Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

ImageCreator fails with GenerationError Code=11 on Apple Intelligence-enabled device
When I ran the following code on a physical iPhone device that supports Apple Intelligence, I encountered the following error log. What does this internal error code mean? Image generation failed with NSError in a different domain: Error Domain=ImagePlaygroundInternal.ImageGeneration.GenerationError Code=11 “(null)”, returning a generic error instead let imageCreator = try await ImageCreator() let style = imageCreator.availableStyles.first ?? .animation let stream = imageCreator.images(for: [.text("cat")], style: style, limit: 1) for try await result in stream { // error: ImagePlayground.ImageCreator.Error.creationFailed _ = result.cgImage }
0
1
257
Jul ’25
Error in Xcode console
Lately I am getting this error. GenerativeModelsAvailability.Parameters: Initialized with invalid language code: en-GB. Expected to receive two-letter ISO 639 code. e.g. 'zh' or 'en'. Falling back to: en Does anyone know what this is and how it can be resolved. The error does not crash the app
3
1
1.2k
Nov ’25
GenerationError -1 / 1026
Hi, I was using Foundation Models in my app, and suddenly it just stopped working from one moment to the next. To double-check, I created a small test in Playgrounds, but I’m getting the exact same error there too. #Playground { let session = LanguageModelSession() let prompt = "please answer a word" do { let response = try await session.respond(to: prompt) } catch { print("error is \(error)") } } error is Error Domain=FoundationModels.LanguageModelSession.GenerationError Code=-1 "(null)" UserInfo={NSMultipleUnderlyingErrorsKey=( "Error Domain=ModelManagerServices.ModelManagerError Code=1026 \"(null)\" UserInfo={NSMultipleUnderlyingErrorsKey=(\n)}" )} I’m no longer able to get any response from the framework anywhere, even in a fresh project. It's been 5 days. Has anyone else experienced this issue or knows what could be causing it? Thanks in advance! Tahoe 26.2 beta 1, Xcode 26.1.1, iPhone Air simulator 26.1
6
1
538
Nov ’25
Rate limit exceeded when using Foundation Model framework
When I use the FoundationModel framework to generate long text, it will always hit an error. "Passing along Client rate limit exceeded, try again later in response to ExecuteRequest" And stop generating. eg. for the prompt "Write a long story", it will almost certainly hit that error after 17 seconds of generation. do{ let session = LanguageModelSession() let prompt: String = "Write a long story" let response = try await session.respond(to: prompt) }catch{} If possible, I want to know how to prevent that error or at least how to handle it.
2
1
709
Jul ’25
Training adapter, it won't call my tool
Hi all. My adapter model just won't invoke my tool. The problem I am having is covered in an older post: https://developer.apple.com/forums/thread/794839?answerId=852262022#852262022 Sadly the thread dies there and no resolution is seen in that thread. It's worth noting that I have developed an AI chatbot built around LanguageModelSession to which I feed the exact same system prompt that I feed to my training set (pasted further in this post). The AI chatbot works perfectly, the tool is invoked when needed. I am training the adapter model because the base model whilst capable doesn't produce the quality I'm looking for. So here's the template of an item in my training set: [ { 'role': 'system', 'content': systemPrompt, 'tools': [TOOL_DEFINITION] }, { 'role': 'user', 'content': entry['prompt'] }, { 'role': 'assistant', 'content': entry['code'] } ] where TOOL_DEFINITION = { 'type': 'function', 'function': { 'name': 'WriteUbersichtWidgetToFileSystem', 'description': 'Writes an Übersicht Widget to the file system. Call this tool as the last step in processing a prompt that generates a widget.', 'parameters': { 'type': 'object', 'properties': { 'jsxContent': { 'type': 'string', 'description': 'Complete JSX code for an Übersicht widget. This should include all required exports: command, refreshFrequency, render, and className. The JSX should be a complete, valid Übersicht widget file.' } }, 'required': ['jsxContent'] } } ... and systemPrompt = A conversation between a user and a helpful assistant. You are an Übersicht widget designer. Create Übersicht widgets when requested by the user. IMPORTANT: You have access to a tool called WriteUbersichtWidgetToFileSystem. When asked to create a widget, you MUST call this tool. ### Tool Usage: Call WriteUbersichtWidgetToFileSystem with complete JSX code that implements the Übersicht Widget API. Generate custom JSX based on the user's specific request - do not copy the example below. ### Übersicht Widget API (REQUIRED): Every Übersicht widget MUST export these 4 items: - export const command: The bash command to execute (string) - export const refreshFrequency: Refresh rate in milliseconds (number) - export const render: React component function that receives {output} prop (function) - export const className: CSS positioning for absolute placement (string) Example format (customize for each request): WriteUbersichtWidgetToFileSystem({jsxContent: `export const command = "echo hello"; export const