Networking

RSS for tag

Explore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.

Networking Documentation

Posts under Networking subtopic

Post

Replies

Boosts

Views

Created

BSD socket APIs and macOS entitlements
I am looking for inputs to better understand MacOS entitlements. I ask this in context of OpenJDK project, which builds and ships the JDK. The build process makes uses of make tool and thus doesn't involving building through the XCode product. The JDK itself is a Java language platform providing applications a set of standard APIs. The implementation of these standard APIs internally involves calling platform specific native library functions. In this discussion, I would like to focus on the networking functions that the implementation uses. Almost all of these networking functions and syscalls that the internal implementation uses are BSD socket related. Imagine calls to socket(), connect(), getsockopt(), setsockopt(), getaddrinfo(), sendto(), listen(), accept() and several such. The JDK that's built through make is then packaged and made available for installation. The packaging itself varies, but for this discussion, I'll focus on the .tar.gz archived packaging. Within this archive there are several executables (for example: java, javac and others) and several libraries. My understanding, based on what I have read of MacOS entitlements is that, the entitlements are set on the executable and any libraries that would be loaded and used by that executable will be evaluated against the entitlements of the executable (please correct me if I misunderstand). Reading through the list of entitlements noted here https://developer.apple.com/documentation/bundleresources/entitlements, the relevant entitlements that an executable (like "java") which internally invokes BSD socket related syscalls and library functions, appear to be: com.apple.security.network.client - https://developer.apple.com/documentation/bundleresources/entitlements/com.apple.security.network.client com.apple.security.network.server - https://developer.apple.com/documentation/bundleresources/entitlements/com.apple.security.network.server com.apple.developer.networking.multicast - https://developer.apple.com/documentation/bundleresources/entitlements/com.apple.developer.networking.multicast Is my understanding correct that these are the relevant ones for MacOS? Are there any more entitlements that are of interest? Would it then mean that the executables (java for example) would have to enroll for these entitlements to be allowed to invoke those functions at runtime? Reading through https://developer.apple.com/documentation/bundleresources/entitlements, I believe that even when an executable is configured with these entitlements, when the application is running if that executable makes use of any operations for which it has an entitlement, the user is still prompted (through a UI notification) whether or not to allow the operation. Did I understand it right? The part that isn't clear from that documentation is, if the executable hasn't been configured with a relevant entitlement, what happens when the executable invokes on such operation. Will the user see a UI notification asking permission to allow the operation (just like if an entitlement was configured)? Or does that operation just fail in some behind the scenes way? Coming back to the networking specific entitlements, I found a couple of places in the MacOS documentation where it is claimed that the com.apple.developer.networking.multicast entitlement is only applicable on iOS. In fact, the entitlement definition page for it https://developer.apple.com/documentation/bundleresources/entitlements/com.apple.developer.networking.multicast says: "Your app must have this entitlement to send or receive IP multicast or broadcast on iOS. It also allows your app to browse and advertise arbitrary Bonjour service types." Yet, that same page, a few lines above, shows "macOS 10.0+". So, is com.apple.developer.networking.multicast entitlement necessary for an executable running on MacOS which deals with multicasting using BSD sockets? As a more general comment about the documentation, I see that the main entitlements page here https://developer.apple.com/documentation/bundleresources/entitlements categorizes some of these entitlements under specific categories, for example, notice how some entitlements are categorized under "App Clips". I think it would be useful if there was a category for "BSD sockets" and under that it would list all relevant entitlements that are applicable, even if it means repeating the entitlement names across different categories. I think that will make it easier to identify the relevant entitlements. Finally, more as a long term question, how does one watch or keep track of these required entitlements for these operations. What I mean is, is it expected that application developers keep visiting the macos documentation, like these pages, to know that a new entitlement is now required in a new macos (update) release? Or are there other ways to keep track of it? For example, if a newer macos requires a new entitlement, then when (an already built) executable is run on that version of macos, perhaps generate a notification or some kind of explicit error which makes it clear what entitlement is missing? I have read through https://developer.apple.com/documentation/bundleresources/diagnosing-issues-with-entitlements but that page focuses on identifying such issues when a executable is being built and doesn't explain the case where an executable has already been shipped with X entitlements and a new Y entitlement is now required to run on a newer version of macos.
13
0
764
Feb ’25
Thread Network API not working
I'm trying to use ThreadNetwork API to manage TheradNetworks on device (following this documentation: https://developer.apple.com/documentation/threadnetwork/), but while some functions on THClient work (such as getPreferedNetwork), most don't (storeCredentials, retrieveAllCredentials). When calling these functions I get the following warning/error: Client: -[THClient getConnectionEntitlementValidity]_block_invoke - Error: -[THClient storeCredentialsForBorderAgent:activeOperationalDataSet:completion:]_block_invoke:701: - Error: Error Domain=NSCocoaErrorDomain Code=4099 "The connection to service with pid 414 named com.apple.ThreadNetwork.xpc was invalidated from this process." UserInfo={NSDebugDescription=The connection to service with pid 414 named com.apple.ThreadNetwork.xpc was invalidated from this process.} Error Domain=NSCocoaErrorDomain Code=4099 "The connection to service with pid 414 named com.apple.ThreadNetwork.xpc was invalidated from this process." UserInfo={NSDebugDescription=The connection to service with pid 414 named com.apple.ThreadNetwork.xpc was invalidated from this process.} Failed to store Thread credentials: Couldn’t communicate with a helper application. STEPS TO REPRODUCE Create new project Add Thread Network capability via Xcode UI (com.apple.developer.networking.manage-thread-network-credentials) Trigger storeCredentials let extendedMacData = "9483C451DC3E".hexadecimal let tlvHex = "0e080000000000010000000300001035060004001fffe002083c66f0dc9ef53f1c0708fdb360c72874da9905104094dce45388fd3d3426e992cbf0697b030d474c2d5332302d6e65773030310102250b04106c9f919a4da9b213764fc83f849381080c0402a0f7f8".hexadecimal // Initialize the THClient let thClient = THClient() // Store the credentials await thClient.storeCredentials(forBorderAgent: extendedMacData!, activeOperationalDataSet: tlvHex!) { error in if let error = error { print(error) print("Failed to store Thread credentials: \(error.localizedDescription)") } else { print("Successfully stored Thread credentials") } } NOTES: I tried with first calling getPreferedNetwork to initiate network permission dialog Tried adding meshcop to bojur services Tried with different release and debug build configurations
7
0
481
Feb ’25
Auto connect 802.1x network using the selected profile in terminal or by code
Hello. I'm developing on a cross-platform app to help user connect enterprise network and found it difficult in macOS. The issue is, I guided user to install profile, but the authentication won't start immediately even the cable is plugged in or the WLAN is connected. There is still some manual operation to be done: Ethernet: Select the correct profile, and click the Connect button. Wlan: Click the Connect button. (The profile contains SSID so need't select the correct profile) Obviously, the operation is still not easy for users to understand and follow. So, is there any method to auto connect 802.1x network using the selected profile in terminal or by code? I mean, the manual operation is not necessary, maybe you can tell me a better solution. BTW, I found it possible to connect WLAN and auto select the correct profile by using this command networksetup -setairportnetwork en1 MY_SSID, but it could be very slow since the authentication seemed start 30 sec after connecting the SSID. So I believe it not the best solution.
