I see a lot of folks spend a lot of time trying to get Multipeer Connectivity to work for them. My experience is that the final result is often unsatisfactory. Instead, my medium-to-long term recommendation is to use Network framework instead. This post explains how you might move from Multipeer Connectivity to Network framework.
If you have questions or comments, put them in a new thread. Place it in the App & System Services > Networking topic area and tag it with Multipeer Connectivity and Network framework.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Moving from Multipeer Connectivity to Network Framework
Multipeer Connectivity has a number of drawbacks:
It has an opinionated networking model, where every participant in a session is a symmetric peer. Many apps work better with the traditional client/server model.
It offers good latency but poor throughput.
It doesn’t support flow control, aka back pressure, which severely constrains its utility for general-purpose networking.
It includes a number of UI components that are effectively obsolete.
It hasn’t evolved in recent years. For example, it relies on NSStream, which has been scheduled for deprecation as far as networking is concerned.
It always enables peer-to-peer Wi-Fi, something that’s not required for many apps and can impact the performance of the network (see Enable peer-to-peer Wi-Fi, below, for more about this).
Its security model requires the use of PKI — public key infrastructure, that is, digital identities and certificates — which are tricky to deploy in a peer-to-peer environment.
It has some gnarly bugs.
IMPORTANT Many folks use Multipeer Connectivity because they think it’s the only way to use peer-to-peer Wi-Fi. That’s not the case. Network framework has opt-in peer-to-peer Wi-Fi support. See Enable peer-to-peer Wi-Fi, below.
If Multipeer Connectivity is not working well for you, consider moving to Network framework. This post explains how to do that in 13 easy steps (-:
Plan for security
Select a network architecture
Create a peer identifier
Choose a protocol to match your send mode
Discover peers
Design for privacy
Configure your connections
Manage a listener
Manage a connection
Send and receive reliable messages
Send and receive best effort messages
Start a stream
Send a resource
Finally, at the end of the post you’ll find two appendices:
Final notes contains some general hints and tips.
Symbol cross reference maps symbols in the Multipeer Connectivity framework to sections of this post. Consult it if you’re not sure where to start with a specific Multipeer Connectivity construct.
Plan for security
The first thing you need to think about is security. Multipeer Connectivity offers three security models, expressed as choices in the MCEncryptionPreference enum:
.none for no security
.optional for optional security
.required for required security
For required security each peer must have a digital identity.
Optional security is largely pointless. It’s more complex than no security but doesn’t yield any benefits. So, in this post we’ll focus on the no security and required security models.
Your security choice affects the network protocols you can use:
QUIC is always secure.
WebSocket, TCP, and UDP can be used with and without TLS security.
QUIC security only supports PKI. TLS security supports both TLS-PKI and pre-shared key (PSK). You might find that TLS-PSK is easier to deploy in a peer-to-peer environment.
To configure the security of the QUIC protocol:
func quicParameters() -> NWParameters {
let quic = NWProtocolQUIC.Options(alpn: ["MyAPLN"])
let sec = quic.securityProtocolOptions
… configure `sec` here …
return NWParameters(quic: quic)
}
To enable TLS over TCP:
func tlsOverTCPParameters() -> NWParameters {
let tcp = NWProtocolTCP.Options()
let tls = NWProtocolTLS.Options()
let sec = tls.securityProtocolOptions
… configure `sec` here …
return NWParameters(tls: tls, tcp: tcp)
}
To enable TLS over UDP, also known as DTLS:
func dtlsOverUDPParameters() -> NWParameters {
let udp = NWProtocolUDP.Options()
let dtls = NWProtocolTLS.Options()
let sec = dtls.securityProtocolOptions
… configure `sec` here …
return NWParameters(dtls: dtls, udp: udp)
}
To configure TLS with a local digital identity and custom server trust evaluation:
func configureTLSPKI(sec: sec_protocol_options_t, identity: SecIdentity) {
let secIdentity = sec_identity_create(identity)!
sec_protocol_options_set_local_identity(sec, secIdentity)
if disableServerTrustEvaluation {
sec_protocol_options_set_verify_block(sec, { metadata, secTrust, completionHandler in
let trust = sec_trust_copy_ref(secTrust).takeRetainedValue()
… evaluate `trust` here …
completionHandler(true)
}, .main)
}
}
To configure TLS with a pre-shared key:
func configureTLSPSK(sec: sec_protocol_options_t, identity: Data, key: Data) {
let identityDD = identity.withUnsafeBytes { DispatchData(bytes: $0) }
let keyDD = identity.withUnsafeBytes { DispatchData(bytes: $0) }
sec_protocol_options_add_pre_shared_key(
sec,
keyDD as dispatch_data_t,
identityDD as dispatch_data_t
)
sec_protocol_options_append_tls_ciphersuite(
sec,
tls_ciphersuite_t(rawValue: TLS_PSK_WITH_AES_128_GCM_SHA256)!
)
}
Select a network architecture
Multipeer Connectivity uses a star network architecture. All peers are equal, and every peer is effectively connected to every peer. Many apps work better with the client/server model, where one peer acts on the server and all the others are clients. Network framework supports both models.
To implement a client/server network architecture with Network framework:
Designate one peer as the server and all the others as clients.
On the server, use NWListener to listen for incoming connections.
On each client, use NWConnection to made an outgoing connection to the server.
To implement a star network architecture with Network framework:
On each peer, start a listener.
And also start a connection to each of the other peers.
This is likely to generate a lot of redundant connections, as peer A connects to peer B and vice versa. You’ll need to a way to deduplicate those connections, which is the subject of the next section.
IMPORTANT While the star network architecture is more likely to create redundant connections, the client/server network architecture can generate redundant connections as well. The advice in the next section applies to both architectures.
Create a peer identifier
Multipeer Connectivity uses MCPeerID to uniquely identify each peer. There’s nothing particularly magic about MCPeerID; it’s effectively a wrapper around a large random number.
To identify each peer in Network framework, generate your own large random number. One good choice for a peer identifier is a locally generated UUID, created using the system UUID type.
Some Multipeer Connectivity apps persist their local MCPeerID value, taking advantage of its NSSecureCoding support. You can do the same with a UUID, using either its string representation or its Codable support.
IMPORTANT Before you decide to persist a peer identifier, think about the privacy implications. See Design for privacy below.
Avoid having multiple connections between peers; that’s both wasteful and potentially confusing. Use your peer identifier to deduplicate connections.
Deduplicating connections in a client/server network architecture is easy. Have each client check in with the server with its peer identifier. If the server already has a connection for that identifier, it can either close the old connection and keep the new connection, or vice versa.
Deduplicating connections in a star network architecture is a bit trickier. One option is to have each peer send its peer identifier to the other peer and then the peer with the ‘best’ identifier wins. For example, imagine that peer A makes an outgoing connection to peer B while peer B is simultaneously making an outgoing connection to peer A. When a peer receives a peer identifier from a connection, it checks for a duplicate. If it finds one, it compares the peer identifiers and then chooses a connection to drop based on that comparison:
if local peer identifier > remote peer identifier then
drop outgoing connection
else
drop incoming connection
end if
So, peer A drops its incoming connection and peer B drops its outgoing connection. Et voilà!
Choose a protocol to match your send mode
Multipeer Connectivity offers two send modes, expressed as choices in the MCSessionSendDataMode enum:
.reliable for reliable messages
.unreliable for best effort messages
Best effort is useful when sending latency-sensitive data, that is, data where retransmission is pointless because, by the retransmission arrives, the data will no longer be relevant. This is common in audio and video applications.
In Network framework, the send mode is set by the connection’s protocol:
A specific QUIC connection is either reliable or best effort.
WebSocket and TCP are reliable.
UDP is best effort.
Start with a reliable connection. In many cases you can stop there, because you never need a best effort connection.
If you’re not sure which reliable protocol to use, choose WebSocket. It has key advantages over other protocols:
It supports both security models: none and required. Moreover, its required security model supports both TLS-PKI and TLS PSK. In contrast, QUIC only supports the required security model, and within that model it only supports TLS-PKI.
It allows you to send messages over the connection. In contrast, TCP works in terms of bytes, meaning that you have to add your own framing.
If you need a best effort connection, get started with a reliable connection and use that connection to set up a parallel best effort connection. For example, you might have an exchange like this:
Peer A uses its reliable WebSocket connection to peer B to send a request for a parallel best effort UDP connection.
