Hi,
We're encountering an intermittent issue where certain users are unexpectedly logged out of our app and unable to log in again.
We believe we've narrrowed down the issue to the Keychain due to the following reasons:
We use a keychain item to determine if the member is logged in or not. Failure to retrieve the value leads the app to believe the member is logged out.
API error logs on the server show 3 missing values in fields that are each populated from items stored in the keychain.
Additional Notes:
The issue is hard to reproduce and seems to affect only a subset of users.
In some cases, uninstalling and reinstalling the app temporarily resolves the problem, but the issue recurs after a period of time.
The behavior appears to have coincided with the release of iOS 18.
We’re using the “kSecAttrAccessibleWhenUnlocked” accessibility attribute. Given that our app doesn’t perform background operations, we wouldn’t expect this to be an issue. We’re also considering changing this to "kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly" to see if this might resolve the issue.
We're the keychain-swift library to interact with the keychain.
We are currently adding extensive logging around our keychain implementation to confirm our findings but are looking for any additional input.
Questions:
Has anyone encountered similar keychain behavior on iOS 18?
Are there known changes or stability issues with the keychain in iOS 18 that might lead to such intermittent “item not found” errors?
Any recommended workarounds or troubleshooting steps that could help isolate the problem further?
Thanks for any help you can provide.
General
RSS for tagPrioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hello,
I've developed a macOS app with an AutoFill Credential Provider extension that functions as a passkey provider. In the registration flow, I want my app to appear as a passkey provider only when specific conditions are met.
Is there a way to inspect the request from the web before the passkey provider selection list is displayed to the user, determine whether my app can handle it, and then use that result to instruct the OS on whether to include my app in the passkey provider selection list?
Alternatively, is there a way to predefine conditions that must be met before my app is offered as a passkey provider in the selection list?
Thanks!
Topic:
Privacy & Security
SubTopic:
General
Tags:
Extensions
Autofill
Authentication Services
Passkeys in iCloud Keychain
I regularly see folks having problems importing cryptographic keys, so I thought I’d write down some hints and tips on how to recognise and import the various key formats. This post describes how to import each type of key. A companion post, On Cryptographic Keys Formats, discusses how to recognise the format of the data you have.
If you have questions about any of this stuff, put them a new thread in Privacy & Security > General. Tag your thread with Security or Apple CrytoKit, or both!, so that I see it.
Finally, if you want to see a specific example of these techniques in action, see Importing a PEM-based RSA Private Key and its Certificate.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Importing Cryptographic Keys
Apple platforms support 5 different key types:
RSA (Security framework only)
SECG secp256r1, aka NIST P-256 (Security framework and Apple CryptoKit)
SECG secp384r1, aka NIST P-384 (Security framework and Apple CryptoKit)
SECG secp521r1, aka NIST P-521 (Security framework and Apple CryptoKit)
Curve 25519 (Apple CryptoKit only)
This post explains how to import each type of key. If you’re not sure what type of key you have, or how its encoded, or you run into weird problems and suspect that you might be using the wrong key type or encoding, read On Cryptographic Keys Formats.
Note This post focuses on APIs available on all Apple platforms. Some Mac-specific APIs can import other formats.
The Security framework uses the SecKey type for all key types that it supports.
Apple CryptoKit has a different approach: It uses different types for different key types, which helps catch common programming mistakes at compile time. There are 4 top-level enums:
P256, for SECG secp256r1
P384, for SECG secp384r1
