Apple multi-peer with 12 devices is unstable. Dear All,
Has anyone tried Apple multi-peer with 12 devices connected? We are building an application relying on multi-peer where 12 Ipads will be updating data and each device needs to share data between. Can anyone tell me if we can use multi-peer framework for connecting 12 devices in the multi-peer network? We are facing stability problems in the connection when we connect 12 devices in the network.
Networking
RSS for tagExplore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hello,
I have a few questions regarding URL Filter (iOS 26) and Content Filter Providers.
URL Filter
According to the WWDC26 video, URL Filter appears to be available for both consumer and enterprise deployments.
This seems consistent with the classic Network Extension Provider Deployment documentation (TN3134 – August 2025), where no specific deployment restriction is mentioned.
However, a more recent document (Apple Platform Deployment, September 2025) indicates the following for URL Filter:
“Requires supervision on iPhone, iPad and Mac” (with a green checkmark).
👉 My question:
Is URL Filter actually available for consumer use on non-supervised iPhones (deployed on Testflight and AppStore), or is supervision now required?
Content Filter Providers
From past experience, I remember that Content Filter Providers were only available on supervised devices.
Based on the current documentation, I am questioning their usability in a consumer context, i.e. on non-supervised iPhones.
In the Network Extension Provider Deployment documentation, it is stated that this is a Network Extension and that, since iOS 16, it is a “per-app on managed device” restriction.
In the more recent Apple Platform Deployment document, it states for iPhone and iPad:
“App needs to be installed on the user’s iOS and iPadOS device and deletion can be prevented if the device is supervised.”
👉 My understanding:
Supervised device:
The Content Filter Provider is installed via a host application that controls enabling/disabling the filter, and the host app can be prevented from being removed thanks to supervision.
Non-supervised device:
The Content Filter Provider is also installed via a host application that controls enabling/disabling the filter, but the app can be removed by the user, which would remove the filter.
👉 My question:
Can Content Filter Providers be used in a consumer context on non-supervised iPhones (deployed on Testflight and AppStore), accepting that the user can uninstall the host app (and therefore remove the filter)?
Thank you in advance for your feedback.
Sources:
TN3134 => TN3134: Network Extension provider deployment | Apple Developer Documentation
Apple Platform Deployment / Filter content for Apple devices => https://support.apple.com/en-gb/guide/deployment/dep1129ff8d2/1/web/1.0
Topic:
App & System Services
SubTopic:
Networking
Continuing with my investigations of several issues that we have been noticing in our testing of the JDK with macosx 15.x, I have now narrowed down at least 2 separate problems for which I need help. For a quick background, starting with macosx 15.x several networking related tests within the JDK have started failing in very odd and hard to debug ways in our internal lab. Reading through the macos docs and with help from others in these forums, I have come to understand that a lot of these failures are to do with the new restrictions that have been placed for "Local Network" operations. I have read through https://developer.apple.com/documentation/technotes/tn3179-understanding-local-network-privacy and I think I understand the necessary background about these restrictions.
There's more than one issue in this area that I will need help with, so I'll split them out into separate topics in this forum. That above doc states:
macOS 15.1 fixed a number of local network privacy bugs. If you encounter local network privacy problems on macOS 15.0, retest on macOS 15.1 or later.
We did have (and continue to have) 15.0 and 15.1 macos instances within our lab which are impacted by these changes. They too show several networking related failures. However, I have decided not to look into those systems and instead focus only on 15.3.1.
People might see unexpected behavior in System Settings > Privacy & Security if they have multiple versions of the same app installed (FB15568200).
This feedback assistant issue and several others linked in these documentations are inaccessible (even when I login with my existing account). I think it would be good to have some facility in the feedback assistant tool/site to make such issues visible (even if read-only) to be able to watch for updates to those issues.
So now coming to the issue. Several of the networking tests in the JDK do mulicasting testing (through BSD sockets API) in order to test the Java SE multicasting socket API implementations. One repeated failure we have been seeing in our labs is an exception with the message "No route to host". It shows up as:
Process id: 58700
...
java.net.NoRouteToHostException: No route to host
at java.base/sun.nio.ch.DatagramChannelImpl.send0(Native Method)
at java.base/sun.nio.ch.DatagramChannelImpl.sendFromNativeBuffer(DatagramChannelImpl.java:914)
at java.base/sun.nio.ch.DatagramChannelImpl.send(DatagramChannelImpl.java:871)
at java.base/sun.nio.ch.DatagramChannelImpl.send(DatagramChannelImpl.java:798)
at java.base/sun.nio.ch.DatagramChannelImpl.blockingSend(DatagramChannelImpl.java:857)
at java.base/sun.nio.ch.DatagramSocketAdaptor.send(DatagramSocketAdaptor.java:178)
at java.base/java.net.DatagramSocket.send(DatagramSocket.java:593)
(this is just one example stacktrace from java program)
That "send0" is implemented by the JDK by invoking the sendto() system call. In this case, the sendto() is returning a EHOSTUNREACH error which is what is then propagated to the application.