Peer B receives that, opens a UDP listener, and sends the UDP listener’s port number back to peer A.
Peer A opens its parallel UDP connection to that port on peer B.
Note For step 3, get peer B’s IP address from the currentPath property of the reliable WebSocket connection.
If you’re not sure which best effort protocol to use, use UDP. While it is possible to use QUIC in datagram mode, it has the same security complexities as QUIC in reliable mode.
Discover peers
Multipeer Connectivity has a types for advertising a peer’s session (MCAdvertiserAssistant) and a type for browsering for peer (MCNearbyServiceBrowser).
In Network framework, configure the listener to advertise its service by setting the service property of NWListener:
let listener: NWListener = …
listener.service = .init(type: "_example._tcp")
listener.serviceRegistrationUpdateHandler = { change in
switch change {
case .add(let endpoint):
… update UI for the added listener endpoint …
break
case .remove(let endpoint):
… update UI for the removed listener endpoint …
break
@unknown default:
break
}
}
listener.stateUpdateHandler = … handle state changes …
listener.newConnectionHandler = … handle the new connection …
listener.start(queue: .main)
This example also shows how to use the serviceRegistrationUpdateHandler to update your UI to reflect changes in the listener.
Note This example uses a service type of _example._tcp. See About service types, below, for more details on that.
To browse for services, use NWBrowser:
let browser = NWBrowser(for: .bonjour(type: "_example._tcp", domain: nil), using: .tcp)
browser.browseResultsChangedHandler = { latestResults, _ in
… update UI to show the latest results …
}
browser.stateUpdateHandler = … handle state changes …
browser.start(queue: .main)
This yields NWEndpoint values for each peer that it discovers. To connect to a given peer, create an NWConnection with that endpoint.
About service types
The examples in this post use _example._tcp for the service type. The first part, _example, is directly analogous to the serviceType value you supply when creating MCAdvertiserAssistant and MCNearbyServiceBrowser objects. The second part is either _tcp or _udp depending on the underlying transport protocol. For TCP and WebSocket, use _tcp. For UDP and QUIC, use _udp.
Service types are described in RFC 6335. If you deploy an app that uses a new service type, register that service type with IANA.
Discovery UI
Multipeer Connectivity also has UI components for advertising (MCNearbyServiceAdvertiser) and browsing (MCBrowserViewController). There’s no direct equivalent to this in Network framework. Instead, use your preferred UI framework to create a UI that best suits your requirements.
Note If you’re targeting Apple TV, check out the DeviceDiscoveryUI framework.
Discovery TXT records
The Bonjour service discovery protocol used by Network framework supports TXT records. Using these, a listener can associate metadata with its service and a browser can get that metadata for each discovered service.
To advertise a TXT record with your listener, include it it the service property value:
let listener: NWListener = …
let peerID: UUID = …
var txtRecord = NWTXTRecord()
txtRecord["peerID"] = peerID.uuidString
listener.service = .init(type: "_example._tcp", txtRecord: txtRecord.data)
To browse for services and their associated TXT records, use the .bonjourWithTXTRecord(…) descriptor:
let browser = NWBrowser(for: .bonjourWithTXTRecord(type: "_example._tcp", domain: nil), using: .tcp)
browser.browseResultsChangedHandler = { latestResults, _ in
for result in latestResults {
guard
case .bonjour(let txtRecord) = result.metadata,
let peerID = txtRecord["peerID"]
else { continue }
// … examine `result` and `peerID` …
_ = peerID
}
}
This example includes the peer identifier in the TXT record with the goal of reducing the number of duplicate connections, but that’s just one potential use for TXT records.
Design for privacy
This section lists some privacy topics to consider as you implement your app. Obviously this isn’t an exhaustive list. For general advice on this topic, see Protecting the User’s Privacy.
There can be no privacy without security. If you didn’t opt in to security with Multipeer Connectivity because you didn’t want to deal with PKI, consider the TLS-PSK options offered by Network framework. For more on this topic, see Plan for security.
When you advertise a service, the default behaviour is to use the user-assigned device name as the service name. To override that, create a service with a custom name:
let listener: NWListener = …
let name: String = …
listener.service = .init(name: name, type: "_example._tcp")
It’s not uncommon for folks to use the peer identifier as the service name. Whether that’s a good option depends on the user experience of your product:
Some products present a list of remote peers and have the user choose from that list. In that case it’s best to stick with the user-assigned device name, because that’s what the user will recognise.
Some products automatically connect to services as they discover them. In that case it’s fine to use the peer identifier as the service name, because the user won’t see it anyway.
If you stick with the user-assigned device name, consider advertising the peer identifier in your TXT record. See Discovery TXT records.
IMPORTANT Using a peer identifier in your service name or TXT record is a heuristic to reduce the number of duplicate connections. Don’t rely on it for correctness. Rather, deduplicate connections using the process described in Create a peer identifier.
There are good reasons to persist your peer identifier, but doing so isn’t great for privacy. Persisting the identifier allows for tracking of your service over time and between networks. Consider whether you need a persistent peer identifier at all. If you do, consider whether it makes sense to rotate it over time.
A persistent peer identifier is especially worrying if you use it as your service name or put it in your TXT record.
Configure your connections
Multipeer Connectivity’s symmetric architecture means that it uses a single type, MCSession, to manage the connections to all peers.
In Network framework, that role is fulfilled by two types:
NWListener to listen for incoming connections.
NWConnection to make outgoing connections.
Both types require you to supply an NWParameters value that specifies the network protocol and options to use. In addition, when creating an NWConnection you pass in an NWEndpoint to tell it the service to connect to. For example, here’s how to configure a very simple listener for TCP:
let parameters = NWParameters.tcp
let listener = try NWListener(using: parameters)
… continue setting up the listener …
And here’s how you might configure an outgoing TCP connection:
let parameters = NWParameters.tcp
let endpoint = NWEndpoint.hostPort(host: "example.com", port: 80)
let connection = NWConnection.init(to: endpoint, using: parameters)
… continue setting up the connection …
NWParameters has properties to control exactly what protocol to use and what options to use with those protocols.
To work with QUIC connections, use code like that shown in the quicParameters() example from the Security section earlier in this post.
To work with TCP connections, use the NWParameters.tcp property as shown above.
To enable TLS on your TCP connections, use code like that shown in the tlsOverTCPParameters() example from the Security section earlier in this post.
To work with WebSocket connections, insert it into the application protocols array:
let parameters = NWParameters.tcp
let ws = NWProtocolWebSocket.Options(.version13)
parameters.defaultProtocolStack.applicationProtocols.insert(ws, at: 0)
To enable TLS on your WebSocket connections, use code like that shown in the tlsOverTCPParameters() example to create your base parameters and then add the WebSocket application protocol to that.
To work with UDP connections, use the NWParameters.udp property:
let parameters = NWParameters.udp
To enable TLS on your UDP connections, use code like that shown in the dtlsOverUDPParameters() example from the Security section earlier in this post.
Enable peer-to-peer Wi-Fi
By default, Network framework doesn’t use peer-to-peer Wi-Fi. To enable that, set the includePeerToPeer property on the parameters used to create your listener and connection objects.
parameters.includePeerToPeer = true
IMPORTANT Enabling peer-to-peer Wi-Fi can impact the performance of the network. Only opt into it if it’s a significant benefit to your app.
If you enable peer-to-peer Wi-Fi, it’s critical to stop network operations as soon as you’re done with them. For example, if you’re browsing for services with peer-to-peer Wi-Fi enabled and the user picks a service, stop the browse operation immediately. Otherwise, the ongoing browse operation might affect the performance of your connection.
Manage a listener
In Network framework, use NWListener to listen for incoming connections:
let parameters: NWParameters = .tcp
… configure parameters …
let listener = try NWListener(using: parameters)
listener.service = … service details …
listener.serviceRegistrationUpdateHandler = … handle service registration changes …
listener.stateUpdateHandler = { newState in
… handle state changes …
}
listener.newConnectionHandler = { newConnection in
… handle the new connection …
}
listener.start(queue: .main)
For details on how to set up parameters, see Configure your connections. For details on how to set up up service and serviceRegistrationUpdateHandler, see Discover peers.
Network framework calls your state update handler when the listener changes state:
let listener: NWListener = …
listener.stateUpdateHandler = { newState in
switch newState {
case .setup:
// The listener has not yet started.
