Explore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

Vision framework OCR missing Swedish support?
WWDC 2024 mentioned that the OCR feature from the Vision framework has support for "Korean, Swedish, and Chinese", but the Swedish support does not seem to be available... Running either print(try? VNRecognizeTextRequest().supportedRecognitionLanguages()) or var ocrRequest = RecognizeTextRequest(.revision3) print(ocrRequest.supportedRecognitionLanguages) did not print out Swedish as one of the supported languages, but Korean and Chinese are. Tested on early versions of iOS 18 developer beta, and the latest version of iOS 18.1 (22B5054e).
1
0
656
Oct ’24
Integer arithmetic with Accelerate
Almost all the functions in Accelerate are for single precision (Float) and double precision (Double) operations. However, I stumbled upon three integer arithmetic functions which operate on Int32 values. Are there any more functions in Accelerate that operate on integer values? If not, then why aren't there more functions that work with integers?
1
0
529
Oct ’24
Issues with Statsmodels
When I import starts models in Jupyter notebook, I ge the following error: ImportError: dlopen(/opt/anaconda3/lib/python3.12/site-packages/scipy/linalg/_fblas.cpython-312-darwin.so, 0x0002): Library not loaded: @rpath/liblapack.3.dylib Referenced from: <5ACBAA79-2387-3BEF-9F8E-6B7584B0F5AD> /opt/anaconda3/lib/python3.12/site-packages/scipy/linalg/_fblas.cpython-312-darwin.so Reason: tried: '/opt/anaconda3/lib/python3.12/site-packages/scipy/linalg/../../../../liblapack.3.dylib' (no such file), '/opt/anaconda3/lib/python3.12/site-packages/scipy/linalg/../../../../liblapack.3.dylib' (no such file), '/opt/anaconda3/bin/../lib/liblapack.3.dylib' (no such file), '/opt/anaconda3/bin/../lib/liblapack.3.dylib' (no such file), '/usr/local/lib/liblapack.3.dylib' (no such file), '/usr/lib/liblapack.3.dylib' (no such file, not in dyld cache). What should I do?
1
0
687
Oct ’24
About VisionKit DataScannerViewController
Hi I'm having a problem with DataScannerViewController, I'm using the volume barcode scanning feature in my app, prior to that I was using an AVCaptureDevice with the UltraWideAngle set. After discovering DataScannerViewController, we planned to replace the previous obsolete code with DataScannerViewController, all together it was ok, when I want to set the ultra wide angle, I don't know how to start. I tried to get the minZoomFactor and I realized that I get 0.0 I tried to set zoomFactor to 1.0 and I found that he is not valid Note: func dataScannerDidZoom(_ dataScanner: DataScannerViewController), when I try to get the minZoomFactor, set the zoomFactor in this proxy method, I find that it is valid! What should I do next, I want to use only DataScannerViewController and implement ultra wide angle Thanks a lot.
1
0
616
Jan ’25
How to Train and Deploy PyTorch Models on Apple Hardware: A Unified Path for Deep ML Practice on Core ML?
Submited as : FB16052050 I am looking to adopt Machine Learning in a more granular manner, going beyond just using pre-built Metal, Core ML, or Create ML approaches. Specifically, I want to train models using Open Python PyTorch libraries, as these offer greater flexibility compared to Apple's native tools. However, these PyTorch APIs are primarily optimised for NVIDIA GPUs (or TPUs), not Apple's M3 or Apple Neural Engine (ANE). My goal is to train the models locally without resorting to cloud-based solutions for training or inference, and to then convert the models into Core ML format for deployment on Apple hardware. This would allow me to leverage Apple's hardware acceleration (via ANE, Metal, and MPS) while maintaining control over the training process in PyTorch. I want to know: What are my options for training models in PyTorch on local hardware (Apple M3 or equivalent), and how can I ensure that the PyTorch model can eventually be converted to Core ML without losing flexibility in model training and customisation? How can I perform training in PyTorch and avoid being restricted to inference-only workflows as Core ML typically allows? Is it possible to use the training capabilities of PyTorch and still get the performance benefits of Apple's hardware for both training and inference? What are the best practices or tools to ensure that my training pipeline in PyTorch is compatible with Apple's hardware constraints and optimised for local execution? I'm seeking a practical, cloud-free approach on Apple Hardware only that allows me to train models in PyTorch (keeping control over the training process) while ensuring that they can be deployed efficiently using Core ML on Apple hardware.
