I have a very basic usdz file from this repo
I call loadTextures() after loading the usdz via MDLAsset. Inspecting the MDLTexture object I can tell it is assigning a colorspace of linear rgb instead of srgb although the image file in the usdz is srgb.
This causes the textures to ultimately render as over saturated.
In the code I later convert the MDLTexture to MTLTexture via MTKTextureLoader but if I set the srgb option it seems to ignore it.
This significantly impacts the usefulness of Model I/O if it can't load a simple usdz texture correctly. Am I missing something?
Thanks!
Metal
RSS for tagRender advanced 3D graphics and perform data-parallel computations using graphics processors using Metal.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I have a bare-bones Metal app setup where I attach a CAMetalLayer to a window that inherits from a NSWindow with a custom delegate. Everything else is vanilla. I'm also using metal-cpp and metal shader converter.
I'm running into a issue where the application runs fine in the beginning, but once I resize the window, it starts hitching. It turns out that [CAMetalLayer nextDrawable:] frequently (but not always) takes around a full second (plus or minus a few milliseconds) to return once drawableSize has been updated.
I've tried setting allowsNextDrawableTimeout to false which doesn't work; it returns a valid drawable after a second instead of nil. Setting displaySyncEnabled to false reduces the likelihood of this happening to around 50% from 90%+ but does not eliminate it. Setting maximumDrawableCount to 2 or 3 does not seem to make a difference.
By dumping the resource IDs of the returned textures I've noticed something interesting: Before resizing, the layer seems to shuffle between 2 textures or at least 2 resource IDs, but after resizing it starts to create new textures for each returned drawable. Occasionally it seems to reuse a previous resource ID, but it does not seem to have anything to do with whether the method returns quickly or not.
Why does this happen, and how can I fix it? Should I create a new CAMetalLayer when resizing the window instead of updating drawableSize?
*** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '-[NSBundle allFrameworks]: unrecognized selector sent to instance
NS::Bundle* Bundle = NS::Bundle::mainBundle(); Bundle->allFrameworks();
call to allFrameworks() and allBundles() will throw exception, but other functions work well.
I am trying to learn Metal development on my MacBook Pro M1 Pro (Sequoia 15.3.1) on Xcode Playground, but when I write these two lines of code:
import Metal
let device = MTLCreateSystemDefaultDevice()!
I get the error The LLDB RPC server has crashed. Any ideas as to what I can do to solve this? I have rebooted the machine and reinstalled Xcode...
Recently, I adopted MetalFX for Upscale feature.
However, I have encountered a persistent build failure for the iOS Simulator with the error message, 'MetalFX is not available when building for iOS Simulator.'
To address this, I modified the MetalFX.framework status to 'Optional' within Build Phases > Link Binary With Libraries, adding the linker option (-weak_framework). Despite this adjustment, the build process continues to fail.
Furthermore, I observed that the MetalFX sample application provided by Apple, specifically the one found at https://developer.apple.com/documentation/metalfx/applying-temporal-antialiasing-and-upscaling-using-metalfx, also fails to build for the iOS Simulator target.
Has anyone encountered this issue?
Description:
In the official visionOS 26 Hover Effect sample code project , I encountered an issue where the event.trackingAreaIdentifier returned by onSpatialEvent does not reset as expected.
Steps to Reproduce:
Select an object with trackingAreaID = 6 in the sample app.
Look at a blank space (outside any tracking area) and perform a pinch gesture .
Expected Behavior:
The event.trackingAreaIdentifier should return 0 when interacting with a non-tracking area.
Actual Behavior:
The event.trackingAreaIdentifier still returns 6, even after restarting the app or killing the process. This persists regardless of where the pinch gesture is performed
Hi ,
My application meet below crash backtrace at very low repro rate from the public users, i do not see it relate to a specific iOS version or iPhone model. The last code line from my application is calling CAMetalLayer nextDrawable API.
I did some basic studying, suppose it may relate to the wrong CAMetaLayer configuration, like
frame property w or h <= 0.0
bounds property w or h <= 0.0
drawableSize w or h <= 0.0 or w or h > max value (like 16384)
Not sure my above thinking is right or not? Will the UIView which my CAMetaLayer attached will cause such nextDrawable crash or not ?