P521, for SECG secp521r1
Curve25519, for Curve 25519
Each of those enums contains a KeyAgreement enum and a Signing enum, where you express the intended purpose for your key. In this post I always use Signing but the code will work the same if you choose KeyAgreement.
Finally, in each of those enums you’ll find both Public and Private types; these are structs that represent a specific public or private key.
Undo PEM Encoding
Writing a full-featured PEM parser is tricky. It is, however, relatively straightforward to undo the PEM encoding of a known simple PEM file. For example, if you have this file:
% cat p256-private-key.pem
-----BEGIN PRIVATE KEY-----
MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgmGp6kcu19PgWNuga
r/CDWncdxmhlxAeo6ERpz2q4pHehRANCAASXR+mBqrjqcaJVzZoVYoWMQGAG8eQY
Jg0x4ad/bCs1qaMTLyMtsANR2dgANIfU7lKEeZAxPap8ch+I1LtW2pHH
-----END PRIVATE KEY-----
Decode it like so:
let u = URL(fileURLWithPath: "p256-private-key.pem")
guard let pem = try? String(contentsOf: u) else {
… handle error …
}
let pemBase64 = pem
.split(separator: "\n")
.dropFirst()
.dropLast()
.joined()
guard let pemData = Data(base64Encoded: String(pemBase64)) else {
… handle error …
}
debugPrint(pemData as NSData)
// prints:
// <30818702 01003013 06072a86 48ce3d02 0106082a 8648ce3d … d4bb56da 91c7>
Import RSA Keys
Use SecKeyCreateWithData to import an RSA key. If you have an RSAPublicKey structure like this:
% xxd -p rsa-public-key.der
3082010a0282010100cf243c324b262470131648614b62ee9c52af43319c
2498a7c16ba9790bb3a881f960f7b0303f8f49e86fedd6813be5fa888393
55d04426df0050dbb771eb683773b7dd929949695093f910c8dcdb633674
de986ada8d643e0e819b7cd5ab3bde4372103797472dc843a2711699e21a
4afddeed9f62810316903457342c345a35ebb2f06da019fed2afa56e7856
6e75a0d712849ae255155d9304348318930611b3b4f1153d77ee5970f076
299c548c8afff53157205048ade26d40930af2ecc96d4f77e8591523b767
fa3cdbc45a8a210339c4a556cea2e0dfa3ee819b62e463f75d87a53c2fbd
1bbcb8ec8fe2e8000ce37235fa903113c7b37d9c2a8b39c54b0203010001
%
% dumpasn1 -p -a rsa-public-key.der
SEQUENCE {
INTEGER
00 CF 24 3C 32 4B 26 24 70 13 16 48 61 4B 62 EE
9C 52 AF 43 31 9C 24 98 A7 C1 6B A9 79 0B B3 A8
81 F9 60 F7 B0 30 3F 8F 49 E8 6F ED D6 81 3B E5
FA 88 83 93 55 D0 44 26 DF 00 50 DB B7 71 EB 68
37 73 B7 DD 92 99 49 69 50 93 F9 10 C8 DC DB 63
36 74 DE 98 6A DA 8D 64 3E 0E 81 9B 7C D5 AB 3B
DE 43 72 10 37 97 47 2D C8 43 A2 71 16 99 E2 1A
4A FD DE ED 9F 62 81 03 16 90 34 57 34 2C 34 5A
35 EB B2 F0 6D A0 19 FE D2 AF A5 6E 78 56 6E 75
A0 D7 12 84 9A E2 55 15 5D 93 04 34 83 18 93 06
11 B3 B4 F1 15 3D 77 EE 59 70 F0 76 29 9C 54 8C
8A FF F5 31 57 20 50 48 AD E2 6D 40 93 0A F2 EC
C9 6D 4F 77 E8 59 15 23 B7 67 FA 3C DB C4 5A 8A
21 03 39 C4 A5 56 CE A2 E0 DF A3 EE 81 9B 62 E4
63 F7 5D 87 A5 3C 2F BD 1B BC B8 EC 8F E2 E8 00
0C E3 72 35 FA 90 31 13 C7 B3 7D 9C 2A 8B 39 C5
4B
INTEGER 65537
}
Import it with this code:
let u = URL(fileURLWithPath: "rsa-public-key.der")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let privateKey = SecKeyCreateWithData(keyBytes as NSData, [
kSecAttrKeyType: kSecAttrKeyTypeRSA,
kSecAttrKeyClass: kSecAttrKeyClassPublic,
] as NSDictionary, nil) else {
… handle error …
}
print(privateKey)
// prints:
// <SecKeyRef algorithm id: 1, key type: RSAPublicKey, version: 4, block size: 2048 bits, exponent: {hex: 10001, decimal: 65537}, modulus: …, addr: …>
Note You don’t need to include any other attributes in the dictionary you pass to SecKeyCreateWithData. Specifically, many folks think that they need to pass in the kSecAttrKeySizeInBits attribute. This isn’t the case; SecKeyCreateWithData will work out the key size from the key data.
If you have an RSAPrivateKey structure like this:
% xxd -p rsa-private-key.der
308204a30201000282010100cf243c324b262470131648614b62ee9c52af
43319c2498a7c16ba9790bb3a881f960f7b0303f8f49e86fedd6813be5fa
88839355d04426df0050dbb771eb683773b7dd929949695093f910c8dcdb
633674de986ada8d643e0e819b7cd5ab3bde4372103797472dc843a27116
99e21a4afddeed9f62810316903457342c345a35ebb2f06da019fed2afa5
6e78566e75a0d712849ae255155d9304348318930611b3b4f1153d77ee59
70f076299c548c8afff53157205048ade26d40930af2ecc96d4f77e85915
23b767fa3cdbc45a8a210339c4a556cea2e0dfa3ee819b62e463f75d87a5
3c2fbd1bbcb8ec8fe2e8000ce37235fa903113c7b37d9c2a8b39c54b0203