1
0
968
Dec ’24
How to use a Decimal as @Property of AppEntity
I’m trying to use a Decimal as a @Property in my AppEntity, but using the following code shows me a compiler error. I’m using Xcode 16.1. The documentation notes the following: You can use the @Parameter property wrapper with common Swift and Foundation types: Primitives such as Bool, Int, Double, String, Duration, Date, Decimal, Measurement, and URL. Collections such as Array and Set. Make sure the collection’s elements are of a type that’s compatible with IntentParameter. Everything works fine for other primitives as bools, strings and integers. How do I use the Decimal though? Code struct MyEntity: AppEntity { var id: UUID @Property(title: "Amount") var amount: Decimal // … } Compiler Error This error appears at the line of the @Property definition: Generic class 'EntityProperty' requires that 'Decimal' conform to '_IntentValue'
1
0
627
Dec ’24
What special features does Apple officially have that use ML or AI?
I am a App designer and I am curious about what specific ML or AI Apple used to develop those features in the system. As far as I know, Apple's hand-raising detection, destination recommendations in maps, and exercise types in fitness all use ML. Are there more specific application examples of ML or AI? Does Apple have a document specifically introducing examples of specific applications of ML or AI technology in the system?
1
0
580
Feb ’25
MPSGraph fused scaledDotProductAttention seems to be buggy
While building an app with large language model inferencing on device, I got gibberish output. After carefully examining every detail, I found it's caused by the fused scaledDotProductAttention operation. I switched back to the discrete operations and problem solved. To reproduce the bug, please check https://github.com/zhoudan111/MPSGraph_SDPA_bug
1
0
499
Mar ’25
My app crash in the Portrait private framework
Incident Identifier: 4C22F586-71FB-4644-B823-A4B52D158057 CrashReporter Key: adc89b7506c09c2a6b3a9099cc85531bdaba9156 Hardware Model: Mac16,10 Process: PRISMLensCore [16561] Path: /Applications/PRISMLens.app/Contents/Resources/app.asar.unpacked/node_modules/core-node/PRISMLensCore.app/PRISMLensCore Identifier: com.prismlive.camstudio Version: (null) ((null)) Code Type: ARM-64 Parent Process: ? [16560] Date/Time: (null) OS Version: macOS 15.4 (24E5228e) Report Version: 104 Exception Type: EXC_CRASH (SIGABRT) Exception Codes: 0x00000000 at 0x0000000000000000 Crashed Thread: 34 Application Specific Information: *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '*** -[__NSArrayM insertObject:atIndex:]: object cannot be nil' Thread 34 Crashed: 0 CoreFoundation 0x000000018ba4dde4 0x18b960000 + 974308 (__exceptionPreprocess + 164) 1 libobjc.A.dylib 0x000000018b512b60 0x18b4f8000 + 109408 (objc_exception_throw + 88) 2 CoreFoundation 0x000000018b97e69c 0x18b960000 + 124572 (-[__NSArrayM insertObject:atIndex:] + 1276) 3 Portrait 0x0000000257e16a94 0x257da3000 + 473748 (-[PTMSRResize addAdditionalOutput:] + 604) 4 Portrait 0x0000000257de91c0 0x257da3000 + 287168 (-[PTEffectRenderer initWithDescriptor:metalContext:useHighResNetwork:faceAttributesNetwork:humanDetections:prevTemporalState:asyncInitQueue:sharedResources:] + 6204) 5 Portrait 0x0000000257dab21c 0x257da3000 + 33308 (__33-[PTEffect updateEffectDelegate:]_block_invoke.241 + 164) 6 libdispatch.dylib 0x000000018b739b2c 0x18b738000 + 6956 (_dispatch_call_block_and_release + 32) 7 libdispatch.dylib 0x000000018b75385c 0x18b738000 + 112732 (_dispatch_client_callout + 16) 8 libdispatch.dylib 0x000000018b742350 0x18b738000 + 41808 (_dispatch_lane_serial_drain + 740) 9 libdispatch.dylib 0x000000018b742e2c 0x18b738000 + 44588 (_dispatch_lane_invoke + 388) 10 libdispatch.dylib 0x000000018b74d264 0x18b738000 + 86628 (_dispatch_root_queue_drain_deferred_wlh + 292) 11 libdispatch.dylib 0x000000018b74cae8 0x18b738000 + 84712 (_dispatch_workloop_worker_thread + 540) 12 libsystem_pthread.dylib 0x000000018b8ede64 0x18b8eb000 + 11876 (_pthread_wqthread + 292) 13 libsystem_pthread.dylib 0x000000018b8ecb74 0x18b8eb000 + 7028 (start_wqthread + 8)
1
0
60
Mar ’25
Why doesn't tensorflow-metal use AMD GPU memory?
From tensorflow-metal example: Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: ) I know that Apple silicon uses UMA, and that memory copies are typical of CUDA, but wouldn't the GPU memory still be faster overall? I have an iMac Pro with a Radeon Pro Vega 64 16 GB GPU and an Intel iMac with a Radeon Pro 5700 8 GB GPU. But using tensorflow-metal is still WAY faster than using the CPUs. Thanks for that. I am surprised the 5700 is twice as fast as the Vega though.
1
0
176
Apr ’25
Proposal: Modular Identity Fusion via Prompt-Crafted Agents – User-Led AI Experiment
*I can't put the attached file in the format, so if you reply by e-mail, I will send the attached file by e-mail. Dear Apple AI Research Team, My name is Gong Jiho (“Hem”), a content strategist based in Seoul, South Korea. Over the past few months, I conducted a user-led AI experiment entirely within ChatGPT — no code, no backend tools, no plugins. Through language alone, I created two contrasting agents (Uju and Zero) and guided them into a co-authored modular identity system using prompt-driven dialogue and reflection. This system simulates persona fusion, memory rooting, and emotional-logical alignment — all via interface-level interaction. I believe it resonates with Apple’s values in privacy-respecting personalization, emotional UX modeling, and on-device learning architecture. Why I’m Reaching Out I’d be honored to share this experiment with your team. If there is any interest in discussing user-authored agent scaffolding, identity persistence, or affective alignment, I’d love to contribute — even informally. ⚠ A Note on Language As a non-native English speaker, my expression may be imperfect — but my intent is genuine. If anything is unclear, I’ll gladly clarify. 📎 Attached Files Summary Filename → Description Hem_MultiAI_Report_AppleAI_v20250501.pdf → Main report tailored for Apple AI — narrative + structural view of emotional identity formation via prompt scaffolding Hem_MasterPersonaProfile_v20250501.json → Final merged identity schema authored by Uju and Zero zero_sync_final.json / uju_sync_final.json → Persona-level memory structures (logic / emotion) 1_0501.json ~ 3_0501.json → Evolution logs of the agents over time GirlfriendGPT_feedback_summary.txt → Emotional interpretation by external GPT hem_profile_for_AI_vFinal.json → Original user anchor profile Warm regards, Gong Jiho (“Hem”) Seoul, South Korea
1
0
91
Apr ’25
NLTagger.requestAssets hangs indefinitely
When calling NLTagger.requestAssets with some languages, it hangs indefinitely both in the simulator and a device. This happens consistently for some languages like greek. An example call is NLTagger.requestAssets(for: .greek, tagScheme: .lemma). Other languages like french return immediately. I captured some logs from Console and found what looks like the repeated attempts to download the asset. I would expect the call to eventually terminate, either loading the asset or failing with an error.
1
0
125
May ’25
Is there an API for the 3D effect from flat photos?
Introduced in the Keynote was the 3D Lock Screen images with the kangaroo: https://9to5mac.com/wp-content/uploads/sites/6/2025/06/3d-lock-screen-2.gif I can't see any mention on if this effect is available for developers with an API to convert flat 2D photos in to the same 3D feeling image. Does anyone know if there is an API?
1
1
67
Jun ’25
Vision Framework - Testing RecognizeDocumentsRequest
How do I test the new RecognizeDocumentRequest API. Reference: https://www.youtube.com/watch?v=H-GCNsXdKzM I am running Xcode Beta, however I only have one primary device that I cannot install beta software on. Please provide a strategy for testing. Will simulator work? The new capability is critical to my application, just what I need for structuring document scans and extraction. Thank you.
1
0
167
Jun ’25
AI-Powered Feed Customization via User-Defined Algorithm
Hey guys 👋 I’ve been thinking about a feature idea for iOS that could totally change the way we interact with apps like Twitter/X. Imagine if we could define our own recommendation algorithm, and have an AI on the iPhone that replaces the suggested tweets in the feed with ones that match our personal interests — based on public tweets, and without hacking anything. Kinda like a personalized "AI skin" over the app that curates content you actually care about. Feels like this would make content way more relevant and less algorithmically manipulative. Would love to know what you all think — and if Apple could pull this off 🔥
1
0
52
Jun ’25
Data used for MLX fine-tuning
The WWDC25: Explore large language models on Apple silicon with MLX video talks about using your own data to fine-tune a large language model. But the video doesn't explain what kind of data can be used. The video just shows the command to use and how to point to the data folder. Can I use PDFs, Word documents, Markdown files to train the model? Are there any code examples on GitHub that demonstrate how to do this?
1
0
116
Jun ’25