7
0
407
Mar ’25
Error Domain=com.apple.wifi.apple80211API.error Code=-528342014 "tmpErr"
On my macOS 15.x device, frequently encountering the error: Error Domain=com.apple.wifi.apple80211API.error Code=-528342014 "tmpErr" when connecting to an EAP WiFi network using CWWiFiClient. Restarting the device temporarily resolves the issue, but it reoccurs after some time. What could be causing this, and how can it be resolved programmatically?
1
0
467
Mar ’25
Apple Multi-peer connectivity problems with 8+ connections
Apple multi-peer with 12 devices is unstable. Dear All, Has anyone tried Apple multi-peer with 12 devices connected? We are building an application relying on multi-peer where 12 Ipads will be updating data and each device needs to share data between. Can anyone tell me if we can use multi-peer framework for connecting 12 devices in the multi-peer network? We are facing stability problems in the connection when we connect 12 devices in the network.
3
0
192
Mar ’25
QUIC certificate question
I'm working on two Swift applications which are using QUIC in Network.framework for communication, one serve as the listener (server) and the other serve as the client so that they can exchange data, both the server and the client app are running under the same LAN, the problem I met is that when client try to connect to the server, the connection will fail due to boring SSL, couple questions: Since both the server app and client app are running under the same LAN, do they need TLS certificate? If it does, will self-signed certificate P12 work? I might distribute the app in App Store or in signed/notarized dmg or pkg to our users. If I need a public certificate and self signed wouldn't work, since they are just pair of apps w/o fixed dns domain etc, Is there any public certificate only for standalone application, not for the fixed web domain?
7
0
659
Mar ’25
Establish a peer to peer QUIC connection
HI, I am currently prototyping an app that compares transport protocol performances using a peer to peer connection. I have already setup TCP and UDP connections and am sending data between the clients, it works like I want it to. Next I was trying to setup a connection using QUIC, but the NWConnection.State stays in the preparing state and I couldn't find a way to get more information from the framework or the instances about why it was not fully connecting. After searching the internet and stumbling across the forum I noticed that the missing encryption might be the issue, so I created a local root certificate*. Then I used the SecPKCS12Import function to read/extract the SecIdentity instance of the p12 file (cert + private key) stored in my bundle** and set it as a local identity with the sec_protocol_options_set_local_identity function***. //function that creates/returns different NWParameteres //... let quicOptions = NWProtocolQUIC.Options() quicOptions.alpn = ["test"] if let identityPath = Bundle.main.path(forResource: "QUICConnect", ofType: "p12"), let identityData = try? Data(contentsOf: URL(fileURLWithPath: identityPath)) { if let identity = loadIdentityFromPKCS12(p12Path: identityPath, password: "insecure") { //**** sec_protocol_options_set_local_identity(quicOptions.securityProtocolOptions, sec_identity_create(identity)!) } } let parameters = NWParameters(quic: quicOptions) parameters.includePeerToPeer = true return parameter The documentation comments had me thinking that setting a local identity could be enough, since it consists of the private key for the "server" and the cert for the "client". Set the local identity to be used for this protocol instance. Unfortunately at this stage the QUIC Connection is still stuck in preparing state and since I don't know how to extract more information from the networking connection instances/framework, I am stuck. I have seen the following other functions in Quinns answer and am confident that I could somehow figure it out with some more time put into it, but not really understanding why or how I could do it better in the future. So I am also wondering how I could have found info about this more efficiently and tackled this more strategically without needing to browse through so many forums. sec_protocol_options_set_verify_block sec_protocol_options_set_challenge_block I would really appreciate any help, many thanks. BR Matthias! TLDR: I want to establish a peer to peer QUIC Connection but the state is stuck in preparing. Secondary question is how I could approach a similar topic more efficiently next time, instead of browsing many forums. * I had to create it with the openssl CLI since the keychain app created a cert, that when using the openssl CLI to get the info would throw an error unless used with the -legacy flag. The root cert, created form the keychain app also wasn't able to be imported by the SecPKCS12Import function. No clue why but it worked with a cert created from the openssl CLI. There's a chance that I messed up something else here, but these were my experiences. Info: Since QUIC is limited to TLS v1.3 I can't use PSK, afaik. Therefore the TicTacToe doesn't help me anymore. ** I know this is highly insecure, I am just using it for prototyping. *** Forum users Info: One needs to use the sec_identity_create function to convert the SecIdentity instance to the expected parameter type. **** func loadIdentityFromPKCS12(p12Path: String, password: String) -> SecIdentity? { guard let p12Data = try? Data(contentsOf: URL(fileURLWithPath: p12Path)) else { print("didnt find p12 file at path") return nil } let options: NSDictionary = [kSecImportExportPassphrase as String: password, kSecImportToMemoryOnly as String: kCFBooleanTrue!] var items: CFArray? let status = SecPKCS12Import(p12Data as CFData, options, &items) if status == 0, let dict = (items as? [[String: Any]])?.first { if let identity = dict[kSecImportItemIdentity as String] { return identity as! SecIdentity } else { return nil } } else { return nil } } PS: For TCP and UDP I am using bonjour to discover the peer and connect to the advertised ports. AFAIK I can't just use _testproto._quic to advertise a QUIC service like with tcp and udp. Therefore I am using the local domain name (it's just for prototyping and always the same device) and a hard coded port number to create the peer connection. When using a wrong name the DNS threw an error telling it could not find a peer, so the lookup itself is working I guess. The lookup should come from the cache since I already looked up when connecting to the same peer via Bonjour. //Server //.... listener = try NWListener( using: transportProtocol.parameters, on: Config.quicPort ) //... listener.newConnectionHandler = { [weak self] connection in self?.connection?.cancel() self?.connection = nil self?.connection = C(connection) //here C is a generic that conforms to a custom connection interface, nothing to worry about :) self?.connectionStatus.value = "Connection established" } listener.stateUpdateHandler = { [weak self] state in self?.connectionStatus.value = "\(state)" } listener.start(queue: .global()) //Client //... nwConnection = NWConnection(host: "iPad.local.", port: Config.quicPort, using: transportProtocol.parameters) //...
