Machine Learning

RSS for tag

Create intelligent features and enable new experiences for your apps by leveraging powerful on-device machine learning.

Posts under Machine Learning tag

43 Posts

Post

Replies

Boosts

Views

Activity

Optimizing YOLOv8 for Real-Time Object Detection in a Specific Screen Area
I’m working on real-time object detection using YOLOv8, but I only need to detect objects in approximately 40% of the screen area. Is it possible to limit the captureOut method to focus solely on that specific region of the screen? If this isn’t feasible, I’m considering an approach where the full-screen pixel buffer is captured and then cropped to the target area before running detection. However, I’m concerned about how this might affect real-time performance. I’d appreciate any insights on how to maintain real-time performance or suggestions for better alternatives. Thank you!
2
0
802
Oct ’24
Seeking API for Advanced Auto Image Enhancement Similar to Photos App's Auto Feature
Hi everyone, I've been working with the autoAdjustmentFilters provided by Core Image, which includes filters like CIHighlightShadowAdjust, CIVibrance, and CIToneCurve. However, I’ve noticed that the results differ significantly from the "Auto" enhancement feature in the Photos app. In the Photos app, the Auto function seems to adjust multiple parameters such as contrast, exposure, white balance, highlights, and shadows in a more advanced manner. Is there an API or a framework available that can replicate the more sophisticated "Auto" adjustments as seen in the Photos app? Or would I need to manually combine filters (like CIExposureAdjust, CIWhitePointAdjust, etc.) to approximate this functionality? Any insights or recommendations on how to achieve this would be greatly appreciated. Thank you!
0
0
526
Oct ’24
Handling YOLOv8 Object Detection in 60FPS UltraWideCamera on iOS: Frame Processing Query
I am developing an iOS app that uses YOLOv8 for object detection and aims to detect objects at 60 FPS using the UltraWide camera. My goal is to process every frame within captureOutput and utilize the detected data (such as coordinates) for each one. I have a question regarding how background thread processing behaves in this scenario. Does the size of the YOLO model (n, s, m, etc.) or the weight of the operations inside captureOutput affect the number of frames that can be successfully processed? Specifically, I would like to know if all frames will be processed sequentially with a delay due to heavy processing in the background, or if some frames will be dropped and not processed at all. Any insights on how to handle this would be greatly appreciated. Thank you!
2
0
1.1k
Oct ’24