0100010282010044b694716a946089fd0aeb3fbb2e3a5108ecb2b186466d
8d58904a4ba92213c7e9ddcccc5974fc275c3fa4f9ff2ccb816c3f996462
0df9870827ca7af4034f32f5e40c505121151a71bbb161b041e68b6e0159
363901a63b1fbcc6c3866da3127bf51e84125ebe452c8a7a513102dc0dfc
61331a2826fbcb4452d88aaa0f43ccfe436e1554f95bdd883c41e7e8529f
acd7556ba539af3e083e7143ddf8637f67b59eea494b02396ff5089a1964
48dc8f7eb236d2f92a3358d0d6f5af1443205400bbd2758d3ec7cb208c11
7d78d68409f987fd6e43a93a26961c10c05f85458821594d242f8106856c
393f3b971cae1bfc20319e37147b22d2d2179ed5844e8102818100f27c96
e84d6ff814c56996a0e143fa85106d74e2eaa848347d8681bbcc396d85fc
b51d318f543ad25090fe087e0e1ee0202f2ee8674e58609c22cc56e305c5
c55b016d0ca45c847ac88b59dd8a597388b09d7d5f86e2cdf60cb7660d94
a5e4e6f539506a6aacdf67fb9458b016a63d72392129eff5faa210a1739d
948ef0453b02818100daaf65e651382baed753222ab53dfb2f79ef96c6bd
ec1c2822e5b8405900cf9203b2a0e015d12042cc9e686bbf3e5d2d732ed7
45e2a1cc1787637b8f14727dd5da11261d3a7cbe3521296f269cdf2a16ea
2974a710b14f3e61484d2580fef9c5bf4965a7a9ee6055a8c27867609408
7ef1643e81ab17307ca40b79166b693f310281803ed463719ba6f87bc14f
039579e8d83fa42b084f478804f57cd4de469fbafd92eb10ae98c9cf8452
3c47e55aa3f6daaf2e07abbad211adba929a3da201bedc28afd4e5c191d0
db0ec969ba063a33c548d4a269fad7836ae467151a1f48b5d762b4857e3d
a4985866a3fc2322b52babde2dc95709730dd6f2423327d0775cf0430281
8100c4f14336c99c6992bb2e8e4da20de0c21ff14a7b4f9d6cba24bb7754
d412ebdc96e1ef09fffbe72ee172239e2d8c2f83f8008e34cce663942904
c9c8d0644fb920fb62b4ddf06ba813666a487eec67ce5d31da717e920048
b079d9a855e4caf270d3dbedc416fec1060ba53d8c77a4b31617ee46fedb
127a9d8e0b8dca4bed710281800c2fe643bfc8c81b39f1a574c751d2c5ee
0ce836a772197350f2f0a6a4d5248790a0cdf0c25a69a8834d645ea3c96e
e740d95adeea689259ac4ce36a7310c86c9c35441fdd96ff8cec89a65f8c
8666bbc2a42cd2a58e70b1e8b2269ed6307c5a2143cbd41de4682dea4a38
8a7c8d2f4088e9a2008fa986f9b0e92fa517ecc77b
%
% dumpasn1 -p -a rsa-private-key.der
SEQUENCE {
INTEGER 0
INTEGER
00 CF 24 3C 32 4B 26 24 70 13 16 48 61 4B 62 EE
9C 52 AF 43 31 9C 24 98 A7 C1 6B A9 79 0B B3 A8
81 F9 60 F7 B0 30 3F 8F 49 E8 6F ED D6 81 3B E5
FA 88 83 93 55 D0 44 26 DF 00 50 DB B7 71 EB 68
37 73 B7 DD 92 99 49 69 50 93 F9 10 C8 DC DB 63
36 74 DE 98 6A DA 8D 64 3E 0E 81 9B 7C D5 AB 3B
DE 43 72 10 37 97 47 2D C8 43 A2 71 16 99 E2 1A
4A FD DE ED 9F 62 81 03 16 90 34 57 34 2C 34 5A
35 EB B2 F0 6D A0 19 FE D2 AF A5 6E 78 56 6E 75
A0 D7 12 84 9A E2 55 15 5D 93 04 34 83 18 93 06
11 B3 B4 F1 15 3D 77 EE 59 70 F0 76 29 9C 54 8C
8A FF F5 31 57 20 50 48 AD E2 6D 40 93 0A F2 EC
C9 6D 4F 77 E8 59 15 23 B7 67 FA 3C DB C4 5A 8A
21 03 39 C4 A5 56 CE A2 E0 DF A3 EE 81 9B 62 E4
63 F7 5D 87 A5 3C 2F BD 1B BC B8 EC 8F E2 E8 00
0C E3 72 35 FA 90 31 13 C7 B3 7D 9C 2A 8B 39 C5
4B
INTEGER 65537
INTEGER
44 B6 94 71 6A 94 60 89 FD 0A EB 3F BB 2E 3A 51
08 EC B2 B1 86 46 6D 8D 58 90 4A 4B A9 22 13 C7
E9 DD CC CC 59 74 FC 27 5C 3F A4 F9 FF 2C CB 81
6C 3F 99 64 62 0D F9 87 08 27 CA 7A F4 03 4F 32
F5 E4 0C 50 51 21 15 1A 71 BB B1 61 B0 41 E6 8B
6E 01 59 36 39 01 A6 3B 1F BC C6 C3 86 6D A3 12
7B F5 1E 84 12 5E BE 45 2C 8A 7A 51 31 02 DC 0D
FC 61 33 1A 28 26 FB CB 44 52 D8 8A AA 0F 43 CC
FE 43 6E 15 54 F9 5B DD 88 3C 41 E7 E8 52 9F AC
D7 55 6B A5 39 AF 3E 08 3E 71 43 DD F8 63 7F 67
B5 9E EA 49 4B 02 39 6F F5 08 9A 19 64 48 DC 8F
7E B2 36 D2 F9 2A 33 58 D0 D6 F5 AF 14 43 20 54
00 BB D2 75 8D 3E C7 CB 20 8C 11 7D 78 D6 84 09
F9 87 FD 6E 43 A9 3A 26 96 1C 10 C0 5F 85 45 88
21 59 4D 24 2F 81 06 85 6C 39 3F 3B 97 1C AE 1B
FC 20 31 9E 37 14 7B 22 D2 D2 17 9E D5 84 4E 81
INTEGER
00 F2 7C 96 E8 4D 6F F8 14 C5 69 96 A0 E1 43 FA
85 10 6D 74 E2 EA A8 48 34 7D 86 81 BB CC 39 6D
85 FC B5 1D 31 8F 54 3A D2 50 90 FE 08 7E 0E 1E
E0 20 2F 2E E8 67 4E 58 60 9C 22 CC 56 E3 05 C5
C5 5B 01 6D 0C A4 5C 84 7A C8 8B 59 DD 8A 59 73
88 B0 9D 7D 5F 86 E2 CD F6 0C B7 66 0D 94 A5 E4
E6 F5 39 50 6A 6A AC DF 67 FB 94 58 B0 16 A6 3D
72 39 21 29 EF F5 FA A2 10 A1 73 9D 94 8E F0 45
3B
INTEGER
00 DA AF 65 E6 51 38 2B AE D7 53 22 2A B5 3D FB
2F 79 EF 96 C6 BD EC 1C 28 22 E5 B8 40 59 00 CF
92 03 B2 A0 E0 15 D1 20 42 CC 9E 68 6B BF 3E 5D
2D 73 2E D7 45 E2 A1 CC 17 87 63 7B 8F 14 72 7D
D5 DA 11 26 1D 3A 7C BE 35 21 29 6F 26 9C DF 2A
16 EA 29 74 A7 10 B1 4F 3E 61 48 4D 25 80 FE F9
C5 BF 49 65 A7 A9 EE 60 55 A8 C2 78 67 60 94 08