The forum text editor doesn't allow me to post long text, so I'm going to post the rest of this investigation and logs as a reply.
Hi,
I observed some unexpected behavior and hope that someone can enlighten me as to what this is about:
mDNSResponder prepends IP / network based default search domains that are checked before any other search domain. E.g. 0.1.168.192.in-addr.arpa. would be used for an interface with an address in the the 192.168.1.0/24 subnet. This is done for any configured non-link-local IP address.
I tried to find any mention of an approach like this in RFCs but couldn't spot anything.
Please note that this is indeed a search domain and different from reverse-DNS lookups.
Example output of tcpdump for ping devtest:
10:02:13.850802 IP (tos 0x0, ttl 64, id 43461, offset 0, flags [none], proto UDP (17), length 92)
192.168.1.2.52319 > 192.168.1.1.53: 54890+ [1au] A? devtest.0.1.168.192.in-addr.arpa. (64)
I was able to identify the code that adds those default IP subnet based search domains but failed to spot any indication as to what this is about: https://github.com/apple-oss-distributions/mDNSResponder/blob/d5029b5/mDNSMacOSX/mDNSMacOSX.c#L4171-L4211
Does anyone here have an ideas as to what this might be about?
Hello,
I am currently investigating if we can disable usage of QUIC on application level.
I know we can set enable_quic from /Library/Preferences/com.apple.networkd.plist to false but it will have a global impact since this is a system file, all the applications on machine will stop using QUIC. I don't want that. What i am looking for is to disable QUIC only for my application.
Is there any way i can modify URLSession object in my application and disable QUIC? or modify URLSessionConfiguration so system will not use QUIC?
Hi everyone,
I’m developing an app called FindMyNet that allows users to find the best internet provider based on their postal code (CAP). The app is built with Xcode and the macOS simulator. I’ve set up a FastAPI backend that communicates with an Excel database containing internet provider data for each postal code.
Unfortunately, when I try to run the app, I encounter an error that prevents me from retrieving data from the database and displaying the correct provider.
Task <6B5C86B6-181A-4235-AE68-23AAF6645683>.<1> finished with error [1] Error Domain=NSPOSIXErrorDomain Code=1 "Operation not permitted" UserInfo={_NSURLErrorFailingURLSessionTaskErrorKey=LocalDataTask <6B5C86B6-181A-4235-AE68-23AAF6645683>.<1>, _kCFStreamErrorDomainKey=1, _kCFStreamErrorCodeKey=1, _NSURLErrorRelatedURLSessionTaskErrorKey=( "LocalDataTask <6B5C86B6-181A-4235-AE68-23AAF6645683>.<1>" ), _NSURLErrorNWPathKey=satisfied (Path is satisfied), interface: en0[802.11], ipv4, dns, uses wifi}
Problem description:
• The FastAPI backend is running on a Raspberry Pi and communicates with the app via an HTTP request.
• When I enter a postal code, the app should return the best provider for that region, but I only get a 500 error.
• I’ve verified that the FastAPI server is running, but it seems there’s an issue with communication between the app and the server.
Steps taken so far:
• I’ve checked the logs on the FastAPI server, but there are no obvious errors.
• I’ve manually tested the API using Postman, and it works fine, so the issue seems to be app-side.
Support request:
I’d like to understand better what could be causing this error and if anyone has had similar experiences. Any advice on diagnosing the problem or solutions for resolving it would be greatly appreciated.
Thanks in advance for your help!
Topic:
App & System Services
SubTopic:
Networking
Problem description
Since macOS Sequoia, our users have experienced issues with multicast traffic in our macOS app. Regularly, the app starts but cannot receive multicast, or multicast eventually stops mid-execution. The app sometimes asks again for Local Network permission, while it was already allowed so. Several versions of our app on a single machine are sometimes (but not always) shown as different instances in the System Settings > Privacy & Security > Local Network list. And when several instances are shown in that list, disabling one disables all of them, but it does not actually forbids the app from receiving multicast traffic. All of those issues are experienced by an increasing number of users after they update their system from macOS 14 to macOS 15 or 26, and many of them have reported networking issues during production-critical moments.
