Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Core ML model decryption on Intel chips
About the Core ML model encryption mention in:https://developer.apple.com/documentation/coreml/encrypting-a-model-in-your-app When I encrypted the model, if the machine is M chip, the model will load perfectly. One the other hand, when I test the executable on an Intel chip macbook, there will be an error: Error Domain=com.apple.CoreML Code=9 "Operation not supported on this platform." UserInfo={NSLocalizedDescription=Operation not supported on this platform.} Intel test machine is 2019 macbook air with CPU: Intel i5-8210Y, OS: 14.7.6 23H626, With Apple T2 Security Chip. The encrypted model do load on M2 and M4 macbook air. If the model is NOT encrypted, it will also load on the Intel test machine. I did not find in Core ML document that suggest if the encryption/decryption support Intel chips. May I check if the decryption indeed does NOT support Intel chip?
1
1
116
2w
Core ML Model performance far lower on iOS 17 vs iOS 16 (iOS 17 not using Neural Engine)
Hello, I posted an issue on the coremltools GitHub about my Core ML models not performing as well on iOS 17 vs iOS 16 but I'm posting it here just in case. TL;DR The same model on the same device/chip performs far slower (doesn't use the Neural Engine) on iOS 17 compared to iOS 16. Longer description The following screenshots show the performance of the same model (a PyTorch computer vision model) on an iPhone SE 3rd gen and iPhone 13 Pro (both use the A15 Bionic). iOS 16 - iPhone SE 3rd Gen (A15 Bioinc) iOS 16 uses the ANE and results in fast prediction, load and compilation times. iOS 17 - iPhone 13 Pro (A15 Bionic) iOS 17 doesn't seem to use the ANE, thus the prediction, load and compilation times are all slower. Code To Reproduce The following is my code I'm using to export my PyTorch vision model (using coremltools). I've used the same code for the past few months with sensational results on iOS 16. # Convert to Core ML using the Unified Conversion API coreml_model = ct.convert( model=traced_model, inputs=[image_input], outputs=[ct.TensorType(name="output")], classifier_config=ct.ClassifierConfig(class_names), convert_to="neuralnetwork", # compute_precision=ct.precision.FLOAT16, compute_units=ct.ComputeUnit.ALL ) System environment: Xcode version: 15.0 coremltools version: 7.0.0 OS (e.g. MacOS version or Linux type): Linux Ubuntu 20.04 (for exporting), macOS 13.6 (for testing on Xcode) Any other relevant version information (e.g. PyTorch or TensorFlow version): PyTorch 2.0 Additional context This happens across "neuralnetwork" and "mlprogram" type models, neither use the ANE on iOS 17 but both use the ANE on iOS 16 If anyone has a similar experience, I'd love to hear more. Otherwise, if I'm doing something wrong for the exporting of models for iOS 17+, please let me know. Thank you!
1
1
1.8k
Mar ’25
Genmoji/Playground “Persons” list
Hey, has anyone figured out how the “Persons” list in Genmoji/Playground actually works? I’ve had a strange experience so far. When I first got access during Beta 2, the list randomly included about 10–15 people, even though my photo library contains many more recognizable faces. To try fixing this, I started naming faces in the Photos app, hoping they’d be added to the Genmoji/Playground list, but nothing changed. Then, after updating to Beta 3, it added just 2–3 of the people I had named. Encouraged, I spent about an hour naming all the faces in my library. But a few hours later, the list unexpectedly removed around 10 people, leaving me with fewer than I had initially. I’ve also read that leaving the phone locked and plugged into power should help sort people in the library, but that hasn’t worked for me yet. Anyone else experienced this or found a way to make it work? Thanks!
1
1
1.4k
Nov ’24
Foundation Models flags 'Six Flags Great America' as unsafe
I'm working on a to-do list app that uses SpeechTranscriber and Foundation Models framework to transcribe a user's voice into text and create to-do items based off of it. After about 30 minutes looking at my code, I couldn't figure out why I was failing to generate a to-do for "I need to go to Six Flags Great America tomorrow at 3pm." It turns out, I was consistently firing the Foundation Models's safety filter violation for unsafe content ("May contain unsafe content"). Lesson learned: consider comprehensively logging Foundation Models error states to quickly identify when safety filters are unexpectedly triggered.
3
1
471
Jul ’25
Running a local LLM on Swift Playgrounds
I am trying to run TinyLlama directly using Swift Playgrounds for iOS. I have tried multiple solutions, like libraries (LLM.swift, swift-transformers, ...) which never worked due to import issues, and also tried importing an exported mlmodel. For the later, I followed the article about Llama 3.1 on CoreML. It was hard to understand how to do the inference with it, but I was able to export a mlpackage, that I then placed in a xcode project to generate the mlmodelc (compiled model) and the model class. I had to go with the first version described in the article, without optimizations, as I got errors during model loading with the flexible input shapes. I was able to run the model for one token generation. But my biggest problem is that, though the mlmodelc is only 550 MiB, th model loads 24+GiB of memory, largely exceeding what I can have on an iOS device. Is there a way to use do LLM inferences on Swift Playgrounds at a reasonable speed (even 1 token / s would be sufficient)?
0
1
1.4k
Jan ’25
Unable to Use M1 Mac Pro Max GPU for TensorFlow Model Training
Hi Everyone, I'm currently facing an issue where TensorFlow is unable to detect the GPU on my M1 Mac for model training. When I run the following code to check for available GPUs: import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) Num GPUs Available: 0 I have already applied the steps mentioned in the developer apple document. https://developer.apple.com/metal/tensorflow-plugin/ System Information: Device: M1 Mac Pro Max Python Version: 3.12.2 TensorFlow Version: 2.17.0 OS: macOS Sequoia (15.1) Questions: Is there any additional configuration required to enable GPU support on M1 Macs? Are there specific TensorFlow versions that I should be using for better compatibility? Has anyone else faced this issue, and how did you resolve it?
2
1
891
Nov ’24
Do we need *both* associateAppEntity and to implement attributeSet when indexing App Entities?
I am working on adding indexing to my App Entities via IndexedEntity. I already, separately index my content via Spotlight. Watching 'What's New in App Intents', this is covered well but I have a question. Do I need to implement both CSSearchableItem's associateAppEntity AND also a custom implementation of attributeSet in my IndexedEntity conformance? It seems duplicative but I can't tell from the video if you're supposed to do both or just one or the other.
1
1
588
Nov ’24
"failed to processImage" in videoProcessor
Hello, I’m working on a program that analyzes video files frame by frame to detect human poses in each frame. However, during the process of reading observations from the stream, the analysis frequently stops with the following error: [LOG_ERROR] /Library/Caches/com.apple.xbs/Sources/MediaAnalysis/VideoProcessing/VCPHumanPoseImageRequest.mm[85]: code -18 [LOG_ERROR] /Library/Caches/com.apple.xbs/Sources/MediaAnalysis/VideoProcessing/VCPHumanPoseImageRequest.mm[178]: code -18 The error was caught and printed using a do-catch block, and here is the output: Error Domain=NSOSStatusErrorDomain Code=-18 "Error: failed to processImage" UserInfo={NSLocalizedDescription=Error: failed to processImage} While the do-catch block helps prevent the app from crashing, the frames following the error cannot be analyzed. I’m hoping to understand the cause of this error, or find a way to skip the problematic frames and continue analyzing the subsequent ones. My development environment is Xcode Version 16.0 (16A242d) and iOS 18.0. Thank you for your help. (Attaching my code below.) let videoProcessor = VideoProcessor(videoURL) let bodyPoseRequest = DetectHumanBodyPoseRequest() let asset = AVURLAsset(url: videoURL) let videoTrack = try await asset.loadTracks(withMediaType: .video).first let bodyPoseStream = try await videoProcessor.addRequest(bodyPoseRequest) videoProcessor.startAnalysis() do { for try await observations in bodyPoseStream { guard let observation = observations.first else { continue } if let timeRange = observation.timeRange { /// do something... } } } catch { print("\(error.localizedDescription)") }
0
1
381
Oct ’24
NLModel won't initialize in MessageFilterExtension
i'm trying to create an NLModel within a MessageFilterExtension handler. The code works fine in the main app, but when I try to use it in the extension it fails to initialize. Just this doesn't even work and gets the error below. Single line that fails. SMS_Classifier is the class xcode generated for my model. This line works fine in the main app. let mlModel = try SMS_Classifier(configuration: MLModelConfiguration()).model Error Unable to locate Asset for contextual word embedding model for local en. MLModelAsset: load failed with error Error Domain=com.apple.CoreML Code=0 "initialization of text classifier model with model data failed" UserInfo={NSLocalizedDescription=initialization of text classifier model with model data failed} Any ideas?
3
1
971
Jan ’25
Error when using Image Feature Print v2
Hi all, I'm working on an app to classify dog breeds via CoreML, but when I try training a model using Image Feature Print v2, I get the following error: Failed to create CVPixelBufferPool. Width = 0, Height = 0, Format = 0x00000000 Strangely, when I switch back to Image Feature Print v1, the model trains perfectly fine. I've verified that there aren't any invalid or broken images in my dataset. Is there a fix for this? Thanks!
