Hi,
I'm working with vision framework to detect barcodes. I tested both ean13 and data matrix detection and both are working fine except for the QuadrilateralProviding values in the returned BarcodeObservation. TopLeft, topRight, bottomRight and bottomLeft coordinates are rotated 90° counter clockwise (physical bottom left of data Matrix, the corner of the "L" is returned as the topLeft point in observation). The same behaviour is happening with EAN13 Barcode.
Did someone else experienced the same issue with orientation? Is it normal behaviour or should we expect a fix in next releases of the Vision Framework?
General
RSS for tagExplore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I’m trying to use a Decimal as a @Property in my AppEntity, but using the following code shows me a compiler error. I’m using Xcode 16.1.
The documentation notes the following:
You can use the @Parameter property wrapper with common Swift and Foundation types:
Primitives such as Bool, Int, Double, String, Duration, Date, Decimal, Measurement, and URL.
Collections such as Array and Set. Make sure the collection’s elements are of a type that’s compatible with IntentParameter.
Everything works fine for other primitives as bools, strings and integers. How do I use the Decimal though?
Code
struct MyEntity: AppEntity {
var id: UUID
@Property(title: "Amount")
var amount: Decimal
// …
}
Compiler Error
This error appears at the line of the @Property definition:
Generic class 'EntityProperty' requires that 'Decimal' conform to '_IntentValue'
Hi everyone😊, I want to implement facial recognition into my app. I was planning to use createML's image classification, but there seams to be a lot of hassle to implement (the JSON file etc.). Are there some other easy to implement options that don't involve advanced coding. Thanks, Oliver
Topic:
Machine Learning & AI
SubTopic:
General
We are using VNRecognizeTextRequest to detect text in documents, and we have noticed that even in some very clear and well-formatted documents, there are still instances where text blocks are missed. the live text also have the same issue.
I've checked on pypi.org and it appears to only have arm64 packages, has x86 with AMD been deprecated?
Not finding a lot on the Swift Assist technology announced at WWDC 2024. Does anyone know the latest status? Also, currently I use OpenAI's macOS app and its 'Work With...' functionality to assist with Xcode development, and this is okay, certainly saves copying code back and forth, but it seems like AI should be able to do a lot more to help with Xcode app development.
I guess I'm looking at what people are doing with AI in Visual Studio, Cline, Cursor and other IDEs and tools like those and feel a bit left out working in Xcode. Please let me know if there are AI tools or techniques out there you use to help with your Xcode projects.
Thanks in advance!
Has anyone been able to run Tensorflow > 2.15 with Tensorflow Metal 1.1.0 on M3? I tried several times but was not successful. Seems like development on TensorFlow Metal has paused?
I am a App designer and I am curious about what specific ML or AI Apple used to develop those features in the system.
As far as I know, Apple's hand-raising detection, destination recommendations in maps, and exercise types in fitness all use ML.
Are there more specific application examples of ML or AI?
Does Apple have a document specifically introducing examples of specific applications of ML or AI technology in the system?
Topic:
Machine Learning & AI
SubTopic:
General
Is there any way to stop GPU work running that is scheduled using metal?
Long shader calculations don't stop when application is stopped in Xcode and continue to take up GPU time and affect the display.
Why is this functionality not available when Swift Tasks are able to be canceled?
Topic:
Machine Learning & AI
SubTopic:
General
使用MPS来加速机器学习功能,有时是否与torch会有适配性问题?
While building an app with large language model inferencing on device, I got gibberish output. After carefully examining every detail, I found it's caused by the fused scaledDotProductAttention operation. I switched back to the discrete operations and problem solved. To reproduce the bug, please check https://github.com/zhoudan111/MPSGraph_SDPA_bug
Topic:
Machine Learning & AI
SubTopic:
General
Hi everyone,
I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine.
I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method.
For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system
My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy
Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder:
Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal?
Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal?
Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach?
I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated!
Thanks!
Hi,
One can configure the languages of a (VN)RecognizeTextRequest with either:
.automatic: language to be detected
a specific language, say Spanish
If the request is configured with .automatic and successfully detects Spanish, will the results be exactly equivalent compared to a request made with Spanish set as language?
I could not find any information about this, and this is very important for the core architecture of my app.
Thanks!
Hi, i just wanna ask, Is it possible to run YOLOv3 on visionOS using the main camera to detect objects and show bounding boxes with labels in real-time? I’m wondering if camera access and custom models work for this, or if there’s a better way. Any tips?
