Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

A Summary of the WWDC25 Group Lab - Machine Learning and AI Frameworks
At WWDC25 we launched a new type of Lab event for the developer community - Group Labs. A Group Lab is a panel Q&A designed for a large audience of developers. Group Labs are a unique opportunity for the community to submit questions directly to a panel of Apple engineers and designers. Here are the highlights from the WWDC25 Group Lab for Machine Learning and AI Frameworks. What are you most excited about in the Foundation Models framework? The Foundation Models framework provides access to an on-device Large Language Model (LLM), enabling entirely on-device processing for intelligent features. This allows you to build features such as personalized search suggestions and dynamic NPC generation in games. The combination of guided generation and streaming capabilities is particularly exciting for creating delightful animations and features with reliable output. The seamless integration with SwiftUI and the new design material Liquid Glass is also a major advantage. When should I still bring my own LLM via CoreML? It's generally recommended to first explore Apple's built-in system models and APIs, including the Foundation Models framework, as they are highly optimized for Apple devices and cover a wide range of use cases. However, Core ML is still valuable if you need more control or choice over the specific model being deployed, such as customizing existing system models or augmenting prompts. Core ML provides the tools to get these models on-device, but you are responsible for model distribution and updates. Should I migrate PyTorch code to MLX? MLX is an open-source, general-purpose machine learning framework designed for Apple Silicon from the ground up. It offers a familiar API, similar to PyTorch, and supports C, C++, Python, and Swift. MLX emphasizes unified memory, a key feature of Apple Silicon hardware, which can improve performance. It's recommended to try MLX and see if its programming model and features better suit your application's needs. MLX shines when working with state-of-the-art, larger models. Can I test Foundation Models in Xcode simulator or device? Yes, you can use the Xcode simulator to test Foundation Models use cases. However, your Mac must be running macOS Tahoe. You can test on a physical iPhone running iOS 18 by connecting it to your Mac and running Playgrounds or live previews directly on the device. Which on-device models will be supported? any open source models? The Foundation Models framework currently supports Apple's first-party models only. This allows for platform-wide optimizations, improving battery life and reducing latency. While Core ML can be used to integrate open-source models, it's generally recommended to first explore the built-in system models and APIs provided by Apple, including those in the Vision, Natural Language, and Speech frameworks, as they are highly optimized for Apple devices. For frontier models, MLX can run very large models. How often will the Foundational Model be updated? How do we test for stability when the model is updated? The Foundation Model will be updated in sync with operating system updates. You can test your app against new model versions during the beta period by downloading the beta OS and running your app. It is highly recommended to create an "eval set" of golden prompts and responses to evaluate the performance of your features as the model changes or as you tweak your prompts. Report any unsatisfactory or satisfactory cases using Feedback Assistant. Which on-device model/API can I use to extract text data from images such as: nutrition labels, ingredient lists, cashier receipts, etc? Thank you. The Vision framework offers the RecognizeDocumentRequest which is specifically designed for these use cases. It not only recognizes text in images but also provides the structure of the document, such as rows in a receipt or the layout of a nutrition label. It can also identify data like phone numbers, addresses, and prices. What is the context window for the model? What are max tokens in and max tokens out? The context window for the Foundation Model is 4,096 tokens. The split between input and output tokens is flexible. For example, if you input 4,000 tokens, you'll have 96 tokens remaining for the output. The API takes in text, converting it to tokens under the hood. When estimating token count, a good rule of thumb is 3-4 characters per token for languages like English, and 1 character per token for languages like Japanese or Chinese. Handle potential errors gracefully by asking for shorter prompts or starting a new session if the token limit is exceeded. Is there a rate limit for Foundation Models API that is limited by power or temperature condition on the iPhone? Yes, there are rate limits, particularly when your app is in the background. A budget is allocated for background app usage, but exceeding it will result in rate-limiting errors. In the foreground, there is no rate limit unless the device is under heavy load (e.g., camera open, game mode). The system dynamically balances performance, battery life, and thermal conditions, which can affect the token throughput. Use appropriate quality of service settings for your tasks (e.g., background priority for background work) to help the system manage resources effectively. Do the foundation models support languages other than English? Yes, the on-device Foundation Model is multilingual and supports all languages supported by Apple Intelligence. To get the model to output in a specific language, prompt it with instructions indicating the user's preferred language using the locale API (e.g., "The user's preferred language is en-US"). Putting the instructions in English, but then putting the user prompt in the desired output language is a recommended practice. Are larger server-based models available through Foundation Models? No, the Foundation Models API currently only provides access to the on-device Large Language Model at the core of Apple Intelligence. It does not support server-side models. On-device models are preferred for privacy and for performance reasons. Is it possible to run Retrieval-Augmented Generation (RAG) using the Foundation Models framework? Yes, it is possible to run RAG on-device, but the Foundation Models framework does not include a built-in embedding model. You'll need to use a separate database to store vectors and implement nearest neighbor or cosine distance searches. The Natural Language framework offers simple word and sentence embeddings that can be used. Consider using a combination of Foundation Models and Core ML, using Core ML for your embedding model.