1
1
442
Jan ’25
RecognizeDocumentsRequest for receipts
Hi, I'm trying to use the new RecognizeDocumentsRequest from the Vision Framework to read a receipt. It looks very promising by being able to read paragraphs, lines and detect data. So far it unfortunately seems to read every line on the receipt as a paragraph and when there is more space on one line it creates two paragraphs. Is there perhaps an Apple Engineer who knows if this is expected behaviour or if I should file a Feedback for this? Code setup: let request = RecognizeDocumentsRequest() let observations = try await request.perform(on: image) guard let document = observations.first?.document else { return } for paragraph in document.paragraphs { print(paragraph.transcript) for data in paragraph.detectedData { switch data.match.details { case .phoneNumber(let data): print("Phone: \(data)") case .postalAddress(let data): print("Postal: \(data)") case .calendarEvent(let data): print("Calendar: \(data)") case .moneyAmount(let data): print("Money: \(data)") case .measurement(let data): print("Measurement: \(data)") default: continue } } } See attached image as an example of a receipt I'd like to parse. The top 3 lines are the name, street, and postal code + city. These are all separate paragraphs. Checking on detectedData does see the street (2nd line) as PostalAddress, but not the complete address. Might that be a location thing since it's a Dutch address. And lower on the receipt it sees the block with "Pomp 1 95 Ongelood" and the things below also as separate paragraphs. First picking up the left side and after that the right side. So it's something like this: * Pomp 1 Volume Prijs € TOTAAL * BTW Netto 21.00 % 95 Ongelood 41,90 l 1.949/ 1 81.66 € 14.17 67.49
2
1
261
3d
FoundationModels tool calling not working (iOS 26, beta 6)
I have a fairly basic prompt I've created that parses a list of locations out of a string. I've then created a tool, which for these locations, finds their latitude/longitude on a map and populates that in the response. However, I cannot get the language model session to see/use my tool. I have code like this passing the tool to my prompt: class Parser { func populate(locations: String, latitude: Double, longitude: Double) async { let findLatLonTool = FindLatLonTool(latitude: latitude, longitude: longitude) let session = LanguageModelSession(tools: [findLatLonTool]) { """ A prompt that populates a model with a list of locations. """ """ Use the findLatLon tool to populate the latitude and longitude for the name of each location. """ } let stream = session.streamResponse(to: "Parse these locations: \(locations)", generating: ParsedLocations.self) let locationsModel = LocationsModels(); do { for try await partialParsedLocations in stream { locationsModel.parsedLocations = partialParsedLocations.content } } catch { print("Error parsing") } } } And then the tool that looks something like this: import Foundation import FoundationModels import MapKit struct FindLatLonTool: Tool { typealias Output = GeneratedContent let name = "findLatLon" let description = "Find the latitude / longitude of a location for a place name." let latitude: Double let longitude: Double @Generable struct Arguments { @Guide(description: "This is the location name to look up.") let locationName: String } func call(arguments: Arguments) async throws -> GeneratedContent { let request = MKLocalSearch.Request() request.naturalLanguageQuery = arguments.locationName request.region = MKCoordinateRegion( center: CLLocationCoordinate2D(latitude: latitude, longitude: longitude), latitudinalMeters: 1_000_000, longitudinalMeters: 1_000_000 ) let search = MKLocalSearch(request: request) let coordinate = try await search.start().mapItems.first?.location.coordinate if let coordinate = coordinate { return GeneratedContent( LatLonModel(latitude: coordinate.latitude, longitude: coordinate.longitude) ) } return GeneratedContent("Location was not found - no latitude / longitude is available.") } } But trying a bunch of different prompts has not triggered the tool - instead, what appear to be totally random locations are filled in my resulting model and at no point does a breakpoint hit my tool code. Has anybody successfully gotten a tool to be called?
2
1
337
Aug ’25
CreateML
I'm trying to use the Spatial model to perform Object Tracking on a .usdz file that I create. After loading the file, which I can view correctly in the console, I start the training. Initially, I notice that the disk usage on my PC increases. After several GB, the usage stops, but the training progress remains for hours at 0.00% with the message "About 8hr." How can I understand what the issue is? Has anyone else experienced the same problem? Thanks Diego
1
1
592
Jan ’25
Selecting an output language with Foundation Models
When using Foundation Models, is it possible to ask the model to produce output in a specific language, apart from giving an instruction like "Provide answers in ." ? (I tried that and it kind of worked, but it seems fragile.) I haven't noticed an API to do so and have a use-case where the output should be in a user-selectable language that is not the current system language.
3
1
460
Jul ’25
What is experimentalMLE5EngineUsage?
@property (assign,nonatomic) long long experimentalMLE5EngineUsage; //@synthesize experimentalMLE5EngineUsage=_experimentalMLE5EngineUsage - In the implementation block What is it, and why would disabling it fix NMS for a MLProgram? Is there anyway to signal this flag from model metadata? Is there anyway to signal or disable from a global, system-level scope? It's extremely easy to reproduce, but do not know how to investigate the drastic regression between toggling this flag let config = MLModelConfiguration() config.setValue(1, forKey: "experimentalMLE5EngineUsage")
0
1
607
Jan ’25