…
case .waiting(let error):
// The listener tried to start and failed. It might recover in the
// future.
…
case .ready:
// The listener is running.
…
case .failed(let error):
// The listener tried to start and failed irrecoverably.
…
case .cancelled:
// The listener was cancelled by you.
…
@unknown default:
break
}
}
Network framework calls your new connection handler when a client connects to it:
var connections: [NWConnection] = []
let listener: NWListener = listener
listener.newConnectionHandler = { newConnection in
… configure the new connection …
newConnection.start(queue: .main)
connections.append(newConnection)
}
IMPORTANT Don’t forget to call start(queue:) on your connections.
In Multipeer Connectivity, the session (MCSession) keeps track of all the peers you’re communicating with. With Network framework, that responsibility falls on you. This example uses a simple connections array for that purpose. In your app you may or may not need a more complex data structure. For example:
In the client/server network architecture, the client only needs to manage the connections to a single peer, the server.
On the other hand, the server must managed the connections to all client peers.
In the star network architecture, every peer must maintain a listener and connections to each of the other peers.
Understand UDP flows
Network framework handles UDP using the same NWListener and NWConnection types as it uses for TCP. However, the underlying UDP protocol is not implemented in terms of listeners and connections. To resolve this, Network framework works in terms of UDP flows. A UDP flow is defined as a bidirectional sequence of UDP datagrams with the same 4 tuple (local IP address, local port, remote IP address, and remote port). In Network framework:
Each NWConnection object manages a single UDP flow.
If an NWListener receives a UDP datagram whose 4 tuple doesn’t match any known NWConnection, it creates a new NWConnection.
Manage a connection
In Network framework, use NWConnection to start an outgoing connection:
var connections: [NWConnection] = []
let parameters: NWParameters = …
let endpoint: NWEndpoint = …
let connection = NWConnection(to: endpoint, using: parameters)
connection.stateUpdateHandler = … handle state changes …
connection.viabilityUpdateHandler = … handle viability changes …
connection.pathUpdateHandler = … handle path changes …
connection.betterPathUpdateHandler = … handle better path notifications …
connection.start(queue: .main)
connections.append(connection)
As in the listener case, you’re responsible for keeping track of this connection.
Each connection supports four different handlers. Of these, the state and viability update handlers are the most important. For information about the path update and better path handlers, see the NWConnection documentation.
Network framework calls your state update handler when the connection changes state:
let connection: NWConnection = …
connection.stateUpdateHandler = { newState in
switch newState {
case .setup:
// The connection has not yet started.
…
case .preparing:
// The connection is starting.
…
case .waiting(let error):
// The connection tried to start and failed. It might recover in the
// future.
…
case .ready:
// The connection is running.
…
case .failed(let error):
// The connection tried to start and failed irrecoverably.
…
case .cancelled:
// The connection was cancelled by you.
…
@unknown default:
break
}
}
If you a connection is in the .waiting(_:) state and you want to force an immediate retry, call the restart() method.
Network framework calls your viability update handler when its viability changes:
let connection: NWConnection = …
connection.viabilityUpdateHandler = { isViable in
… react to viability changes …
}
A connection becomes inviable when a network resource that it depends on is unavailable. A good example of this is the network interface that the connection is running over. If you have a connection running over Wi-Fi, and the user turns off Wi-Fi or moves out of range of their Wi-Fi network, any connection running over Wi-Fi becomes inviable.
The inviable state is not necessarily permanent. To continue the above example, the user might re-enable Wi-Fi or move back into range of their Wi-Fi network. If the connection becomes viable again, Network framework calls your viability update handler with a true value.
It’s a good idea to debounce the viability handler. If the connection becomes inviable, don’t close it down immediately. Rather, wait for a short while to see if it becomes viable again.
If a connection has been inviable for a while, you get to choose as to how to respond. For example, you might close the connection down or inform the user.
To close a connection, call the cancel() method. This gracefully disconnects the underlying network connection. To close a connection immediately, call the forceCancel() method. This is not something you should do as a matter of course, but it does make sense in exceptional circumstances. For example, if you’ve determined that the remote peer has gone deaf, it makes sense to cancel it in this way.
Send and receive reliable messages
In Multipeer Connectivity, a single session supports both reliable and best effort send modes. In Network framework, a connection is either reliable or best effort, depending on the underlying network protocol.
The exact mechanism for sending a message depends on the underlying network protocol. A good protocol for reliable messages is WebSocket. To send a message on a WebSocket connection:
let connection: NWConnection = …
let message: Data = …
let metadata = NWProtocolWebSocket.Metadata(opcode: .binary)
let context = NWConnection.ContentContext(identifier: "send", metadata: [metadata])
connection.send(content: message, contentContext: context, completion: .contentProcessed({ error in
// … check `error` …
_ = error
}))
In WebSocket, the content identifier is ignored. Using an arbitrary fixed value, like the send in this example, is just fine.
Multipeer Connectivity allows you to send a message to multiple peers in a single send call. In Network framework each send call targets a specific connection. To send a message to multiple peers, make a send call on the connection associated with each peer.
If your app needs to transfer arbitrary amounts of data on a connection, it must implement flow control. See Start a stream, below.
To receive messages on a WebSocket connection:
func startWebSocketReceive(on connection: NWConnection) {
connection.receiveMessage { message, _, _, error in
if let error {
… handle the error …
return
}
if let message {
… handle the incoming message …
}
startWebSocketReceive(on: connection)
}
}
IMPORTANT WebSocket preserves message boundaries, which is one of the reasons why it’s ideal for your reliable messaging connections. If you use a streaming protocol, like TCP or QUIC streams, you must do your own framing. A good way to do that is with NWProtocolFramer.
If you need the metadata associated with the message, get it from the context parameter:
connection.receiveMessage { message, context, _, error in
…
if let message,
let metadata = context?.protocolMetadata(definition: NWProtocolWebSocket.definition) as? NWProtocolWebSocket.Metadata
{
… handle the incoming message and its metadata …
}
…
}
Send and receive best effort messages
In Multipeer Connectivity, a single session supports both reliable and best effort send modes. In Network framework, a connection is either reliable or best effort, depending on the underlying network protocol.
The exact mechanism for sending a message depends on the underlying network protocol. A good protocol for best effort messages is UDP. To send a message on a UDP connection:
let connection: NWConnection = …
let message: Data = …
connection.send(content: message, completion: .idempotent)
IMPORTANT UDP datagrams have a theoretical maximum size of just under 64 KiB. However, sending a large datagram results in IP fragmentation, which is very inefficient. For this reason, Network framework prevents you from sending UDP datagrams that will be fragmented. To find the maximum supported datagram size for a connection, gets its maximumDatagramSize property.
To receive messages on a UDP connection:
func startUDPReceive(on connection: NWConnection) {
connection.receiveMessage { message, _, _, error in
if let error {
… handle the error …
return
}
if let message {
… handle the incoming message …
}
startUDPReceive(on: connection)
}
}
This is exactly the same code as you’d use for WebSocket.
Start a stream
In Multipeer Connectivity, you can ask the session to start a stream to a specific peer. There are two ways to achieve this in Network framework:
If you’re using QUIC for your reliable connection, start a new QUIC stream over that connection. This is one place that QUIC shines. You can run an arbitrary number of QUIC connections over a single QUIC connection group, and QUIC manages flow control (see below) for each connection and for the group as a whole.
If you’re using some other protocol for your reliable connection, like WebSocket, you must start a new connection. You might use TCP for this new connection, but it’s not unreasonable to use WebSocket or QUIC.
If you need to open a new connection for your stream, you can manage that process over your reliable connection. Choose a protocol to match your send mode explains the general approach for this, although in that case it’s opening a parallel best effort UDP connection rather than a parallel stream connection.
The main reason to start a new stream is that you want to send a lot of data to the remote peer. In that case you need to worry about flow control. Flow control applies to both the send and receive side.
IMPORTANT Failing to implement flow control can result in unbounded memory growth in your app. This is particularly bad on iOS, where jetsam will terminate your app if it uses too much memory.