3
0
442
Mar ’25
Use native Swift API for HTTP request with auth proxy
I'm simply trying to use a proxy to route a http request in Swift. I've tried using a URLSession Delegate but that results in the same issue with the iOS menu. proxy format: host:port:username:password When I run the code below I am prompted with a menu to add credentials for the proxy. I closed this menu inside my app and tried the function below again and it worked without giving me the menu a second time. However even though the function works without throwing any errors, it does NOT use the proxies to route the request. I've spent days on this and the only solution I found was using a NWConnection but this is super low level and now I need a shared session to manage cookies. If you want to see the NWConnection solution I made its here func averageProxyGroupSpeed(proxies: [String], completion: @escaping (Int, String) -> Void) { let numProxies = proxies.count if numProxies == 0 { completion(0, "No proxies") return } var totalTime: Int64 = 0 var successCount = 0 let group = DispatchGroup() let queue = DispatchQueue(label: "proxyQueue", attributes: .concurrent) let lock = NSLock() let shuffledProxies = proxies.shuffled() let selectedProxies = Array(shuffledProxies.prefix(25)) for proxy in selectedProxies { group.enter() queue.async { let proxyDetails = proxy.split(separator: ":").map(String.init) guard proxyDetails.count == 4, let port = Int(proxyDetails[1]), let url = URL(string: "http://httpbin.org/get") else { completion(0, "Invalid proxy format") group.leave() return } var request = URLRequest(url: url) request.timeoutInterval = 15 let configuration = URLSessionConfiguration.default configuration.connectionProxyDictionary = [ AnyHashable("HTTPEnable"): true, AnyHashable("HTTPProxy"): proxyDetails[0], AnyHashable("HTTPPort"): port, AnyHashable("HTTPSEnable"): false, AnyHashable("HTTPUser"): proxyDetails[2], AnyHashable("HTTPPassword"): proxyDetails[3] ] let session = URLSession(configuration: configuration) let start = Date() let task = session.dataTask(with: request) { _, _, error in defer { group.leave() } if let error = error { print("Error: \(error.localizedDescription)") } else { let duration = Date().timeIntervalSince(start) * 1000 lock.lock() totalTime += Int64(duration) successCount += 1 lock.unlock() } } task.resume() } } group.notify(queue: DispatchQueue.main) { if successCount == 0 { completion(0, "Proxies Failed") } else { let averageTime = Int(Double(totalTime) / Double(successCount)) completion(averageTime, "") } } } Delegate example class ProxySessionDelegate: NSObject, URLSessionDelegate { let username: String let password: String init(username: String, password: String) { self.username = username self.password = password } func urlSession(_ session: URLSession, task: URLSessionTask, didReceive challenge: URLAuthenticationChallenge, completionHandler: @escaping (URLSession.AuthChallengeDisposition, URLCredential?) -> Void) { if challenge.protectionSpace.authenticationMethod == NSURLAuthenticationMethodHTTPBasic { let credential = URLCredential(user: self.username, password: self.password, persistence: .forSession) completionHandler(.useCredential, credential) } else { completionHandler(.performDefaultHandling, nil) } } }
2
0
434
Mar ’25
Content filter stuck waiting for user
When our content filter is deployed, some customers report issues which show that the content filter activation was performed but the filter is showing the state [activated waiting for user]. This typically happens if the customer isn't deploying a profile to pre-authorise the system extension. The customers report that there was no popup shown for them to allow the filter to complete activation. Once the filter is in this state, there doesn't seem to be a way to clear it without resorting to disabling SIP. Attempting a deactivation does not work, the filter remains in the same state. Is there a way we can we resolve this "stuck" state when it happens without disabling SIP?
2
0
363
Mar ’25
Using activeOperationalDataSet with Matter chip-tool
I am trying to commission an ESP32-H2 Matter device using the chip-tool. It's running the Light Switch sample. I can commissioning it using the iOS Home App, so I know the code on it's working okay. I would like to understand more about the Fabric process, so I'd like to use the Home Pod powered Thread network rather than setting up an instance of Open Thread Border Router. I have created a simple iOS app and can fetch the activeOperationalDataSet from the Preferred network using func obtainPreferredNetworkCredentials() async -> (Void) { let client = THClient() let bIsPreferredAvailable = await client.isPreferredAvailable() if bIsPreferredAvailable == true { var credential: THCredentials? do { credential = try await client.preferredCredentials() if let dataset = credential?.activeOperationalDataSet { print(dataset.hexDescription) } } catch { print("Failed to get the credentials") } } } The hexDescription comes from this extension extension Data { var hexDescription: String { return reduce("") {$0 + String(format: "%02x", $1)} } } I am decoding the Data and displaying it as a hex string. It looks something like this: 0e080000000000000000000300001935060004001fffc002089f651677026f48070708fd9f65167702000ee90914b5d1097de9bb0818dc94690c0402a0f7f8 However, when I attempt to commission the device, it fails during ThreadSetup. Googling the issue says most likely the Operational Dataset is wrong in some way. Before I spend too much time on this, I want to make sure I'm doing the right thing in terms of getting the Operational Dataset to use with the chip-tool. Any help is appreciated!
1
0
334
Mar ’25
Clarification on wildcard matching of domains in NEDNSSettings - matchDomains
I have an NEPacketTunnelProvider that's configured using NEPacketTunnelNetworkSettings. I'm using NEDNSSettings to configure the DNS resolver of the packet tunnel, and would like to specify the exact domains that should use this resolver using the matchDomains member variable. While it's not explicitly mentioned in the documentation [1], I've noticed that if a domain is present in matchDomains, then all subdomains of it will also be resolved using this resolver, as if a wildcard match rule is in place. I wanted to ask if this the intended behavior, and if so, is there any way to disable it so that only exact domain matches will be resolved? I.e., if "example.com" is in the matchDomains list, I would like requests for this domain be resolved using the configured DNS resolver, while ignoring requests to the subdomain"test.example.com". [1] https://developer.apple.com/documentation/networkextension/nednssettings/matchdomains
1
0
292
Mar ’25
UDP Broadcast/Multicast Reception Stops for Intervals
Our app receives real-time GPS and aircraft data from devices via UDP broadcast and/or multicast on a WiFi network created by the device. We have identified that the iPhone or iPad will just stop receiving UDP broadcast/multicast data for an interval of time. In general, it appears after roughly every 128KB of data is received. In the attached screenshot from Xcode instruments, you can see the data reception alternating on/off. We have verified with Wireshark that the data is still flowing during that entire time period. And by tracking bytes received the app ultimately receives about 55% of the bytes, which tracks with the Network graph. We have used different approaches to the network code, including GCDAsyncUdpSocket, BSD Sockets, and the Network framework. We've tried it on background threads and the main thread. Tested it on iPads and iPhones. All produce the same result. The data is just never reaching the app code. Any insight on what may be temporarily disabling data reception?
