I was working on my project and when I tried to train a model the kernel crashed, so I restarted the kernel and tried the same and still I got the same crashing issue. Then I read one of the thread having the same issue where the apple support was saying to install tensorflow-macos and tensorflow-metal and read the guide from this site:
https://developer.apple.com/metal/tensorflow-plugin/
and I did so, I tried every single thing and when I tried the test code provided in the site, I got the same error, here's the code and the output.
Code:
import tensorflow as tf
cifar = tf.keras.datasets.cifar100
(x_train, y_train), (x_test, y_test) = cifar.load_data()
model = tf.keras.applications.ResNet50(
include_top=True,
weights=None,
input_shape=(32, 32, 3),
classes=100,)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
model.fit(x_train, y_train, epochs=5, batch_size=64)
and here's the output:
Epoch 1/5
The Kernel crashed while executing code in the current cell or a previous cell.
Please review the code in the cell(s) to identify a possible cause of the failure.
Click here for more info.
View Jupyter log for further details.
And here's the half of log file as it was not fully coming:
metal_plugin/src/device/metal_device.cc:1154] Metal device set to: Apple M1
2024-10-06 23:30:49.894405: I metal_plugin/src/device/metal_device.cc:296] systemMemory: 8.00 GB
2024-10-06 23:30:49.894420: I metal_plugin/src/device/metal_device.cc:313] maxCacheSize: 2.67 GB
2024-10-06 23:30:49.894444: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support.
2024-10-06 23:30:49.894460: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: )
2024-10-06 23:30:56.701461: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:117] Plugin optimizer for device_type GPU is enabled.
[libprotobuf FATAL google/protobuf/message_lite.cc:353] CHECK failed: target + size == res:
libc++abi: terminating due to uncaught exception of type google::protobuf::FatalException: CHECK failed: target + size == res:
Please respond to this post as soon as possible as I am working on my project now and getting this error again n again.
Device: Apple MacBook Air M1.
General
RSS for tagExplore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hi Ty for playing
I am using Apple’s Vision framework with DetectHorizonRequest to detect the horizon in an image. Here is my code:
func processHorizonImage(_ ciImage: CIImage) async {
let request = DetectHorizonRequest()
do {
let result = try await request.perform(on: ciImage)
print(result)
} catch {
print(error)
}
}
After calling the perform method, I am getting result as nil. To ensure the request's correctness, I have verified the following:
The input CIImage is valid and contains a visible horizon.
No errors are being thrown.
The relevant frameworks are properly imported.
Given that my image contains a clear horizon, why am I still not getting any results? I would appreciate any help or suggestions to resolve this issue.
Thank you for your support!
This is the image
Hi All,
Is it possible to record a video using the Object Capture instead of taking a series of pictures ?
Is it possible to get the bounding box coordinates of the object we capture ?
Hello.
I can't find anything about the SSML that is used in Apple's speech synthesis.
SSML from Google, Amazon and W3C either don't work or work incorrectly.
Where is Apple's documentation for their implementation of SSML?
what am I not understanding here.
in short the view loads text from the jsons descriptions and then should filter out the words. and return and display a list of most used words, debugging shows words being identified by the code but does not filter them out
private func loadWordCounts() {
DispatchQueue.global(qos: .background).async {
let fileManager = FileManager.default
guard let documentsDirectory = try? fileManager.url(for: .documentDirectory, in: .userDomainMask, appropriateFor: nil, create: false) else { return }
let descriptions = loadDescriptions(fileManager: fileManager, documentsDirectory: documentsDirectory)
var counts = countWords(in: descriptions)
let tagsToRemove: Set<NLTag> = [
.verb,
.pronoun,
.determiner,
.particle,
.preposition,
.conjunction,
.interjection,
.classifier
]
for (word, _) in counts {
let tagger = NLTagger(tagSchemes: [.lexicalClass])
tagger.string = word
let (tag, _) = tagger.tag(at: word.startIndex, unit: .word, scheme: .lexicalClass)
if let unwrappedTag = tag, tagsToRemove.contains(unwrappedTag) {
counts[word] = 0
}
}
DispatchQueue.main.async {
self.wordCounts = counts
}
}
}
What are the major differences in review process for AI based apps vis a vis normal apps for Apple store?
