General:
Forums subtopic: App & System Services > Networking
TN3151 Choosing the right networking API
Networking Overview document — Despite the fact that this is in the archive, this is still really useful.
TLS for App Developers forums post
Choosing a Network Debugging Tool documentation
WWDC 2019 Session 712 Advances in Networking, Part 1 — This explains the concept of constrained networking, which is Apple’s preferred solution to questions like How do I check whether I’m on Wi-Fi?
TN3135 Low-level networking on watchOS
TN3179 Understanding local network privacy
Adapt to changing network conditions tech talk
Understanding Also-Ran Connections forums post
Extra-ordinary Networking forums post
Foundation networking:
Forums tags: Foundation, CFNetwork
URL Loading System documentation — NSURLSession, or URLSession in Swift, is the recommended API for HTTP[S] on Apple platforms.
Moving to Fewer, Larger Transfers forums post
Testing Background Session Code forums post
Network framework:
Forums tag: Network
Network framework documentation — Network framework is the recommended API for TCP, UDP, and QUIC on Apple platforms.
Building a custom peer-to-peer protocol sample code (aka TicTacToe)
Implementing netcat with Network Framework sample code (aka nwcat)
Configuring a Wi-Fi accessory to join a network sample code
Moving from Multipeer Connectivity to Network Framework forums post
NWEndpoint History and Advice forums post
Network Extension (including Wi-Fi on iOS):
See Network Extension Resources
Wi-Fi Fundamentals
TN3111 iOS Wi-Fi API overview
Wi-Fi Aware framework documentation
Wi-Fi on macOS:
Forums tag: Core WLAN
Core WLAN framework documentation
Wi-Fi Fundamentals
Secure networking:
Forums tags: Security
Apple Platform Security support document
Preventing Insecure Network Connections documentation — This is all about App Transport Security (ATS).
Available trusted root certificates for Apple operating systems support article
Requirements for trusted certificates in iOS 13 and macOS 10.15 support article
About upcoming limits on trusted certificates support article
Apple’s Certificate Transparency policy support article
What’s new for enterprise in iOS 18 support article — This discusses new key usage requirements.
Technote 2232 HTTPS Server Trust Evaluation
Technote 2326 Creating Certificates for TLS Testing
QA1948 HTTPS and Test Servers
Miscellaneous:
More network-related forums tags: 5G, QUIC, Bonjour
On FTP forums post
Using the Multicast Networking Additional Capability forums post
Investigating Network Latency Problems forums post
WirelessInsights framework documentation
iOS Network Signal Strength
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Networking
RSS for tagExplore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
On "Accessory Interface Specification CarPlay Addendum R10", it says that it is recommended that the accessory uses a MIMO (2x2) hardware configuration, does this imply that WiFi 5 and SISO (1X1) will be phased out in the near future?
When will WiFi 6 MIMO (2x2) become mandatory?
On "Accessory Interface Specification CarPlay Addendum R10", it says that Spatial Audio is mandatory. However, for aftermarket in-vehicle infotainment (IVI) system due to the number of speakers are less than 6, is it allowed not to support spatial audio for this type of aftermarket IVI system?
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Broadcasts and Multicasts, Hints and Tips
I regularly see folks struggle with broadcasts and multicasts on Apple platforms. This post is my attempt to clear up some of the confusion.
This post covers both IPv4 and IPv6. There is, however, a key difference. In IPv4, broadcasts and multicasts are distinct concepts. In contrast, IPv6 doesn’t support broadcast as such; rather, it treats broadcasts as a special case of multicasts. IPv6 does have an all nodes multicast address, but it’s rarely used.
Before reading this post, I suggest you familiarise yourself with IP addresses in general. A good place to start is The Fount of All Knowledge™.
Service Discovery
A lot of broadcast and multicast questions come from folks implementing their own service discovery protocol. I generally recommend against doing that, for the reasons outlined in the Service Discovery section of Don’t Try to Get the Device’s IP Address.
There are, however, some good reasons to implement a custom service discovery protocol. For example, you might be working with an accessory that only supports this custom protocol [1]. If you must implement your own service discovery protocol, read this post and also read the advice in Don’t Try to Get the Device’s IP Address.
IMPORTANT Sometimes I see folks implementing their own version of mDNS. This is almost always a mistake:
If you’re using third-party tooling that includes its own mDNS implementation, it’s likely that this tooling allows you to disable that implementation and instead rely on the Bonjour support that’s built-in to all Apple platforms.
If you’re doing some weird low-level thing with mDNS or DNS-SD, it’s likely that you can do that with the low-level DNS-SD API.
[1] And whose firmware you can’t change! I talk more about this in Working with a Wi-Fi Accessory.
API Choice
Broadcasts and multicasts typically use UDP [1]. TN3151 Choosing the right networking API describes two recommended UDP APIs:
Network framework
BSD Sockets
Our general advice is to prefer Network framework over BSD Sockets, but UDP broadcasts and multicasts are an exception to that rule. Network framework has very limited UDP broadcast support. And while it’s support for UDP multicasts is less limited, it’s still not sufficient for all UDP applications. In cases where Network framework is not sufficient, BSD Sockets is your only option.