We haven't been able to find the root cause of those issues, so we built a simple test app, called "FM Mac App Test", that can reproduce multicast issues. This app creates a GCDAsyncUdpSocket socket to receive multicast packets from a piece of hardware we also develop, and displays a simple UI showing if such packets are received. The app is entitled with "Custom Network Protocol", is built against x86_64 and arm64, and is archived (signed and notarized). We can share the source code if requested.
Out of the many issues our main app exhibits, the test app showcases some:
The app asks several times for Local Network permission, even after being allowed so previously. After allowing the app's Local Network and rebooting the machine, the System Settings > Privacy & Security > Local Network does not show the app, and the app asks again for Local Network access.
The app shows a different Local Network Usage Description than in the project's plist.
Several versions of the app appear as different instances in the Privacy list, and behave strangely. Toggling on or off one instance toggles the others. Only one version of the app seems affected by the setting, the other versions always seem to have access to Local Network even when the toggle is set to off.
We even did see messages from different app versions in different user accounts. This seems to contradicts Apple's documentation that states user accounts have independent Privacy settings.
Can you help us understand what we are missing (in terms of build settings, entitlements, proper archiving...) so our app conforms to what macOS expects for proper Local Network behavior?
Related material
Local Network Privacy breaks Application: this issue seemed related to ours, but the fix was to ensure different versions of the app have different UUIDs. We ensured that ourselves, to no improvement.
Local Network FAQ
Technote TN3179
Steps to Reproduce
Test App is developed on Xcode 15.4 (15F31d) on macOS 14.5 (23F79), and runs on macOS 26.0.1 (25A362). We can share the source code if requested.
On a clean install of macOS Tahoe (our test setup used macOS 26.0.1 on a Mac mini M2 8GB), we upload the app (version 5.1).
We run the app, make sure the selected NIC is the proper one, and open the multicast socket. The app asks us to allow Local Network, we allow it. The alert shows a different Local Network Usage Description than the one we set in our project's plist.
The app properly shows packets are received from the console on our LAN.
We check the list in System Settings > Privacy & Security > Local Network, it includes our app properly allowed.
We then reboot the machine. After reboot, the same list does not show the app anymore.
We run the app, it asks again about Local Network access (still with incorrect Usage Description). We allow it again, but no console packet is received yet. Only after closing and reopening the socket are the console packets received.
After a 2nd reboot, the System Settings > Privacy & Security > Local Network list shows correctly the app. The app seems to now run fine.
We then upload an updated version of the same app (5.2), also built and notarized. The 2nd version is simulating when we send different versions of our main app to our users. The updated version has a different UUID than the 1st version.
The updated version also asks for Local Network access, this time with proper Usage Description.
A 3rd updated version of the app (5.3, also with unique UUID) behaves the same. The System Settings > Privacy & Security > Local Network list shows three instances of the app.
We toggle off one of the app, all of them toggle off. The 1st version of the app (5.1) does not have local network access anymore, but both 2nd and 3rd versions do, while their toggle button seems off.
We toggle on one of the app, all of them toggle on. All 3 versions have local network access.
I developed a Content Filter using the Network Extension, and when deployed to a batch of hosts (50 +), the installation worked for most of them, but there were six exceptions: five of them were macOS 10.15 and one of them was macOS 12.5.
The phenomenon of these 6 hosts is: in the System Settings->Network, two content filters with the same name appear. When one of the content filters with the same name is clicked, shows "Please use 'X Agent Extension' to control this content filter configuration" ('X Agent Extension' is the program I developed, this content filter can be deleted by clicking the minus sign in the lower left corner). Click on another content filter with the same name, shows 'Please use 'null' to control this content filter configuration', (but this content filter can't be removed by clicking the minus sign in the bottom left corner).
These systems are clean, use CLI 'systemextensionsctl list', and have only one systemextension in the output (this systemextension is my content filter). Online reference "https://forums.macrumors.com/threads/how-to-delete-custom-dns-profile-from-network-preference.2293322/" this paper, by closing the SIP, and delete file '/Library/Preferences/com.apple.networkextension.plist', then restart the system can remove the abnormal content filters with the same name. After restarting the system and reinstalling my content filter, the two content filters with the same name disappear (only the Content Filter I reinstalled) and the exception scenario cannot be repeated.
