Prioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

Detecting SIM Swap and Implementing SIM Binding in iOS
Hi Forum, We’re building a security-focused SDK for iOS that includes SIM Binding and SIM Swap detection to help prevent fraud and unauthorised device access, particularly in the context of banking and fintech apps. We understand that iOS limits access to SIM-level data, and that previously available APIs (such as those in CoreTelephony, now deprecated from iOS 16 onwards) provide only limited support for these use cases. We have a few questions and would appreciate any guidance from the community or Apple engineers: Q1. Are there any best practices or Apple-recommended approaches for binding a SIM to a device or user account? Q2. Is there a reliable way to detect a SIM swap when the app is not running (e.g., via system callback, entitlement, or background mechanism)? Q3. Are fields like GID1, GID2, or ICCID accessible through any public APIs or entitlements (such as com.apple.coretelephony.IdentityAccess)? If so, what is the process to request access? Q4. For dual SIM and eSIM scenarios, is there a documented approach to identify which SIM is active or whether a SIM slot has changed? Q5. In a banking or regulated environment, is it possible for an app vendor (e.g., a bank) to acquire certain entitlements from Apple and securely expose that information to a security SDK like ours? What would be the compliant or recommended way to structure such a partnership? Thanks in advance for any insights!
1
0
277
Jul ’25
Permission requirements for LAContext's canEvaluatePolicy
Hi, I am developing an app that checks if biometric authentication capabilities (Face ID and Touch ID) are available on a device. I have a few questions: Do I need to include a privacy string in my app to use the LAContext's canEvaluatePolicy function? This function checks if biometric authentication is available on the device, but does not actually trigger the authentication. From my testing, it seems like a privacy declaration is only required when using LAContext's evaluatePolicy function, which would trigger the biometric authentication. Can you confirm if this is the expected behavior across all iOS versions and iPhone models? When exactly does the biometric authentication permission pop-up appear for users - is it when calling canEvaluatePolicy or evaluatePolicy? I want to ensure my users have a seamless experience. Please let me know if you have any insights on these questions. I want to make sure I'm handling the biometric authentication functionality correctly in my app. Thank you!
2
0
98
Jun ’25
Which in-app events are allowed without ATT consent?
Hi everyone, I'm developing an iOS app using the AppsFlyer SDK. I understand that starting with iOS 14.5, if a user denies the App Tracking Transparency (ATT) permission, we are not allowed to access the IDFA or perform cross-app tracking. However, I’d like to clarify which in-app events are still legally and technically safe to send when the user denies ATT permission. Specifically, I want to know: Is it acceptable to send events like onboarding_completed, paywall_viewed, subscription_started, subscribe, subscribe_price, or app_opened if they are not linked to IDFA or any form of user tracking? Would sending such internal behavioral events (used purely for SKAdNetwork performance tracking or in-app analytics) violate Apple’s privacy policy if no device identifiers are attached? Additionally, if these events are sent in fully anonymous form (i.e., not associated with IDFA, user ID, email, or any identifiable metadata), does Apple still consider this a privacy concern? In other words, can onboarding_completed, paywall_viewed, subsribe, subscribe_price, etc., be sent in anonymous format without violating ATT policies? Are there any official Apple guidelines or best practices that outline what types of events are considered compliant in the absence of ATT consent? My goal is to remain 100% compliant with Apple’s policies while still analyzing meaningful user behavior to improve the in-app experience. Any clarification or pointers to documentation would be greatly appreciated. Thanks in advance!
0
0
86
Jun ’25
SecItem: Pitfalls and Best Practices
I regularly help developers with keychain problems, both here on DevForums and for my Day Job™ in DTS. Over the years I’ve learnt a lot about the API, including many pitfalls and best practices. This post is my attempt to collect that experience in one place. If you have questions or comments about any of this, put them in a new thread and apply the Security tag so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" SecItem: Pitfalls and Best Practices It’s just four functions, how hard can it be? The SecItem API seems very simple. After all, it only has four function calls, how hard can it be? In reality, things are not that easy. Various factors contribute to making this API much trickier than it might seem at first glance. This post explains some of the keychain’s pitfalls and then goes on to explain various best practices. Before reading this, make sure you understand the fundamentals by reading its companion post, SecItem: Fundamentals. Pitfalls Lets start with some common pitfalls. Queries and Uniqueness Constraints The relationship between query dictionaries and uniqueness constraints is a major source of problems with the keychain API. Consider code like this: var copyResult: CFTypeRef? = nil let query = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", kSecAttrGeneric: Data("SecItemHints".utf8), ] as NSMutableDictionary let err = SecItemCopyMatching(query, &copyResult) if err == errSecItemNotFound { query[kSecValueData] = Data("opendoor".utf8) let err2 = SecItemAdd(query, nil) if err2 == errSecDuplicateItem { fatalError("… can you get here? …") } } Can you get to the fatal error? At first glance this might not seem possible because you’ve run your query and it’s returned errSecItemNotFound. However, the fatal error is possible because the query contains an attribute, kSecAttrGeneric, that does not contribute to the uniqueness. If the keychain contains a generic password whose service (kSecAttrService) and account (kSecAttrAccount) attributes match those supplied but whose generic (kSecAttrGeneric) attribute does not, the SecItemCopyMatching calls will return errSecItemNotFound. However, for a generic password item, of the attributes shown here, only the service and account attributes are included in the uniqueness constraint. If you try to add an item where those attributes match an existing item, the add will fail with errSecDuplicateItem even though the value of the generic attribute is different. The take-home point is that that you should study the attributes that contribute to uniqueness and use them in a way that’s aligned with your view of uniqueness. See the Uniqueness section of SecItem: Fundamentals for a link to the relevant documentation. Erroneous Attributes Each keychain item class supports its own specific set of attributes. For information about the attributes supported by a given class, see