Thanks a lot
Main Thread - Crashed
libsystem_kernel.dylib
__pthread_kill
libsystem_c.dylib
abort
libsystem_c.dylib
__assert_rtn
Metal
MTLReportFailure.cold.1
Metal
MTLReportFailure
Metal
_MTLMessageContextEnd
Metal
-[MTLTextureDescriptorInternal validateWithDevice:]
AGXMetalA13
0x245b1a000 + 4522096
QuartzCore
allocate_drawable_texture(id<MTLDevice>, __IOSurface*, unsigned int, unsigned int, MTLPixelFormat, unsigned long long, CAMetalLayerRotation, bool, NSString*, unsigned long)
QuartzCore
get_unused_drawable(_CAMetalLayerPrivate*, CAMetalLayerRotation, bool, bool)
QuartzCore
CAMetalLayerPrivateNextDrawableLocked(CAMetalLayer*, CAMetalDrawable**, unsigned long*)
QuartzCore
-[CAMetalLayer nextDrawable]
SpaceApp
-[MetalRender renderFrame:] MetalRenderer.mm:167
SpaceApp
-[FrameBuffer acceptFrame:] VideoRender.mm:173
QuartzCore
CA::Display::DisplayLinkItem::dispatch_(CA::SignPost::Interval<(CA::SignPost::CAEventCode)835322056>&)
QuartzCore
CA::Display::DisplayLink::dispatch_items(unsigned long long, unsigned long long, unsigned long long)
QuartzCore
CA::Display::DisplayLink::dispatch_deferred_display_links(unsigned int)
UIKitCore
_UIUpdateSequenceRun
UIKitCore
schedulerStepScheduledMainSection
UIKitCore
runloopSourceCallback
CoreFoundation
__CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__
CoreFoundation
__CFRunLoopDoSource0
CoreFoundation
__CFRunLoopDoSources0
CoreFoundation
__CFRunLoopRun
CoreFoundation
CFRunLoopRunSpecific
GraphicsServices
GSEventRunModal
UIKitCore
-[UIApplication _run]
UIKitCore
UIApplicationMain
Hello, I'm tracking down a bug where useResource doesn't seem to apply proper synchronization when a resource is produced by the render pass then consumed by the compute pass, but when I use MTLFence between the to signal and wait between the render/compute encoders, the artifact goes away.
The resource is created with MTLHazardTrackingModeTracked and useResource is called on the compute encoder after the render pass. Metal API Validation doesn't report any warnings/errors.
Am I misunderstanding the difference between the two APIs? I dug through the Metal documentation and it looks like useResource should handle synchronization given the resource has MTLHazardTrackingModeTracked but on the other hand, MTLFence should be used to ensure proper synchronization between command encoders. Can someone can clarify the difference between the two APIs and when to use them.
Hi there,
Is it possible to customize the Metal Performance HUD on Apple TV, similar to how it can be done on iPhone & iPad?
Would like to see things like Compiled Shaders for my Apps on tvOS
.
I mean…I want to use defaults rather than launching apps via open with the saved environment variables.
This is pretty easy on iOS and other platforms. So what about in macOS?
Now the examples of metal-cpp are target on desktop and using AppKit which is not supported on iOS. Is there any tips for developing with metal-cpp on mobile device?
I'm trying to create a custom Metal-based visual effect as a UIView to be used inside an existing UIKit-based interface. (An example might be a view that applies a blur effect to what's behind it.) I need to capture the MTLTexture of what's behind the view so that I can feed it to MTLRenderCommandEncoder.setFragmentTexture(_:index:). Can someone show me how or point me to an example? Thanks!
Guten Tag,
my project is simple, first I want draw wired Hexa,-Tetra- and Octahedrons.
I draw a cube with Metal but I didn't found rotation, translation and scale.
I have searched help , the examples I found are too complicated for me.
Mit freundlichen Grüßen
VanceRegnet
I use xcode16 and swiftUI for programming on a macos15 system. There is a problem. When I render a picture through mtkview, it is normal when displayed on a regular view. However, when the view is displayed through the .sheet method, the image cannot be displayed. There is no error message from xcode.
import Foundation
import MetalKit
import SwiftUI
struct CIImageDisplayView: NSViewRepresentable {
typealias NSViewType = MTKView
var ciImage: CIImage
init(ciImage: CIImage) {
self.ciImage = ciImage
}
func makeNSView(context: Context) -> MTKView {
let view = MTKView()
view.delegate = context.coordinator
view.preferredFramesPerSecond = 60
view.enableSetNeedsDisplay = true
view.isPaused = true
view.framebufferOnly = false
if let defaultDevice = MTLCreateSystemDefaultDevice() {
view.device = defaultDevice
}
view.delegate = context.coordinator
return view
}
func updateNSView(_ nsView: MTKView, context: Context) {
}
func makeCoordinator() -> RawDisplayRender {
RawDisplayRender(ciImage: self.ciImage)
}
class RawDisplayRender: NSObject, MTKViewDelegate {
// MARK: Metal resources
var device: MTLDevice!
var commandQueue: MTLCommandQueue!
// MARK: Core Image resources
var context: CIContext!
var ciImage: CIImage
init(ciImage: CIImage) {
self.ciImage = ciImage
self.device = MTLCreateSystemDefaultDevice()
self.commandQueue = self.device.makeCommandQueue()
self.context = CIContext(mtlDevice: self.device)
}
func mtkView(_ view: MTKView, drawableSizeWillChange size: CGSize) {}
func draw(in view: MTKView) {
guard let currentDrawable = view.currentDrawable,
let commandBuffer = commandQueue.makeCommandBuffer()
else {
return
}
let dSize = view.drawableSize
let drawImage = self.ciImage
let destination = CIRenderDestination(width: Int(dSize.width),
height: Int(dSize.height),
pixelFormat: view.colorPixelFormat,
commandBuffer: commandBuffer,
mtlTextureProvider: { () -> MTLTexture in
return currentDrawable.texture
})
_ = try? self.context.startTask(toClear: destination)
_ = try? self.context.startTask(toRender: drawImage, from: drawImage.extent,
to: destination, at: CGPoint(x: (dSize.width - drawImage.extent.width) / 2, y: 0))
commandBuffer.present(currentDrawable)
commandBuffer.commit()
}
}
}
struct ShowCIImageView: View {
let cii = CIImage.init(contentsOf: Bundle.main.url(forResource: "9-10", withExtension: "jpg")!)!
var body: some View {
CIImageDisplayView.init(ciImage: cii).frame(width: 500, height: 500).background(.red)
}
}
struct ContentView: View {
@State var showImage = false
var body: some View {
VStack {
Image(systemName: "globe")
.imageScale(.large)
.foregroundStyle(.tint)
Text("Hello, world!")
ShowCIImageView()
Button {
showImage = true
} label: {
Text("showImage")
}
}
.frame(width: 800, height: 800)
.padding()
.sheet(isPresented: $showImage) {
ShowCIImageView()
}
}
}
There is a sample project from Apple here. It has a scene of a city at night and you can move in it.
It basically has 2 parts:
application code written in what looks like Objective-C (I am more familiar with C++), which inherits from things like NSObject, MTKView, NSViewController and so on - it processes input and all app-related and window-related stuff.
rendering code that also looks like Objective-C. Btw both parts are mostly in .mm files (Obj-C++ AFAIK). The application part directly uses only one class from the rendering part - AAPLRenderer.
I want to move the rendering part to C++ using metal-cpp. For that I need to link metal-cpp to the project. I did it successfully with blank projects several times before using this tutorial. But with this sample project Xcode can't find Foundation/Foundation.hpp (and other metal-cpp headers). The error says this:
Did not find header 'Foundation.hpp' in framework 'Foundation' (loaded from '/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX15.0.sdk/System/Library/Frameworks')
Pls help
Hi!
How to define and call an inline function in Metal? Or simple function that will return some value.
Case:
inline uint index4D(constant _4D& shape,
constant uint& n,
constant uint& c,
constant uint& h,
constant uint& w) {
return n * shape.C * shape.H * shape.W + c * shape.H * shape.W + h * shape.W + w;
}
When I call it in my kernel function I get No matching function for call error.
Thx in advance.
I'm writing a swift app that uses metal to render textures to the main view. I currently use a NSViewRepresentable to place a MTKView into the window and a MTKViewDelegate to perform the metal operations. It's running well and I see my metal view being updated.
However, when I close the window (either through the user clicking the close button or by programatically using the appropriate @Environment(\.dismissWindow) private var dismissWindow) and then reopen the window, I no longer receive calls to MTKViewDelegate draw(in mtkView: MTView). If I manually call the MTKView::draw() function my view updates it's content as expected, so it seems to be still be correctly setup / alive.
As best as I can tell the CVDisplayLink created by MTKView is no longer active (or at least that's my understanding of how the MTKView::draw() function is called).
I've setup the MTKView like this
let mtkView = MTKView()
mtkView.delegate = context.coordinator // My custom delegate
mtkView.device = context.coordinator.device // The default metal device
mtkView.preferredFramesPerSecond = 60
mtkView.enableSetNeedsDisplay = false
mtkView.isPaused = false
which I was hoping would call the draw function at 60fps while the view is visible.
I've also verified the values don't change while running.
