Hi all, I'm tuning my app prediction speed with Core ML model. I watched and tried the methods in video: Improve Core ML integration with async prediction and Optimize your Core ML usage. I also use instruments to look what's the bottleneck that my prediction speed cannot be faster.
Below is the instruments result with my app. its prediction duration is 10.29ms
And below is performance report shows the average speed of prediction is 5.55ms, that is about half time of my app prediction!
Below is part of my instruments records. I think the prediction should be considered quite frequent. Could it be faster?
How to be the same prediction speed as performance report? The prediction speed on macbook Pro M2 is nearly the same as macbook Air M1!
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I have an app that streams in data from the Foundation Model and I have a card that shows one of the outputs. I want my card to accept a partially generated model but I keep getting a nonsensical error.
The error I get on line 59 is:
Cannot convert value of type 'FrostDate.VegetableSuggestion.PartiallyGenerated' (aka 'FrostDate.VegetableSuggestion') to expected argument type 'FrostDate.VegetableSuggestion.PartiallyGenerated'
Here is my card with preview:
import SwiftUI
import FoundationModels
struct VegetableSuggestionCard: View {
let vegetableSuggestion: VegetableSuggestion.PartiallyGenerated
init(vegetableSuggestion: VegetableSuggestion.PartiallyGenerated) {
self.vegetableSuggestion = vegetableSuggestion
}
var body: some View {
VStack(alignment: .leading, spacing: 8) {
if let name = vegetableSuggestion.vegetableName {
Text(name)
.font(.headline)
.frame(maxWidth: .infinity, alignment: .leading)
}
if let startIndoors = vegetableSuggestion.startSeedsIndoors {
Text("Start indoors: \(startIndoors)")
.frame(maxWidth: .infinity, alignment: .leading)
}
if let startOutdoors = vegetableSuggestion.startSeedsOutdoors {
Text("Start outdoors: \(startOutdoors)")
.frame(maxWidth: .infinity, alignment: .leading)
}
if let transplant = vegetableSuggestion.transplantSeedlingsOutdoors {
Text("Transplant: \(transplant)")
.frame(maxWidth: .infinity, alignment: .leading)
}
if let tips = vegetableSuggestion.tips {
Text("Tips: \(tips)")
.foregroundStyle(.secondary)
.frame(maxWidth: .infinity, alignment: .leading)
}
}
.padding(16)
.frame(maxWidth: .infinity, alignment: .leading)
.background(
RoundedRectangle(cornerRadius: 16, style: .continuous)
.fill(.background)
.overlay(
RoundedRectangle(cornerRadius: 16, style: .continuous)
.strokeBorder(.quaternary, lineWidth: 1)
)
.shadow(color: Color.black.opacity(0.05), radius: 6, x: 0, y: 2)
)
}
}
#Preview("Vegetable Suggestion Card") {
let sample = VegetableSuggestion.PartiallyGenerated(
vegetableName: "Tomato",
startSeedsIndoors: "6–8 weeks before last frost",
startSeedsOutdoors: "After last frost when soil is warm",
transplantSeedlingsOutdoors: "1–2 weeks after last frost",
tips: "Harden off seedlings; provide full sun and consistent moisture."
)
VegetableSuggestionCard(vegetableSuggestion: sample)
.padding()
.previewLayout(.sizeThatFits)
}
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
The WWDC25: Explore large language models on Apple silicon with MLX video talks about using your own data to fine-tune a large language model. But the video doesn't explain what kind of data can be used. The video just shows the command to use and how to point to the data folder. Can I use PDFs, Word documents, Markdown files to train the model? Are there any code examples on GitHub that demonstrate how to do this?
Hi
For certain tasks, such as qualitative analysis or tagging, it is advisable to provide the AI with the option to respond with a joker / wild card answer when it encounters difficulties in tagging or scoring. For instance, you can include this slot in the prompt as follows:
output must be "not data to score" when there isn't information to score.
In the absence of these types of slots, AI trends to provide a solution even when there is insufficient information.
Foundations Models are told to be prompted with simple prompts. I wonder: Is recommended keep this slot though adds verbose complexity? Is the best place the comment of a guided attribute? other tips?
Another use case is when you want the AI to be tied to the information provided in the prompt and not take information from its data set. What is the best approach to this purpose?
Thanks in advance for any suggestion.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hey dear developers!
This post should be available for the future Siri updates and improvements but also for wishes in this forum so that everyone can share their opinion and idea please stay friendly. have fun! I had already thought about developing a demo app to demonstrate my idea for a better Siri.
