Hello everyone,
I am trying to train using CreateML Version 6.0 Beta (146.1), feature extractor Image Feature Print v2.
I am using 100K images for a total ~4GB on my M3 Max 48GB (MacOs 15.0 Beta (24A5279h))
The images seems to be correctly read and visualized in the Data Source section (no images with corrupted data seems to be there).
When I start the training it's all fine for the first 6k ~ 7k pictures, then I receive the following error:
Failed to create CVPixelBufferPool. Width = 0, Height = 0, Format = 0x00000000
It is the first time I am using it, so I don't really have so much of experience.
Could you help me to understand what could be the problem?
Thanks a lot
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hi everyone,
I’m currently using macOS Version 15.3 Beta (24D5034f), and I’m encountering an issue with Apple Intelligence. The image generation tools seem to work fine, but everything else shows a message saying that it’s “not available at this time.”
I’ve tried restarting my Mac and double-checked my settings, but the problem persists. Is anyone else experiencing this issue on the beta version? Are there any fixes or settings I might be overlooking?
Any help or insights would be greatly appreciated!
Thanks in advance!
At WWDC25 we launched a new type of Lab event for the developer community - Group Labs. A Group Lab is a panel Q&A designed for a large audience of developers. Group Labs are a unique opportunity for the community to submit questions directly to a panel of Apple engineers and designers. Here are the highlights from the WWDC25 Group Lab for Machine Learning and AI Frameworks.
What are you most excited about in the Foundation Models framework?
The Foundation Models framework provides access to an on-device Large Language Model (LLM), enabling entirely on-device processing for intelligent features. This allows you to build features such as personalized search suggestions and dynamic NPC generation in games. The combination of guided generation and streaming capabilities is particularly exciting for creating delightful animations and features with reliable output. The seamless integration with SwiftUI and the new design material Liquid Glass is also a major advantage.
When should I still bring my own LLM via CoreML?
It's generally recommended to first explore Apple's built-in system models and APIs, including the Foundation Models framework, as they are highly optimized for Apple devices and cover a wide range of use cases. However, Core ML is still valuable if you need more control or choice over the specific model being deployed, such as customizing existing system models or augmenting prompts. Core ML provides the tools to get these models on-device, but you are responsible for model distribution and updates.
Should I migrate PyTorch code to MLX?
MLX is an open-source, general-purpose machine learning framework designed for Apple Silicon from the ground up. It offers a familiar API, similar to PyTorch, and supports C, C++, Python, and Swift. MLX emphasizes unified memory, a key feature of Apple Silicon hardware, which can improve performance. It's recommended to try MLX and see if its programming model and features better suit your application's needs. MLX shines when working with state-of-the-art, larger models.
Can I test Foundation Models in Xcode simulator or device?
Yes, you can use the Xcode simulator to test Foundation Models use cases. However, your Mac must be running macOS Tahoe. You can test on a physical iPhone running iOS 18 by connecting it to your Mac and running Playgrounds or live previews directly on the device.
Which on-device models will be supported? any open source models?
The Foundation Models framework currently supports Apple's first-party models only. This allows for platform-wide optimizations, improving battery life and reducing latency. While Core ML can be used to integrate open-source models, it's generally recommended to first explore the built-in system models and APIs provided by Apple, including those in the Vision, Natural Language, and Speech frameworks, as they are highly optimized for Apple devices. For frontier models, MLX can run very large models.
How often will the Foundational Model be updated? How do we test for stability when the model is updated?
The Foundation Model will be updated in sync with operating system updates. You can test your app against new model versions during the beta period by downloading the beta OS and running your app. It is highly recommended to create an "eval set" of golden prompts and responses to evaluate the performance of your features as the model changes or as you tweak your prompts. Report any unsatisfactory or satisfactory cases using Feedback Assistant.
Which on-device model/API can I use to extract text data from images such as: nutrition labels, ingredient lists, cashier receipts, etc? Thank you.