SecItem: Fundamentals. I regularly see folks use attributes that aren’t supported by the class they’re working with. For example, the kSecAttrApplicationTag attribute is only supported for key items (kSecClassKey). Using it with a certificate item (kSecClassCertificate) will cause, at best, a runtime error and, at worst, mysterious bugs. This is an easy mistake to make because: The ‘parameter block’ nature of the SecItem API means that the compiler won’t complain if you use an erroneous attribute. On macOS, the shim that connects to the file-based keychain ignores unsupported attributes. Imagine you want to store a certificate for a particular user. You might write code like this: let err = SecItemAdd([ kSecClass: kSecClassCertificate, kSecAttrApplicationTag: Data(name.utf8), kSecValueRef: cert, ] as NSDictionary, nil) The goal is to store the user’s name in the kSecAttrApplicationTag attribute so that you can get back their certificate with code like this: let err = SecItemCopyMatching([ kSecClass: kSecClassCertificate, kSecAttrApplicationTag: Data(name.utf8), kSecReturnRef: true, ] as NSDictionary, &copyResult) On iOS, and with the data protection keychain on macOS, both calls will fail with errSecNoSuchAttr. That makes sense, because the kSecAttrApplicationTag attribute is not supported for certificate items. Unfortunately, the macOS shim that connects the SecItem API to the file-based keychain ignores extraneous attributes. This results in some very bad behaviour: SecItemAdd works, ignoring kSecAttrApplicationTag. SecItemCopyMatching ignores kSecAttrApplicationTag, returning the first certificate that it finds. If you only test with a single user, everything seems to work. But, later on, when you try your code with multiple users, you might get back the wrong result depending on the which certificate the SecItemCopyMatching call happens to discover first. Ouch! Context Matters Some properties change behaviour based on the context. The value type properties are the biggest offender here, as discussed in the Value Type Subtleties section of SecItem: Fundamentals. However, there are others. The one that’s bitten me is kSecMatchLimit: In a query and return dictionary its default value is kSecMatchLimitOne. If you don’t supply a value for kSecMatchLimit, SecItemCopyMatching returns at most one item that matches your query. In a pure query dictionary its default value is kSecMatchLimitAll. For example, if you don’t supply a value for kSecMatchLimit, SecItemDelete will delete all items that match your query. This is a lesson that, once learnt, is never forgotten! Note Although this only applies to the data protection keychain. If you’re on macOS and targeting the file-based keychain, kSecMatchLimit always defaults to kSecMatchLimitOne (r. 105800863). Fun times! Digital Identities Aren’t Real A digital identity is the combination of a certificate and the private key that matches the public key within that certificate. The SecItem API has a digital identity keychain item class, namely kSecClassIdentity. However, the keychain does not store digital identities. When you add a digital identity to the keychain, the system stores its components, the certificate and the private key, separately, using kSecClassCertificate and kSecClassKey respectively. This has a number of non-obvious effects: Adding a certificate can ‘add’ a digital identity. If the new certificate happens to match a private key that’s already in the keychain, the keychain treats that pair as a digital identity. Likewise when you add a private key. Similarly, removing a certificate or private key can ‘remove’ a digital identity. Adding a digital identity will either add a private key, or a certificate, or both, depending on what’s already in the keychain. Removing a digital identity removes its certificate. It might also remove the private key, depending on whether that private key is used by a different digital identity. The system forms a digital identity by matching the kSecAttrApplicationLabel (klbl) attribute of the private key with the kSecAttrPublicKeyHash (pkhh) attribute of the certificate. If you add both items to the keychain and the system doesn’t form an identity, check the value of these attributes. For more information the key attributes, see SecItem attributes for keys. Keys Aren’t Stored in the Secure Enclave Apple platforms let you protect a key with the Secure Enclave (SE). The key is then hardware bound. It can only be used by that specific SE [1]. Earlier versions of the Protecting keys with the Secure Enclave article implied that SE-protected keys were stored in the SE itself. This is not true, and it’s caused a lot of confusion. For example, I once asked the keychain team “How much space does the SE have available to store keys?”, a question that’s complete nonsense once you understand how this works. In reality, SE-protected keys are stored in the standard keychain database alongside all your other keychain items. The difference is that the key is wrapped in such a way that only the SE can use it. So, the key is protected by the SE, not stored in the SE. A while back we updated the docs to clarify this point but the confusion persists. [1] Technically it’s that specific iteration of that specific SE. If you erase the device then the key material needed to use the key is erased and so the key becomes permanently useless. This is the sort of thing you’ll find explained in Apple Platform Security. Careful With that Shim, Mac Developer As explained in TN3137 On Mac keychain APIs and implementations, macOS has a shim that connects the SecItem API to either the data protection keychain or the file-based keychain depending on the nature of the request. That shim has limitations. Some of those are architectural but others are simply bugs in the shim. For some great examples, see the Investigating Complex Attributes section below. The best way to avoid problems like this is to target the data protection keychain. If you can’t do that, try to avoid exploring the outer reaches of the SecItem API. If you encounter a case that doesn’t make sense, try that same case with the data protection keychain. If it works there but fails with the file-based keychain, please do file a bug against the shim. It’ll be in good company. Here’s some known issues with the shim: It ignores unsupported attributes. See Erroneous Attributes, above, for more background on that. The shim can fan out to both the data protection and the file-based keychain. In that case it has to make a policy decision about how to handle errors. This results in some unexpected behaviour (r. 143405965). For example, if you call SecItemCopyMatching while the keychain is locked, the data protection keychain will fail with errSecInteractionNotAllowed (-25308). OTOH, it’s possible to query for the presence of items in the file-based keychain even when it’s locked. If you do that and there’s no matching item, the file-based keychain fails with errSecItemNotFound (-25300). When the shim gets these conflicting errors, it chooses to return the latter. Whether this is right or wrong