[1] It is possible to broadcast and multicast at the Ethernet level, but I almost never see questions about that.
UDP Broadcasts in Network Framework
Historically I’ve claimed that Network framework was useful for UDP broadcasts is very limited circumstances (for example, in the footnote on this post). I’ve since learnt that this isn’t the case. Or, more accurately, this support is so limited (r. 122924701) as to be useless in practice.
For the moment, if you want to work with UDP broadcasts, your only option is BSD Sockets.
UDP Multicasts in Network Framework
Network framework supports UDP multicast using the NWConnectionGroup class with the NWMulticastGroup group descriptor. This support has limits. The most significant limit is that it doesn’t support broadcasts; it’s for multicasts only.
Note This only relevant to IPv4. Remember that IPv6 doesn’t support broadcasts as a separate concept.
There are other limitations, but I don’t have a good feel for them. I’ll update this post as I encounter issues.
Local Network Privacy
Some Apple platforms support local network privacy. This impacts broadcasts and multicasts in two ways:
Broadcasts and multicasts require local network access, something that’s typically granted by the user.
Broadcasts and multicasts are limited by a managed entitlement (except on macOS).
TN3179 Understanding local network privacy has lots of additional info on this topic, including the list of platforms to which it applies.
Send, Receive, and Interfaces
When you broadcast or multicast, there’s a fundamental asymmetry between send and receive:
You can reasonable receive datagrams on all broadcast-capable interfaces.
But when you send a datagram, it has to target a specific interface.
The sending behaviour is the source of many weird problems. Consider the IPv4 case. If you send a directed broadcast, you can reasonably assume it’ll be routed to the correct interface based on the network prefix. But folks commonly send an all-hosts broadcast (255.255.255.255), and it’s not obvious what happens in that case.
Note If you’re unfamiliar with the terms directed broadcast and all-hosts broadcast, see IP address.
The exact rules for this are complex, vary by platform, and can change over time. For that reason, it’s best to write your broadcast code to be interface specific. That is:
Identify the interfaces on which you want to work.
Create a socket per interface.
Bind that socket to that interface.
Note Use the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket options rather than binding to the interface address, because the interface address can change over time.
Extra-ordinary Networking has links to other posts which discuss these concepts and the specific APIs in more detail.
Miscellaneous Gotchas
A common cause of mysterious broadcast and multicast problems is folks who hard code BSD interface names, like en0. Doing that might work for the vast majority of users but then fail in some obscure scenarios.
BSD interface names are not considered API and you must not hard code them. Extra-ordinary Networking has links to posts that describe how to enumerate the interface list and identify interfaces of a specific type.
Don’t assume that there’ll be only one interface of a given type. This might seem obviously true, but it’s not. For example, our platforms support peer-to-peer Wi-Fi, so each device has multiple Wi-Fi interfaces.
When sending a broadcast, don’t forget to enable the SO_BROADCAST socket option.
If you’re building a sandboxed app on the Mac, working with UDP requires both the com.apple.security.network.client and com.apple.security.network.server entitlements.
Some folks reach for broadcasts or multicasts because they’re sending the same content to multiple devices and they believe that it’ll be faster than unicasts. That’s not true in many cases, especially on Wi-Fi. For more on this, see the Broadcasts section of Wi-Fi Fundamentals.
Snippets
To send a UDP broadcast:
func broadcast(message: Data, to interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
try fd.setSocketOption(SOL_SOCKET, SO_BROADCAST, 1 as CInt)
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { throw … }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.send(data: message, to: ("255.255.255.255", 2222))
}
Note These snippet uses the helpers from Calling BSD Sockets from Swift.
To receive UDP broadcasts:
func receiveBroadcasts(from interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { fatalError() }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEADDR, 1 as CInt)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEPORT, 1 as CInt)
try fd.bind("0.0.0.0", 2222)
while true {
let (data, (sender, port)) = try fd.receiveFrom()
…
}
}
IMPORTANT This code runs synchronously, which is less than ideal. In a real app you’d run the receive asynchronously, for example, using a Dispatch read source. For an example of how to do that, see this post.
If you need similar snippets for multicast, lemme know. I’ve got them lurking on my hard disk somewhere (-:
Other Resources
Apple’s official documentation for BSD Sockets is in the man pages. See Reading UNIX Manual Pages. Of particular interest are:
setsockopt man page
ip man page
ip6 man page
If you’re not familiar with BSD Sockets, I strongly recommend that you consult third-party documentation for it. BSD Sockets is one of those APIs that looks simple but, in reality, is ridiculously complicated. That’s especially true if you’re trying to write code that works on BSD-based platforms, like all of Apple’s platforms, and non-BSD-based platforms, like Linux.