1
0
261
Mar ’25
After creating the profile using eapolcfg and attempting to connect to the enterprise network, eapolclient connection fails.
I use eapolcfg in Apple's open source eap8021x repository to connect to the enterprise network. 1.https://github.com/gfleury/eap8021x-debug https://opensource.apple.com/source/eap8021x/eap8021x-304.100.1/ Our enterprise network authentication is PEAP. So far, I have created a profile using the following commands and have done the access. ./eapolcfg createProfile --authType PEAP --SSID myssid --securityType WPA2 --userDefinedName MyProfile ./eapolcfg setPasswordItem --password mypassword --name myname --SSID myssid ./eapolcfg startAuthentication --interface en0 --SSID myssid After I performed this series of operations, I passed BOOL success = [self.interface associateToEnterpriseNetwork:network identity:nil username:username password:password error:&error]; Connection will pop up the following pop-up window, sometimes associateToEnterpriseNetwork will fail. I don't know what went wrong, is it that I missed some steps through the eapolcfg [tool?] This function also reports the following error:Error Domain=com.apple.coreWLAN.EAPOL.error Code=1 "(null)" Please answer my questions. Thank you very much
1
0
427
Mar ’25
Investigating CFNetwork Crashes on Older macOS Versions
CFNetwork None CFURLResponseGetRecommendedCachePolicy None 0 CFNetwork None CFHTTPCookieStorageUnscheduleFromRunLoop None 0 CFNetwork None /_/_CFNetworkAgentMessageProcessorMain None 0 CFNetwork None CFURLDownloadCancel None 0 CFNetwork None CFURLDownloadCancel None 0 libdispatch.dylib None /_dispatch/_block/_async/_invoke2 None We've observed intermittent crashes in our production environment, exclusively affecting customers running macOS 10.15 and 11. The crash logs consistently show a stack trace involving CFHTTPCookieStorageUnscheduleFromRunLoop and CFURLDownloadCancel within the CFNetwork framework. This suggests potential issues with cookie storage management and/or URL download cancellation. Could the team please analyze these crash logs and provide insights into: The root cause of the crashes. Potential race conditions or synchronization issues. Recommendations for mitigating or resolving the problem. Your assistance in resolving this issue is greatly appreciated."
4
0
265
Mar ’25
Moving from Multipeer Connectivity to Network Framework
I see a lot of folks spend a lot of time trying to get Multipeer Connectivity to work for them. My experience is that the final result is often unsatisfactory. Instead, my medium-to-long term recommendation is to use Network framework instead. This post explains how you might move from Multipeer Connectivity to Network framework. If you have questions or comments, put them in a new thread. Place it in the App & System Services > Networking topic area and tag it with Multipeer Connectivity and Network framework. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Moving from Multipeer Connectivity to Network Framework Multipeer Connectivity has a number of drawbacks: It has an opinionated networking model, where every participant in a session is a symmetric peer. Many apps work better with the traditional client/server model. It offers good latency but poor throughput. It doesn’t support flow control, aka back pressure, which severely constrains its utility for general-purpose networking. It includes a number of UI components that are effectively obsolete. It hasn’t evolved in recent years. For example, it relies on NSStream, which has been scheduled for deprecation as far as networking is concerned. It always enables peer-to-peer Wi-Fi, something that’s not required for many apps and can impact the performance of the network (see Enable peer-to-peer Wi-Fi, below, for more about this). Its security model requires the use of PKI — public key infrastructure, that is, digital identities and certificates — which are tricky to deploy in a peer-to-peer environment. It has some gnarly bugs. IMPORTANT Many folks use Multipeer Connectivity because they think it’s the only way to use peer-to-peer Wi-Fi. That’s not the case. Network framework has opt-in peer-to-peer Wi-Fi support. See Enable peer-to-peer Wi-Fi, below. If Multipeer Connectivity is not working well for you, consider moving to Network framework. This post explains how to do that in 13 easy steps (-: Plan for security Select a network architecture Create a peer identifier Choose a protocol to match your send mode Discover peers Design for privacy Configure your connections Manage a listener Manage a connection Send and receive reliable messages Send and receive best effort messages Start a stream Send a resource Finally, at the end of the post you’ll find two appendices: Final notes contains some general hints and tips. Symbol cross reference maps symbols in the Multipeer Connectivity framework to sections of this post. Consult it if you’re not sure where to start with a specific Multipeer Connectivity construct. Plan for security The first thing you need to think about is security. Multipeer Connectivity offers three security models, expressed as choices in the MCEncryptionPreference enum: .none for no security .optional for optional security .required for required security For required security each peer must have a digital identity. Optional security is largely pointless. It’s more complex than no security but doesn’t yield any benefits. So, in this post we’ll focus on the no security and required security models. Your security choice affects the network protocols you can use: QUIC is always secure. WebSocket, TCP, and UDP can be used with and without TLS security. QUIC security only supports PKI. TLS security supports both TLS-PKI and pre-shared key (PSK). You might find that TLS-PSK is easier to deploy in a peer-to-peer environment. To configure the security of the QUIC protocol: func quicParameters() -> NWParameters { let quic = NWProtocolQUIC.Options(alpn: ["MyAPLN"]) let sec = quic.securityProtocolOptions … configure `sec` here … return NWParameters(quic: quic) } To enable TLS over TCP: func tlsOverTCPParameters() -> NWParameters { let tcp = NWProtocolTCP.Options() let tls = NWProtocolTLS.Options() let sec = tls.securityProtocolOptions … configure `sec` here … return NWParameters(tls: tls, tcp: tcp) } To enable TLS over UDP, also known as DTLS: func dtlsOverUDPParameters() -> NWParameters { let udp = NWProtocolUDP.Options() let dtls = NWProtocolTLS.Options() let sec = dtls.securityProtocolOptions … configure `sec` here … return NWParameters(dtls: dtls, udp: udp) } To configure TLS with a local digital identity and custom server trust evaluation: func configureTLSPKI(sec: sec_protocol_options_t, identity: SecIdentity) { let secIdentity = sec_identity_create(identity)! sec_protocol_options_set_local_identity(sec, secIdentity) if disableServerTrustEvaluation { sec_protocol_options_set_verify_block(sec, { metadata, secTrust, completionHandler in let trust = sec_trust_copy_ref(secTrust).takeRetainedValue() … evaluate `trust` here … completionHandler(true) }, .main) } } To configure TLS with a pre-shared key: func configureTLSPSK(sec: sec_protocol_options_t, identity: Data, key: Data) { let identityDD = identity.withUnsafeBytes { DispatchData(bytes: $0) } let keyDD = identity.withUnsafeBytes { DispatchData(bytes: $0) } sec_protocol_options_add_pre_shared_key( sec, keyDD as dispatch_data_t, identityDD as dispatch_data_t ) sec_protocol_options_append_tls_ciphersuite( sec, tls_ciphersuite_t(rawValue: TLS_PSK_WITH_AES_128_GCM_SHA256)! ) } Select a network architecture Multipeer Connectivity uses a star network architecture. All peers are equal, and every peer is effectively connected to every peer. Many apps work better with the client/server model, where one peer acts on the server and all the others are clients. Network framework supports both models. To implement a client/server network architecture with Network framework: Designate one peer as the server and all the others as clients. On the server, use NWListener to listen for incoming connections. On each client, use NWConnection to made an outgoing connection to the server. To implement a star network architecture with Network