Where can I find an example of using this MPSGraph function? I'm trying to use it to paste an image into a larger canvas at certain coordinates.
func sliceUpdateDataTensor(
_ dataTensor: MPSGraphTensor,
update updateTensor: MPSGraphTensor,
starts: [NSNumber],
ends: [NSNumber],
strides: [NSNumber],
startMask: UInt32,
endMask: UInt32,
squeezeMask: UInt32,
name: String?
) -> MPSGraphTensor
Hi all,
When executing an HLO program using the JAX metal PJRT plugin, the program fails due to an unsupported data type returned by the rng_bit_generator operation.
The generated HLO includes:
%output_state, %output = "mhlo.rng_bit_generator"(%1) <{rng_algorithm = #mhlo.rng_algorithm<PHILOX>}> : (tensor<3xi64>) -> (tensor<3xi64>, tensor<3xui32>)
The error message indicates that:
Metal only supports MPSDataTypeFloat16, MPSDataTypeBFloat16, MPSDataTypeFloat32, MPSDataTypeInt32, and MPSDataTypeInt64.
The use of ui32 seems to be incompatible with Metal’s allowed types.
I’m trying to understand if the ui32 output is the problem or maybe the use of rng_bit_generator is wrong.
Could you clarify if there is a workaround or planned support for ui32 output in this context? Alternatively, guidance on configuring rng_bit_generator for compatibility with Metal’s supported types would be greatly appreciated.
Hello all,
I'm working on a project that involves listening to a person speak off of a script and I want to stop then restart the recognitionTask between sections so I don't run afoul of keeping the recognitionTask running for longer than it needs to. Also, I'd like to be able to flush the current input between sections so the input from the previous section doesn't roll over into the next one.
This is based on the sample code for SFSpeechRecognizer so there's a chance I might be misunderstanding something.
private func restartRecording() {
let inputNode = audioEngine.inputNode
audioEngine.stop()
inputNode.removeTap(onBus: 0)
recognitionRequest?.endAudio()
recordingStarted = false
recognitionTask?.cancel()
do {
try startRecording()
} catch {
print("Oopsie.")
}
}
Here's my code. When I run it, the recognition task doesn't restart. Any ideas?
I'm trying to build llama.cpp, a popular tool for running LLMs locally on macos15.1.1 (24B91) Sonoma using cmake but am encountering errors. Here is the stack overflow post regarding the issue:
https://stackoverflow.com/questions/79304015/cmake-unable-to-find-foundation-framework-on-macos-15-1-1-24b91?noredirect=1#comment139853319_79304015
Hi everyone,
I'm working with VNFeaturePrintObservation in Swift to compute the similarity between images. The computeDistance function allows me to calculate the distance between two images, and I want to cluster similar images based on these distances.
Current Approach
Right now, I'm using a brute-force approach where I compare every image against every other image in the dataset. This results in an O(n^2) complexity, which quickly becomes a bottleneck. With 5000 images, it takes around 10 seconds to complete, which is too slow for my use case.
Question
Are there any efficient algorithms or data structures I can use to improve performance?
If anyone has experience with optimizing feature vector clustering or has suggestions on how to scale this efficiently, I'd really appreciate your insights. Thanks!
I’m trying to group my EntityPropertyQuery selection into sections as well as making it searchable.
I know that the EntityStringQuery is used to perform the text search via entities(matching string: String). That works well enough and results in this modal:
Though, when I’m using a DynamicOptionsProvider to section my EntityPropertyQuery, it doesn’t allow for searching anymore and simply opens the sectioned list in a menu like so:
How can I combine both? I’ve seen it in other apps, but can’t figure out why my code doesn’t allow to section the results and make it searchable? Any ideas?
My code (simplified)
struct MyIntent: AppIntent {
@Parameter(title: "Meter"),
optionsProvider: MyOptionsProvider())
var meter: MyIntentEntity?
// …
struct MyOptionsProvider: DynamicOptionsProvider {
func results() async throws -> ItemCollection<MyIntentEntity> {
// Get All Data
let allData = try IntentsDataHandler.shared.getEntities()
// Create Arrays for Sections
let fooEntities = allData.filter { $0.type == .foo }
let barEntities = allData.filter { $0.type == .bar }
return ItemCollection(sections: [
ItemSection("Foo",
items: fooEntities),
ItemSection("Bar",
items: barEntities)
])
}
}
struct MeterIntentQuery: EntityStringQuery {
// entities(for identifiers: [UUID]) and suggestedEntities() functions
func entities(matching string: String) async throws -> [MyIntentEntity] {
// Fetch All Data
let allData = try IntentsDataHandler.shared.getEntities()
// Filter Data by String
let matchingData = allData.filter { data in
return data.title.localizedCaseInsensitiveContains(string))
}
return matchingData
}
}
I'm implementing an LLM with Metal Performance Shader Graph, but encountered a very strange behavior, occasionally, the model will report an error message as this:
LLVM ERROR: SmallVector unable to grow. Requested capacity (9223372036854775808) is larger than maximum value for size type (4294967295)
and crash, the stack backtrace screenshot is attached. Note that 5th frame is
mlir::getIntValues<long long>
and 6th frame is
llvm::SmallVectorBase<unsigned int>::grow_pod
It looks like mlir mistakenly took a 64 bit value for a 32 bit type. Unfortunately, I could not found the source code of
mlir::getIntValues, maybe it's Apple's closed source fork of llvm for MPS implementation? Anyway, any opinion or suggestion on that?
Topic:
Machine Learning & AI
SubTopic:
General
In an under-development MacOS & iOS app, I need to identify various measurements from OCR'ed text: length, weight, counts per inch, area, percentage. The unit type (e.g. UnitLength) needs to be identified as well as the measurement's unit (e.g. .inches) in order to convert the measurement to the app's internal standard (e.g. centimetres), the value of which is stored the relevant CoreData entity.
The use of NLTagger and NLTokenizer is problematic because of the various representations of the measurements: e.g. "50g.", "50 g", "50 grams", "1 3/4 oz."
Currently, I use a bespoke algorithm based on String contains and step-wise evaluation of characters, which is reasonably accurate but requires frequent updating as further representations are detected.
I'm aware of the Python SpaCy model being capable of NER Measurement recognition, but am reluctant to incorporate a Python-based solution into a production app. (ref [https://developer.apple.com/forums/thread/30092])
My preference is for an open-source NER Measurement model that can be used as, or converted to, some form of a Swift compatible Machine Learning model. Does anyone know of such a model?
Hi,
I'm testing DockKit with a very simple setup:
I use VNDetectFaceRectanglesRequest to detect a face and then call dockAccessory.track(...) using the detected bounding box.
The stand is correctly docked (state == .docked) and dockAccessory is valid.
I'm calling .track(...) with a single observation and valid CameraInformation (including size, device, orientation, etc.). No errors are thrown.
To monitor this, I added a logging utility – track(...) is being called 10–30 times per second, as recommended in the documentation.
However: the stand does not move at all.
There is no visible reaction to the tracking calls.
Is there anything I'm missing or doing wrong?
Is VNDetectFaceRectanglesRequest supported for DockKit tracking, or are there hidden requirements?
Would really appreciate any help or pointers – thanks!