I specifically recommend UNIX Network Programming, by Stevens et al, but there are lots of good alternatives.
https://unpbook.com
Revision History
2025-09-01 Fixed a broken link.
2025-01-16 First posted.
Hi all,
I work on a smart product that, for setup, uses a captive portal to allow users to connect and configure the device.
It emits a WiFi network and runs a captive portal - an HTTP server operates at 10.0.0.1, and a DNS server responds to all requests with 10.0.0.1 to direct "any and all" request to the server.
When iOS devices connect, they send a request to captive.apple.com/hotspot-detect.html; if it returns success, that means they're on the internet; if not, the typical behavior in the past has been to assume you're connected to a captive portal and display what's being served.
I serve any requests to /hotspot-detect.html with my captive portal page (index.html).
This has worked reliably on iOS18 for a long time (user selects my products WiFi network, iOS detects portal and opens it).
But almost everyone who's now trying with iOS26 is having the "automatic pop up" behavior fail - usually it says "Error opening page - Hotspot login cannot open the page because the network connection was lost." However, if opening safari and navigating to any URL (or 10.0.0.1) the portal loads - it's just the iOS auto-detect and open that's not working
iOS18 always succeeds; iOS26 always fails.
Anybody have any idea what changes may have been introduced in iOS26 on this front, or anything I can do to help prompt or coax iOS26 into loading the portal? It typically starts reading, but then stops mid-read.
Topic:
App & System Services
SubTopic:
Networking
Hi there,
We’re developing a companion app for a smart home product that communicates over the user’s local network.
To provision the device, it initially creates its own Wi-Fi network. The user joins this temporary network and enters their home Wi-Fi credentials via our app. The app then sends those credentials directly to the device, which stores them and connects to the local network for normal operation.
We’re using AccessorySetupKit to discover nearby devices (via SSID prefix) and NEHotspotManager to join the accessory’s Wi-Fi network once the user selects it. This workflow works well in general.
However, we’ve encountered a problem: if the user factory-resets the accessory, or needs to restart setup (for example, after entering the wrong Wi-Fi password), the device no longer appears in the accessory picker.
In iOS 18, we were able to work around this by calling removeAccessory() after the device is selected. This forces the picker to always display the accessory again. But in iOS 26, a new confirmation dialog now appears when calling removeAccessory(), which confuses users during setup.
We’re looking for a cleaner way to handle this scenario — ideally a way to make the accessory rediscoverable without prompting the user to confirm removal.
Thanks for your time and guidance.
This is a topic that’s come up a few times on the forums, so I thought I’d write up a summary of the issues I’m aware of. If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Network Extension Provider Packaging
There are two ways to package a network extension provider:
App extension ( appex )
System extension ( sysex )
Different provider types support different packaging on different platforms. See TN3134 Network Extension provider deployment for the details.
Some providers, most notably packet tunnel providers on macOS, support both appex and sysex packaging. Sysex packaging has a number of advantages:
It supports direct distribution, using Developer ID signing.
It better matches the networking stack on macOS. An appex is tied to the logged in user, whereas a sysex, and the networking stack itself, is global to the system as a whole.
Given that, it generally makes sense to package your Network Extension (NE) provider as a sysex on macOS. If you’re creating a new product that’s fine, but if you have an existing iOS product that you want to bring to macOS, you have to account for the differences brought on by the move to sysex packaging. Similarly, if you have an existing sysex product on macOS that you want to bring to iOS, you have to account for the appex packaging. This post summarises those changes.
Keep the following in mind while reading this post:
The information here applies to all NE providers that can be packaged as either an appex or a sysex. When this post uses a specific provider type in an example, it’s just an example.
Unless otherwise noted, any information about iOS also applies to iPadOS, tvOS, and visionOS.
Process Lifecycle
With appex packaging, the system typically starts a new process for each instance of your NE provider. For example, with a packet tunnel provider:
When the users starts the VPN, the system creates a process and then instantiates and starts the NE provider in that process.
When the user stops the VPN, the system stops the NE provider and then terminates the process running it.
If the user starts the VPN again, the system creates an entirely new process and instantiates and starts the NE provider in that.
In contrast, with sysex packaging there’s typically a single process that runs all off the sysex’s NE providers. Returning to the packet tunnel provider example:
When the users starts the VPN, the system instantiates and starts the NE provider in the sysex process.
When the user stops the VPN, the system stops and deallocates the NE provider instances, but leaves the sysex process running.
If the user starts the VPN again, the system instantiates and starts a new instances of the NE provider in the sysex process.
This lifecycle reflects how the system runs the NE provider, which in turn has important consequences on what the NE provider can do:
An appex acts like a launchd agent [1], in that it runs in a user context and has access to that user’s state.
A sysex is effectively a launchd daemon. It runs in a context that’s global to the system as a whole. It does not have access to any single user’s state. Indeed, there might be no user logged in, or multiple users logged in.
The following sections explore some consequences of the NE provider lifecycle.