framework: On each peer, start a listener. And also start a connection to each of the other peers. This is likely to generate a lot of redundant connections, as peer A connects to peer B and vice versa. You’ll need to a way to deduplicate those connections, which is the subject of the next section. IMPORTANT While the star network architecture is more likely to create redundant connections, the client/server network architecture can generate redundant connections as well. The advice in the next section applies to both architectures. Create a peer identifier Multipeer Connectivity uses MCPeerID to uniquely identify each peer. There’s nothing particularly magic about MCPeerID; it’s effectively a wrapper around a large random number. To identify each peer in Network framework, generate your own large random number. One good choice for a peer identifier is a locally generated UUID, created using the system UUID type. Some Multipeer Connectivity apps persist their local MCPeerID value, taking advantage of its NSSecureCoding support. You can do the same with a UUID, using either its string representation or its Codable support. IMPORTANT Before you decide to persist a peer identifier, think about the privacy implications. See Design for privacy below. Avoid having multiple connections between peers; that’s both wasteful and potentially confusing. Use your peer identifier to deduplicate connections. Deduplicating connections in a client/server network architecture is easy. Have each client check in with the server with its peer identifier. If the server already has a connection for that identifier, it can either close the old connection and keep the new connection, or vice versa. Deduplicating connections in a star network architecture is a bit trickier. One option is to have each peer send its peer identifier to the other peer and then the peer with the ‘best’ identifier wins. For example, imagine that peer A makes an outgoing connection to peer B while peer B is simultaneously making an outgoing connection to peer A. When a peer receives a peer identifier from a connection, it checks for a duplicate. If it finds one, it compares the peer identifiers and then chooses a connection to drop based on that comparison: if local peer identifier > remote peer identifier then drop outgoing connection else drop incoming connection end if So, peer A drops its incoming connection and peer B drops its outgoing connection. Et voilà! Choose a protocol to match your send mode Multipeer Connectivity offers two send modes, expressed as choices in the MCSessionSendDataMode enum: .reliable for reliable messages .unreliable for best effort messages Best effort is useful when sending latency-sensitive data, that is, data where retransmission is pointless because, by the retransmission arrives, the data will no longer be relevant. This is common in audio and video applications. In Network framework, the send mode is set by the connection’s protocol: A specific QUIC connection is either reliable or best effort. WebSocket and TCP are reliable. UDP is best effort. Start with a reliable connection. In many cases you can stop there, because you never need a best effort connection. If you’re not sure which reliable protocol to use, choose WebSocket. It has key advantages over other protocols: It supports both security models: none and required. Moreover, its required security model supports both TLS-PKI and TLS PSK. In contrast, QUIC only supports the required security model, and within that model it only supports TLS-PKI. It allows you to send messages over the connection. In contrast, TCP works in terms of bytes, meaning that you have to add your own framing. If you need a best effort connection, get started with a reliable connection and use that connection to set up a parallel best effort connection. For example, you might have an exchange like this: Peer A uses its reliable WebSocket connection to peer B to send a request for a parallel best effort UDP connection. Peer B receives that, opens a UDP listener, and sends the UDP listener’s port number back to peer A. Peer A opens its parallel UDP connection to that port on peer B. Note For step 3, get peer B’s IP address from the currentPath property of the reliable WebSocket connection. If you’re not sure which best effort protocol to use, use UDP. While it is possible to use QUIC in datagram mode, it has the same security complexities as QUIC in reliable mode. Discover peers Multipeer Connectivity has a types for advertising a peer’s session (MCAdvertiserAssistant) and a type for browsering for peer (MCNearbyServiceBrowser). In Network framework, configure the listener to advertise its service by setting the service property of NWListener: let listener: NWListener = … listener.service = .init(type: "_example._tcp") listener.serviceRegistrationUpdateHandler = { change in switch change { case .add(let endpoint): … update UI for the added listener endpoint … break case .remove(let endpoint): … update UI for the removed listener endpoint … break @unknown default: break } } listener.stateUpdateHandler = … handle state changes … listener.newConnectionHandler = … handle the new connection … listener.start(queue: .main) This example also shows how to use the serviceRegistrationUpdateHandler to update your UI to reflect changes in the listener. Note This example uses a service type of _example._tcp. See About service types, below, for more details on that. To browse for services, use NWBrowser: let browser = NWBrowser(for: .bonjour(type: "_example._tcp", domain: nil), using: .tcp) browser.browseResultsChangedHandler = { latestResults, _ in … update UI to show the latest results … } browser.stateUpdateHandler = … handle state changes … browser.start(queue: .main) This yields NWEndpoint values for each peer that it discovers. To connect to a given peer, create an NWConnection with that endpoint. About service types The examples in this post use _example._tcp for the service type. The first part, _example, is directly analogous to the serviceType value you supply when creating MCAdvertiserAssistant and MCNearbyServiceBrowser objects. The second part is either _tcp or _udp depending on the underlying transport protocol. For TCP and WebSocket, use _tcp. For UDP and QUIC, use _udp. Service types are described in RFC 6335. If you deploy an app that uses a new service type, register that service type with IANA. Discovery UI Multipeer Connectivity also has UI components for advertising (MCNearbyServiceAdvertiser) and browsing (MCBrowserViewController). There’s no direct equivalent to this in Network framework. Instead, use your preferred UI framework to create a UI that best suits your requirements. Note If you’re targeting Apple TV, check out the DeviceDiscoveryUI framework. Discovery TXT records The Bonjour service discovery protocol used by Network framework supports TXT records. Using these, a listener can associate metadata with its service and a browser can get that metadata for each discovered service. To advertise a TXT record with your listener, include it it the service property value: let listener: NWListener = … let peerID: UUID = … var txtRecord = NWTXTRecord() txtRecord["peerID"] = peerID.uuidString listener.service = .init(type: "_example._tcp", txtRecord: txtRecord.data) To browse for services and their associated TXT records, use the .bonjourWithTXTRecord(…) descriptor: let browser = NWBrowser(for: .bonjourWithTXTRecord(type: "_example._tcp", domain: nil), using: .tcp) browser.browseResultsChangedHandler = { latestResults, _ in for result in latestResults { guard case .bonjour(let txtRecord) = result.metadata, let peerID = txtRecord["peerID"] else { continue } // … examine `result` and `peerID` … _ = peerID } } This example includes the peer identifier in the TXT record with the goal of reducing the number of duplicate connections, but that’s just one potential use for TXT records. Design for privacy This section lists some privacy topics to consider as you implement your app. Obviously this isn’t an exhaustive list. For general advice on this topic, see Protecting the User’s Privacy. There can be no privacy without security. If you didn’t opt in to