I would like to know, why do I have two content filters with the same name, how can I avoid this phenomenon, is there a way to remove the wrong content filter without closing SIP.
Getting -10985 error from urlSession while attempting to make a connection. Not sure why this is happening if anyone is aware please help
Hello,
How long does it usually take for a URL Filter request to be reviewed?
It's been 2.5 weeks since we submitted the request form but we haven't received any feedback yet.
Just in case, the request ID is D3633USVZZ
I observed the following crash:
Code Type: ARM-64 (Native)
Parent Process: launchd [1]
User ID: 0
Date/Time: 2025-10-07 13:48:29.082
OS Version: macOS 15.6 (24G84)
Report Version: 12
Anonymous UUID: 8B651788-4B2E-7869-516B-1DA0D60F3744
Crashed Thread: 3 Dispatch queue: NEFlow queue
Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0x0000000000000054
...
Thread 3 Crashed: Dispatch queue: NEFlow queue
0 libdispatch.dylib 0x000000019af6da34 dispatch_async + 192
1 libnetworkextension.dylib 0x00000001b0cf8580 __flow_startup_block_invoke.216 + 124
2 com.apple.NetworkExtension 0x00000001adf97da8 __88-[NEExtensionAppProxyProviderContext setInitialFlowDivertControlSocket:extraValidation:]_block_invoke.90 + 860
3 libnetworkextension.dylib 0x00000001b0cf8140 __flow_startup_block_invoke.214 + 172
4 libdispatch.dylib 0x000000019af67b2c _dispatch_call_block_and_release + 32
5 libdispatch.dylib 0x000000019af8185c _dispatch_client_callout + 16
6 libdispatch.dylib 0x000000019af70350 _dispatch_lane_serial_drain + 740
7 libdispatch.dylib 0x000000019af70e2c _dispatch_lane_invoke + 388
8 libdispatch.dylib 0x000000019af7b264 _dispatch_root_queue_drain_deferred_wlh + 292
9 libdispatch.dylib 0x000000019af7aae8 _dispatch_workloop_worker_thread + 540
10 libsystem_pthread.dylib 0x000000019b11be64 _pthread_wqthread + 292
11 libsystem_pthread.dylib 0x000000019b11ab74 start_wqthread + 8
...
It appears that the crash is caused by the flow director queue becoming NULL when dispatch_async is called (accessing address 0x0000000000000054). Meanwhile, my transparent proxy was still running.
I'm wondering if this is a known issue or if anyone else has encountered the same problem. @eskimo
My external device can generate a fixed Wi-Fi network. When I connect to this Wi-Fi using my iPhone 17 Pro Max (iOS version 26.0.1), and my app tries to establish a connection using the following method, this method returns -1
int connect(int, const struct sockaddr *, socklen_t) __DARWIN_ALIAS_C(connect);
However, when I use other phones, such as iPhone 12, iPhone 8, iPhone 11, etc., to connect to this external device, the above method always returns successfully, with the parameters passed to the method remaining the same.
I also tried resetting the network settings on the iPhone 17 Pro Max (iOS version 26.0.1), but it still cannot establish a connection.
Topic:
App & System Services
SubTopic:
Networking
HI,
I am currently developing an app that utilizes Wi-Fi Aware.
According to the Wi-Fi Aware framework examples and the WWDC25 session on Wi-Fi Aware, discovery is handled using DevicePairingView and DevicePicker from the DeviceDiscoveryUI module.
However, these SwiftUI views present their connection UI modally when tapped. My app's design requires the ability to control the presentation of this UI programmatically, rather than relying on a user tap.
While inspecting the DeviceDiscoveryUI module, I found DDDevicePairingViewController and DDDevicePickerViewController, which appear to be the UIViewController counterparts to the SwiftUI views.
The initializer for DDDevicePairingViewController accepts a ListenerProvider, so it seems I can pass the same ListenerProvider instance that is used with the DevicePairingView.
However, the initializer for DDDevicePickerViewController requires an NWBrowser.Descriptor, which seems incompatible with the parameters used for the SwiftUI DevicePicker.
I have two main questions:
(1) Can DDDevicePairingViewController and DDDevicePickerViewController be officially used for Wi-Fi Aware pairing?