[1] It’s not actually run as a launchd agent. Rather, there’s a system launchd agent that acts as the host for the app extension.
App Groups
With an app extension, the app extension and its container app run as the same user. Thus it’s trivial to share state between them using an app group container.
Note When talking about extensions on Apple platforms, the container app is the app in which the extension is embedded and the host app is the app using the extension. For network extensions the host app is the system itself.
That’s not the case with a system extension. The system extension runs as root whereas the container app runs an the user who launched it. While both programs can claim access to the same app group, the app group container location they receive will be different. For the system extension that location will be inside the home directory for the root user. For the container app the location will be inside the home directory of the user who launched it.
This does not mean that app groups are useless in a Network Extension app. App groups are also a factor in communicating between the container app and its extensions, the subject of the next section.
IMPORTANT App groups have a long and complex history on macOS. For the full story, see App Groups: macOS vs iOS: Working Towards Harmony.
Communicating with Extensions
With an app extension there are two communication options:
App-provider messages
App groups
App-provider messages are supported by NE directly. In the container app, send a message to the provider by calling sendProviderMessage(_:responseHandler:) method. In the appex, receive that message by overriding the handleAppMessage(_:completionHandler:) method.
An appex can also implement inter-process communication (IPC) using various system IPC primitives. Both the container app and the appex claim access to the app group via the com.apple.security.application-groups entitlement. They can then set up IPC using various APIs, as explain in the documentation for that entitlement.
With a system extension the story is very different. App-provider messages are supported, but they are rarely used. Rather, most products use XPC for their communication. In the sysex, publish a named XPC endpoint by setting the NEMachServiceName property in its Info.plist. Listen for XPC connections on that endpoint using the XPC API of your choice.
Note For more information about the available XPC APIs, see XPC Resources.
In the container app, connect to that named XPC endpoint using the XPC Mach service name API. For example, with NSXPCConnection, initialise the connection with init(machServiceName:options:), passing in the string from NEMachServiceName. To maximise security, set the .privileged flag.
Note XPC Resources has a link to a post that explains why this flag is important.
If the container app is sandboxed — necessary if you ship on the Mac App Store — then the endpoint name must be prefixed by an app group ID that’s accessible to that app, lest the App Sandbox deny the connection. See the app groups documentation for the specifics.
When implementing an XPC listener in your sysex, keep in mind that:
Your sysex’s named XPC endpoint is registered in the global namespace. Any process on the system can open a connection to it [1]. Your XPC listener must be prepared for this. If you want to restrict connections to just your container app, see XPC Resources for a link to a post that explains how to do that.
Even if you restrict access in that way, it’s still possible for multiple instances of your container app to be running simultaneously, each with its own connection to your sysex. This happens, for example, if there are multiple GUI users logged in and different users run your container app. Design your XPC protocol with this in mind.
Your sysex only gets one named XPC endpoint, and thus one XPC listener. If your sysex includes multiple NE providers, take that into account when you design your XPC protocol.
[1] Assuming that connection isn’t blocked by some other mechanism, like the App Sandbox.
Inter-provider Communication
A sysex can include multiple types of NE providers. For example, a single sysex might include a content filter and a DNS proxy provider. In that case the system instantiates all of the NE providers in the same sysex process. These instances can communicate without using IPC, for example, by storing shared state in global variables (with suitable locking, of course).
It’s also possible for a single container app to contain multiple sysexen, each including a single NE provider. In that case the system instantiates the NE providers in separate processes, one for each sysex. If these providers need to communicate, they have to use IPC.
In the appex case, the system instantiates each provider in its own process. If two providers need to communicate, they have to use IPC.
Managing Secrets
An appex runs in a user context and thus can store secrets, like VPN credentials, in the keychain. On macOS this includes both the data protection keychain and the file-based keychain. It can also use a keychain access group to share secrets with its container app. See Sharing access to keychain items among a collection of apps.
Note If you’re not familiar with the different types of keychain available on macOS, see TN3137 On Mac keychain APIs and implementations.
A sysex runs in the global context and thus doesn’t have access to user state. It also doesn’t have access to the data protection keychain. It must use the file-based keychain, and specifically the System keychain. That means there’s no good way to share secrets with the container app.
Instead, do all your keychain operations in the sysex. If the container app needs to work with a secret, have it pass that request to the sysex via IPC. For example, if the user wants to use a digital identity as a VPN credential, have the container app get the PKCS#12 data and password and then pass that to the sysex so that it can import the digital identity into the keychain.
Memory Limits
iOS imposes strict memory limits an NE provider appexen [1]. macOS imposes no memory limits on NE provider appexen or sysexen.
[1] While these limits are not documented officially, you can get a rough handle on the current limits by reading the posts in this thread.
Frameworks
If you want to share code between a Mac app and its embedded appex, use a structure like this:
MyApp.app/
Contents/
MacOS/
MyApp
PlugIns/
MyExtension.appex/
Contents/
MacOS/
MyExtension
…
Frameworks/
MyFramework.framework/
…
There’s one copy of the framework, in the app’s Frameworks directory, and both the app and the appex reference it.