security with Multipeer Connectivity because you didn’t want to deal with PKI, consider the TLS-PSK options offered by Network framework. For more on this topic, see Plan for security. When you advertise a service, the default behaviour is to use the user-assigned device name as the service name. To override that, create a service with a custom name: let listener: NWListener = … let name: String = … listener.service = .init(name: name, type: "_example._tcp") It’s not uncommon for folks to use the peer identifier as the service name. Whether that’s a good option depends on the user experience of your product: Some products present a list of remote peers and have the user choose from that list. In that case it’s best to stick with the user-assigned device name, because that’s what the user will recognise. Some products automatically connect to services as they discover them. In that case it’s fine to use the peer identifier as the service name, because the user won’t see it anyway. If you stick with the user-assigned device name, consider advertising the peer identifier in your TXT record. See Discovery TXT records. IMPORTANT Using a peer identifier in your service name or TXT record is a heuristic to reduce the number of duplicate connections. Don’t rely on it for correctness. Rather, deduplicate connections using the process described in Create a peer identifier. There are good reasons to persist your peer identifier, but doing so isn’t great for privacy. Persisting the identifier allows for tracking of your service over time and between networks. Consider whether you need a persistent peer identifier at all. If you do, consider whether it makes sense to rotate it over time. A persistent peer identifier is especially worrying if you use it as your service name or put it in your TXT record. Configure your connections Multipeer Connectivity’s symmetric architecture means that it uses a single type, MCSession, to manage the connections to all peers. In Network framework, that role is fulfilled by two types: NWListener to listen for incoming connections. NWConnection to make outgoing connections. Both types require you to supply an NWParameters value that specifies the network protocol and options to use. In addition, when creating an NWConnection you pass in an NWEndpoint to tell it the service to connect to. For example, here’s how to configure a very simple listener for TCP: let parameters = NWParameters.tcp let listener = try NWListener(using: parameters) … continue setting up the listener … And here’s how you might configure an outgoing TCP connection: let parameters = NWParameters.tcp let endpoint = NWEndpoint.hostPort(host: "example.com", port: 80) let connection = NWConnection.init(to: endpoint, using: parameters) … continue setting up the connection … NWParameters has properties to control exactly what protocol to use and what options to use with those protocols. To work with QUIC connections, use code like that shown in the quicParameters() example from the Security section earlier in this post. To work with TCP connections, use the NWParameters.tcp property as shown above. To enable TLS on your TCP connections, use code like that shown in the tlsOverTCPParameters() example from the Security section earlier in this post. To work with WebSocket connections, insert it into the application protocols array: let parameters = NWParameters.tcp let ws = NWProtocolWebSocket.Options(.version13) parameters.defaultProtocolStack.applicationProtocols.insert(ws, at: 0) To enable TLS on your WebSocket connections, use code like that shown in the tlsOverTCPParameters() example to create your base parameters and then add the WebSocket application protocol to that. To work with UDP connections, use the NWParameters.udp property: let parameters = NWParameters.udp To enable TLS on your UDP connections, use code like that shown in the dtlsOverUDPParameters() example from the Security section earlier in this post. Enable peer-to-peer Wi-Fi By default, Network framework doesn’t use peer-to-peer Wi-Fi. To enable that, set the includePeerToPeer property on the parameters used to create your listener and connection objects. parameters.includePeerToPeer = true IMPORTANT Enabling peer-to-peer Wi-Fi can impact the performance of the network. Only opt into it if it’s a significant benefit to your app. If you enable peer-to-peer Wi-Fi, it’s critical to stop network operations as soon as you’re done with them. For example, if you’re browsing for services with peer-to-peer Wi-Fi enabled and the user picks a service, stop the browse operation immediately. Otherwise, the ongoing browse operation might affect the performance of your connection. Manage a listener In Network framework, use NWListener to listen for incoming connections: let parameters: NWParameters = .tcp … configure parameters … let listener = try NWListener(using: parameters) listener.service = … service details … listener.serviceRegistrationUpdateHandler = … handle service registration changes … listener.stateUpdateHandler = { newState in … handle state changes … } listener.newConnectionHandler = { newConnection in … handle the new connection … } listener.start(queue: .main) For details on how to set up parameters, see Configure your connections. For details on how to set up up service and serviceRegistrationUpdateHandler, see Discover peers. Network framework calls your state update handler when the listener changes state: let listener: NWListener = … listener.stateUpdateHandler = { newState in switch newState { case .setup: // The listener has not yet started. … case .waiting(let error): // The listener tried to start and failed. It might recover in the // future. … case .ready: // The listener is running. … case .failed(let error): // The listener tried to start and failed irrecoverably. … case .cancelled: // The listener was cancelled by you. … @unknown default: break } } Network framework calls your new connection handler when a client connects to it: var connections: [NWConnection] = [] let listener: NWListener = listener listener.newConnectionHandler = { newConnection in … configure the new connection … newConnection.start(queue: .main) connections.append(newConnection) } IMPORTANT Don’t forget to call start(queue:) on your connections. In Multipeer Connectivity, the session (MCSession) keeps track of all the peers you’re communicating with. With Network framework, that responsibility falls on you. This example uses a simple connections array for that purpose. In your app you may or may not need a more complex data structure. For example: In the client/server network architecture, the client only needs to manage the connections to a single peer, the server. On the other hand, the server must managed the connections to all client peers. In the star network architecture, every peer must maintain a listener and connections to each of the other peers. Understand UDP flows Network framework handles UDP using the same NWListener and NWConnection types as it uses for TCP. However, the underlying UDP protocol is not implemented in terms of listeners and connections. To resolve this, Network framework works in terms of UDP flows. A UDP flow is defined as a bidirectional sequence of UDP datagrams with the same 4 tuple (local IP address, local port, remote IP address, and remote port). In Network framework: Each NWConnection object manages a single UDP flow. If an NWListener receives a UDP datagram whose 4 tuple doesn’t match any known NWConnection, it creates a new NWConnection. Manage a connection In Network framework, use NWConnection to start an outgoing connection: var connections: [NWConnection] = [] let parameters: NWParameters = … let endpoint: NWEndpoint = … let connection = NWConnection(to: endpoint, using: parameters) connection.stateUpdateHandler = … handle state changes … connection.viabilityUpdateHandler = … handle viability changes … connection.pathUpdateHandler = … handle path changes … connection.betterPathUpdateHandler = … handle better path notifications … connection.start(queue: .main) connections.append(connection) As in the listener case, you’re responsible for keeping track of this connection. Each connection supports four