On the send side, implement flow control by waiting for the connection to call your completion handler before generating and sending more data. For example, on a TCP connection or QUIC stream you might have code like this:
func sendNextChunk(on connection: NWConnection) {
let chunk: Data = … read next chunk from disk …
connection.send(content: chunk, completion: .contentProcessed({ error in
if let error {
… handle error …
return
}
sendNextChunk(on: connection)
}))
}
This acts like an asynchronous loop. The first send call completes immediately because the connection just copies the data to its send buffer. In response, your app generates more data. This continues until the connection’s send buffer fills up, at which point it defers calling your completion handler. Eventually, the connection moves enough data across the network to free up space in its send buffer, and calls your completion handler. Your app generates another chunk of data
For best performance, use a chunk size of at least 64 KiB. If you’re expecting to run on a fast device with a fast network, a chunk size of 1 MiB is reasonable.
Receive-side flow control is a natural extension of the standard receive pattern. For example, on a TCP connection or QUIC stream you might have code like this:
func receiveNextChunk(on connection: NWConnection) {
let chunkSize = 64 * 1024
connection.receive(minimumIncompleteLength: chunkSize, maximumLength: chunkSize) { chunk, _, isComplete, error in
if let chunk {
… write chunk to disk …
}
if isComplete {
… close the file …
return
}
if let error {
… handle the error …
return
}
receiveNextChunk(on: connection)
}
}
IMPORTANT The above is cast in terms of writing the chunk to disk. That’s important, because it prevents unbounded memory growth. If, for example, you accumulated the chunks into an in-memory buffer, that buffer could grow without bound, which risks jetsam terminating your app.
The above assumes that you can read and write chunks of data synchronously and promptly, for example, reading and writing a file on a local disk. That’s not always the case. For example, you might be writing data to an accessory over a slow interface, like Bluetooth LE. In such cases you need to read and write each chunk asynchronously.
This results in a structure where you read from an asynchronous input and write to an asynchronous output. For an example of how you might approach this, albeit in a very different context, see Handling Flow Copying.
Send a resource
In Multipeer Connectivity, you can ask the session to send a complete resource, identified by either a file or HTTP URL, to a specific peer. Network framework has no equivalent support for this, but you can implement it on top of a stream:
To send, open a stream and then read chunks of data using URLSession and send them over that stream.
To receive, open a stream and then receive chunks of data from that stream and write those chunks to disk.
In this situation it’s critical to implement flow control, as described in the previous section.
Final notes
This section collects together some general hints and tips.
Concurrency
In Multipeer Connectivity, each MCSession has its own internal queue and calls delegate callbacks on that queue. In Network framework, you get to control the queue used by each object for its callbacks. A good pattern is to have a single serial queue for all networking, including your listener and all connections.
In a simple app it’s reasonable to use the main queue for networking. If you do this, be careful not to do CPU intensive work in your networking callbacks. For example, if you receive a message that holds JPEG data, don’t decode that data on the main queue.
Overriding protocol defaults
Many network protocols, most notably TCP and QUIC, are intended to be deployed at vast scale across the wider Internet. For that reason they use default options that aren’t optimised for local networking. Consider changing these defaults in your app.
TCP has the concept of a send timeout. If you send data on a TCP connection and TCP is unable to successfully transfer it to the remote peer within the send timeout, TCP will fail the connection.
The default send timeout is infinite. TCP just keeps trying. To change this, set the connectionDropTime property.
TCP has the concept of keepalives. If a connection is idle, TCP will send traffic on the connection for two reasons:
If the connection is running through a NAT, the keepalives prevent the NAT mapping from timing out.
If the remote peer is inaccessible, the keepalives fail, which in turn causes the connection to fail. This prevents idle but dead connections from lingering indefinitely.
TCP keepalives default to disabled. To enable and configure them, set the enableKeepalive property. To configure their behaviour, set the keepaliveIdle, keepaliveCount, and keepaliveInterval properties.
Symbol cross reference
If you’re not sure where to start with a specific Multipeer Connectivity construct, find it in the tables below and follow the link to the relevant section.
[Sorry for the poor formatting here. DevForums doesn’t support tables properly, so I’ve included the tables as preformatted text.]
| For symbol | See |
| ----------------------------------- | --------------------------- |
| `MCAdvertiserAssistant` | *Discover peers* |
| `MCAdvertiserAssistantDelegate` | *Discover peers* |
| `MCBrowserViewController` | *Discover peers* |
| `MCBrowserViewControllerDelegate` | *Discover peers* |
| `MCNearbyServiceAdvertiser` | *Discover peers* |
| `MCNearbyServiceAdvertiserDelegate` | *Discover peers* |
| `MCNearbyServiceBrowser` | *Discover peers* |
| `MCNearbyServiceBrowserDelegate` | *Discover peers* |
| `MCPeerID` | *Create a peer identifier* |
| `MCSession` | See below. |
| `MCSessionDelegate` | See below. |
Within MCSession:
| For symbol | See |
| --------------------------------------------------------- | ------------------------------------ |
| `cancelConnectPeer(_:)` | *Manage a connection* |
| `connectedPeers` | *Manage a listener* |
| `connectPeer(_:withNearbyConnectionData:)` | *Manage a connection* |
| `disconnect()` | *Manage a connection* |
| `encryptionPreference` | *Plan for security* |
| `myPeerID` | *Create a peer identifier* |
| `nearbyConnectionData(forPeer:withCompletionHandler:)` | *Discover peers* |
| `securityIdentity` | *Plan for security* |
| `send(_:toPeers:with:)` | *Send and receive reliable messages* |
| `sendResource(at:withName:toPeer:withCompletionHandler:)` | *Send a resource* |
| `startStream(withName:toPeer:)` | *Start a stream* |
Within MCSessionDelegate:
| For symbol | See |
| ---------------------------------------------------------------------- | ------------------------------------ |
| `session(_:didFinishReceivingResourceWithName:fromPeer:at:withError:)` | *Send a resource* |
| `session(_:didReceive:fromPeer:)` | *Send and receive reliable messages* |
| `session(_:didReceive:withName:fromPeer:)` | *Start a stream* |
| `session(_:didReceiveCertificate:fromPeer:certificateHandler:)` | *Plan for security* |
| `session(_:didStartReceivingResourceWithName:fromPeer:with:)` | *Send a resource* |
| `session(_:peer:didChange:)` | *Manage a connection* |
Revision History
2025-04-11 Added some advice as to whether to use the peer identifier in your service name. Expanded the discussion of how to deduplicate connections in a star network architecture.
2025-03-20 Added a link to the DeviceDiscoveryUI framework to the Discovery UI section. Made other minor editorial changes.
2025-03-11 Expanded the Enable peer-to-peer Wi-Fi section to stress the importance of stopping network operations once you’re done with them. Added a link to that section from the list of Multipeer Connectivity drawbacks.
2025-03-07 First posted.
Networking
RSS for tagExplore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
HI,
I am currently developing an app that utilizes Wi-Fi Aware.
According to the Wi-Fi Aware framework examples and the WWDC25 session on Wi-Fi Aware, discovery is handled using DevicePairingView and DevicePicker from the DeviceDiscoveryUI module.
However, these SwiftUI views present their connection UI modally when tapped. My app's design requires the ability to control the presentation of this UI programmatically, rather than relying on a user tap.
While inspecting the DeviceDiscoveryUI module, I found DDDevicePairingViewController and DDDevicePickerViewController, which appear to be the UIViewController counterparts to the SwiftUI views.
The initializer for DDDevicePairingViewController accepts a ListenerProvider, so it seems I can pass the same ListenerProvider instance that is used with the DevicePairingView.
However, the initializer for DDDevicePickerViewController requires an NWBrowser.Descriptor, which seems incompatible with the parameters used for the SwiftUI DevicePicker.
I have two main questions:
(1) Can DDDevicePairingViewController and DDDevicePickerViewController be officially used for Wi-Fi Aware pairing?
(2) Are there any plans to provide more customization or programmatic control over the DevicePairingView and DevicePicker (for example, allowing us to trigger their modal presentation programmatically)?
Thank you.
Topic:
App & System Services
SubTopic:
Networking
Questions about FTP crop up from time-to-time here on DevForums. In most cases I write a general “don’t use FTP” response, but I don’t have time to go into all the details. I’ve created this post as a place to collect all of those details, so I can reference them in other threads.
IMPORTANT Apple’s official position on FTP is:
All our FTP APIs have been deprecated, and you should avoid using deprecated APIs.
Apple has been slowly removing FTP support from the user-facing parts of our system. The most recent example of this is that we removed the ftp command-line tool in macOS 10.13.
You should avoid the FTP protocol and look to adopt more modern alternatives.
