Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

A Summary of the WWDC25 Group Lab - Machine Learning and AI Frameworks
At WWDC25 we launched a new type of Lab event for the developer community - Group Labs. A Group Lab is a panel Q&A designed for a large audience of developers. Group Labs are a unique opportunity for the community to submit questions directly to a panel of Apple engineers and designers. Here are the highlights from the WWDC25 Group Lab for Machine Learning and AI Frameworks. What are you most excited about in the Foundation Models framework? The Foundation Models framework provides access to an on-device Large Language Model (LLM), enabling entirely on-device processing for intelligent features. This allows you to build features such as personalized search suggestions and dynamic NPC generation in games. The combination of guided generation and streaming capabilities is particularly exciting for creating delightful animations and features with reliable output. The seamless integration with SwiftUI and the new design material Liquid Glass is also a major advantage. When should I still bring my own LLM via CoreML? It's generally recommended to first explore Apple's built-in system models and APIs, including the Foundation Models framework, as they are highly optimized for Apple devices and cover a wide range of use cases. However, Core ML is still valuable if you need more control or choice over the specific model being deployed, such as customizing existing system models or augmenting prompts. Core ML provides the tools to get these models on-device, but you are responsible for model distribution and updates. Should I migrate PyTorch code to MLX? MLX is an open-source, general-purpose machine learning framework designed for Apple Silicon from the ground up. It offers a familiar API, similar to PyTorch, and supports C, C++, Python, and Swift. MLX emphasizes unified memory, a key feature of Apple Silicon hardware, which can improve performance. It's recommended to try MLX and see if its programming model and features better suit your application's needs. MLX shines when working with state-of-the-art, larger models. Can I test Foundation Models in Xcode simulator or device? Yes, you can use the Xcode simulator to test Foundation Models use cases. However, your Mac must be running macOS Tahoe. You can test on a physical iPhone running iOS 18 by connecting it to your Mac and running Playgrounds or live previews directly on the device. Which on-device models will be supported? any open source models? The Foundation Models framework currently supports Apple's first-party models only. This allows for platform-wide optimizations, improving battery life and reducing latency. While Core ML can be used to integrate open-source models, it's generally recommended to first explore the built-in system models and APIs provided by Apple, including those in the Vision, Natural Language, and Speech frameworks, as they are highly optimized for Apple devices. For frontier models, MLX can run very large models. How often will the Foundational Model be updated? How do we test for stability when the model is updated? The Foundation Model will be updated in sync with operating system updates. You can test your app against new model versions during the beta period by downloading the beta OS and running your app. It is highly recommended to create an "eval set" of golden prompts and responses to evaluate the performance of your features as the model changes or as you tweak your prompts. Report any unsatisfactory or satisfactory cases using Feedback Assistant. Which on-device model/API can I use to extract text data from images such as: nutrition labels, ingredient lists, cashier receipts, etc? Thank you. The Vision framework offers the RecognizeDocumentRequest which is specifically designed for these use cases. It not only recognizes text in images but also provides the structure of the document, such as rows in a receipt or the layout of a nutrition label. It can also identify data like phone numbers, addresses, and prices. What is the context window for the model? What are max tokens in and max tokens out? The context window for the Foundation Model is 4,096 tokens. The split between input and output tokens is flexible. For example, if you input 4,000 tokens, you'll have 96 tokens remaining for the output. The API takes in text, converting it to tokens under the hood. When estimating token count, a good rule of thumb is 3-4 characters per token for languages like English, and 1 character per token for languages like Japanese or Chinese. Handle potential errors gracefully by asking for shorter prompts or starting a new session if the token limit is exceeded. Is there a rate limit for Foundation Models API that is limited by power or temperature condition on the iPhone? Yes, there are rate limits, particularly when your app is in the background. A budget is allocated for background app usage, but exceeding it will result in rate-limiting errors. In the foreground, there is no rate limit unless the device is under heavy load (e.g., camera open, game mode). The system dynamically balances performance, battery life, and thermal conditions, which can affect the token throughput. Use appropriate quality of service settings for your tasks (e.g., background priority for background work) to help the system manage resources effectively. Do the foundation models support languages other than English? Yes, the on-device Foundation Model is multilingual and supports all languages supported by Apple Intelligence. To get the model to output in a specific language, prompt it with instructions indicating the user's preferred language using the locale API (e.g., "The user's preferred language is en-US"). Putting the instructions in English, but then putting the user prompt in the desired output language is a recommended practice. Are larger server-based models available through Foundation Models? No, the Foundation Models API currently only provides access to the on-device Large Language Model at the core of Apple Intelligence. It does not support server-side models. On-device models are preferred for privacy and for performance reasons. Is it possible to run Retrieval-Augmented Generation (RAG) using the Foundation Models framework? Yes, it is possible to run RAG on-device, but the Foundation Models framework does not include a built-in embedding model. You'll need to use a separate database to store vectors and implement nearest neighbor or cosine distance searches. The Natural Language framework offers simple word and sentence embeddings that can be used. Consider using a combination of Foundation Models and Core ML, using Core ML for your embedding model.
