.32
I can load it in Create ML but it's showing the acceleration and rotation x,y,z as seperate Doubles and not as one feature.
What do I have to change to make this work?
Thank you
Topic:
Machine Learning & AI
SubTopic:
Create ML
I'm using Numbers to build a spreadsheet that I'm exporting as a CSV. I then import this file into Create ML to train a word tagger model. Everything has been working fine for all the models I've trained so far, but now I'm coming across a use case that has been breaking the import process: commas within the training data. This is a case that none of Apple's examples show.
My project takes Navajo text that has been tokenized by syllables and labels the parts-of-speech.
Case that works...
Raw text:
Naaltsoos yídéeshtah.
Tokens column:
Naal,tsoos, ,yí,déesh,tah,.
Labels column:
NObj,NObj,Space,Verb,Verb,VStem,Punct
Case that breaks...
Raw text:
óola, béésh łigaii, tłʼoh naadą́ą́ʼ, wáin, akʼah, dóó á,shįįh
Tokens column with tokenized text (commas quoted):
óo,la,",", ,béésh, ,łi,gaii,",", ,tłʼoh, ,naa,dą́ą́ʼ,",", ,wáin,",", ,a,kʼah,",", ,dóó, ,á,shįįh
(Create ML reports mismatched columns)
Tokens column with tokenized text (commas escaped):
óo,la,\,, ,béésh, ,łi,gaii,\,, ,tłʼoh, ,naa,dą́ą́ʼ,\,, ,wáin,\,, ,a,kʼah,\,, ,dóó, ,á,shįįh
(Create ML reports mismatched columns)
Tokens column with tokenized text (commas escape-quoted):
óo,la,\",\", ,béésh, ,łi,gaii,\",\", ,tłʼoh, ,naa,dą́ą́ʼ,\",\", ,wáin,\",\", ,a,kʼah,\",\", ,dóó, ,á,shįįh
(record not detected by Create ML)
Tokens column with tokenized text (commas escape-quoted):
óo,la,"","", ,béésh, ,łi,gaii,"","", ,tłʼoh, ,naa,dą́ą́ʼ,"","", ,wáin,"","", ,a,kʼah,"","", ,dóó, ,á,shįįh
(Create ML reports mismatched columns)
Labels column:
NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Punct,Space,NSub,NSub,Punct,Space,Conj,Space,NSub,NSub
Sample From Spreadsheet
Solution Needed
It's simple enough to escape commas within CSV files, but the format needed by Create ML essentially combines entire CSV records into single columns, so I'm ending up needing a CSV record that contains a mixture of commas to use for parsing and ones to use as character literals. That's where this gets complicated.
For this particular use case (which seems like it would frequently arise when training a word tagger model), how should I properly escape a comma literal?
Topic:
Machine Learning & AI
SubTopic:
Create ML
Tags:
Natural Language
Machine Learning
Create ML
TabularData
I would like to make use of create ML to classify a motion. However, it seems it requires 2 classes at least to train or test it. What should I do as I only has 1 class (the target motion).
Also, how to interpret the 'Recall' and 'F1 Score'
Topic:
Machine Learning & AI
SubTopic:
Create ML
I’m keep looking around documentation and some sample codes but still haven’t found example of how was used this type of Network Regressor .
Does it take some special parameters to perform on ANE , what size,format of DataFrame ?
Is it possible to train a model using CreateML to infer a relevance numeric score of a news article based on similar trained data, something like a sentiment score ? I created a Text Classifier that assigns a category label which works perfect but I would like a solution that calculates a numeric value, not a label.
Topic:
Machine Learning & AI
SubTopic:
Create ML
Hi i'm curently crating a model to identify car plates (object detection) i use asitop to monitor my macbook pro and i see that only the cpu is used for the training and i wanted to know why
I’m developing an activity classifier that I’d like to input using the JSON format of CoreMotion data.
I am getting the error:
Unable to parse /Users/DewG/Downloads/Testing/Step1/Testing.json. It does not appear to be in JSON record format. A SequenceType of dictionaries is expected
I've verified that the format I am using is JSON via various JSON validators, so I am expecting I'm just holding it wrong. Is there an example of a JSON file with CoreMotion data that I can model after?
I have been working on a small CV program, which uses fine-tuned U2Netp model converted by coremltools 8.3.0 from PyTorch.
It works well on my iPhone (with iOS version 18.5) and my Macbook (with MacOS version 15.3.1). But it fails to load after I upgraded Macbook to MacOS version 15.5.
I have attached console log when loading this model.
Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage @ GetMPSGraphExecutable
E5RT: Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage (13)
Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage @ GetMPSGraphExecutable
E5RT: Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage (13)
Failure translating MIL->EIR network: Espresso exception: "Network translation error": MIL->EIR translation error at /Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil:1557:12: Parameter binding for axes does not exist.
[Espresso::handle_ex_plan] exception=Espresso exception: "Network translation error": MIL->EIR translation error at /Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil:1557:12: Parameter binding for axes does not exist. status=-14
Failed to build the model execution plan using a model architecture file '/Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil' with error code: -14.
Topic:
Machine Learning & AI
SubTopic:
Create ML