depends on your perspective, but it’s certainly confusing, especially if you’re coming at this from the iOS side. If you call SecItemDelete without specifying a match limit (kSecMatchLimit), the data protection keychain deletes all matching items, whereas the file-based keychain just deletes a single match (r. 105800863). While these issue have all have bug numbers, there’s no guarantee that any of them will be fixed. Fixing bugs like this is tricky because of binary compatibility concerns. Add-only Attributes Some attributes can only be set when you add an item. These attributes are usually associated with the scope of the item. For example, to protect an item with the Secure Enclave, supply the kSecAttrAccessControl attribute to the SecItemAdd call. Once you do that, however, you can’t change the attribute. Calling SecItemUpdate with a new kSecAttrAccessControl won’t work. Lost Keychain Items A common complaint from developers is that a seemingly minor update to their app has caused it to lose all of its keychain items. Usually this is caused by one of two problems: Entitlement changes Query dictionary confusion Access to keychain items is mediated by various entitlements, as described in Sharing access to keychain items among a collection of apps. If the two versions of your app have different entitlements, one version may not be able to ‘see’ items created by the other. Imagine you have an app with an App ID of SKMME9E2Y8.com.example.waffle-varnisher. Version 1 of your app is signed with the keychain-access-groups entitlement set to [ SKMME9E2Y8.groupA, SKMME9E2Y8.groupB ]. That makes its keychain access group list [ SKMME9E2Y8.groupA, SKMME9E2Y8.groupB, SKMME9E2Y8.com.example.waffle-varnisher ]. If this app creates a new keychain item without specifying kSecAttrAccessGroup, the system places the item into SKMME9E2Y8.groupA. If version 2 of your app removes SKMME9E2Y8.groupA from the keychain-access-groups, it’ll no longer be able to see the keychain items created by version 1. You’ll also see this problem if you change your App ID prefix, as described in App ID Prefix Change and Keychain Access. IMPORTANT When checking for this problem, don’t rely on your .entitlements file. There are many steps between it and your app’s actual entitlements. Rather, run codesign to dump the entitlements of your built app: % codesign -d --entitlements - /path/to/your.app Lost Keychain Items, Redux Another common cause of lost keychain items is confusion about query dictionaries, something discussed in detail in this post and SecItem: Fundamentals. If SecItemCopyMatching isn’t returning the expected item, add some test code to get all the items and their attributes. For example, to dump all the generic password items, run code like this: func dumpGenericPasswords() throws { let itemDicts = try secCall { SecItemCopyMatching([ kSecClass: kSecClassGenericPassword, kSecMatchLimit: kSecMatchLimitAll, kSecReturnAttributes: true, ] as NSDictionary, $0) } as! [[String: Any]] print(itemDicts) } Then compare each item’s attributes against the attributes you’re looking for to see why there was no match. Data Protection and Background Execution Keychain items are subject to data protection. Specifically, an item may or may not be accessible depending on whether specific key material is available. For an in-depth discussion of how this works, see Apple Platform Security. Note This section focuses on iOS but you’ll see similar effects on all Apple platforms. On macOS specifically, the contents of this section only apply to the data protection keychain. The keychain supports three data protection levels: kSecAttrAccessibleWhenUnlocked kSecAttrAccessibleAfterFirstUnlock kSecAttrAccessibleAlways Note There are additional data protection levels, all with the ThisDeviceOnly suffix. Understanding those is not necessary to understanding this pitfall. Each data protection level describes the lifetime of the key material needed to work with items protected in that way. Specifically: The key material needed to work with a kSecAttrAccessibleWhenUnlocked item comes and goes as the user locks and unlocks their device. The key material needed to work with a kSecAttrAccessibleAfterFirstUnlock item becomes available when the device is first unlocked and remains available until the device restarts. The default data protection level is kSecAttrAccessibleWhenUnlocked. If you add an item to the keychain and don’t specify a data protection level, this is what you get [1]. To specify a data protection level when you add an item to the keychain, apply the kSecAttrAccessible attribute. Alternatively, embed the access level within a SecAccessControl object and apply that using the kSecAttrAccessControl attribute. IMPORTANT It’s best practice to set these attributes when you add the item and then never update them. See Add-only Attributes, above, for more on that. If you perform an operation whose data protection is incompatible with the currently available key material, that operation fails with errSecInteractionNotAllowed [2]. There are four fundamental keychain operations, discussed in the SecItem: Fundamentals, and each interacts with data protection in a different way: Copy — If you attempt to access a keychain item whose key material is unavailable, SecItemCopyMatching fails with errSecInteractionNotAllowed. This is an obvious result; the whole point of data protection is to enforce this security policy. Add — If you attempt to add a keychain item whose key material is unavailable, SecItemAdd fails with errSecInteractionNotAllowed. This is less obvious. The reason why this fails is that the system needs the key material to protect (by encryption) the keychain item, and it can’t do that if if that key material isn’t available. Update — If you attempt to update a keychain item whose key material is unavailable, SecItemUpdate fails with errSecInteractionNotAllowed. This result is an obvious consequence of the previous result. Delete — Deleting a keychain item, using SecItemDelete, doesn’t require its key material, and thus a delete will succeed when the item is otherwise unavailable. That last point is a significant pitfall. I regularly see keychain code like this: Read an item holding a critical user credential. If that works, use that credential. If it fails, delete the item and start from a ‘factory reset’ state. The problem is that, if your code ends up running in the background unexpectedly, step 1 fails with errSecInteractionNotAllowed and you turn around and delete the user’s credential. Ouch! Note Even if you didn’t write this code, you might have inherited it from a keychain wrapper library. See *Think Before Wrapping, below. There are two paths forward here: If you don’t expect this code to work in the background, check for the errSecInteractionNotAllowed error and non-destructively cancel the operation in that case. If you expect this code to be running in the background, switch to a different data protection level. WARNING For the second path, the most obvious fix is to move from kSecAttrAccessibleWhenUnlocked to