The Vision framework offers the RecognizeDocumentRequest which is specifically designed for these use cases. It not only recognizes text in images but also provides the structure of the document, such as rows in a receipt or the layout of a nutrition label. It can also identify data like phone numbers, addresses, and prices.
What is the context window for the model? What are max tokens in and max tokens out?
The context window for the Foundation Model is 4,096 tokens. The split between input and output tokens is flexible. For example, if you input 4,000 tokens, you'll have 96 tokens remaining for the output. The API takes in text, converting it to tokens under the hood. When estimating token count, a good rule of thumb is 3-4 characters per token for languages like English, and 1 character per token for languages like Japanese or Chinese. Handle potential errors gracefully by asking for shorter prompts or starting a new session if the token limit is exceeded.
Is there a rate limit for Foundation Models API that is limited by power or temperature condition on the iPhone?
Yes, there are rate limits, particularly when your app is in the background. A budget is allocated for background app usage, but exceeding it will result in rate-limiting errors. In the foreground, there is no rate limit unless the device is under heavy load (e.g., camera open, game mode). The system dynamically balances performance, battery life, and thermal conditions, which can affect the token throughput. Use appropriate quality of service settings for your tasks (e.g., background priority for background work) to help the system manage resources effectively.
Do the foundation models support languages other than English?
Yes, the on-device Foundation Model is multilingual and supports all languages supported by Apple Intelligence. To get the model to output in a specific language, prompt it with instructions indicating the user's preferred language using the locale API (e.g., "The user's preferred language is en-US"). Putting the instructions in English, but then putting the user prompt in the desired output language is a recommended practice.
Are larger server-based models available through Foundation Models?
No, the Foundation Models API currently only provides access to the on-device Large Language Model at the core of Apple Intelligence. It does not support server-side models. On-device models are preferred for privacy and for performance reasons.
Is it possible to run Retrieval-Augmented Generation (RAG) using the Foundation Models framework?
Yes, it is possible to run RAG on-device, but the Foundation Models framework does not include a built-in embedding model. You'll need to use a separate database to store vectors and implement nearest neighbor or cosine distance searches. The Natural Language framework offers simple word and sentence embeddings that can be used. Consider using a combination of Foundation Models and Core ML, using Core ML for your embedding model.
Topic:
Machine Learning & AI
SubTopic:
General
I'd love to add a feature based on FoundationModels to the Mac Catalyst version of my iOS app. Unfortunately I get an error when importing FoundationModels: No such module 'FoundationModels'.
Documentation says Mac Catalyst is supported: https://developer.apple.com/documentation/foundationmodels
I can create iOS builds using the FoundationModels framework without issues.
Hope this will be fixed soon!
Config:
Xcode 26.0 beta (17A5241e)
macOS 26.0 Beta (25A5279m)
15-inch, M4, 2025 MacBook Air
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
i'm trying to create an NLModel within a MessageFilterExtension handler.
The code works fine in the main app, but when I try to use it in the extension it fails to initialize. Just this doesn't even work and gets the error below.
Single line that fails.
SMS_Classifier is the class xcode generated for my model. This line works fine in the main app.
let mlModel = try SMS_Classifier(configuration: MLModelConfiguration()).model
Error
Unable to locate Asset for contextual word embedding model for local en.
MLModelAsset: load failed with error Error Domain=com.apple.CoreML Code=0 "initialization of text classifier model with model data failed" UserInfo={NSLocalizedDescription=initialization of text classifier model with model data failed}
Any ideas?
I am calling into an app extension from a Safari Web Extension (sendNativeMessage, which in turn results in a call to NSExtensionRequestHandling’s beginRequest). My Safari extension aims to make use of the new foundation models for some of the features it provides.
In my testing, I hit the rate limit by sending 4 requests, waiting 30 seconds between each. This makes the FoundationModels framework (which would otherwise serve my use case perfectly well) unusable in this context, because the model is called in response to user input, and this rate of user input is perfectly plausible in a real world scenario.
The error thrown as a result of the rate limit is “Safety guardrail was triggered after consecutive failures during streaming.", but looking at the system logs in Console.app shows the rate limit as the real culprit.