Hi, DataScannerViewController does't recognize currencies less than 1.00 (e.g. 0.59 USD, 0.99 EUR, etc.). Why? How to solve the problem?
This feature is not described in Apple documentation, is there a solution?
This is my code:
func makeUIViewController(context: Context) -> DataScannerViewController {
let dataScanner = DataScannerViewController(recognizedDataTypes: [ .text(textContentType: .currency)])
return dataScanner
}
Hi everyone! 👋
I'm working on a C++ project using TensorFlow Lite and was wondering if anyone has a prebuilt TensorFlow Lite C++ library (libtensorflowlite) for macOS (Apple Silicon M1/M2) that they’d be willing to share.
I’m looking specifically for the TensorFlow Lite C++ API — something that lets me use tflite::Interpreter, tflite::FlatBufferModel, etc. Building it from source using Bazel on macOS has been quite challenging and time-consuming, so a ready-to-use .dylib or .a build along with the required headers would be incredibly helpful.
TensorFlow Lite version: v2.18.0 preferred
Target: macOS arm64 (Apple Silicon)
What I need:
libtensorflowlite.dylib or .a
Corresponding headers (ideally organized in a clean include/ folder)
If you have one available or know where I can find a reliable prebuilt version, I’d be super grateful. Thanks in advance! 🙏
From tensorflow-metal example:
Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: )
I know that Apple silicon uses UMA, and that memory copies are typical of CUDA, but wouldn't the GPU memory still be faster overall?
I have an iMac Pro with a Radeon Pro Vega 64 16 GB GPU and an Intel iMac with a Radeon Pro 5700 8 GB GPU.
But using tensorflow-metal is still WAY faster than using the CPUs. Thanks for that. I am surprised the 5700 is twice as fast as the Vega though.
When calling NLTagger.requestAssets with some languages, it hangs indefinitely both in the simulator and a device. This happens consistently for some languages like greek. An example call is NLTagger.requestAssets(for: .greek, tagScheme: .lemma). Other languages like french return immediately. I captured some logs from Console and found what looks like the repeated attempts to download the asset. I would expect the call to eventually terminate, either loading the asset or failing with an error.
Following WWDC24 video "Discover Swift enhancements in the Vision framework" recommendations (cfr video at 10'41"), I used the following code to perform multiple new iOS 18 `RecognizedTextRequest' in parallel.
Problem: if more than 2 request are run in parallel, the request will hang, leaving the app in a state where no more requests can be started. -> deadlock
I tried other ways to run the requests, but no matter the method employed, or what device I use: no more than 2 requests can ever be run in parallel.
func triggerDeadlock() {}
try await withThrowingTaskGroup(of: Void.self) { group in
// See: WWDC 2024 Discover Siwft enhancements in the Vision framework at 10:41
// ############## THIS IS KEY
let maxOCRTasks = 5 // On a real-device, if more than 2 RecognizeTextRequest are launched in parallel using tasks, the request hangs
// ############## THIS IS KEY
for idx in 0..<maxOCRTasks {
let url = ... // URL to some image
group.addTask {
// Perform OCR
let _ = await performOCRRequest(on: url: url)
}
}
var nextIndex = maxOCRTasks
for try await _ in group { // Wait for the result of the next child task that finished
if nextIndex < pageCount {
group.addTask {
let url = ... // URL to some image
// Perform OCR
let _ = await performOCRRequest(on: url: url)
}
nextIndex += 1
}
}
}
}
// MARK: - ASYNC/AWAIT version with iOS 18
@available(iOS 18, *)
func performOCRRequest(on url: URL) async throws -> [RecognizedText] {
// Create request
var request = RecognizeTextRequest() // Single request: no need for ImageRequestHandler
// Configure request
request.recognitionLevel = .accurate
request.automaticallyDetectsLanguage = true
request.usesLanguageCorrection = true
request.minimumTextHeightFraction = 0.016
// Perform request
let textObservations: [RecognizedTextObservation] = try await request.perform(on: url)
// Convert [RecognizedTextObservation] to [RecognizedText]
return textObservations.compactMap { observation in
observation.topCandidates(1).first
}
}
I also found this Swift forums post mentioning something very similar.
I also opened a feedback: FB17240843
How do I test the new RecognizeDocumentRequest API. Reference: https://www.youtube.com/watch?v=H-GCNsXdKzM
I am running Xcode Beta, however I only have one primary device that I cannot install beta software on.
Please provide a strategy for testing. Will simulator work?
The new capability is critical to my application, just what I need for structuring document scans and extraction.
Thank you.