This approach works for an appex because the system always loads the appex from your app’s bundle. It does not work for a sysex. When you activate a sysex, the system copies it to a protected location. If that sysex references a framework in its container app, it will fail to start because that framework isn’t copied along with the sysex.
The solution is to structure your app like this:
MyApp.app/
Contents/
MacOS/
MyApp
Library/
SystemExtensions/
MyExtension.systemextension/
Contents/
MacOS/
MyExtension
Frameworks/
MyFramework.framework/
…
…
That is, have both the app and the sysex load the framework from the sysex’s Frameworks directory. When the system copies the sysex to its protected location, it’ll also copy the framework, allowing the sysex to load it.
To make this work you have to change the default rpath configuration set up by Xcode. Read Dynamic Library Standard Setup for Apps to learn how that works and then tweak things so that:
The framework is embedded in the sysex, not the container app.
The container app has an additional LC_RPATH load command for the sysex’s Frameworks directory (@executable_path/../Library/SystemExtensions/MyExtension.systemextension/Contents/Frameworks).
The sysex’s LC_RPATH load command doesn’t reference the container app’s Frameworks directory (@executable_path/../../../../Frameworks) but instead points to the sysex’s Framweorks directory (@executable_path/../Frameworks).
Entitlements
When you build an app with an embedded NE extension, both the app and the extension must be signed with the com.apple.developer.networking.networkextension entitlement. This is a restricted entitlement, that is, it must be authorised by a provisioning profile.
The value of this entitlement is an array, and the values in that array differ depend on your distribution channel:
If you distribute your app directly with Developer ID signing, use the values with the -systemextension suffix.
Otherwise — including when you distribute the app on the App Store and when signing for development — use the values without that suffix.
Make sure you authorise these values with your provisioning profile. If, for example, you use an App Store distribution profile with a Developer ID signed app, things won’t work because the profile doesn’t authorise the right values.
In general, the easiest option is to use Xcode’s automatic code signing. However, watch out for the pitfall described in Exporting a Developer ID Network Extension.
Revision History
2025-11-06 Added the Entitlements section. Explained that, with sysex packaging, multiple instances of your container app might connect simultaneously with your sysex.
2025-09-17 First posted.
The path from Network Extension’s in-provider networking APIs to Network framework has been long and somewhat rocky. The most common cause of confusion is NWEndpoint, where the same name can refer to two completely different types. I’ve helped a bunch of folks with this over the years, and I’ve decided to create this post to collect together all of those titbits.
If you have questions or comments, please put them in a new thread. Put it in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
NWEndpoint History and Advice
A tale that spans three APIs, two languages, and ten years.
The NWEndpoint type has a long and complex history, and if you’re not aware of that history you can bump into weird problems. The goal of this post is to explain the history and then offer advice on how to get around specific problems.
IMPORTANT This post focuses on NWEndpoint, because that’s the type that causes the most problems, but there’s a similar situation with NWPath.
The History
In iOS 9 Apple introduced the Network Extension (NE) framework, which offers a convenient way for developers to create a custom VPN transport. Network Extension types all have the NE prefix.
Note I’m gonna use iOS versions here, just to keep the text simple. If you’re targeting some other platform, use this handy conversion table:
iOS | macOS | tvOS | watchOS | visionOS
--- + ----- + ---- + ------- + --------
9 | 10.11 | 9 | 2 | -
12 | 10.14 | 12 | 5 | -
18 | 15 | 18 | 11 | 2
At that time we also introduced in-provider networking APIs. The idea was that an NE provider could uses these Objective-C APIs to communicate with its VPN server, and thereby avoiding a bunch of ugly BSD Sockets code.
The in-provider networking APIs were limited to NE providers. Specifically, the APIs to construct an in-provider connection were placed on types that were only usable within an NE provider. For example, a packet tunnel provider could create a NWTCPConnection object by calling -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] and -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate:, which are both methods on NEPacketTunnelProvider.
These in-provider networking APIs came with a number of ancillary types, including NWEndpoint and NWPath.
At the time we thought that we might promote these in-provider networking APIs to general-purpose networking APIs. That’s why the APIs use the NW prefix. For example, it’s NWTCPConnection, not NETCPConnection.
However, plans changed. In iOS 12 Apple shipped Network framework as our recommended general-purpose networking API. This actually includes two APIs:
A Swift API that follows Swift conventions, for example, the connection type is called NWConnection
A C API that follows C conventions, for example, the connection type is called nw_connection_t
These APIs follow similar design patterns to the in-provider networking API, and thus have similar ancillary types. Specifically, there are an NWEndpoint and nw_endpoint_t types, both of which perform a similar role to the NWEndpoint type in the in-provider networking API.
This was a source of some confusion in Swift, because the name NWEndpoint could refer to either the Network framework type or the Network Extension framework type, depending on what you’d included. Fortunately you could get around this by qualifying the type as either Network.NWEndpoint or NetworkExtension.NWEndpoint.
