When using Foundation Models, is it possible to ask the model to produce output in a specific language, apart from giving an instruction like "Provide answers in ." ? (I tried that and it kind of worked, but it seems fragile.)
I haven't noticed an API to do so and have a use-case where the output should be in a user-selectable language that is not the current system language.
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I generate an array of random floats using the code shown below. However, I would like to do this with Double instead of Float. Are there any BNNS random number generators for double values, something like BNNSRandomFillUniformDouble? If not, is there a way I can convert BNNSNDArrayDescriptor from float to double?
import Accelerate
let n = 100_000_000
let result = Array<Float>(unsafeUninitializedCapacity: n) { buffer, initCount in
var descriptor = BNNSNDArrayDescriptor(data: buffer, shape: .vector(n))!
let randomGenerator = BNNSCreateRandomGenerator(BNNSRandomGeneratorMethodAES_CTR, nil)
BNNSRandomFillUniformFloat(randomGenerator, &descriptor, 0, 1)
initCount = n
}
I'm working on a to-do list app that uses SpeechTranscriber and Foundation Models framework to transcribe a user's voice into text and create to-do items based off of it.
After about 30 minutes looking at my code, I couldn't figure out why I was failing to generate a to-do for "I need to go to Six Flags Great America tomorrow at 3pm." It turns out, I was consistently firing the Foundation Models's safety filter violation for unsafe content ("May contain unsafe content").
Lesson learned: consider comprehensively logging Foundation Models error states to quickly identify when safety filters are unexpectedly triggered.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi everyone, I’m working on an iOS app that uses a Core ML model to run live image recognition. I’ve run into a persistent issue with the mlpackage not being turned into a swift class. This following error is in the code, and in carDetection.mlpackage, it says that model class has not been generated yet. The error in the code is as follows:
What I’ve tried:
Verified Target Membership is checked for carDetectionModel.mlpackage
Confirmed the file is listed under Copy Bundle Resources (and removed from Compile Sources)
Cleaned the build folder (Shift + Cmd + K) and rebuilt
Renamed and re-added the .mlpackage file
Restarted Xcode and re-added the file
Logged bundle contents at runtime, but the .mlpackage still doesn’t appear
The mlpackage is in Copy bundle resources, and is not in the compile sources. I just don't know why a swift class is not being generated for the mlpackage.
Could someone please give me some guidance on what to do to resolve this issue?
Sorry if my error is a bit naive, I'm pretty new to iOS app development
Topic:
Machine Learning & AI
SubTopic:
Core ML
No matter what, the LanguageModelSession always returns very lengthy / verbose responses. I set the maximumResponseTokens option to various small numbers but it doesn't appear to have any effect. I've even used this instructions format to keep responses between 3-8 words but it returns multiple paragraphs. Is there a way to manage LLM response length? Thanks.
Hello,
We have been encountering a persistent crash in our application, which is deployed exclusively on iPad devices. The crash occurs in the following code block:
let requestHandler = ImageRequestHandler(paddedImage)
var request = CoreMLRequest(model: model)
request.cropAndScaleAction = .scaleToFit
let results = try await requestHandler.perform(request)
The client using this code is wrapped inside an actor, following Swift concurrency principles.
