Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Created

CoreML model can load on MacOS 15.3.1 but failed to load on MacOS 15.5
I have been working on a small CV program, which uses fine-tuned U2Netp model converted by coremltools 8.3.0 from PyTorch. It works well on my iPhone (with iOS version 18.5) and my Macbook (with MacOS version 15.3.1). But it fails to load after I upgraded Macbook to MacOS version 15.5. I have attached console log when loading this model. Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage @ GetMPSGraphExecutable E5RT: Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage (13) Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage @ GetMPSGraphExecutable E5RT: Unable to load MPSGraphExecutable from path /Users/yongzhang/Library/Caches/swiftmetal/com.apple.e5rt.e5bundlecache/24F74/E051B28C6957815C140A86134D673B5C015E79A1460E9B54B8764F659FDCE645/16FA8CF2CDE66C0C427F4B51BBA82C38ACC44A514CCA396FD7B281AAC087AB2F.bundle/H14C.bundle/main/main_mps_graph/main_mps_graph.mpsgraphpackage (13) Failure translating MIL->EIR network: Espresso exception: "Network translation error": MIL->EIR translation error at /Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil:1557:12: Parameter binding for axes does not exist. [Espresso::handle_ex_plan] exception=Espresso exception: "Network translation error": MIL->EIR translation error at /Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil:1557:12: Parameter binding for axes does not exist. status=-14 Failed to build the model execution plan using a model architecture file '/Users/yongzhang/CLionProjects/ImageSimilarity/models/compiled/u2netp.mlmodelc/model.mil' with error code: -14.
0
0
145
Jul ’25
How to Ensure Controlled and Contextual Responses Using Foundation Models ?
Hi everyone, I’m currently exploring the use of Foundation models on Apple platforms to build a chatbot-style assistant within an app. While the integration part is straightforward using the new FoundationModel APIs, I’m trying to figure out how to control the assistant’s responses more tightly — particularly: Ensuring the assistant adheres to a specific tone, context, or domain (e.g. hospitality, healthcare, etc.) Preventing hallucinations or unrelated outputs Constraining responses based on app-specific rules, structured data, or recent interactions I’ve experimented with prompt, systemMessage, and few-shot examples to steer outputs, but even with carefully generated prompts, the model occasionally produces incorrect or out-of-scope responses. Additionally, when using multiple tools, I'm unsure how best to structure the setup so the model can select the correct pathway/tool and respond appropriately. Is there a recommended approach to guiding the model's decision-making when several tools or structured contexts are involved? Looking forward to hearing your thoughts or being pointed toward related WWDC sessions, Apple docs, or sample projects.
0
0
119
Jul ’25
Correct JSON format for CoreMotion data for ActivityClassification purposes
I’m developing an activity classifier that I’d like to input using the JSON format of CoreMotion data. I am getting the error: Unable to parse /Users/DewG/Downloads/Testing/Step1/Testing.json. It does not appear to be in JSON record format. A SequenceType of dictionaries is expected I've verified that the format I am using is JSON via various JSON validators, so I am expecting I'm just holding it wrong. Is there an example of a JSON file with CoreMotion data that I can model after?
2
0
124
Jul ’25
Is it possible to pass the streaming output of Foundation Models down a function chain
I am writing a custom package wrapping Foundation Models which provides a chain-of-thought with intermittent self-evaluation among other things. At first I was designing this package with the command line in mind, but after seeing how well it augments the models and makes them more intelligent I wanted to try and build a SwiftUI wrapper around the package. When I started I was using synchronous generation rather than streaming, but to give the best user experience (as I've seen in the WWDC sessions) it is necessary to provide constant feedback to the user that something is happening. I have created a super simplified example of my setup so it's easier to understand. First, there is the Reasoning conversation item, which can be converted to an XML representation which is then fed back into the model (I've found XML works best for structured input) public typealias ConversationContext = XMLDocument extension ConversationContext { public func toPlainText() -> String { return xmlString(options: [.nodePrettyPrint]) } } /// Represents a reasoning item in a conversation, which includes a title and reasoning content. /// Reasoning items are used to provide detailed explanations or justifications for certain decisions or responses within a conversation. @Generable(description: "A reasoning item in a conversation, containing content and a title.") struct ConversationReasoningItem: ConversationItem { @Guide(description: "The content of the reasoning item, which is your thinking process or explanation") public var reasoningContent: String @Guide(description: "A short summary of the reasoning content, digestible in an interface.") public var title: String @Guide(description: "Indicates whether reasoning is complete") public var done: Bool } extension ConversationReasoningItem: ConversationContextProvider { public func toContext() -> ConversationContext { // <ReasoningItem title="${title}"> // ${reasoningContent} // </ReasoningItem> let root = XMLElement(name: "ReasoningItem") root.addAttribute(XMLNode.attribute(withName: "title", stringValue: title) as! XMLNode) root.stringValue = reasoningContent return ConversationContext(rootElement: root) } } Then there is the generator, which creates a reasoning item from a user query and previously generated items: struct ReasoningItemGenerator { var instructions: String { """ <omitted for brevity> """ } func generate(from input: (String, [ConversationReasoningItem])) async throws -> sending LanguageModelSession.ResponseStream<ConversationReasoningItem> { let session = LanguageModelSession(instructions: instructions) // build the context for the reasoning item out of the user's query and the previous reasoning items let userQuery = "User's query: \(input.0)" let reasoningItemsText = input.1.map { $0.toContext().toPlainText() }.joined(separator: "\n") let context = userQuery + "\n" + reasoningItemsText let reasoningItemResponse = try await session.streamResponse( to: context, generating: ConversationReasoningItem.self) return reasoningItemResponse } } I'm not sure if returning LanguageModelSession.ResponseStream<ConversationReasoningItem> is the right move, I am just trying to imitate what session.streamResponse returns. Then there is the orchestrator, which I can't figure out. It receives the streamed ConversationReasoningItems from the Generator and is responsible for streaming those to SwiftUI later and also for evaluating each reasoning item after it is complete to see if it needs to be regenerated (to keep the model on-track). I want the users of the orchestrator to receive partially generated reasoning items as they are being generated by the generator. Later, when they finish, if the evaluation passes, the item is kept, but if it fails, the reasoning item should be removed from the stream before a new one is generated. So in-flight reasoning items should be outputted aggresively. I really am having trouble figuring this out so if someone with more knowledge about asynchronous stuff in Swift, or- even better- someone who has worked on the Foundation Models framework could point me in the right direction, that would be awesome!
0
0
252
Jul ’25
"FoundationModels GenerationError error 2" on iOS 26 beta 3
Hi all, I'm working on an app that utilizes the FoundationModels found in iOS 26. I updated my phone to iOS 26 beta 3 and am now receiving the following error when trying to run code that worked in beta 2: Al Error: The operation couldn't be completed. (FoundationModels.LanguageModelSession.Genera- tionError error 2.) I admit I'm a bit of a new developer, but any idea if this is an issue with beta 3 or work that I'll need to do to adapt my code to some changes in the AI API? Thank you!
23
6
1.4k
Jul ’25
Foundation Models performance reality check - anyone else finding it slow?
Testing Foundation Models framework with a health-focused recipe generation app. The on-device approach is appealing but performance is rough. Taking 20+ seconds just to get recipe name and description. Same content from Claude API: 4 seconds. I know it's beta and on-device has different tradeoffs, but this is approaching unusable territory for real-time user experience. The streaming helps psychologically but doesn't mask the underlying latency.The privacy/cost benefits are compelling but not if users abandon the feature before it completes. Anyone else seeing similar performance? Is this expected for beta, or are there optimization techniques I'm missing?