different handlers. Of these, the state and viability update handlers are the most important. For information about the path update and better path handlers, see the NWConnection documentation. Network framework calls your state update handler when the connection changes state: let connection: NWConnection = … connection.stateUpdateHandler = { newState in switch newState { case .setup: // The connection has not yet started. … case .preparing: // The connection is starting. … case .waiting(let error): // The connection tried to start and failed. It might recover in the // future. … case .ready: // The connection is running. … case .failed(let error): // The connection tried to start and failed irrecoverably. … case .cancelled: // The connection was cancelled by you. … @unknown default: break } } If you a connection is in the .waiting(_:) state and you want to force an immediate retry, call the restart() method. Network framework calls your viability update handler when its viability changes: let connection: NWConnection = … connection.viabilityUpdateHandler = { isViable in … react to viability changes … } A connection becomes inviable when a network resource that it depends on is unavailable. A good example of this is the network interface that the connection is running over. If you have a connection running over Wi-Fi, and the user turns off Wi-Fi or moves out of range of their Wi-Fi network, any connection running over Wi-Fi becomes inviable. The inviable state is not necessarily permanent. To continue the above example, the user might re-enable Wi-Fi or move back into range of their Wi-Fi network. If the connection becomes viable again, Network framework calls your viability update handler with a true value. It’s a good idea to debounce the viability handler. If the connection becomes inviable, don’t close it down immediately. Rather, wait for a short while to see if it becomes viable again. If a connection has been inviable for a while, you get to choose as to how to respond. For example, you might close the connection down or inform the user. To close a connection, call the cancel() method. This gracefully disconnects the underlying network connection. To close a connection immediately, call the forceCancel() method. This is not something you should do as a matter of course, but it does make sense in exceptional circumstances. For example, if you’ve determined that the remote peer has gone deaf, it makes sense to cancel it in this way. Send and receive reliable messages In Multipeer Connectivity, a single session supports both reliable and best effort send modes. In Network framework, a connection is either reliable or best effort, depending on the underlying network protocol. The exact mechanism for sending a message depends on the underlying network protocol. A good protocol for reliable messages is WebSocket. To send a message on a WebSocket connection: let connection: NWConnection = … let message: Data = … let metadata = NWProtocolWebSocket.Metadata(opcode: .binary) let context = NWConnection.ContentContext(identifier: "send", metadata: [metadata]) connection.send(content: message, contentContext: context, completion: .contentProcessed({ error in // … check `error` … _ = error })) In WebSocket, the content identifier is ignored. Using an arbitrary fixed value, like the send in this example, is just fine. Multipeer Connectivity allows you to send a message to multiple peers in a single send call. In Network framework each send call targets a specific connection. To send a message to multiple peers, make a send call on the connection associated with each peer. If your app needs to transfer arbitrary amounts of data on a connection, it must implement flow control. See Start a stream, below. To receive messages on a WebSocket connection: func startWebSocketReceive(on connection: NWConnection) { connection.receiveMessage { message, _, _, error in if let error { … handle the error … return } if let message { … handle the incoming message … } startWebSocketReceive(on: connection) } } IMPORTANT WebSocket preserves message boundaries, which is one of the reasons why it’s ideal for your reliable messaging connections. If you use a streaming protocol, like TCP or QUIC streams, you must do your own framing. A good way to do that is with NWProtocolFramer. If you need the metadata associated with the message, get it from the context parameter: connection.receiveMessage { message, context, _, error in … if let message, let metadata = context?.protocolMetadata(definition: NWProtocolWebSocket.definition) as? NWProtocolWebSocket.Metadata { … handle the incoming message and its metadata … } … } Send and receive best effort messages In Multipeer Connectivity, a single session supports both reliable and best effort send modes. In Network framework, a connection is either reliable or best effort, depending on the underlying network protocol. The exact mechanism for sending a message depends on the underlying network protocol. A good protocol for best effort messages is UDP. To send a message on a UDP connection: let connection: NWConnection = … let message: Data = … connection.send(content: message, completion: .idempotent) IMPORTANT UDP datagrams have a theoretical maximum size of just under 64 KiB. However, sending a large datagram results in IP fragmentation, which is very inefficient. For this reason, Network framework prevents you from sending UDP datagrams that will be fragmented. To find the maximum supported datagram size for a connection, gets its maximumDatagramSize property. To receive messages on a UDP connection: func startUDPReceive(on connection: NWConnection) { connection.receiveMessage { message, _, _, error in if let error { … handle the error … return } if let message { … handle the incoming message … } startUDPReceive(on: connection) } } This is exactly the same code as you’d use for WebSocket. Start a stream In Multipeer Connectivity, you can ask the session to start a stream to a specific peer. There are two ways to achieve this in Network framework: If you’re using QUIC for your reliable connection, start a new QUIC stream over that connection. This is one place that QUIC shines. You can run an arbitrary number of QUIC connections over a single QUIC connection group, and QUIC manages flow control (see below) for each connection and for the group as a whole. If you’re using some other protocol for your reliable connection, like WebSocket, you must start a new connection. You might use TCP for this new connection, but it’s not unreasonable to use WebSocket or QUIC. If you need to open a new connection for your stream, you can manage that process over your reliable connection. Choose a protocol to match your send mode explains the general approach for this, although in that case it’s opening a parallel best effort UDP connection rather than a parallel stream connection. The main reason to start a new stream is that you want to send a lot of data to the remote peer. In that case you need to worry about flow control. Flow control applies to both the send and receive side. IMPORTANT Failing to implement flow control can result in unbounded memory growth in your app. This is particularly bad on iOS, where jetsam will terminate your app if it uses too much memory. On the send side, implement flow control by waiting for the connection to call your completion handler before generating and sending more data. For example, on a TCP connection or QUIC stream you might have code like this: func sendNextChunk(on connection: NWConnection) { let chunk: Data = … read next chunk from disk … connection.send(content: chunk, completion: .contentProcessed({ error in if let error { … handle error … return } sendNextChunk(on: connection) })) } This acts like an asynchronous loop. The first send call completes immediately because the connection just copies the data to its send buffer. In response, your app generates more data. This continues until the connection’s send buffer fills up, at which point it defers calling your completion handler. Eventually, the connection moves enough data across the network to free up space in its send buffer, and calls your completion handler. Your app generates another chunk of data For best performance, use a chunk size of at least 64 KiB. If you’re expecting to run on a fast device with a fast network, a chunk size of 1 MiB is reasonable. Receive-side flow control is a natural extension of the standard receive pattern. For example, on a TCP connection or QUIC stream you might have code like this: func receiveNextChunk(on connection: NWConnection) { let chunkSize = 64 * 1024 connection.receive(minimumIncompleteLength: chunkSize, maximumLength: chunkSize) { chunk, _, isComplete, error in if let chunk { … write chunk to disk … } if isComplete { … close the file … return } if let error { … handle the error … return } receiveNextChunk(on: connection) } } IMPORTANT The above is cast in terms of writing the chunk to disk. That’s important, because it prevents unbounded memory growth. If, for example, you accumulated the chunks into an in-memory buffer, that buffer could grow without bound, which risks jetsam terminating your app. The above assumes that you can read and write chunks of data synchronously and promptly, for example, reading and writing a file on a local disk. That’s not always the case. For example, you might be writing data to an accessory over a slow interface, like Bluetooth LE. In such cases you need to read and write each chunk asynchronously. This results in a structure where you read from an asynchronous input and write to an asynchronous output. For an example of how you might approach this, albeit in a very different context, see Handling Flow Copying. Send a resource In Multipeer Connectivity, you can ask the session to send a complete resource, identified by either a file or HTTP URL, to a specific peer. Network framework has no equivalent support for this, but you can implement it on top of a stream: To send, open a stream and then read chunks of data using URLSession and send them over that stream. To receive, open a stream and then receive chunks of data from that stream and write those chunks to disk. In this situation it’s critical to implement flow control, as described in the previous section. Final notes This section collects together some general hints and tips. Concurrency In Multipeer Connectivity, each MCSession has its own internal queue and calls delegate callbacks on that queue. In Network framework, you get to control the queue used by each object for its callbacks. A good pattern is to have a single serial queue for all networking, including your listener and all connections. In a simple app it’s reasonable to use the main queue for networking. If you do this, be careful not to do CPU intensive work in your networking callbacks. For example, if you receive a message that holds JPEG data, don’t decode that data on the main queue. Overriding protocol defaults Many network protocols, most notably TCP and QUIC, are intended to be deployed at vast scale across the wider Internet. For that reason they use default options that aren’t optimised for local networking. Consider changing these defaults in your app. TCP has the concept of a send timeout. If you send data on a TCP connection and TCP is unable to successfully transfer it to the remote peer within the send timeout, TCP will fail the connection. The default send timeout is infinite. TCP just keeps trying. To change this, set the connectionDropTime property. TCP has the concept of keepalives. If a connection is idle, TCP will send traffic on the connection for two reasons: If the connection is running through a NAT, the keepalives prevent the NAT mapping from timing out. If the remote peer is inaccessible, the keepalives fail, which in turn causes the connection to fail. This prevents idle but dead connections from lingering indefinitely. TCP keepalives default to disabled. To enable and configure them, set the enableKeepalive property. To configure their behaviour, set the keepaliveIdle, keepaliveCount, and keepaliveInterval properties. Symbol cross reference If you’re not sure where to start with a specific Multipeer Connectivity construct, find it in the tables below and follow the link to the relevant section. [Sorry for the poor formatting here. DevForums doesn’t support tables properly, so I’ve included the tables as preformatted text.] | For symbol | See | | ----------------------------------- | --------------------------- | | `MCAdvertiserAssistant` | *Discover peers* | | `MCAdvertiserAssistantDelegate` | *Discover peers* | | `MCBrowserViewController` | *Discover peers* | | `MCBrowserViewControllerDelegate` | *Discover peers* | | `MCNearbyServiceAdvertiser` | *Discover peers* | | `MCNearbyServiceAdvertiserDelegate` | *Discover peers* | | `MCNearbyServiceBrowser` | *Discover peers* | | `MCNearbyServiceBrowserDelegate` | *Discover peers* | | `MCPeerID` | *Create a peer identifier* | | `MCSession` | See below. | | `MCSessionDelegate` | See below. | Within MCSession: | For symbol | See | | --------------------------------------------------------- | ------------------------------------ | | `cancelConnectPeer(_:)` | *Manage a connection* | | `connectedPeers` | *Manage a listener* | | `connectPeer(_:withNearbyConnectionData:)` | *Manage a connection* | | `disconnect()` | *Manage a connection* | | `encryptionPreference` | *Plan for security* | | `myPeerID` | *Create a peer identifier* | | `nearbyConnectionData(forPeer:withCompletionHandler:)` | *Discover peers* | | `securityIdentity` | *Plan for security* | | `send(_:toPeers:with:)` | *Send and receive reliable messages* | | `sendResource(at:withName:toPeer:withCompletionHandler:)` | *Send a resource* | | `startStream(withName:toPeer:)` | *Start a stream* | Within MCSessionDelegate: | For symbol | See | | ---------------------------------------------------------------------- | ------------------------------------ | | `session(_:didFinishReceivingResourceWithName:fromPeer:at:withError:)` | *Send a resource* | | `session(_:didReceive:fromPeer:)` | *Send and receive reliable messages* | | `session(_:didReceive:withName:fromPeer:)` | *Start a stream* | | `session(_:didReceiveCertificate:fromPeer:certificateHandler:)` | *Plan for security* | | `session(_:didStartReceivingResourceWithName:fromPeer:with:)` | *Send a resource* | | `session(_:peer:didChange:)` | *Manage a connection* | Revision History 2025-04-11 Added some advice as to whether to use the peer identifier in your service name. Expanded the discussion of how to deduplicate connections in a star network architecture. 2025-03-20 Added a link to the DeviceDiscoveryUI framework to the Discovery UI section. Made other minor editorial changes. 2025-03-11 Expanded the Enable peer-to-peer Wi-Fi section to stress the importance of stopping network operations once you’re done with them. Added a link to that section from the list of Multipeer Connectivity drawbacks. 2025-03-07 First posted.
0
0
1.4k
Mar ’25
How to test application using Thread networking on MacOS?
I would like to test running some Thread Networking code on my MacOS machine: import ThreadNetwork let client = THClient() let bIsPreferredAvailable = await client.isPreferredAvailable() but I get some errors when trying to create an instance of the THClient class: Client: -[THClient connectToXPCService]_block_invoke - CTCS XPC Client is interrupted. Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc} Client: -[THClient init] - XPC Client Init Failed Invalidating XPC connection. Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc} How can I get the code to run?
0
0
252
Mar ’25
iOS Not Sending DHCP Request After Quick WiFi Reconnect
I'm facing an issue where if a WiFi network is turned off and back on within a short time frame (2-4 seconds), iOS still shows the device as connected but does not send a new DHCP request. This causes a problem for my network device, which relies on the DHCP request to assign an IP address. Without the request, the device is unable to establish a socket connection properly. Is there any way to force iOS to send a DHCP request immediately when reconnecting to the network in this scenario? Are there any known workarounds or configurations that might help ensure the DHCP process is re-triggered? Any insights would be appreciated. Thanks!
1
0
216
Mar ’25