The arrival of Network framework meant that it no longer made sense to promote the in-provider networking APIs to general-purposes networking APIs. The in-provider networking APIs were on the path to deprecation.
However, deprecating these APIs was actually quite tricky. Network Extension framework uses these APIs in a number of interesting ways, and so deprecating them required adding replacements. In addition, we’d needed different replacements for Swift and Objective-C, because Network framework has separate APIs for Swift and C-based languages.
In iOS 18 we tackled that problem head on. To continue the NWTCPConnection example above, we replaced:
-createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] with nw_connection_t
-createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate: with nw_connection_t combined with a new virtualInterface property on NEPacketTunnelProvider
Of course that’s the Objective-C side of things. In Swift, the replacement is NWConnection rather than nw_connection_t, and the type of the virtualInterface property is NWInterface rather than nw_interface_t.
But that’s not the full story. For the two types that use the same name in both frameworks, NWEndpoint and NWPath, we decided to use this opportunity to sort out that confusion. To see how we did that, check out the <NetworkExtension/NetworkExtension.apinotes> file in the SDK. Focusing on NWEndpoint for the moment, you’ll find two entries:
…
- Name: NWEndpoint
SwiftPrivate: true
…
SwiftVersions:
- Version: 5.0
…
- Name: NWEndpoint
SwiftPrivate: false
…
The first entry applies when you’re building with the Swift 6 language mode. This marks the type as SwiftPrivate, which means that Swift imports it as __NWEndpoint. That frees up the NWEndpoint name to refer exclusively to the Network framework type.
The second entry applies when you’re building with the Swift 5 language mode. It marks the type as not SwiftPrivate. This is a compatible measure to ensure that code written for Swift 5 continues to build.
The Advice
This sections discusses specific cases in this transition.
NWEndpoint and NWPath
In Swift 5 language mode, NWEndpoint and NWPath might refer to either framework, depending on what you’ve imported. Add a qualifier if there’s any ambiguity, for example, Network.NWEndpoint or NetworkExtension.NWEndpoint.
In Swift 6 language mode, NWEndpoint and NWPath always refer to the Network framework type. Add a __ prefix to get to the Network Extension type. For example, use NWEndpoint for the Network framework type and __NWEndpoint for the Network Extension type.
Direct and Through-Tunnel TCP Connections in Swift
To create a connection directly, simply create an NWConnection. This support both TCP and UDP, with or without TLS.
To create a connection through the tunnel, replace code like this:
let c = self.createTCPConnectionThroughTunnel(…)
with code like this:
let params = NWParameters.tcp
params.requiredInterface = self.virtualInterface
let c = NWConnection(to: …, using: params)
This is for TCP but the same basic process applies to UDP.
UDP and App Proxies in Swift
If you’re building an app proxy, transparent proxy, or DNS proxy in Swift and need to handle UDP flows using the new API, adopt the NEAppProxyUDPFlowHandling protocol. So, replace code like this:
class AppProxyProvider: NEAppProxyProvider {
…
override func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
with this:
class AppProxyProvider: NEAppProxyProvider, NEAppProxyUDPFlowHandling {
…
func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteFlowEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
Creating a Network Rule
To create an NWHostEndpoint, replace code like this:
let ep = NWHostEndpoint(hostname: "1.2.3.4", port: "12345")
let r = NENetworkRule(destinationHost: ep, protocol: .TCP)
with this:
let ep = NWEndpoint.hostPort(host: "1.2.3.4", port: 12345)
let r = NENetworkRule(destinationHostEndpoint: ep, protocol: .TCP)
Note how the first label of the initialiser has changed from destinationHost to destinationHostEndpoint.
Hi,
We're receiving data via centralManager.centralManager.scanForPeripherals, with no options or filtering (for now), and in the func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) callback, we get advertisementData for each bluetooth device found.
But, I know one of my BLE devices is sending an Eddystone TLM payload, which generally is received into the kCBAdvDataServiceData part of the advertisementData dictionary, but, it doesn't show up.
What is happening however (when comparing to other devices that do show that payload), is I've noticed the "isConnectable" part is false, and others have it true. Technically we're not "connecting" as such as we're simply reading passive advertisement data, but does that have any bearing on how CoreBluetooth decides to build up it's AdvertisementData response?
Example (with serviceData; and I know this has Eddystone TLM)
["kCBAdvDataLocalName": FSC-BP105N, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataServiceUUIDs": <__NSArrayM 0x300b71f80>(
FEAA,
FEF5
)
, "kCBAdvDataTimestamp": 773270526.26279, "kCBAdvDataServiceData": {
FFF0 = {length = 11, bytes = 0x36021892dc0d3015aeb164};
FEAA = {length = 14, bytes = 0x20000be680000339ffa229bbce8a};
}, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataIsConnectable": 1]
Vs
This also has Eddystone TLM configured
["kCBAdvDataLocalName": 100FA9FD-7000-1000, "kCBAdvDataIsConnectable": 0, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataTimestamp": 773270918.97273]
Any insight would be great to understand if the presence of other flags drive the exposure of ServiceData or not...