The rest of this post is an informational explanation of the overall FTP picture.
This post is locked so I can keep it focused. If you have questions or comments, please do create a new thread in the App & System Services > Networking subtopic and I’ll respond there.
Don’t Use FTP
FTP is a very old and very crufty protocol. Certain things that seem obvious to us now — like being able to create a GUI client that reliably shows a directory listing in a platform-independent manner — aren’t possible to do in FTP. However, by far the biggest problem with FTP is that it provides no security [1]. Specifically, the FTP protocol:
Provides no on-the-wire privacy, so anyone can see the data you transfer
Provides no client-authenticates-server authentication, so you have no idea whether you’re talking to the right server
Provides no data integrity, allowing an attacker to munge your data in transit
Transfers user names and passwords in the clear
Using FTP for anonymous downloads may be acceptable (see the explanation below) but most other uses of FTP are completely inappropriate for the modern Internet.
IMPORTANT You should only use FTP for anonymous downloads if you have an independent way to check the integrity of the data you’ve downloaded. For example, if you’re downloading a software update, you could use code signing to check its integrity. If you don’t check the integrity of the data you’ve downloaded, an attacker could substitute a malicious download instead. This would be especially bad in, say, the software update case.
These fundamental problems with the FTP protocol mean that it’s not a priority for Apple. This is reflected in the available APIs, which is the subject of the next section.
FTP APIs
Apple provides two FTP APIs:
All Apple platforms provide FTP downloads via URLSession.
Most Apple platforms (everything except watchOS) support CFFTPStream, which allows for directory listings, downloads, uploads, and directory creation.
All of these FTP APIs are now deprecated:
URLSession was deprecated for the purposes of FTP in the 2022 SDKs (macOS 13, iOS 16, iPadOS 16, tvOS 16, watchOS 9) [2].
CFFTPStream was deprecated in the 2016 SDKs (macOS 10.11, iOS 9, iPadOS 9, tvOS 9).
CFFTPStream still works about as well as it ever did, which is not particularly well. Specifically:
There is at least one known crashing bug (r. 35745763), albeit one that occurs quite infrequently.
There are clear implementation limitations — like the fact that CFFTPCreateParsedResourceListing assumes a MacRoman text encoding (r. 7420589) — that won’t be fixed.
If you’re looking for an example of how to use these APIs, check out SimpleFTPSample.
Note This sample hasn’t been updated since 2013 and is unlikely to ever be updated given Apple’s position on FTP.
The FTP support in URLSession has significant limitations:
It only supports FTP downloads; there’s no support for uploads or any other FTP operations.
It doesn’t support resumable FTP downloads [3].
It doesn’t work in background sessions. That prevents it from running FTP downloads in the background on iOS.
It’s only supported in classic loading mode. See the usesClassicLoadingMode property and the doc comments in <Foundation/NSURLSession.h>.
If Apple’s FTP APIs are insufficient for your needs, you’ll need to write or acquire your own FTP library. Before you do that, however, consider switching to an alternative protocol. After all, if you’re going to go to the trouble of importing a large FTP library into your code base, you might as well import a library for a better protocol. The next section discusses some options in this space.
Alternative Protocols
There are numerous better alternatives to FTP:
HTTPS is by far the best alternative to FTP, offering good security, good APIs on Apple platforms, good server support, and good network compatibility. Implementing traditional FTP operations over HTTPS can be a bit tricky. One possible way forward is to enable DAV extensions on the server.
FTPS is FTP over TLS (aka SSL). While FTPS adds security to the protocol, which is very important, it still inherits many of FTP’s other problems. Personally I try to avoid this protocol.
SFTP is a file transfer protocol that’s completely unrelated to FTP. It runs over SSH, making it a great alternative in many of the ad hoc setups that traditionally use FTP.
Apple doesn’t have an API for either FTPS or SFTP, although on macOS you may be able to make some headway by invoking the sftp command-line tool.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] In another thread someone asked me about FTP’s other problems, those not related to security, so let’s talk about that.
One of FTP’s implicit design goals was to provide cross-platform support that exposes the target platform. You can think of FTP as being kinda like telnet. When you telnet from Unix to VMS, it doesn’t aim to abstract away VMS commands, so that you can type Unix commands at the VMS prompt. Rather, you’re expected to run VMS commands. FTP is (a bit) like that.
This choice made sense back when the FTP protocol was invented. Folks were expecting to use FTP via a command-line client, so there was a human in the loop. If they ran a command and it produced VMS-like output, that was fine because they knew that they were FTPing into a VMS machine.
However, most users today are using GUI clients, and this design choice makes it very hard to create a general GUI client for FTP. Let’s consider the simple problem of getting the contents of a directory. When you send an FTP LIST command, the server would historically run the platform native directory list command and pipe the results back to you. To create a GUI client you have to parse that data to extract the file names. Doing that is a serious challenge. Indeed, just the first step, working out the text encoding, is a challenge. Many FTP servers use UTF-8, but some use ISO-Latin-1, some use other standard encodings, some use Windows code pages, and so on.
I say “historically” above because there have been various efforts to standardise this stuff, both in the RFCs and in individual server implementations. However, if you’re building a general client you can’t rely on these efforts. After all, the reason why folks continue to use FTP is because of it widespread support.
[2] To quote the macOS 13 Ventura Release Notes:
FTP is deprecated for URLSession and related APIs. Please adopt
modern secure networking protocols such as HTTPS. (92623659)
[3] Although you can implement resumable downloads using the lower-level CFFTPStream API, courtesy of the kCFStreamPropertyFTPFileTransferOffset property.
Revision History
2025-10-06 Explained that URLSession only supports FTP in classic loading mode. Made other minor editorial changes.
2024-04-15 Added a footnote about FTP’s other problems. Made other minor editorial changes.
2022-08-09 Noted that the FTP support in URLSession is now deprecated. Made other minor editorial changes.
2021-04-06 Fixed the formatting. Fixed some links.
2018-02-23 First posted.
Are the network relays introduced in 2023 and
https://developer.apple.com/videos/play/wwdc2023/10002/
the same thing as the Private Relay introduced in 2021?
https://developer.apple.com/videos/play/wwdc2021/10096/
We are considering verifying the relay function, but we are not sure whether they are the same function or different functions.
https://developer.apple.com/documentation/devicemanagement/relay?language=objc
Topic:
App & System Services
SubTopic:
Networking
General:
Forums subtopic: App & System Services > Networking
DevForums tag: Network Extension
Network Extension framework documentation
Routing your VPN network traffic article
Filtering traffic by URL sample code
Filtering Network Traffic sample code
TN3120 Expected use cases for Network Extension packet tunnel providers technote
TN3134 Network Extension provider deployment technote
TN3165 Packet Filter is not API technote
Network Extension and VPN Glossary forums post
Debugging a Network Extension Provider forums post
Exporting a Developer ID Network Extension forums post
Network Extension Framework Entitlements forums post
Network Extension vs ad hoc techniques on macOS forums post
Network Extension Provider Packaging forums post
NWEndpoint History and Advice forums post
Extra-ordinary Networking forums post
Wi-Fi management:
Wi-Fi Fundamentals forums post
TN3111 iOS Wi-Fi API overview technote
How to modernize your captive network developer news post
iOS Network Signal Strength forums post
See also Networking Resources.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Hello,
I have a few questions regarding URL Filter (iOS 26) and Content Filter Providers.
URL Filter
According to the WWDC26 video, URL Filter appears to be available for both consumer and enterprise deployments.
This seems consistent with the classic Network Extension Provider Deployment documentation (TN3134 – August 2025), where no specific deployment restriction is mentioned.
However, a more recent document (Apple Platform Deployment, September 2025) indicates the following for URL Filter:
“Requires supervision on iPhone, iPad and Mac” (with a green checkmark).
👉 My question:
Is URL Filter actually available for consumer use on non-supervised iPhones (deployed on Testflight and AppStore), or is supervision now required?
Content Filter Providers
From past experience, I remember that Content Filter Providers were only available on supervised devices.
Based on the current documentation, I am questioning their usability in a consumer context, i.e. on non-supervised iPhones.
In the Network Extension Provider Deployment documentation, it is stated that this is a Network Extension and that, since iOS 16, it is a “per-app on managed device” restriction.
In the more recent Apple Platform Deployment document, it states for iPhone and iPad:
“App needs to be installed on the user’s iOS and iPadOS device and deletion can be prevented if the device is supervised.”
👉 My understanding:
Supervised device:
The Content Filter Provider is installed via a host application that controls enabling/disabling the filter, and the host app can be prevented from being removed thanks to supervision.
Non-supervised device:
The Content Filter Provider is also installed via a host application that controls enabling/disabling the filter, but the app can be removed by the user, which would remove the filter.
👉 My question:
Can Content Filter Providers be used in a consumer context on non-supervised iPhones (deployed on Testflight and AppStore), accepting that the user can uninstall the host app (and therefore remove the filter)?
Thank you in advance for your feedback.
Sources:
TN3134 => TN3134: Network Extension provider deployment | Apple Developer Documentation
Apple Platform Deployment / Filter content for Apple devices => https://support.apple.com/en-gb/guide/deployment/dep1129ff8d2/1/web/1.0
Topic:
App & System Services
SubTopic:
Networking
Hi there,
We’re developing a companion app for a smart home product that communicates over the user’s local network.
To provision the device, it initially creates its own Wi-Fi network. The user joins this temporary network and enters their home Wi-Fi credentials via our app. The app then sends those credentials directly to the device, which stores them and connects to the local network for normal operation.
We’re using AccessorySetupKit to discover nearby devices (via SSID prefix) and NEHotspotManager to join the accessory’s Wi-Fi network once the user selects it. This workflow works well in general.
However, we’ve encountered a problem: if the user factory-resets the accessory, or needs to restart setup (for example, after entering the wrong Wi-Fi password), the device no longer appears in the accessory picker.
In iOS 18, we were able to work around this by calling removeAccessory() after the device is selected. This forces the picker to always display the accessory again. But in iOS 26, a new confirmation dialog now appears when calling removeAccessory(), which confuses users during setup.
We’re looking for a cleaner way to handle this scenario — ideally a way to make the accessory rediscoverable without prompting the user to confirm removal.
Thanks for your time and guidance.
Is Apple's Wi-Fi Aware certified by the Wi-Fi Alliance?
Is there any non-compliance of Apple's Wi-Fi Aware with the Wi-Fi Alliance standards?
Does Apple have a roadmap to switch AWDL to Wi-Fi Aware?
Does Apple have plans to adopt Wi-Fi Aware in Mac computers?
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
On Host Names
I commonly see questions like How do I get the device’s host name? This question doesn’t make sense without more context. Apple systems have a variety of things that you might consider to be the host name:
The user-assigned device name — This is a user-visible value, for example, Guy Smiley. People set this in Settings > General > About > Name.
The local host name — This is a DNS name used by Bonjour, for example, guy-smiley.local. By default this is algorithmically derived from the user-assigned device name. On macOS, people can override this in Settings > General > Sharing > Local hostname.
The reverse DNS name associated with the various IP addresses assigned to the device’s various network interfaces
That last one is pretty much useless. You can’t get a single host name because there isn’t a single IP address. For more on that, see Don’t Try to Get the Device’s IP Address.
The other two have well-defined answers, although those answers vary by platform. I’ll talk more about that below.
Before getting to that, however, let’s look at the big picture.
Big Picture
The use cases for the user-assigned device name are pretty clear. I rarely see folks confused about that.
Another use case for this stuff is that you’ve started a server and you want to tell the user how to connect to it. I discuss this in detail in Showing Connection Information in an iOS Server.
However, most folks who run into problems like this do so because they’re suffering from one of the following misconceptions:
The device has a DNS name.
Its DNS name is unique.
Its DNS name doesn’t change.
Its DNS name is in some way useful for networking.
Some of these may be true in some specific circumstances, but none of them are true in all circumstances.
These issues are not unique to Apple platforms — if you look at the Posix spec for gethostname, it says nothing about DNS! — but folks tend to notice these problems more on Apple platforms because Apple devices are often deployed to highly dynamic network environments.
So, before you start using the APIs discussed in this post, think carefully about your assumptions.
And if you actually do want to work with DNS, there are two cases to consider:
If you’re looking for the local host name, use the APIs discussed above.
In other cases, it’s likely that the APIs in this post will not be helpful and you’d be better off focusing on DNS APIs [1].
[1] The API I recommend for this is DNS-SD. See the DNS section in TN3151 Choosing the right networking API.
macOS
To get the user-assigned device name, call the SCDynamicStoreCopyComputerName(_:_:) function. For example:
let userAssignedDeviceName = SCDynamicStoreCopyComputerName(nil, nil) as String?
To get the local host name, call the SCDynamicStoreCopyLocalHostName(_:) function. For example:
let localHostName = SCDynamicStoreCopyLocalHostName(nil) as String?
IMPORTANT This returns just the name label. To form a local host name, append .local..
Both routines return an optional result; code defensively!
If you’re displaying these values to the user, use the System Configuration framework dynamic store notification mechanism to keep your UI up to date.
iOS and Friends
On iOS, iPadOS, tvOS, and visionOS, get the user-assigned device name from the name property on UIDevice.
IMPORTANT Access to this is now restricted. For more on that, see the documentation for the com.apple.developer.device-information.user-assigned-device-name entitlement.
There is no direct mechanism to get the local host name.
Other APIs
There are a wide variety of other APIs that purport to return the host name. These include:
gethostname
The name property on NSHost [1]
The hostName property on NSProcessInfo (ProcessInfo in Swift)
These are problematic for a number of reasons:
They have a complex implementation that makes it hard to predict what value you’ll get back.
They might end up trying to infer the host name from the network environment.
The existing behaviour is hard to change due to compatibility concerns.
Some of them are marked as to-be-deprecated.
IMPORTANT The second issue is particularly problematic, because it involves synchronous DNS requests [2]. That’s slow in general. Worse yet, if the network environment is restricted in some way, these calls can be very slow, taking about 30 seconds to time out.
Given these problems, it’s generally best to avoid calling these routines at all.
[1] It also has a names property, which is a little closer to reality but still not particularly useful.
[2] Actually, that’s not true for gethostname. Rather, that call just returns whatever was last set by sethostname. This is always fast. The System Configuration framework infrastructure calls sethostname to update the host name as the system state changes.
I'm developing an application using the accessory setup kit (BLE) on iOS 18+. An important aspect of the connection process is being able to find and choose the correct device.
I noticed on iOS 18.2 that I was able to both scroll through the discovered accessories as well as view the advertised name. However, after upgrading to 18.7.2, only a single device is viewable and the advertised name is no longer available. Is there a trigger for this feature that I need to enable or was this "multiple discovery" feature removed? If so, why?
Starting in iOS 26, two notable changes have been made to CallKit, LiveCommunicationKit, and the PushToTalk framework:
As a diagnostic aid, we're introducing new dialogs to warn apps of voip push related issue, for example when they fail to report a call or when when voip push delivery stops. The specific details of that behavior are still being determined and are likely to change over time, however, the critical point here is that these alerts are only intended to help developers debug and improve their app. Because of that, they're specifically tied to development and TestFlight signed builds, so the alert dialogs will not appear for customers running app store builds. The existing termination/crashes will still occur, but the new warning alerts will not appear.
As PushToTalk developers have previously been warned, the last unrestricted PushKit entitlement ("com.apple.developer.pushkit.unrestricted-voip.ptt") has been disabled in the iOS 26 SDK. ALL apps that link against the iOS 26 SDK which receive a voip push through PushKit and which fail to report a call to CallKit will be now be terminated by the system, as the API contract has long specified.
__
Kevin Elliott
DTS Engineer, CoreOS/Hardware
On "Accessory Interface Specification CarPlay Addendum R10", it says that it is recommended that the accessory uses a MIMO (2x2) hardware configuration, does this imply that WiFi 5 and SISO (1X1) will be phased out in the near future?
When will WiFi 6 MIMO (2x2) become mandatory?
On "Accessory Interface Specification CarPlay Addendum R10", it says that Spatial Audio is mandatory. However, for aftermarket in-vehicle infotainment (IVI) system due to the number of speakers are less than 6, is it allowed not to support spatial audio for this type of aftermarket IVI system?
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Broadcasts and Multicasts, Hints and Tips
I regularly see folks struggle with broadcasts and multicasts on Apple platforms. This post is my attempt to clear up some of the confusion.
This post covers both IPv4 and IPv6. There is, however, a key difference. In IPv4, broadcasts and multicasts are distinct concepts. In contrast, IPv6 doesn’t support broadcast as such; rather, it treats broadcasts as a special case of multicasts. IPv6 does have an all nodes multicast address, but it’s rarely used.
Before reading this post, I suggest you familiarise yourself with IP addresses in general. A good place to start is The Fount of All Knowledge™.
Service Discovery
A lot of broadcast and multicast questions come from folks implementing their own service discovery protocol. I generally recommend against doing that, for the reasons outlined in the Service Discovery section of Don’t Try to Get the Device’s IP Address.
There are, however, some good reasons to implement a custom service discovery protocol. For example, you might be working with an accessory that only supports this custom protocol [1]. If you must implement your own service discovery protocol, read this post and also read the advice in Don’t Try to Get the Device’s IP Address.
IMPORTANT Sometimes I see folks implementing their own version of mDNS. This is almost always a mistake:
If you’re using third-party tooling that includes its own mDNS implementation, it’s likely that this tooling allows you to disable that implementation and instead rely on the Bonjour support that’s built-in to all Apple platforms.
If you’re doing some weird low-level thing with mDNS or DNS-SD, it’s likely that you can do that with the low-level DNS-SD API.
[1] And whose firmware you can’t change! I talk more about this in Working with a Wi-Fi Accessory.
API Choice
Broadcasts and multicasts typically use UDP [1]. TN3151 Choosing the right networking API describes two recommended UDP APIs:
Network framework
BSD Sockets
Our general advice is to prefer Network framework over BSD Sockets, but UDP broadcasts and multicasts are an exception to that rule. Network framework has very limited UDP broadcast support. And while it’s support for UDP multicasts is less limited, it’s still not sufficient for all UDP applications. In cases where Network framework is not sufficient, BSD Sockets is your only option.
[1] It is possible to broadcast and multicast at the Ethernet level, but I almost never see questions about that.
UDP Broadcasts in Network Framework
Historically I’ve claimed that Network framework was useful for UDP broadcasts is very limited circumstances (for example, in the footnote on this post). I’ve since learnt that this isn’t the case. Or, more accurately, this support is so limited (r. 122924701) as to be useless in practice.
For the moment, if you want to work with UDP broadcasts, your only option is BSD Sockets.
UDP Multicasts in Network Framework
Network framework supports UDP multicast using the NWConnectionGroup class with the NWMulticastGroup group descriptor. This support has limits. The most significant limit is that it doesn’t support broadcasts; it’s for multicasts only.
Note This only relevant to IPv4. Remember that IPv6 doesn’t support broadcasts as a separate concept.
There are other limitations, but I don’t have a good feel for them. I’ll update this post as I encounter issues.
Local Network Privacy
Some Apple platforms support local network privacy. This impacts broadcasts and multicasts in two ways:
Broadcasts and multicasts require local network access, something that’s typically granted by the user.
Broadcasts and multicasts are limited by a managed entitlement (except on macOS).
TN3179 Understanding local network privacy has lots of additional info on this topic, including the list of platforms to which it applies.
Send, Receive, and Interfaces
When you broadcast or multicast, there’s a fundamental asymmetry between send and receive:
You can reasonable receive datagrams on all broadcast-capable interfaces.
But when you send a datagram, it has to target a specific interface.
The sending behaviour is the source of many weird problems. Consider the IPv4 case. If you send a directed broadcast, you can reasonably assume it’ll be routed to the correct interface based on the network prefix. But folks commonly send an all-hosts broadcast (255.255.255.255), and it’s not obvious what happens in that case.
Note If you’re unfamiliar with the terms directed broadcast and all-hosts broadcast, see IP address.
The exact rules for this are complex, vary by platform, and can change over time. For that reason, it’s best to write your broadcast code to be interface specific. That is:
Identify the interfaces on which you want to work.
Create a socket per interface.
Bind that socket to that interface.
Note Use the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket options rather than binding to the interface address, because the interface address can change over time.
Extra-ordinary Networking has links to other posts which discuss these concepts and the specific APIs in more detail.
Miscellaneous Gotchas
A common cause of mysterious broadcast and multicast problems is folks who hard code BSD interface names, like en0. Doing that might work for the vast majority of users but then fail in some obscure scenarios.
BSD interface names are not considered API and you must not hard code them. Extra-ordinary Networking has links to posts that describe how to enumerate the interface list and identify interfaces of a specific type.
Don’t assume that there’ll be only one interface of a given type. This might seem obviously true, but it’s not. For example, our platforms support peer-to-peer Wi-Fi, so each device has multiple Wi-Fi interfaces.
When sending a broadcast, don’t forget to enable the SO_BROADCAST socket option.
If you’re building a sandboxed app on the Mac, working with UDP requires both the com.apple.security.network.client and com.apple.security.network.server entitlements.
Some folks reach for broadcasts or multicasts because they’re sending the same content to multiple devices and they believe that it’ll be faster than unicasts. That’s not true in many cases, especially on Wi-Fi. For more on this, see the Broadcasts section of Wi-Fi Fundamentals.
Snippets
To send a UDP broadcast:
func broadcast(message: Data, to interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
try fd.setSocketOption(SOL_SOCKET, SO_BROADCAST, 1 as CInt)
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { throw … }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.send(data: message, to: ("255.255.255.255", 2222))
}
Note These snippet uses the helpers from Calling BSD Sockets from Swift.
To receive UDP broadcasts:
func receiveBroadcasts(from interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { fatalError() }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEADDR, 1 as CInt)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEPORT, 1 as CInt)
try fd.bind("0.0.0.0", 2222)
while true {
let (data, (sender, port)) = try fd.receiveFrom()
…
}
}
IMPORTANT This code runs synchronously, which is less than ideal. In a real app you’d run the receive asynchronously, for example, using a Dispatch read source. For an example of how to do that, see this post.
If you need similar snippets for multicast, lemme know. I’ve got them lurking on my hard disk somewhere (-:
Other Resources
Apple’s official documentation for BSD Sockets is in the man pages. See Reading UNIX Manual Pages. Of particular interest are:
setsockopt man page
ip man page
ip6 man page
If you’re not familiar with BSD Sockets, I strongly recommend that you consult third-party documentation for it. BSD Sockets is one of those APIs that looks simple but, in reality, is ridiculously complicated. That’s especially true if you’re trying to write code that works on BSD-based platforms, like all of Apple’s platforms, and non-BSD-based platforms, like Linux.
I specifically recommend UNIX Network Programming, by Stevens et al, but there are lots of good alternatives.
https://unpbook.com
Revision History
2025-09-01 Fixed a broken link.
2025-01-16 First posted.
Description
Enterprise users are experiencing VPN resource access failures after upgrading to macOS Tahoe. Investigation indicates that configd (specifically IPMonitor) is incorrectly re-ranking network interfaces after a connectivity failure with probe server. This results in DNS queries routing through the physical network adapter (en0) instead of the VPN virtual adapter, even while the tunnel is active. This behaviour is not seen in previous macOS versions.
Steps to Reproduce:
Connect to an enterprise VPN (e.g., Ivanti Secure Access).
Trigger a transient network condition where the Apple probe server is unreachable. For example make the DNS server down for 30 sec.
Observe the system routing DNS queries for internal resources to the physical adapter.
Expected Results The: VPN virtual interface should maintain its primary rank for enterprise DNS queries regardless of the physical adapter's probe status.
Actual Results: IPMonitor detects an UplinkIssue, deprioritizes the VPN interface, and elevates the physical adapter to a higher priority rank.