kSecAttrAccessibleAfterFirstUnlock. However, this is not a panacea. It’s possible that your app might end up running before first unlock [3]. So, if you choose the second path, you must also make sure to follow the advice for the first path. You can determine whether the device is unlocked using the isProtectedDataAvailable property and its associated notifications. However, it’s best not to use this property as part of your core code, because such preflighting is fundamentally racy. Rather, perform the operation and handle the error gracefully. It might make sense to use isProtectedDataAvailable property as part of debugging, logging, and diagnostic code. [1] For file data protection there’s an entitlement (com.apple.developer.default-data-protection) that controls the default data protection level. There’s no such entitlement for the keychain. That’s actually a good thing! In my experience the file data protection entitlement is an ongoing source of grief. See this thread if you’re curious. [2] This might seem like an odd error but it’s actually pretty reasonable: The operation needs some key material that’s currently unavailable. Only a user action can provide that key material. But the data protection keychain will never prompt the user to unlock their device. Thus you get an error instead. [3] iOS generally avoids running third-party code before first unlock, but there are circumstances where that can happen. The obvious legitimate example of this is a VoIP app, where the user expects their phone to ring even if they haven’t unlocked it since the last restart. There are also other less legitimate examples of this, including historical bugs that caused apps to launch in the background before first unlock. Best Practices With the pitfalls out of the way, let’s talk about best practices. Less Painful Dictionaries I look at a lot of keychain code and it’s amazing how much of it is way more painful than it needs to be. The biggest offender here is the dictionaries. Here are two tips to minimise the pain. First, don’t use CFDictionary. It’s seriously ugly. While the SecItem API is defined in terms of CFDictionary, you don’t have to work with CFDictionary directly. Rather, use NSDictionary and take advantage of the toll-free bridge. For example, consider this CFDictionary code: CFTypeRef keys[4] = { kSecClass, kSecAttrService, kSecMatchLimit, kSecReturnAttributes, }; static const int kTen = 10; CFNumberRef ten = CFNumberCreate(NULL, kCFNumberIntType, &kTen); CFAutorelease(ten); CFTypeRef values[4] = { kSecClassGenericPassword, CFSTR("AYS"), ten, kCFBooleanTrue, }; CFDictionaryRef query = CFDictionaryCreate( NULL, keys, values, 4, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks ); Note This might seem rather extreme but I’ve literally seen code like this, and worse, while helping developers. Contrast this to the equivalent NSDictionary code: NSDictionary * query = @{ (__bridge NSString *) kSecClass: (__bridge NSString *) kSecClassGenericPassword, (__bridge NSString *) kSecAttrService: @"AYS", (__bridge NSString *) kSecMatchLimit: @10, (__bridge NSString *) kSecReturnAttributes: @YES, }; Wow, that’s so much better. Second, if you’re working in Swift, take advantage of its awesome ability to create NSDictionary values from Swift dictionary literals. Here’s the equivalent code in Swift: let query = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecMatchLimit: 10, kSecReturnAttributes: true, ] as NSDictionary Nice! Avoid Reusing Dictionaries I regularly see folks reuse dictionaries for different SecItem calls. For example, they might have code like this: var copyResult: CFTypeRef? = nil let dict = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", kSecReturnData: true, ] as NSMutableDictionary var err = SecItemCopyMatching(dict, &copyResult) if err == errSecItemNotFound { dict[kSecValueData] = Data("opendoor".utf8) err = SecItemAdd(dict, nil) } This specific example will work, but it’s easy to spot the logic error. kSecReturnData is a return type property and it makes no sense to pass it to a SecItemAdd call whose second parameter is nil. I’m not sure why folks do this. I think it’s because they think that constructing dictionaries is expensive. Regardless, this pattern can lead to all sorts of weird problems. For example, it’s the leading cause of the issue described in the Queries and the Uniqueness Constraints section, above. My advice is that you use a new dictionary for each call. That prevents state from one call accidentally leaking into a subsequent call. For example, I’d rewrite the above as: var copyResult: CFTypeRef? = nil let query = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", kSecReturnData: true, ] as NSMutableDictionary var err = SecItemCopyMatching(query, &copyResult) if err == errSecItemNotFound { let add = [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", kSecValueData: Data("opendoor".utf8), ] as NSMutableDictionary err = SecItemAdd(add, nil) } It’s a bit longer, but it’s much easier to track the flow. And if you want to eliminate the repetition, use a helper function: func makeDict() -> NSMutableDictionary { [ kSecClass: kSecClassGenericPassword, kSecAttrService: "AYS", kSecAttrAccount: "mrgumby", ] as NSMutableDictionary } var copyResult: CFTypeRef? = nil let query = makeDict() query[kSecReturnData] = true var err = SecItemCopyMatching(query, &copyResult) if err == errSecItemNotFound { let add = makeDict() query[kSecValueData] = Data("opendoor".utf8) err = SecItemAdd(add, nil) } Think Before Wrapping A lot of folks look at the SecItem API and immediately reach for a wrapper library. A keychain wrapper library might seem like a good idea but there are some serious downsides: It adds another dependency to your project. Different subsystems within your project may use different wrappers. The wrapper can obscure the underlying API. Indeed, its entire raison d’être is to obscure the underlying API. This is problematic if things go wrong. I regularly talk to folks with hard-to-debug keychain problems and the conversation goes something like this: Quinn: What attributes do you use in the query dictionary? J R Developer: What’s a query dictionary? Quinn: OK, so what error are you getting back? J R Developer: It throws WrapperKeychainFailedError. That’s not helpful )-: If you do use a wrapper, make sure it has diagnostic support that includes the values passed to and from the SecItem API. Also make sure that, when it fails, it returns an error that includes the underlying keychain error code. These benefits will be particularly useful if you encounter a keychain problem that only shows up in the field. Wrappers must choose whether to be general or specific. A general wrapper may be harder to understand than the equivalent SecItem calls, and it’ll certainly contain a lot of complex code. On the other hand, a specific wrapper may have a model of the keychain that doesn’t align with your requirements. I recommend that you think twice before using a keychain wrapper. Personally I find the SecItem API relatively easy to call, assuming that: I use the techniques shown in Less Painful Dictionaries, above, to avoid having to deal with CFDictionary. I use my secCall(…) helpers to simplify error handling. For the code, see Calling Security Framework from Swift. If you’re not prepared to take the SecItem API neat, consider writing your own wrapper, one that’s tightly focused on the requirements of your project. For example, in my VPN apps I use the wrapper from this post, which does exactly what I need in about 100 lines of code. Prefer to Update Of the four SecItem functions, SecItemUpdate is the most neglected. Rather than calling SecItemUpdate I regularly see folks delete and then re-add the item. This is a shame because SecItemUpdate has some important benefits: It preserves persistent references. If you delete and then re-add the item, you get a new item with a new persistent reference. It’s well aligned with the fundamental database nature of the keychain. It forces you to think about which attributes uniquely identify your item and which items can be updated without changing the item’s identity. Understand These Key Attributes Key items have a number of attributes that are similarly named, and it’s important to keep them straight. I created a cheat sheet for this, namely, SecItem attributes for keys. You wouldn’t believe how often I consult this! Investigating Complex Attributes Some attributes have values where the format is not obvious. For example, the kSecAttrIssuer attributed is documented as: The corresponding value is of type CFData and contains the X.500 issuer name of a certificate. What exactly does that mean? If I want to search the keychain for all certificates issued by a specific certificate authority, what value should I supply? One way to figure this out is to add a certificate to the keychain, read the attributes back, and then dump the kSecAttrIssuer value. For example: let cert: SecCertificate = … let attrs = try secCall { SecItemAdd([ kSecValueRef: cert, kSecReturnAttributes: true, ] as NSDictionary, $0) } as! [String: Any] let issuer = attrs[kSecAttrIssuer as String] as! NSData print((issuer as NSData).debugDescription) // prints: <3110300e 06035504 030c074d 6f757365 4341310b 30090603 55040613 024742> Those bytes represent the contents of a X.509 Name ASN.1 structure with DER encoding. This is without the outer SEQUENCE element, so if you dump it as ASN.1 you’ll get a nice dump of the first SET and then a warning about extra stuff at the end of the file: % xxd issuer.asn1 00000000: 3110 300e 0603 5504 030c 074d 6f75 7365 1.0...U....Mouse 00000010: 4341 310b 3009 0603 5504 0613 0247 42 CA1.0...U....GB % dumpasn1 -p issuer.asn1 SET { SEQUENCE { OBJECT IDENTIFIER commonName (2 5 4 3) UTF8String 'MouseCA' } } Warning: Further data follows ASN.1 data at position 18. Note For details on the Name structure, see section 4.1.2.4 of RFC 5280. Amusingly, if you run the same test against the file-based keychain you’ll… crash. OK, that’s not amusing. It turns out that the code above doesn’t work when targeting the file-based keychain because SecItemAdd doesn’t return a dictionary but rather an array of dictionaries (r. 21111543). Once you get past that, however, you’ll see it print: <301f3110 300e0603 5504030c 074d6f75 73654341 310b3009 06035504 06130247 42> Which is different! Dumping it as ASN.1 shows that it’s the full Name structure, including the outer SEQUENCE element: % xxd issuer-file-based.asn1 00000000: 301f 3110 300e 0603 5504 030c 074d 6f75 0.1.0...U....Mou 00000010: 7365 4341 310b 3009 0603 5504 0613 0247 seCA1.0...U....G 00000020: 42 B % dumpasn1 -p issuer-file-based.asn1 SEQUENCE { SET { SEQUENCE { OBJECT IDENTIFIER commonName (2 5 4 3) UTF8String 'MouseCA' } } SET { SEQUENCE { OBJECT IDENTIFIER countryName (2 5 4 6) PrintableString 'GB' } } } This difference in behaviour between the data protection and file-based keychains is a known bug (r. 26391756) but in this case it’s handy because the file-based keychain behaviour makes it easier to understand the data protection keychain behaviour. Import, Then Add It’s possible to import data directly into the keychain. For example, you might use this code to add a certificate: let certData: Data = … try secCall { SecItemAdd([ kSecClass: kSecClassCertificate, kSecValueData: certData, ] as NSDictionary, nil) } However, it’s better to import the data and then add the resulting credential reference. For example: let certData: Data = … let cert = try secCall { SecCertificateCreateWithData(nil, certData as NSData) } try secCall { SecItemAdd([ kSecValueRef: cert, ] as NSDictionary, nil) } There are two advantages to this: If you get an error, you know whether the problem was with the import step or the add step. It ensures that the resulting keychain item has the correct attributes. This is especially important for keys. These can be packaged in a wide range of formats, so it’s vital to know whether you’re interpreting the key data correctly. I see a lot of code that adds key data directly to the keychain. That’s understandable because, back in the day, this was the only way to import a key on iOS. Fortunately, that’s not been the case since the introduction of SecKeyCreateWithData in iOS 10 and aligned releases. For more information about importing keys, see Importing Cryptographic Keys. App Groups on the Mac Sharing access to keychain items among a collection of apps explains that three entitlements determine your keychain access: keychain-access-groups application-identifier (com.apple.application-identifier on macOS) com.apple.security.application-groups In the discussion of com.apple.security.application-groups it says: Starting in iOS 8, the array of strings given by this entitlement also extends the list of keychain access groups. That’s true, but it’s also potentially misleading. This affordance only works on iOS and its child platforms. It doesn’t work on macOS. That’s because app groups work very differently on macOS than they do on iOS. For all the details, see App Groups: macOS vs iOS: Working Towards Harmony. However, the take-home point is that, when you use the data protection keychain on macOS, your keychain access group list is built from keychain-access-groups and com.apple.application-identifier. Revision History 2025-06-29 Added the Data Protection and Background Execution section. Made other minor editorial changes. 2025-02-03 Added another specific example to the Careful With that Shim, Mac Developer section. 2025-01-29 Added somes specific examples to the Careful With that Shim, Mac Developer section. 2025-01-23 Added the Import, Then Add section. 2024-08-29 Added a discussion of identity formation to the Digital Identities Aren’t Real section. 2024-04-11 Added the App Groups on the Mac section. 2023-10-25 Added the Lost Keychain Items and Lost Keychain Items, Redux sections. 2023-09-22 Made minor editorial changes. 2023-09-12 Fixed various bugs in the revision history. Added the Erroneous Attributes section. 2023-02-22 Fixed the link to the VPNKeychain post. Corrected the name of the Context Matters section. Added the Investigating Complex Attributes section. 2023-01-28 First posted.
0
0
3.5k
Jun ’25
Authentication Services uses Safari when it is not the default browser and fails the flow anyway
We are developing an app that uses Authentication Services to authenticate users. According to the documentation, this framework will open the default web browser if it supports auth session handling, and Safari otherwise. This is not entirely true, and users will be frustrated! macOS version: Sequoia 15.5; Safari version: 18.5. When: The default browser is not Safari, and supports auth session handling (Google Chrome and Microsoft Edge as examples); and - The Safari app is already running; The auth flow will: Present the confirmation dialog box with the default browser icon. Good! Open a Safari window, instead of the default browser's one. Bad! Respond with "User Cancelled" error to the app, after making the end user believe the auth was good. Very Bad!! If the app retries the auth session, the default browser window will open as expected, and it will work as expected. However, requiring users to authenticate twice is a very bad users experience... This issue does not reproduce, when either: Safari is not running at the moment of auth session start; The default browser does not support auth session handling; or - Safari is the default browser. Fellow developers, be warned! Apple engineers, feedback #18426939 is waiting for you. Cheers!
0
0
44
Jun ’25
Custom Authorization Plugin in Login Flow
What Has Been Implemented Replaced the default loginwindow:login with a custom authorization plugin. The plugin: Performs primary OTP authentication. Displays a custom password prompt. Validates the password using Open Directory (OD) APIs. Next Scenario was handling password change Password change is simulated via: sudo pwpolicy -u robo -setpolicy "newPasswordRequired=1" On next login: Plugin retrieves the old password. OD API returns kODErrorCredentialsPasswordChangeRequired. Triggers a custom change password window to collect and set new password. Issue Observed : After changing password: The user’s login keychain resets. Custom entries under the login keychain are removed. We have tried few solutions Using API, SecKeychainChangePassword(...) Using CLI, security set-keychain-password -o oldpwd -p newpwd ~/Library/Keychains/login.keychain-db These approaches appear to successfully change the keychain password, but: On launching Keychain Access, two password prompts appear, after authentication, Keychain Access window doesn't appear (no app visibility). Question: Is there a reliable way (API or CLI) to reset or update the user’s login keychain password from within the custom authorization plugin, so: The keychain is not reset or lost. Keychain Access works normally post-login. The password update experience is seamless. Thank you for your help and I appreciate your time and consideration
2
0
101
Jun ’25
Issue to reset "Privacy & Security" permissions
Hello, I am working on a script to update an application which bundle ID changed. Only the bundle ID was modified; all other aspects remain unchanged. This application requires access to "Screen & System Audio Recording" permissions, which are currently granted to the old bundle ID. The script performs the following steps: launchctl bootout gui/$(id -u) /Library/LaunchAgents/com.my_agent_1.plist pkgutil --forget com.my_agent_1 tccutil reset All com.my_agent_1 rm /Library/LaunchAgents/com.my_agent_1.plist rm -rf </path/to/com_my_agent_1> installer -dumplog -allowUntrusted -pkg </path/to/com_my_agent_2.pkg> -target / ... When running steps #1-6 without a restart between steps #5 and #6, the old bundle ID (com.my_agent_1) remains visible in TCC.db (verified via SQL queries). Looks like this is the reason why "com.my_agent_2" is not automatically added to the permission list (requiring manual add). Moreover, "tccutil reset All com.my_agent_1" does not work anymore, the error: tccutil: No such bundle identifier "com.my_agent_1": The operation couldn’t be completed. (OSStatus error -10814.) Is there any way to completely clear the "Privacy & Security" permissions without requiring a system restart? Thank you a lot for your help in advance!
0
0
80
Jun ’25
Submission Rejected: Guideline 5.1.1 - Legal - Privacy - Data Collection and Storage
Hello Experts, I am in need of your help with this feedback from the App Reviewer. Issue Description: One or more purpose strings in the app do not sufficiently explain the use of protected resources. Purpose strings must clearly and completely describe the app's use of data and, in most cases, provide an example of how the data will be used. Next Steps: Update the location purpose string to explain how the app will use the requested information and provide a specific example of how the data will be used. See the attached screenshot. Resources: Purpose strings must clearly describe how an app uses the ability, data, or resource. The following are hypothetical examples of unclear purpose strings that would not pass review: "App would like to access your Contacts" "App needs microphone access" Feedback #2 "Regarding 5.1.1, we understand why your app needs access to location. However, the permission request alert does not sufficiently explain this to your users before accessing the location. To resolve this issue, it would be appropriate to revise the location permission request, specify why your app needs access, and provide an example of how your app will use the user's data. To learn more about purpose string requirements, watch a video from App Review with tips for writing clear purpose strings. We look forward to reviewing your app once the appropriate changes have been made." May I know how can I update my purpose string? I appealed on the first feedback by explaining what is the purpose of it but got the Feedback #2. TYIA!!