Hello Everyone,
I'm currently working on a cross-platform application that uses IP-based multicast for device discovery across both Apple and non-Apple devices running the same app. All devices join a multicast group "X.X.X.X" on port Y.
For Apple devices, I am using NWConnectionGroup for multicast discovery, while for non-Apple devices, I am using BSD sockets.
The issue arises when I attempt to send a multicast message to the group using NWConnectionGroup. The message is sent from a separate ephemeral port rather than the multicast port Y. As a result, all Apple processes that are using NWConnectionGroup can successfully receive the multicast message. However, the processes running on the non-Apple devices (using BSD sockets) do not receive the message.
My Questions:
Is there a way to configure NWConnectionGroup to send multicast messages from the same multicast port Y rather than an ephemeral port?
Is there any known behavior or limitation in how NWConnectionGroup handles multicast that could explain why non-Apple devices using BSD sockets cannot receive the message?
How can I ensure cross-platform multicast compatibility between Apple devices using NWConnectionGroup and non-Apple devices using BSD sockets?
Any guidance or suggestions would be greatly appreciated!
Thanks,
Harshal
I am making a USB attached IoT device that follows the Matter approach to connectivity (IP/mDNS/DHCP). I am having conflicts with it as it appears to MacOS as an Ethernet adapter and this is causing it to be assigned as a "default" route, interfering with routing when my Mac is connected to NAT based WiFi.
I'd like to be able to hint to MacOS & iPadOS that this is not a routable private network, the subnet should be respected and a default route should not be assigned to it, otherwise the order of the device connection is used by the IP routing tables and I am concerned my non-routable private network will initialize before Wifi and block NAT based internet connectivity.
How can I hint to MacOS/iPadOS "this is not a routable private network, this is not a NAT, do not assign me a default route beyond the subnet I have provided you."
hello, we're currently working on a way to adapt the behavior of our app when the device is running with a low free memory remaining, or a bad network.
For the network, we though about implementing a speedtest, but the issue with this solution is that we want to test regularly the quality of the network, so if the device is running with a poor/bad network, the speedtest with stuck the app.
I was looking for other way to check the displayed informations in the status bar:
private func getWiFiRSSI() -> Int? {
let app = UIApplication.shared
var rssi: Int?
let exception = tryBlock {
guard let statusBar = app.value(forKey: "statusBar") as? UIView else { return }
if let statusBarMorden = NSClassFromString("UIStatusBar_Modern"), statusBar .isKind(of: statusBarMorden) { return }
guard let foregroundView = statusBar.value(forKey: "foregroundView") as? UIView else { return }
for view in foregroundView.subviews {
if let statusBarDataNetworkItemView = NSClassFromString("UIStatusBarDataNetworkItemView"), view .isKind(of: statusBarDataNetworkItemView) {
if let val = view.value(forKey: "wifiStrengthRaw") as? Int {
rssi = val
break
}
}
}
}
if let exception = exception {
print("getWiFiRSSI exception: \(exception)")
}
return rssi
}
I've checked the AppStore Guidelines but I'm not sure that this kind of code will not be subject to rejection by the Review team. Anyone having trying to submit with a similar approach?
Did you already managed to monitor network regularly, without using a speedtest?
Thanks for the help!
"NSPOSIXErrorDomain Code=65 & iOS18 & Xcode 16".
I used 'CocoaAsyncSocket', '~> 7.6.5'. It works fine on 13pro iOS16.4.1 &iphone x 16.7.7, But it's bad on iOS 18.3.
Topic:
App & System Services
SubTopic:
Networking
I'm using Network framework for communication between devices. The first time I instantiate an NWBrowser, it will prompt the user with a popup that says:
Allow <app name> to find devices on local networks?
The problem is, once I upgraded from Xcode 15.4 to Xcode 16.4, the popup doesn't appear; it says in the debug window:
nw_browser_fail_on_dns_error_locked [B1] nw_browser_dns_service_browse_callback failed: PolicyDenied(18,446,744,073,709,486,046)
I do have the info.plist keys Privacy-Local Network Usage Description (NSLocalNetworkUsageDescription) and Bonjour Services (NSBonjourServices) so it's not that.
Also, It still works on a real device.
I think something changed with Xcode 16 that tightened the security on a simulator, or maybe disabled Network framework entirely. It's not the firewall on my computer because that is turned off. I'm using an M1 MacBook Pro.
I have an NEPacketTunnelProvider that's configured using NEPacketTunnelNetworkSettings. I'm using NEDNSSettings to configure the DNS resolver of the packet tunnel, and would like to specify the exact domains that should use this resolver using the matchDomains member variable.
While it's not explicitly mentioned in the documentation [1], I've noticed that if a domain is present in matchDomains, then all subdomains of it will also be resolved using this resolver, as if a wildcard match rule is in place.