5
0
285
Jul ’25
Converting TF2 object detection to CoreML
I've spent way too long today trying to convert an Object Detection TensorFlow2 model to a CoreML object classifier (with bounding boxes, labels and probability score) The 'SSD MobileNet v2 320x320' is here: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md And I've been following all sorts of posts and ChatGPT https://apple.github.io/coremltools/docs-guides/source/tensorflow-2.html#convert-a-tensorflow-concrete-function https://developer.apple.com/videos/play/wwdc2020/10153/?time=402 To convert it. I keep hitting the same errors though, mostly around: NotImplementedError: Expected model format: [SavedModel | concrete_function | tf.keras.Model | .h5 | GraphDef], got <ConcreteFunction signature_wrapper(input_tensor) at 0x366B87790> I've had varying success including missing output labels/predictions. But I simply want to create the CoreML model with all the right inputs and outputs (including correct names) as detailed in the docs here: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_mobile_tf2.md It goes without saying I don't have much (any) experience with this stuff including Python so the whole thing's been a bit of a headache. If anyone is able to help that would be great. FWIW I'm not attached to any one specific model, but what I do need at minimum is a CoreML model that can detect objects (has to at least include lights and lamps) within a live video image, detecting where in the image the object is. The simplest script I have looks like this: import coremltools as ct import tensorflow as tf model = tf.saved_model.load("~/tf_models/ssd_mobilenet_v2_320x320_coco17_tpu-8/saved_model") concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY] mlmodel = ct.convert( concrete_func, source="tensorflow", inputs=[ct.TensorType(shape=(1, 320, 320, 3))] ) mlmodel.save("YourModel.mlpackage", save_format="mlpackage")
1
0
424
Jul ’25
Issue with #Playground and Foundation Model
Hi all, I’m encountering an issue when trying to run Apple Foundation Models in a blank project targeting iOS 26. Below are the details: Xcode: Latest version with iOS 26 SDK macOS: macOS 26 Tahoe (installed on main disk) Mac: 16” MacBook Pro with M2 Pro chip Apple Intelligence: Available and functional on this machine Problem: I created a new blank iOS project, set the deployment target to iOS 26, and ran the following minimal code using Foundation Models. However, I get no response at all in the output - not even an error. The app runs, but the model does not produce any output. #Playground { let session = LanguageModelSession() let response = try await session.respond(to: "Tell me a story") } Then, I tried to catch an error with this code: #Playground { let session = LanguageModelSession() do { let response = try await session.respond(to: "Tell me a story") print(response) } catch { print("Failed to get response:", error) } print("This line, never gets executed") } And got these results: I’ve done further testing and discovered something important: I tried running the Code Along sample project, and there the #Playground macro worked without issues. The only significant difference I noticed was the Canvas run destination: In my original project, I was using iPhone 16 Pro (iOS 26) as the run target in Canvas. Apple Intelligence was enabled on the simulator, but no response was returned when executing the prompt. In the sample project, the Canvas was running on My Mac. I attempted to match that setup, but at first, my destination was My Mac (Designed for iPad), which still didn’t work. The macro finally executed properly once I switched to My Mac (AppKit). So the question is ... it seems that for now, Foundation Models and the #Playground macro only run correctly when the canvas or destination is set to “My Mac (AppKit)”?
7
0
491
Jul ’25
What's the best way to load adapters to try?
I'm new to Swift and was hoping the Playground would support loading adaptors. When I tried, I got a permissions error - thinking it's because it's not in the project and Playgrounds don't like going outside the project? A tutorial and some sample code would be helpful. Also some benchmarks on how long it's expected to take. Selfishly I'm on an M2 Mac Mini.
1
0
294
Jul ’25
Crash inside of Vision predictWithCVPixelBuffer - Crashed: com.apple.VN.detectorSyncTasksQueue.VNCoreMLTransformer