1
0
1.1k
Jun ’25
Is there anywhere to get precompiled WhisperKit models for Swift?
If try to dynamically load WhipserKit's models, as in below, the download never occurs. No error or anything. And at the same time I can still get to the huggingface.co hosting site without any headaches, so it's not a blocking issue. let config = WhisperKitConfig( model: "openai_whisper-large-v3", modelRepo: "argmaxinc/whisperkit-coreml" ) So I have to default to the tiny model as seen below. I have tried so many ways, using ChatGPT and others, to build the models on my Mac, but too many failures, because I have never dealt with builds like that before. Are there any hosting sites that have the models (small, medium, large) already built where I can download them and just bundle them into my project? Wasted quite a large amount of time trying to get this done. import Foundation import WhisperKit @MainActor class WhisperLoader: ObservableObject { var pipe: WhisperKit? init() { Task { await self.initializeWhisper() } } private func initializeWhisper() async { do { Logging.shared.logLevel = .debug Logging.shared.loggingCallback = { message in print("[WhisperKit] \(message)") } let pipe = try await WhisperKit() // defaults to "tiny" self.pipe = pipe print("initialized. Model state: \(pipe.modelState)") guard let audioURL = Bundle.main.url(forResource: "44pf", withExtension: "wav") else { fatalError("not in bundle") } let result = try await pipe.transcribe(audioPath: audioURL.path) print("result: \(result)") } catch { print("Error: \(error)") } } }
0
0
99
Jun ’25
Inquiry Regarding Siri–AI Integration Capabilities
: Hello, I’m seeking clarification on whether Apple provides any framework or API that enables deep integration between Siri and advanced AI assistants (such as ChatGPT), including system-level functions like voice interaction, navigation, cross-platform syncing, and operational access similar to Siri’s own capabilities. If no such option exists today, I would appreciate guidance on the recommended path or approved third-party solutions for building a unified, voice-first experience across Apple’s ecosystem. Thank you for your time and insight.
0
0
48
3w
App stuck “In Review” for several days after AI-policy rejection — need clarification
Hello everyone, I’m looking for guidance regarding my app review timeline, as things seem unusually delayed compared to previous submissions. My iOS app was rejected on November 19th due to AI-related policy questions. I immediately responded to the reviewer with detailed explanations covering: Model used (Gemini Flash 2.0 / 2.5 Lite) How the AI only generates neutral, non-directive reflective questions How the system prevents any diagnosis, therapy-like behavior or recommendations Crisis-handling limitations Safety safeguards at generation and UI level Internal red-team testing and results Data retention, privacy, and non-use of data for model training After sending the requested information, I resubmitted the build on November 19th at 14:40. Since then: November 20th (7:30) → Status changed to In Review. November 21st, 22nd, 23rd, 24th, 25th → No movement, still In Review. My open case on App Store Connect is still pending without updates. Because of the previous rejection, I expected a short delay, but this is now 5 days total and 3 business days with no progress, which feels longer than usual for my past submissions. I’m not sure whether: My app is in a secondary review queue due to the AI-related rejection, The reviewer is waiting for internal clarification, Or if something is stuck and needs to be escalated. I don’t want to resubmit a new build unless necessary, since that would restart the queue. Could someone from the community (or Apple, if possible) confirm whether this waiting time is normal after an AI-policy rejection? And is there anything I should do besides waiting — for example, contacting Developer Support again or requesting a follow-up? Thank you very much for your help. I appreciate any insight from others who have experienced similar delays.
