Download the Foundation Models Adaptor Training Toolkit
Hi, after I clicked on the download button, I was redirected to this page https://developer.apple.com and did not download the toolkit.
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Documentation on adapter train is lacking any details related to training on dataset with tool calling. And page about tool calling itself only explain how to use it from Swift without any internal details useful in training.
Question is how schema should looks like for including tool calling in dataset?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi, recently i tried to fine-tune Gemma-2-2b mlx model on my macbook (24 GB UMA). The code started running, after few seconds i saw swap size reaching 50GB and ram around 23 GB and then it stopped. I ran the Gemma-2-2b (cuda) on colab, it ran and occupied 27 GB on A100 gpu and worked fine. Here i didn't experienced swap issue.
Now my question is if my UMA was more than 27 GB, i also would not have experienced swap disk issue.
Thanks.
Topic:
Machine Learning & AI
SubTopic:
General
Recently, I'm trying to deploy some third-party LLM to Apple devices.
The methodoloy is similar to https://github.com/Anemll/Anemll.
The biggest issue I'm having now is the runtime memory usage.
When there are multiple functions in a model (mlpackage or mlmodelc), the runtime memory usage for weights is somehow duplicated when I load all of them. Here's the detail:
I created my multifunction mlpackage following https://apple.github.io/coremltools/docs-guides/source/multifunction-models.html
I loaded each of the functions using the generated swift class:
let config = MLModelConfiguration()
config.computeUnits = MLComputeUnits.cpuAndNeuralEngine
config.functionName = "infer_512";
let ffn1_infer_512 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config)
config.functionName = "infer_1024";
let ffn1_infer_1024 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config)
config.functionName = "infer_2048";
let ffn1_infer_2048 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config)
I observed that RAM usage increases linearly as I load each of the functions.
Using instruments, I see that there are multiple HWX files generated and loaded, each of which contains all the weight data.
My understanding of what's happening here:
The CoreML framework did some MIL->MIL preprocessing before further compilation, which includes separating CPU workload from ANE workload.
The ANE part of each function is moved into a separate MIL file then compile separately into a HWX file each.
The problem is that the weight data of these HWX files are duplicated. Since that the weight data of LLMs is huge, it will cause out-of-memory issue on mobile devices.
The improvement I'm hoping from Apple:
I hope we can try to merge the processed MIL files back into one before calling ANECCompile(), so that the weights can be merged. I don't have control over that in user space and I'm not sure if that is feasible. So I'm asking for help here.
Thanks.
Topic:
Machine Learning & AI
SubTopic:
Core ML
Encountered a few times when the answer get "stuck" (I am now at beta 6).
This is an example.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I downloaded Xcode Beta 1 on my mac (did not upgrade the OS). The target OS level of iOS26 and the device simulator for iOS26 is downloaded and selected as the target.
When I try a simple Playground in Xcode ( #Playground ) I get a session error.
#Playground {
let avail = SystemLanguageModel.default.availability
if avail != .available {
print("SystemLanguageModel not available")
return
}
let session = LanguageModelSession()
do {
let response = try await session.respond(to: "Create a recipe for apple pie")
} catch {
print(error)
}
}
The error I get is:
Asset com.apple.gm.safety_deny_input.foundation_models.framework.api not found in Model Catalog
Is there a way to test drive the FoundationModel code without upgrading to macos26?
Hi,
testing latest tensorflow-metal plugin with tensorflow 2.20 doesn't work..
using python
Python 3.12.11 (main, Jun 3 2025, 15:41:47) [Clang 17.0.0 (clang-1700.0.13.3)] on darwin
simple testing shows error:
import tensorflow as tf
Traceback (most recent call last):
File "", line 1, in
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in
_ll.load_library(_plugin_dir)
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Reason: tried: '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file)
tf.config.experimental.list_physical_devices('GPU')
Traceback (most recent call last):
File "", line 1, in
NameError: name 'tf' is not defined
I fixed this error by copying _pywrap_tensorflow_internal.so where it's searched..
1)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64
2)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/
3)cp /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/
then fails symbol not found:
Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E
in libmetal_plugin.dylib
full log:
with import tensorflow as tf
Traceback (most recent call last):
File "", line 1, in
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in
_ll.load_library(_plugin_dir)
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Expected in: <2FF91C8B-0CB6-3E66-96B7-092FDF36772E> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so
I've been successfully integrating the Foundation Models framework into my healthcare app using structured generation with @Generable schemas. While my initial testing (20-30 iterations) shows promising results, I need to validate consistency and reliability at scale before production deployment.
Question
Is there a recommended approach for automated, large-scale testing of Foundation Models responses?
Specifically, I'm looking to:
Automate 1000+ test iterations with consistent prompts and structured schemas
Measure response consistency across identical inputs
Validate structured output reliability (proper schema adherence, no generation failures)
Collect performance metrics (TTFT, TPS) for optimization
Specific Questions
Framework Limitations: Are there any undocumented rate limits or thermal throttling considerations for rapid session creation/destruction?
Performance Tools: Can Xcode's Foundation Models Instrument be used programmatically, or only through Instruments UI?
Automation Integration: Any recommendations for integrating with testing frameworks?
Session Reuse: Is it better to reuse a single LanguageModelSession or create fresh sessions for each test iteration?
Use Case Context
My wellness app provides medically safe activity recommendations based on user health profiles. The Foundation Models framework processes health context and generates structured recommendations for exercises, nutrition, and lifestyle activities. Given the safety implications of providing health-related guidance, I need rigorous validation to ensure the model consistently produces appropriate, well-formed recommendations across diverse user scenarios and health conditions.
Has anyone in the community built similar large-scale testing infrastructure for Foundation Models? Any insights on best practices or potential pitfalls would be greatly appreciated.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
On macOS Tahoe26.0, iOS 26.0 (23A5287g) not emulator, Xcode 26.0 beta 3 (17A5276g)
Follow this tutorial Testing your asset packs locally The start the test server command I use this command line to start the test server:xcrun ba-serve --host 192.168.0.109 test.aar The terminal showThe content displayed on the terminal is: Loading asset packs…
Loading the asset pack at “test.aar”…
Listening on port 63125…… Choose an identity in the panel to continue. Listening on port 63125…
running the project, Xcode reports an error:Download failed: Could not connect to the server. I use iPhone safari visit this website: https://192.168.0.109:63125, on the page display "Hello, world!"
There are too few error messages in both of the above questions. I have no idea what the specific reasons are.I hope someone can offer some guidance. Best Regards.
{
"assetPackID": "testVideoAssetPack",
"downloadPolicy": {
"prefetch": {
"installationEventTypes": ["firstInstallation", "subsequentUpdate"]
}
},
"fileSelectors": [
{
"file": "video/test.mp4"
}
],
"platforms": [
"iOS"
]
}
this is my Manifest.json
Is the face and body detection service in the Vision framework a local model or a cloud model?
https://developer.apple.com/documentation/vision
I'm using a custom create ML model to classify the movement of a user's hand in a game,
The classifier has 3 different spell movements, but my code constantly predicts all of them at an equal 1/3 probability regardless of movement which leads me to believe my code isn't correct (as opposed to the model) which in CreateML at least gives me a heavily weighted prediction
My code is below.
On adding debug prints everywhere all the data looks good to me and matches similar to my test CSV data
So I'm thinking my issue must be in the setup of my model code?
/// Feeds samples into the model and keeps a sliding window of the last N frames.
final class WandGestureStreamer {
static let shared = WandGestureStreamer()
private let model: SpellActivityClassifier
private var samples: [Transform] = []
private let windowSize = 100 // number of frames the model expects
/// RNN hidden state passed between inferences
private var stateIn: MLMultiArray
/// Last transform dropped from the window for continuity
private var lastDropped: Transform?
private init() {
let config = MLModelConfiguration()
self.model = try! SpellActivityClassifier(configuration: config)
// Initialize stateIn to the model’s required shape
let constraint = self.model.model.modelDescription
.inputDescriptionsByName["stateIn"]!
.multiArrayConstraint!
self.stateIn = try! MLMultiArray(shape: constraint.shape, dataType: .double)
}
/// Call once per frame with the latest wand position (or any feature vector).
func appendSample(_ sample: Transform) {
samples.append(sample)
// drop oldest frame if over capacity, retaining it for delta at window start
if samples.count > windowSize {
lastDropped = samples.removeFirst()
}
}
func classifyIfReady(threshold: Double = 0.6) -> (label: String, confidence: Double)? {
guard samples.count == windowSize else { return nil }
do {
let input = try makeInput(initialState: stateIn)
let output = try model.prediction(input: input)
// Save state for continuity
stateIn = output.stateOut
let best = output.label
let conf = output.labelProbability[best] ?? 0
// If you’ve recognized a gesture with high confidence:
if conf > threshold {
return (best, conf)
} else {
return nil
}
} catch {
print("Error", error.localizedDescription, error)
return nil
}
}
/// Constructs a SpellActivityClassifierInput from recorded wand transforms.
func makeInput(initialState: MLMultiArray) throws -> SpellActivityClassifierInput {
let count = samples.count as NSNumber
let shape = [count]
let timeArr = try MLMultiArray(shape: shape, dataType: .double)
let dxArr = try MLMultiArray(shape: shape, dataType: .double)
let dyArr = try MLMultiArray(shape: shape, dataType: .double)
let dzArr = try MLMultiArray(shape: shape, dataType: .double)
let rwArr = try MLMultiArray(shape: shape, dataType: .double)
let rxArr = try MLMultiArray(shape: shape, dataType: .double)
let ryArr = try MLMultiArray(shape: shape, dataType: .double)
let rzArr = try MLMultiArray(shape: shape, dataType: .double)
for (i, sample) in samples.enumerated() {
let previousSample = i > 0 ? samples[i - 1] : lastDropped
let model = WandMovementRecording.DataModel(transform: sample, previous: previousSample)
// print("model", model)
timeArr[i] = NSNumber(value: model.timestamp)
dxArr[i] = NSNumber(value: model.dx)
dyArr[i] = NSNumber(value: model.dy)
dzArr[i] = NSNumber(value: model.dz)
let rot = model.rotation
rwArr[i] = NSNumber(value: rot.w)
rxArr[i] = NSNumber(value: rot.x)
ryArr[i] = NSNumber(value: rot.y)
rzArr[i] = NSNumber(value: rot.z)
}
return SpellActivityClassifierInput(
dx: dxArr, dy: dyArr, dz: dzArr,
rotation_w: rwArr, rotation_x: rxArr, rotation_y: ryArr, rotation_z: rzArr,
timestamp: timeArr,
stateIn: initialState
)
}
}
A foundation models bug I keep running into when in the preview phase of the testing. The error never seems to occur or break the app when I am testing on the simulator or on a device but sometimes I am running into this error when in a longer session while being in preview.
The error breaks the preview and crashes it and the waring on it is labeled as : "Assert in LanguageModelFeedback.swift"
This is something I keep running into, where I have been using foundation models for my project
When I am doing an uncached load of CoreML model on ANE, I received this warning in Xcode console
Type of hiddenStates in function main's I/O contains unknown strides. Using unknown strides for MIL tensor buffers with unknown shapes is not recommended in E5ML. Please use row_alignment_in_bytes property instead. Refer to https://e5-ml.apple.com/more-info/memory-layouts.html for more information.
However, the web link does not seem to be working. Where can I find more information about about this and how can I fix it?
Topic:
Machine Learning & AI
SubTopic:
Core ML
Hello,
We find that models sometimes load very fast (<< 1 second) and sometimes encounter very long load times (>> 120 seconds). During such slow load times, the model is being compiled.
We would greatly appreciate the ability to check cache validity via CoreML and determine that we are about to encounter long load times so that we can mitigate and provide a good user experience.
A secondary issue: sometimes the cache is corrupted (typically .mpsgraphpackage yielding Metal cold asserts). This yields load failures and OS errors that persist between launches, and we have to manually nuke the cache (~/Library/..../my-app/...) for the CoreML assets. A CoreML API for clearing caches and hardening from asserts across the load paths would be appreciated
Topic:
Machine Learning & AI
SubTopic:
Core ML
I have an app that streams in data from the Foundation Model and I have a card that shows one of the outputs. I want my card to accept a partially generated model but I keep getting a nonsensical error.
The error I get on line 59 is:
Cannot convert value of type 'FrostDate.VegetableSuggestion.PartiallyGenerated' (aka 'FrostDate.VegetableSuggestion') to expected argument type 'FrostDate.VegetableSuggestion.PartiallyGenerated'
Here is my card with preview:
import SwiftUI
import FoundationModels
struct VegetableSuggestionCard: View {
let vegetableSuggestion: VegetableSuggestion.PartiallyGenerated
init(vegetableSuggestion: VegetableSuggestion.PartiallyGenerated) {
self.vegetableSuggestion = vegetableSuggestion
}
var body: some View {
VStack(alignment: .leading, spacing: 8) {
if let name = vegetableSuggestion.vegetableName {
Text(name)
.font(.headline)
.frame(maxWidth: .infinity, alignment: .leading)
}
if let startIndoors = vegetableSuggestion.startSeedsIndoors {
Text("Start indoors: \(startIndoors)")
.frame(maxWidth: .infinity, alignment: .leading)
}
if let startOutdoors = vegetableSuggestion.startSeedsOutdoors {
Text("Start outdoors: \(startOutdoors)")
.frame(maxWidth: .infinity, alignment: .leading)
}
if let transplant = vegetableSuggestion.transplantSeedlingsOutdoors {
Text("Transplant: \(transplant)")
.frame(maxWidth: .infinity, alignment: .leading)
}
if let tips = vegetableSuggestion.tips {
Text("Tips: \(tips)")
.foregroundStyle(.secondary)
.frame(maxWidth: .infinity, alignment: .leading)
}
}
.padding(16)
.frame(maxWidth: .infinity, alignment: .leading)
.background(
RoundedRectangle(cornerRadius: 16, style: .continuous)
.fill(.background)
.overlay(
RoundedRectangle(cornerRadius: 16, style: .continuous)
.strokeBorder(.quaternary, lineWidth: 1)
)
.shadow(color: Color.black.opacity(0.05), radius: 6, x: 0, y: 2)
)
}
}
#Preview("Vegetable Suggestion Card") {
let sample = VegetableSuggestion.PartiallyGenerated(
vegetableName: "Tomato",
startSeedsIndoors: "6–8 weeks before last frost",
startSeedsOutdoors: "After last frost when soil is warm",
transplantSeedlingsOutdoors: "1–2 weeks after last frost",
tips: "Harden off seedlings; provide full sun and consistent moisture."
)
VegetableSuggestionCard(vegetableSuggestion: sample)
.padding()
.previewLayout(.sizeThatFits)
}
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Are there any guidelines for using Foundation Models To generate text for users in response to some canned queries? Should we use a special icon or text to let the user know that Apple Intelligence is generating the text? Should there be a disclaimer like, Apple Intelligence can make mistakes, please check for accuracy, etc?
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
@Generable
enum Breakfast {
case waffles
case pancakes
case bagels
case eggs
}
do {
let session = LanguageModelSession()
let userInput = "I want something sweet."
let prompt = "Pick the ideal breakfast for request: (userInput)"
let response = try await session.respond(to: prompt,generating: Breakfast.self)
print(response.content)
} catch let error {
print(error)
}
i want to test the @Generable demo but get error with below:decodingFailure(FoundationModels.LanguageModelSession.GenerationError.Context(debugDescription: "Failed to convert text into into GeneratedContent\nText: waffles", underlyingErrors: [Swift.DecodingError.dataCorrupted(Swift.DecodingError.Context(codingPath: [], debugDescription: "The given data was not valid JSON.", underlyingError: Optional(Error Domain=NSCocoaErrorDomain Code=3840 "Unexpected character 'w' around line 1, column 1." UserInfo={NSJSONSerializationErrorIndex=0, NSDebugDescription=Unexpected character 'w' around line 1, column 1.})))]))
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I just recently updated to iOS 26 beta (23A5336a) to test an app I am developing
I running an MLModel loaded from a .mlmodelc file.
On the current iOS version 18.6.2 the model is running as expected with no issues.
However on iOS 26 I am now getting error when trying to perform an inference to the model where I pass a camera frame into it.
Below is the error I am seeing when I attempt to run an inference.
at the bottom it says "Failed with status=0x1d : statusType=0x9: Program Inference error status=-1 Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model " does this indicate I need to convert my model or something? I don't understand since it runs as normal on iOS 18.
Any help getting this to run again would be greatly appreciated.
Thank you,
processRequest:model:qos:qIndex:modelStringID:options:returnValue:error:: Could not process request ret=0x1d lModel=_ANEModel: { modelURL=file:///var/containers/Bundle/Application/04F01BF5-D48B-44EC-A5F6-3C7389CF4856/RizzCanvas.app/faceParsing.mlmodelc/ : sourceURL=(null) : UUID=46228BFC-19B0-45BF-B18D-4A2942EEC144 : key={"isegment":0,"inputs":{"input":{"shape":[512,512,1,3,1]}},"outputs":{"var_633":{"shape":[512,512,1,19,1]},"94_argmax_out_value":{"shape":[512,512,1,1,1]},"argmax_out":{"shape":[512,512,1,1,1]},"var_637":{"shape":[512,512,1,19,1]}}} : identifierSource=1 : cacheURLIdentifier=01EF2D3DDB9BA8FD1FDE18C7CCDABA1D78C6BD02DC421D37D4E4A9D34B9F8181_93D03B87030C23427646D13E326EC55368695C3F61B2D32264CFC33E02FFD9FF : string_id=0x00000000 : program=_ANEProgramForEvaluation: { programHandle=259022032430 : intermediateBufferHandle=13949 : queueDepth=127 } : state=3 :
[Espresso::ANERuntimeEngine::__forward_segment 0] evaluate[RealTime]WithModel returned 0; code=8 err=Error Domain=com.apple.appleneuralengine Code=8 "processRequest:model:qos:qIndex:modelStringID:options:returnValue:error:: ANEProgramProcessRequestDirect() Failed with status=0x1d : statusType=0x9: Program Inference error" UserInfo={NSLocalizedDescription=processRequest:model:qos:qIndex:modelStringID:options:returnValue:error:: ANEProgramProcessRequestDirect() Failed with status=0x1d : statusType=0x9: Program Inference error}
[Espresso::handle_ex_plan] exception=Espresso exception: "Generic error": ANEF error: /private/var/containers/Bundle/Application/04F01BF5-D48B-44EC-A5F6-3C7389CF4856/RizzCanvas.app/faceParsing.mlmodelc/model.espresso.net, processRequest:model:qos:qIndex:modelStringID:options:returnValue:error:: ANEProgramProcessRequestDirect() Failed with status=0x1d : statusType=0x9: Program Inference error status=-1
Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1).
Error Domain=com.apple.Vision Code=3 "The VNCoreMLTransform request failed" UserInfo={NSLocalizedDescription=The VNCoreMLTransform request failed, NSUnderlyingError=0x114d92940 {Error Domain=com.apple.CoreML Code=0 "Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1)." UserInfo={NSLocalizedDescription=Unable to compute the prediction using a neural network model. It can be an invalid input data or broken/unsupported model (error code: -1).}}}
Hi,
I am modifying the sample camera app that is here: https://developer.apple.com/tutorials/sample-apps/capturingphotos-camerapreview ... In the processPreviewImages, I am using the Vision APIs to generate a segmentation mask for a person/object, then compositing that person onto a different background (with some other filtering). The filtering and compositing is done via CoreImage. At the end, I convert the CIImage to a CGImage then to a SwiftUI Image. When I run it on my iPhone, it works fine, and has not crashed. When I run it on the iPhone with the debugger, it crashes within a few seconds with:
EXC_BAD_ACCESS in libRPAC.dylib`std::__1::__hash_table<std::__1::__hash_value_type<long, qos_info_t>, std::__1::__unordered_map_hasher<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::hash, std::__1::equal_to, true>, std::__1::__unordered_map_equal<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::equal_to, std::__1::hash, true>, std::__1::allocator<std::__1::__hash_value_type<long, qos_info_t>>>::__emplace_unique_key_args<long, std::__1::piecewise_construct_t const&, std::__1::tuple<long const&>, std::__1::tuple<>>:
It had previously been working fine with the debugger, so I'm not sure what has changed. Is there a difference in how the Vision APIs are executed if the debugger is attached vs. not?
Hey,
When generating responses with structured output and non-streaming API, it sometimes takes 3s, sometimes 10-20s. I am firing that request subsequently while testing the app.
Is this by design, or any place I can learn more about what contributes to such variation?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models