Hello, We have been encountering a persistent crash in our application, which is deployed exclusively on iPad devices. The crash occurs in the following code block: let requestHandler = ImageRequestHandler(paddedImage) var request = CoreMLRequest(model: model) request.cropAndScaleAction = .scaleToFit let results = try await requestHandler.perform(request) The client using this code is wrapped inside an actor, following Swift concurrency principles. The issue has been consistently reproduced across multiple iPadOS versions, including: iPad OS - 18.4.0 iPad OS - 18.4.1 iPad OS - 18.5.0 This is the crash log - Crashed: com.apple.VN.detectorSyncTasksQueue.VNCoreMLTransformer 0 libobjc.A.dylib 0x7b98 objc_retain + 16 1 libobjc.A.dylib 0x7b98 objc_retain_x0 + 16 2 libobjc.A.dylib 0xbf18 objc_getProperty + 100 3 Vision 0x326300 -[VNCoreMLModel predictWithCVPixelBuffer:options:error:] + 148 4 Vision 0x3273b0 -[VNCoreMLTransformer processRegionOfInterest:croppedPixelBuffer:options:qosClass:warningRecorder:error:progressHandler:] + 748 5 Vision 0x2ccdcc __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_5 + 132 6 Vision 0x14600 VNExecuteBlock + 80 7 Vision 0x14580 __76+[VNDetector runSuccessReportingBlockSynchronously:detector:qosClass:error:]_block_invoke + 56 8 libdispatch.dylib 0x6c98 _dispatch_block_sync_invoke + 240 9 libdispatch.dylib 0x1b584 _dispatch_client_callout + 16 10 libdispatch.dylib 0x11728 _dispatch_lane_barrier_sync_invoke_and_complete + 56 11 libdispatch.dylib 0x7fac _dispatch_sync_block_with_privdata + 452 12 Vision 0x14110 -[VNControlledCapacityTasksQueue dispatchSyncByPreservingQueueCapacity:] + 60 13 Vision 0x13ffc +[VNDetector runSuccessReportingBlockSynchronously:detector:qosClass:error:] + 324 14 Vision 0x2ccc80 __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_4 + 336 15 Vision 0x14600 VNExecuteBlock + 80 16 Vision 0x2cc98c __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_3 + 256 17 libdispatch.dylib 0x1b584 _dispatch_client_callout + 16 18 libdispatch.dylib 0x6ab0 _dispatch_block_invoke_direct + 284 19 Vision 0x2cc454 -[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:] + 632 20 Vision 0x2cd14c __111-[VNDetector processUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke + 124 21 Vision 0x14600 VNExecuteBlock + 80 22 Vision 0x2ccfbc -[VNDetector processUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:] + 340 23 Vision 0x125410 __swift_memcpy112_8 + 4852 24 libswift_Concurrency.dylib 0x5c134 swift::runJobInEstablishedExecutorContext(swift::Job*) + 292 25 libswift_Concurrency.dylib 0x5d5c8 swift_job_runImpl(swift::Job*, swift::SerialExecutorRef) + 156 26 libdispatch.dylib 0x13db0 _dispatch_root_queue_drain + 364 27 libdispatch.dylib 0x1454c _dispatch_worker_thread2 + 156 28 libsystem_pthread.dylib 0x9d0 _pthread_wqthread + 232 29 libsystem_pthread.dylib 0xaac start_wqthread + 8 We found an issue similar to us - https://developer.apple.com/forums/thread/770771. But the crash logs are quite different, we believe this warrants further investigation to better understand the root cause and potential mitigation strategies. Please let us know if any additional information would help diagnose this issue.
3
0
362
Jul ’25
ActivityClassifier doesn't classify movement
I'm using a custom create ML model to classify the movement of a user's hand in a game, The classifier has 3 different spell movements, but my code constantly predicts all of them at an equal 1/3 probability regardless of movement which leads me to believe my code isn't correct (as opposed to the model) which in CreateML at least gives me a heavily weighted prediction My code is below. On adding debug prints everywhere all the data looks good to me and matches similar to my test CSV data So I'm thinking my issue must be in the setup of my model code? /// Feeds samples into the model and keeps a sliding window of the last N frames. final class WandGestureStreamer { static let shared = WandGestureStreamer() private let model: SpellActivityClassifier private var samples: [Transform] = [] private let windowSize = 100 // number of frames the model expects /// RNN hidden state passed between inferences private var stateIn: MLMultiArray /// Last transform dropped from the window for continuity private var lastDropped: Transform? private init() { let config = MLModelConfiguration() self.model = try! SpellActivityClassifier(configuration: config) // Initialize stateIn to the model’s required shape let constraint = self.model.model.modelDescription .inputDescriptionsByName["stateIn"]! .multiArrayConstraint! self.stateIn = try! MLMultiArray(shape: constraint.shape, dataType: .double) } /// Call once per frame with the latest wand position (or any feature vector). func appendSample(_ sample: Transform) { samples.append(sample) // drop oldest frame if over capacity, retaining it for delta at window start if samples.count > windowSize { lastDropped = samples.removeFirst() } } func classifyIfReady(threshold: Double = 0.6) -> (label: String, confidence: Double)? { guard samples.count == windowSize else { return nil } do { let input = try makeInput(initialState: stateIn) let output = try model.prediction(input: input) // Save state for continuity stateIn = output.stateOut let best = output.label let conf = output.labelProbability[best] ?? 