0
0
631
3w
CoreML model can load on MacOS 15.3.1 but failed to load on MacOS 15.5
I have been working on a small CV program, which uses fine-tuned U2Netp model converted by coremltools 8.3.0 from PyTorch. It works well on my iPhone (with iOS version 18.5) and my Macbook (with MacOS version 15.3.1). But it fails to load after I upgraded Macbook to MacOS version 15.5. I have attached console log when loading this model. Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage @ GetMPSGraphExecutable E5RT: Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage (13) Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage @ GetMPSGraphExecutable E5RT: Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage (13) Failure translating MIL->EIR network: Espresso exception: "Network translation error": MIL->EIR translation error at /Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil:1557:12: Parameter binding for axes does not exist. [Espresso::handle_ex_plan] exception=Espresso exception: "Network translation error": MIL->EIR translation error at /Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil:1557:12: Parameter binding for axes does not exist. status=-14 Failed to build the model execution plan using a model architecture file '/Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil' with error code: -14.
0
0
145
Jul ’25
Threading issues when using debugger
Hi, I am modifying the sample camera app that is here: https://developer.apple.com/tutorials/sample-apps/capturingphotos-camerapreview ... In the processPreviewImages, I am using the Vision APIs to generate a segmentation mask for a person/object, then compositing that person onto a different background (with some other filtering). The filtering and compositing is done via CoreImage. At the end, I convert the CIImage to a CGImage then to a SwiftUI Image. When I run it on my iPhone, it works fine, and has not crashed. When I run it on the iPhone with the debugger, it crashes within a few seconds with: EXC_BAD_ACCESS in libRPAC.dylib`std::__1::__hash_table<std::__1::__hash_value_type<long, qos_info_t>, std::__1::__unordered_map_hasher<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::hash, std::__1::equal_to, true>, std::__1::__unordered_map_equal<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::equal_to, std::__1::hash, true>, std::__1::allocator<std::__1::__hash_value_type<long, qos_info_t>>>::__emplace_unique_key_args<long, std::__1::piecewise_construct_t const&, std::__1::tuple<long const&>, std::__1::tuple<>>: It had previously been working fine with the debugger, so I'm not sure what has changed. Is there a difference in how the Vision APIs are executed if the debugger is attached vs. not?
0
0
81
Apr ’25
ILMessageFilterExtension memory limit
I’m considering creating an ILMessageFilterExtension using a mini LLM/SLM to detect fraud and I’ve read it has strict memory limits yet I can’t find it in the documentation. What’s the set limit or any other constraints impacting the feasibility of running 100-500mb model?
0
0
63
Apr ’25
Updated DetectHandPoseRequest revision from WWDC25 doesn't exist
I watched this year WWDC25 "Read Documents using the Vision framework". At the end of video there is mention of new DetectHandPoseRequest model for hand pose detection in Vision API. I looked Apple documentation and I don't see new revision. Moreover probably typo in video because there is only DetectHumanPoseRequst (swift based) and VNDetectHumanHandPoseRequest (obj-c based) (notice lack of Human prefix in WWDC video) First one have revision only added in iOS 18+: https://developer.apple.com/documentation/vision/detecthumanhandposerequest/revision-swift.enum/revision1 Second one have revision only added in iOS14+: https://developer.apple.com/documentation/vision/vndetecthumanhandposerequestrevision1 I don't see any new revision targeting iOS26+
0
0
123
Oct ’25
Is there an API to check if a Core ML compiled model is already cached?
Hello Apple Developer Community, I'm investigating Core ML model loading behavior and noticed that even when the compiled model path remains unchanged after an APP update, the first run still triggers an "uncached load" process. This seems to impact user experience with unnecessary delays. Question: Does Core ML provide any public API to check whether a compiled model (from a specific .mlmodelc path) is already cached in the system? If such API exists, we'd like to use it for pre-loading decision logic - only perform background pre-load when the model isn't cached. Has anyone encountered similar scenarios or found official solutions? Any insights would be greatly appreciated!
0
0
123
May ’25
ImagePlayground: Programmatic Creation Error
Hardware: Macbook Pro M4 Nov 2024 Software: macOS Tahoe 26.0 & xcode 26.0 Apple Intelligence is activated and the Image playground macOS app works Running the following on xcode throws ImagePlayground.ImageCreator.Error.creationFailed Any suggestions on how to make this work? import Foundation import ImagePlayground Task { let creator = try await ImageCreator() guard let style = creator.availableStyles.first else { print("No styles available") exit(1) } let images = creator.images( for: [.text("A cat wearing mittens.")], style: style, limit: 1) for try await image in images { print("Generated image: \(image)") } exit(0) } RunLoop.main.run()
0
0
277
Sep ’25
Best practices for designing proactive FinTech insights with App Intents & Shortcuts?