The issue has been consistently reproduced across multiple iPadOS versions, including:
iPad OS - 18.4.0
iPad OS - 18.4.1
iPad OS - 18.5.0
This is the crash log -
Crashed: com.apple.VN.detectorSyncTasksQueue.VNCoreMLTransformer
0 libobjc.A.dylib 0x7b98 objc_retain + 16
1 libobjc.A.dylib 0x7b98 objc_retain_x0 + 16
2 libobjc.A.dylib 0xbf18 objc_getProperty + 100
3 Vision 0x326300 -[VNCoreMLModel predictWithCVPixelBuffer:options:error:] + 148
4 Vision 0x3273b0 -[VNCoreMLTransformer processRegionOfInterest:croppedPixelBuffer:options:qosClass:warningRecorder:error:progressHandler:] + 748
5 Vision 0x2ccdcc __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_5 + 132
6 Vision 0x14600 VNExecuteBlock + 80
7 Vision 0x14580 __76+[VNDetector runSuccessReportingBlockSynchronously:detector:qosClass:error:]_block_invoke + 56
8 libdispatch.dylib 0x6c98 _dispatch_block_sync_invoke + 240
9 libdispatch.dylib 0x1b584 _dispatch_client_callout + 16
10 libdispatch.dylib 0x11728 _dispatch_lane_barrier_sync_invoke_and_complete + 56
11 libdispatch.dylib 0x7fac _dispatch_sync_block_with_privdata + 452
12 Vision 0x14110 -[VNControlledCapacityTasksQueue dispatchSyncByPreservingQueueCapacity:] + 60
13 Vision 0x13ffc +[VNDetector runSuccessReportingBlockSynchronously:detector:qosClass:error:] + 324
14 Vision 0x2ccc80 __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_4 + 336
15 Vision 0x14600 VNExecuteBlock + 80
16 Vision 0x2cc98c __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_3 + 256
17 libdispatch.dylib 0x1b584 _dispatch_client_callout + 16
18 libdispatch.dylib 0x6ab0 _dispatch_block_invoke_direct + 284
19 Vision 0x2cc454 -[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:] + 632
20 Vision 0x2cd14c __111-[VNDetector processUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke + 124
21 Vision 0x14600 VNExecuteBlock + 80
22 Vision 0x2ccfbc -[VNDetector processUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:] + 340
23 Vision 0x125410 __swift_memcpy112_8 + 4852
24 libswift_Concurrency.dylib 0x5c134 swift::runJobInEstablishedExecutorContext(swift::Job*) + 292
25 libswift_Concurrency.dylib 0x5d5c8 swift_job_runImpl(swift::Job*, swift::SerialExecutorRef) + 156
26 libdispatch.dylib 0x13db0 _dispatch_root_queue_drain + 364
27 libdispatch.dylib 0x1454c _dispatch_worker_thread2 + 156
28 libsystem_pthread.dylib 0x9d0 _pthread_wqthread + 232
29 libsystem_pthread.dylib 0xaac start_wqthread + 8
We found an issue similar to us - https://developer.apple.com/forums/thread/770771.
But the crash logs are quite different, we believe this warrants further investigation to better understand the root cause and potential mitigation strategies.
Please let us know if any additional information would help diagnose this issue.
Hey,
Would be great to have an equivalent of toolCallId for both toolCall and toolResult in the transcript. Otherwise, it is hard to connect tool calls with their respective responses, when there were multiple parallel calls to the same tool.
Thanks!
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi,
I'm trying to use the new RecognizeDocumentsRequest from the Vision Framework to read a receipt. It looks very promising by being able to read paragraphs, lines and detect data. So far it unfortunately seems to read every line on the receipt as a paragraph and when there is more space on one line it creates two paragraphs.
Is there perhaps an Apple Engineer who knows if this is expected behaviour or if I should file a Feedback for this?
Code setup:
let request = RecognizeDocumentsRequest()
let observations = try await request.perform(on: image)
guard let document = observations.first?.document else {
return
}
for paragraph in document.paragraphs {
print(paragraph.transcript)
for data in paragraph.detectedData {
switch data.match.details {
case .phoneNumber(let data):
print("Phone: \(data)")
case .postalAddress(let data):
print("Postal: \(data)")
case .calendarEvent(let data):
print("Calendar: \(data)")
case .moneyAmount(let data):
print("Money: \(data)")
case .measurement(let data):
print("Measurement: \(data)")
default:
continue
}
}
}
See attached image as an example of a receipt I'd like to parse. The top 3 lines are the name, street, and postal code + city. These are all separate paragraphs. Checking on detectedData does see the street (2nd line) as PostalAddress, but not the complete address. Might that be a location thing since it's a Dutch address.
And lower on the receipt it sees the block with "Pomp 1 95 Ongelood" and the things below also as separate paragraphs. First picking up the left side and after that the right side. So it's something like this:
*
Pomp 1
Volume
Prijs
€
TOTAAL
*
BTW
Netto
21.00 %
95 Ongelood
41,90 l
1.949/ 1
81.66
€
14.17
67.49
Hello,
I have created this basic swift program:
let session = LanguageModelSession(
model: .default,
instructions: "bla bla bla.")
I want to understand what I can put in model parameter (instead of .default).
How can I choose between on-device local model (.default I suppose) and apple private cloud model (or any other ?)