Does anyone have any ideas on how I could restart the CVDisplayLink or anyother methods to avoid this problem??
Cheers
Jack
I am making a framework in C++ using metal-cpp, basically a small game engine. I am also consequently using metal-cpp-extensions provided in LearnMetalCPP to make applications work.
For one of my classes, I needed to add AppKit.hpp inside a public header file, so I moved it and its associate headers(NSApplication.hpp, NSMenu.hpp, etc.) from Project headers to Public in Build Phases' Headers, however, it started giving me the error "cast of C pointer type 'void *' to Objective-C pointer type 'Class' requires a bridged cast" at several points in the AppKit headers. They don't appear when AppKit and its associates are in the Project headers, or when they are in the Private headers and no headers import it.
I imagined that disabling Objective-C ARC and Using __bridge casts outside of ARC in Build Settings would solve it, but it didn't budge.
I imagined it wouldn't involve actively changing the headers would be the answer, but even if I try to put __bridge before the problematic casts, it didn't recognize __bridge.
How do I solve this? And why is it only happening in Public and not Project headers?
I have an M1 Pro with a 16-core GPU. When I run a shader with 8193 threads, atomic_thread_fence is violated across the boundary between thread 8191 (the last thread in the 7th threadgroup) and 8192 (the first thread in the 9th threadgroup).
I've attached the Metal and Swift files, but I'll repost the relevant kernel here. It's a function that launches N threads to iterate through a binary tree from the leaves, where the first thread to reach the parent terminates and the second one populates it with the sum of the nodes two children.
// clang-format off
void sum(device const int& size,
device const int* __restrict__ in,
device int* __restrict__ out,
device atomic_int* visited,
uint i [[thread_position_in_grid]]) {
// clang-format on
int val = in[i];
uint cur = (size + i - 1);
out[cur] = val;
atomic_thread_fence(mem_flags::mem_device, memory_order_seq_cst);
cur = (cur - 1) / 2;
int proceed = atomic_fetch_add_explicit(&visited[cur], 1, memory_order_relaxed);
while (proceed == 1) {
uint left = 2 * cur + 1;
uint right = 2 * cur + 2;
uint val_left = out[left];
uint val_right = out[right];
uint val_cur = val_left + val_right;
out[cur] = val_cur;
if (cur == 0) {
break;
}
cur = (cur - 1) / 2;
atomic_thread_fence(mem_flags::mem_device, memory_order_seq_cst);
proceed = atomic_fetch_add_explicit(&visited[cur], 1, memory_order_relaxed);
}
}
What I'm observing is that thread 8192 hits the atomic_fetch_add first and terminates, while thread 8191 hits it second (observes that thread 8192 had incremented it by 1) and proceeds into the loop. Thread 8191 reads out[16383] (which it populated with 8191) and out[16384] (which thread 8192 populated with 8192 prior to the atomic_thread_fence). Instead of reading 8192 from out[16384] though, it reads 0.
Maybe I'm missing something but this seems like a pretty clear violation of the atomic_thread_fence which (I thought) was supposed to guarantee that the write from thread 8192 to out[16384] would be visible to any thread observing the effects of the following atomic_fetch_add. Is atomic_fetch_add not a store operation? Modifying it to an atomic_store or atomic_exchange still results in the bug. Adding another atomic_thread_fence between the atomic_fetch_add and reading of out also doesn't change anything.
I only begin to observe this on grid sizes of 8193 and upwards. That's 9 threadgroups per grid, which I assume could be related to my M1 Pro GPU having 16 cores.
Running the same example on an A17 Pro GPU doesn't show any of this behavior up through a tested grid size of 4194303 (2^22-1), at which point testing larger grid sizes starts to run into other issues so I can't test anything larger.
Removing the atomic_thread_fences on both the M1 and A17 cause the test to fail at much smaller grid sizes, as expected.
sum.metal
main.swift
I'm trying to pass a buffer of float2 items from CPU to GPU.
In the kernel, I can provide a parameter for the buffer:
device const float2* values
for example.
How do I specify float2 as the type for the MTL::Buffer?
I managed to get the code to work by "cheating" by defining a simple class that has the same data members as a float2, but there is probably a better way.
class Coord_f { public: float x{0.0f}; float y{0.0f}; };
then using code to allocate like this:
NS::TransferPtr(device->newBuffer(n_elements * sizeof(Coord_f), MTL::ResourceStorageModeManaged))
The headers for metal-cpp do not appear to define vector objects like float2, but I'm doubtless missing something.
Thanks.