I've spent way too long today trying to convert an Object Detection TensorFlow2 model to a CoreML object classifier (with bounding boxes, labels and probability score)
The 'SSD MobileNet v2 320x320' is here: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
And I've been following all sorts of posts and ChatGPT
https://apple.github.io/coremltools/docs-guides/source/tensorflow-2.html#convert-a-tensorflow-concrete-function
https://developer.apple.com/videos/play/wwdc2020/10153/?time=402
To convert it.
I keep hitting the same errors though, mostly around:
NotImplementedError: Expected model format: [SavedModel | concrete_function | tf.keras.Model | .h5 | GraphDef], got <ConcreteFunction signature_wrapper(input_tensor) at 0x366B87790>
I've had varying success including missing output labels/predictions.
But I simply want to create the CoreML model with all the right inputs and outputs (including correct names) as detailed in the docs here: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_mobile_tf2.md
It goes without saying I don't have much (any) experience with this stuff including Python so the whole thing's been a bit of a headache.
If anyone is able to help that would be great.
FWIW I'm not attached to any one specific model, but what I do need at minimum is a CoreML model that can detect objects (has to at least include lights and lamps) within a live video image, detecting where in the image the object is.
The simplest script I have looks like this:
import coremltools as ct
import tensorflow as tf
model = tf.saved_model.load("~/tf_models/ssd_mobilenet_v2_320x320_coco17_tpu-8/saved_model")
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
mlmodel = ct.convert(
concrete_func,
source="tensorflow",
inputs=[ct.TensorType(shape=(1, 320, 320, 3))]
)
mlmodel.save("YourModel.mlpackage", save_format="mlpackage")
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I am using gemini2.5-flash with SwiftUI. How can I receive a response in JSON?
Topic:
Machine Learning & AI
SubTopic:
General
Hi everyone,
I’m currently exploring the use of Foundation models on Apple platforms to build a chatbot-style assistant within an app. While the integration part is straightforward using the new FoundationModel APIs, I’m trying to figure out how to control the assistant’s responses more tightly — particularly:
Ensuring the assistant adheres to a specific tone, context, or domain (e.g. hospitality, healthcare, etc.)
Preventing hallucinations or unrelated outputs
Constraining responses based on app-specific rules, structured data, or recent interactions
I’ve experimented with prompt, systemMessage, and few-shot examples to steer outputs, but even with carefully generated prompts, the model occasionally produces incorrect or out-of-scope responses.
Additionally, when using multiple tools, I'm unsure how best to structure the setup so the model can select the correct pathway/tool and respond appropriately. Is there a recommended approach to guiding the model's decision-making when several tools or structured contexts are involved?
Looking forward to hearing your thoughts or being pointed toward related WWDC sessions, Apple docs, or sample projects.
I'm trying to build llama.cpp, a popular tool for running LLMs locally on macos15.1.1 (24B91) Sonoma using cmake but am encountering errors. Here is the stack overflow post regarding the issue:
https://stackoverflow.com/questions/79304015/cmake-unable-to-find-foundation-framework-on-macos-15-1-1-24b91?noredirect=1#comment139853319_79304015
Here's the result:
Very weird.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm really not familiar with ML, but I need a model that can enhance and denoise 4k video stream at 30fps.
I have tried to search latest papers but they all have very complex structure, and I don't think I can convert them to mlmodel.
So can anyone give me any recommandation for such models? If there is an existing mlmodel, that would be great!
Hello,
I am currently developing an application that requires barcode scanning using Apple’s Vision framework (VNBarcodeSymbology). I noticed that the framework supports several GS1 DataBar symbologies, such as:
VNBarcodeSymbology.gs1DataBar
VNBarcodeSymbology.gs1DataBarExpanded
VNBarcodeSymbology.gs1DataBarLimited
However, I could not find any explicit reference to support for GS1 DataBar Stacked (both regular and expanded variants).
Could you confirm whether GS1 DataBar Stacked is currently supported in VisionKit's DataScannerViewController or VNBarcodeObservation? If not, are there any plans to include support for this symbology in a future iOS update?
This functionality is critical for my use case, as GS1 DataBar Stacked barcodes are widely used in retail, pharmaceuticals, and logistics, where space constraints prevent the use of standard GS1 DataBar formats.
I appreciate any clarification on this matter and would be happy to provide additional details if needed.
Hello,
I am studying macOS26 Apple Intelligence features.
I have created a basic swift program with Xcode. This program is sending prompts to FoundationModels.LanguageModelSession.
It works fine but this model is not trained for programming or code completion.
Xcode has an AI code completion feature. It is called "Predictive Code completion model".
So, there are multiple on-device models on macOS26 ?
Are there others ?
Is there a way for me to send prompts to this "Predictive Code completion model" from my program ?
Thanks
Hi! I'm trying to use the ImagePlayground API in SwiftUI with the .imagePlaygroundSheet modifier. However, when the sheet is shown (in the preview or in the simulator) it displays the following message: "Image Playground is not available. Image Playground is not available on this iPhone.".
I'm using an iPhone 16 Pro with iOS 18.3.1 in the Xcode (16.2) Simulator.
Anyone else having this problem? How can I fix it?
I'm trying to use Apple's new Visual Intelligence API for recommending content through screenshot image search. The problem I encountered is that the SemanticContentDescriptor labels are either completely empty or super misleading, making it impossible to query for similar content on my app. Even the closest matching example was inaccurate, returning a single label ["cardigan"] for a Supreme T-Shirt.
I see other apps using this API like Etsy for example, and I'm wondering if they're using the input pixel buffer to query for similar content rather than using the labels?
If anyone has a similar experience or something that wasn't called out in the documentation please lmk! Thanks.
*I can't put the attached file in the format, so if you reply by e-mail, I will send the attached file by e-mail.
Dear Apple AI Research Team,
My name is Gong Jiho (“Hem”), a content strategist based in Seoul, South Korea.
Over the past few months, I conducted a user-led AI experiment entirely within ChatGPT — no code, no backend tools, no plugins.
Through language alone, I created two contrasting agents (Uju and Zero) and guided them into a co-authored modular identity system using prompt-driven dialogue and reflection.
This system simulates persona fusion, memory rooting, and emotional-logical alignment — all via interface-level interaction.
I believe it resonates with Apple’s values in privacy-respecting personalization, emotional UX modeling, and on-device learning architecture.
Why I’m Reaching Out
I’d be honored to share this experiment with your team.
If there is any interest in discussing user-authored agent scaffolding, identity persistence, or affective alignment, I’d love to contribute — even informally.
⚠ A Note on Language
As a non-native English speaker, my expression may be imperfect — but my intent is genuine.
If anything is unclear, I’ll gladly clarify.
📎 Attached Files Summary
Filename → Description
Hem_MultiAI_Report_AppleAI_v20250501.pdf →
Main report tailored for Apple AI — narrative + structural view of emotional identity formation via prompt scaffolding
Hem_MasterPersonaProfile_v20250501.json →
Final merged identity schema authored by Uju and Zero
zero_sync_final.json / uju_sync_final.json →
Persona-level memory structures (logic / emotion)
1_0501.json ~ 3_0501.json →
Evolution logs of the agents over time
GirlfriendGPT_feedback_summary.txt →
Emotional interpretation by external GPT
hem_profile_for_AI_vFinal.json →
Original user anchor profile
Warm regards,
Gong Jiho (“Hem”)
Seoul, South Korea
Hello,
I have a question regarding hybrid execution for deep learning models on Apple's Neural Engine and CPU. I am aware that setting the precision of some layers to 32-bit allows hybrid execution across both the Neural Engine and the CPU. However, I would like to know if it is possible to achieve the same with 16-bit precision.
Is there any specific configuration or workaround to enable hybrid execution in this case? Any guidance or documentation references would be greatly appreciated.
Thank you!
Topic:
Machine Learning & AI
SubTopic:
Core ML
I'm adding Visual Intelligence support to my app, and now want to add a Tip using TipKit to guide users to this feature from within my app. I want to add a Rule to my Tip which will only show this Tip on devices where Visual Intelligence is supported (ex. not iPhone 14 Pro Max).
What is the best way for me to determine availability to set this TipKit rule?
Here's the documentation I'm following for Visual Intelligence: https://developer.apple.com/documentation/visualintelligence/integrating-your-app-with-visual-intelligence
Hi all, I am interested in unlocking unique applications with the new foundational models. I have a few questions regarding the availability of the following features:
Image Input: The update in June 2025 mentions "image" 44 times (https://machinelearning.apple.com/research/apple-foundation-models-2025-updates) - however I can't seem to find any information about having images as the input/prompt for the foundational models. When will this be available? I understand that there are existing Vision ML APIs, but I want image input into a multimodal on-device LLM (VLM) instead for features like "Which player is holding the ball in the image", etc (image understanding)
Cloud Foundational Model - when will this be available?
Thanks!
Clement :)
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Tags:
Vision
Machine Learning
Core ML
Apple Intelligence
We are really excited to have introduced the Foundation Models framework in WWDC25. When using the framework, you might have feedback about how it can better fit your use cases.
Starting in macOS/iOS 26 Beta 4, the best way to provide feedback is to use #Playground in Xcode. To do so:
In Xcode, create a playground using #Playground. Fore more information, see Running code snippets using the playground macro.
Reproduce the issue by setting up a session and generating a response with your prompt.
In the canvas on the right, click the thumbs-up icon to the right of the response.
Follow the instructions on the pop-up window and submit your feedback by clicking Share with Apple.
Another way to provide your feedback is to file a feedback report with relevant details. Specific to the Foundation Models framework, it’s super important to add the following information in your report:
Language model feedback
This feedback contains the session transcript, including the instructions, the prompts, the responses, etc. Without that, we can’t reason the model’s behavior, and hence can hardly take any action.
Use logFeedbackAttachment(sentiment:issues:desiredOutput: ) to retrieve the feedback data of your current model session, as shown in the usage example, write the data into a file, and then attach the file to your feedback report.
If you believe what you’d report is related to the system configuration, please capture a sysdiagnose and attach it to your feedback report as well.
The framework is still new. Your actionable feedback helps us evolve the framework quickly, and we appreciate that.
Thanks,
The Foundation Models framework team
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi all,
I noticed on Friday that on the new Beta 5 using FoundationModels on a simulator LanguageModelSession.respond() neither resolves nor throws most of the time. The SwiftUI test app below was working perfectly in Xcode 16 Beta 4 and iOS 26 Beta 4 (simulator).
import SwiftUI
import FoundationModels
struct ContentView: View {
var body: some View {
VStack {
Image(systemName: "globe")
.imageScale(.large)
.foregroundStyle(.tint)
Text("Hello, world!")
}
.padding()
.onAppear {
Task {
do {
let session = LanguageModelSession()
let response = try await session.respond(to: "are cats better than dogs ???")
print(response.content)
} catch {
print("error")
}
}
}
}
}
After updating to Xcode 16 Beta 5 and iOS 26 Beta 5 (simulator), the code now often hangs.
Occasionally it will work if I toggle Apple Intelligence on and off in Settings, but it’s unreliable.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hello, I am thinking of buying the MacBook Pro 14" with M4 Pro for ML/AI/ NLP tasks mostly. And since I have only used Windows before, I am wandering if it is compatible with libraries like "Pytorch" and "TensorFlow" etc., or people have experienced problems in installation... Thank you!
Topic:
Machine Learning & AI
SubTopic:
General
While runninf Apple Foundation Model in iPhone simulator, I got this error:
IPC error: Underlying connection interrupted
What does this mean? Related to foundation model?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I live in EU, Ireland, And I don’t have access to apple intelligence. I have ios18 running on iPhone XR, but please make apple intelligence available on EU
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Hello, I have to create an app in Swift that it scan NFC Identity card. It extract data and convert it to human readable data. I do it with below code
import CoreNFC
class NFCIdentityCardReader: NSObject , NFCTagReaderSessionDelegate {
func tagReaderSessionDidBecomeActive(_ session: NFCTagReaderSession) {
print("\(session.description)")
}
func tagReaderSession(_ session: NFCTagReaderSession, didInvalidateWithError error: any Error) {
print("NFC Error: \(error.localizedDescription)")
}
var session: NFCTagReaderSession?
func beginScanning() {
guard NFCTagReaderSession.readingAvailable else {
print("NFC is not supported on this device")
return
}
session = NFCTagReaderSession(pollingOption: .iso14443, delegate: self, queue: nil)
session?.alertMessage = "Hold your NFC identity card near the device."
session?.begin()
}
func tagReaderSession(_ session: NFCTagReaderSession, didDetect tags: [NFCTag]) {
guard let tag = tags.first else {
session.invalidate(errorMessage: "No tag detected")
return
}
session.connect(to: tag) { (error) in
if let error = error {
session.invalidate(errorMessage: "Connection error: \(error.localizedDescription)")
return
}
switch tag {
case .miFare(let miFareTag):
self.readMiFareTag(miFareTag, session: session)
case .iso7816(let iso7816Tag):
self.readISO7816Tag(iso7816Tag, session: session)
case .iso15693, .feliCa:
session.invalidate(errorMessage: "Unsupported tag type")
@unknown default:
session.invalidate(errorMessage: "Unknown tag type")
}
}
}
private func readMiFareTag(_ tag: NFCMiFareTag, session: NFCTagReaderSession) {
// Read from MiFare card, assuming it's formatted as an identity card
let command: [UInt8] = [0x30, 0x04] // Example: Read command for block 4
let requestData = Data(command)
tag.sendMiFareCommand(commandPacket: requestData) { (response, error) in
if let error = error {
session.invalidate(errorMessage: "Error reading MiFare: \(error.localizedDescription)")
return
}
let readableData = String(data: response, encoding: .utf8) ?? response.map { String(format: "%02X", $0) }.joined()
session.alertMessage = "ID Card Data: \(readableData)"
session.invalidate()
}
}
private func readISO7816Tag(_ tag: NFCISO7816Tag, session: NFCTagReaderSession) {
let selectAppCommand = NFCISO7816APDU(instructionClass: 0x00, instructionCode: 0xA4, p1Parameter: 0x04, p2Parameter: 0x00, data: Data([0xA0, 0x00, 0x00, 0x02, 0x47, 0x10, 0x01]), expectedResponseLength: -1)
tag.sendCommand(apdu: selectAppCommand) { (response, sw1, sw2, error) in
if let error = error {
session.invalidate(errorMessage: "Error reading ISO7816: \(error.localizedDescription)")
return
}
let readableData = response.map { String(format: "%02X", $0) }.joined()
session.alertMessage = "ID Card Data: \(readableData)"
session.invalidate()
}
}
}
But I got null. I think that these data are encrypted. How can I convert them to readable data without MRZ, is it possible ?
I need to get personal informations from Identity card via Core NFC.
Thanks in advance.
Best regards