1
0
184
Jun ’25
Auth Plugin Timeout Issue During Screen Unlock
Hi! We are developing an authentication plugin for macOS that integrates with the system's authentication flow. The plugin is designed to prompt the user for approval via a push notification in our app before allowing access. The plugin is added as the first mechanism in the authenticate rule, followed by the default builtin:authenticate as a fallback. When the system requests authentication (e.g., during screen unlock), our plugin successfully displays the custom UI and sends a push notification to the user's device. However, I've encountered the following issue: If the user does not approve the push notification within ~30 seconds, the system resets the screen lock (expected behavior). If the user approves the push notification within approximately 30 seconds but doesn’t start entering their password before the timeout expires, the system still resets the screen lock before they can enter their password, effectively canceling the session. What I've Tried: Attempted to imitate mouse movement after the push button was clicked to keep the session active. Created a display sleep prevention assertion using IOKit to prevent the screen from turning off. Used the caffeinate command to keep the display and system awake. Tried setting the result as allow for the authorization request and passing an empty password to prevent the display from turning off. I also checked the system logs when this issue occurred and found the following messages: ___loginwindow: -[LWScreenLock (Private) askForPasswordSecAgent] | localUser = >timeout loginwindow: -[LWScreenLock handleUnlockResult:] _block_invoke | ERROR: Unexpected _lockRequestedBy of:7 sleeping screen loginwindow: SleepDisplay | enter powerd: Process (loginwindow) is requesting display idle___ These messages suggest that the loginwindow process encounters a timeout condition, followed by the display entering sleep mode. Despite my attempts to prevent this behavior, the screen lock still resets prematurely. Questions: Is there a documented (or undocumented) system timeout for the entire authentication flow during screen unlock that I cannot override? Are there any strategies for pausing or extending the authentication timeout to allow for complex authentication flows like push notifications? Any guidance or insights would be greatly appreciated. Thank you!
3
2
145
Jun ’25
Launch Constraint, SIP and legacy launchd plist
I have 2 basic questions related to Launch Constraints: [Q1] Are Launch Constraints supposed to work when SIP is disabled? From what I'm observing, when SIP is disabled, Launch Constraints (e.g. Launch Constraint Parent Process) are not enforced. I can understand that. But it's a bit confusing considering that the stack diagram in the WWDC 2023 session is placing the 'Environment Constraints' block under SIP, not above. Also the documentation only mentions SIP for the 'is-sip-protected' fact. [Q2] Is the SpawnConstraint key in legacy launchd plist files (i.e. inside /Library/Launch(Agents|Daemons)) officially supported? From what I'm seeing, it seems to be working when SIP is enabled. But the WWDC session and the documentation don't really talk about this case.
11
0
145
Jun ’25
DCError.invalidInput on generateAssertion() - Affecting Small Subset of Users
Issue Summary I'm encountering a DCError.invalidInput error when calling DCAppAttestService.shared.generateAssertion() in my App Attest implementation. This issue affects only a small subset of users - the majority of users can successfully complete both attestation and assertion flows without any issues. According to Apple Engineer feedback, there might be a small implementation issue in my code. Key Observations Success Rate: ~95% of users complete the flow successfully Failure Pattern: The remaining ~5% consistently fail at assertion generation Key Length: Logs show key length of 44 characters for both successful and failing cases Consistency: Users who experience the error tend to experience it consistently Platform: Issue observed across different iOS versions and device types Environment iOS App Attest implementation Using DCAppAttestService for both attestation and assertion Custom relying party server communication Issue affects ~5% of users consistently Key Implementation Details 1. Attestation Flow (Working) The attestation process works correctly: // Generate key and attest (successful for all users) self.attestService.generateKey { keyId, keyIdError in guard keyIdError == nil, let keyId = keyId else { return completionHandler(.failure(.dcError(keyIdError as! DCError))) } // Note: keyId length is consistently 44 characters for both successful and failing users // Attest key with Apple servers self.attestKey(keyId, clientData: clientData) { result in // ... verification with RP server // Key is successfully stored for ALL users (including those who later fail at assertion) } } 2. Assertion Flow (Failing for ~5% of Users with invalidInput) The assertion generation fails for a consistent subset of users: // Get assertion data from RP server self.assertRelyingParty.getAssertionData(kid, with: data) { result in switch result { case .success(let receivedData): let session = receivedData.session let clientData = receivedData.clientData let hash = clientData.toSHA256() // SHA256 hash of client data // THIS CALL FAILS WITH invalidInput for ~5% of users // Same keyId (44 chars) that worked for attestation self.attestService.generateAssertion(kid, clientDataHash: hash) { assertion, err in guard err == nil, let assertion = assertion else { // Error: DCError.invalidInput if let err = err as? DCError, err.code == .invalidKey { return reattestAndAssert(.invalidKey, completionHandler) } else { return completionHandler(.failure(.dcError(err as! DCError))) } } // ... verification logic } } } 3. Client Data Structure Client data JSON structure (identical for successful and failing users): // For attestation (works for all users) let clientData = ["challenge": receivedData.challenge] // For assertion (fails for ~5% of users with same structure) var clientData = ["challenge": receivedData.challenge] if let data = data { // Additional data for assertion clientData["account"] = data["account"] clientData["amount"] = data["amount"] } 4. SHA256 Hash Implementation extension Data { public func toSHA256() -> Data { return Data(SHA256.hash(data: self)) } } 5. Key Storage Implementation Using UserDefaults for key storage (works consistently for all users): private let keyStorageTag = "app-attest-keyid" func setKey(_ keyId: String) -> Result<(), KeyStorageError> { UserDefaults.standard.set(keyId, forKey: keyStorageTag) return .success(()) } func getKey() -> Result<String?, KeyStorageError> { let keyId = UserDefaults.standard.string(forKey: keyStorageTag) return .success(keyId) } Questions User-Specific Factors: Since this affects only ~5% of users consistently, could there be device-specific, iOS version-specific, or account-specific factors that cause invalidInput? Key State Validation: Is there any way to validate the state of an attested key before calling generateAssertion()? The key length (44 chars) appears normal for both successful and failing cases. Keychain vs UserDefaults: Could the issue be related to using UserDefaults instead of Keychain for key storage? Though this works for 95% of users. Race Conditions: Could there be subtle race conditions or timing issues that only affect certain users/devices? Error Recovery: Is there a recommended way to handle this error? Should we attempt re-attestation for these users? Additional Context & Debugging Attempts Consistent Failure: Users who experience this error typically experience it on every attempt Key Validation: Both successful and failing users have identical key formats (44 character strings) Device Diversity: Issue observed across different device models and iOS versions Server Logs: Our server successfully provides challenges and processes attestation for all users Re-attestation: Forcing re-attestation sometimes resolves the issue temporarily, but it often recurs The fact that 95% of users succeed with identical code suggests there might be some environmental or device-specific factor that we're not accounting for. Any insights into what could cause invalidInput for a subset of users would be invaluable.
2
0
131
Jun ’25
App Attest Suddenly Failing in Production — Error 4 (serverUnavailable)
Hi Apple Team and Community, We've encountered a sudden and widespread failure with the App Attest service starting today across multiple production apps and regions. The previously working implementation is now consistently returning the following error on iOS: The operation couldn’t be completed. (com.apple.devicecheck.error error 4.) (serverUnavailable) Despite the green status on Apple’s System Status page, this appears to be a backend issue—possibly infrastructure or DNS-related. Notably: The issue affects multiple apps. It is reproducible across different geographies. No code changes were made recently to the attestation logic. We previously reported a similar concern in this thread: App Attest Attestation Failing, but this new occurrence seems unrelated to any client-side cause. Update: An Apple engineer in this thread(https://developer.apple.com/forums/thread/782987) confirmed that the issue was due to a temporary DNS problem and has now been resolved. Can anyone else confirm seeing this today? Any insights from Apple would be appreciated to ensure continued stability. Thanks!
6
2
394
Jun ’25
How to use App Attest Environment?
Hi, I'm looking at adding App Attest to an app, and I think I understand the mechanics of the attestation process, but I'm having trouble figuring out how development and testing are supposed to work. Two main questions: The "App Attest Environment" -- the documentation says that attestation requests made in the .development sandbox environment don't affect the app's risk metrics, but I'm not sure how to actually use this sandbox. My understanding is that one of the things App Attest does is to ensure that your app has been appropriately signed by the App Store, so it knows that it hasn't been tampered with. But the docs say that App Store builds (and Test Flight and Developer Enterprise Program) always use the .production environment. Does App Attest actually work for local developer-build apps if you have this entitlement set? Presumably only on hardware devices since it requires the Secure Enclave? Does our headend have to do something different when verifying the public key and subsequent attested requests for an app that's using the .development sandbox? The docs do mention that a headend server should potentially track two keys per device/user pair so that it can have a production and development key. How does the headend know if a key is from the sandbox environment? Thanks!
0
0
94
Jun ’25
Can child processes inherit Info.plist properties of a parent app (such as LSSupportsGameMode)?
My high-level goal is to add support for Game Mode in a Java game, which launches via a macOS "launcher" app that runs the actual java game as a separate process (e.g. using the java command line tool). I asked this over in the Graphics & Games section and was told this, which is why I'm reposting this here. I'm uncertain how to speak to CLI tools and Java games launched from a macOS app. These sound like security and sandboxing questions which we recommend you ask about in those sections of the forums. The system seems to decide whether to enable Game Mode based on values in the Info.plist (e.g. for LSApplicationCategoryType and GCSupportsGameMode). However, the child process can't seem to see these values. Is there a way to change that? (The rest of this post is copied from my other forums post to provide additional context.) Imagine a native macOS app that acts as a "launcher" for a Java game.** For example, the "launcher" app might use the Swift Process API or a similar method to run the java command line tool (lets assume the user has installed Java themselves) to run the game. I have seen How to Enable Game Mode. If the native launcher app's Info.plist has the following keys set: LSApplicationCategoryType set to public.app-category.games LSSupportsGameMode set to true (for macOS 26+) GCSupportsGameMode set to true The launcher itself can cause Game Mode to activate if the launcher is fullscreened. However, if the launcher opens a Java process that opens a window, then the Java window is fullscreened, Game Mode doesn't seem to activate. In this case activating Game Mode for the launcher itself is unnecessary, but you'd expect Game Mode to activate when the actual game in the Java window is fullscreened. Is there a way to get Game Mode to activate in the latter case? ** The concrete case I'm thinking of is a third-party Minecraft Java Edition launcher, but the issue can also be demonstrated in a sample project (FB13786152). It seems like the official Minecraft launcher is able to do this, though it's not clear how. (Is its bundle identifier hardcoded in the OS to allow for this? Changing a sample app's bundle identifier to be the same as the official Minecraft launcher gets the behavior I want, but obviously this is not a practical solution.)
3
0
186
Jun ’25