0 // If you’ve recognized a gesture with high confidence: if conf > threshold { return (best, conf) } else { return nil } } catch { print("Error", error.localizedDescription, error) return nil } } /// Constructs a SpellActivityClassifierInput from recorded wand transforms. func makeInput(initialState: MLMultiArray) throws -> SpellActivityClassifierInput { let count = samples.count as NSNumber let shape = [count] let timeArr = try MLMultiArray(shape: shape, dataType: .double) let dxArr = try MLMultiArray(shape: shape, dataType: .double) let dyArr = try MLMultiArray(shape: shape, dataType: .double) let dzArr = try MLMultiArray(shape: shape, dataType: .double) let rwArr = try MLMultiArray(shape: shape, dataType: .double) let rxArr = try MLMultiArray(shape: shape, dataType: .double) let ryArr = try MLMultiArray(shape: shape, dataType: .double) let rzArr = try MLMultiArray(shape: shape, dataType: .double) for (i, sample) in samples.enumerated() { let previousSample = i > 0 ? samples[i - 1] : lastDropped let model = WandMovementRecording.DataModel(transform: sample, previous: previousSample) // print("model", model) timeArr[i] = NSNumber(value: model.timestamp) dxArr[i] = NSNumber(value: model.dx) dyArr[i] = NSNumber(value: model.dy) dzArr[i] = NSNumber(value: model.dz) let rot = model.rotation rwArr[i] = NSNumber(value: rot.w) rxArr[i] = NSNumber(value: rot.x) ryArr[i] = NSNumber(value: rot.y) rzArr[i] = NSNumber(value: rot.z) } return SpellActivityClassifierInput( dx: dxArr, dy: dyArr, dz: dzArr, rotation_w: rwArr, rotation_x: rxArr, rotation_y: ryArr, rotation_z: rzArr, timestamp: timeArr, stateIn: initialState ) } }
1
0
375
Jul ’25
Apple's Illusion of Thinking paper and Path to Real AI Reasoning
Hey everyone I'm Manish Mehta, field CTO at Centific. I recently read Apple's white paper, The Illusion of Thinking and it got me thinking about the current state of AI reasoning. Who here has read it? The paper highlights how LLMs often rely on pattern recognition rather than genuine understanding. When faced with complex tasks, their performance can degrade significantly. I was just thinking that to move beyond this problem, we need to explore approaches that combines Deeper Reasoning Architectures for true cognitive capability with Deep Human Partnership to guide AI toward better judgment and understanding. The first part means fundamentally rewiring AI to reason. This involves advancing deeper architectures like World Models, which can build internal simulations to understand real-world scenarios , and Neurosymbolic systems, which combines neural networks with symbolic reasoning for deeper self-verification. Additionally, we need to look at deep human partnership and scalable oversight. An AI cannot learn certain things from data alone, it lacks the real-world judgment an AI will never have. Among other things, deep domain expert human partners are needed to instill this wisdom , validate the AI's entire reasoning process , build its ethical guardrails , and act as skilled adversaries to find hidden flaws before they can cause harm. What do you all think? Is this focus on a deeper partnership between advanced AI reasoning and deep human judgment the right path forward? Agree? Disagree? Thanks
2
0
288
Jul ’25
Initializing session with transcript ignores tools
When I initialize a session with an existing transcript using this initializer: public convenience init(model: SystemLanguageModel = .default, guardrails: LanguageModelSession.Guardrails = .default, tools: [any Tool] = [], transcript: Transcript) The tools get ignored. I noticed that when doing that, the model never use the tools. When inspecting the transcript, I can see that the instruction entry does not have any tools available to it. I tried this for both transcripts that already include an instruction entry and ones that don't - both yielding the same result.. Is this the intended behavior / am I missing something here?
1
0
209
Jul ’25
Stream response
With respond() methods, the foundation model works well enough. With streamResponse() methods, the responses are very repetitive, verbose, and messy. My app with foundation model uses more than 500 MB memory on an iPad Pro when running from Xcode. Devices supporting Apple Intelligence have at least 8GB memory. Should Apple use a bigger model (using 3 ~ 4 GB memory) for better stream responses?
2
0
265
Jul ’25