Thanks
Hello, I'm using videotoolbox superresolution API in MACOS 26: https://developer.apple.com/documentation/videotoolbox/vtsuperresolutionscalerconfiguration/downloadconfigurationmodel(completionhandler:)?language=objc, when using swift, it's ok, when using objective-c, I get error when downloading model with downloadConfigurationModelWithCompletionHandler:
[Auto] MA-auto{_failedLockContent} | failure reported by server | error:[com.apple.MobileAssetError.AutoAsset:MissingReference(6111)]
[Auto] MA-auto{_failedLockContent} | failure reported by server | error:[com.apple.MobileAssetError.AutoAsset:UnderlyingError(6107)_1_com.apple.MobileAssetError.Download:47]
Download completion handler called with error: The operation couldnxe2x80x99t be completed. (VTFrameProcessorErrorDomain error -19743.)
Bear with me, please. Please make sure a highly skilled technical person reads and understands this.
I want to describe my vision for (AI/Algorithmically) Optimised Operating Systems. To explain it properly, I will describe the process to build it (pseudo).
Required Knowledge (no particular order): Processor Logic Circuits, LLM models, LLM tool usage, Python OO coding, Procedural vs OO, NLP fuzzy matching, benchmarking, canvas/artefacts/dynamic HTML interfaces, concepts of how AI models are vastly compressed and miniaturised forms of full data, Algorithmic vs AI.
First, take all OO Python code (example) on GitHub (example), then separate each function from each object into its own procedure (procedural logic) by making a logical procedural list of actions to perform only that function based on its entire dependency chain (i.e. all other objects it relies on). Relate all compiled functions using (for example) fuzzy matching on the name, or AI-based functional profiling to get multiple instances of each function.
Starting with the most used function, test each one against the others that perform the same task for bugs and completeness. Determine the fastest, most optimal version of that function (and every function). Add a single instance of each most optimal function to the centralised tool codebase, which will later be utilised by the language models. This ensures we rely only on the most optimised function for each and every use case — with every program using one shared instance of that function instead of compiling it separately.
In this way, we optimise all existing (Python OO) code based on maximum availability of certain resources. Use the optimised code to teach the AI how to map each user task directly to optimised code (i.e. each user-facing function in unoptimised program code to its optimised version). Later, teach the codebase how to optimise these functions directly to the logic circuits on the processor — as an Operating System — using essentially the same process. Eventually, use the most optimised form for tasks via a dynamic canvas/artefacts UI interface generated by the Start Menu using the language model.
Allow custom interfaces to emerge dynamically from the available functions based on language understanding. Grow and optimise the algorithmic codebase until the entire operating system — with versioning — evolves based on the AI-generated user interfaces (compressing them into new versions of the tools codebase).
Please don’t give up until you understand this concept completely and nothing in the description is beyond your full comprehension. It’s a highly significant step forward.
It seems like there was an undocumented change that made Transcript.init(entries: [Transcript.Entry] initializer private, which broke my application, which relies on (manual) reconstruction of Transcript entries.
Worked fine on beta 1, on beta 2 there's this error
dyld[72381]: Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC
Referenced from: <44342398-591C-3850-9889-87C9458E1440> /Users/mika/experiments/apple-on-device-ai/fm
Expected in: <66A793F6-CB22-3D1D-A560-D1BD5B109B0D> /System/Library/Frameworks/FoundationModels.framework/Versions/A/FoundationModels
Is this a part of an API transition, if so -
Apple, please update your documentation
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm playing with the new Vision API for iOS18, specifically with the new CalculateImageAestheticsScoresRequest API.
When I try to perform the image observation request I get this error:
internalError("Error Domain=NSOSStatusErrorDomain Code=-1 \"Failed to create espresso context.\" UserInfo={NSLocalizedDescription=Failed to create espresso context.}")
The code is pretty straightforward:
if let image = image {
let request = CalculateImageAestheticsScoresRequest()
Task {
do {
let cgImg = image.cgImage!
let observations = try await request.perform(on: cgImg)
let description = observations.description
let score = observations.overallScore
print(description)
print(score)
} catch {
print(error)
}
}
}
I'm running it on a M2 using the simulator.
Is it a bug? What's wrong?
My sample app has been working with the following code:
func call(arguments: Arguments) async throws -> ToolOutput {
var temp:Int
switch arguments.city {
case .singapore: temp = Int.random(in: 30..<40)
case .china: temp = Int.random(in: 10..<30)
}
let content = GeneratedContent(temp)
let output = ToolOutput(content)
return output
}
However in 26 beta 5, ToolOutput no longer available, please advice what has changed.