Hello fellow developers, I'm the founder of a FinTech startup, Cent Capital (https://cent.capital), where we are building an AI-powered financial co-pilot. We're deeply exploring the Apple ecosystem to create a more proactive and ambient user experience. A core part of our vision is to use App Intents and the Shortcuts app to surface personalized financial insights without the user always needing to open our app. For example, suggesting a Shortcut like, "What's my spending in the 'Dining Out' category this month?" or having an App Intent proactively surface an insight like, "Your 'Subscriptions' budget is almost full." My question for the community is about the architectural and user experience best practices for this. How are you thinking about the balance between providing rich, actionable insights via Intents without being overly intrusive or "spammy" to the user? What are the best practices for designing the data model that backs these App Intents for a complex domain like personal finance? Are there specific performance or privacy considerations we should be aware of when surfacing potentially sensitive financial data through these system-level integrations? We believe this is the future of FinTech apps on iOS and would love to hear how other developers are thinking about this challenge. Thanks for your insights!
0
0
193
Oct ’25
CoreML Model Conversion Help
I’m trying to follow Apple’s “WWDC24: Bring your machine learning and AI models to Apple Silicon” session to convert the Mistral-7B-Instruct-v0.2 model into a Core ML package, but I’ve run into a roadblock that I can’t seem to overcome. I’ve uploaded my full conversion script here for reference: https://pastebin.com/T7Zchzfc When I run the script, it progresses through tracing and MIL conversion but then fails at the backend_mlprogram stage with this error: https://pastebin.com/fUdEzzKM The core of the error is: ValueError: Op "keyCache_tmp" (op_type: identity) Input x="keyCache" expects list, tensor, or scalar but got state[tensor[1,32,8,2048,128,fp16]] I’ve registered my KV-cache buffers in a StatefulMistralWrapper subclass of nn.Module, matching the keyCache and valueCache state names in my ct.StateType definitions, but Core ML’s backend pass reports the state tensor as an invalid input. I’m using Core ML Tools 8.3.0 on Python 3.9.6, targeting iOS18, and forcing CPU conversion (MPS wasn’t available). Any pointers on how to satisfy the handle_unused_inputs pass or properly declare/cache state for GQA models in Core ML would be greatly appreciated! Thanks in advance for your help, Usman Khan
0
0
179
May ’25
Can I Perform Hybrid Execution on Neural Engine and CPU with 16-bit Precision?
Hello, I have a question regarding hybrid execution for deep learning models on Apple's Neural Engine and CPU. I am aware that setting the precision of some layers to 32-bit allows hybrid execution across both the Neural Engine and the CPU. However, I would like to know if it is possible to achieve the same with 16-bit precision. Is there any specific configuration or workaround to enable hybrid execution in this case? Any guidance or documentation references would be greatly appreciated. Thank you!
0
0
437
Jan ’25
What is experimentalMLE5EngineUsage?
@property (assign,nonatomic) long long experimentalMLE5EngineUsage; //@synthesize experimentalMLE5EngineUsage=_experimentalMLE5EngineUsage - In the implementation block What is it, and why would disabling it fix NMS for a MLProgram? Is there anyway to signal this flag from model metadata? Is there anyway to signal or disable from a global, system-level scope? It's extremely easy to reproduce, but do not know how to investigate the drastic regression between toggling this flag let config = MLModelConfiguration() config.setValue(1, forKey: "experimentalMLE5EngineUsage")
0
1
663
Jan ’25
CreateML Training Object Detection Not using MPS
Hi everyone Im currently developing an object detection model that shall identify up to seven classes in an image. While im usually doing development with basic python and the ultralytics library, i thought i would like to give CreateML a shot. The experience is actually very nice, except for the fact that the model seem not to be using any ANE or GPU (MPS) for accelerated training. On https://developer.apple.com/machine-learning/create-ml/ it states: "On-device training Train models blazingly fast right on your Mac while taking advantage of CPU and GPU." Am I doing something wrong? Im running the training on Apple M1 Pro 16GB MacOS 26.1 (Tahoe) Xcode 26.1 (Build version 17B55) It would be super nice to get some feedback or instructions. Thank you in advance!