My suggestions:
Please introduce sensible rate limits for app extensions, through an entitlement if need be. If it is rate limited to 1 request per every couple of seconds, that would already fix the issue for me.
Please document the rate limit.
Please make the thrown error reflect that it is the result of a rate limit and not a generic guardrail violation. IMPORTANT: please indicate in the thrown error when it is safe to try again.
Filed a feedback here: FB18332004
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi,
I have been trying to integrate a CoreML model into Xcode. The model was made using tensorflow layers. I have included both the model info and a link to the app repository. I am mainly just really confused on why its not working. It seems to only be printing the result for case 1 (there are 4 cases labled, case 0, case 1, case 2, and case 3).
If someone could help work me through this error that would be great!
here is the link to the repository: https://github.com/ShivenKhurana1/Detect-to-Protect-App
this file with the model code is called SecondView.swift
and here is the model info:
Input: conv2d_input-> image (color 224x224)
Output: Identity -> MultiArray (Float32 1x4)
iOS 18.2 includes a new feature called Visual Intelligence. If I hold down the Camera Control on my iPhone, I can take a photo of an object and use Google to look up items similar to what I've photographed.
Is there a way to programmatically open this interface within my app? If so, can I see which result the user selects?
I am writing to inquire about content exclusion capabilities within Apple Intelligence, particularly regarding the use of configuration files such as .aiignore or .aiexclude—similar to what exists in other AI-assisted coding tools. These mechanisms are highly valuable in managing what content AI systems can access, especially in environments that involve sensitive code or proprietary frameworks.
I would appreciate it if anyone could clarify whether Apple Intelligence currently supports any exclusion configuration for AI-assisted features. If so, could you kindly provide documentation or guidance on how developers can implement these controls?
If not, Is there any plan to include such feature in future updates?
Hello
It seems the model Content Tagging doesn't obey when I define the type of tag I wish in the instructions parameters, always the output are the main topics.
The unique form to get other type of tags like emotions is using Generable + Guided types. The documentation says it is recommended but not mandatory the use instructions.
Maybe I'm setting wrongly the instructions but take a look in the attached snapshot. I copied the definition of tagging emotions from the official documentation. The upper example is employing generable and it works but in the example at the botton I set like instruction the same description of emotion and it doesn't work. I tried with other statements with more or less verbose and never output emotions.
Could you provide a state using instruction where it works? Current version of model isn't working with instruction?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I downloaded Xcode Beta 1 on my mac (did not upgrade the OS). The target OS level of iOS26 and the device simulator for iOS26 is downloaded and selected as the target.
When I try a simple Playground in Xcode ( #Playground ) I get a session error.
#Playground {
let avail = SystemLanguageModel.default.availability
if avail != .available {
print("SystemLanguageModel not available")
return
}
let session = LanguageModelSession()
do {
let response = try await session.respond(to: "Create a recipe for apple pie")
} catch {
print(error)
}
}
The error I get is:
Asset com.apple.gm.safety_deny_input.foundation_models.framework.api not found in Model Catalog
Is there a way to test drive the FoundationModel code without upgrading to macos26?
Introduced in the Keynote was the 3D Lock Screen images with the kangaroo:
https://9to5mac.com/wp-content/uploads/sites/6/2025/06/3d-lock-screen-2.gif
I can't see any mention on if this effect is available for developers with an API to convert flat 2D photos in to the same 3D feeling image.
Does anyone know if there is an API?
Topic:
Machine Learning & AI
SubTopic:
General
Trying the Foundation Model framework and when I try to run several sessions in a loop, I'm getting a thrown error that I'm hitting a rate limit.
Are these rate limits documented? What's the best practice here?
I'm trying to run the models against new content downloaded from a web service where I might get ~200 items in a given download. They're relatively small but there can be that many that want to be processed in a loop.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I've downloaded the Xcode-beta and run the sample project "FoundationModelsTripPlanner" but I got this error when trying generate the response.