That's my complete code:
extension VideoFeedViewController: AVCaptureVideoDataOutputSampleBufferDelegate {
func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
guard let frame = CMSampleBufferGetImageBuffer(sampleBuffer) else {
return
}
detectFace(image: frame)
func detectFace(image: CVPixelBuffer) {
let faceDetectionRequest = VNDetectFaceRectanglesRequest() { vnRequest, error in
guard let results = vnRequest.results as? [VNFaceObservation] else {
return
}
guard let observation = results.first else {
return
}
let boundingBoxHeight = observation.boundingBox.size.height * 100
#if canImport(DockKit)
if let dockAccessory = self.dockAccessory {
Task {
try? await trackRider(
observation.boundingBox,
dockAccessory,
frame,
sampleBuffer
)
}
}
#endif
}
let imageResultHandler = VNImageRequestHandler(cvPixelBuffer: image, orientation: .up)
try? imageResultHandler.perform([faceDetectionRequest])
func combineBoundingBoxes(_ box1: CGRect, _ box2: CGRect) -> CGRect {
let minX = min(box1.minX, box2.minX)
let minY = min(box1.minY, box2.minY)
let maxX = max(box1.maxX, box2.maxX)
let maxY = max(box1.maxY, box2.maxY)
let combinedWidth = maxX - minX
let combinedHeight = maxY - minY
return CGRect(x: minX, y: minY, width: combinedWidth, height: combinedHeight)
}
#if canImport(DockKit)
func trackObservation(_ boundingBox: CGRect, _ dockAccessory: DockAccessory, _ pixelBuffer: CVPixelBuffer, _ cmSampelBuffer: CMSampleBuffer) throws {
// Zähle den Aufruf
TrackMonitor.shared.trackCalled()
let invertedBoundingBox = CGRect(
x: boundingBox.origin.x,
y: 1.0 - boundingBox.origin.y - boundingBox.height,
width: boundingBox.width,
height: boundingBox.height
)
guard let device = captureDevice else {
fatalError("Kamera nicht verfügbar")
}
let size = CGSize(width: Double(CVPixelBufferGetWidth(pixelBuffer)),
height: Double(CVPixelBufferGetHeight(pixelBuffer)))
var cameraIntrinsics: matrix_float3x3? = nil
if let cameraIntrinsicsUnwrapped = CMGetAttachment(
sampleBuffer,
key: kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix,
attachmentModeOut: nil
) as? Data {
cameraIntrinsics = cameraIntrinsicsUnwrapped.withUnsafeBytes { $0.load(as: matrix_float3x3.self) }
}
Task {
let orientation = getCameraOrientation()
let cameraInfo = DockAccessory.CameraInformation(
captureDevice: device.deviceType,
cameraPosition: device.position,
orientation: orientation,
cameraIntrinsics: cameraIntrinsics,
referenceDimensions: size
)
let observation = DockAccessory.Observation(
identifier: 0,
type: .object,
rect: invertedBoundingBox
)
let observations = [observation]
guard let image = CMSampleBufferGetImageBuffer(sampleBuffer) else {
print("no image")
return
}
do {
try await dockAccessory.track(observations, cameraInformation: cameraInfo)
} catch {
print(error)
}
}
}
#endif
func clearDrawings() {
boundingBoxLayer?.removeFromSuperlayer()
boundingBoxSizeLayer?.removeFromSuperlayer()
}
}
}
}
@MainActor
private func getCameraOrientation() -> DockAccessory.CameraOrientation {
switch UIDevice.current.orientation {
case .portrait:
return .portrait
case .portraitUpsideDown:
return .portraitUpsideDown
case .landscapeRight:
return .landscapeRight
case .landscapeLeft:
return .landscapeLeft
case .faceDown:
return .faceDown
case .faceUp:
return .faceUp
default:
return .corrected
}
}
I have seen inconsistent results for my Colab machine learning notebooks running locally on a Mac M4, compared to running the same notebook code on either T4 (in Colab) or a RTX3090 locally.