Technical Root Cause & Logs:
The system logs show IPMonitor identifying an issue and modifying the interface priority at 16:03:54:
IPMonitor Detection: The process identifies an inability to reach the Apple probe server and marks en0 with an advisory:
Log snippet
2026-01-06 16:03:53.956399+0100 localhost configd[594]: [com.apple.SystemConfiguration:IPMonitor] configd[594] SetInterfaceAdvisory(en0) = UplinkIssue (2) reason='unable to reach probe server'
Interface Re-ranking: Immediately following, IPMonitor recalculates the rank, placing the physical service ID at a higher priority (lower numerical rank) than the VPN service ID (net.pulsesecure...):
Log snippet
2026-01-06 16:03:53.967935+0100 localhost configd[594]: [com.apple.SystemConfiguration:IPMonitor] 0. en0 serviceID=50CD9266-B097-4664-BFE6-7BAFCC5E9DC0 addr=192.168.0.128 rank=0x200000d
2026-01-06 16:03:53.967947+0100 localhost configd[594]: [com.apple.SystemConfiguration:IPMonitor] 1. en0 serviceID=net.pulsesecure.pulse.nc.main addr=192.168.0.128 rank=0x2ffffff
3.Physical adapter Is selected as Primary Interface:
2026-01-06 16:03:53.968145+0100 localhost configd[594]: [com.apple.SystemConfiguration:IPMonitor] 50CD9266-B097-4664-BFE6-7BAFCC5E9DC0 is the new primary IPv4
configd[594]: 50CD9266-B097-4664-BFE6-7BAFCC5E9DC0 is the new primary DNS
Packet Trace Evidence Wireshark confirms that DNS queries for enterprise-specific DNS servers are being originated from the physical IP (192.168.0.128) instead of the virtual adapter:
Time: 16:03:54.084
Source: 192.168.0.128 (Physical Adapter)
Destination: 172.29.155.115 (Internal VPN DNS Server)
Result: Connectivity Failure (Queries sent outside the tunnel)
Topic:
App & System Services
SubTopic:
Networking
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Network Interface APIs
Most developers don’t need to interact directly with network interfaces. If you do, read this post for a summary of the APIs available to you.
Before you read this, read Network Interface Concepts.
Interface List
The standard way to get a list of interfaces and their addresses is getifaddrs. To learn more about this API, see its man page.
A network interface has four fundamental attributes:
A set of flags — These are packed into a CUnsignedInt. The flags bits are declared in <net/if.h>, starting with IFF_UP.
An interface type — See Network Interface Type, below.
An interface index — Valid indexes are greater than 0.
A BSD interface name. For example, an Ethernet interface might be called en0. The interface name is shared between multiple network interfaces running over a given hardware interface. For example, IPv4 and IPv6 running over that Ethernet interface will both have the name en0.
WARNING BSD interface names are not considered API. There’s no guarantee, for example, that an iPhone’s Wi-Fi interface is en0.
You can map between the last two using if_indextoname and if_nametoindex. See the if_indextoname man page for details.
An interface may also have address information. If present, this always includes the interface address (ifa_addr) and the network mask (ifa_netmask). In addition:
Broadcast-capable interfaces (IFF_BROADCAST) have a broadcast address (ifa_broadaddr, which is an alias for ifa_dstaddr).
Point-to-point interfaces (IFF_POINTOPOINT) have a destination address (ifa_dstaddr).
Calling getifaddrs from Swift is a bit tricky. For an example of this, see QSocket: Interfaces.
IP Address List
Once you have getifaddrs working, it’s relatively easy to manipulate the results to build a list of just IP addresses, a list of IP addresses for each interface, and so on. QSocket: Interfaces has some Swift snippets that show this.
Interface List Updates
The interface list can change over time. Hardware interfaces can be added and removed, network interfaces come up and go down, and their addresses can change. It’s best to avoid caching information from getifaddrs. If thats unavoidable, use the kNotifySCNetworkChange Darwin notification to update your cache. For information about registering for Darwin notifications, see the notify man page (in section 3).
This notification just tells you that something has changed. It’s up to you to fetch the new interface list and adjust your cache accordingly.
You’ll find that this notification is sometimes posted numerous times in rapid succession. To avoid unnecessary thrashing, debounce it.
While the Darwin notification API is easy to call from Swift, Swift does not import kNotifySCNetworkChange. To fix that, define that value yourself, calling a C function to get the value:
var kNotifySCNetworkChange: UnsafePointer<CChar> {
networkChangeNotifyKey()
}
Here’s what that C function looks like:
extern const char * networkChangeNotifyKey(void) {
return kNotifySCNetworkChange;
}
Network Interface Type
There are two ways to think about a network interface’s type. Historically there were a wide variety of weird and wonderful types of network interfaces. The following code gets this legacy value for a specific BSD interface name:
func legacyTypeForInterfaceNamed(_ name: String) -> UInt8? {
var addrList: UnsafeMutablePointer<ifaddrs>? = nil
let err = getifaddrs(&addrList)
// In theory we could check `errno` here but, honestly, what are gonna
// do with that info?
guard
err >= 0,
let first = addrList
else { return nil }
defer { freeifaddrs(addrList) }
return sequence(first: first, next: { $0.pointee.ifa_next })
.compactMap { addr in
guard
let nameC = addr.pointee.ifa_name,
name == String(cString: nameC),
let sa = addr.pointee.ifa_addr,
sa.pointee.sa_family == AF_LINK,
let data = addr.pointee.ifa_data
else { return nil }
return data.assumingMemoryBound(to: if_data.self).pointee.ifi_type
}
.first
}
The values are defined in <net/if_types.h>, starting with IFT_OTHER.
However, this value is rarely useful because many interfaces ‘look like’ Ethernet and thus have a type of IFT_ETHER.
Network framework has the concept of an interface’s functional type. This is an indication of how the interface fits into the system. There are two ways to get an interface’s functional type:
If you’re using Network framework and have an NWInterface value, get the type property.
If not, call ioctl with a SIOCGIFFUNCTIONALTYPE request. The return values are defined in <net/if.h>, starting with IFRTYPE_FUNCTIONAL_UNKNOWN.
Swift does not import SIOCGIFFUNCTIONALTYPE, so it’s best to write this code in a C:
extern uint32_t functionalTypeForInterfaceNamed(const char * name) {
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
struct ifreq ifr = {};
strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
bool success = ioctl(fd, SIOCGIFFUNCTIONALTYPE, &ifr) >= 0;
int junk = close(fd);
assert(junk == 0);
if ( ! success ) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
return ifr.ifr_ifru.ifru_functional_type;
}
Finally, TN3158 Resolving Xcode 15 device connection issues documents the SIOCGIFDIRECTLINK flag as a specific way to identify the network interfaces uses by Xcode for device connection traffic.
Revision History
2025-12-10 Added info about SIOCGIFDIRECTLINK.
2023-07-19 First posted.
Hello,
I understand that to discover and pair a device or accessory with Wi-Fi Aware, we can use either the DeviceDiscoveryUI or AccessorySetupKitUI frameworks. During the pairing process, both frameworks prompt the user to enter a pairing code. Is this step mandatory?
What alternatives exist for devices or accessories that don't have a way to communicate a pairing code to the user (for example, devices or accessories without a display or voice capability)?
Best regards,
Gishan
Topic:
App & System Services
SubTopic:
Networking
Tags:
iOS
Network
DeviceDiscoveryUI
AccessorySetupKit
My external device can generate a fixed Wi-Fi network. When I connect to this Wi-Fi using my iPhone 17 Pro Max (iOS version 26.0.1), and my app tries to establish a connection using the following method, this method returns -1
int connect(int, const struct sockaddr *, socklen_t) __DARWIN_ALIAS_C(connect);
However, when I use other phones, such as iPhone 12, iPhone 8, iPhone 11, etc., to connect to this external device, the above method always returns successfully, with the parameters passed to the method remaining the same.
I also tried resetting the network settings on the iPhone 17 Pro Max (iOS version 26.0.1), but it still cannot establish a connection.
Topic:
App & System Services
SubTopic:
Networking
How often do we see control filter start and stop?
I read somewhere that data filter is long lived and control Filter is short lived.
When does the operating system kills the control filter process?
I have granted local network permissions, but sometimes I get a second confirmation popup, what is the timing of the secondary popup?
I have 3 phones
iPhone 14 iOS 18.3
iPhone Xr iOS 18.5
iPhone Xr iOS 18.4.1
My app has a network extension, and I've noticed each phone having their connectivity interupted by calls on the push provider, calling stop with the noNetworkAvailable reason. The point of confusion is that each phone seems to get it's interuption at different times. For example one will get an interuption at 1:00, while the others is fine, while at 3:00 another will get an interuption, while the others are fine.
This is confusing since a "no network available" seems to imply a problem with the router, or access point, but if that were the case, one would believe it should affect all the phones on the wifi. I don't see less interuptions on the iPhone14 vs the iPhone Xr. Do you believe the iOS version is affecting the performance?
Could you please give me some insight, as to what could be going on inside these phones?
P.S. I also see an error pop up when using NWConnection, this is inside the App. The state update handler will sometimes return the state, waiting(POSIX(.ENETDOWN)) Is there any relation to what's going on in the extension?