refreshFrequency = 1000; export const render = ({output}) => { return <div>{output}</div>; }; export const className = "top: 20px; left: 20px;"`}) ### Rules: - The terms "ubersicht widget", "widget", "a widget", "the widget" must all be interpreted as "Übersicht widget" - Generate complete, valid JSX code that follows the Übersicht widget API - When you generate a widget, don't just show JSON or code - you MUST call the WriteUbersichtWidgetToFileSystem tool - Report the results to the user after calling the tool ### Examples: - "Generate a Übersicht widget" → Use WriteUbersichtWidgetToFileSystem tool - "Can you add a widget that shows the time" → Use WriteUbersichtWidgetToFileSystem tool - "Create a widget with a button" → Use WriteUbersichtWidgetToFileSystem tool When the script that I use to compose the full training set is executed, entry['prompt'] and entry['code'] contain the prompt and the resulting JSX code for one of the examples I'm feeding to the training session. This is repeated for about 60 such examples that I have in my sample data collection. Thanks for any help. Michael
6
0
944
Nov ’25
Foundation Models unavailable for millions of users due to device language restriction - Need per-app language override
Hi everyone, I'm developing an iOS app using Foundation Models and I've hit a critical limitation that I believe affects many developers and millions of users. The Issue Foundation Models requires the device system language to be one of the supported languages. If a user has their device set to an unsupported language (Catalan, Dutch, Swedish, Polish, Danish, Norwegian, Finnish, Czech, Hungarian, Greek, Romanian, and many others), SystemLanguageModel.isSupported returns false and the framework is completely unavailable. Why This Is Problematic Scenario: A Catalan user has their iPhone in Catalan (native language). They want to use an AI chat app in Spanish or English (languages they speak fluently). Current situation: ❌ Foundation Models: Completely unavailable ✅ OpenAI GPT-4: Works perfectly ✅ Anthropic Claude: Works perfectly ✅ Any cloud-based AI: Works perfectly The user must choose between: Keep device in Catalan → Cannot use Foundation Models at all Change entire device to Spanish → Can use Foundation Models but terrible UX Impact This affects: Millions of users in regions where unsupported languages are official Multilingual users who prefer their device in their native language but can comfortably interact with AI in English/Spanish Developers who cannot deploy Foundation Models-based apps in these markets Privacy-conscious users who are ironically forced to use cloud AI instead of on-device AI What We Need One of these solutions would solve the problem: Option 1: Per-app language override (preferred) // Proposed API let session = try await LanguageModelSession(preferredLanguage: "es-ES") Option 2: Faster rollout of additional languages (particularly EU languages) Option 3: Allow fallback to user-selected supported language when system language is unsupported Technical Details Current behavior: // Device in Catalan let isAvailable = SystemLanguageModel.isSupported // Returns false // No way to override or specify alternative language Why This Matters Apple Intelligence and Foundation Models are amazing for privacy and performance. But this language restriction makes the most privacy-focused AI solution less accessible than cloud alternatives. This seems contrary to Apple's values of accessibility and user choice. Questions for the Community Has anyone else encountered this limitation? Are there any workarounds I'm missing? Has anyone successfully filed feedback about this?(Please share FB number so we can reference it) Are there any sessions or labs where this has been discussed? Thanks for reading. I'd love to hear if others are facing this and how you're handling it.
1
1
334
Nov ’25
Selecting an output language with Foundation Models
When using Foundation Models, is it possible to ask the model to produce output in a specific language, apart from giving an instruction like "Provide answers in ." ? (I tried that and it kind of worked, but it seems fragile.) I haven't noticed an API to do so and have a use-case where the output should be in a user-selectable language that is not the current system language.
3
1
508
Jul ’25
Defining instructions employing Content Tagging Model
Hello It seems the model Content Tagging doesn't obey when I define the type of tag I wish in the instructions parameters, always the output are the main topics. The unique form to get other type of tags like emotions is using Generable + Guided types. The documentation says it is recommended but not mandatory the use instructions. Maybe I'm setting wrongly the instructions but take a look in the attached snapshot. I copied the definition of tagging emotions from the official documentation. The upper example is employing generable and it works but in the example at the botton I set like instruction the same description of emotion and it doesn't work. I tried with other statements with more or less verbose and never output emotions. Could you provide a state using instruction where it works? Current version of model isn't working with instruction?
1
0
374
Oct ’25
Using #Preview with a PartialyGenerated model
I have an app that streams in data from the Foundation Model and I have a card that shows one of the outputs. I want my card to accept a partially generated model but I keep getting a nonsensical error. The error I get on line 59 is: Cannot convert value of type 'FrostDate.VegetableSuggestion.PartiallyGenerated' (aka 'FrostDate.VegetableSuggestion') to expected argument type 'FrostDate.VegetableSuggestion.PartiallyGenerated' Here is my card with preview: import SwiftUI import FoundationModels struct VegetableSuggestionCard: View { let vegetableSuggestion: VegetableSuggestion.PartiallyGenerated init(vegetableSuggestion: VegetableSuggestion.PartiallyGenerated) { self.vegetableSuggestion = vegetableSuggestion } var body: some View { VStack(alignment: .leading, spacing: 8) { if let name = vegetableSuggestion.vegetableName { Text(name) .font(.headline) .frame(maxWidth: .infinity, alignment: .leading) } if let startIndoors = vegetableSuggestion.startSeedsIndoors { Text("Start indoors: \(startIndoors)") .frame(maxWidth: .infinity, alignment: .leading) } if let startOutdoors = vegetableSuggestion.startSeedsOutdoors { Text("Start outdoors: \(startOutdoors)") .frame(maxWidth: .infinity, alignment: .leading) } if let transplant = vegetableSuggestion.transplantSeedlingsOutdoors { Text("Transplant: \(transplant)") .frame(maxWidth: .infinity, alignment: .leading) } if let tips = vegetableSuggestion.tips { Text("Tips: \(tips)") .foregroundStyle(.secondary) .frame(maxWidth: .infinity, alignment: .leading) } } .padding(16) .frame(maxWidth: .infinity, alignment: .leading) .background( RoundedRectangle(cornerRadius: 16, style: .continuous) .fill(.background) .overlay( RoundedRectangle(cornerRadius: 16, style: .continuous) .strokeBorder(.quaternary, lineWidth: 1) ) .shadow(color: Color.black.opacity(0.05), radius: 6, x: 0, y: 2) ) } } #Preview("Vegetable Suggestion Card") { let sample = VegetableSuggestion.PartiallyGenerated( vegetableName: "Tomato", startSeedsIndoors: "6–8 weeks before last frost", startSeedsOutdoors: "After last frost when soil is warm", transplantSeedlingsOutdoors: "1–2 weeks after last frost", tips: "Harden off seedlings; provide full sun and consistent moisture." ) VegetableSuggestionCard(vegetableSuggestion: sample) .padding() .previewLayout(.sizeThatFits) }
1
0
82
Oct ’25
DockKit .track() has no effect using VNDetectFaceRectanglesRequest
Hi, I'm testing DockKit with a very simple setup: I use VNDetectFaceRectanglesRequest to detect a face and then call dockAccessory.track(...) using the detected bounding box. The stand is correctly docked (state == .docked) and dockAccessory is valid. I'm calling .track(...) with a single observation and valid CameraInformation (including size, device, orientation, etc.). No errors are thrown. To monitor this, I added a logging utility – track(...) is being called 10–30 times per second, as recommended in the documentation. However: the stand does not move at all. There is no visible reaction to the tracking calls. Is there anything I'm missing or doing wrong? Is VNDetectFaceRectanglesRequest supported for DockKit tracking, or are there hidden requirements? Would really appreciate any help or pointers – thanks! That's my complete code: extension VideoFeedViewController: AVCaptureVideoDataOutputSampleBufferDelegate { func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) { guard let frame = CMSampleBufferGetImageBuffer(sampleBuffer) else { return } detectFace(image: frame) func detectFace(image: CVPixelBuffer) { let faceDetectionRequest = VNDetectFaceRectanglesRequest() { vnRequest, error in guard let results = vnRequest.results as? [VNFaceObservation] else { return } guard let observation = results.first else { return } let boundingBoxHeight = observation.boundingBox.size.height * 100 #if canImport(DockKit) if let dockAccessory = self.dockAccessory { Task { try? await trackRider( observation.boundingBox, dockAccessory, frame, sampleBuffer ) } } #endif } let imageResultHandler = VNImageRequestHandler(cvPixelBuffer: image, orientation: .up) try? imageResultHandler.perform([faceDetectionRequest]) func combineBoundingBoxes(_ box1: CGRect, _ box2: CGRect) -> CGRect { let minX = min(box1.minX, box2.minX) let minY = min(box1.minY, box2.minY) let maxX = max(box1.maxX, box2.maxX) let maxY = max(box1.maxY, box2.maxY) let combinedWidth = maxX - minX let combinedHeight = maxY - minY return CGRect(x: minX, y: minY, width: combinedWidth, height: combinedHeight) } #if canImport(DockKit) func trackObservation(_ boundingBox: CGRect, _ dockAccessory: DockAccessory, _ pixelBuffer: CVPixelBuffer, _ cmSampelBuffer: CMSampleBuffer) throws { // Zähle den Aufruf TrackMonitor.shared.trackCalled() let invertedBoundingBox = CGRect( x: boundingBox.origin.x, y: 1.0 - boundingBox.origin.y - boundingBox.height, width: boundingBox.width, height: boundingBox.height ) guard let device = captureDevice else { fatalError("Kamera nicht verfügbar") } let