To illustrate the problems I have set up a notebook that implements two simple CNN models that solves the Fashion-MNIST problem. https://colab.research.google.com/drive/11BhtHhN079-BWqv9QvvcSD9U4mlVSocB?usp=sharing
For the good model with 2M parameters I get the following results:
T4 (Colab, JAX): Test accuracy: 0.925
3090 (Local PC via ssh tunnel, Jax): Test accuracy: 0.925
Mac M4 (Local, JAX): Test accuracy: 0.893
Mac M4 (Local, Tensorflow): Test accuracy: 0.893
That is, I see a significant drop in performance when I run on the Mac M4 compared to the NVIDIA machines, and it seems to be independent of backend. I however do not know how to pinpoint this to either Keras or Apple’s METAL implementation. I have reported this to Keras: https://colab.research.google.com/drive/11BhtHhN079-BWqv9QvvcSD9U4mlVSocB?usp=sharing but as this can be (likely is?) an Apple Metal issue, I wanted to report this here as well.
On the mac I am running the following Python libraries:
keras 3.9.1
tensorflow 2.19.0
tensorflow-metal 1.2.0
jax 0.5.3
jax-metal 0.1.1
jaxlib 0.5.3
Topic:
Machine Learning & AI
SubTopic:
General
I'm developing a tennis ball tracking feature using Vision Framework in Swift, specifically utilizing VNDetectedObjectObservation and VNTrackObjectRequest.
Occasionally (but not always), I receive the following runtime error:
Failed to perform SequenceRequest: Error Domain=com.apple.Vision Code=9 "Internal error: unexpected tracked object bounding box size" UserInfo={NSLocalizedDescription=Internal error: unexpected tracked object bounding box size}
From my investigation, I suspect the issue arises when the bounding box from the initial observation (VNDetectedObjectObservation) is too small. However, Apple's documentation doesn't clearly define the minimum bounding box size that's considered valid by VNTrackObjectRequest.
Could someone clarify:
What is the minimum acceptable bounding box width and height (normalized) that Vision Framework's VNTrackObjectRequest expects?
Is there any recommended practice or official guidance for bounding box size validation before creating a tracking request?
This information would be extremely helpful to reliably avoid this internal error.
Thank you!
Hello. I am willing to hire game developer for cards game called baloot. My question is Can the developer implement an AI when the computer is playing and the computer on the same time the conputer improves his rises level without any interaction?
🌹
Topic:
Machine Learning & AI
SubTopic:
General
If try to dynamically load WhipserKit's models, as in below, the download never occurs. No error or anything. And at the same time I can still get to the huggingface.co hosting site without any headaches, so it's not a blocking issue.
let config = WhisperKitConfig(
model: "openai_whisper-large-v3",
modelRepo: "argmaxinc/whisperkit-coreml"
)
So I have to default to the tiny model as seen below.
I have tried so many ways, using ChatGPT and others, to build the models on my Mac, but too many failures, because I have never dealt with builds like that before.
Are there any hosting sites that have the models (small, medium, large) already built where I can download them and just bundle them into my project? Wasted quite a large amount of time trying to get this done.
import Foundation
import WhisperKit
@MainActor
class WhisperLoader: ObservableObject {
var pipe: WhisperKit?
init() {
Task {
await self.initializeWhisper()
}
}
private func initializeWhisper() async {
do {
Logging.shared.logLevel = .debug
Logging.shared.loggingCallback = { message in
print("[WhisperKit] \(message)")
}
let pipe = try await WhisperKit() // defaults to "tiny"
self.pipe = pipe
print("initialized. Model state: \(pipe.modelState)")
guard let audioURL = Bundle.main.url(forResource: "44pf", withExtension: "wav") else {
fatalError("not in bundle")
}
let result = try await pipe.transcribe(audioPath: audioURL.path)
print("result: \(result)")
} catch {
print("Error: \(error)")
}
}
}