(2) Are there any plans to provide more customization or programmatic control over the DevicePairingView and DevicePicker (for example, allowing us to trigger their modal presentation programmatically)?
Thank you.
Topic:
App & System Services
SubTopic:
Networking
The path from Network Extension’s in-provider networking APIs to Network framework has been long and somewhat rocky. The most common cause of confusion is NWEndpoint, where the same name can refer to two completely different types. I’ve helped a bunch of folks with this over the years, and I’ve decided to create this post to collect together all of those titbits.
If you have questions or comments, please put them in a new thread. Put it in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
NWEndpoint History and Advice
A tale that spans three APIs, two languages, and ten years.
The NWEndpoint type has a long and complex history, and if you’re not aware of that history you can bump into weird problems. The goal of this post is to explain the history and then offer advice on how to get around specific problems.
IMPORTANT This post focuses on NWEndpoint, because that’s the type that causes the most problems, but there’s a similar situation with NWPath.
The History
In iOS 9 Apple introduced the Network Extension (NE) framework, which offers a convenient way for developers to create a custom VPN transport. Network Extension types all have the NE prefix.
Note I’m gonna use iOS versions here, just to keep the text simple. If you’re targeting some other platform, use this handy conversion table:
iOS | macOS | tvOS | watchOS | visionOS
--- + ----- + ---- + ------- + --------
9 | 10.11 | 9 | 2 | -
12 | 10.14 | 12 | 5 | -
18 | 15 | 18 | 11 | 2
At that time we also introduced in-provider networking APIs. The idea was that an NE provider could uses these Objective-C APIs to communicate with its VPN server, and thereby avoiding a bunch of ugly BSD Sockets code.
The in-provider networking APIs were limited to NE providers. Specifically, the APIs to construct an in-provider connection were placed on types that were only usable within an NE provider. For example, a packet tunnel provider could create a NWTCPConnection object by calling -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] and -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate:, which are both methods on NEPacketTunnelProvider.
These in-provider networking APIs came with a number of ancillary types, including NWEndpoint and NWPath.
At the time we thought that we might promote these in-provider networking APIs to general-purpose networking APIs. That’s why the APIs use the NW prefix. For example, it’s NWTCPConnection, not NETCPConnection.
However, plans changed. In iOS 12 Apple shipped Network framework as our recommended general-purpose networking API. This actually includes two APIs:
A Swift API that follows Swift conventions, for example, the connection type is called NWConnection
A C API that follows C conventions, for example, the connection type is called nw_connection_t
These APIs follow similar design patterns to the in-provider networking API, and thus have similar ancillary types. Specifically, there are an NWEndpoint and nw_endpoint_t types, both of which perform a similar role to the NWEndpoint type in the in-provider networking API.
This was a source of some confusion in Swift, because the name NWEndpoint could refer to either the Network framework type or the Network Extension framework type, depending on what you’d included. Fortunately you could get around this by qualifying the type as either Network.NWEndpoint or NetworkExtension.NWEndpoint.
The arrival of Network framework meant that it no longer made sense to promote the in-provider networking APIs to general-purposes networking APIs. The in-provider networking APIs were on the path to deprecation.
However, deprecating these APIs was actually quite tricky. Network Extension framework uses these APIs in a number of interesting ways, and so deprecating them required adding replacements. In addition, we’d needed different replacements for Swift and Objective-C, because Network framework has separate APIs for Swift and C-based languages.
In iOS 18 we tackled that problem head on. To continue the NWTCPConnection example above, we replaced:
-createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] with nw_connection_t
-createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate: with nw_connection_t combined with a new virtualInterface property on NEPacketTunnelProvider
Of course that’s the Objective-C side of things. In Swift, the replacement is NWConnection rather than nw_connection_t, and the type of the virtualInterface property is NWInterface rather than nw_interface_t.
But that’s not the full story. For the two types that use the same name in both frameworks, NWEndpoint and NWPath, we decided to use this opportunity to sort out that confusion. To see how we did that, check out the <NetworkExtension/NetworkExtension.apinotes> file in the SDK. Focusing on NWEndpoint for the moment, you’ll find two entries:
…
- Name: NWEndpoint
SwiftPrivate: true
…
SwiftVersions:
- Version: 5.0
…
- Name: NWEndpoint
SwiftPrivate: false
…
The first entry applies when you’re building with the Swift 6 language mode. This marks the type as SwiftPrivate, which means that Swift imports it as __NWEndpoint. That frees up the NWEndpoint name to refer exclusively to the Network framework type.