I wanted to ask if this the intended behavior, and if so, is there any way to disable it so that only exact domain matches will be resolved?
I.e., if "example.com" is in the matchDomains list, I would like requests for this domain be resolved using the configured DNS resolver, while ignoring requests to the subdomain"test.example.com".
[1] https://developer.apple.com/documentation/networkextension/nednssettings/matchdomains
I'm writing a SwiftUI LDAP Browser. I built a command line swift app to do some testing and it works fine. I had to add the certificates from the LDAP server to the system keychain before it would work with TLS/SSL.
Then I ported the same code into a SwiftUI app but I cannot get it to connect via TLS/SSL. On the same machine with the same certs it errors with:
An unexpected error occurred: message("Can't contact LDAP server")
It connect fine with our TLS/SSL.
I suspect this may have to do with App Transport Security. Can anyone point me in the right direction to resolve this? App is MacOS only.
Topic:
App & System Services
SubTopic:
Networking
I have tests where I connect to NEPacketTunnelProvider. I run tests with circleci and fastlane, on self hosted intel and arm macs. I updated macs from macOS 13 to macOS 14 and the tests on arm stopped connecting, while the same tests on intel kept working as usual. Moreover, I noticed the tests don't work when run from circleci and fastlane. If I cancel the job and click "connect" myself on the app that stayed hanging from the cancelled tests, the connection will succeed. But if the tests are running, the connection will fails. Running the tests from xcode succeeds too.
These are the logs from the tunnel. Could you suggest me where to dig? Or maybe you can see the issue from the logs?
Tunnel logs when they fail
I have 3 phones
iPhone 14 iOS 18.3
iPhone Xr iOS 18.5
iPhone Xr iOS 18.4.1
My app has a network extension, and I've noticed each phone having their connectivity interupted by calls on the push provider, calling stop with the noNetworkAvailable reason. The point of confusion is that each phone seems to get it's interuption at different times. For example one will get an interuption at 1:00, while the others is fine, while at 3:00 another will get an interuption, while the others are fine.
This is confusing since a "no network available" seems to imply a problem with the router, or access point, but if that were the case, one would believe it should affect all the phones on the wifi. I don't see less interuptions on the iPhone14 vs the iPhone Xr. Do you believe the iOS version is affecting the performance?
Could you please give me some insight, as to what could be going on inside these phones?
P.S. I also see an error pop up when using NWConnection, this is inside the App. The state update handler will sometimes return the state, waiting(POSIX(.ENETDOWN)) Is there any relation to what's going on in the extension?
Hi everyone,
I’m developing an app called FindMyNet that allows users to find the best internet provider based on their postal code (CAP). The app is built with Xcode and the macOS simulator. I’ve set up a FastAPI backend that communicates with an Excel database containing internet provider data for each postal code.
Unfortunately, when I try to run the app, I encounter an error that prevents me from retrieving data from the database and displaying the correct provider.
Task <6B5C86B6-181A-4235-AE68-23AAF6645683>.<1> finished with error [1] Error Domain=NSPOSIXErrorDomain Code=1 "Operation not permitted" UserInfo={_NSURLErrorFailingURLSessionTaskErrorKey=LocalDataTask <6B5C86B6-181A-4235-AE68-23AAF6645683>.<1>, _kCFStreamErrorDomainKey=1, _kCFStreamErrorCodeKey=1, _NSURLErrorRelatedURLSessionTaskErrorKey=( "LocalDataTask <6B5C86B6-181A-4235-AE68-23AAF6645683>.<1>" ), _NSURLErrorNWPathKey=satisfied (Path is satisfied), interface: en0[802.11], ipv4, dns, uses wifi}
Problem description:
• The FastAPI backend is running on a Raspberry Pi and communicates with the app via an HTTP request.
• When I enter a postal code, the app should return the best provider for that region, but I only get a 500 error.
• I’ve verified that the FastAPI server is running, but it seems there’s an issue with communication between the app and the server.
Steps taken so far:
• I’ve checked the logs on the FastAPI server, but there are no obvious errors.
• I’ve manually tested the API using Postman, and it works fine, so the issue seems to be app-side.
Support request:
I’d like to understand better what could be causing this error and if anyone has had similar experiences. Any advice on diagnosing the problem or solutions for resolving it would be greatly appreciated.
Thanks in advance for your help!
Topic:
App & System Services
SubTopic:
Networking
Hello all,
Does anyone know how long it will take Apple to approve multicast entitlement approval after the Apple form is submitted?
Any input would be appreciated.
Thank you
Allyson
We have Mac OS VM which has two network interfaces and both are active. In our application we need “State:/Network/Global/IPv6” to do some task but on this machine it seems to be missing, however if we disable one of the interface then the same setting seems to be available and our code works fine.
Please find the attached screenshots of working & non-working details:
Topic:
App & System Services
SubTopic:
Networking
Tags:
Network Extension
Network
System Configuration