My change of many:
Wish Update: Siri's language recognition capabilities have been significantly enhanced. Instead of manually setting the language, Siri can now automatically recognize the language you intend to use, making language switching much more efficient. Simply speak the language you want to communicate in, and Siri will automatically recognize it and respond accordingly. Whether you speak English, German, or Japanese, Siri will respond in the language you choose.
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Tags:
iPhone
Siri Event Suggestions Markup
Siri and Voice
Apple Intelligence
If users turn off Apple Intelligence, what happens to apps that leverage Foundation Model Framework?
Would there be a popup automatically shown to a user saying to enable Apple Intelligence if our user has the toggle turned off? Just curious about how that experience looks for both us as developers and users.
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
I'm trying to use Apple's new Visual Intelligence API for recommending content through screenshot image search. The problem I encountered is that the SemanticContentDescriptor labels are either completely empty or super misleading, making it impossible to query for similar content on my app. Even the closest matching example was inaccurate, returning a single label ["cardigan"] for a Supreme T-Shirt.
I see other apps using this API like Etsy for example, and I'm wondering if they're using the input pixel buffer to query for similar content rather than using the labels?
If anyone has a similar experience or something that wasn't called out in the documentation please lmk! Thanks.
Pretty much as per the title and I suspect I know the answer. Given that Foundation Models run on device, is it possible to use Foundation Models framework inside of a DeviceActivityReport? I've been tinkering with it, and all I get is errors and "Sandbox restrictions". Am I missing something? Seems like a missed trick to utilise on device AI/ML with other frameworks.
In working with Apple's foundation models, we often want to provide as much context as possible. However, since the model has a context size limit of 4096 tokens, is there a way to estimate the number of tokens beforehand?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I watched this year WWDC25 "Read Documents using the Vision framework". At the end of video there is mention of new DetectHandPoseRequest model for hand pose detection in Vision API.
I looked Apple documentation and I don't see new revision. Moreover probably typo in video because there is only DetectHumanPoseRequst (swift based) and
VNDetectHumanHandPoseRequest (obj-c based) (notice lack of Human prefix in WWDC video)
First one have revision only added in iOS 18+:
https://developer.apple.com/documentation/vision/detecthumanhandposerequest/revision-swift.enum/revision1
Second one have revision only added in iOS14+:
https://developer.apple.com/documentation/vision/vndetecthumanhandposerequestrevision1
I don't see any new revision targeting iOS26+
I want to use Foundation Models in a project, but I know my users will want to avoid environmentally intensive AI work in data centers.
Does Foundation Models ever use Private Compute Cloud or any other kind of cloud-based AI system?
I'd like to be able to assure my users that the LLM usage is relatively environmentally friendly. It would be great to be able to cite a specific Apple page explaining that Foundation Models work is always done locally.
If there's any chance that work can be done in the cloud, is there a way to opt out of that?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Bear with me, please. Please make sure a highly skilled technical person reads and understands this.
I want to describe my vision for (AI/Algorithmically) Optimised Operating Systems. To explain it properly, I will describe the process to build it (pseudo).
Required Knowledge (no particular order): Processor Logic Circuits, LLM models, LLM tool usage, Python OO coding, Procedural vs OO, NLP fuzzy matching, benchmarking, canvas/artefacts/dynamic HTML interfaces, concepts of how AI models are vastly compressed and miniaturised forms of full data, Algorithmic vs AI.
First, take all OO Python code (example) on GitHub (example), then separate each function from each object into its own procedure (procedural logic) by making a logical procedural list of actions to perform only that function based on its entire dependency chain (i.e. all other objects it relies on). Relate all compiled functions using (for example) fuzzy matching on the name, or AI-based functional profiling to get multiple instances of each function.
Starting with the most used function, test each one against the others that perform the same task for bugs and completeness. Determine the fastest, most optimal version of that function (and every function). Add a single instance of each most optimal function to the centralised tool codebase, which will later be utilised by the language models. This ensures we rely only on the most optimised function for each and every use case — with every program using one shared instance of that function instead of compiling it separately.
In this way, we optimise all existing (Python OO) code based on maximum availability of certain resources. Use the optimised code to teach the AI how to map each user task directly to optimised code (i.e. each user-facing function in unoptimised program code to its optimised version). Later, teach the codebase how to optimise these functions directly to the logic circuits on the processor — as an Operating System — using essentially the same process. Eventually, use the most optimised form for tasks via a dynamic canvas/artefacts UI interface generated by the Start Menu using the language model.
Allow custom interfaces to emerge dynamically from the available functions based on language understanding. Grow and optimise the algorithmic codebase until the entire operating system — with versioning — evolves based on the AI-generated user interfaces (compressing them into new versions of the tools codebase).
Please don’t give up until you understand this concept completely and nothing in the description is beyond your full comprehension. It’s a highly significant step forward.