The second entry applies when you’re building with the Swift 5 language mode. It marks the type as not SwiftPrivate. This is a compatible measure to ensure that code written for Swift 5 continues to build.
The Advice
This sections discusses specific cases in this transition.
NWEndpoint and NWPath
In Swift 5 language mode, NWEndpoint and NWPath might refer to either framework, depending on what you’ve imported. Add a qualifier if there’s any ambiguity, for example, Network.NWEndpoint or NetworkExtension.NWEndpoint.
In Swift 6 language mode, NWEndpoint and NWPath always refer to the Network framework type. Add a __ prefix to get to the Network Extension type. For example, use NWEndpoint for the Network framework type and __NWEndpoint for the Network Extension type.
Direct and Through-Tunnel TCP Connections in Swift
To create a connection directly, simply create an NWConnection. This support both TCP and UDP, with or without TLS.
To create a connection through the tunnel, replace code like this:
let c = self.createTCPConnectionThroughTunnel(…)
with code like this:
let params = NWParameters.tcp
params.requiredInterface = self.virtualInterface
let c = NWConnection(to: …, using: params)
This is for TCP but the same basic process applies to UDP.
UDP and App Proxies in Swift
If you’re building an app proxy, transparent proxy, or DNS proxy in Swift and need to handle UDP flows using the new API, adopt the NEAppProxyUDPFlowHandling protocol. So, replace code like this:
class AppProxyProvider: NEAppProxyProvider {
…
override func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
with this:
class AppProxyProvider: NEAppProxyProvider, NEAppProxyUDPFlowHandling {
…
func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteFlowEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
Creating a Network Rule
To create an NWHostEndpoint, replace code like this:
let ep = NWHostEndpoint(hostname: "1.2.3.4", port: "12345")
let r = NENetworkRule(destinationHost: ep, protocol: .TCP)
with this:
let ep = NWEndpoint.hostPort(host: "1.2.3.4", port: 12345)
let r = NENetworkRule(destinationHostEndpoint: ep, protocol: .TCP)
Note how the first label of the initialiser has changed from destinationHost to destinationHostEndpoint.
I filed FB19631435 about this just now. Basically: starting with 15.6, we've had reports (internally and outternally) that after some period of time, networking fails so badly that it can't even acquire a DHCP lease, and the system needs to be rebooted to fix this. The systems in question all have at least 2 VPN applications installed; ours is a transparent proxy provider, and the affected system also had Crowdstrike's Falcon installed. A customer system reported seemingly identical failures on their systems; they don't have Crowdstrike, but they do have Cyberhaven's.
Has anyone else seen somethng like this? Since it seems to involve three different networking extensions, I'm assuming it's due to an interaction between them, not a bug in any individual one. But what do I know? 😄
We are using Multipeer Connectivity (MCSession, MCNearbyServiceBrowser, MCNearbyServiceAdvertiser) for nearby peer discovery and communication.
**Observed behaviour: **
When Wi-Fi is ON (Not connected to any network) and Mobile Data is also ON:
Peer discovery (foundPeer) consistently succeeds
Invitation is sent using invitePeer
MCSession transitions to .connecting
The session remains indefinitely in .connecting
connected is never reached
notConnected is also not reported
When Mobile Data is turned OFF, the same flow reliably reaches .connected.
Key details:
Both devices have Wi-Fi and Bluetooth enabled
Browsing and advertising are active on both devices
Application-level timeouts and session resets are implemented
The Issue is reproducible across multiple devices with iOS 26 versions.
Expectation / Question:
We understand that Multipeer Connectivity does not use cellular data for peer discovery or transport. However, when Wi-Fi is available and peers are discovered successfully, we would like clarification on the following:
Is it expected behavior that enabling Mobile Data can cause the invitation/connection phase to remain indefinitely in .connecting without transitioning to .notConnected?
Are there recommended best practices to avoid stalled invitation or transport negotiation in this scenario?
Is there a supported way to detect or recover from a stalled .connecting state beyond application-level timeouts and session resets?
Any guidance on expected behavior or recommended handling would be appreciated.
I would like to test running some Thread Networking code on my MacOS machine:
import ThreadNetwork
let client = THClient()
let bIsPreferredAvailable = await client.isPreferredAvailable()
but I get some errors when trying to create an instance of the THClient class:
Client: -[THClient connectToXPCService]_block_invoke - CTCS XPC Client is interrupted.
Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc}
Client: -[THClient init] - XPC Client Init Failed
Invalidating XPC connection.
Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc}
How can I get the code to run?
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Broadcasts and Multicasts, Hints and Tips
I regularly see folks struggle with broadcasts and multicasts on Apple platforms. This post is my attempt to clear up some of the confusion.
This post covers both IPv4 and IPv6. There is, however, a key difference. In IPv4, broadcasts and multicasts are distinct concepts. In contrast, IPv6 doesn’t support broadcast as such; rather, it treats broadcasts as a special case of multicasts. IPv6 does have an all nodes multicast address, but it’s rarely used.
Before reading this post, I suggest you familiarise yourself with IP addresses in general. A good place to start is The Fount of All Knowledge™.
Service Discovery
A lot of broadcast and multicast questions come from folks implementing their own service discovery protocol. I generally recommend against doing that, for the reasons outlined in the Service Discovery section of Don’t Try to Get the Device’s IP Address.
There are, however, some good reasons to implement a custom service discovery protocol. For example, you might be working with an accessory that only supports this custom protocol [1]. If you must implement your own service discovery protocol, read this post and also read the advice in Don’t Try to Get the Device’s IP Address.
IMPORTANT Sometimes I see folks implementing their own version of mDNS. This is almost always a mistake:
If you’re using third-party tooling that includes its own mDNS implementation, it’s likely that this tooling allows you to disable that implementation and instead rely on the Bonjour support that’s built-in to all Apple platforms.
If you’re doing some weird low-level thing with mDNS or DNS-SD, it’s likely that you can do that with the low-level DNS-SD API.
[1] And whose firmware you can’t change! I talk more about this in Working with a Wi-Fi Accessory.
API Choice
Broadcasts and multicasts typically use UDP [1]. TN3151 Choosing the right networking API describes two recommended UDP APIs:
Network framework
BSD Sockets
Our general advice is to prefer Network framework over BSD Sockets, but UDP broadcasts and multicasts are an exception to that rule. Network framework has very limited UDP broadcast support. And while it’s support for UDP multicasts is less limited, it’s still not sufficient for all UDP applications. In cases where Network framework is not sufficient, BSD Sockets is your only option.
[1] It is possible to broadcast and multicast at the Ethernet level, but I almost never see questions about that.
UDP Broadcasts in Network Framework
Historically I’ve claimed that Network framework was useful for UDP broadcasts is very limited circumstances (for example, in the footnote on this post). I’ve since learnt that this isn’t the case. Or, more accurately, this support is so limited (r. 122924701) as to be useless in practice.
For the moment, if you want to work with UDP broadcasts, your only option is BSD Sockets.
UDP Multicasts in Network Framework
Network framework supports UDP multicast using the NWConnectionGroup class with the NWMulticastGroup group descriptor. This support has limits. The most significant limit is that it doesn’t support broadcasts; it’s for multicasts only.
Note This only relevant to IPv4. Remember that IPv6 doesn’t support broadcasts as a separate concept.
There are other limitations, but I don’t have a good feel for them. I’ll update this post as I encounter issues.
Local Network Privacy
Some Apple platforms support local network privacy. This impacts broadcasts and multicasts in two ways:
Broadcasts and multicasts require local network access, something that’s typically granted by the user.
Broadcasts and multicasts are limited by a managed entitlement (except on macOS).
TN3179 Understanding local network privacy has lots of additional info on this topic, including the list of platforms to which it applies.
Send, Receive, and Interfaces
When you broadcast or multicast, there’s a fundamental asymmetry between send and receive:
You can reasonable receive datagrams on all broadcast-capable interfaces.
But when you send a datagram, it has to target a specific interface.
The sending behaviour is the source of many weird problems. Consider the IPv4 case. If you send a directed broadcast, you can reasonably assume it’ll be routed to the correct interface based on the network prefix. But folks commonly send an all-hosts broadcast (255.255.255.255), and it’s not obvious what happens in that case.
Note If you’re unfamiliar with the terms directed broadcast and all-hosts broadcast, see IP address.
The exact rules for this are complex, vary by platform, and can change over time. For that reason, it’s best to write your broadcast code to be interface specific. That is:
Identify the interfaces on which you want to work.
Create a socket per interface.
Bind that socket to that interface.
Note Use the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket options rather than binding to the interface address, because the interface address can change over time.