Hi,
I have trained a basic adapter using the adapter training toolkit. I am trying a very basic example of loading it and running inference with it, but am getting the following error:
Passing along InferenceError::inferenceFailed::loadFailed::Error Domain=com.apple.TokenGenerationInference.E5Runner Code=0 "Failed to load model: ANE adapted model load failure: createProgramInstanceWithWeights:modelToken:qos:baseModelIdentifier:owningPid:numWeightFiles:error:: Program load new instance failure (0x170006)." UserInfo={NSLocalizedDescription=Failed to load model: ANE adapted model load failure: createProgramInstanceWithWeights:modelToken:qos:baseModelIdentifier:owningPid:numWeightFiles:error:: Program load new instance failure (0x170006).} in response to ExecuteRequest
Any ideas / direction?
For testing I am including the .fmadapter file inside the app bundle. This is where I load it:
@State private var session: LanguageModelSession? // = LanguageModelSession()
func loadAdapter() async throws {
if let assetURL = Bundle.main.url(forResource: "qasc---afm---4-epochs-adapter", withExtension: "fmadapter") {
print("Asset URL: \(assetURL)")
let adapter = try SystemLanguageModel.Adapter(fileURL: assetURL)
let adaptedModel = SystemLanguageModel(adapter: adapter)
session = LanguageModelSession(model: adaptedModel)
print("Loaded adapter and updated session")
} else {
print("Asset not found in the main bundle.")
}
}
This seems to work fine as I get to the log Loaded adapter and updated session. However when the below inference code runs I get the aforementioned error:
func sendMessage(_ msg: String) {
self.loading = true
if let session = session {
Task {
do {
let modelResponse = try await session.respond(to: msg)
DispatchQueue.main.async {
self.response = modelResponse.content
self.loading = false
}
} catch {
print("Error: \(error)")
DispatchQueue.main.async {
self.loading = false
}
}
}
}
}
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hello
I’m experimenting with Apple’s on‑device language model via the FoundationModels framework in Xcode (using LanguageModelSession in my code). I’d like to confirm a few points:
• Is the language model provided by FoundationModels designed and trained by Apple? Or is it based on an open‑source model?
• Is this on‑device model available on iOS (and iPadOS), or is it limited to macOS?
• When I write code in Xcode, is code completion powered by this same local model? If so, why isn’t the same model available in the left‑hand chat sidebar in Xcode (so that I can use it there instead of relying on ChatGPT)?
• Can I grant this local model access to my personal data (photos, contacts, SMS, emails) so it can answer questions based on that information? If yes, what APIs, permission prompts, and privacy constraints apply?
Thanks
I'm using python 3.9.6, tensorflow 2.20.0, tensorflow-metal 1.2.0, and when I try to run
import tensorflow as tf
It gives
Traceback (most recent call last):
File "/Users/haoduoyu/Code/demo.py", line 1, in <module>
import tensorflow as tf
File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/__init__.py", line 438, in <module>
_ll.load_library(_plugin_dir)
File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Reason: tried: '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file)
As long as I uninstall tensorflow-metal, nothing goes wrong. How can I fix this problem?
Hello Apple Team,
Thank you for the recent Group Lab and for your continued work on advancing Xcode and developer tools.
I’d like to submit a feature request:
Are there any plans to introduce support for Agentic AI Mode (MCP protocol) in future versions of iOS or Xcode?
As developer tools evolve toward more intelligent and context-aware environments, the integration of agentic AI capabilities could significantly enhance productivity and unlock new creative workflows.
Looking forward to your consideration, and thank you again for the excellent session.
Best regards
Hi everyone,
I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine.
I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method.
For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system
My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy
Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder:
Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal?
Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal?
Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach?
I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated!
Thanks!
Hello Team,
I'm currently working on a proof of concept using Apple's Foundation Model for a RAG-based chat system on my MacBook Pro with the M1 Max chip.
Environment details:
macOS: 26.0 Beta
Xcode: 26.0 beta 2 (17A5241o)
Target platform: iPad (as the iPhone simulator does not support Foundation models)
While testing, even with very small input prompts to the LLM, I intermittently encounter the following error:
InferenceError::inference-Failed::Failed to run inference: Context length of 4096 was exceeded during singleExtend.
Has anyone else experienced this issue? Are there known limitations or workarounds for context length handling in this setup?
Any insights would be appreciated.
Thank you!
Topic:
Machine Learning & AI
SubTopic:
Foundation Models