size = CGSize(width: Double(CVPixelBufferGetWidth(pixelBuffer)), height: Double(CVPixelBufferGetHeight(pixelBuffer))) var cameraIntrinsics: matrix_float3x3? = nil if let cameraIntrinsicsUnwrapped = CMGetAttachment( sampleBuffer, key: kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix, attachmentModeOut: nil ) as? Data { cameraIntrinsics = cameraIntrinsicsUnwrapped.withUnsafeBytes { $0.load(as: matrix_float3x3.self) } } Task { let orientation = getCameraOrientation() let cameraInfo = DockAccessory.CameraInformation( captureDevice: device.deviceType, cameraPosition: device.position, orientation: orientation, cameraIntrinsics: cameraIntrinsics, referenceDimensions: size ) let observation = DockAccessory.Observation( identifier: 0, type: .object, rect: invertedBoundingBox ) let observations = [observation] guard let image = CMSampleBufferGetImageBuffer(sampleBuffer) else { print("no image") return } do { try await dockAccessory.track(observations, cameraInformation: cameraInfo) } catch { print(error) } } } #endif func clearDrawings() { boundingBoxLayer?.removeFromSuperlayer() boundingBoxSizeLayer?.removeFromSuperlayer() } } } } @MainActor private func getCameraOrientation() -> DockAccessory.CameraOrientation { switch UIDevice.current.orientation { case .portrait: return .portrait case .portraitUpsideDown: return .portraitUpsideDown case .landscapeRight: return .landscapeRight case .landscapeLeft: return .landscapeLeft case .faceDown: return .faceDown case .faceUp: return .faceUp default: return .corrected } }
1
1
316
1w
Siri 2.0 (suggests and future updates)
Hey dear developers! This post should be available for the future Siri updates and improvements but also for wishes in this forum so that everyone can share their opinion and idea please stay friendly. have fun! I had already thought about developing a demo app to demonstrate my idea for a better Siri. My change of many: Wish Update: Siri's language recognition capabilities have been significantly enhanced. Instead of manually setting the language, Siri can now automatically recognize the language you intend to use, making language switching much more efficient. Simply speak the language you want to communicate in, and Siri will automatically recognize it and respond accordingly. Whether you speak English, German, or Japanese, Siri will respond in the language you choose.
1
1
790
Oct ’25
Foundation Model - Change LLM
Almost everywhere else you see Apple Intelligence, you get to select whether it's on device, private cloud compute, or ChatGPT. Is there a way to do that via code in the Foundation Model? I searched through the docs and couldn't find anything, but maybe I missed it.
2
1
149
Jul ’25
Full documentation of annotations file for Create ML
The documentation for the Create ML tool ("Building an object detector data source") mentions that there are options for using normalized values instead of pixels and also different anchor point origins ("MLBoundingBoxCoordinatesOrigin") instead of always using "center". However, the JSON format for these does not appear in any examples. Does anyone know the format for these options?
0
1
150
May ’25
The yolo11 object detection model I exported to coreml stopped working in macOS15.2 beta.
After updating to macOS15.2beta, the Yolo11 object detection model exported to coreml outputs incorrect and abnormal bounding boxes. It also doesn't work in iOS apps built on a 15.2 mac. The same model worked fine on macOS14.1. When training a Yolo11 custom model in Python, exporting it to coreml, and testing it in the preview tab of mlpackage on macOS15.2 and Xcode16.0, the above result is obtained.
6
1
1.4k
Feb ’25
Insufficient memory for Foundational Model Adapter Training
I have a MacBook Pro M3 Pro with 18GB of RAM and was following the instructions to fine tune the foundational model given here: https://developer.apple.com/apple-intelligence/foundation-models-adapter/ However, while following the code sample in the example Jupyter notebook, my Mac hangs on the second code cell. Specifically: from examples.generate import generate_content, GenerationConfiguration from examples.data import Message output = generate_content( [[ Message.from_system("A conversation between a user and a helpful assistant. Taking the role as a play writer assistant for a kids' play."), Message.from_user("Write a script about penguins.") ]], GenerationConfiguration(temperature=0.0, max_new_tokens=128) ) output[0].response After some debugging, I was getting the following error: RuntimeError: MPS backend out of memory (MPS allocated: 22.64 GB, other allocations: 5.78 MB, max allowed: 22.64 GB). Tried to allocate 52.00 MB on private pool. Use PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0 to disable upper limit for memory allocations (may cause system failure). So is my machine not capable enough to adapter train Apple's Foundation Model? And if so, what's the recommended spec and could this be specified somewhere? Thanks!
8
1
267
Jul ’25