Extra-ordinary Networking has links to other posts which discuss these concepts and the specific APIs in more detail.
Miscellaneous Gotchas
A common cause of mysterious broadcast and multicast problems is folks who hard code BSD interface names, like en0. Doing that might work for the vast majority of users but then fail in some obscure scenarios.
BSD interface names are not considered API and you must not hard code them. Extra-ordinary Networking has links to posts that describe how to enumerate the interface list and identify interfaces of a specific type.
Don’t assume that there’ll be only one interface of a given type. This might seem obviously true, but it’s not. For example, our platforms support peer-to-peer Wi-Fi, so each device has multiple Wi-Fi interfaces.
When sending a broadcast, don’t forget to enable the SO_BROADCAST socket option.
If you’re building a sandboxed app on the Mac, working with UDP requires both the com.apple.security.network.client and com.apple.security.network.server entitlements.
Some folks reach for broadcasts or multicasts because they’re sending the same content to multiple devices and they believe that it’ll be faster than unicasts. That’s not true in many cases, especially on Wi-Fi. For more on this, see the Broadcasts section of Wi-Fi Fundamentals.
Snippets
To send a UDP broadcast:
func broadcast(message: Data, to interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
try fd.setSocketOption(SOL_SOCKET, SO_BROADCAST, 1 as CInt)
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { throw … }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.send(data: message, to: ("255.255.255.255", 2222))
}
Note These snippet uses the helpers from Calling BSD Sockets from Swift.
To receive UDP broadcasts:
func receiveBroadcasts(from interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { fatalError() }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEADDR, 1 as CInt)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEPORT, 1 as CInt)
try fd.bind("0.0.0.0", 2222)
while true {
let (data, (sender, port)) = try fd.receiveFrom()
…
}
}
IMPORTANT This code runs synchronously, which is less than ideal. In a real app you’d run the receive asynchronously, for example, using a Dispatch read source. For an example of how to do that, see this post.
If you need similar snippets for multicast, lemme know. I’ve got them lurking on my hard disk somewhere (-:
Other Resources
Apple’s official documentation for BSD Sockets is in the man pages. See Reading UNIX Manual Pages. Of particular interest are:
setsockopt man page
ip man page
ip6 man page
If you’re not familiar with BSD Sockets, I strongly recommend that you consult third-party documentation for it. BSD Sockets is one of those APIs that looks simple but, in reality, is ridiculously complicated. That’s especially true if you’re trying to write code that works on BSD-based platforms, like all of Apple’s platforms, and non-BSD-based platforms, like Linux.
I specifically recommend UNIX Network Programming, by Stevens et al, but there are lots of good alternatives.
https://unpbook.com
Revision History
2025-09-01 Fixed a broken link.
2025-01-16 First posted.
This is just an FYI in case someone else runs into this problem.
This afternoon (12 Dec 2025), I updated to macOS 26.2 and lost my network.
The System Settings' Wi-Fi light was green and said it was connected, but traceroute showed "No route to host".
I turned Wi-Fi on & off.
I rebooted the Mac.
I rebooted the eero network.
I switched to tethering to my iPhone.
I switched to physical ethernet cable.
Nothing worked.
Then I remembered I had a beta of an app with a network system extension that was distributed through TestFlight.
I deleted the app, and networking came right back.
I had this same problem ~2 years ago. Same story:
app with network system extension + TestFlight + macOS update = lost network.
(My TestFlight build might have expired, but I'm not certain)
I don't know if anyone else has had this problem, but I thought I'd share this in case it helps.
After dropping an A-record TTL to 60 secs (it was previously no higher than 600 secs for several weeks) and making an IP change for a small business website on Monday, I took down the old web service just over 24 hours later on Tuesday evening. We then had reports of some customers not being able to access the website on Wednesday morning. On investigation using my iPhone it would appear that Apple Private Relay is still directing clients to the old IP address.
It's just as well I have iCloud+ as I would never have seen this issue otherwise and would have been none the wiser as to why some customers were having problems.
Has anyone else seen this and/or have a fix other than waiting longer? Do you know how long it takes for Apple Private Relay to update? This isn't expected behaviour of DNS?
I spoke to someone at Apple yesterday and there wasn't much they can do. I hope they're escalating internally as almost 3 days later it's still pointing users to the old IP address despite having ample time for proper DNS propagation.
Topic:
App & System Services
SubTopic:
Networking