1
0
754
Jun ’25
Image Playground API
Does the new Image Playground API allow programmatically generating images? Can the app generate and use them without the API's UI or would that require using another generative image model?
3
12
4.5k
Sep ’24
Urgent Issue with SoundAnalysis in iOS 18 - Critical Background Permissions Error
We are experiencing a major issue with the native .version1 of the SoundAnalysis framework in iOS 18, which has led to all our user not having recordings. Our core feature relies heavily on sound analysis in the background, and it previously worked flawlessly in prior iOS versions. However, in the new iOS 18, sound analysis stops working in the background, triggering a critical warning. Details of the issue: We are using SoundAnalysis to analyze background sounds and have enabled the necessary background permissions. We are using the latest XCode A warning now appears, and sound analysis fails in the background. Below is the warning message we are encountering: Warning Message: Execution of the command buffer was aborted due to an error during execution. Insufficient Permission (to submit GPU work from background) [Espresso::handle_ex_plan] exception=Espresso exception: "Generic error": Insufficient Permission (to submit GPU work from background) (00000006:kIOGPUCommandBufferCallbackErrorBackgroundExecutionNotPermitted); code=7 status=-1 Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1). CoreML prediction failed with Error Domain=com.apple.CoreML Code=0 "Failed to evaluate model 0 in pipeline" UserInfo={NSLocalizedDescription=Failed to evaluate model 0 in pipeline, NSUnderlyingError=0x30330e910 {Error Domain=com.apple.CoreML Code=0 "Failed to evaluate model 1 in pipeline" UserInfo={NSLocalizedDescription=Failed to evaluate model 1 in pipeline, NSUnderlyingError=0x303307840 {Error Domain=com.apple.CoreML Code=0 "Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1)." UserInfo={NSLocalizedDescription=Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1).}}}}} We urgently need guidance or a fix for this, as our application’s main functionality is severely impacted by this background permission error. Please let us know the next steps or if this is a known issue with iOS 18.
12
12
2.1k
Dec ’24
Apple Intelligence stuck at 100% on macOS 26 Beta 1
Hello, I'm unable to develop for Apple Intelligence on my Mac Studio, M1 Max running macOS 26 beta 1. The models get downloaded and I can also verify that they exist in /System/Library/AssetsV2/ however the download progress remains stuck at 100%. Checking console logs shows the process generativeexperiencesd reporting the following: My device region and language is set to English (India). Things I've already tried: Changing language and region to English (US) Reinstalling macOS Trying with a different ISP via hotspot.
6
10
378
Jun ’25
In iOS 18 beta, the SoundAnalysis framework reports an error when the iPhone is locked
I use SoundAnalysis to analyze background sounds and have enabled background permissions. It worked well in previous iOS systems, but a warning appeared in the new iOS18beta version and sound analysis was stopped. Warning List: Execution of the command buffer was aborted due to an error during execution. Insufficient Permission (to submit GPU work from background) [Espresso::handle_ex_plan] exception=Espresso exception: "Generic error": Insufficient Permission (to submit GPU work from background) (00000006:kIOGPUCommandBufferCallbackErrorBackgroundExecutionNotPermitted); code=7 status=-1 Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1). CoreML prediction failed with Error Domain=com.apple.CoreML Code=0 "Failed to evaluate model 0 in pipeline" UserInfo={NSLocalizedDescription=Failed to evaluate model 0 in pipeline, NSUnderlyingError=0x30330e910 {Error Domain=com.apple.CoreML Code=0 "Failed to evaluate model 1 in pipeline" UserInfo={NSLocalizedDescription=Failed to evaluate model 1 in pipeline, NSUnderlyingError=0x303307840 {Error Domain=com.apple.CoreML Code=0 "Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1)." UserInfo={NSLocalizedDescription=Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1).}}}}}
16
8
2.4k
Dec ’24
tensorflow-metal for Python3.12 and tensorflow 2.17.x
Hi, The most recent version of tensorflow-metal is only available for macosx 12.0 and python up to version 3.11. Is there any chance it could be updated with wheels for macos 15 and Python 3.12 (which is the default version supported for tensrofllow 2.17+)? I'd note that even downgrading to Python 3.11 would not be sufficient, as the wheels only work for macos 12. Thanks.
5
8
2.2k
Feb ’25
"FoundationModels GenerationError error 2" on iOS 26 beta 3
Hi all, I'm working on an app that utilizes the FoundationModels found in iOS 26. I updated my phone to iOS 26 beta 3 and am now receiving the following error when trying to run code that worked in beta 2: Al Error: The operation couldn't be completed. (FoundationModels.LanguageModelSession.Genera- tionError error 2.) I admit I'm a bit of a new developer, but any idea if this is an issue with beta 3 or work that I'll need to do to adapt my code to some changes in the AI API? Thank you!
23
6
1.2k
Jul ’25
Feature Request – Support for GS1 DataBar Stacked in Vision Framework
Dear Apple Developer Team, I am writing to request the addition of GS1 DataBar Stacked (both regular and expanded variants) to the barcode symbologies supported by the Vision framework (VNBarcodeSymbology) and VisionKit's DataScannerViewController. Currently, Vision supports several GS1 DataBar formats, such as: VNBarcodeSymbology.gs1DataBar VNBarcodeSymbology.gs1DataBarExpanded VNBarcodeSymbology.gs1DataBarLimited However, GS1 DataBar Stacked is widely used in industries such as retail, pharmaceuticals, and logistics, where space constraints prevent the use of the standard GS1 DataBar format. Many businesses rely on this symbology to encode GTINs and other product data, but Apple's barcode scanning API does not explicitly support it. Why This Feature Matters: Essential for Small Packaging: GS1 DataBar Stacked is commonly used on small product labels where a standard linear barcode does not fit. Widespread Industry Adoption: Many point-of-sale (POS) systems and inventory management tools require this symbology. Improves iOS Adoption for Enterprise Use: Adding support would make Apple’s Vision framework a more viable solution for businesses that currently rely on third-party barcode scanning SDKs. Feature Request: Please add GS1 DataBar Stacked and GS1 DataBar Expanded Stacked to the recognized symbologies in: VNBarcodeSymbology (for Vision framework) DataScannerViewController (for VisionKit) This addition would enhance the versatility of Apple’s barcode scanning tools and reduce the need for third-party libraries. I appreciate your consideration of this request and would be happy to provide more details or test implementations if needed. Thank you for your time and support! Best regards
2
5
560
Feb ’25
Initializing LanguageModelSession crashes app on macOS
Whenever I try to initialize a LanguageModelSession (let session = LanguageModelSession()), my app crashes with EXC_BAD_ACCESS. SystemLanguageModel.default.availability returns available. I tried running the two sample projects I found that use Foundation Models, FoundationModelsTripPlanner and SwiftTranscriptionSampleApp, and they both also crash—immediately on launch. I commented out the Foundation Models logic from the SwiftTranscriptionSampleApp and ran it again, and it no longer crashed. I'm on macOS 26 Beta 4 on an M1 Pro device. I'm based in Austria (EU), if that matters.
7
4
265
Aug ’25