7E F1 64 3E 81 AB 17 30 7C A4 0B 79 16 6B 69 3F
31
INTEGER
3E D4 63 71 9B A6 F8 7B C1 4F 03 95 79 E8 D8 3F
A4 2B 08 4F 47 88 04 F5 7C D4 DE 46 9F BA FD 92
EB 10 AE 98 C9 CF 84 52 3C 47 E5 5A A3 F6 DA AF
2E 07 AB BA D2 11 AD BA 92 9A 3D A2 01 BE DC 28
AF D4 E5 C1 91 D0 DB 0E C9 69 BA 06 3A 33 C5 48
D4 A2 69 FA D7 83 6A E4 67 15 1A 1F 48 B5 D7 62
B4 85 7E 3D A4 98 58 66 A3 FC 23 22 B5 2B AB DE
2D C9 57 09 73 0D D6 F2 42 33 27 D0 77 5C F0 43
INTEGER
00 C4 F1 43 36 C9 9C 69 92 BB 2E 8E 4D A2 0D E0
C2 1F F1 4A 7B 4F 9D 6C BA 24 BB 77 54 D4 12 EB
DC 96 E1 EF 09 FF FB E7 2E E1 72 23 9E 2D 8C 2F
83 F8 00 8E 34 CC E6 63 94 29 04 C9 C8 D0 64 4F
B9 20 FB 62 B4 DD F0 6B A8 13 66 6A 48 7E EC 67
CE 5D 31 DA 71 7E 92 00 48 B0 79 D9 A8 55 E4 CA
F2 70 D3 DB ED C4 16 FE C1 06 0B A5 3D 8C 77 A4
B3 16 17 EE 46 FE DB 12 7A 9D 8E 0B 8D CA 4B ED
71
INTEGER
0C 2F E6 43 BF C8 C8 1B 39 F1 A5 74 C7 51 D2 C5
EE 0C E8 36 A7 72 19 73 50 F2 F0 A6 A4 D5 24 87
90 A0 CD F0 C2 5A 69 A8 83 4D 64 5E A3 C9 6E E7
40 D9 5A DE EA 68 92 59 AC 4C E3 6A 73 10 C8 6C
9C 35 44 1F DD 96 FF 8C EC 89 A6 5F 8C 86 66 BB
C2 A4 2C D2 A5 8E 70 B1 E8 B2 26 9E D6 30 7C 5A
21 43 CB D4 1D E4 68 2D EA 4A 38 8A 7C 8D 2F 40
88 E9 A2 00 8F A9 86 F9 B0 E9 2F A5 17 EC C7 7B
}
Import it with this code:
let u = URL(fileURLWithPath: "rsa-private-key.der")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let privateKey = SecKeyCreateWithData(keyBytes as NSData, [
kSecAttrKeyType: kSecAttrKeyTypeRSA,
kSecAttrKeyClass: kSecAttrKeyClassPrivate,
] as NSDictionary, nil) else {
… handle error …
}
print(privateKey)
// prints:
// <SecKeyRef algorithm id: 1, key type: RSAPrivateKey, version: 4, block size: 2048 bits, addr: …>
Finally, an oft-forgotten feature of SecKeyCreateWithData is that it can undo a SubjectPublicKeyInfo wrapper. So, if you have an RSA public key wrapped in a SubjectPublicKeyInfo like this:
% xxd -p public-key-rsa.der
30820122300d06092a864886f70d01010105000382010f003082010a0282
010100bce736006d9b0a2a49508f32e8d66f2b26236263a476f5a2eaf6af
34f0055b12b3bea5f5a62f3aab82274c3e3b21d15cc741100c670dd7687d
9c7e5c012d95bf5177993087df441c9944d10dff0767abfd6e412df279e4
e518b905e5582f967b6b2a64eeaeef712c594268fbff9cc2e63833ebffb7
f00c61fd7224ae2328047e13bbb904899e9ad5c9f44cfff5cd9a2df5a5b6
29bec605d6ecdce5dacba40cb119695f7c3dbd19e6fcd86a13700dfe6818
d1894aca9172a1e857540641971f7d7c9533aee2047c16c1c4f125e830b2
7d5e80d445c2fe09fa5586ee0bb105800fd1e8489e44b2f123eeef1cceeb
eb1ba2d094923944181c513208c1f37fca31e50203010001
%
% dumpasn1 -p -a public-key-rsa.der
SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1)
NULL
}
BIT STRING, encapsulates {
SEQUENCE {
INTEGER
00 BC E7 36 00 6D 9B 0A 2A 49 50 8F 32 E8 D6 6F
2B 26 23 62 63 A4 76 F5 A2 EA F6 AF 34 F0 05 5B
12 B3 BE A5 F5 A6 2F 3A AB 82 27 4C 3E 3B 21 D1
5C C7 41 10 0C 67 0D D7 68 7D 9C 7E 5C 01 2D 95
BF 51 77 99 30 87 DF 44 1C 99 44 D1 0D FF 07 67
AB FD 6E 41 2D F2 79 E4 E5 18 B9 05 E5 58 2F 96
7B 6B 2A 64 EE AE EF 71 2C 59 42 68 FB FF 9C C2
E6 38 33 EB FF B7 F0 0C 61 FD 72 24 AE 23 28 04
7E 13 BB B9 04 89 9E 9A D5 C9 F4 4C FF F5 CD 9A
2D F5 A5 B6 29 BE C6 05 D6 EC DC E5 DA CB A4 0C
B1 19 69 5F 7C 3D BD 19 E6 FC D8 6A 13 70 0D FE
68 18 D1 89 4A CA 91 72 A1 E8 57 54 06 41 97 1F
7D 7C 95 33 AE E2 04 7C 16 C1 C4 F1 25 E8 30 B2
7D 5E 80 D4 45 C2 FE 09 FA 55 86 EE 0B B1 05 80
0F D1 E8 48 9E 44 B2 F1 23 EE EF 1C CE EB EB 1B
A2 D0 94 92 39 44 18 1C 51 32 08 C1 F3 7F CA 31
E5
INTEGER 65537
}
}
}
Import it with this code:
let u = URL(fileURLWithPath: "public-key-rsa.der")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let privateKey = SecKeyCreateWithData(keyBytes as NSData, [
kSecAttrKeyType: kSecAttrKeyTypeRSA,
kSecAttrKeyClass: kSecAttrKeyClassPublic,
] as NSDictionary, nil) else {
… handle error …
}
print(privateKey)
// prints:
// <SecKeyRef algorithm id: 1, key type: RSAPublicKey, version: 4, block size: 2048 bits, exponent: {hex: 10001, decimal: 65537}, modulus: …, addr: …>
Import SECG Keys with Security Framework
If you’re working with Security framework, use SecKeyCreateWithData to import an SECG key. If you have a secp256r1 public key in X9.63 format:
% xxd p256-public-key.dat
00000000: 0497 47e9 81aa b8ea 71a2 55cd 9a15 6285 ..G.....q.U...b.
00000010: 8c40 6006 f1e4 1826 0d31 e1a7 7f6c 2b35 .@`....&.1...l+5
00000020: a9a3 132f 232d b003 51d9 d800 3487 d4ee .../#-..Q...4...
00000030: 5284 7990 313d aa7c 721f 88d4 bb56 da91 R.y.1=.|r....V..
00000040: c7 .
Import it with this code:
let u = URL(fileURLWithPath: "p256-public-key.dat")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let privateKey = SecKeyCreateWithData(keyBytes as NSData, [
kSecAttrKeyType: kSecAttrKeyTypeECSECPrimeRandom,
kSecAttrKeyClass: kSecAttrKeyClassPublic,
] as NSDictionary, nil) else {
… handle error …
}
print(privateKey)
// prints:
// <SecKeyRef curve type: kSecECCurveSecp256r1, algorithm id: 3, key type: ECPublicKey, version: 4, block size: 256 bits, y: …, x: …, addr: …>
Note I’m using secp256r1 as an example. The code in this section will work for the other SECG key types, secp384r1 and secp521r1.
And if you have a secp256r1 private key in X9.63 format:
% xxd p256-private-key.dat
00000000: 0497 47e9 81aa b8ea 71a2 55cd 9a15 6285 ..G.....q.U...b.
00000010: 8c40 6006 f1e4 1826 0d31 e1a7 7f6c 2b35 .@`....&.1...l+5
00000020: a9a3 132f 232d b003 51d9 d800 3487 d4ee .../#-..Q...4...
00000030: 5284 7990 313d aa7c 721f 88d4 bb56 da91 R.y.1=.|r....V..
00000040: c798 6a7a 91cb b5f4 f816 36e8 1aaf f083 ..jz......6.....
00000050: 5a77 1dc6 6865 c407 a8e8 4469 cf6a b8a4 Zw..he....Di.j..
00000060: 77 w
Import it with this code:
let u = URL(fileURLWithPath: "p256-private-key.dat")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let privateKey = SecKeyCreateWithData(keyBytes as NSData, [
kSecAttrKeyType: kSecAttrKeyTypeECSECPrimeRandom,
kSecAttrKeyClass: kSecAttrKeyClassPrivate,
] as NSDictionary, nil) else {
… handle error …
}
print(privateKey)
// prints:
// <SecKeyRef curve type: kSecECCurveSecp256r1, algorithm id: 3, key type: ECPrivateKey, version: 4, block size: 256 bits, addr: …>
Import SECG Keys with Apple CryptoKit
Apple CryptoKit can import SECG keys in three different ways:
X9.63 raw key bytes
DER encoding
PEM encoding
If you have a secp256r1 public key in X9.63 format, import it with this code:
let u = URL(fileURLWithPath: "p256-public-key.dat")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let publicKey = try? P256.Signing.PublicKey(x963Representation: keyBytes) else {
… handle error …
}
print(publicKey)
// prints:
// PublicKey(impl: CryptoKit.CoreCryptoNISTCurvePublicKeyImpl<CryptoKit.P256.CurveDetails>(keyBytes: […]]))
Note I’m using secp256r1 as an example. The code in this section will work for the other SECG key types, secp384r1 and secp521r1.
If you have a secp256r1 private key in X9.63 format import it with this code:
let u = URL(fileURLWithPath: "p256-private-key.dat")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let privateKey = try? P256.Signing.PrivateKey(x963Representation: keyBytes) else {
… handle error …
}
print(privateKey)
// prints:
// PrivateKey(impl: CryptoKit.CoreCryptoNISTCurvePrivateKeyImpl<CryptoKit.P256.CurveDetails>(key: CryptoKit.SecureBytes(backing: CryptoKit.SecureBytes.Backing)))
CryptoKit can also import a DER-encoded SECG key. For example, it can import the following using the init(derRepresentation:) initialiser:
% xxd -p public-key-p256.der
3059301306072a8648ce3d020106082a8648ce3d030107034200042c21f3
7049d4464afbf01813c51a4e1ef7a8101d2aa12b6a889635bc7c37e9011b
fdd54006fdebdaef0d86a6d662561347982c95276013d1c1cd2d7865aff0
23
%
% dumpasn1 -p -a public-key-p256.der
SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER prime256v1 (1 2 840 10045 3 1 7)
}
BIT STRING
04 2C 21 F3 70 49 D4 46 4A FB F0 18 13 C5 1A 4E
1E F7 A8 10 1D 2A A1 2B 6A 88 96 35 BC 7C 37 E9
01 1B FD D5 40 06 FD EB DA EF 0D 86 A6 D6 62 56
13 47 98 2C 95 27 60 13 D1 C1 CD 2D 78 65 AF F0
23
}
%
% xxd -p private-key-p256.der
308187020100301306072a8648ce3d020106082a8648ce3d030107046d30
6b0201010420986a7a91cbb5f4f81636e81aaff0835a771dc66865c407a8
e84469cf6ab8a477a144034200049747e981aab8ea71a255cd9a1562858c
406006f1e418260d31e1a77f6c2b35a9a3132f232db00351d9d8003487d4
ee52847990313daa7c721f88d4bb56da91c7
%
% dumpasn1 -p -a private-key-p256.der
SEQUENCE {
INTEGER 0
SEQUENCE {
OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
OBJECT IDENTIFIER prime256v1 (1 2 840 10045 3 1 7)
}
OCTET STRING, encapsulates {
SEQUENCE {
INTEGER 1
OCTET STRING
98 6A 7A 91 CB B5 F4 F8 16 36 E8 1A AF F0 83 5A
77 1D C6 68 65 C4 07 A8 E8 44 69 CF 6A B8 A4 77
[1] {
BIT STRING
04 97 47 E9 81 AA B8 EA 71 A2 55 CD 9A 15 62 85
8C 40 60 06 F1 E4 18 26 0D 31 E1 A7 7F 6C 2B 35
A9 A3 13 2F 23 2D B0 03 51 D9 D8 00 34 87 D4 EE
52 84 79 90 31 3D AA 7C 72 1F 88 D4 BB 56 DA 91
C7
}
}
}
}
Finally, CryptoKit can import a PEM-encoded SECG. For example, it can import the following using the init(pemRepresentation:) initialiser:
% cat public-key-p256.pem
-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAELCHzcEnURkr78BgTxRpOHveoEB0q
oStqiJY1vHw36QEb/dVABv3r2u8NhqbWYlYTR5gslSdgE9HBzS14Za/wIw==
-----END PUBLIC KEY-----
% cat private-key-p256.pem
-----BEGIN PRIVATE KEY-----
MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgmGp6kcu19PgWNuga
r/CDWncdxmhlxAeo6ERpz2q4pHehRANCAASXR+mBqrjqcaJVzZoVYoWMQGAG8eQY
Jg0x4ad/bCs1qaMTLyMtsANR2dgANIfU7lKEeZAxPap8ch+I1LtW2pHH
-----END PRIVATE KEY-----
Mapping SECG Keys between Apple CryptoKit and Security Framework
If you need to map an SECG key from Apple CryptoKit to Security framework, or vice versa, use the X9.63 format.
Imagine that you’re working in Security framework but you need to import a PEM key. SecKeyCreateWithData will not accept an SECG key in PEM format; it requires that the key be in X9.63 format. CryptoKit can import a PEM key but you want to continue using your existing Security framework code. Fortunately there’s a way out of this bind:
Import the PEM key using Apple CryptoKit.
Get the X9.63 representation.
Create the Security framework key from that.
For example, the following routine imports a PEM secp256r1 private key and returns a SecKey object:
func createSecKeyWithPEMSecp256r1Private(_ pem: String) throws -> SecKey {
let privateKeyCK = try P256.Signing.PrivateKey(pemRepresentation: pem)
let x963Data = privateKeyCK.x963Representation
var errorQ: Unmanaged<CFError>? = nil
guard let privateKeySF = SecKeyCreateWithData(x963Data as NSData, [
kSecAttrKeyType: kSecAttrKeyTypeECSECPrimeRandom,
kSecAttrKeyClass: kSecAttrKeyClassPrivate,
] as NSDictionary, &errorQ) else {
throw errorQ!.takeRetainedValue()
}
return privateKeySF
}
To go the other way, from Security framework to CryptoKit, call SecKeyCopyExternalRepresentation to get the X9.63 representation of the key and then create a CryptoKit value using the init(x963Representation:) initialiser.
Importing Curve 25519 Keys
Apple CryptoKit supports Curve 25519 keys. If you have the raw bytes of a Curve 25519 public key:
% xxd curve25519-public-key.dat
00000000: 910b f46f 0c0d c836 878f a708 60fd de21 ...o...6....`..!
00000010: 9d5f 6265 0a83 a7c5 923d 2ab7 4b81 76c5 ._be.....=*.K.v.
Import it with this code:
let u = URL(fileURLWithPath: "curve25519-public-key.dat")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let publicKey = try? Curve25519.Signing.PublicKey(rawRepresentation: keyBytes) else {
… handle error …
}
print(publicKey)
// prints:
// PublicKey(baseKey: CryptoKit.Curve25519.Signing.CoreCryptoCurve25519PublicKeyImpl(keyBytes: […]))
If you have the raw bytes of a Curve 25519 private key:
% xxd curve25519-private-key.dat
00000000: 9fd9 0805 255b ae86 a6c3 035b 2de8 37e9 ....%[.....[-.7.
00000010: 29ea 792e a11f d466 e67e d0b2 65c0 a999 ).y....f.~..e...
Import it with this code:
let u = URL(fileURLWithPath: "curve25519-private-key.dat")
guard let keyBytes = try? Data(contentsOf: u) else {
… handle error …
}
guard let privateKey = try? Curve25519.Signing.PrivateKey(rawRepresentation: keyBytes) else {
… handle error …
}
print(privateKey)
// prints:
// PrivateKey(baseKey: CryptoKit.Curve25519.Signing.CoreCryptoCurve25519PrivateKeyImpl(key: CryptoKit.SecureBytes(backing: CryptoKit.SecureBytes.Backing)))
Revision History
2025-02-04 Added a link to Importing a PEM-based RSA Private Key and its Certificate. Made other minor editorial changes.
2021-05-23 First posted.
Hi! I am trying to run the demo app(SampleEndpointApp) from the WWDC2020 presentation(link).
Here are the steps I followed in order to run the app:
I submitted a request for the Endpoint Security entitlement and got the approval from the Apple Support team.
Created an identifier and assigned Endpoint Security capability.
Updated the Bundle Identifier in ViewController.m and in the Extension target.
Built and copied the app bundle to /Application folder.
Ran the app, clicked "Install Extension" and got the confirmation message that everything went well.
Looking into the logs, I see the following :
(libEndpointSecurity.dylib) Failed to open service: 0xe00002d8: Caller lacks TCC authorization for Full Disk Access
I keep getting the same message even after granting SampleEndpointApp Full Disk Access in Privacy & Security.
System : macOS Sequoia 15.1.1
Could you please assist me with this issue?
Andrei
I'd like to implement unit tests that exercise keys made available via a persistent token interface. However, when attempting to list available tokens by passing kSecAttrAccessGroupToken as the kSecAttrAccessGroup to SecItemCopyMatching from a unit test, -34018 is returned. It succeeds without the kSecAttrAccessGroup, which makes sense given the unit test binary does not have com.apple.token Keychain Group. The Xcode UI indicates "Capabilities are not supported" for the unit test binary when attempting to add a Keychain Sharing capability to enable use of persistent tokens. This feels like a dead end but begs the question is there any way to implement unit tests to exercise a persistent token interface? It seems like the only path may be write unit tests that drive an independent app that handles the interactions with the persistent token.
Hey there,
I’m currently exploring the possibility of integrating Sign in with Apple into my iOS app and backend.
Regarding the iOS app, I’ve read that when a user is signed in, you always need to call getCredentialState on the app’s launch. Is this true? If so, how is it possible to sign the user out then?
I intend to incorporate SwiftData and CloudKit into my application. In light of this, I’m curious about your approach to user management. Specifically, I’m wondering if you would store the user’s data in a Redis database after successful authentication on the backend. Or, would you separate the user data and save it using SwiftData/ CloudKit?
We have an app that has failed during the app review for the Japanese market but has been accepted in several other markets successfully.
We need the user's name in native Katakana format as we need it to be displayed in our restaurant Point of Sale systems for workers to be able to read and understand.
We use 'Sign up with Apple', but when doing so, if this returns an anglicised given and family name, we have to request the customer supply their Katakana format name so that our in-store systems and staff can process and fulfil their orders.
When the App Review process automatically tests the app, it uses "Apple John" as a customer's name. Since this is not a Japanese name, we ask for it again in the correct format, or we cannot allow the user to register.
This contravenes Apple's rules, and thus, our app is rejected. If the Apple identity used belonged to a user more typical of the target market, it would work as required.
Does anyone else have this issue, and how did you work around it?
Tim
Topic:
Privacy & Security
SubTopic:
General
Tags:
Internationalization
Sign in with Apple
App Submission
In a project I was using Local Authentication to authenticate a user. When I got a request to support smartcard/PIV token authentication (which Local Authentication does not support), I had to switch to Authorization Services, which works pretty. There's only one issue I have. Local Authentication's evaluatePolicy:localizedReason:reply: requires a reason in the form "<appname>" is trying to <localized reason>. The app is currently translated into 41 languages and I would like to use the localized strings for the AuthorizationEnvironment of Authorization Services as well. The problem is that Local Authentication prefixes the localized string with something like "<appname>" is trying to and Authorization Services does not do this. Is there a way to get this prefix from somewhere so I can manually add it to the (partially) localized string? Any help would be highly appreciated.
Thank you,
Marc
Hi,
When calling generateAssertion on DCAppAttestService.shared, it gives invalidKey error when there was an update for an offloaded app.
The offloading and reinstall always works fine if it is the same version on app store that was offloaded from device,
but if there is an update and the app tries to reuse the keyID from previous installation for generateAssertion, attestation service rejects the key with error code 3 (invalid key) for a significant portion of our user.
In our internal testing it failed for more than a third of the update attempts.
STEPS TO REPRODUCE:
install v1 from app store
generate key using DCAppAttestService.shared.generateKey
Attest this key using DCAppAttestService.shared.attestKey
Send the attestation objection to our server and verify with apple servers
Generate assertions for network calls to backend using DCAppAttestService.shared.generateAssertion with keyID from step 2
Device offloads the app (manually triggered by user, or automatically by iOS)
A new version v2 is published to App Store
Use tries to open the app
Latest version is download from the App Store
App tries to use the keyID from step 2 to generate assertions
DCAppAttestService throws invalidKey error (Error Domain=com.apple.devicecheck.error Code=3)
Step 7 is critical here, if there is no new version of the app, the reinstalled v1 can reuse the key from step 2 without any issues
Is this behaviour expected?
Is there any way we can make sure the key is preserved between offloaded app updates?
Thanks
I was basically saving items into the Keychain with the following query dictionary:
let query: [String: Any] = [
kSecClass as String: kSecClassGenericPassword,
kSecAttrAccount as String: key,
kSecValueData as String: value,
kSecAttrAccessible as String: kSecAttrAccessibleAfterFirstUnlock
]
Where key is a String value and value is a Data that used to be a String.
I was getting the following error:
code: -25299
description: The specified item already exists in the keychain
After a lot of digging in I saw that I needed to add kSecAttrService to the dictionary and after that it all started working. The service value is a String value.
let query: [String: Any] = [
kSecClass as String: kSecClassGenericPassword,
kSecAttrService as String: service,
kSecAttrAccount as String: key,
kSecValueData as String: value,
kSecAttrAccessible as String: kSecAttrAccessibleAfterFirstUnlock
]
These were the articles that suggested adding the kSecAttrService parameter:
https://stackoverflow.com/a/11672200
https://stackoverflow.com/a/58233542
But in the same code base I found that other developers were saving using a dictionary similar to the one I first provided and it works:
var query: [String : Any] = [
kSecClass as String : kSecClassGenericPassword as String,
kSecAttrAccount as String : key,
kSecValueData as String : data
]
I don't know how to explain why my first implementation didn't work even though it was similar to what was already in the code base but the second approach worked well.
Regardless of the query dictionary, this is how I'm saving things:
static func save(value: Data, key: String, service: String) -> KeyChainOperationStatus {
logInfo("Save Value - started, key: \(key), service: \(service)")
let query: [String: Any] = [
kSecClass as String: kSecClassGenericPassword,
kSecAttrService as String: service,
kSecAttrAccount as String: key,
kSecValueData as String: value,
kSecAttrAccessible as String: kSecAttrAccessibleAfterFirstUnlock
]
// Remove any existing key
let cleanUpStatus = SecItemDelete(query as CFDictionary)
let cleanUpStatusDescription = SecCopyErrorMessageString(cleanUpStatus, nil)?.asString ?? "__cleanup_status_unavailable"
logInfo("Save Value - cleanup status: \(cleanUpStatus), description: \(cleanUpStatusDescription)")
guard cleanUpStatus == errSecSuccess || cleanUpStatus == errSecItemNotFound else {
logError("Save Value - Failed cleaning up KeyChain")
return .cleanupFailed(code: cleanUpStatus)
}
// Add the new key
let saveStatus = SecItemAdd(query as CFDictionary, nil)
let saveStatusDescription = SecCopyErrorMessageString(saveStatus, nil)?.asString ?? "__save_status_unavailable"
logInfo("Save Value - save status [\(saveStatus)] : \(saveStatusDescription)")
guard saveStatus == errSecSuccess else {
logError("Save Value - Failed saving new value into KeyChain")
return .savingFailed(code: saveStatus)
}
return .successs
}
Topic:
Privacy & Security
SubTopic:
General
Hi,
I know it's been discussed before, but I'm testing the Sign in with Apple feature, and I only get the user info on the first try.
Now, I know that you're supposed to go to the account settings, and look for the list of accounts that you used your Apple account to sign in with, and it used to work a few months back. But for the last few weeks I haven't been able to get the user info, even after deleting the entry from my Sign In With Apple app list.
Has there been a recent change to Apple security policy that prevents such a move from working ? Or am I doing something wrong ?
Thank you
I have a macOS package (.pkg) that checks for installed Java versions on the machine during the preinstall phase using a preinstall script. If the required Java version is not found, the script displays a message using osascript as shown below.
/usr/bin/osascript -e 'tell application "Finder"' -e 'activate' -e 'display dialog "Java Development Kit (JDK) 11 is required" buttons{"OK"} with title "Myprod Warning"' -e 'end tell'
So far, no issues have been observed with the installation of my package on all versions of macOS. However, on macOS 15.2, the installation is failing with a "Not authorized to send Apple events to Finder" error.
Could someone please help me understand what might be causing this issue and how to resolve it?
Topic:
Privacy & Security
SubTopic:
General
I have been able to save and remove ASPasskeyCredentialIdentities in the ASCredentialIdentityStore. But after saving a ASPasskeyCredentialIdentity, when I retrieve the current identities stored, it always returns an empty list. I check to make sure the store is enabled. I am using this method which is available starting with iOS 17.4:
extension ASCredentialIdentityStore {
public func credentialIdentities(forService serviceIdentifier: ASCredentialServiceIdentifier? = nil, credentialIdentityTypes: ASCredentialIdentityStore.IdentityTypes = []) async -> [any ASCredentialIdentity]
}
I have called it like this:
store.credentialIdentities(forService: nil, credentialIdentityTypes: .passkey)
And this:
store.credentialIdentities()
Has anyone got this to work?
During SmartCard pairing the PIN prompt enables the OK button only on user provides a PIN of 6 digits. Is there a way to submit the empty PIN in this flow, where the custom CTK is used here (the custom CTK would take care of the PIN from the custom ctk code). I was able to do an empty PIN submit once the I've paired the user successfully at login, unlock and other cli tools. Is there a way to do the same during the pairing?
Once the user has successfully paired with the SmartCard authentication with PIN, I was able to see most of the authentication flows was prompting for the PIN authentication like login, unlock, CLI tools like ssh, su etc., perhaps at few apps where it is still prompted with the Password instead of PIN examples, when I tried to launch Keychain Access app or Add a user from users&groups system setting.
Is this expected behaviour?
Hi,
I hope someone is able to help me with this query:
Is there a mandatory requirement to display a view before presenting the App Tracking Transparency modal to explain to the user why the app is asking for tracking? I see there are a few apps which do this, but I don't see any mention of this as a mandatory requirement within the app store review guidelines. The modal can be customised with a description detailing why the app is asking for tracking and I believe this may be sufficient to pass an app store review.
The guidelines also mention that the app must provide access to information about how and where the data will be used. We have these details in our privacy policy which is accessible from within the app. Is this sufficient or do we need a pre-modal view which contains a direct link the the privacy policy.
Any advice on this would be much appreciated.
转让app成功了之后,由于开发者账号更改,团队ID改变,导致获取不到原有的keychain中缓存的用户数据,所以在用户进行登录时,无法登录到原有的老账号,而是被识别成了一个新的用户。这种情况怎么解决。
I have something with a new individual on my team I've never seen before. They checked out our code repository from git and now anytime they try to open a .json file that is legitimately just a text file, GateKeeper tells them it cannot verify the integrity of this file and offers to have them throw this file away. I've seen this with binaries, and that makes sense. I removed the com.apple.quarantine extended attribute from all executable files in our source tree, but I've never seen GateKeeper prompt on text files. I could remove the extended attribute from all files in our source tree, but I fear the next time he pulls from git he'll get new ones flagged. Is there someway around this? I've never personally seen GateKeeper blocking text files.
I must be missing something. How can an iphone that is in lockdown mode, using ONLY data, no Bluetooth connected and only one singular iPhone have seven UNLISTED items on the local network in privacy and settings?
Our application uses Screen capture KIT API for screen recording.
But from Sequoia OS, we are getting additional permission dialog which states " is requesting to bypass the system private window picker and directly access your screen and audio".
It seems we need to add our app under "System settings -> Privacy & Security -> Remote Desktop" setting to avoid getting above additional dialogue in every few days.
Some places mention use of .plist file that if mention in this file, the app will request for this permission. But did not seem to work or we do not understand that properly yet.
Hi,
We are trying to open an application "xyz.app"
It worked fine until 15.1.1 versions. But facing issues with 15.2 and 15.3
The application is working fine when we navigate to xyz.app/Contents/MacOS/ and run applet in this directory.
But the error ""Not authorized to send Apple events to Finder"" occurs when we are trying to open the app directly.
Could someone please help me understand what might be causing this issue and how to resolve it?
Topic:
Privacy & Security
SubTopic:
General