Hello, I was trying to test out Foundation Model however it says Model assets are unavailable. I got my MacBook M1 back in China when i was living there. is this due to region lock?
Hello
I’m experimenting with Apple’s on‑device language model via the FoundationModels framework in Xcode (using LanguageModelSession in my code). I’d like to confirm a few points:
• Is the language model provided by FoundationModels designed and trained by Apple? Or is it based on an open‑source model?
• Is this on‑device model available on iOS (and iPadOS), or is it limited to macOS?
• When I write code in Xcode, is code completion powered by this same local model? If so, why isn’t the same model available in the left‑hand chat sidebar in Xcode (so that I can use it there instead of relying on ChatGPT)?
• Can I grant this local model access to my personal data (photos, contacts, SMS, emails) so it can answer questions based on that information? If yes, what APIs, permission prompts, and privacy constraints apply?
Thanks
Hi, recently i tried to fine-tune Gemma-2-2b mlx model on my macbook (24 GB UMA). The code started running, after few seconds i saw swap size reaching 50GB and ram around 23 GB and then it stopped. I ran the Gemma-2-2b (cuda) on colab, it ran and occupied 27 GB on A100 gpu and worked fine. Here i didn't experienced swap issue.
Now my question is if my UMA was more than 27 GB, i also would not have experienced swap disk issue.
Thanks.
Topic:
Machine Learning & AI
SubTopic:
General
Hello,
I am studying macOS26 Apple Intelligence features.
I have created a basic swift program with Xcode. This program is sending prompts to FoundationModels.LanguageModelSession.
It works fine but this model is not trained for programming or code completion.
Xcode has an AI code completion feature. It is called "Predictive Code completion model".
So, there are multiple on-device models on macOS26 ?
Are there others ?
Is there a way for me to send prompts to this "Predictive Code completion model" from my program ?
Thanks
Hi there,
I have a custom keypoint detection model and want to use it via vision's CoremlRequest API. Here's some complication for input and output:
For input My model expect 512x512 a image. Which would be resized and padded from a 1920x1080 frame. I use the .scaleToFit option, but can I also specify the color used for padding?
For output:
My model output a CoreMLFeatureValueObservation, can I have it output in a format vision recognizes? such as joints/keypoints
If my model is able to output in a format vision recognizes, would it take care to restoring the coordinates back to the original frame? (undo the padding) If not, how do I restore it from .scaletofit option?
Best,
Hello fellow developers,
I'm the founder of a FinTech startup, Cent Capital (https://cent.capital), where we are building an AI-powered financial co-pilot.
We're deeply exploring the Apple ecosystem to create a more proactive and ambient user experience. A core part of our vision is to use App Intents and the Shortcuts app to surface personalized financial insights without the user always needing to open our app. For example, suggesting a Shortcut like, "What's my spending in the 'Dining Out' category this month?" or having an App Intent proactively surface an insight like, "Your 'Subscriptions' budget is almost full."
My question for the community is about the architectural and user experience best practices for this.
How are you thinking about the balance between providing rich, actionable insights via Intents without being overly intrusive or "spammy" to the user?
What are the best practices for designing the data model that backs these App Intents for a complex domain like personal finance?
Are there specific performance or privacy considerations we should be aware of when surfacing potentially sensitive financial data through these system-level integrations?
We believe this is the future of FinTech apps on iOS and would love to hear how other developers are thinking about this challenge.
Thanks for your insights!
I would like to write a macOS application that uses on-device AI (FoundationModels).
I don’t understand how to, practically, give it access to my documents, photos, or contacts and be able to ask it a question like: “Find the document that talks about this topic.”
Do I need to manually retrieve the data and provide it in the form of a prompt? Or is FoundationModels capable of accessing it on its own?
Thanks
Hi,
testing latest tensorflow-metal plugin with tensorflow 2.20 doesn't work..
using python
Python 3.12.11 (main, Jun 3 2025, 15:41:47) [Clang 17.0.0 (clang-1700.0.13.3)] on darwin
simple testing shows error:
import tensorflow as tf
Traceback (most recent call last):
File "", line 1, in
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in
_ll.load_library(_plugin_dir)
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Reason: tried: '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file)
tf.config.experimental.list_physical_devices('GPU')
Traceback (most recent call last):
File "", line 1, in
NameError: name 'tf' is not defined
I fixed this error by copying _pywrap_tensorflow_internal.so where it's searched..
1)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64
2)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/
3)cp /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/
then fails symbol not found:
Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E
in libmetal_plugin.dylib
full log:
with import tensorflow as tf
Traceback (most recent call last):
File "", line 1, in
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in
_ll.load_library(_plugin_dir)
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Expected in: <2FF91C8B-0CB6-3E66-96B7-092FDF36772E> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so