InferenceError::inferenceFailed::Error Domain=com.apple.UnifiedAssetFramework Code=5000 "There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.modelcatalog" UserInfo={NSLocalizedFailureReason=There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.modelcatalog}
Device: M1 Pro
Question:
Is it because M1 not supporting this feature?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi everyone,
I'm developing an iOS app using Foundation Models and I've hit a critical limitation that I believe affects many developers and millions of users.
The Issue
Foundation Models requires the device system language to be one of the supported languages. If a user has their device set to an unsupported language (Catalan, Dutch, Swedish, Polish, Danish, Norwegian, Finnish, Czech, Hungarian, Greek, Romanian, and many others), SystemLanguageModel.isSupported returns false and the framework is completely unavailable.
Why This Is Problematic
Scenario: A Catalan user has their iPhone in Catalan (native language). They want to use an AI chat app in Spanish or English (languages they speak fluently).
Current situation:
❌ Foundation Models: Completely unavailable
✅ OpenAI GPT-4: Works perfectly
✅ Anthropic Claude: Works perfectly
✅ Any cloud-based AI: Works perfectly
The user must choose between:
Keep device in Catalan → Cannot use Foundation Models at all
Change entire device to Spanish → Can use Foundation Models but terrible UX
Impact
This affects:
Millions of users in regions where unsupported languages are official
Multilingual users who prefer their device in their native language but can comfortably interact with AI in English/Spanish
Developers who cannot deploy Foundation Models-based apps in these markets
Privacy-conscious users who are ironically forced to use cloud AI instead of on-device AI
What We Need
One of these solutions would solve the problem:
Option 1: Per-app language override (preferred)
// Proposed API
let session = try await LanguageModelSession(preferredLanguage: "es-ES")
Option 2: Faster rollout of additional languages (particularly EU languages)
Option 3: Allow fallback to user-selected supported language when system language is unsupported
Technical Details
Current behavior:
// Device in Catalan
let isAvailable = SystemLanguageModel.isSupported
// Returns false
// No way to override or specify alternative language
Why This Matters
Apple Intelligence and Foundation Models are amazing for privacy and performance. But this language restriction makes the most privacy-focused AI solution less accessible than cloud alternatives. This seems contrary to Apple's values of accessibility and user choice.
Questions for the Community
Has anyone else encountered this limitation?
Are there any workarounds I'm missing?
Has anyone successfully filed feedback about this?(Please share FB number so we can reference it)
Are there any sessions or labs where this has been discussed?
Thanks for reading. I'd love to hear if others are facing this and how you're handling it.
Lately I am getting this error.
GenerativeModelsAvailability.Parameters: Initialized with invalid language code: en-GB. Expected to receive two-letter ISO 639 code. e.g. 'zh' or 'en'. Falling back to: en
Does anyone know what this is and how it can be resolved. The error does not crash the app
Hello, is it allowed to use Foundation Model Framework in submission app for WWDC26? The thing is that Apple Intelligence needs to be enabled in the settings. So, does that mean the jury won't be able to fully utilize the app's AI functionality?
Attempted to download the Adapter Toolkit linked to from https://developer.apple.com/apple-intelligence/foundation-models-adapter/. Failed on all attempts, with a "403 Forbidden" error. I had accepted the agreement on the first attempt. How would we get access please?
Hey dear developers!
This post should be available for the future Siri updates and improvements but also for wishes in this forum so that everyone can share their opinion and idea please stay friendly. have fun! I had already thought about developing a demo app to demonstrate my idea for a better Siri.
My change of many:
Wish Update: Siri's language recognition capabilities have been significantly enhanced. Instead of manually setting the language, Siri can now automatically recognize the language you intend to use, making language switching much more efficient. Simply speak the language you want to communicate in, and Siri will automatically recognize it and respond accordingly. Whether you speak English, German, or Japanese, Siri will respond in the language you choose.
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Tags:
iPhone
Siri Event Suggestions Markup
Siri and Voice
Apple Intelligence
Itself been 4-5 days my Image playground has showing the “Downloading Support for Image Playground “
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence