Explore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

[MPSGraph runWithFeeds:targetTensors:targetOperations:] randomly crash
I'm implementing an LLM with Metal Performance Shader Graph, but encountered a very strange behavior, occasionally, the model will report an error message as this: LLVM ERROR: SmallVector unable to grow. Requested capacity (9223372036854775808) is larger than maximum value for size type (4294967295) and crash, the stack backtrace screenshot is attached. Note that 5th frame is mlir::getIntValues<long long> and 6th frame is llvm::SmallVectorBase<unsigned int>::grow_pod It looks like mlir mistakenly took a 64 bit value for a 32 bit type. Unfortunately, I could not found the source code of mlir::getIntValues, maybe it's Apple's closed source fork of llvm for MPS implementation? Anyway, any opinion or suggestion on that?
0
0
166
Mar ’25
MPSGraph fused scaledDotProductAttention seems to be buggy
While building an app with large language model inferencing on device, I got gibberish output. After carefully examining every detail, I found it's caused by the fused scaledDotProductAttention operation. I switched back to the discrete operations and problem solved. To reproduce the bug, please check https://github.com/zhoudan111/MPSGraph_SDPA_bug
1
0
499
Mar ’25
Core ML Model performance far lower on iOS 17 vs iOS 16 (iOS 17 not using Neural Engine)
Hello, I posted an issue on the coremltools GitHub about my Core ML models not performing as well on iOS 17 vs iOS 16 but I'm posting it here just in case. TL;DR The same model on the same device/chip performs far slower (doesn't use the Neural Engine) on iOS 17 compared to iOS 16. Longer description The following screenshots show the performance of the same model (a PyTorch computer vision model) on an iPhone SE 3rd gen and iPhone 13 Pro (both use the A15 Bionic). iOS 16 - iPhone SE 3rd Gen (A15 Bioinc) iOS 16 uses the ANE and results in fast prediction, load and compilation times. iOS 17 - iPhone 13 Pro (A15 Bionic) iOS 17 doesn't seem to use the ANE, thus the prediction, load and compilation times are all slower. Code To Reproduce The following is my code I'm using to export my PyTorch vision model (using coremltools). I've used the same code for the past few months with sensational results on iOS 16. # Convert to Core ML using the Unified Conversion API coreml_model = ct.convert( model=traced_model, inputs=[image_input], outputs=[ct.TensorType(name="output")], classifier_config=ct.ClassifierConfig(class_names), convert_to="neuralnetwork", # compute_precision=ct.precision.FLOAT16, compute_units=ct.ComputeUnit.ALL ) System environment: Xcode version: 15.0 coremltools version: 7.0.0 OS (e.g. MacOS version or Linux type): Linux Ubuntu 20.04 (for exporting), macOS 13.6 (for testing on Xcode) Any other relevant version information (e.g. PyTorch or TensorFlow version): PyTorch 2.0 Additional context This happens across "neuralnetwork" and "mlprogram" type models, neither use the ANE on iOS 17 but both use the ANE on iOS 16 If anyone has a similar experience, I'd love to hear more. Otherwise, if I'm doing something wrong for the exporting of models for iOS 17+, please let me know. Thank you!
1
1
1.8k
Mar ’25
Group AppIntents’ Searchable DynamicOptionsProvider in Sections
I’m trying to group my EntityPropertyQuery selection into sections as well as making it searchable. I know that the EntityStringQuery is used to perform the text search via entities(matching string: String). That works well enough and results in this modal: Though, when I’m using a DynamicOptionsProvider to section my EntityPropertyQuery, it doesn’t allow for searching anymore and simply opens the sectioned list in a menu like so: How can I combine both? I’ve seen it in other apps, but can’t figure out why my code doesn’t allow to section the results and make it searchable? Any ideas? My code (simplified) struct MyIntent: AppIntent { @Parameter(title: "Meter"), optionsProvider: MyOptionsProvider()) var meter: MyIntentEntity? // … struct MyOptionsProvider: DynamicOptionsProvider { func results() async throws -> ItemCollection<MyIntentEntity> { // Get All Data let allData = try IntentsDataHandler.shared.getEntities() // Create Arrays for Sections let fooEntities = allData.filter { $0.type == .foo } let barEntities = allData.filter { $0.type == .bar } return ItemCollection(sections: [ ItemSection("Foo", items: fooEntities), ItemSection("Bar", items: barEntities) ]) } } struct MeterIntentQuery: EntityStringQuery { // entities(for identifiers: [UUID]) and suggestedEntities() functions func entities(matching string: String) async throws -> [MyIntentEntity] { // Fetch All Data let allData = try IntentsDataHandler.shared.getEntities() // Filter Data by String let matchingData = allData.filter { data in return data.title.localizedCaseInsensitiveContains(string)) } return matchingData } }
0
2
536
Mar ’25
Xcode AI Coding Assistance Option(s)
Not finding a lot on the Swift Assist technology announced at WWDC 2024. Does anyone know the latest status? Also, currently I use OpenAI's macOS app and its 'Work With...' functionality to assist with Xcode development, and this is okay, certainly saves copying code back and forth, but it seems like AI should be able to do a lot more to help with Xcode app development. I guess I'm looking at what people are doing with AI in Visual Studio, Cline, Cursor and other IDEs and tools like those and feel a bit left out working in Xcode. Please let me know if there are AI tools or techniques out there you use to help with your Xcode projects. Thanks in advance!
6
0
11k
Mar ’25
Metal GPU Work Won't Stop
Is there any way to stop GPU work running that is scheduled using metal? Long shader calculations don't stop when application is stopped in Xcode and continue to take up GPU time and affect the display. Why is this functionality not available when Swift Tasks are able to be canceled?
2
0
724
Feb ’25
Efficient Clustering of Images Using VNFeaturePrintObservation.computeDistance
Hi everyone, I'm working with VNFeaturePrintObservation in Swift to compute the similarity between images. The computeDistance function allows me to calculate the distance between two images, and I want to cluster similar images based on these distances. Current Approach Right now, I'm using a brute-force approach where I compare every image against every other image in the dataset. This results in an O(n^2) complexity, which quickly becomes a bottleneck. With 5000 images, it takes around 10 seconds to complete, which is too slow for my use case. Question Are there any efficient algorithms or data structures I can use to improve performance? If anyone has experience with optimizing feature vector clustering or has suggestions on how to scale this efficiently, I'd really appreciate your insights. Thanks!
0
0
512
Feb ’25
Issues with using ClassifyImageRequest() on an Xcode simulator
Hello, I am developing an app for the Swift Student challenge; however, I keep encountering an error when using ClassifyImageRequest from the Vision framework in Xcode: VTEST: error: perform(_:): inside 'for await result in resultStream' error: internalError("Error Domain=NSOSStatusErrorDomain Code=-1 \"Failed to create espresso context.\" UserInfo={NSLocalizedDescription=Failed to create espresso context.}") It works perfectly when testing it on a physical device, and I saw on another thread that ClassifyImageRequest doesn't work on simulators. Will this cause problems with my submission to the challenge? Thanks
5
1
736
Feb ’25
What special features does Apple officially have that use ML or AI?
I am a App designer and I am curious about what specific ML or AI Apple used to develop those features in the system. As far as I know, Apple's hand-raising detection, destination recommendations in maps, and exercise types in fitness all use ML. Are there more specific application examples of ML or AI? Does Apple have a document specifically introducing examples of specific applications of ML or AI technology in the system?
1
0
580
Feb ’25
Broken compatibility in tensorflow-metal with tensorflow 2.18
Issue type: Bug TensorFlow metal version: 1.1.1 TensorFlow version: 2.18 OS platform and distribution: MacOS 15.2 Python version: 3.11.11 GPU model and memory: Apple M2 Max GPU 38-cores Standalone code to reproduce the issue: import tensorflow as tf if __name__ == '__main__': gpus = tf.config.experimental.list_physical_devices('GPU') print(gpus) Current behavior Apple silicone GPU with tensorflow-metal==1.1.0 and python 3.11 works fine with tensorboard==2.17.0 This is normal output: /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] Process finished with exit code 0 But if I upgrade tensorflow to 2.18 I'll have error: /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py Traceback (most recent call last): File "/Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py", line 1, in <module> import tensorflow as tf File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/__init__.py", line 437, in <module> _ll.load_library(_plugin_dir) File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN3tsl8internal10LogMessageC1EPKcii Referenced from: <D2EF42E3-3A7F-39DD-9982-FB6BCDC2853C> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib Expected in: <2814A58E-D752-317B-8040-131217E2F9AA> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so Process finished with exit code 1
3
3
1.6k
Feb ’25
tensorflow-metal for Python3.12 and tensorflow 2.17.x
Hi, The most recent version of tensorflow-metal is only available for macosx 12.0 and python up to version 3.11. Is there any chance it could be updated with wheels for macos 15 and Python 3.12 (which is the default version supported for tensrofllow 2.17+)? I'd note that even downgrading to Python 3.11 would not be sufficient, as the wheels only work for macos 12. Thanks.
5
8
2.2k
Feb ’25
Easy way to implement facial recognition
Hi everyone😊, I want to implement facial recognition into my app. I was planning to use createML's image classification, but there seams to be a lot of hassle to implement (the JSON file etc.). Are there some other easy to implement options that don't involve advanced coding. Thanks, Oliver
2
0
557
Feb ’25
Is it possible to read japanese tategaki with vision framework
We are building an app which can reads texts. It can read english and Japanese normal texts successfully. But in some cases, we need to read Japanese tategaki (vertically aligned texts). But in that times, the same code gives no output. So, is there any need to change any configuration to read Japanese tategaki? Or is it really possible to read Japanese tategaki using vision framework? lazy var detectTextRequest = VNRecognizeTextRequest { request, error in self.resStr="\n" self.words = [:] // Get OCR result guard let res = request.results as? [VNRecognizedTextObservation] else { return } // separate the words by space let text = res.compactMap({$0.topCandidates(1).first?.string}).joined(separator: " ") var n = 0 self.wordArr=[[]] self.xs = 1 self.ys = 1 var hs = 0.0 // To compare the heights of the words // To get the original axis (top most word's axis), only once for r in res { var word = r.topCandidates(1).first?.string self.words[word ?? ""] = [r.topLeft.x, r.topLeft.y] if(self.cartLabelType == 1){ if(word?.components(separatedBy: CharacterSet(charactersIn: "//")).count ?? 0>2){ self.xs = r.topLeft.x self.ys = r.topLeft.y } } } } }
2
1
583
Jan ’25
About VisionKit DataScannerViewController
Hi I'm having a problem with DataScannerViewController, I'm using the volume barcode scanning feature in my app, prior to that I was using an AVCaptureDevice with the UltraWideAngle set. After discovering DataScannerViewController, we planned to replace the previous obsolete code with DataScannerViewController, all together it was ok, when I want to set the ultra wide angle, I don't know how to start. I tried to get the minZoomFactor and I realized that I get 0.0 I tried to set zoomFactor to 1.0 and I found that he is not valid Note: func dataScannerDidZoom(_ dataScanner: DataScannerViewController), when I try to get the minZoomFactor, set the zoomFactor in this proxy method, I find that it is valid! What should I do next, I want to use only DataScannerViewController and implement ultra wide angle Thanks a lot.
1
0
616
Jan ’25