0
0
192
Nov ’25
AppShortcuts.xcstrings does not translate each invocation phrase option separately, just the first
Due to our min iOS version, this is my first time using .xcstrings instead of .strings for AppShortcuts. When using the migrate .strings to .xcstrings Xcode context menu option, an .xcstrings catalog is produced that, as expected, has each invocation phrase as a separate string key. However, after compilation, the catalog changes to group all invocation phrases under the first phrase listed for each intent (see attached screenshot). It is possible to hover in blank space on the right and add more translations, but there is no 1:1 key matching requirement to the phrases on the left nor a requirement that there are the same number of keys in one language vs. another. (The lines just happen to align due to my window size.) What does that mean, practically? Do all sub-phrases in each language in AppShortcuts.xcstrings get processed during compilation, even if there isn't an equivalent phrase key declared in the AppShortcut (e.g., the ja translation has more phrases than the English)? (That makes some logical sense, as these phrases need not be 1:1 across languages.) In the AppShortcut declaration, if I delete all but the top invocation phrase, does nothing change with Siri? Is there something I'm doing incorrectly? struct WatchShortcuts: AppShortcutsProvider { static var appShortcuts: [AppShortcut] { AppShortcut( intent: QuickAddWaterIntent(), phrases: [ "\(.applicationName) log water", "\(.applicationName) log my water", "Log water in \(.applicationName)", "Log my water in \(.applicationName)", "Log a bottle of water in \(.applicationName)", ], shortTitle: "Log Water", systemImageName: "drop.fill" ) } }
0
0
279
Aug ’25
Where are Huggingface Models, downloaded by Swift MLX apps cached
I'm downloading a fine-tuned model from HuggingFace which is then cached on my Mac when the app first starts. However, I wanted to test adding a progress bar to show the download progress. To test this I need to delete the cached model. From what I've seen online this is cached at /Users/userName/.cache/huggingface/hub However, if I delete the files from here, using Terminal, the app still seems to be able to access the model. Is the model cached somewhere else? On my iPhone it seems deleting the app also deletes the cached model (app data) so that is useful.
0
0
400
Oct ’25
“Accelerate Transformer Training on Apple Devices from Months to Hours!”
I am excited to share that I have developed a Metal kernel for Flash Attention that eliminates race conditions and fully leverages Apple Silicon’s shared memory and registers. This kernel can dramatically accelerate training of transformer-based models. Early benchmarks suggest that models which previously required months to train could see reductions to just a few hours on Apple hardware, while maintaining numerical stability and accuracy. I plan to make the code publicly available to enable the broader community to benefit. I would be happy to keep you updated on the latest developments and improvements as I continue testing and optimizing the kernel. I believe this work could provide valuable insights for Apple’s machine learning research and products.
0
0
160
Nov ’25
VNDetectFaceRectanglesRequest does not use the Neural Engine?
I'm on Tahoe 26.1 / M3 Macbook Air. I'm using VNDetectFaceRectanglesRequest as properly as possible, as in the minimal command line program attached below. For some reason, I always get: MLE5Engine is disabled through the configuration printed. I couldn't find any notes on developer docs saying that VNDetectFaceRectanglesRequest can not use the Apple Neural Engine. I'm assuming there is something wrong with my code however I wasn't able to find any remarks from documentation where it might be. I wasn't able to find the above error message online either. I would appreciate your help a lot and thank you in advance. The code below accesses the video from AVCaptureDevice.DeviceType.builtInWideAngleCamera. Currently it directly chooses the 0th format which has the largest resolution (Full HD on my M3 MBA) and "4:2:0" color "v" reduced color component spectrum encoding ("420v"). After accessing video, it performs a VNDetectFaceRectanglesRequest. It prints "VNDetectFaceRectanglesRequest completion Handler called" many times, then prints the error message above, then continues printing "VNDetectFaceRectanglesRequest completion Handler called" until the user quits it. To run it in Xcode, File > New project > Mac command line tool. Pasting the code below, then click on the root file > Targets > Signing & Capabilities > Hardened Runtime > Resource Access > Camera. A possible explanation could be that either Apple's internal CoreML code for this function works on GPU/CPU only or it doesn't accept 420v as supplied by the Macbook Air camera import AVKit import Vision var videoDataOutput: AVCaptureVideoDataOutput = AVCaptureVideoDataOutput() var detectionRequests: [VNDetectFaceRectanglesRequest]? var videoDataOutputQueue: DispatchQueue = DispatchQueue(label: "queue") class XYZ: /*NSViewController or NSObject*/NSObject, AVCaptureVideoDataOutputSampleBufferDelegate { func viewDidLoad() { //super.viewDidLoad() let session = AVCaptureSession() let inputDevice = try! self.configureFrontCamera(for: session) self.configureVideoDataOutput(for: inputDevice.device, resolution: inputDevice.resolution, captureSession: session) self.prepareVisionRequest() session.startRunning() } fileprivate func highestResolution420Format(for device: AVCaptureDevice) -> (format: AVCaptureDevice.Format, resolution: CGSize)? { let deviceFormat = device.formats[0] print(deviceFormat) let dims = CMVideoFormatDescriptionGetDimensions(deviceFormat.formatDescription) let resolution = CGSize(width: CGFloat(dims.width), height: CGFloat(dims.height)) return (deviceFormat, resolution) } fileprivate func configureFrontCamera(for captureSession: AVCaptureSession) throws -> (device: AVCaptureDevice, resolution: CGSize) { let deviceDiscoverySession = AVCaptureDevice.DiscoverySession(deviceTypes: [AVCaptureDevice.DeviceType.builtInWideAngleCamera], mediaType: .video, position: AVCaptureDevice.Position.unspecified) let device = deviceDiscoverySession.devices.first! let deviceInput = try! AVCaptureDeviceInput(device: device) captureSession.addInput(deviceInput) let highestResolution = self.highestResolution420Format(for: device)! try! device.lockForConfiguration() device.activeFormat = highestResolution.format device.unlockForConfiguration() return (device, highestResolution.resolution) } fileprivate func configureVideoDataOutput(for inputDevice: AVCaptureDevice, resolution: CGSize, captureSession: AVCaptureSession) { videoDataOutput.setSampleBufferDelegate(self, queue: videoDataOutputQueue) captureSession.addOutput(videoDataOutput) } fileprivate func prepareVisionRequest() { let faceDetectionRequest: VNDetectFaceRectanglesRequest = VNDetectFaceRectanglesRequest(completionHandler: { (request, error) in print("VNDetectFaceRectanglesRequest completion Handler called") }) // Start with detection detectionRequests = [faceDetectionRequest] } // MARK: AVCaptureVideoDataOutputSampleBufferDelegate // Handle delegate method callback on receiving a sample buffer. public func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) { var requestHandlerOptions: [VNImageOption: AnyObject] = [:] let cameraIntrinsicData = CMGetAttachment(sampleBuffer, key: kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix, attachmentModeOut: nil) if cameraIntrinsicData != nil { requestHandlerOptions[VNImageOption.cameraIntrinsics] = cameraIntrinsicData } let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)! // No tracking object detected, so perform initial detection let imageRequestHandler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer, orientation: CGImagePropertyOrientation.up, options: requestHandlerOptions) try! imageRequestHandler.perform(detectionRequests!) } } let X = XYZ() X.viewDidLoad() sleep(9999999)
0
0
335
Nov ’25
JAX Metal: Random Number Generation Performance Issue on M1 Max
JAX Metal shows 55x slower random number generation compared to NVIDIA CUDA on equivalent workloads. This makes Monte Carlo simulations and scientific computing impractical on Apple Silicon. Performance Comparison NVIDIA GPU: 0.475s for 12.6M random elements M1 Max Metal: 26.3s for same workload Performance gap: 55x slower Environment Apple M1 Max, 64GB RAM, macOS Sequoia Version 15.6.1 JAX 0.4.34, jax-metal latest Backend: Metal Reproduction Code import time import jax import jax.numpy as jnp from jax import random key = random.PRNGKey(42) start_time = time.time() random_array = random.normal(key, (50000, 252)) duration = time.time() - start_time print(f"Duration: {duration:.3f}s")
0
0
344
Aug ’25
ImageCreator fails with GenerationError Code=11 on Apple Intelligence-enabled device
When I ran the following code on a physical iPhone device that supports Apple Intelligence, I encountered the following error log. What does this internal error code mean? Image generation failed with NSError in a different domain: Error Domain=ImagePlaygroundInternal.ImageGeneration.GenerationError Code=11 “(null)”, returning a generic error instead let imageCreator = try await ImageCreator() let style = imageCreator.availableStyles.first ?? .animation let stream = imageCreator.images(for: [.text("cat")], style: style, limit: 1) for try await result in stream { // error: ImagePlayground.ImageCreator.Error.creationFailed _ = result.cgImage }
0
1
257
Jul ’25